xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVTargetTransformInfo.cpp (revision b1879975794772ee51f0b4865753364c7d7626c3)
1 //===-- RISCVTargetTransformInfo.cpp - RISC-V specific TTI ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "RISCVTargetTransformInfo.h"
10 #include "MCTargetDesc/RISCVMatInt.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/CodeGen/BasicTTIImpl.h"
14 #include "llvm/CodeGen/CostTable.h"
15 #include "llvm/CodeGen/TargetLowering.h"
16 #include "llvm/IR/Instructions.h"
17 #include "llvm/IR/PatternMatch.h"
18 #include <cmath>
19 #include <optional>
20 using namespace llvm;
21 using namespace llvm::PatternMatch;
22 
23 #define DEBUG_TYPE "riscvtti"
24 
25 static cl::opt<unsigned> RVVRegisterWidthLMUL(
26     "riscv-v-register-bit-width-lmul",
27     cl::desc(
28         "The LMUL to use for getRegisterBitWidth queries. Affects LMUL used "
29         "by autovectorized code. Fractional LMULs are not supported."),
30     cl::init(2), cl::Hidden);
31 
32 static cl::opt<unsigned> SLPMaxVF(
33     "riscv-v-slp-max-vf",
34     cl::desc(
35         "Overrides result used for getMaximumVF query which is used "
36         "exclusively by SLP vectorizer."),
37     cl::Hidden);
38 
39 InstructionCost
40 RISCVTTIImpl::getRISCVInstructionCost(ArrayRef<unsigned> OpCodes, MVT VT,
41                                       TTI::TargetCostKind CostKind) {
42   // Check if the type is valid for all CostKind
43   if (!VT.isVector())
44     return InstructionCost::getInvalid();
45   size_t NumInstr = OpCodes.size();
46   if (CostKind == TTI::TCK_CodeSize)
47     return NumInstr;
48   InstructionCost LMULCost = TLI->getLMULCost(VT);
49   if ((CostKind != TTI::TCK_RecipThroughput) && (CostKind != TTI::TCK_Latency))
50     return LMULCost * NumInstr;
51   InstructionCost Cost = 0;
52   for (auto Op : OpCodes) {
53     switch (Op) {
54     case RISCV::VRGATHER_VI:
55       Cost += TLI->getVRGatherVICost(VT);
56       break;
57     case RISCV::VRGATHER_VV:
58       Cost += TLI->getVRGatherVVCost(VT);
59       break;
60     case RISCV::VSLIDEUP_VI:
61     case RISCV::VSLIDEDOWN_VI:
62       Cost += TLI->getVSlideVICost(VT);
63       break;
64     case RISCV::VSLIDEUP_VX:
65     case RISCV::VSLIDEDOWN_VX:
66       Cost += TLI->getVSlideVXCost(VT);
67       break;
68     case RISCV::VREDMAX_VS:
69     case RISCV::VREDMIN_VS:
70     case RISCV::VREDMAXU_VS:
71     case RISCV::VREDMINU_VS:
72     case RISCV::VREDSUM_VS:
73     case RISCV::VREDAND_VS:
74     case RISCV::VREDOR_VS:
75     case RISCV::VREDXOR_VS:
76     case RISCV::VFREDMAX_VS:
77     case RISCV::VFREDMIN_VS:
78     case RISCV::VFREDUSUM_VS: {
79       unsigned VL = VT.getVectorMinNumElements();
80       if (!VT.isFixedLengthVector())
81         VL *= *getVScaleForTuning();
82       Cost += Log2_32_Ceil(VL);
83       break;
84     }
85     case RISCV::VFREDOSUM_VS: {
86       unsigned VL = VT.getVectorMinNumElements();
87       if (!VT.isFixedLengthVector())
88         VL *= *getVScaleForTuning();
89       Cost += VL;
90       break;
91     }
92     case RISCV::VMV_X_S:
93     case RISCV::VMV_S_X:
94     case RISCV::VFMV_F_S:
95     case RISCV::VFMV_S_F:
96     case RISCV::VMOR_MM:
97     case RISCV::VMXOR_MM:
98     case RISCV::VMAND_MM:
99     case RISCV::VMANDN_MM:
100     case RISCV::VMNAND_MM:
101     case RISCV::VCPOP_M:
102     case RISCV::VFIRST_M:
103       Cost += 1;
104       break;
105     default:
106       Cost += LMULCost;
107     }
108   }
109   return Cost;
110 }
111 
112 static InstructionCost getIntImmCostImpl(const DataLayout &DL,
113                                          const RISCVSubtarget *ST,
114                                          const APInt &Imm, Type *Ty,
115                                          TTI::TargetCostKind CostKind,
116                                          bool FreeZeroes) {
117   assert(Ty->isIntegerTy() &&
118          "getIntImmCost can only estimate cost of materialising integers");
119 
120   // We have a Zero register, so 0 is always free.
121   if (Imm == 0)
122     return TTI::TCC_Free;
123 
124   // Otherwise, we check how many instructions it will take to materialise.
125   return RISCVMatInt::getIntMatCost(Imm, DL.getTypeSizeInBits(Ty), *ST,
126                                     /*CompressionCost=*/false, FreeZeroes);
127 }
128 
129 InstructionCost RISCVTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
130                                             TTI::TargetCostKind CostKind) {
131   return getIntImmCostImpl(getDataLayout(), getST(), Imm, Ty, CostKind, false);
132 }
133 
134 // Look for patterns of shift followed by AND that can be turned into a pair of
135 // shifts. We won't need to materialize an immediate for the AND so these can
136 // be considered free.
137 static bool canUseShiftPair(Instruction *Inst, const APInt &Imm) {
138   uint64_t Mask = Imm.getZExtValue();
139   auto *BO = dyn_cast<BinaryOperator>(Inst->getOperand(0));
140   if (!BO || !BO->hasOneUse())
141     return false;
142 
143   if (BO->getOpcode() != Instruction::Shl)
144     return false;
145 
146   if (!isa<ConstantInt>(BO->getOperand(1)))
147     return false;
148 
149   unsigned ShAmt = cast<ConstantInt>(BO->getOperand(1))->getZExtValue();
150   // (and (shl x, c2), c1) will be matched to (srli (slli x, c2+c3), c3) if c1
151   // is a mask shifted by c2 bits with c3 leading zeros.
152   if (isShiftedMask_64(Mask)) {
153     unsigned Trailing = llvm::countr_zero(Mask);
154     if (ShAmt == Trailing)
155       return true;
156   }
157 
158   return false;
159 }
160 
161 InstructionCost RISCVTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
162                                                 const APInt &Imm, Type *Ty,
163                                                 TTI::TargetCostKind CostKind,
164                                                 Instruction *Inst) {
165   assert(Ty->isIntegerTy() &&
166          "getIntImmCost can only estimate cost of materialising integers");
167 
168   // We have a Zero register, so 0 is always free.
169   if (Imm == 0)
170     return TTI::TCC_Free;
171 
172   // Some instructions in RISC-V can take a 12-bit immediate. Some of these are
173   // commutative, in others the immediate comes from a specific argument index.
174   bool Takes12BitImm = false;
175   unsigned ImmArgIdx = ~0U;
176 
177   switch (Opcode) {
178   case Instruction::GetElementPtr:
179     // Never hoist any arguments to a GetElementPtr. CodeGenPrepare will
180     // split up large offsets in GEP into better parts than ConstantHoisting
181     // can.
182     return TTI::TCC_Free;
183   case Instruction::Store: {
184     // Use the materialization cost regardless of if it's the address or the
185     // value that is constant, except for if the store is misaligned and
186     // misaligned accesses are not legal (experience shows constant hoisting
187     // can sometimes be harmful in such cases).
188     if (Idx == 1 || !Inst)
189       return getIntImmCostImpl(getDataLayout(), getST(), Imm, Ty, CostKind,
190                                /*FreeZeroes=*/true);
191 
192     StoreInst *ST = cast<StoreInst>(Inst);
193     if (!getTLI()->allowsMemoryAccessForAlignment(
194             Ty->getContext(), DL, getTLI()->getValueType(DL, Ty),
195             ST->getPointerAddressSpace(), ST->getAlign()))
196       return TTI::TCC_Free;
197 
198     return getIntImmCostImpl(getDataLayout(), getST(), Imm, Ty, CostKind,
199                              /*FreeZeroes=*/true);
200   }
201   case Instruction::Load:
202     // If the address is a constant, use the materialization cost.
