xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SPIRV/SPIRVModuleAnalysis.cpp (revision ba3c1f5972d7b90feb6e6da47905ff2757e0fe57)
1 //===- SPIRVModuleAnalysis.cpp - analysis of global instrs & regs - C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The analysis collects instructions that should be output at the module level
10 // and performs the global register numbering.
11 //
12 // The results of this analysis are used in AsmPrinter to rename registers
13 // globally and to output required instructions at the module level.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "SPIRVModuleAnalysis.h"
18 #include "SPIRV.h"
19 #include "SPIRVSubtarget.h"
20 #include "SPIRVTargetMachine.h"
21 #include "SPIRVUtils.h"
22 #include "TargetInfo/SPIRVTargetInfo.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "spirv-module-analysis"
30 
31 static cl::opt<bool>
32     SPVDumpDeps("spv-dump-deps",
33                 cl::desc("Dump MIR with SPIR-V dependencies info"),
34                 cl::Optional, cl::init(false));
35 
36 char llvm::SPIRVModuleAnalysis::ID = 0;
37 
38 namespace llvm {
39 void initializeSPIRVModuleAnalysisPass(PassRegistry &);
40 } // namespace llvm
41 
42 INITIALIZE_PASS(SPIRVModuleAnalysis, DEBUG_TYPE, "SPIRV module analysis", true,
43                 true)
44 
45 // Retrieve an unsigned from an MDNode with a list of them as operands.
46 static unsigned getMetadataUInt(MDNode *MdNode, unsigned OpIndex,
47                                 unsigned DefaultVal = 0) {
48   if (MdNode && OpIndex < MdNode->getNumOperands()) {
49     const auto &Op = MdNode->getOperand(OpIndex);
50     return mdconst::extract<ConstantInt>(Op)->getZExtValue();
51   }
52   return DefaultVal;
53 }
54 
55 static SPIRV::Requirements
56 getSymbolicOperandRequirements(SPIRV::OperandCategory::OperandCategory Category,
57                                unsigned i, const SPIRVSubtarget &ST,
58                                SPIRV::RequirementHandler &Reqs) {
59   unsigned ReqMinVer = getSymbolicOperandMinVersion(Category, i);
60   unsigned ReqMaxVer = getSymbolicOperandMaxVersion(Category, i);
61   unsigned TargetVer = ST.getSPIRVVersion();
62   bool MinVerOK = !ReqMinVer || !TargetVer || TargetVer >= ReqMinVer;
63   bool MaxVerOK = !ReqMaxVer || !TargetVer || TargetVer <= ReqMaxVer;
64   CapabilityList ReqCaps = getSymbolicOperandCapabilities(Category, i);
65   ExtensionList ReqExts = getSymbolicOperandExtensions(Category, i);
66   if (ReqCaps.empty()) {
67     if (ReqExts.empty()) {
68       if (MinVerOK && MaxVerOK)
69         return {true, {}, {}, ReqMinVer, ReqMaxVer};
70       return {false, {}, {}, 0, 0};
71     }
72   } else if (MinVerOK && MaxVerOK) {
73     for (auto Cap : ReqCaps) { // Only need 1 of the capabilities to work.
74       if (Reqs.isCapabilityAvailable(Cap))
75         return {true, {Cap}, {}, ReqMinVer, ReqMaxVer};
76     }
77   }
78   // If there are no capabilities, or we can't satisfy the version or
79   // capability requirements, use the list of extensions (if the subtarget
80   // can handle them all).
81   if (llvm::all_of(ReqExts, [&ST](const SPIRV::Extension::Extension &Ext) {
82         return ST.canUseExtension(Ext);
83       })) {
84     return {true, {}, ReqExts, 0, 0}; // TODO: add versions to extensions.
85   }
86   return {false, {}, {}, 0, 0};
87 }
88 
89 void SPIRVModuleAnalysis::setBaseInfo(const Module &M) {
90   MAI.MaxID = 0;
91   for (int i = 0; i < SPIRV::NUM_MODULE_SECTIONS; i++)
92     MAI.MS[i].clear();
93   MAI.RegisterAliasTable.clear();
94   MAI.InstrsToDelete.clear();
95   MAI.FuncMap.clear();
96   MAI.GlobalVarList.clear();
97   MAI.ExtInstSetMap.clear();
98   MAI.Reqs.clear();
99   MAI.Reqs.initAvailableCapabilities(*ST);
100 
101   // TODO: determine memory model and source language from the configuratoin.
102   if (auto MemModel = M.getNamedMetadata("spirv.MemoryModel")) {
103     auto MemMD = MemModel->getOperand(0);
104     MAI.Addr = static_cast<SPIRV::AddressingModel::AddressingModel>(
105         getMetadataUInt(MemMD, 0));
106     MAI.Mem =
107         static_cast<SPIRV::MemoryModel::MemoryModel>(getMetadataUInt(MemMD, 1));
108   } else {
109     MAI.Mem = SPIRV::MemoryModel::OpenCL;
110     unsigned PtrSize = ST->getPointerSize();
111     MAI.Addr = PtrSize == 32   ? SPIRV::AddressingModel::Physical32
112                : PtrSize == 64 ? SPIRV::AddressingModel::Physical64
113                                : SPIRV::AddressingModel::Logical;
114   }
115   // Get the OpenCL version number from metadata.
116   // TODO: support other source languages.
117   if (auto VerNode = M.getNamedMetadata("opencl.ocl.version")) {
118     MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_C;
119     // Construct version literal in accordance with SPIRV-LLVM-Translator.
120     // TODO: support multiple OCL version metadata.
121     assert(VerNode->getNumOperands() > 0 && "Invalid SPIR");
122     auto VersionMD = VerNode->getOperand(0);
123     unsigned MajorNum = getMetadataUInt(VersionMD, 0, 2);
124     unsigned MinorNum = getMetadataUInt(VersionMD, 1);
125     unsigned RevNum = getMetadataUInt(VersionMD, 2);
126     MAI.SrcLangVersion = (MajorNum * 100 + MinorNum) * 1000 + RevNum;
127   } else {
128     MAI.SrcLang = SPIRV::SourceLanguage::Unknown;
129     MAI.SrcLangVersion = 0;
130   }
131 
132   if (auto ExtNode = M.getNamedMetadata("opencl.used.extensions")) {
133     for (unsigned I = 0, E = ExtNode->getNumOperands(); I != E; ++I) {
134       MDNode *MD = ExtNode->getOperand(I);
135       if (!MD || MD->getNumOperands() == 0)
136         continue;
137       for (unsigned J = 0, N = MD->getNumOperands(); J != N; ++J)
138         MAI.SrcExt.insert(cast<MDString>(MD->getOperand(J))->getString());
139     }
140   }
141 
142   // Update required capabilities for this memory model, addressing model and
143   // source language.
