1 //===-- SPIRVAsmPrinter.cpp - SPIR-V LLVM assembly writer ------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to the SPIR-V assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/SPIRVInstPrinter.h" 15 #include "SPIRV.h" 16 #include "SPIRVInstrInfo.h" 17 #include "SPIRVMCInstLower.h" 18 #include "SPIRVModuleAnalysis.h" 19 #include "SPIRVSubtarget.h" 20 #include "SPIRVTargetMachine.h" 21 #include "SPIRVUtils.h" 22 #include "TargetInfo/SPIRVTargetInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/AsmPrinter.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineModuleInfo.h" 30 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCInst.h" 33 #include "llvm/MC/MCStreamer.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/MC/TargetRegistry.h" 36 #include "llvm/Support/raw_ostream.h" 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "asm-printer" 41 42 namespace { 43 class SPIRVAsmPrinter : public AsmPrinter { 44 public: 45 explicit SPIRVAsmPrinter(TargetMachine &TM, 46 std::unique_ptr<MCStreamer> Streamer) 47 : AsmPrinter(TM, std::move(Streamer)), ST(nullptr), TII(nullptr) {} 48 bool ModuleSectionsEmitted; 49 const SPIRVSubtarget *ST; 50 const SPIRVInstrInfo *TII; 51 52 StringRef getPassName() const override { return "SPIRV Assembly Printer"; } 53 void printOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); 54 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 55 const char *ExtraCode, raw_ostream &O) override; 56 57 void outputMCInst(MCInst &Inst); 58 void outputInstruction(const MachineInstr *MI); 59 void outputModuleSection(SPIRV::ModuleSectionType MSType); 60 void outputGlobalRequirements(); 61 void outputEntryPoints(); 62 void outputDebugSourceAndStrings(const Module &M); 63 void outputOpExtInstImports(const Module &M); 64 void outputOpMemoryModel(); 65 void outputOpFunctionEnd(); 66 void outputExtFuncDecls(); 67 void outputExecutionModeFromMDNode(Register Reg, MDNode *Node, 68 SPIRV::ExecutionMode::ExecutionMode EM); 69 void outputExecutionMode(const Module &M); 70 void outputAnnotations(const Module &M); 71 void outputModuleSections(); 72 73 void emitInstruction(const MachineInstr *MI) override; 74 void emitFunctionEntryLabel() override {} 75 void emitFunctionHeader() override; 76 void emitFunctionBodyStart() override {} 77 void emitFunctionBodyEnd() override; 78 void emitBasicBlockStart(const MachineBasicBlock &MBB) override; 79 void emitBasicBlockEnd(const MachineBasicBlock &MBB) override {} 80 void emitGlobalVariable(const GlobalVariable *GV) override {} 81 void emitOpLabel(const MachineBasicBlock &MBB); 82 void emitEndOfAsmFile(Module &M) override; 83 bool doInitialization(Module &M) override; 84 85 void getAnalysisUsage(AnalysisUsage &AU) const override; 86 SPIRV::ModuleAnalysisInfo *MAI; 87 }; 88 } // namespace 89 90 void SPIRVAsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 91 AU.addRequired<SPIRVModuleAnalysis>(); 92 AU.addPreserved<SPIRVModuleAnalysis>(); 93 AsmPrinter::getAnalysisUsage(AU); 94 } 95 96 // If the module has no functions, we need output global info anyway. 