203     return getIntImmCost(Imm, Ty, CostKind);
204   case Instruction::And:
205     // zext.h
206     if (Imm == UINT64_C(0xffff) && ST->hasStdExtZbb())
207       return TTI::TCC_Free;
208     // zext.w
209     if (Imm == UINT64_C(0xffffffff) && ST->hasStdExtZba())
210       return TTI::TCC_Free;
211     // bclri
212     if (ST->hasStdExtZbs() && (~Imm).isPowerOf2())
213       return TTI::TCC_Free;
214     if (Inst && Idx == 1 && Imm.getBitWidth() <= ST->getXLen() &&
215         canUseShiftPair(Inst, Imm))
216       return TTI::TCC_Free;
217     Takes12BitImm = true;
218     break;
219   case Instruction::Add:
220     Takes12BitImm = true;
221     break;
222   case Instruction::Or:
223   case Instruction::Xor:
224     // bseti/binvi
225     if (ST->hasStdExtZbs() && Imm.isPowerOf2())
226       return TTI::TCC_Free;
227     Takes12BitImm = true;
228     break;
229   case Instruction::Mul:
230     // Power of 2 is a shift. Negated power of 2 is a shift and a negate.
231     if (Imm.isPowerOf2() || Imm.isNegatedPowerOf2())
232       return TTI::TCC_Free;
233     // One more or less than a power of 2 can use SLLI+ADD/SUB.
234     if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2())
235       return TTI::TCC_Free;
236     // FIXME: There is no MULI instruction.
237     Takes12BitImm = true;
238     break;
239   case Instruction::Sub:
240   case Instruction::Shl:
241   case Instruction::LShr:
242   case Instruction::AShr:
243     Takes12BitImm = true;
244     ImmArgIdx = 1;
245     break;
246   default:
247     break;
248   }
249 
250   if (Takes12BitImm) {
251     // Check immediate is the correct argument...
252     if (Instruction::isCommutative(Opcode) || Idx == ImmArgIdx) {
253       // ... and fits into the 12-bit immediate.
254       if (Imm.getSignificantBits() <= 64 &&
255           getTLI()->isLegalAddImmediate(Imm.getSExtValue())) {
256         return TTI::TCC_Free;
257       }
258     }
259 
260     // Otherwise, use the full materialisation cost.
261     return getIntImmCost(Imm, Ty, CostKind);
262   }
263 
264   // By default, prevent hoisting.
265   return TTI::TCC_Free;
266 }
267 
268 InstructionCost
269 RISCVTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
270                                   const APInt &Imm, Type *Ty,
271                                   TTI::TargetCostKind CostKind) {
272   // Prevent hoisting in unknown cases.
273   return TTI::TCC_Free;
274 }
275 
276 bool RISCVTTIImpl::hasActiveVectorLength(unsigned, Type *DataTy, Align) const {
277   return ST->hasVInstructions();
278 }
279 
280 TargetTransformInfo::PopcntSupportKind
281 RISCVTTIImpl::getPopcntSupport(unsigned TyWidth) {
282   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
283   return ST->hasStdExtZbb() || ST->hasVendorXCVbitmanip()
284              ? TTI::PSK_FastHardware
285              : TTI::PSK_Software;
286 }
287 
288 bool RISCVTTIImpl::shouldExpandReduction(const IntrinsicInst *II) const {
289   // Currently, the ExpandReductions pass can't expand scalable-vector
290   // reductions, but we still request expansion as RVV doesn't support certain
291   // reductions and the SelectionDAG can't legalize them either.
292   switch (II->getIntrinsicID()) {
293   default:
294     return false;
295   // These reductions have no equivalent in RVV
296   case Intrinsic::vector_reduce_mul:
297   case Intrinsic::vector_reduce_fmul:
298     return true;
299   }
300 }
301 
302 std::optional<unsigned> RISCVTTIImpl::getMaxVScale() const {
303   if (ST->hasVInstructions())
304     return ST->getRealMaxVLen() / RISCV::RVVBitsPerBlock;
305   return BaseT::getMaxVScale();
306 }
307 
308 std::optional<unsigned> RISCVTTIImpl::getVScaleForTuning() const {
309   if (ST->hasVInstructions())
310     if (unsigned MinVLen = ST->getRealMinVLen();
311         MinVLen >= RISCV::RVVBitsPerBlock)
312       return MinVLen / RISCV::RVVBitsPerBlock;
313   return BaseT::getVScaleForTuning();
314 }
315 
316 TypeSize
317 RISCVTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
318   unsigned LMUL =
319       llvm::bit_floor(std::clamp<unsigned>(RVVRegisterWidthLMUL, 1, 8));
320   switch (K) {
321   case TargetTransformInfo::RGK_Scalar:
322     return TypeSize::getFixed(ST->getXLen());
323   case TargetTransformInfo::RGK_FixedWidthVector:
324     return TypeSize::getFixed(
325         ST->useRVVForFixedLengthVectors() ? LMUL * ST->getRealMinVLen() : 0);
326   case TargetTransformInfo::RGK_ScalableVector:
327     return TypeSize::getScalable(
328         (ST->hasVInstructions() &&
329          ST->getRealMinVLen() >= RISCV::RVVBitsPerBlock)
330             ? LMUL * RISCV::RVVBitsPerBlock
331             : 0);
332   }
333 
334   llvm_unreachable("Unsupported register kind");
335 }
336 
337 InstructionCost
338 RISCVTTIImpl::getConstantPoolLoadCost(Type *Ty,  TTI::TargetCostKind CostKind) {
339   // Add a cost of address generation + the cost of the load. The address
340   // is expected to be a PC relative offset to a constant pool entry
341   // using auipc/addi.
342   return 2 + getMemoryOpCost(Instruction::Load, Ty, DL.getABITypeAlign(Ty),
343                              /*AddressSpace=*/0, CostKind);
344 }
345 
346 static VectorType *getVRGatherIndexType(MVT DataVT, const RISCVSubtarget &ST,
347                                         LLVMContext &C) {
348   assert((DataVT.getScalarSizeInBits() != 8 ||
349           DataVT.getVectorNumElements() <= 256) && "unhandled case in lowering");
350   MVT IndexVT = DataVT.changeTypeToInteger();
351   if (IndexVT.getScalarType().bitsGT(ST.getXLenVT()))
352     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
353   return cast<VectorType>(EVT(IndexVT).getTypeForEVT(C));
354 }
355 
356 InstructionCost RISCVTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
357                                              VectorType *Tp, ArrayRef<int> Mask,
358                                              TTI::TargetCostKind CostKind,
359                                              int Index, VectorType *SubTp,
360                                              ArrayRef<const Value *> Args,
361                                              const Instruction *CxtI) {
362   Kind = improveShuffleKindFromMask(Kind, Mask, Tp, Index, SubTp);
363 
364   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
365 
366   // First, handle cases where having a fixed length vector enables us to
367   // give a more accurate cost than falling back to generic scalable codegen.
368   // TODO: Each of these cases hints at a modeling gap around scalable vectors.
369   if (isa<FixedVectorType>(Tp)) {
370     switch (Kind) {
371     default:
372       break;
373     case TTI::SK_PermuteSingleSrc: {
374       if (Mask.size() >= 2 && LT.second.isFixedLengthVector()) {
375         MVT EltTp = LT.second.getVectorElementType();
376         // If the size of the element is < ELEN then shuffles of interleaves and
377         // deinterleaves of 2 vectors can be lowered into the following
378         // sequences
379         if (EltTp.getScalarSizeInBits() < ST->getELen()) {
380           // Example sequence:
381           //   vsetivli     zero, 4, e8, mf4, ta, ma (ignored)
382           //   vwaddu.vv    v10, v8, v9
383           //   li       a0, -1                   (ignored)
384           //   vwmaccu.vx   v10, a0, v9
385           if (ShuffleVectorInst::isInterleaveMask(Mask, 2, Mask.size()))
386             return 2 * LT.first * TLI->getLMULCost(LT.second);
387 
388           if (Mask[0] == 0 || Mask[0] == 1) {
389             auto DeinterleaveMask = createStrideMask(Mask[0], 2, Mask.size());
390             // Example sequence:
391             //   vnsrl.wi   v10, v8, 0
392             if (equal(DeinterleaveMask, Mask))
393               return LT.first * getRISCVInstructionCost(RISCV::VNSRL_WI,
394                                                         LT.second, CostKind);
395           }
396         }
397       }
398       // vrgather + cost of generating the mask constant.
399       // We model this for an unknown mask with a single vrgather.