144   MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand,
145                                  MAI.Mem, *ST);
146   MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::SourceLanguageOperand,
147                                  MAI.SrcLang, *ST);
148   MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand,
149                                  MAI.Addr, *ST);
150 
151   // TODO: check if it's required by default.
152   MAI.ExtInstSetMap[static_cast<unsigned>(SPIRV::InstructionSet::OpenCL_std)] =
153       Register::index2VirtReg(MAI.getNextID());
154 }
155 
156 // Collect MI which defines the register in the given machine function.
157 static void collectDefInstr(Register Reg, const MachineFunction *MF,
158                             SPIRV::ModuleAnalysisInfo *MAI,
159                             SPIRV::ModuleSectionType MSType,
160                             bool DoInsert = true) {
161   assert(MAI->hasRegisterAlias(MF, Reg) && "Cannot find register alias");
162   MachineInstr *MI = MF->getRegInfo().getUniqueVRegDef(Reg);
163   assert(MI && "There should be an instruction that defines the register");
164   MAI->setSkipEmission(MI);
165   if (DoInsert)
166     MAI->MS[MSType].push_back(MI);
167 }
168 
169 void SPIRVModuleAnalysis::collectGlobalEntities(
170     const std::vector<SPIRV::DTSortableEntry *> &DepsGraph,
171     SPIRV::ModuleSectionType MSType,
172     std::function<bool(const SPIRV::DTSortableEntry *)> Pred,
173     bool UsePreOrder = false) {
174   DenseSet<const SPIRV::DTSortableEntry *> Visited;
175   for (const auto *E : DepsGraph) {
176     std::function<void(const SPIRV::DTSortableEntry *)> RecHoistUtil;
177     // NOTE: here we prefer recursive approach over iterative because
178     // we don't expect depchains long enough to cause SO.
179     RecHoistUtil = [MSType, UsePreOrder, &Visited, &Pred,
180                     &RecHoistUtil](const SPIRV::DTSortableEntry *E) {
181       if (Visited.count(E) || !Pred(E))
182         return;
183       Visited.insert(E);
184 
185       // Traversing deps graph in post-order allows us to get rid of
186       // register aliases preprocessing.
187       // But pre-order is required for correct processing of function
188       // declaration and arguments processing.
189       if (!UsePreOrder)
190         for (auto *S : E->getDeps())
191           RecHoistUtil(S);
192 
193       Register GlobalReg = Register::index2VirtReg(MAI.getNextID());
194       bool IsFirst = true;
195       for (auto &U : *E) {
196         const MachineFunction *MF = U.first;
197         Register Reg = U.second;
198         MAI.setRegisterAlias(MF, Reg, GlobalReg);
199         if (!MF->getRegInfo().getUniqueVRegDef(Reg))
200           continue;
201         collectDefInstr(Reg, MF, &MAI, MSType, IsFirst);
202         IsFirst = false;
203         if (E->getIsGV())
204           MAI.GlobalVarList.push_back(MF->getRegInfo().getUniqueVRegDef(Reg));
205       }
206 
207       if (UsePreOrder)
208         for (auto *S : E->getDeps())
209           RecHoistUtil(S);
210     };
211     RecHoistUtil(E);
212   }
213 }
214 
215 // The function initializes global register alias table for types, consts,
216 // global vars and func decls and collects these instruction for output
217 // at module level. Also it collects explicit OpExtension/OpCapability
218 // instructions.
219 void SPIRVModuleAnalysis::processDefInstrs(const Module &M) {
220   std::vector<SPIRV::DTSortableEntry *> DepsGraph;
221 
222   GR->buildDepsGraph(DepsGraph, SPVDumpDeps ? MMI : nullptr);
223 
224   collectGlobalEntities(
225       DepsGraph, SPIRV::MB_TypeConstVars,
226       [](const SPIRV::DTSortableEntry *E) { return !E->getIsFunc(); });
227 
228   for (auto F = M.begin(), E = M.end(); F != E; ++F) {
229     MachineFunction *MF = MMI->getMachineFunction(*F);
230     if (!MF)
231       continue;
232     // Iterate through and collect OpExtension/OpCapability instructions.
233     for (MachineBasicBlock &MBB : *MF) {
234       for (MachineInstr &MI : MBB) {
235         if (MI.getOpcode() == SPIRV::OpExtension) {
236           // Here, OpExtension just has a single enum operand, not a string.
237           auto Ext = SPIRV::Extension::Extension(MI.getOperand(0).getImm());
238           MAI.Reqs.addExtension(Ext);
239           MAI.setSkipEmission(&MI);
240         } else if (MI.getOpcode() == SPIRV::OpCapability) {
241           auto Cap = SPIRV::Capability::Capability(MI.getOperand(0).getImm());
242           MAI.Reqs.addCapability(Cap);
243           MAI.setSkipEmission(&MI);
244         }
245       }
246     }
247   }
248 
249   collectGlobalEntities(
250       DepsGraph, SPIRV::MB_ExtFuncDecls,
251       [](const SPIRV::DTSortableEntry *E) { return E->getIsFunc(); }, true);
252 }
253 
254 // True if there is an instruction in the MS list with all the same operands as
255 // the given instruction has (after the given starting index).
256 // TODO: maybe it needs to check Opcodes too.