97 void SPIRVAsmPrinter::emitEndOfAsmFile(Module &M) { 98 if (ModuleSectionsEmitted == false) { 99 outputModuleSections(); 100 ModuleSectionsEmitted = true; 101 } 102 } 103 104 void SPIRVAsmPrinter::emitFunctionHeader() { 105 if (ModuleSectionsEmitted == false) { 106 outputModuleSections(); 107 ModuleSectionsEmitted = true; 108 } 109 // Get the subtarget from the current MachineFunction. 110 ST = &MF->getSubtarget<SPIRVSubtarget>(); 111 TII = ST->getInstrInfo(); 112 const Function &F = MF->getFunction(); 113 114 if (isVerbose()) { 115 OutStreamer->getCommentOS() 116 << "-- Begin function " 117 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 118 } 119 120 auto Section = getObjFileLowering().SectionForGlobal(&F, TM); 121 MF->setSection(Section); 122 } 123 124 void SPIRVAsmPrinter::outputOpFunctionEnd() { 125 MCInst FunctionEndInst; 126 FunctionEndInst.setOpcode(SPIRV::OpFunctionEnd); 127 outputMCInst(FunctionEndInst); 128 } 129 130 // Emit OpFunctionEnd at the end of MF and clear BBNumToRegMap. 131 void SPIRVAsmPrinter::emitFunctionBodyEnd() { 132 outputOpFunctionEnd(); 133 MAI->BBNumToRegMap.clear(); 134 } 135 136 void SPIRVAsmPrinter::emitOpLabel(const MachineBasicBlock &MBB) { 137 MCInst LabelInst; 138 LabelInst.setOpcode(SPIRV::OpLabel); 139 LabelInst.addOperand(MCOperand::createReg(MAI->getOrCreateMBBRegister(MBB))); 140 outputMCInst(LabelInst); 141 } 142 143 void SPIRVAsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 144 assert(!MBB.empty() && "MBB is empty!"); 145 146 // If it's the first MBB in MF, it has OpFunction and OpFunctionParameter, so 147 // OpLabel should be output after them. 148 if (MBB.getNumber() == MF->front().getNumber()) { 149 for (const MachineInstr &MI : MBB) 150 if (MI.getOpcode() == SPIRV::OpFunction) 151 return; 152 // TODO: this case should be checked by the verifier. 153 report_fatal_error("OpFunction is expected in the front MBB of MF"); 154 } 155 emitOpLabel(MBB); 156 } 157 158 void SPIRVAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 159 raw_ostream &O) { 160 const MachineOperand &MO = MI->getOperand(OpNum); 161 162 switch (MO.getType()) { 163 case MachineOperand::MO_Register: 164 O << SPIRVInstPrinter::getRegisterName(MO.getReg()); 165 break; 166 167 case MachineOperand::MO_Immediate: 168 O << MO.getImm(); 169 break; 170 171 case MachineOperand::MO_FPImmediate: 172 O << MO.getFPImm(); 173 break; 174 175 case MachineOperand::MO_MachineBasicBlock: 176 O << *MO.getMBB()->getSymbol(); 177 break; 178 179 case MachineOperand::MO_GlobalAddress: 180 O << *getSymbol(MO.getGlobal()); 181 break; 182 183 case MachineOperand::MO_BlockAddress: { 184 MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress()); 185 O << BA->getName(); 186 break; 187 } 188 189 case MachineOperand::MO_ExternalSymbol: 190 O << *GetExternalSymbolSymbol(MO.getSymbolName()); 191 break; 192 193 case MachineOperand::MO_JumpTableIndex: 194 case MachineOperand::MO_ConstantPoolIndex: 195 default: 196 llvm_unreachable("<unknown operand type>"); 197 } 198 } 199 200 bool SPIRVAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 201 const char *ExtraCode, raw_ostream &O) { 202 if (ExtraCode && ExtraCode[0]) 203 return true; // Invalid instruction - SPIR-V does not have special modifiers 204 205 printOperand(MI, OpNo, O); 206 return false; 207 } 208 209 static bool isFuncOrHeaderInstr(const