400       if (LT.second.isFixedLengthVector() && LT.first == 1 &&
401           (LT.second.getScalarSizeInBits() != 8 ||
402            LT.second.getVectorNumElements() <= 256)) {
403         VectorType *IdxTy = getVRGatherIndexType(LT.second, *ST, Tp->getContext());
404         InstructionCost IndexCost = getConstantPoolLoadCost(IdxTy, CostKind);
405         return IndexCost +
406                getRISCVInstructionCost(RISCV::VRGATHER_VV, LT.second, CostKind);
407       }
408       [[fallthrough]];
409     }
410     case TTI::SK_Transpose:
411     case TTI::SK_PermuteTwoSrc: {
412       // 2 x (vrgather + cost of generating the mask constant) + cost of mask
413       // register for the second vrgather. We model this for an unknown
414       // (shuffle) mask.
415       if (LT.second.isFixedLengthVector() && LT.first == 1 &&
416           (LT.second.getScalarSizeInBits() != 8 ||
417            LT.second.getVectorNumElements() <= 256)) {
418         auto &C = Tp->getContext();
419         auto EC = Tp->getElementCount();
420         VectorType *IdxTy = getVRGatherIndexType(LT.second, *ST, C);
421         VectorType *MaskTy = VectorType::get(IntegerType::getInt1Ty(C), EC);
422         InstructionCost IndexCost = getConstantPoolLoadCost(IdxTy, CostKind);
423         InstructionCost MaskCost = getConstantPoolLoadCost(MaskTy, CostKind);
424         return 2 * IndexCost +
425                getRISCVInstructionCost({RISCV::VRGATHER_VV, RISCV::VRGATHER_VV},
426                                        LT.second, CostKind) +
427                MaskCost;
428       }
429       [[fallthrough]];
430     }
431     case TTI::SK_Select: {
432       // We are going to permute multiple sources and the result will be in
433       // multiple destinations. Providing an accurate cost only for splits where
434       // the element type remains the same.
435       if (!Mask.empty() && LT.first.isValid() && LT.first != 1 &&
436           LT.second.isFixedLengthVector() &&
437           LT.second.getVectorElementType().getSizeInBits() ==
438               Tp->getElementType()->getPrimitiveSizeInBits() &&
439           LT.second.getVectorNumElements() <
440               cast<FixedVectorType>(Tp)->getNumElements() &&
441           divideCeil(Mask.size(),
442                      cast<FixedVectorType>(Tp)->getNumElements()) ==
443               static_cast<unsigned>(*LT.first.getValue())) {
444         unsigned NumRegs = *LT.first.getValue();
445         unsigned VF = cast<FixedVectorType>(Tp)->getNumElements();
446         unsigned SubVF = PowerOf2Ceil(VF / NumRegs);
447         auto *SubVecTy = FixedVectorType::get(Tp->getElementType(), SubVF);
448 
449         InstructionCost Cost = 0;
450         for (unsigned I = 0; I < NumRegs; ++I) {
451           bool IsSingleVector = true;
452           SmallVector<int> SubMask(SubVF, PoisonMaskElem);
453           transform(Mask.slice(I * SubVF,
454                                I == NumRegs - 1 ? Mask.size() % SubVF : SubVF),
455                     SubMask.begin(), [&](int I) {
456                       bool SingleSubVector = I / VF == 0;
457                       IsSingleVector &= SingleSubVector;
458                       return (SingleSubVector ? 0 : 1) * SubVF + I % VF;
459                     });
460           Cost += getShuffleCost(IsSingleVector ? TTI::SK_PermuteSingleSrc
461                                                 : TTI::SK_PermuteTwoSrc,
462                                  SubVecTy, SubMask, CostKind, 0, nullptr);
463           return Cost;
464         }
465       }
466       break;
467     }
468     }
469   };
470 
471   // Handle scalable vectors (and fixed vectors legalized to scalable vectors).
472   switch (Kind) {
473   default:
474     // Fallthrough to generic handling.
475     // TODO: Most of these cases will return getInvalid in generic code, and
476     // must be implemented here.
477     break;
478   case TTI::SK_ExtractSubvector:
479     // Extract at zero is always a subregister extract
480     if (Index == 0)
481       return TTI::TCC_Free;
482 
483     // If we're extracting a subvector of at most m1 size at a sub-register
484     // boundary - which unfortunately we need exact vlen to identify - this is
485     // a subregister extract at worst and thus won't require a vslidedown.
486     // TODO: Extend for aligned m2, m4 subvector extracts
487     // TODO: Extend for misalgined (but contained) extracts
488     // TODO: Extend for scalable subvector types
489     if (std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(SubTp);
490         SubLT.second.isValid() && SubLT.second.isFixedLengthVector()) {
491       const unsigned MinVLen = ST->getRealMinVLen();
492       const unsigned MaxVLen = ST->getRealMaxVLen();
493       if (MinVLen == MaxVLen &&
494           SubLT.second.getScalarSizeInBits() * Index % MinVLen == 0 &&
495           SubLT.second.getSizeInBits() <= MinVLen)
496         return TTI::TCC_Free;
497     }
498 
499     // Example sequence:
500     // vsetivli     zero, 4, e8, mf2, tu, ma (ignored)
501     // vslidedown.vi  v8, v9, 2
502     return LT.first *
503            getRISCVInstructionCost(RISCV::VSLIDEDOWN_VI, LT.second, CostKind);
504   case TTI::SK_InsertSubvector:
505     // Example sequence:
506     // vsetivli     zero, 4, e8, mf2, tu, ma (ignored)
507     // vslideup.vi  v8, v9, 2
508     return LT.first *
509            getRISCVInstructionCost(RISCV::VSLIDEUP_VI, LT.second, CostKind);
510   case TTI::SK_Select: {
511     // Example sequence:
512     // li           a0, 90
513     // vsetivli     zero, 8, e8, mf2, ta, ma (ignored)
514     // vmv.s.x      v0, a0
515     // vmerge.vvm   v8, v9, v8, v0
516     // We use 2 for the cost of the mask materialization as this is the true
517     // cost for small masks and most shuffles are small.  At worst, this cost
518     // should be a very small constant for the constant pool load.  As such,
519     // we may bias towards large selects slightly more than truely warranted.
520     return LT.first *
521            (1 + getRISCVInstructionCost({RISCV::VMV_S_X, RISCV::VMERGE_VVM},
522                                         LT.second, CostKind));
523   }
524   case TTI::SK_Broadcast: {
525     bool HasScalar = (Args.size() > 0) && (Operator::getOpcode(Args[0]) ==
526                                            Instruction::InsertElement);
527     if (LT.second.getScalarSizeInBits() == 1) {
528       if (HasScalar) {
529         // Example sequence:
530         //   andi a0, a0, 1
531         //   vsetivli zero, 2, e8, mf8, ta, ma (ignored)
532         //   vmv.v.x v8, a0
533         //   vmsne.vi v0, v8, 0
534         return LT.first *
535                (1 + getRISCVInstructionCost({RISCV::VMV_V_X, RISCV::VMSNE_VI},
536                                             LT.second, CostKind));
537       }
538       // Example sequence:
539       //   vsetivli  zero, 2, e8, mf8, ta, mu (ignored)
540       //   vmv.v.i v8, 0
541       //   vmerge.vim      v8, v8, 1, v0
542       //   vmv.x.s a0, v8
543       //   andi    a0, a0, 1
544       //   vmv.v.x v8, a0
545       //   vmsne.vi  v0, v8, 0
546 
547       return LT.first *
548              (1 + getRISCVInstructionCost({RISCV::VMV_V_I, RISCV::VMERGE_VIM,
549                                            RISCV::VMV_X_S, RISCV::VMV_V_X,
550                                            RISCV::VMSNE_VI},
551                                           LT.second, CostKind));
552     }
553 
554     if (HasScalar) {
555       // Example sequence:
556       //   vmv.v.x v8, a0
557       return LT.first *
558              getRISCVInstructionCost(RISCV::VMV_V_X, LT.second, CostKind);
559     }
560 
561     // Example sequence:
562     //   vrgather.vi     v9, v8, 0
563     return LT.first *
564            getRISCVInstructionCost(RISCV::VRGATHER_VI, LT.second, CostKind);
565   }
566   case TTI::SK_Splice: {
567     // vslidedown+vslideup.
568     // TODO: Multiplying by LT.first implies this legalizes into multiple copies
569     // of similar code, but I think we expand through memory.
570     unsigned Opcodes[2] = {RISCV::VSLIDEDOWN_VX, RISCV::VSLIDEUP_VX};
571     if (Index >= 0 && Index < 32)
572       Opcodes[0] = RISCV::VSLIDEDOWN_VI;
573     else if (Index < 0 && Index > -32)
574       Opcodes[1] = RISCV::VSLIDEUP_VI;
575     return LT.first * getRISCVInstructionCost(Opcodes, LT.second, CostKind);
576   }
577   case TTI::SK_Reverse: {
578     // TODO: Cases to improve here:
579     // * Illegal vector types
580     // * i64 on RV32
581     // * i1 vector
582     // At low LMUL, most of the cost is producing the vrgather index register.