257 static bool findSameInstrInMS(const MachineInstr &A,
258                               SPIRV::ModuleSectionType MSType,
259                               SPIRV::ModuleAnalysisInfo &MAI,
260                               unsigned StartOpIndex = 0) {
261   for (const auto *B : MAI.MS[MSType]) {
262     const unsigned NumAOps = A.getNumOperands();
263     if (NumAOps != B->getNumOperands() || A.getNumDefs() != B->getNumDefs())
264       continue;
265     bool AllOpsMatch = true;
266     for (unsigned i = StartOpIndex; i < NumAOps && AllOpsMatch; ++i) {
267       if (A.getOperand(i).isReg() && B->getOperand(i).isReg()) {
268         Register RegA = A.getOperand(i).getReg();
269         Register RegB = B->getOperand(i).getReg();
270         AllOpsMatch = MAI.getRegisterAlias(A.getMF(), RegA) ==
271                       MAI.getRegisterAlias(B->getMF(), RegB);
272       } else {
273         AllOpsMatch = A.getOperand(i).isIdenticalTo(B->getOperand(i));
274       }
275     }
276     if (AllOpsMatch)
277       return true;
278   }
279   return false;
280 }
281 
282 // Look for IDs declared with Import linkage, and map the corresponding function
283 // to the register defining that variable (which will usually be the result of
284 // an OpFunction). This lets us call externally imported functions using
285 // the correct ID registers.
286 void SPIRVModuleAnalysis::collectFuncNames(MachineInstr &MI,
287                                            const Function *F) {
288   if (MI.getOpcode() == SPIRV::OpDecorate) {
289     // If it's got Import linkage.
290     auto Dec = MI.getOperand(1).getImm();
291     if (Dec == static_cast<unsigned>(SPIRV::Decoration::LinkageAttributes)) {
292       auto Lnk = MI.getOperand(MI.getNumOperands() - 1).getImm();
293       if (Lnk == static_cast<unsigned>(SPIRV::LinkageType::Import)) {
294         // Map imported function name to function ID register.
295         const Function *ImportedFunc =
296             F->getParent()->getFunction(getStringImm(MI, 2));
297         Register Target = MI.getOperand(0).getReg();
298         MAI.FuncMap[ImportedFunc] = MAI.getRegisterAlias(MI.getMF(), Target);
299       }
300     }
301   } else if (MI.getOpcode() == SPIRV::OpFunction) {
302     // Record all internal OpFunction declarations.
303     Register Reg = MI.defs().begin()->getReg();
304     Register GlobalReg = MAI.getRegisterAlias(MI.getMF(), Reg);
305     assert(GlobalReg.isValid());
306     MAI.FuncMap[F] = GlobalReg;
307   }
308 }
309 
310 // Collect the given instruction in the specified MS. We assume global register
311 // numbering has already occurred by this point. We can directly compare reg
312 // arguments when detecting duplicates.
313 static void collectOtherInstr(MachineInstr &MI, SPIRV::ModuleAnalysisInfo &MAI,
314                               SPIRV::ModuleSectionType MSType,
315                               bool Append = true) {
316   MAI.setSkipEmission(&MI);
317   if (findSameInstrInMS(MI, MSType, MAI))
318     return; // Found a duplicate, so don't add it.
319   // No duplicates, so add it.
320   if (Append)
321     MAI.MS[MSType].push_back(&MI);
322   else
323     MAI.MS[MSType].insert(MAI.MS[MSType].begin(), &MI);
324 }
325 
326 // Some global instructions make reference to function-local ID regs, so cannot
327 // be correctly collected until these registers are globally numbered.
328 void SPIRVModuleAnalysis::processOtherInstrs(const Module &M) {
329   for (auto F = M.begin(), E = M.end(); F != E; ++F) {
330     if ((*F).isDeclaration())
331       continue;
332     MachineFunction *MF = MMI->getMachineFunction(*F);
333     assert(MF);
334     for (MachineBasicBlock &MBB : *MF)
335       for (MachineInstr &MI : MBB) {
336         if (MAI.getSkipEmission(&MI))
337           continue;
338         const unsigned OpCode = MI.getOpcode();
339         if (OpCode == SPIRV::OpName || OpCode == SPIRV::OpMemberName) {
340           collectOtherInstr(MI, MAI, SPIRV::MB_DebugNames);
341         } else if (OpCode == SPIRV::OpEntryPoint) {
342           collectOtherInstr(MI, MAI, SPIRV::MB_EntryPoints);
343         } else if (TII->isDecorationInstr(MI)) {
344           collectOtherInstr(MI, MAI, SPIRV::MB_Annotations);
345           collectFuncNames(MI, &*F);
346         } else if (TII->isConstantInstr(MI)) {
347           // Now OpSpecConstant*s are not in DT,
348           // but they need to be collected anyway.
349           collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars);
350         } else if (OpCode == SPIRV::OpFunction) {
351           collectFuncNames(MI, &*F);
352         } else if (OpCode == SPIRV::OpTypeForwardPointer) {
353           collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, false);
354         }
355       }
356   }
357 }
358 
359 // Number registers in all functions globally from 0 onwards and store
360 // the result in global register alias table. Some registers are already
361 // numbered in collectGlobalEntities.
362 void SPIRVModuleAnalysis::numberRegistersGlobally(const Module &M) {
363   for (auto F = M.begin(), E = M.end(); F != E; ++F) {
364     if ((*F).isDeclaration())
365       continue;
366     MachineFunction *MF = MMI->getMachineFunction(*F);
367     assert(MF);
368     for (MachineBasicBlock &MBB : *MF) {
369       for (MachineInstr &MI : MBB) {
370         for (MachineOperand &Op : MI.operands()) {
371           if (!Op.isReg())
372             continue;
373           Register Reg = Op.getReg();
374           if (MAI.hasRegisterAlias(MF, Reg))
375             continue;
376           Register NewReg = Register::index2VirtReg(MAI.getNextID());
377           MAI.setRegisterAlias(MF, Reg, NewReg);
378         }
379         if (MI.getOpcode() != SPIRV::OpExtInst)
380           continue;
381         auto Set = MI.getOperand(2).getImm();
382         if (MAI.ExtInstSetMap.find(Set) == MAI.ExtInstSetMap.end())
383           MAI.ExtInstSetMap[Set] = Register::index2VirtReg(MAI.getNextID());
384       }
385     }
386   }
387 }
388 
389 // Find OpIEqual and OpBranchConditional instructions originating from
390 // OpSwitches, mark them skipped for emission. Also mark MBB skipped if it
391 // contains only these instructions.
