xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SPIRV/SPIRVAsmPrinter.cpp (revision 47ef2a131091508e049ab10cad7f91a3c1342cd9)
1 //===-- SPIRVAsmPrinter.cpp - SPIR-V LLVM assembly writer ------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to the SPIR-V assembly language.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/SPIRVInstPrinter.h"
15 #include "SPIRV.h"
16 #include "SPIRVInstrInfo.h"
17 #include "SPIRVMCInstLower.h"
18 #include "SPIRVModuleAnalysis.h"
19 #include "SPIRVSubtarget.h"
20 #include "SPIRVTargetMachine.h"
21 #include "SPIRVUtils.h"
22 #include "TargetInfo/SPIRVTargetInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/CodeGen/AsmPrinter.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineModuleInfo.h"
30 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCAssembler.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCObjectStreamer.h"
35 #include "llvm/MC/MCSPIRVObjectWriter.h"
36 #include "llvm/MC/MCStreamer.h"
37 #include "llvm/MC/MCSymbol.h"
38 #include "llvm/MC/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "asm-printer"
44 
45 namespace {
46 class SPIRVAsmPrinter : public AsmPrinter {
47   unsigned NLabels = 0;
48 
49 public:
50   explicit SPIRVAsmPrinter(TargetMachine &TM,
51                            std::unique_ptr<MCStreamer> Streamer)
52       : AsmPrinter(TM, std::move(Streamer)), ST(nullptr), TII(nullptr) {}
53   bool ModuleSectionsEmitted;
54   const SPIRVSubtarget *ST;
55   const SPIRVInstrInfo *TII;
56 
57   StringRef getPassName() const override { return "SPIRV Assembly Printer"; }
58   void printOperand(const MachineInstr *MI, int OpNum, raw_ostream &O);
59   bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
60                        const char *ExtraCode, raw_ostream &O) override;
61 
62   void outputMCInst(MCInst &Inst);
63   void outputInstruction(const MachineInstr *MI);
64   void outputModuleSection(SPIRV::ModuleSectionType MSType);
65   void outputGlobalRequirements();
66   void outputEntryPoints();
67   void outputDebugSourceAndStrings(const Module &M);
68   void outputOpExtInstImports(const Module &M);
69   void outputOpMemoryModel();
70   void outputOpFunctionEnd();
71   void outputExtFuncDecls();
72   void outputExecutionModeFromMDNode(Register Reg, MDNode *Node,
73                                      SPIRV::ExecutionMode::ExecutionMode EM,
74                                      unsigned ExpectMDOps, int64_t DefVal);
75   void outputExecutionModeFromNumthreadsAttribute(
76       const Register &Reg, const Attribute &Attr,
77       SPIRV::ExecutionMode::ExecutionMode EM);
78   void outputExecutionMode(const Module &M);
79   void outputAnnotations(const Module &M);
80   void outputModuleSections();
81 
82   void emitInstruction(const MachineInstr *MI) override;
83   void emitFunctionEntryLabel() override {}
84   void emitFunctionHeader() override;
85   void emitFunctionBodyStart() override {}
86   void emitFunctionBodyEnd() override;
87   void emitBasicBlockStart(const MachineBasicBlock &MBB) override;
88   void emitBasicBlockEnd(const MachineBasicBlock &MBB) override {}
89   void emitGlobalVariable(const GlobalVariable *GV) override {}
90   void emitOpLabel(const MachineBasicBlock &MBB);
91   void emitEndOfAsmFile(Module &M) override;
92   bool doInitialization(Module &M) override;
93 
94   void getAnalysisUsage(AnalysisUsage &AU) const override;
95   SPIRV::ModuleAnalysisInfo *MAI;
96 };
97 } // namespace
98 
99 void SPIRVAsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
100   AU.addRequired<SPIRVModuleAnalysis>();
101   AU.addPreserved<SPIRVModuleAnalysis>();
102   AsmPrinter::getAnalysisUsage(AU);
103 }
104 
105 // If the module has no functions, we need output global info anyway.