583     // At high LMUL, the cost of the vrgather itself will dominate.
584     // Example sequence:
585     //   csrr a0, vlenb
586     //   srli a0, a0, 3
587     //   addi a0, a0, -1
588     //   vsetvli a1, zero, e8, mf8, ta, mu (ignored)
589     //   vid.v v9
590     //   vrsub.vx v10, v9, a0
591     //   vrgather.vv v9, v8, v10
592     InstructionCost LenCost = 3;
593     if (LT.second.isFixedLengthVector())
594       // vrsub.vi has a 5 bit immediate field, otherwise an li suffices
595       LenCost = isInt<5>(LT.second.getVectorNumElements() - 1) ? 0 : 1;
596     unsigned Opcodes[] = {RISCV::VID_V, RISCV::VRSUB_VX, RISCV::VRGATHER_VV};
597     if (LT.second.isFixedLengthVector() &&
598         isInt<5>(LT.second.getVectorNumElements() - 1))
599       Opcodes[1] = RISCV::VRSUB_VI;
600     InstructionCost GatherCost =
601         getRISCVInstructionCost(Opcodes, LT.second, CostKind);
602     // Mask operation additionally required extend and truncate
603     InstructionCost ExtendCost = Tp->getElementType()->isIntegerTy(1) ? 3 : 0;
604     return LT.first * (LenCost + GatherCost + ExtendCost);
605   }
606   }
607   return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
608 }
609 
610 InstructionCost
611 RISCVTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
612                                     unsigned AddressSpace,
613                                     TTI::TargetCostKind CostKind) {
614   if (!isLegalMaskedLoadStore(Src, Alignment) ||
615       CostKind != TTI::TCK_RecipThroughput)
616     return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
617                                         CostKind);
618 
619   return getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
620 }
621 
622 InstructionCost RISCVTTIImpl::getInterleavedMemoryOpCost(
623     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
624     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
625     bool UseMaskForCond, bool UseMaskForGaps) {
626   if (isa<ScalableVectorType>(VecTy) && Factor != 2)
627     return InstructionCost::getInvalid();
628 
629   // The interleaved memory access pass will lower interleaved memory ops (i.e
630   // a load and store followed by a specific shuffle) to vlseg/vsseg
631   // intrinsics. In those cases then we can treat it as if it's just one (legal)
632   // memory op
633   if (!UseMaskForCond && !UseMaskForGaps &&
634       Factor <= TLI->getMaxSupportedInterleaveFactor()) {
635     auto *VTy = cast<VectorType>(VecTy);
636     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VTy);
637     // Need to make sure type has't been scalarized
638     if (LT.second.isVector()) {
639       auto *SubVecTy =
640           VectorType::get(VTy->getElementType(),
641                           VTy->getElementCount().divideCoefficientBy(Factor));
642 
643       if (VTy->getElementCount().isKnownMultipleOf(Factor) &&
644           TLI->isLegalInterleavedAccessType(SubVecTy, Factor, Alignment,
645                                             AddressSpace, DL)) {
646         // FIXME: We use the memory op cost of the *legalized* type here,
647         // because it's getMemoryOpCost returns a really expensive cost for
648         // types like <6 x i8>, which show up when doing interleaves of
649         // Factor=3 etc. Should the memory op cost of these be cheaper?
650         auto *LegalVTy = VectorType::get(VTy->getElementType(),
651                                          LT.second.getVectorElementCount());
652         InstructionCost LegalMemCost = getMemoryOpCost(
653             Opcode, LegalVTy, Alignment, AddressSpace, CostKind);
654         return LT.first + LegalMemCost;
655       }
656     }
657   }
658 
659   // TODO: Return the cost of interleaved accesses for scalable vector when
660   // unable to convert to segment accesses instructions.
661   if (isa<ScalableVectorType>(VecTy))
662     return InstructionCost::getInvalid();
663 
664   auto *FVTy = cast<FixedVectorType>(VecTy);
665   InstructionCost MemCost =
666       getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace, CostKind);
667   unsigned VF = FVTy->getNumElements() / Factor;
668 
669   // An interleaved load will look like this for Factor=3:
670   // %wide.vec = load <12 x i32>, ptr %3, align 4
671   // %strided.vec = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
672   // %strided.vec1 = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
673   // %strided.vec2 = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
674   if (Opcode == Instruction::Load) {
675     InstructionCost Cost = MemCost;
676     for (unsigned Index : Indices) {
677       FixedVectorType *SubVecTy =
678           FixedVectorType::get(FVTy->getElementType(), VF * Factor);
679       auto Mask = createStrideMask(Index, Factor, VF);
680       InstructionCost ShuffleCost =
681           getShuffleCost(TTI::ShuffleKind::SK_PermuteSingleSrc, SubVecTy, Mask,
682                          CostKind, 0, nullptr, {});
683       Cost += ShuffleCost;
684     }
685     return Cost;
686   }
687 
688   // TODO: Model for NF > 2
689   // We'll need to enhance getShuffleCost to model shuffles that are just
690   // inserts and extracts into subvectors, since they won't have the full cost
691   // of a vrgather.
692   // An interleaved store for 3 vectors of 4 lanes will look like
693   // %11 = shufflevector <4 x i32> %4, <4 x i32> %6, <8 x i32> <0...7>
694   // %12 = shufflevector <4 x i32> %9, <4 x i32> poison, <8 x i32> <0...3>
695   // %13 = shufflevector <8 x i32> %11, <8 x i32> %12, <12 x i32> <0...11>
696   // %interleaved.vec = shufflevector %13, poison, <12 x i32> <interleave mask>
697   // store <12 x i32> %interleaved.vec, ptr %10, align 4
698   if (Factor != 2)
699     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
700                                              Alignment, AddressSpace, CostKind,
701                                              UseMaskForCond, UseMaskForGaps);
702 
703   assert(Opcode == Instruction::Store && "Opcode must be a store");
704   // For an interleaving store of 2 vectors, we perform one large interleaving
705   // shuffle that goes into the wide store
706   auto Mask = createInterleaveMask(VF, Factor);
707   InstructionCost ShuffleCost =
708       getShuffleCost(TTI::ShuffleKind::SK_PermuteSingleSrc, FVTy, Mask,
709                      CostKind, 0, nullptr, {});
710   return MemCost + ShuffleCost;
711 }
712 
713 InstructionCost RISCVTTIImpl::getGatherScatterOpCost(
714     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
715     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
716   if (CostKind != TTI::TCK_RecipThroughput)
717     return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
718                                          Alignment, CostKind, I);
719 
720   if ((Opcode == Instruction::Load &&
721        !isLegalMaskedGather(DataTy, Align(Alignment))) ||
722       (Opcode == Instruction::Store &&
723        !isLegalMaskedScatter(DataTy, Align(Alignment))))
724     return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
725                                          Alignment, CostKind, I);
726 
727   // Cost is proportional to the number of memory operations implied.  For
728   // scalable vectors, we use an estimate on that number since we don't
729   // know exactly what VL will be.
730   auto &VTy = *cast<VectorType>(DataTy);
731   InstructionCost MemOpCost =
732       getMemoryOpCost(Opcode, VTy.getElementType(), Alignment, 0, CostKind,
733                       {TTI::OK_AnyValue, TTI::OP_None}, I);
734   unsigned NumLoads = getEstimatedVLFor(&VTy);
735   return NumLoads * MemOpCost;
736 }
737 
738 InstructionCost RISCVTTIImpl::getStridedMemoryOpCost(
739     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
740     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
741   if (((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
742        !isLegalStridedLoadStore(DataTy, Alignment)) ||
743       (Opcode != Instruction::Load && Opcode != Instruction::Store))
744     return BaseT::getStridedMemoryOpCost(Opcode, DataTy, Ptr, VariableMask,
745                                          Alignment, CostKind, I);
746 
747   if (CostKind == TTI::TCK_CodeSize)
748     return TTI::TCC_Basic;
749 
750   // Cost is proportional to the number of memory operations implied.  For
751   // scalable vectors, we use an estimate on that number since we don't
752   // know exactly what VL will be.