392 static void processSwitches(const Module &M, SPIRV::ModuleAnalysisInfo &MAI,
393                             MachineModuleInfo *MMI) {
394   DenseSet<Register> SwitchRegs;
395   for (auto F = M.begin(), E = M.end(); F != E; ++F) {
396     MachineFunction *MF = MMI->getMachineFunction(*F);
397     if (!MF)
398       continue;
399     for (MachineBasicBlock &MBB : *MF)
400       for (MachineInstr &MI : MBB) {
401         if (MAI.getSkipEmission(&MI))
402           continue;
403         if (MI.getOpcode() == SPIRV::OpSwitch) {
404           assert(MI.getOperand(0).isReg());
405           SwitchRegs.insert(MI.getOperand(0).getReg());
406         }
407         if (MI.getOpcode() == SPIRV::OpISubS &&
408             SwitchRegs.contains(MI.getOperand(2).getReg())) {
409           SwitchRegs.insert(MI.getOperand(0).getReg());
410           MAI.setSkipEmission(&MI);
411         }
412         if ((MI.getOpcode() != SPIRV::OpIEqual &&
413              MI.getOpcode() != SPIRV::OpULessThanEqual) ||
414             !MI.getOperand(2).isReg() ||
415             !SwitchRegs.contains(MI.getOperand(2).getReg()))
416           continue;
417         Register CmpReg = MI.getOperand(0).getReg();
418         MachineInstr *CBr = MI.getNextNode();
419         assert(CBr && CBr->getOpcode() == SPIRV::OpBranchConditional &&
420                CBr->getOperand(0).isReg() &&
421                CBr->getOperand(0).getReg() == CmpReg);
422         MAI.setSkipEmission(&MI);
423         MAI.setSkipEmission(CBr);
424         if (&MBB.front() == &MI && &MBB.back() == CBr)
425           MAI.MBBsToSkip.insert(&MBB);
426       }
427   }
428 }
429 
430 // RequirementHandler implementations.
431 void SPIRV::RequirementHandler::getAndAddRequirements(
432     SPIRV::OperandCategory::OperandCategory Category, uint32_t i,
433     const SPIRVSubtarget &ST) {
434   addRequirements(getSymbolicOperandRequirements(Category, i, ST, *this));
435 }
436 
437 void SPIRV::RequirementHandler::pruneCapabilities(
438     const CapabilityList &ToPrune) {
439   for (const auto &Cap : ToPrune) {
440     AllCaps.insert(Cap);
441     auto FoundIndex = std::find(MinimalCaps.begin(), MinimalCaps.end(), Cap);
442     if (FoundIndex != MinimalCaps.end())
443       MinimalCaps.erase(FoundIndex);
444     CapabilityList ImplicitDecls =
445         getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap);
446     pruneCapabilities(ImplicitDecls);
447   }
448 }
449 
450 void SPIRV::RequirementHandler::addCapabilities(const CapabilityList &ToAdd) {
451   for (const auto &Cap : ToAdd) {
452     bool IsNewlyInserted = AllCaps.insert(Cap).second;
453     if (!IsNewlyInserted) // Don't re-add if it's already been declared.
454       continue;
455     CapabilityList ImplicitDecls =
456         getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap);
457     pruneCapabilities(ImplicitDecls);
458     MinimalCaps.push_back(Cap);
459   }
460 }
461 
462 void SPIRV::RequirementHandler::addRequirements(
463     const SPIRV::Requirements &Req) {
464   if (!Req.IsSatisfiable)
465     report_fatal_error("Adding SPIR-V requirements this target can't satisfy.");
466 
467   if (Req.Cap.has_value())
468     addCapabilities({Req.Cap.value()});
469 
470   addExtensions(Req.Exts);
471 
472   if (Req.MinVer) {
473     if (MaxVersion && Req.MinVer > MaxVersion) {
474       LLVM_DEBUG(dbgs() << "Conflicting version requirements: >= " << Req.MinVer
475                         << " and <= " << MaxVersion << "\n");
476       report_fatal_error("Adding SPIR-V requirements that can't be satisfied.");
477     }
478 
479     if (MinVersion == 0 || Req.MinVer > MinVersion)
480       MinVersion = Req.MinVer;
481   }
482 
483   if (Req.MaxVer) {
484     if (MinVersion && Req.MaxVer < MinVersion) {
485       LLVM_DEBUG(dbgs() << "Conflicting version requirements: <= " << Req.MaxVer
486                         << " and >= " << MinVersion << "\n");
487       report_fatal_error("Adding SPIR-V requirements that can't be satisfied.");
488     }
489 
490     if (MaxVersion == 0 || Req.MaxVer < MaxVersion)
491       MaxVersion = Req.MaxVer;
492   }
493 }
494 
495 void SPIRV::RequirementHandler::checkSatisfiable(
496     const SPIRVSubtarget &ST) const {
497   // Report as many errors as possible before aborting the compilation.
498   bool IsSatisfiable = true;
499   auto TargetVer = ST.getSPIRVVersion();
500 
501   if (MaxVersion && TargetVer && MaxVersion < TargetVer) {
502     LLVM_DEBUG(
503         dbgs() << "Target SPIR-V version too high for required features\n"
504                << "Required max version: " << MaxVersion << " target version "
505                << TargetVer << "\n");
506     IsSatisfiable = false;
507   }
508 
509   if (MinVersion && TargetVer && MinVersion > TargetVer) {
510     LLVM_DEBUG(dbgs() << "Target SPIR-V version too low for required features\n"
511                       << "Required min version: " << MinVersion
512                       << " target version " << TargetVer << "\n");
513     IsSatisfiable = false;
514   }
515 
516   if (MinVersion && MaxVersion && MinVersion > MaxVersion) {
517     LLVM_DEBUG(
518         dbgs()
519         << "Version is too low for some features and too high for others.\n"
520         << "Required SPIR-V min version: " << MinVersion
521         << " required SPIR-V max version " << MaxVersion << "\n");
522     IsSatisfiable = false;
523   }
524 
525   for (auto Cap : MinimalCaps) {
526     if (AvailableCaps.contains(Cap))
527       continue;
528     LLVM_DEBUG(dbgs() << "Capability not supported: "
529                       << getSymbolicOperandMnemonic(
530                              OperandCategory::CapabilityOperand, Cap)
531                       << "\n");
532     IsSatisfiable = false;
533   }
534 
535   for (auto Ext : AllExtensions) {
536     if (ST.canUseExtension(Ext))
537       continue;
538     LLVM_DEBUG(dbgs() << "Extension not suported: "
539                       << getSymbolicOperandMnemonic(
540                              OperandCategory::ExtensionOperand, Ext)
541                       << "\n");
542     IsSatisfiable = false;
543   }
544 
545   if (!IsSatisfiable)
546     report_fatal_error("Unable to meet SPIR-V requirements for this target.");
547 }
548 
549 // Add the given capabilities and all their implicitly defined capabilities too.