106 void SPIRVAsmPrinter::emitEndOfAsmFile(Module &M) {
107   if (ModuleSectionsEmitted == false) {
108     outputModuleSections();
109     ModuleSectionsEmitted = true;
110   }
111 
112   ST = static_cast<const SPIRVTargetMachine &>(TM).getSubtargetImpl();
113   VersionTuple SPIRVVersion = ST->getSPIRVVersion();
114   uint32_t Major = SPIRVVersion.getMajor();
115   uint32_t Minor = SPIRVVersion.getMinor().value_or(0);
116   // Bound is an approximation that accounts for the maximum used register
117   // number and number of generated OpLabels
118   unsigned Bound = 2 * (ST->getBound() + 1) + NLabels;
119   if (MCAssembler *Asm = OutStreamer->getAssemblerPtr())
120     static_cast<SPIRVObjectWriter &>(Asm->getWriter())
121         .setBuildVersion(Major, Minor, Bound);
122 }
123 
124 void SPIRVAsmPrinter::emitFunctionHeader() {
125   if (ModuleSectionsEmitted == false) {
126     outputModuleSections();
127     ModuleSectionsEmitted = true;
128   }
129   // Get the subtarget from the current MachineFunction.
130   ST = &MF->getSubtarget<SPIRVSubtarget>();
131   TII = ST->getInstrInfo();
132   const Function &F = MF->getFunction();
133 
134   if (isVerbose()) {
135     OutStreamer->getCommentOS()
136         << "-- Begin function "
137         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
138   }
139 
140   auto Section = getObjFileLowering().SectionForGlobal(&F, TM);
141   MF->setSection(Section);
142 }
143 
144 void SPIRVAsmPrinter::outputOpFunctionEnd() {
145   MCInst FunctionEndInst;
146   FunctionEndInst.setOpcode(SPIRV::OpFunctionEnd);
147   outputMCInst(FunctionEndInst);
148 }
149 
150 // Emit OpFunctionEnd at the end of MF and clear BBNumToRegMap.
151 void SPIRVAsmPrinter::emitFunctionBodyEnd() {
152   outputOpFunctionEnd();
153   MAI->BBNumToRegMap.clear();
154 }
155 
156 void SPIRVAsmPrinter::emitOpLabel(const MachineBasicBlock &MBB) {
157   MCInst LabelInst;
158   LabelInst.setOpcode(SPIRV::OpLabel);
159   LabelInst.addOperand(MCOperand::createReg(MAI->getOrCreateMBBRegister(MBB)));
160   outputMCInst(LabelInst);
161   ++NLabels;
162 }
163 
164 void SPIRVAsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
165   assert(!MBB.empty() && "MBB is empty!");
166 
167   // If it's the first MBB in MF, it has OpFunction and OpFunctionParameter, so
168   // OpLabel should be output after them.
169   if (MBB.getNumber() == MF->front().getNumber()) {
170     for (const MachineInstr &MI : MBB)
171       if (MI.getOpcode() == SPIRV::OpFunction)
172         return;
173     // TODO: this case should be checked by the verifier.