753   auto &VTy = *cast<VectorType>(DataTy);
754   InstructionCost MemOpCost =
755       getMemoryOpCost(Opcode, VTy.getElementType(), Alignment, 0, CostKind,
756                       {TTI::OK_AnyValue, TTI::OP_None}, I);
757   unsigned NumLoads = getEstimatedVLFor(&VTy);
758   return NumLoads * MemOpCost;
759 }
760 
761 // Currently, these represent both throughput and codesize costs
762 // for the respective intrinsics.  The costs in this table are simply
763 // instruction counts with the following adjustments made:
764 // * One vsetvli is considered free.
765 static const CostTblEntry VectorIntrinsicCostTable[]{
766     {Intrinsic::floor, MVT::f32, 9},
767     {Intrinsic::floor, MVT::f64, 9},
768     {Intrinsic::ceil, MVT::f32, 9},
769     {Intrinsic::ceil, MVT::f64, 9},
770     {Intrinsic::trunc, MVT::f32, 7},
771     {Intrinsic::trunc, MVT::f64, 7},
772     {Intrinsic::round, MVT::f32, 9},
773     {Intrinsic::round, MVT::f64, 9},
774     {Intrinsic::roundeven, MVT::f32, 9},
775     {Intrinsic::roundeven, MVT::f64, 9},
776     {Intrinsic::rint, MVT::f32, 7},
777     {Intrinsic::rint, MVT::f64, 7},
778     {Intrinsic::lrint, MVT::i32, 1},
779     {Intrinsic::lrint, MVT::i64, 1},
780     {Intrinsic::llrint, MVT::i64, 1},
781     {Intrinsic::nearbyint, MVT::f32, 9},
782     {Intrinsic::nearbyint, MVT::f64, 9},
783     {Intrinsic::bswap, MVT::i16, 3},
784     {Intrinsic::bswap, MVT::i32, 12},
785     {Intrinsic::bswap, MVT::i64, 31},
786     {Intrinsic::vp_bswap, MVT::i16, 3},
787     {Intrinsic::vp_bswap, MVT::i32, 12},
788     {Intrinsic::vp_bswap, MVT::i64, 31},
789     {Intrinsic::vp_fshl, MVT::i8, 7},
790     {Intrinsic::vp_fshl, MVT::i16, 7},
791     {Intrinsic::vp_fshl, MVT::i32, 7},
792     {Intrinsic::vp_fshl, MVT::i64, 7},
793     {Intrinsic::vp_fshr, MVT::i8, 7},
794     {Intrinsic::vp_fshr, MVT::i16, 7},
795     {Intrinsic::vp_fshr, MVT::i32, 7},
796     {Intrinsic::vp_fshr, MVT::i64, 7},
797     {Intrinsic::bitreverse, MVT::i8, 17},
798     {Intrinsic::bitreverse, MVT::i16, 24},
799     {Intrinsic::bitreverse, MVT::i32, 33},
800     {Intrinsic::bitreverse, MVT::i64, 52},
801     {Intrinsic::vp_bitreverse, MVT::i8, 17},
802     {Intrinsic::vp_bitreverse, MVT::i16, 24},
803     {Intrinsic::vp_bitreverse, MVT::i32, 33},
804     {Intrinsic::vp_bitreverse, MVT::i64, 52},
805     {Intrinsic::ctpop, MVT::i8, 12},
806     {Intrinsic::ctpop, MVT::i16, 19},
807     {Intrinsic::ctpop, MVT::i32, 20},
808     {Intrinsic::ctpop, MVT::i64, 21},
809     {Intrinsic::vp_ctpop, MVT::i8, 12},
810     {Intrinsic::vp_ctpop, MVT::i16, 19},
811     {Intrinsic::vp_ctpop, MVT::i32, 20},
812     {Intrinsic::vp_ctpop, MVT::i64, 21},
813     {Intrinsic::vp_ctlz, MVT::i8, 19},
814     {Intrinsic::vp_ctlz, MVT::i16, 28},
815     {Intrinsic::vp_ctlz, MVT::i32, 31},
816     {Intrinsic::vp_ctlz, MVT::i64, 35},
817     {Intrinsic::vp_cttz, MVT::i8, 16},
818     {Intrinsic::vp_cttz, MVT::i16, 23},
819     {Intrinsic::vp_cttz, MVT::i32, 24},
820     {Intrinsic::vp_cttz, MVT::i64, 25},
821 };
822 
823 static unsigned getISDForVPIntrinsicID(Intrinsic::ID ID) {
824   switch (ID) {
825 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
826   case Intrinsic::VPID:                                                        \
827     return ISD::VPSD;
828 #include "llvm/IR/VPIntrinsics.def"
829 #undef HELPER_MAP_VPID_TO_VPSD
830   }
831   return ISD::DELETED_NODE;
832 }
833 
834 InstructionCost
835 RISCVTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
836                                     TTI::TargetCostKind CostKind) {
837   auto *RetTy = ICA.getReturnType();
838   switch (ICA.getID()) {
839   case Intrinsic::ceil:
840   case Intrinsic::floor:
841   case Intrinsic::trunc:
842   case Intrinsic::rint:
843   case Intrinsic::lrint:
844   case Intrinsic::llrint:
845   case Intrinsic::round:
846   case Intrinsic::roundeven: {
847     // These all use the same code.
848     auto LT = getTypeLegalizationCost(RetTy);
849     if (!LT.second.isVector() && TLI->isOperationCustom(ISD::FCEIL, LT.second))
850       return LT.first * 8;
851     break;
852   }
853   case Intrinsic::umin:
854   case Intrinsic::umax:
855   case Intrinsic::smin:
856   case Intrinsic::smax: {
857     auto LT = getTypeLegalizationCost(RetTy);
858     if (LT.second.isScalarInteger() && ST->hasStdExtZbb())
859       return LT.first;
860 
861     if (ST->hasVInstructions() && LT.second.isVector()) {
862       unsigned Op;
863       switch (ICA.getID()) {
864       case Intrinsic::umin:
865         Op = RISCV::VMINU_VV;
866         break;
867       case Intrinsic::umax:
868         Op = RISCV::VMAXU_VV;
869         break;
870       case Intrinsic::smin:
871         Op = RISCV::VMIN_VV;
872         break;
873       case Intrinsic::smax:
874         Op = RISCV::VMAX_VV;
875         break;
876       }
877       return LT.first * getRISCVInstructionCost(Op, LT.second, CostKind);
878     }
879     break;
880   }
881   case Intrinsic::sadd_sat:
882   case Intrinsic::ssub_sat:
883   case Intrinsic::uadd_sat:
884   case Intrinsic::usub_sat:
885   case Intrinsic::fabs:
886   case Intrinsic::sqrt: {
887     auto LT = getTypeLegalizationCost(RetTy);
888     if (ST->hasVInstructions() && LT.second.isVector())
889       return LT.first;
890     break;
891   }
892   case Intrinsic::ctpop: {
893     auto LT = getTypeLegalizationCost(RetTy);
894     if (ST->hasVInstructions() && ST->hasStdExtZvbb() && LT.second.isVector())
895       return LT.first;
896     break;
897   }
898   case Intrinsic::abs: {
899     auto LT = getTypeLegalizationCost(RetTy);
900     if (ST->hasVInstructions() && LT.second.isVector()) {
901       // vrsub.vi v10, v8, 0
902       // vmax.vv v8, v8, v10
903       return LT.first * 2;
904     }
905     break;
906   }
907   case Intrinsic::get_active_lane_mask: {
908     if (ST->hasVInstructions()) {
909       Type *ExpRetTy = VectorType::get(
910           ICA.getArgTypes()[0], cast<VectorType>(RetTy)->getElementCount());
911       auto LT = getTypeLegalizationCost(ExpRetTy);
912 
913       // vid.v   v8  // considered hoisted
914       // vsaddu.vx   v8, v8, a0
915       // vmsltu.vx   v0, v8, a1
916       return LT.first *
917              getRISCVInstructionCost({RISCV::VSADDU_VX, RISCV::VMSLTU_VX},
918                                      LT.second, CostKind);
919     }
920     break;
921   }
922   // TODO: add more intrinsic
923   case Intrinsic::experimental_stepvector: {
924     auto LT = getTypeLegalizationCost(RetTy);
925     // Legalisation of illegal types involves an `index' instruction plus
926     // (LT.first - 1) vector adds.
927     if (ST->hasVInstructions())
928       return getRISCVInstructionCost(RISCV::VID_V, LT.second, CostKind) +
929              (LT.first - 1) *
930                  getRISCVInstructionCost(RISCV::VADD_VX, LT.second, CostKind);
931     return 1 + (LT.first - 1);
932   }
933   case Intrinsic::experimental_cttz_elts: {
934     Type *ArgTy = ICA.getArgTypes()[0];
935     EVT ArgType = TLI->getValueType(DL, ArgTy, true);
936     if (getTLI()->shouldExpandCttzElements(ArgType))
937       break;
938     InstructionCost Cost = getRISCVInstructionCost(
939         RISCV::VFIRST_M, getTypeLegalizationCost(ArgTy).second, CostKind);
940 
941     // If zero_is_poison is false, then we will generate additional
942     // cmp + select instructions to convert -1 to EVL.