550 void SPIRV::RequirementHandler::addAvailableCaps(const CapabilityList &ToAdd) {
551   for (const auto Cap : ToAdd)
552     if (AvailableCaps.insert(Cap).second)
553       addAvailableCaps(getSymbolicOperandCapabilities(
554           SPIRV::OperandCategory::CapabilityOperand, Cap));
555 }
556 
557 namespace llvm {
558 namespace SPIRV {
559 void RequirementHandler::initAvailableCapabilities(const SPIRVSubtarget &ST) {
560   // TODO: Implemented for other targets other then OpenCL.
561   if (!ST.isOpenCLEnv())
562     return;
563   // Add the min requirements for different OpenCL and SPIR-V versions.
564   addAvailableCaps({Capability::Addresses, Capability::Float16Buffer,
565                     Capability::Int16, Capability::Int8, Capability::Kernel,
566                     Capability::Linkage, Capability::Vector16,
567                     Capability::Groups, Capability::GenericPointer,
568                     Capability::Shader});
569   if (ST.hasOpenCLFullProfile())
570     addAvailableCaps({Capability::Int64, Capability::Int64Atomics});
571   if (ST.hasOpenCLImageSupport()) {
572     addAvailableCaps({Capability::ImageBasic, Capability::LiteralSampler,
573                       Capability::Image1D, Capability::SampledBuffer,
574                       Capability::ImageBuffer});
575     if (ST.isAtLeastOpenCLVer(20))
576       addAvailableCaps({Capability::ImageReadWrite});
577   }
578   if (ST.isAtLeastSPIRVVer(11) && ST.isAtLeastOpenCLVer(22))
579     addAvailableCaps({Capability::SubgroupDispatch, Capability::PipeStorage});
580   if (ST.isAtLeastSPIRVVer(13))
581     addAvailableCaps({Capability::GroupNonUniform,
582                       Capability::GroupNonUniformVote,
583                       Capability::GroupNonUniformArithmetic,
584                       Capability::GroupNonUniformBallot,
585                       Capability::GroupNonUniformClustered,
586                       Capability::GroupNonUniformShuffle,
587                       Capability::GroupNonUniformShuffleRelative});
588   if (ST.isAtLeastSPIRVVer(14))
589     addAvailableCaps({Capability::DenormPreserve, Capability::DenormFlushToZero,
590                       Capability::SignedZeroInfNanPreserve,
591                       Capability::RoundingModeRTE,
592                       Capability::RoundingModeRTZ});
593   // TODO: verify if this needs some checks.
594   addAvailableCaps({Capability::Float16, Capability::Float64});
595 
596   // TODO: add OpenCL extensions.
597 }
598 } // namespace SPIRV
599 } // namespace llvm
600 
601 // Add the required capabilities from a decoration instruction (including
602 // BuiltIns).
603 static void addOpDecorateReqs(const MachineInstr &MI, unsigned DecIndex,
604                               SPIRV::RequirementHandler &Reqs,
605                               const SPIRVSubtarget &ST) {
606   int64_t DecOp = MI.getOperand(DecIndex).getImm();
607   auto Dec = static_cast<SPIRV::Decoration::Decoration>(DecOp);
608   Reqs.addRequirements(getSymbolicOperandRequirements(
609       SPIRV::OperandCategory::DecorationOperand, Dec, ST, Reqs));
610 
611   if (Dec == SPIRV::Decoration::BuiltIn) {
612     int64_t BuiltInOp = MI.getOperand(DecIndex + 1).getImm();
613     auto BuiltIn = static_cast<SPIRV::BuiltIn::BuiltIn>(BuiltInOp);
614     Reqs.addRequirements(getSymbolicOperandRequirements(
615         SPIRV::OperandCategory::BuiltInOperand, BuiltIn, ST, Reqs));
616   }
617 }
618 
619 // Add requirements for image handling.
620 static void addOpTypeImageReqs(const MachineInstr &MI,
621                                SPIRV::RequirementHandler &Reqs,
622                                const SPIRVSubtarget &ST) {
623   assert(MI.getNumOperands() >= 8 && "Insufficient operands for OpTypeImage");
624   // The operand indices used here are based on the OpTypeImage layout, which
625   // the MachineInstr follows as well.
626   int64_t ImgFormatOp = MI.getOperand(7).getImm();
627   auto ImgFormat = static_cast<SPIRV::ImageFormat::ImageFormat>(ImgFormatOp);
628   Reqs.getAndAddRequirements(SPIRV::OperandCategory::ImageFormatOperand,
629                              ImgFormat, ST);
630 
631   bool IsArrayed = MI.getOperand(4).getImm() == 1;
632   bool IsMultisampled = MI.getOperand(5).getImm() == 1;
633   bool NoSampler = MI.getOperand(6).getImm() == 2;
634   // Add dimension requirements.
635   assert(MI.getOperand(2).isImm());
636   switch (MI.getOperand(2).getImm()) {
637   case SPIRV::Dim::DIM_1D:
638     Reqs.addRequirements(NoSampler ? SPIRV::Capability::Image1D
639                                    : SPIRV::Capability::Sampled1D);
640     break;
641   case SPIRV::Dim::DIM_2D:
642     if (IsMultisampled && NoSampler)
643       Reqs.addRequirements(SPIRV::Capability::ImageMSArray);
644     break;
645   case SPIRV::Dim::DIM_Cube:
646     Reqs.addRequirements(SPIRV::Capability::Shader);
647     if (IsArrayed)
648       Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageCubeArray
649                                      : SPIRV::Capability::SampledCubeArray);
650     break;
651   case SPIRV::Dim::DIM_Rect:
652     Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageRect
653                                    : SPIRV::Capability::SampledRect);
654     break;
655   case SPIRV::Dim::DIM_Buffer:
656     Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageBuffer
657                                    : SPIRV::Capability::SampledBuffer);
658     break;
659   case SPIRV::Dim::DIM_SubpassData:
660     Reqs.addRequirements(SPIRV::Capability::InputAttachment);
661     break;
662   }
663 
664   // Has optional access qualifier.