MachineInstr *MI, 210 const SPIRVInstrInfo *TII) { 211 return TII->isHeaderInstr(*MI) || MI->getOpcode() == SPIRV::OpFunction || 212 MI->getOpcode() == SPIRV::OpFunctionParameter; 213 } 214 215 void SPIRVAsmPrinter::outputMCInst(MCInst &Inst) { 216 OutStreamer->emitInstruction(Inst, *OutContext.getSubtargetInfo()); 217 } 218 219 void SPIRVAsmPrinter::outputInstruction(const MachineInstr *MI) { 220 SPIRVMCInstLower MCInstLowering; 221 MCInst TmpInst; 222 MCInstLowering.lower(MI, TmpInst, MAI); 223 outputMCInst(TmpInst); 224 } 225 226 void SPIRVAsmPrinter::emitInstruction(const MachineInstr *MI) { 227 SPIRV_MC::verifyInstructionPredicates(MI->getOpcode(), 228 getSubtargetInfo().getFeatureBits()); 229 230 if (!MAI->getSkipEmission(MI)) 231 outputInstruction(MI); 232 233 // Output OpLabel after OpFunction and OpFunctionParameter in the first MBB. 234 const MachineInstr *NextMI = MI->getNextNode(); 235 if (!MAI->hasMBBRegister(*MI->getParent()) && isFuncOrHeaderInstr(MI, TII) && 236 (!NextMI || !isFuncOrHeaderInstr(NextMI, TII))) { 237 assert(MI->getParent()->getNumber() == MF->front().getNumber() && 238 "OpFunction is not in the front MBB of MF"); 239 emitOpLabel(*MI->getParent()); 240 } 241 } 242 243 void SPIRVAsmPrinter::outputModuleSection(SPIRV::ModuleSectionType MSType) { 244 for (MachineInstr *MI : MAI->getMSInstrs(MSType)) 245 outputInstruction(MI); 246 } 247 248 void SPIRVAsmPrinter::outputDebugSourceAndStrings(const Module &M) { 249 // Output OpSourceExtensions. 250 for (auto &Str : MAI->SrcExt) { 251 MCInst Inst; 252 Inst.setOpcode(SPIRV::OpSourceExtension); 253 addStringImm(Str.first(), Inst); 254 outputMCInst(Inst); 255 } 256 // Output OpSource. 257 MCInst Inst; 258 Inst.setOpcode(SPIRV::OpSource); 259 Inst.addOperand(MCOperand::createImm(static_cast<unsigned>(MAI->SrcLang))); 260 Inst.addOperand( 261 MCOperand::createImm(static_cast<unsigned>(MAI->SrcLangVersion))); 262 outputMCInst(Inst); 263 } 264 265 void SPIRVAsmPrinter::outputOpExtInstImports(const Module &M) { 266 for (auto &CU : MAI->ExtInstSetMap) { 267 unsigned Set = CU.first; 268 Register Reg = CU.second; 269 MCInst Inst; 270 Inst.setOpcode(SPIRV::OpExtInstImport); 271 Inst.addOperand(MCOperand::createReg(Reg)); 272 addStringImm(getExtInstSetName( 273 static_cast<SPIRV::InstructionSet::InstructionSet>(Set)), 274 Inst); 275 outputMCInst(Inst); 276 } 277 } 278 279 void SPIRVAsmPrinter::outputOpMemoryModel() { 280 MCInst Inst; 281 Inst.setOpcode(SPIRV::OpMemoryModel); 282 Inst.addOperand(MCOperand::createImm(static_cast<unsigned>(MAI->Addr))); 283 Inst.addOperand(MCOperand::createImm(static_cast<unsigned>(MAI->Mem))); 284 outputMCInst(Inst); 285 } 286 287 // Before the OpEntryPoints' output, we need to add the entry point's 288 // interfaces. The interface is a list of IDs of global OpVariable instructions. 289 // These declare the set of global variables from a module that form 290 // the interface of this entry point. 291 void SPIRVAsmPrinter::outputEntryPoints() { 292 // Find all OpVariable IDs with required StorageClass. 