943     Type *BoolTy = Type::getInt1Ty(RetTy->getContext());
944     if (ICA.getArgs().size() > 1 &&
945         cast<ConstantInt>(ICA.getArgs()[1])->isZero())
946       Cost += getCmpSelInstrCost(Instruction::ICmp, BoolTy, RetTy,
947                                  CmpInst::ICMP_SLT, CostKind) +
948               getCmpSelInstrCost(Instruction::Select, RetTy, BoolTy,
949                                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
950 
951     return Cost;
952   }
953   case Intrinsic::vp_rint: {
954     // RISC-V target uses at least 5 instructions to lower rounding intrinsics.
955     unsigned Cost = 5;
956     auto LT = getTypeLegalizationCost(RetTy);
957     if (TLI->isOperationCustom(ISD::VP_FRINT, LT.second))
958       return Cost * LT.first;
959     break;
960   }
961   case Intrinsic::vp_nearbyint: {
962     // More one read and one write for fflags than vp_rint.
963     unsigned Cost = 7;
964     auto LT = getTypeLegalizationCost(RetTy);
965     if (TLI->isOperationCustom(ISD::VP_FRINT, LT.second))
966       return Cost * LT.first;
967     break;
968   }
969   case Intrinsic::vp_ceil:
970   case Intrinsic::vp_floor:
971   case Intrinsic::vp_round:
972   case Intrinsic::vp_roundeven:
973   case Intrinsic::vp_roundtozero: {
974     // Rounding with static rounding mode needs two more instructions to
975     // swap/write FRM than vp_rint.
976     unsigned Cost = 7;
977     auto LT = getTypeLegalizationCost(RetTy);
978     unsigned VPISD = getISDForVPIntrinsicID(ICA.getID());
979     if (TLI->isOperationCustom(VPISD, LT.second))
980       return Cost * LT.first;
981     break;
982   }
983   // vp integer arithmetic ops.
984   case Intrinsic::vp_add:
985   case Intrinsic::vp_and:
986   case Intrinsic::vp_ashr:
987   case Intrinsic::vp_lshr:
988   case Intrinsic::vp_mul:
989   case Intrinsic::vp_or:
990   case Intrinsic::vp_sdiv:
991   case Intrinsic::vp_shl:
992   case Intrinsic::vp_srem:
993   case Intrinsic::vp_sub:
994   case Intrinsic::vp_udiv:
995   case Intrinsic::vp_urem:
996   case Intrinsic::vp_xor:
997   // vp float arithmetic ops.
998   case Intrinsic::vp_fadd:
999   case Intrinsic::vp_fsub:
1000   case Intrinsic::vp_fmul:
1001   case Intrinsic::vp_fdiv:
1002   case Intrinsic::vp_frem: {
1003     std::optional<unsigned> FOp =
1004         VPIntrinsic::getFunctionalOpcodeForVP(ICA.getID());
1005     if (FOp)
1006       return getArithmeticInstrCost(*FOp, ICA.getReturnType(), CostKind);
1007     break;
1008   }
1009   }
1010 
1011   if (ST->hasVInstructions() && RetTy->isVectorTy()) {
1012     if (auto LT = getTypeLegalizationCost(RetTy);
1013         LT.second.isVector()) {
1014       MVT EltTy = LT.second.getVectorElementType();
1015       if (const auto *Entry = CostTableLookup(VectorIntrinsicCostTable,
1016                                               ICA.getID(), EltTy))
1017         return LT.first * Entry->Cost;
1018     }
1019   }
1020 
1021   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1022 }
1023 
1024 InstructionCost RISCVTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
1025                                                Type *Src,
1026                                                TTI::CastContextHint CCH,
1027                                                TTI::TargetCostKind CostKind,
1028                                                const Instruction *I) {
1029   bool IsVectorType = isa<VectorType>(Dst) && isa<VectorType>(Src);
1030   if (!IsVectorType)
1031     return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
1032 
1033   bool IsTypeLegal = isTypeLegal(Src) && isTypeLegal(Dst) &&
1034                      (Src->getScalarSizeInBits() <= ST->getELen()) &&
1035                      (Dst->getScalarSizeInBits() <= ST->getELen());
1036 
1037   // FIXME: Need to compute legalizing cost for illegal types.
1038   if (!IsTypeLegal)
1039     return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
1040 
1041   std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(Src);
1042   std::pair<InstructionCost, MVT> DstLT = getTypeLegalizationCost(Dst);
1043 
1044   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1045   assert(ISD && "Invalid opcode");
1046 
1047   int PowDiff = (int)Log2_32(Dst->getScalarSizeInBits()) -
1048                 (int)Log2_32(Src->getScalarSizeInBits());
1049   switch (ISD) {
1050   case ISD::SIGN_EXTEND:
1051   case ISD::ZERO_EXTEND: {
1052     const unsigned SrcEltSize = Src->getScalarSizeInBits();
1053     if (SrcEltSize == 1) {
1054       // We do not use vsext/vzext to extend from mask vector.
1055       // Instead we use the following instructions to extend from mask vector:
1056       // vmv.v.i v8, 0
1057       // vmerge.vim v8, v8, -1, v0
1058       return getRISCVInstructionCost({RISCV::VMV_V_I, RISCV::VMERGE_VIM},
1059                                      DstLT.second, CostKind);
1060     }
1061     if ((PowDiff < 1) || (PowDiff > 3))
1062       return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
1063     unsigned SExtOp[] = {RISCV::VSEXT_VF2, RISCV::VSEXT_VF4, RISCV::VSEXT_VF8};
1064     unsigned ZExtOp[] = {RISCV::VZEXT_VF2, RISCV::VZEXT_VF4, RISCV::VZEXT_VF8};
1065     unsigned Op =
1066         (ISD == ISD::SIGN_EXTEND) ? SExtOp[PowDiff - 1] : ZExtOp[PowDiff - 1];
1067     return getRISCVInstructionCost(Op, DstLT.second, CostKind);
1068   }
1069   case ISD::TRUNCATE:
1070     if (Dst->getScalarSizeInBits() == 1) {
1071       // We do not use several vncvt to truncate to mask vector. So we could
1072       // not use PowDiff to calculate it.
1073       // Instead we use the following instructions to truncate to mask vector:
1074       // vand.vi v8, v8, 1
1075       // vmsne.vi v0, v8, 0
1076       return getRISCVInstructionCost({RISCV::VAND_VI, RISCV::VMSNE_VI},
1077                                      SrcLT.second, CostKind);
1078     }
1079     [[fallthrough]];
1080   case ISD::FP_EXTEND:
1081   case ISD::FP_ROUND: {
1082     // Counts of narrow/widen instructions.
1083     unsigned SrcEltSize = Src->getScalarSizeInBits();
1084     unsigned DstEltSize = Dst->getScalarSizeInBits();
1085 
1086     unsigned Op = (ISD == ISD::TRUNCATE)    ? RISCV::VNSRL_WI
1087                   : (ISD == ISD::FP_EXTEND) ? RISCV::VFWCVT_F_F_V
1088                                             : RISCV::VFNCVT_F_F_W;
1089     InstructionCost Cost = 0;
1090     for (; SrcEltSize != DstEltSize;) {
1091       MVT ElementMVT = (ISD == ISD::TRUNCATE)
1092                            ? MVT::getIntegerVT(DstEltSize)
1093                            : MVT::getFloatingPointVT(DstEltSize);
1094       MVT DstMVT = DstLT.second.changeVectorElementType(ElementMVT);
1095       DstEltSize =
1096           (DstEltSize > SrcEltSize) ? DstEltSize >> 1 : DstEltSize << 1;
1097       Cost += getRISCVInstructionCost(Op, DstMVT, CostKind);
1098     }
1099     return Cost;
1100   }
1101   case ISD::FP_TO_SINT:
1102   case ISD::FP_TO_UINT:
1103   case ISD::SINT_TO_FP:
1104   case ISD::UINT_TO_FP:
1105     if (Src->getScalarSizeInBits() == 1 || Dst->getScalarSizeInBits() == 1) {
1106       // The cost of convert from or to mask vector is different from other
1107       // cases. We could not use PowDiff to calculate it.