174     report_fatal_error("OpFunction is expected in the front MBB of MF");
175   }
176   emitOpLabel(MBB);
177 }
178 
179 void SPIRVAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
180                                    raw_ostream &O) {
181   const MachineOperand &MO = MI->getOperand(OpNum);
182 
183   switch (MO.getType()) {
184   case MachineOperand::MO_Register:
185     O << SPIRVInstPrinter::getRegisterName(MO.getReg());
186     break;
187 
188   case MachineOperand::MO_Immediate:
189     O << MO.getImm();
190     break;
191 
192   case MachineOperand::MO_FPImmediate:
193     O << MO.getFPImm();
194     break;
195 
196   case MachineOperand::MO_MachineBasicBlock:
197     O << *MO.getMBB()->getSymbol();
198     break;
199 
200   case MachineOperand::MO_GlobalAddress:
201     O << *getSymbol(MO.getGlobal());
202     break;
203 
204   case MachineOperand::MO_BlockAddress: {
205     MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress());
206     O << BA->getName();
207     break;
208   }
209 
210   case MachineOperand::MO_ExternalSymbol:
211     O << *GetExternalSymbolSymbol(MO.getSymbolName());
212     break;
213 
214   case MachineOperand::MO_JumpTableIndex:
215   case MachineOperand::MO_ConstantPoolIndex:
216   default:
217     llvm_unreachable("<unknown operand type>");
218   }
219 }
220 
221 bool SPIRVAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
222                                       const char *ExtraCode, raw_ostream &O) {
223   if (ExtraCode && ExtraCode[0])
224     return true; // Invalid instruction - SPIR-V does not have special modifiers
225 
226   printOperand(MI, OpNo, O);
227   return false;
228 }
229 
230 static bool isFuncOrHeaderInstr(const MachineInstr *MI,
231                                 const SPIRVInstrInfo *TII) {
232   return TII->isHeaderInstr(*MI) || MI->getOpcode() == SPIRV::OpFunction ||
233          MI->getOpcode() == SPIRV::OpFunctionParameter;
234 }
235 
236 void SPIRVAsmPrinter::outputMCInst(MCInst &Inst) {
237   OutStreamer->emitInstruction(Inst, *OutContext.getSubtargetInfo());
238 }
239 
240 void SPIRVAsmPrinter::outputInstruction(const MachineInstr *MI) {
241   SPIRVMCInstLower MCInstLowering;
242   MCInst TmpInst;
243   MCInstLowering.lower(MI, TmpInst, MAI);
244   outputMCInst(TmpInst);
245 }
246 
247 void SPIRVAsmPrinter::emitInstruction(const MachineInstr *MI) {
248   SPIRV_MC::verifyInstructionPredicates(MI->getOpcode(),
249                                         getSubtargetInfo().getFeatureBits());
250 
251   if (!MAI->getSkipEmission(MI))
252     outputInstruction(MI);
253 
254   // Output OpLabel after OpFunction and OpFunctionParameter in the first MBB.
255   const MachineInstr *NextMI = MI->getNextNode();
256   if (!MAI->hasMBBRegister(*MI->getParent()) && isFuncOrHeaderInstr(MI, TII) &&
257       (!NextMI || !isFuncOrHeaderInstr(NextMI, TII))) {
258     assert(MI->getParent()->getNumber() == MF->front().getNumber() &&
259            "OpFunction is not in the front MBB of MF");
260     emitOpLabel(*MI->getParent());
261   }
262 }
263 
264 void SPIRVAsmPrinter::outputModuleSection(SPIRV::ModuleSectionType MSType) {
265   for (MachineInstr *MI : MAI->getMSInstrs(MSType))
266     outputInstruction(MI);
267 }
268 
269 void SPIRVAsmPrinter::outputDebugSourceAndStrings(const Module &M) {
270   // Output OpSourceExtensions.
271   for (auto &Str : MAI->SrcExt) {
272     MCInst Inst;
273     Inst.setOpcode(SPIRV::OpSourceExtension);
274     addStringImm(Str.first(), Inst);
275     outputMCInst(Inst);
276   }
277   // Output OpSource.
278   MCInst Inst;
279   Inst.setOpcode(SPIRV::OpSource);
280   Inst.addOperand(MCOperand::createImm(static_cast<unsigned>(MAI->SrcLang)));
281   Inst.addOperand(
282       MCOperand::createImm(static_cast<unsigned>(MAI->SrcLangVersion)));
283   outputMCInst(Inst);
284 }
285 
286 void SPIRVAsmPrinter::outputOpExtInstImports(const Module &M) {
287   for (auto &CU : MAI->ExtInstSetMap) {
288     unsigned Set = CU.first;
289     Register Reg = CU.second;
290     MCInst Inst;
291     Inst.setOpcode(SPIRV::OpExtInstImport);
292     Inst.addOperand(MCOperand::createReg(Reg));
293     addStringImm(getExtInstSetName(
294                      static_cast<SPIRV::InstructionSet::InstructionSet>(Set)),
295                  Inst);
296     outputMCInst(Inst);
297   }
298 }
299 
300 void SPIRVAsmPrinter::outputOpMemoryModel() {
301   MCInst Inst;
302   Inst.setOpcode(SPIRV::OpMemoryModel);
303   Inst.addOperand(MCOperand::createImm(static_cast<unsigned>(MAI->Addr)));
304   Inst.addOperand(MCOperand::createImm(static_cast<unsigned>(MAI->Mem)));
305   outputMCInst(Inst);
306 }
307 
308 // Before the OpEntryPoints' output, we need to add the entry point's
309 // interfaces. The interface is a list of IDs of global OpVariable instructions.
