xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SPIRV/SPIRVMergeRegionExitTargets.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- SPIRVMergeRegionExitTargets.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Merge the multiple exit targets of a convergence region into a single block.
10 // Each exit target will be assigned a constant value, and a phi node + switch
11 // will allow the new exit target to re-route to the correct basic block.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "Analysis/SPIRVConvergenceRegionAnalysis.h"
16 #include "SPIRV.h"
17 #include "SPIRVSubtarget.h"
18 #include "SPIRVTargetMachine.h"
19 #include "SPIRVUtils.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/CodeGen/IntrinsicLowering.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/IntrinsicsSPIRV.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Transforms/Utils/Cloning.h"
32 #include "llvm/Transforms/Utils/LoopSimplify.h"
33 #include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
34 
35 using namespace llvm;
36 
37 namespace llvm {
38 void initializeSPIRVMergeRegionExitTargetsPass(PassRegistry &);
39 
40 class SPIRVMergeRegionExitTargets : public FunctionPass {
41 public:
42   static char ID;
43 
44   SPIRVMergeRegionExitTargets() : FunctionPass(ID) {
45     initializeSPIRVMergeRegionExitTargetsPass(*PassRegistry::getPassRegistry());
46   };
47 
48   // Gather all the successors of |BB|.
49   // This function asserts if the terminator neither a branch, switch or return.
50   std::unordered_set<BasicBlock *> gatherSuccessors(BasicBlock *BB) {
51     std::unordered_set<BasicBlock *> output;
52     auto *T = BB->getTerminator();
53 
54     if (auto *BI = dyn_cast<BranchInst>(T)) {
55       output.insert(BI->getSuccessor(0));
56       if (BI->isConditional())
57         output.insert(BI->getSuccessor(1));
58       return output;
59     }
60 
61     if (auto *SI = dyn_cast<SwitchInst>(T)) {
62       output.insert(SI->getDefaultDest());
63       for (auto &Case : SI->cases())
64         output.insert(Case.getCaseSuccessor());
65       return output;
66     }
67 
68     assert(isa<ReturnInst>(T) && "Unhandled terminator type.");
69     return output;
70   }
71 
72   /// Create a value in BB set to the value associated with the branch the block
73   /// terminator will take.
74   llvm::Value *createExitVariable(
75       BasicBlock *BB,
76       const DenseMap<BasicBlock *, ConstantInt *> &TargetToValue) {
77     auto *T = BB->getTerminator();
78     if (isa<ReturnInst>(T))
79       return nullptr;
80 
81     IRBuilder<> Builder(BB);
82     Builder.SetInsertPoint(T);
83 
84     if (auto *BI = dyn_cast<BranchInst>(T)) {
85 
86       BasicBlock *LHSTarget = BI->getSuccessor(0);
87       BasicBlock *RHSTarget =
88           BI->isConditional() ? BI->getSuccessor(1) : nullptr;
89 
90       Value *LHS = TargetToValue.count(LHSTarget) != 0
91                        ? TargetToValue.at(LHSTarget)
92                        : nullptr;
93       Value *RHS = TargetToValue.count(RHSTarget) != 0
94                        ? TargetToValue.at(RHSTarget)
95                        : nullptr;
96 
97       if (LHS == nullptr || RHS == nullptr)
98         return LHS == nullptr ? RHS : LHS;
99       return Builder.CreateSelect(BI->getCondition(), LHS, RHS);
100     }
101 
102     // TODO: add support for switch cases.
103     llvm_unreachable("Unhandled terminator type.");
104   }
105 
106   /// Replaces |BB|'s branch targets present in |ToReplace| with |NewTarget|.
107   void replaceBranchTargets(BasicBlock *BB,
108                             const SmallPtrSet<BasicBlock *, 4> &ToReplace,
109                             BasicBlock *NewTarget) {
110     auto *T = BB->getTerminator();
111     if (isa<ReturnInst>(T))
112       return;
113 
114     if (auto *BI = dyn_cast<BranchInst>(T)) {
115       for (size_t i = 0; i < BI->getNumSuccessors(); i++) {
116         if (ToReplace.count(BI->getSuccessor(i)) != 0)
117           BI->setSuccessor(i, NewTarget);
118       }
119       return;
120     }
121 
122     if (auto *SI = dyn_cast<SwitchInst>(T)) {
123       for (size_t i = 0; i < SI->getNumSuccessors(); i++) {
124         if (ToReplace.count(SI->getSuccessor(i)) != 0)
125           SI->setSuccessor(i, NewTarget);
126       }
127       return;
128     }
129 
130     assert(false && "Unhandled terminator type.");
131   }
132 
133   // Run the pass on the given convergence region, ignoring the sub-regions.
134   // Returns true if the CFG changed, false otherwise.
135   bool runOnConvergenceRegionNoRecurse(LoopInfo &LI,
136                                        const SPIRV::ConvergenceRegion *CR) {
137     // Gather all the exit targets for this region.
138     SmallPtrSet<BasicBlock *, 4> ExitTargets;
139     for (BasicBlock *Exit : CR->Exits) {
140       for (BasicBlock *Target : gatherSuccessors(Exit)) {
141         if (CR->Blocks.count(Target) == 0)
142           ExitTargets.insert(Target);
143       }
144     }
145 
146     // If we have zero or one exit target, nothing do to.
147     if (ExitTargets.size() <= 1)
148       return false;
149 
150     // Create the new single exit target.
151     auto F = CR->Entry->getParent();
152     auto NewExitTarget = BasicBlock::Create(F->getContext(), "new.exit", F);
153     IRBuilder<> Builder(NewExitTarget);
154 
155     // CodeGen output needs to be stable. Using the set as-is would order
156     // the targets differently depending on the allocation pattern.