1108       // For mask vector to fp, we should use the following instructions:
1109       // vmv.v.i v8, 0
1110       // vmerge.vim v8, v8, -1, v0
1111       // vfcvt.f.x.v v8, v8
1112 
1113       // And for fp vector to mask, we use:
1114       // vfncvt.rtz.x.f.w v9, v8
1115       // vand.vi v8, v9, 1
1116       // vmsne.vi v0, v8, 0
1117       return 3;
1118     }
1119     if (std::abs(PowDiff) <= 1)
1120       return 1;
1121     // Backend could lower (v[sz]ext i8 to double) to vfcvt(v[sz]ext.f8 i8),
1122     // so it only need two conversion.
1123     if (Src->isIntOrIntVectorTy())
1124       return 2;
1125     // Counts of narrow/widen instructions.
1126     return std::abs(PowDiff);
1127   }
1128   return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
1129 }
1130 
1131 unsigned RISCVTTIImpl::getEstimatedVLFor(VectorType *Ty) {
1132   if (isa<ScalableVectorType>(Ty)) {
1133     const unsigned EltSize = DL.getTypeSizeInBits(Ty->getElementType());
1134     const unsigned MinSize = DL.getTypeSizeInBits(Ty).getKnownMinValue();
1135     const unsigned VectorBits = *getVScaleForTuning() * RISCV::RVVBitsPerBlock;
1136     return RISCVTargetLowering::computeVLMAX(VectorBits, EltSize, MinSize);
1137   }
1138   return cast<FixedVectorType>(Ty)->getNumElements();
1139 }
1140 
1141 InstructionCost
1142 RISCVTTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty,
1143                                      FastMathFlags FMF,
1144                                      TTI::TargetCostKind CostKind) {
1145   if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
1146     return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
1147 
1148   // Skip if scalar size of Ty is bigger than ELEN.
1149   if (Ty->getScalarSizeInBits() > ST->getELen())
1150     return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
1151 
1152   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
1153   if (Ty->getElementType()->isIntegerTy(1)) {
1154     // SelectionDAGBuilder does following transforms:
1155     //   vector_reduce_{smin,umax}(<n x i1>) --> vector_reduce_or(<n x i1>)
1156     //   vector_reduce_{smax,umin}(<n x i1>) --> vector_reduce_and(<n x i1>)
1157     if (IID == Intrinsic::umax || IID == Intrinsic::smin)
1158       return getArithmeticReductionCost(Instruction::Or, Ty, FMF, CostKind);
1159     else
1160       return getArithmeticReductionCost(Instruction::And, Ty, FMF, CostKind);
1161   }
1162 
1163   if (IID == Intrinsic::maximum || IID == Intrinsic::minimum) {
1164     SmallVector<unsigned, 3> Opcodes;
1165     InstructionCost ExtraCost = 0;
1166     switch (IID) {
1167     case Intrinsic::maximum:
1168       if (FMF.noNaNs()) {
1169         Opcodes = {RISCV::VFREDMAX_VS, RISCV::VFMV_F_S};
1170       } else {
1171         Opcodes = {RISCV::VMFNE_VV, RISCV::VCPOP_M, RISCV::VFREDMAX_VS,
1172                    RISCV::VFMV_F_S};
1173         // Cost of Canonical Nan + branch
1174         // lui a0, 523264
1175         // fmv.w.x fa0, a0
1176         Type *DstTy = Ty->getScalarType();
1177         const unsigned EltTyBits = DstTy->getScalarSizeInBits();
1178         Type *SrcTy = IntegerType::getIntNTy(DstTy->getContext(), EltTyBits);
1179         ExtraCost = 1 +
1180                     getCastInstrCost(Instruction::UIToFP, DstTy, SrcTy,
1181                                      TTI::CastContextHint::None, CostKind) +
1182                     getCFInstrCost(Instruction::Br, CostKind);
1183       }
1184       break;
1185 
1186     case Intrinsic::minimum:
1187       if (FMF.noNaNs()) {
1188         Opcodes = {RISCV::VFREDMIN_VS, RISCV::VFMV_F_S};
1189       } else {
1190         Opcodes = {RISCV::VMFNE_VV, RISCV::VCPOP_M, RISCV::VFREDMIN_VS,
1191                    RISCV::VFMV_F_S};
1192         // Cost of Canonical Nan + branch
1193         // lui a0, 523264
1194         // fmv.w.x fa0, a0
1195         Type *DstTy = Ty->getScalarType();
1196         const unsigned EltTyBits = DL.getTypeSizeInBits(DstTy);
1197         Type *SrcTy = IntegerType::getIntNTy(DstTy->getContext(), EltTyBits);
1198         ExtraCost = 1 +
1199                     getCastInstrCost(Instruction::UIToFP, DstTy, SrcTy,
1200                                      TTI::CastContextHint::None, CostKind) +
1201                     getCFInstrCost(Instruction::Br, CostKind);
1202       }
1203       break;
1204     }
1205     return ExtraCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind);
1206   }
1207 
1208   // IR Reduction is composed by two vmv and one rvv reduction instruction.
1209   unsigned SplitOp;
1210   SmallVector<unsigned, 3> Opcodes;
1211   switch (IID) {
1212   default:
1213     llvm_unreachable("Unsupported intrinsic");
1214   case Intrinsic::smax:
1215     SplitOp = RISCV::VMAX_VV;
1216     Opcodes = {RISCV::VMV_S_X, RISCV::VREDMAX_VS, RISCV::VMV_X_S};
1217     break;
1218   case Intrinsic::smin:
1219     SplitOp = RISCV::VMIN_VV;
1220     Opcodes = {RISCV::VMV_S_X, RISCV::VREDMIN_VS, RISCV::VMV_X_S};
1221     break;
1222   case Intrinsic::umax:
1223     SplitOp = RISCV::VMAXU_VV;
1224     Opcodes = {RISCV::VMV_S_X, RISCV::VREDMAXU_VS, RISCV::VMV_X_S};
1225     break;
1226   case Intrinsic::umin:
1227     SplitOp = RISCV::VMINU_VV;
1228     Opcodes = {RISCV::VMV_S_X, RISCV::VREDMINU_VS, RISCV::VMV_X_S};
1229     break;
1230   case Intrinsic::maxnum:
1231     SplitOp = RISCV::VFMAX_VV;
1232     Opcodes = {RISCV::VFMV_S_F, RISCV::VFREDMAX_VS, RISCV::VFMV_F_S};
1233     break;
1234   case Intrinsic::minnum:
1235     SplitOp = RISCV::VFMIN_VV;
1236     Opcodes = {RISCV::VFMV_S_F, RISCV::VFREDMIN_VS, RISCV::VFMV_F_S};
1237     break;
1238   }
1239   // Add a cost for data larger than LMUL8
1240   InstructionCost SplitCost =
1241       (LT.first > 1) ? (LT.first - 1) *
1242                            getRISCVInstructionCost(SplitOp, LT.second, CostKind)
1243                      : 0;
1244   return SplitCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind);
1245 }
1246 
1247 InstructionCost
1248 RISCVTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
1249                                          std::optional<FastMathFlags> FMF,
1250                                          TTI::TargetCostKind CostKind) {
1251   if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
1252     return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
1253 
1254   // Skip if scalar size of Ty is bigger than ELEN.
1255   if (Ty->getScalarSizeInBits() > ST->getELen())
1256     return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
1257 
1258   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1259   assert(ISD && "Invalid opcode");
1260 
1261   if (ISD != ISD::ADD && ISD != ISD::OR && ISD != ISD::XOR && ISD != ISD::AND &&
1262       ISD != ISD::FADD)
1263     return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
1264 
1265   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
1266   SmallVector<unsigned, 3> Opcodes;
1267   Type *ElementTy = Ty->getElementType();
1268   if (ElementTy->isIntegerTy(1)) {
1269     if (ISD == ISD::AND) {
1270       // Example sequences:
1271       //   vsetvli a0, zero, e8, mf8, ta, ma
1272       //   vmnot.m v8, v0
1273       //   vcpop.m a0, v8
1274       //   seqz a0, a0
1275       Opcodes = {RISCV::VMNAND_MM, RISCV::VCPOP_M};
1276       return (LT.first - 1) +
1277              getRISCVInstructionCost(Opcodes, LT.second, CostKind) +
1278              getCmpSelInstrCost(Instruction::ICmp, ElementTy, ElementTy,
1279                                 CmpInst::ICMP_EQ, CostKind);
1280     } else {
1281       // Example sequences:
1282       //   vsetvli a0, zero, e8, mf8, ta, ma
1283       //   vcpop.m a0, v0
1284       //   snez a0, a0
1285       Opcodes = {RISCV::VCPOP_M};
1286       return (LT.first - 1) +
1287              getRISCVInstructionCost(Opcodes, LT.second, CostKind) +
1288              getCmpSelInstrCost(Instruction::ICmp, ElementTy, ElementTy,
1289                                 CmpInst::ICMP_NE, CostKind);
1290     }
1291   }
1292 
1293   // IR Reduction is composed by two vmv and one rvv reduction instruction.