293 DenseSet<Register> InterfaceIDs; 294 for (MachineInstr *MI : MAI->GlobalVarList) { 295 assert(MI->getOpcode() == SPIRV::OpVariable); 296 auto SC = static_cast<SPIRV::StorageClass::StorageClass>( 297 MI->getOperand(2).getImm()); 298 // Before version 1.4, the interface's storage classes are limited to 299 // the Input and Output storage classes. Starting with version 1.4, 300 // the interface's storage classes are all storage classes used in 301 // declaring all global variables referenced by the entry point call tree. 302 if (ST->getSPIRVVersion() >= 14 || SC == SPIRV::StorageClass::Input || 303 SC == SPIRV::StorageClass::Output) { 304 MachineFunction *MF = MI->getMF(); 305 Register Reg = MAI->getRegisterAlias(MF, MI->getOperand(0).getReg()); 306 InterfaceIDs.insert(Reg); 307 } 308 } 309 310 // Output OpEntryPoints adding interface args to all of them. 311 for (MachineInstr *MI : MAI->getMSInstrs(SPIRV::MB_EntryPoints)) { 312 SPIRVMCInstLower MCInstLowering; 313 MCInst TmpInst; 314 MCInstLowering.lower(MI, TmpInst, MAI); 315 for (Register Reg : InterfaceIDs) { 316 assert(Reg.isValid()); 317 TmpInst.addOperand(MCOperand::createReg(Reg)); 318 } 319 outputMCInst(TmpInst); 320 } 321 } 322 323 // Create global OpCapability instructions for the required capabilities. 324 void SPIRVAsmPrinter::outputGlobalRequirements() { 325 // Abort here if not all requirements can be satisfied. 326 MAI->Reqs.checkSatisfiable(*ST); 327 328 for (const auto &Cap : MAI->Reqs.getMinimalCapabilities()) { 329 MCInst Inst; 330 Inst.setOpcode(SPIRV::OpCapability); 331 Inst.addOperand(MCOperand::createImm(Cap)); 332 outputMCInst(Inst); 333 } 334 335 // Generate the final OpExtensions with strings instead of enums. 336 for (const auto &Ext : MAI->Reqs.getExtensions()) { 337 MCInst Inst; 338 Inst.setOpcode(SPIRV::OpExtension); 339 addStringImm(getSymbolicOperandMnemonic( 340 SPIRV::OperandCategory::ExtensionOperand, Ext), 341 Inst); 342 outputMCInst(Inst); 343 } 344 // TODO add a pseudo instr for version number. 345 } 346 347 void SPIRVAsmPrinter::outputExtFuncDecls() { 348 // Insert OpFunctionEnd after each declaration. 349 SmallVectorImpl<MachineInstr *>::iterator 350 I = MAI->getMSInstrs(SPIRV::MB_ExtFuncDecls).begin(), 351 E = MAI->getMSInstrs(SPIRV::MB_ExtFuncDecls).end(); 352 for (; I != E; ++I) { 353 outputInstruction(*I); 354 if ((I + 1) == E || (*(I + 1))->getOpcode() == SPIRV::OpFunction) 355 outputOpFunctionEnd(); 356 } 357 } 358 359 // Encode LLVM type by SPIR-V execution mode VecTypeHint. 360 static unsigned encodeVecTypeHint(Type *Ty) { 361 if (Ty->isHalfTy()) 362 return 4; 363 if (Ty->isFloatTy()) 364 return 5; 365 if (Ty->isDoubleTy()) 366 return 6; 367 if (IntegerType *IntTy = dyn_cast<IntegerType>(Ty)) { 368 switch (IntTy->getIntegerBitWidth()) { 369 case 8: 370 return 0; 371 case 16: 372 return 1; 373 case 32: 374 return 2; 375 case 64: 376 return 3; 377 default: 378 llvm_unreachable("invalid integer type"); 379 } 380 } 381 if (FixedVectorType *VecTy = dyn_cast<FixedVectorType>(Ty)) { 382 Type *EleTy = VecTy->getElementType(); 383 unsigned Size = VecTy->getNumElements(); 384 return Size << 16 | encodeVecTypeHint(EleTy); 385 } 386 llvm_unreachable("invalid type"); 387 } 388 389 static void addOpsFromMDNode(MDNode *MDN, MCInst &Inst, 390 SPIRV::ModuleAnalysisInfo *MAI) { 391 for (const MDOperand &MDOp : MDN->operands()) { 392 if (auto *CMeta = dyn_cast<ConstantAsMetadata>(MDOp)) { 393 Constant *C = CMeta->getValue(); 394 if (ConstantInt *Const = dyn_cast<ConstantInt>(C)) { 395 Inst.addOperand(MCOperand::createImm(Const->getZExtValue())); 396 } else if (auto *CE = dyn_cast<Function>(C)) { 397 Register FuncReg = MAI->getFuncReg(CE); 398 assert(FuncReg.isValid()); 399 Inst.addOperand(MCOperand::createReg(FuncReg)); 400 } 401 } 402 } 403 } 404 405 void SPIRVAsmPrinter::outputExecutionModeFromMDNode( 406 Register Reg, MDNode *Node, SPIRV::ExecutionMode::ExecutionMode EM) { 407 MCInst Inst; 408 Inst.setOpcode(SPIRV::OpExecutionMode); 409 Inst.addOperand(MCOperand::createReg(Reg)); 410 Inst.addOperand(MCOperand::createImm(static_cast<unsigned>(EM))); 411 addOpsFromMDNode(Node, Inst, MAI); 412 outputMCInst(Inst); 413 } 414 415 void SPIRVAsmPrinter::outputExecutionMode(const Module &M) { 416 NamedMDNode *Node = M.getNamedMetadata("spirv.ExecutionMode"); 417 if (Node) { 418 for (unsigned i = 0; i < Node->getNumOperands(); i++) { 419 MCInst Inst; 420 Inst.setOpcode(SPIRV::OpExecutionMode); 421 addOpsFromMDNode(cast<MDNode>(Node->getOperand(i)), Inst, MAI); 422 outputMCInst(Inst); 423 } 424 } 425 for (auto FI = M.begin(), E = M.end(); FI != E; ++FI) { 426 const Function &F = *FI; 427 if (F.isDeclaration()) 428 continue; 429 Register FReg = MAI->getFuncReg(&F); 430 assert(FReg.isValid()); 431 if (MDNode *Node = F.getMetadata("reqd_work_group_size")) 432 outputExecutionModeFromMDNode(FReg, Node, 433 SPIRV::ExecutionMode::LocalSize); 434 if (MDNode *Node = F.getMetadata("work_group_size_hint")) 435 outputExecutionModeFromMDNode(FReg, Node, 436 SPIRV::ExecutionMode::LocalSizeHint); 437 if (MDNode *Node = F.getMetadata("intel_reqd_sub_group_size")) 438 outputExecutionModeFromMDNode(FReg, Node, 439 SPIRV::ExecutionMode::SubgroupSize); 440 if (MDNode *Node = F.getMetadata("vec_type_hint")) { 441 MCInst Inst; 442 Inst.setOpcode(SPIRV::OpExecutionMode); 443 Inst.addOperand(MCOperand::createReg(FReg)); 444 unsigned EM = static_cast<unsigned>(SPIRV::ExecutionMode::VecTypeHint); 445 Inst.addOperand(MCOperand::createImm(EM)); 446 unsigned TypeCode = encodeVecTypeHint(getMDOperandAsType(Node, 0)); 447 Inst.addOperand(MCOperand::createImm(TypeCode)); 448 outputMCInst(Inst); 449 } 450 if (!M.getNamedMetadata("spirv.ExecutionMode") && 451 !M.getNamedMetadata("opencl.enable.FP_CONTRACT")) { 452 MCInst Inst; 453 Inst.setOpcode(SPIRV::OpExecutionMode); 454 Inst.addOperand(MCOperand::createReg(FReg)); 455 unsigned EM = static_cast<unsigned>(SPIRV::ExecutionMode::ContractionOff); 456 Inst.addOperand(MCOperand::createImm(EM)); 457 outputMCInst(Inst); 458 } 459 } 460 } 461 462 void SPIRVAsmPrinter::outputAnnotations(const Module &M) { 463 outputModuleSection(SPIRV::MB_Annotations); 464 // Process llvm.global.annotations special global variable. 465 for (auto F = M.global_begin(), E = M.global_end(); F != E; ++F) { 466 if ((*F).getName() != "llvm.global.annotations") 467 continue; 468 const GlobalVariable *V = &(*F); 469 const ConstantArray *CA = cast<ConstantArray>(V->getOperand(0)); 470 for (Value *Op : CA->operands()) { 471 ConstantStruct *CS = cast<ConstantStruct>(Op); 472 // The first field of the struct contains a pointer to 473 // the annotated variable. 