157     // Sorting per basic-block ordering in the function.
158     std::vector<BasicBlock *> SortedExitTargets;
159     std::vector<BasicBlock *> SortedExits;
160     for (BasicBlock &BB : *F) {
161       if (ExitTargets.count(&BB) != 0)
162         SortedExitTargets.push_back(&BB);
163       if (CR->Exits.count(&BB) != 0)
164         SortedExits.push_back(&BB);
165     }
166 
167     // Creating one constant per distinct exit target. This will be route to the
168     // correct target.
169     DenseMap<BasicBlock *, ConstantInt *> TargetToValue;
170     for (BasicBlock *Target : SortedExitTargets)
171       TargetToValue.insert(
172           std::make_pair(Target, Builder.getInt32(TargetToValue.size())));
173 
174     // Creating one variable per exit node, set to the constant matching the
175     // targeted external block.
176     std::vector<std::pair<BasicBlock *, Value *>> ExitToVariable;
177     for (auto Exit : SortedExits) {
178       llvm::Value *Value = createExitVariable(Exit, TargetToValue);
179       ExitToVariable.emplace_back(std::make_pair(Exit, Value));
180     }
181 
182     // Gather the correct value depending on the exit we came from.
183     llvm::PHINode *node =
184         Builder.CreatePHI(Builder.getInt32Ty(), ExitToVariable.size());
185     for (auto [BB, Value] : ExitToVariable) {
186       node->addIncoming(Value, BB);
187     }
188 
189     // Creating the switch to jump to the correct exit target.
190     llvm::SwitchInst *Sw = Builder.CreateSwitch(node, SortedExitTargets[0],
191                                                 SortedExitTargets.size() - 1);
192     for (size_t i = 1; i < SortedExitTargets.size(); i++) {
193       BasicBlock *BB = SortedExitTargets[i];
194       Sw->addCase(TargetToValue[BB], BB);
195     }
196 
197     // Fix exit branches to redirect to the new exit.
198     for (auto Exit : CR->Exits)
199       replaceBranchTargets(Exit, ExitTargets, NewExitTarget);
200 
201     return true;
202   }
203 
204   /// Run the pass on the given convergence region and sub-regions (DFS).
205   /// Returns true if a region/sub-region was modified, false otherwise.
206   /// This returns as soon as one region/sub-region has been modified.
207   bool runOnConvergenceRegion(LoopInfo &LI,
208                               const SPIRV::ConvergenceRegion *CR) {
209     for (auto *Child : CR->Children)
210       if (runOnConvergenceRegion(LI, Child))
211         return true;
212 
213     return runOnConvergenceRegionNoRecurse(LI, CR);
214   }
215 
216 #if !NDEBUG
217   /// Validates each edge exiting the region has the same destination basic
218   /// block.
219   void validateRegionExits(const SPIRV::ConvergenceRegion *CR) {
220     for (auto *Child : CR->Children)
221       validateRegionExits(Child);
222 
223     std::unordered_set<BasicBlock *> ExitTargets;
224     for (auto *Exit : CR->Exits) {
225       auto Set = gatherSuccessors(Exit);
226       for (auto *BB : Set) {
227         if (CR->Blocks.count(BB) == 0)
228           ExitTargets.insert(BB);
229       }
230     }
231 
232     assert(ExitTargets.size() <= 1);
233   }
234 #endif
235 
236   virtual bool runOnFunction(Function &F) override {
237     LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
238     const auto *TopLevelRegion =
239         getAnalysis<SPIRVConvergenceRegionAnalysisWrapperPass>()
240             .getRegionInfo()
241             .getTopLevelRegion();
242 
243     // FIXME: very inefficient method: each time a region is modified, we bubble
244     // back up, and recompute the whole convergence region tree. Once the
245     // algorithm is completed and test coverage good enough, rewrite this pass
246     // to be efficient instead of simple.
247     bool modified = false;
248     while (runOnConvergenceRegion(LI, TopLevelRegion)) {
249       TopLevelRegion = getAnalysis<SPIRVConvergenceRegionAnalysisWrapperPass>()
250                            .getRegionInfo()
251                            .getTopLevelRegion();
252       modified = true;
253     }
254 
255 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
256     validateRegionExits(TopLevelRegion);
257 #endif
258     return modified;
259   }
260 
261   void getAnalysisUsage(AnalysisUsage &AU) const override {
262     AU.addRequired<DominatorTreeWrapperPass>();
263     AU.addRequired<LoopInfoWrapperPass>();
264     AU.addRequired<SPIRVConvergenceRegionAnalysisWrapperPass>();
265     FunctionPass::getAnalysisUsage(AU);
266   }
267 };
268 } // namespace llvm
269 
270 char SPIRVMergeRegionExitTargets::ID = 0;
271 
272 INITIALIZE_PASS_BEGIN(SPIRVMergeRegionExitTargets, "split-region-exit-blocks",
273                       "SPIRV split region exit blocks", false, false)
274 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
275 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
276 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
277 INITIALIZE_PASS_DEPENDENCY(SPIRVConvergenceRegionAnalysisWrapperPass)
278 
279 INITIALIZE_PASS_END(SPIRVMergeRegionExitTargets, "split-region-exit-blocks",
280                     "SPIRV split region exit blocks", false, false)
281 
282 FunctionPass *llvm::createSPIRVMergeRegionExitTargetsPass() {
283   return new SPIRVMergeRegionExitTargets();
284 }
285