310 // These declare the set of global variables from a module that form
311 // the interface of this entry point.
312 void SPIRVAsmPrinter::outputEntryPoints() {
313   // Find all OpVariable IDs with required StorageClass.
314   DenseSet<Register> InterfaceIDs;
315   for (MachineInstr *MI : MAI->GlobalVarList) {
316     assert(MI->getOpcode() == SPIRV::OpVariable);
317     auto SC = static_cast<SPIRV::StorageClass::StorageClass>(
318         MI->getOperand(2).getImm());
319     // Before version 1.4, the interface's storage classes are limited to
320     // the Input and Output storage classes. Starting with version 1.4,
321     // the interface's storage classes are all storage classes used in
322     // declaring all global variables referenced by the entry point call tree.
323     if (ST->isAtLeastSPIRVVer(VersionTuple(1, 4)) ||
324         SC == SPIRV::StorageClass::Input || SC == SPIRV::StorageClass::Output) {
325       MachineFunction *MF = MI->getMF();
326       Register Reg = MAI->getRegisterAlias(MF, MI->getOperand(0).getReg());
327       InterfaceIDs.insert(Reg);
328     }
329   }
330 
331   // Output OpEntryPoints adding interface args to all of them.
332   for (MachineInstr *MI : MAI->getMSInstrs(SPIRV::MB_EntryPoints)) {
333     SPIRVMCInstLower MCInstLowering;
334     MCInst TmpInst;
335     MCInstLowering.lower(MI, TmpInst, MAI);
336     for (Register Reg : InterfaceIDs) {
337       assert(Reg.isValid());
338       TmpInst.addOperand(MCOperand::createReg(Reg));
339     }
340     outputMCInst(TmpInst);
341   }
342 }
343 
344 // Create global OpCapability instructions for the required capabilities.
345 void SPIRVAsmPrinter::outputGlobalRequirements() {
346   // Abort here if not all requirements can be satisfied.
347   MAI->Reqs.checkSatisfiable(*ST);
348 
349   for (const auto &Cap : MAI->Reqs.getMinimalCapabilities()) {
350     MCInst Inst;
351     Inst.setOpcode(SPIRV::OpCapability);
352     Inst.addOperand(MCOperand::createImm(Cap));
353     outputMCInst(Inst);
354   }
355 
356   // Generate the final OpExtensions with strings instead of enums.
357   for (const auto &Ext : MAI->Reqs.getExtensions()) {
358     MCInst Inst;
359     Inst.setOpcode(SPIRV::OpExtension);
360     addStringImm(getSymbolicOperandMnemonic(
361                      SPIRV::OperandCategory::ExtensionOperand, Ext),
362                  Inst);
363     outputMCInst(Inst);
364   }
365   // TODO add a pseudo instr for version number.
366 }
367 
368 void SPIRVAsmPrinter::outputExtFuncDecls() {
369   // Insert OpFunctionEnd after each declaration.
370   SmallVectorImpl<MachineInstr *>::iterator
371       I = MAI->getMSInstrs(SPIRV::MB_ExtFuncDecls).begin(),
372       E = MAI->getMSInstrs(SPIRV::MB_ExtFuncDecls).end();
373   for (; I != E; ++I) {
374     outputInstruction(*I);
375     if ((I + 1) == E || (*(I + 1))->getOpcode() == SPIRV::OpFunction)
376       outputOpFunctionEnd();
377   }
378 }
379 
380 // Encode LLVM type by SPIR-V execution mode VecTypeHint.