474 Value *AnnotatedVar = CS->getOperand(0)->stripPointerCasts(); 475 if (!isa<Function>(AnnotatedVar)) 476 report_fatal_error("Unsupported value in llvm.global.annotations"); 477 Function *Func = cast<Function>(AnnotatedVar); 478 Register Reg = MAI->getFuncReg(Func); 479 480 // The second field contains a pointer to a global annotation string. 481 GlobalVariable *GV = 482 cast<GlobalVariable>(CS->getOperand(1)->stripPointerCasts()); 483 484 StringRef AnnotationString; 485 getConstantStringInfo(GV, AnnotationString); 486 MCInst Inst; 487 Inst.setOpcode(SPIRV::OpDecorate); 488 Inst.addOperand(MCOperand::createReg(Reg)); 489 unsigned Dec = static_cast<unsigned>(SPIRV::Decoration::UserSemantic); 490 Inst.addOperand(MCOperand::createImm(Dec)); 491 addStringImm(AnnotationString, Inst); 492 outputMCInst(Inst); 493 } 494 } 495 } 496 497 void SPIRVAsmPrinter::outputModuleSections() { 498 const Module *M = MMI->getModule(); 499 // Get the global subtarget to output module-level info. 500 ST = static_cast<const SPIRVTargetMachine &>(TM).getSubtargetImpl(); 501 TII = ST->getInstrInfo(); 502 MAI = &SPIRVModuleAnalysis::MAI; 503 assert(ST && TII && MAI && M && "Module analysis is required"); 504 // Output instructions according to the Logical Layout of a Module: 505 // 1,2. All OpCapability instructions, then optional OpExtension instructions. 506 outputGlobalRequirements(); 507 // 3. Optional OpExtInstImport instructions. 508 outputOpExtInstImports(*M); 509 // 4. The single required OpMemoryModel instruction. 510 outputOpMemoryModel(); 511 // 5. All entry point declarations, using OpEntryPoint. 512 outputEntryPoints(); 513 // 6. Execution-mode declarations, using OpExecutionMode or OpExecutionModeId. 514 outputExecutionMode(*M); 515 // 7a. Debug: all OpString, OpSourceExtension, OpSource, and 516 // OpSourceContinued, without forward references. 517 outputDebugSourceAndStrings(*M); 518 // 7b. Debug: all OpName and all OpMemberName. 519 outputModuleSection(SPIRV::MB_DebugNames); 520 // 7c. Debug: all OpModuleProcessed instructions. 521 outputModuleSection(SPIRV::MB_DebugModuleProcessed); 522 // 8. All annotation instructions (all decorations). 523 outputAnnotations(*M); 524 // 9. All type declarations (OpTypeXXX instructions), all constant 525 // instructions, and all global variable declarations. This section is 526 // the first section to allow use of: OpLine and OpNoLine debug information; 527 // non-semantic instructions with OpExtInst. 528 outputModuleSection(SPIRV::MB_TypeConstVars); 529 // 10. All function declarations (functions without a body). 530 outputExtFuncDecls(); 531 // 11. All function definitions (functions with a body). 532 // This is done in regular function output. 533 } 534 535 bool SPIRVAsmPrinter::doInitialization(Module &M) { 536 ModuleSectionsEmitted = false; 537 // We need to call the parent's one explicitly. 538 return AsmPrinter::doInitialization(M); 539 } 540 541 // Force static initialization. 542 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSPIRVAsmPrinter() { 543 RegisterAsmPrinter<SPIRVAsmPrinter> X(getTheSPIRV32Target()); 544 RegisterAsmPrinter<SPIRVAsmPrinter> Y(getTheSPIRV64Target()); 545 } 546