665   // TODO: check if it's OpenCL's kernel.
666   if (MI.getNumOperands() > 8 &&
667       MI.getOperand(8).getImm() == SPIRV::AccessQualifier::ReadWrite)
668     Reqs.addRequirements(SPIRV::Capability::ImageReadWrite);
669   else
670     Reqs.addRequirements(SPIRV::Capability::ImageBasic);
671 }
672 
673 void addInstrRequirements(const MachineInstr &MI,
674                           SPIRV::RequirementHandler &Reqs,
675                           const SPIRVSubtarget &ST) {
676   switch (MI.getOpcode()) {
677   case SPIRV::OpMemoryModel: {
678     int64_t Addr = MI.getOperand(0).getImm();
679     Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand,
680                                Addr, ST);
681     int64_t Mem = MI.getOperand(1).getImm();
682     Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand, Mem,
683                                ST);
684     break;
685   }
686   case SPIRV::OpEntryPoint: {
687     int64_t Exe = MI.getOperand(0).getImm();
688     Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModelOperand,
689                                Exe, ST);
690     break;
691   }
692   case SPIRV::OpExecutionMode:
693   case SPIRV::OpExecutionModeId: {
694     int64_t Exe = MI.getOperand(1).getImm();
695     Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModeOperand,
696                                Exe, ST);
697     break;
698   }
699   case SPIRV::OpTypeMatrix:
700     Reqs.addCapability(SPIRV::Capability::Matrix);
701     break;
702   case SPIRV::OpTypeInt: {
703     unsigned BitWidth = MI.getOperand(1).getImm();
704     if (BitWidth == 64)
705       Reqs.addCapability(SPIRV::Capability::Int64);
706     else if (BitWidth == 16)
707       Reqs.addCapability(SPIRV::Capability::Int16);
708     else if (BitWidth == 8)
709       Reqs.addCapability(SPIRV::Capability::Int8);
710     break;
711   }
712   case SPIRV::OpTypeFloat: {
713     unsigned BitWidth = MI.getOperand(1).getImm();
714     if (BitWidth == 64)
715       Reqs.addCapability(SPIRV::Capability::Float64);
716     else if (BitWidth == 16)
717       Reqs.addCapability(SPIRV::Capability::Float16);
718     break;
719   }
720   case SPIRV::OpTypeVector: {
721     unsigned NumComponents = MI.getOperand(2).getImm();
722     if (NumComponents == 8 || NumComponents == 16)
723       Reqs.addCapability(SPIRV::Capability::Vector16);
724     break;
725   }
726   case SPIRV::OpTypePointer: {
727     auto SC = MI.getOperand(1).getImm();
728     Reqs.getAndAddRequirements(SPIRV::OperandCategory::StorageClassOperand, SC,
729                                ST);
730     // If it's a type of pointer to float16, add Float16Buffer capability.
731     assert(MI.getOperand(2).isReg());
732     const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
733     SPIRVType *TypeDef = MRI.getVRegDef(MI.getOperand(2).getReg());
734     if (TypeDef->getOpcode() == SPIRV::OpTypeFloat &&
735         TypeDef->getOperand(1).getImm() == 16)
736       Reqs.addCapability(SPIRV::Capability::Float16Buffer);
737     break;
738   }
739   case SPIRV::OpBitReverse:
740   case SPIRV::OpTypeRuntimeArray:
741     Reqs.addCapability(SPIRV::Capability::Shader);
742     break;
743   case SPIRV::OpTypeOpaque:
744   case SPIRV::OpTypeEvent:
745     Reqs.addCapability(SPIRV::Capability::Kernel);
746     break;
747   case SPIRV::OpTypePipe:
748   case SPIRV::OpTypeReserveId:
749     Reqs.addCapability(SPIRV::Capability::Pipes);
750     break;
751   case SPIRV::OpTypeDeviceEvent:
752   case SPIRV::OpTypeQueue:
753   case SPIRV::OpBuildNDRange:
754     Reqs.addCapability(SPIRV::Capability::DeviceEnqueue);
755     break;
756   case SPIRV::OpDecorate:
757   case SPIRV::OpDecorateId:
758   case SPIRV::OpDecorateString:
759     addOpDecorateReqs(MI, 1, Reqs, ST);
760     break;
761   case SPIRV::OpMemberDecorate:
762   case SPIRV::OpMemberDecorateString:
763     addOpDecorateReqs(MI, 2, Reqs, ST);
764     break;
765   case SPIRV::OpInBoundsPtrAccessChain:
766     Reqs.addCapability(SPIRV::Capability::Addresses);
767     break;
768   case SPIRV::OpConstantSampler:
769     Reqs.addCapability(SPIRV::Capability::LiteralSampler);
770     break;
771   case SPIRV::OpTypeImage:
772     addOpTypeImageReqs(MI, Reqs, ST);
773     break;
774   case SPIRV::OpTypeSampler:
775     Reqs.addCapability(SPIRV::Capability::ImageBasic);
776     break;
777   case SPIRV::OpTypeForwardPointer:
778     // TODO: check if it's OpenCL's kernel.