381 static unsigned encodeVecTypeHint(Type *Ty) {
382   if (Ty->isHalfTy())
383     return 4;
384   if (Ty->isFloatTy())
385     return 5;
386   if (Ty->isDoubleTy())
387     return 6;
388   if (IntegerType *IntTy = dyn_cast<IntegerType>(Ty)) {
389     switch (IntTy->getIntegerBitWidth()) {
390     case 8:
391       return 0;
392     case 16:
393       return 1;
394     case 32:
395       return 2;
396     case 64:
397       return 3;
398     default:
399       llvm_unreachable("invalid integer type");
400     }
401   }
402   if (FixedVectorType *VecTy = dyn_cast<FixedVectorType>(Ty)) {
403     Type *EleTy = VecTy->getElementType();
404     unsigned Size = VecTy->getNumElements();
405     return Size << 16 | encodeVecTypeHint(EleTy);
406   }
407   llvm_unreachable("invalid type");
408 }
409 
410 static void addOpsFromMDNode(MDNode *MDN, MCInst &Inst,
411                              SPIRV::ModuleAnalysisInfo *MAI) {
412   for (const MDOperand &MDOp : MDN->operands()) {
413     if (auto *CMeta = dyn_cast<ConstantAsMetadata>(MDOp)) {
414       Constant *C = CMeta->getValue();
415       if (ConstantInt *Const = dyn_cast<ConstantInt>(C)) {
416         Inst.addOperand(MCOperand::createImm(Const->getZExtValue()));
417       } else if (auto *CE = dyn_cast<Function>(C)) {
418         Register FuncReg = MAI->getFuncReg(CE);
419         assert(FuncReg.isValid());
420         Inst.addOperand(MCOperand::createReg(FuncReg));
421       }
422     }
423   }
424 }
425 
426 void SPIRVAsmPrinter::outputExecutionModeFromMDNode(
427     Register Reg, MDNode *Node, SPIRV::ExecutionMode::ExecutionMode EM,
428     unsigned ExpectMDOps, int64_t DefVal) {
429   MCInst Inst;
430   Inst.setOpcode(SPIRV::OpExecutionMode);
431   Inst.addOperand(MCOperand::createReg(Reg));
432   Inst.addOperand(MCOperand::createImm(static_cast<unsigned>(EM)));
433   addOpsFromMDNode(Node, Inst, MAI);
434   // reqd_work_group_size and work_group_size_hint require 3 operands,
435   // if metadata contains less operands, just add a default value
436   unsigned NodeSz = Node->getNumOperands();
437   if (ExpectMDOps > 0 && NodeSz < ExpectMDOps)
438     for (unsigned i = NodeSz; i < ExpectMDOps; ++i)
439       Inst.addOperand(MCOperand::createImm(DefVal));
440   outputMCInst(Inst);
441 }
442 
443 void SPIRVAsmPrinter::outputExecutionModeFromNumthreadsAttribute(
444     const Register &Reg, const Attribute &Attr,
445     SPIRV::ExecutionMode::ExecutionMode EM) {
446   assert(Attr.isValid() && "Function called with an invalid attribute.");
447 
448   MCInst Inst;
449   Inst.setOpcode(SPIRV::OpExecutionMode);
450   Inst.addOperand(MCOperand::createReg(Reg));
451   Inst.addOperand(MCOperand::createImm(static_cast<unsigned>(EM)));
452 
453   SmallVector<StringRef> NumThreads;
454   Attr.getValueAsString().split(NumThreads, ',');
455   assert(NumThreads.size() == 3 && "invalid numthreads");
456   for (uint32_t i = 0; i < 3; ++i) {
457     uint32_t V;
458     [[maybe_unused]] bool Result = NumThreads[i].getAsInteger(10, V);
459     assert(!Result && "Failed to parse numthreads");
460     Inst.addOperand(MCOperand::createImm(V));
461   }
462 
463   outputMCInst(Inst);
464 }
465 
466 void SPIRVAsmPrinter::outputExecutionMode(const Module &M) {
467   NamedMDNode *Node = M.getNamedMetadata("spirv.ExecutionMode");
468   if (Node) {
469     for (unsigned i = 0; i < Node->getNumOperands(); i++) {
470       MCInst Inst;
471       Inst.setOpcode(SPIRV::OpExecutionMode);
472       addOpsFromMDNode(cast<MDNode>(Node->getOperand(i)), Inst, MAI);
473       outputMCInst(Inst);
474     }
475   }
476   for (auto FI = M.begin(), E = M.end(); FI != E; ++FI) {
477     const Function &F = *FI;
478     // Only operands of OpEntryPoint instructions are allowed to be
479     // <Entry Point> operands of OpExecutionMode
480     if (F.isDeclaration() || !isEntryPoint(F))
481       continue;
482     Register FReg = MAI->getFuncReg(&F);
483     assert(FReg.isValid());
484     if (MDNode *Node = F.getMetadata("reqd_work_group_size"))
485       outputExecutionModeFromMDNode(FReg, Node, SPIRV::ExecutionMode::LocalSize,
486                                     3, 1);
487     if (Attribute Attr = F.getFnAttribute("hlsl.numthreads"); Attr.isValid())
488       outputExecutionModeFromNumthreadsAttribute(
489           FReg, Attr, SPIRV::ExecutionMode::LocalSize);
490     if (MDNode *Node = F.getMetadata("work_group_size_hint"))
491       outputExecutionModeFromMDNode(FReg, Node,
492                                     SPIRV::ExecutionMode::LocalSizeHint, 3, 1);
493     if (MDNode *Node = F.getMetadata("intel_reqd_sub_group_size"))
494       outputExecutionModeFromMDNode(FReg, Node,
495                                     SPIRV::ExecutionMode::SubgroupSize, 0, 0);
496     if (MDNode *Node = F.getMetadata("vec_type_hint")) {
497       MCInst Inst;
498       Inst.setOpcode(SPIRV::OpExecutionMode);
499       Inst.addOperand(MCOperand::createReg(FReg));
500       unsigned EM = static_cast<unsigned>(SPIRV::ExecutionMode::VecTypeHint);
501       Inst.addOperand(MCOperand::createImm(EM));
502       unsigned TypeCode = encodeVecTypeHint(getMDOperandAsType(Node, 0));
503       Inst.addOperand(MCOperand::createImm(TypeCode));
504       outputMCInst(Inst);
505     }
506     if (ST->isOpenCLEnv() && !M.getNamedMetadata("spirv.ExecutionMode") &&
507         !M.getNamedMetadata("opencl.enable.FP_CONTRACT")) {
508       MCInst Inst;
509       Inst.setOpcode(SPIRV::OpExecutionMode);
510       Inst.addOperand(MCOperand::createReg(FReg));
511       unsigned EM = static_cast<unsigned>(SPIRV::ExecutionMode::ContractionOff);
512       Inst.addOperand(MCOperand::createImm(EM));
513       outputMCInst(Inst);
514     }
515   }
516 }
517 
518 void SPIRVAsmPrinter::outputAnnotations(const Module &M) {
519   outputModuleSection(SPIRV::MB_Annotations);
520   // Process llvm.global.annotations special global variable.
521   for (auto F = M.global_begin(), E = M.global_end(); F != E; ++F) {
522     if ((*F).getName() != "llvm.global.annotations")
523       continue;
524     const GlobalVariable *V = &(*F);
525     const ConstantArray *CA = cast<ConstantArray>(V->getOperand(0));
526     for (Value *Op : CA->operands()) {
527       ConstantStruct *CS = cast<ConstantStruct>(Op);
528       // The first field of the struct contains a pointer to
529       // the annotated variable.