779     Reqs.addCapability(SPIRV::Capability::Addresses);
780     break;
781   case SPIRV::OpAtomicFlagTestAndSet:
782   case SPIRV::OpAtomicLoad:
783   case SPIRV::OpAtomicStore:
784   case SPIRV::OpAtomicExchange:
785   case SPIRV::OpAtomicCompareExchange:
786   case SPIRV::OpAtomicIIncrement:
787   case SPIRV::OpAtomicIDecrement:
788   case SPIRV::OpAtomicIAdd:
789   case SPIRV::OpAtomicISub:
790   case SPIRV::OpAtomicUMin:
791   case SPIRV::OpAtomicUMax:
792   case SPIRV::OpAtomicSMin:
793   case SPIRV::OpAtomicSMax:
794   case SPIRV::OpAtomicAnd:
795   case SPIRV::OpAtomicOr:
796   case SPIRV::OpAtomicXor: {
797     const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
798     const MachineInstr *InstrPtr = &MI;
799     if (MI.getOpcode() == SPIRV::OpAtomicStore) {
800       assert(MI.getOperand(3).isReg());
801       InstrPtr = MRI.getVRegDef(MI.getOperand(3).getReg());
802       assert(InstrPtr && "Unexpected type instruction for OpAtomicStore");
803     }
804     assert(InstrPtr->getOperand(1).isReg() && "Unexpected operand in atomic");
805     Register TypeReg = InstrPtr->getOperand(1).getReg();
806     SPIRVType *TypeDef = MRI.getVRegDef(TypeReg);
807     if (TypeDef->getOpcode() == SPIRV::OpTypeInt) {
808       unsigned BitWidth = TypeDef->getOperand(1).getImm();
809       if (BitWidth == 64)
810         Reqs.addCapability(SPIRV::Capability::Int64Atomics);
811     }
812     break;
813   }
814   case SPIRV::OpGroupNonUniformIAdd:
815   case SPIRV::OpGroupNonUniformFAdd:
816   case SPIRV::OpGroupNonUniformIMul:
817   case SPIRV::OpGroupNonUniformFMul:
818   case SPIRV::OpGroupNonUniformSMin:
819   case SPIRV::OpGroupNonUniformUMin:
820   case SPIRV::OpGroupNonUniformFMin:
821   case SPIRV::OpGroupNonUniformSMax:
822   case SPIRV::OpGroupNonUniformUMax:
823   case SPIRV::OpGroupNonUniformFMax:
824   case SPIRV::OpGroupNonUniformBitwiseAnd:
825   case SPIRV::OpGroupNonUniformBitwiseOr:
826   case SPIRV::OpGroupNonUniformBitwiseXor:
827   case SPIRV::OpGroupNonUniformLogicalAnd:
828   case SPIRV::OpGroupNonUniformLogicalOr:
829   case SPIRV::OpGroupNonUniformLogicalXor: {
830     assert(MI.getOperand(3).isImm());
831     int64_t GroupOp = MI.getOperand(3).getImm();
832     switch (GroupOp) {
833     case SPIRV::GroupOperation::Reduce:
834     case SPIRV::GroupOperation::InclusiveScan:
835     case SPIRV::GroupOperation::ExclusiveScan:
836       Reqs.addCapability(SPIRV::Capability::Kernel);
837       Reqs.addCapability(SPIRV::Capability::GroupNonUniformArithmetic);
838       Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot);
839       break;
840     case SPIRV::GroupOperation::ClusteredReduce:
841       Reqs.addCapability(SPIRV::Capability::GroupNonUniformClustered);
842       break;
843     case SPIRV::GroupOperation::PartitionedReduceNV:
844     case SPIRV::GroupOperation::PartitionedInclusiveScanNV:
845     case SPIRV::GroupOperation::PartitionedExclusiveScanNV:
846       Reqs.addCapability(SPIRV::Capability::GroupNonUniformPartitionedNV);
847       break;
848     }
849     break;
850   }
851   case SPIRV::OpGroupNonUniformShuffle:
852   case SPIRV::OpGroupNonUniformShuffleXor:
853     Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffle);
854     break;
855   case SPIRV::OpGroupNonUniformShuffleUp:
856   case SPIRV::OpGroupNonUniformShuffleDown:
857     Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffleRelative);
858     break;
859   case SPIRV::OpGroupAll:
860   case SPIRV::OpGroupAny:
861   case SPIRV::OpGroupBroadcast:
862   case SPIRV::OpGroupIAdd:
863   case SPIRV::OpGroupFAdd:
864   case SPIRV::OpGroupFMin:
865   case SPIRV::OpGroupUMin:
866   case SPIRV::OpGroupSMin:
867   case SPIRV::OpGroupFMax:
868   case SPIRV::OpGroupUMax:
869   case SPIRV::OpGroupSMax:
870     Reqs.addCapability(SPIRV::Capability::Groups);
871     break;
872   case SPIRV::OpGroupNonUniformElect:
873     Reqs.addCapability(SPIRV::Capability::GroupNonUniform);
874     break;
875   case SPIRV::OpGroupNonUniformAll:
876   case SPIRV::OpGroupNonUniformAny:
877   case SPIRV::OpGroupNonUniformAllEqual:
878     Reqs.addCapability(SPIRV::Capability::GroupNonUniformVote);
879     break;
880   case SPIRV::OpGroupNonUniformBroadcast:
881   case SPIRV::OpGroupNonUniformBroadcastFirst:
882   case SPIRV::OpGroupNonUniformBallot:
883   case SPIRV::OpGroupNonUniformInverseBallot:
884   case SPIRV::OpGroupNonUniformBallotBitExtract:
885   case SPIRV::OpGroupNonUniformBallotBitCount:
886   case SPIRV::OpGroupNonUniformBallotFindLSB:
887   case SPIRV::OpGroupNonUniformBallotFindMSB:
888     Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot);
889     break;
890   default:
891     break;
892   }
893 }
894 
895 static void collectReqs(const Module &M, SPIRV::ModuleAnalysisInfo &MAI,
896                         MachineModuleInfo *MMI, const SPIRVSubtarget &ST) {
897   // Collect requirements for existing instructions.
898   for (auto F = M.begin(), E = M.end(); F != E; ++F) {
899     MachineFunction *MF = MMI->getMachineFunction(*F);
900     if (!MF)
901       continue;
902     for (const MachineBasicBlock &MBB : *MF)
903       for (const MachineInstr &MI : MBB)
904         addInstrRequirements(MI, MAI.Reqs, ST);
905   }
906   // Collect requirements for OpExecutionMode instructions.
907   auto Node = M.getNamedMetadata("spirv.ExecutionMode");
908   if (Node) {
909     for (unsigned i = 0; i < Node->getNumOperands(); i++) {
910       MDNode *MDN = cast<MDNode>(Node->getOperand(i));
911       const MDOperand &MDOp = MDN->getOperand(1);
912       if (auto *CMeta = dyn_cast<ConstantAsMetadata>(MDOp)) {
913         Constant *C = CMeta->getValue();
914         if (ConstantInt *Const = dyn_cast<ConstantInt>(C)) {
915           auto EM = Const->getZExtValue();
916           MAI.Reqs.getAndAddRequirements(
917               SPIRV::OperandCategory::ExecutionModeOperand, EM, ST);
918         }
919       }
920     }
921   }
922   for (auto FI = M.begin(), E = M.end(); FI != E; ++FI) {
923     const Function &F = *FI;
924     if (F.isDeclaration())
925       continue;
926     if (F.getMetadata("reqd_work_group_size"))
927       MAI.Reqs.getAndAddRequirements(
928           SPIRV::OperandCategory::ExecutionModeOperand,
929           SPIRV::ExecutionMode::LocalSize, ST);
930     if (F.getMetadata("work_group_size_hint"))
931       MAI.Reqs.getAndAddRequirements(
932           SPIRV::OperandCategory::ExecutionModeOperand,
933           SPIRV::ExecutionMode::LocalSizeHint, ST);
934     if (F.getMetadata("intel_reqd_sub_group_size"))
935       MAI.Reqs.getAndAddRequirements(
936           SPIRV::OperandCategory::ExecutionModeOperand,
937           SPIRV::ExecutionMode::SubgroupSize, ST);
938     if (F.getMetadata("vec_type_hint"))
939       MAI.Reqs.getAndAddRequirements(
940           SPIRV::OperandCategory::ExecutionModeOperand,
941           SPIRV::ExecutionMode::VecTypeHint, ST);
942   }
943 }
944 
945 static unsigned getFastMathFlags(const MachineInstr &I) {
946   unsigned Flags = SPIRV::FPFastMathMode::None;
947   if (I.getFlag(MachineInstr::MIFlag::FmNoNans))
948     Flags |= SPIRV::FPFastMathMode::NotNaN;
949   if (I.getFlag(MachineInstr::MIFlag::FmNoInfs))
950     Flags |= SPIRV::FPFastMathMode::NotInf;
951   if (I.getFlag(MachineInstr::MIFlag::FmNsz))
952     Flags |= SPIRV::FPFastMathMode::NSZ;
953   if (I.getFlag(MachineInstr::MIFlag::FmArcp))
954     Flags |= SPIRV::FPFastMathMode::AllowRecip;
955   if (I.getFlag(MachineInstr::MIFlag::FmReassoc))
956     Flags |= SPIRV::FPFastMathMode::Fast;
957   return Flags;
958 }
959 
960 static void handleMIFlagDecoration(MachineInstr &I, const SPIRVSubtarget &ST,
961                                    const SPIRVInstrInfo &TII,
962                                    SPIRV::RequirementHandler &Reqs) {
963   if (I.getFlag(MachineInstr::MIFlag::NoSWrap) && TII.canUseNSW(I) &&
964       getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand,
965                                      SPIRV::Decoration::NoSignedWrap, ST, Reqs)
966           .IsSatisfiable) {
967     buildOpDecorate(I.getOperand(0).getReg(), I, TII,
968                     SPIRV::Decoration::NoSignedWrap, {});
969   }
970   if (I.getFlag(MachineInstr::MIFlag::NoUWrap) && TII.canUseNUW(I) &&
971       getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand,
972                                      SPIRV::Decoration::NoUnsignedWrap, ST,
973                                      Reqs)
974           .IsSatisfiable) {
975     buildOpDecorate(I.getOperand(0).getReg(), I, TII,
976                     SPIRV::Decoration::NoUnsignedWrap, {});
977   }
978   if (!TII.canUseFastMathFlags(I))
979     return;
980   unsigned FMFlags = getFastMathFlags(I);
981   if (FMFlags == SPIRV::FPFastMathMode::None)
982     return;
983   Register DstReg = I.getOperand(0).getReg();
984   buildOpDecorate(DstReg, I, TII, SPIRV::Decoration::FPFastMathMode, {FMFlags});
985 }
986 
987 // Walk all functions and add decorations related to MI flags.
988 static void addDecorations(const Module &M, const SPIRVInstrInfo &TII,
989                            MachineModuleInfo *MMI, const SPIRVSubtarget &ST,
990                            SPIRV::ModuleAnalysisInfo &MAI) {
991   for (auto F = M.begin(), E = M.end(); F != E; ++F) {
992     MachineFunction *MF = MMI->getMachineFunction(*F);
993     if (!MF)
994       continue;
995     for (auto &MBB : *MF)
996       for (auto &MI : MBB)
997         handleMIFlagDecoration(MI, ST, TII, MAI.Reqs);
998   }
999 }
1000 
1001 struct SPIRV::ModuleAnalysisInfo SPIRVModuleAnalysis::MAI;
1002 
1003 void SPIRVModuleAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1004   AU.addRequired<TargetPassConfig>();
1005   AU.addRequired<MachineModuleInfoWrapperPass>();
1006 }
1007 
1008 bool SPIRVModuleAnalysis::runOnModule(Module &M) {
1009   SPIRVTargetMachine &TM =
1010       getAnalysis<TargetPassConfig>().getTM<SPIRVTargetMachine>();
1011   ST = TM.getSubtargetImpl();
1012   GR = ST->getSPIRVGlobalRegistry();
1013   TII = ST->getInstrInfo();
1014 
1015   MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
1016 
1017   setBaseInfo(M);
1018 
1019   addDecorations(M, *TII, MMI, *ST, MAI);
1020 
1021   collectReqs(M, MAI, MMI, *ST);
1022 
1023   processSwitches(M, MAI, MMI);
1024 
1025   // Process type/const/global var/func decl instructions, number their
1026   // destination registers from 0 to N, collect Extensions and Capabilities.
1027   processDefInstrs(M);
1028 
1029   // Number rest of registers from N+1 onwards.
1030   numberRegistersGlobally(M);
1031 
1032   // Collect OpName, OpEntryPoint, OpDecorate etc, process other instructions.
1033   processOtherInstrs(M);
1034 
1035   // If there are no entry points, we need the Linkage capability.
1036   if (MAI.MS[SPIRV::MB_EntryPoints].empty())
1037     MAI.Reqs.addCapability(SPIRV::Capability::Linkage);
1038 
1039   return false;
1040 }
1041