530       Value *AnnotatedVar = CS->getOperand(0)->stripPointerCasts();
531       if (!isa<Function>(AnnotatedVar))
532         report_fatal_error("Unsupported value in llvm.global.annotations");
533       Function *Func = cast<Function>(AnnotatedVar);
534       Register Reg = MAI->getFuncReg(Func);
535       if (!Reg.isValid()) {
536         std::string DiagMsg;
537         raw_string_ostream OS(DiagMsg);
538         AnnotatedVar->print(OS);
539         DiagMsg = "Unknown function in llvm.global.annotations: " + DiagMsg;
540         report_fatal_error(DiagMsg.c_str());
541       }
542 
543       // The second field contains a pointer to a global annotation string.
544       GlobalVariable *GV =
545           cast<GlobalVariable>(CS->getOperand(1)->stripPointerCasts());
546 
547       StringRef AnnotationString;
548       getConstantStringInfo(GV, AnnotationString);
549       MCInst Inst;
550       Inst.setOpcode(SPIRV::OpDecorate);
551       Inst.addOperand(MCOperand::createReg(Reg));
552       unsigned Dec = static_cast<unsigned>(SPIRV::Decoration::UserSemantic);
553       Inst.addOperand(MCOperand::createImm(Dec));
554       addStringImm(AnnotationString, Inst);
555       outputMCInst(Inst);
556     }
557   }
558 }
559 
560 void SPIRVAsmPrinter::outputModuleSections() {
561   const Module *M = MMI->getModule();
562   // Get the global subtarget to output module-level info.
563   ST = static_cast<const SPIRVTargetMachine &>(TM).getSubtargetImpl();
564   TII = ST->getInstrInfo();
565   MAI = &SPIRVModuleAnalysis::MAI;
566   assert(ST && TII && MAI && M && "Module analysis is required");
567   // Output instructions according to the Logical Layout of a Module:
568   // 1,2. All OpCapability instructions, then optional OpExtension instructions.
569   outputGlobalRequirements();
570   // 3. Optional OpExtInstImport instructions.
571   outputOpExtInstImports(*M);
572   // 4. The single required OpMemoryModel instruction.
573   outputOpMemoryModel();
574   // 5. All entry point declarations, using OpEntryPoint.
575   outputEntryPoints();
576   // 6. Execution-mode declarations, using OpExecutionMode or OpExecutionModeId.
577   outputExecutionMode(*M);
578   // 7a. Debug: all OpString, OpSourceExtension, OpSource, and
579   // OpSourceContinued, without forward references.
580   outputDebugSourceAndStrings(*M);
581   // 7b. Debug: all OpName and all OpMemberName.
582   outputModuleSection(SPIRV::MB_DebugNames);
583   // 7c. Debug: all OpModuleProcessed instructions.
584   outputModuleSection(SPIRV::MB_DebugModuleProcessed);
585   // 8. All annotation instructions (all decorations).
586   outputAnnotations(*M);
587   // 9. All type declarations (OpTypeXXX instructions), all constant
588   // instructions, and all global variable declarations. This section is
589   // the first section to allow use of: OpLine and OpNoLine debug information;
590   // non-semantic instructions with OpExtInst.
591   outputModuleSection(SPIRV::MB_TypeConstVars);
592   // 10. All function declarations (functions without a body).
593   outputExtFuncDecls();
594   // 11. All function definitions (functions with a body).
595   // This is done in regular function output.
596 }
597 
598 bool SPIRVAsmPrinter::doInitialization(Module &M) {
599   ModuleSectionsEmitted = false;
600   // We need to call the parent's one explicitly.
601   return AsmPrinter::doInitialization(M);
602 }
603 
604 // Force static initialization.
605 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSPIRVAsmPrinter() {
606   RegisterAsmPrinter<SPIRVAsmPrinter> X(getTheSPIRV32Target());
607   RegisterAsmPrinter<SPIRVAsmPrinter> Y(getTheSPIRV64Target());
608   RegisterAsmPrinter<SPIRVAsmPrinter> Z(getTheSPIRVLogicalTarget());
609 }
610