1294   if (TTI::requiresOrderedReduction(FMF)) {
1295     Opcodes.push_back(RISCV::VFMV_S_F);
1296     for (unsigned i = 0; i < LT.first.getValue(); i++)
1297       Opcodes.push_back(RISCV::VFREDOSUM_VS);
1298     Opcodes.push_back(RISCV::VFMV_F_S);
1299     return getRISCVInstructionCost(Opcodes, LT.second, CostKind);
1300   }
1301   unsigned SplitOp;
1302   switch (ISD) {
1303   case ISD::ADD:
1304     SplitOp = RISCV::VADD_VV;
1305     Opcodes = {RISCV::VMV_S_X, RISCV::VREDSUM_VS, RISCV::VMV_X_S};
1306     break;
1307   case ISD::OR:
1308     SplitOp = RISCV::VOR_VV;
1309     Opcodes = {RISCV::VMV_S_X, RISCV::VREDOR_VS, RISCV::VMV_X_S};
1310     break;
1311   case ISD::XOR:
1312     SplitOp = RISCV::VXOR_VV;
1313     Opcodes = {RISCV::VMV_S_X, RISCV::VREDXOR_VS, RISCV::VMV_X_S};
1314     break;
1315   case ISD::AND:
1316     SplitOp = RISCV::VAND_VV;
1317     Opcodes = {RISCV::VMV_S_X, RISCV::VREDAND_VS, RISCV::VMV_X_S};
1318     break;
1319   case ISD::FADD:
1320     SplitOp = RISCV::VFADD_VV;
1321     Opcodes = {RISCV::VFMV_S_F, RISCV::VFREDUSUM_VS, RISCV::VFMV_F_S};
1322     break;
1323   }
1324   // Add a cost for data larger than LMUL8
1325   InstructionCost SplitCost =
1326       (LT.first > 1) ? (LT.first - 1) *
1327                            getRISCVInstructionCost(SplitOp, LT.second, CostKind)
1328                      : 0;
1329   return SplitCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind);
1330 }
1331 
1332 InstructionCost RISCVTTIImpl::getExtendedReductionCost(
1333     unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy,
1334     FastMathFlags FMF, TTI::TargetCostKind CostKind) {
1335   if (isa<FixedVectorType>(ValTy) && !ST->useRVVForFixedLengthVectors())
1336     return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
1337                                            FMF, CostKind);
1338 
1339   // Skip if scalar size of ResTy is bigger than ELEN.
1340   if (ResTy->getScalarSizeInBits() > ST->getELen())
1341     return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
1342                                            FMF, CostKind);
1343 
1344   if (Opcode != Instruction::Add && Opcode != Instruction::FAdd)
1345     return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
1346                                            FMF, CostKind);
1347 
1348   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1349 
1350   if (ResTy->getScalarSizeInBits() != 2 * LT.second.getScalarSizeInBits())
1351     return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
1352                                            FMF, CostKind);
1353 
1354   return (LT.first - 1) +
1355          getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1356 }
1357 
1358 InstructionCost RISCVTTIImpl::getStoreImmCost(Type *Ty,
1359                                               TTI::OperandValueInfo OpInfo,
1360                                               TTI::TargetCostKind CostKind) {
1361   assert(OpInfo.isConstant() && "non constant operand?");
1362   if (!isa<VectorType>(Ty))
1363     // FIXME: We need to account for immediate materialization here, but doing
1364     // a decent job requires more knowledge about the immediate than we
1365     // currently have here.
1366     return 0;
1367 
1368   if (OpInfo.isUniform())
1369     // vmv.x.i, vmv.v.x, or vfmv.v.f
1370     // We ignore the cost of the scalar constant materialization to be consistent
1371     // with how we treat scalar constants themselves just above.
1372     return 1;
1373 
1374   return getConstantPoolLoadCost(Ty, CostKind);
1375 }
1376 
1377 
1378 InstructionCost RISCVTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
1379                                               MaybeAlign Alignment,
1380                                               unsigned AddressSpace,
1381                                               TTI::TargetCostKind CostKind,
1382                                               TTI::OperandValueInfo OpInfo,
1383                                               const Instruction *I) {
1384   EVT VT = TLI->getValueType(DL, Src, true);
1385   // Type legalization can't handle structs
1386   if (VT == MVT::Other)
1387     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1388                                   CostKind, OpInfo, I);
1389 
1390   InstructionCost Cost = 0;
1391   if (Opcode == Instruction::Store && OpInfo.isConstant())
1392     Cost += getStoreImmCost(Src, OpInfo, CostKind);
1393   InstructionCost BaseCost =
1394     BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1395                            CostKind, OpInfo, I);
1396   // Assume memory ops cost scale with the number of vector registers
1397   // possible accessed by the instruction.  Note that BasicTTI already
1398   // handles the LT.first term for us.
1399   if (std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
1400       LT.second.isVector() && CostKind != TTI::TCK_CodeSize)
1401     BaseCost *= TLI->getLMULCost(LT.second);
1402   return Cost + BaseCost;
1403 
1404 }
1405 
1406 InstructionCost RISCVTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
1407                                                  Type *CondTy,
1408                                                  CmpInst::Predicate VecPred,
1409                                                  TTI::TargetCostKind CostKind,
1410                                                  const Instruction *I) {
1411   if (CostKind != TTI::TCK_RecipThroughput)
1412     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
1413                                      I);
1414 
1415   if (isa<FixedVectorType>(ValTy) && !ST->useRVVForFixedLengthVectors())
1416     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
1417                                      I);
1418 
1419   // Skip if scalar size of ValTy is bigger than ELEN.
1420   if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() > ST->getELen())
1421     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
1422                                      I);
1423 
1424   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1425   if (Opcode == Instruction::Select && ValTy->isVectorTy()) {
1426     if (CondTy->isVectorTy()) {
1427       if (ValTy->getScalarSizeInBits() == 1) {
1428         // vmandn.mm v8, v8, v9
1429         // vmand.mm v9, v0, v9
1430         // vmor.mm v0, v9, v8
1431         return LT.first *
1432                getRISCVInstructionCost(
1433                    {RISCV::VMANDN_MM, RISCV::VMAND_MM, RISCV::VMOR_MM},
1434                    LT.second, CostKind);
1435       }
1436       // vselect and max/min are supported natively.
1437       return LT.first *
1438              getRISCVInstructionCost(RISCV::VMERGE_VVM, LT.second, CostKind);
1439     }
1440 
1441     if (ValTy->getScalarSizeInBits() == 1) {
1442       //  vmv.v.x v9, a0
1443       //  vmsne.vi v9, v9, 0
1444       //  vmandn.mm v8, v8, v9
1445       //  vmand.mm v9, v0, v9
1446       //  vmor.mm v0, v9, v8
1447       MVT InterimVT = LT.second.changeVectorElementType(MVT::i8);
1448       return LT.first *
1449                  getRISCVInstructionCost({RISCV::VMV_V_X, RISCV::VMSNE_VI},
1450                                          InterimVT, CostKind) +
1451              LT.first * getRISCVInstructionCost(
1452                             {RISCV::VMANDN_MM, RISCV::VMAND_MM, RISCV::VMOR_MM},
1453                             LT.second, CostKind);
1454     }
1455 
1456     // vmv.v.x v10, a0
1457     // vmsne.vi v0, v10, 0
1458     // vmerge.vvm v8, v9, v8, v0
1459     return LT.first * getRISCVInstructionCost(
1460                           {RISCV::VMV_V_X, RISCV::VMSNE_VI, RISCV::VMERGE_VVM},
1461                           LT.second, CostKind);
1462   }
1463 
1464   if ((Opcode == Instruction::ICmp) && ValTy->isVectorTy() &&
1465       CmpInst::isIntPredicate(VecPred)) {
1466     // Use VMSLT_VV to represent VMSEQ, VMSNE, VMSLTU, VMSLEU, VMSLT, VMSLE
1467     // provided they incur the same cost across all implementations
1468     return LT.first *
1469            getRISCVInstructionCost(RISCV::VMSLT_VV, LT.second, CostKind);
1470   }
1471 
1472   if ((Opcode == Instruction::FCmp) && ValTy->isVectorTy() &&
1473       CmpInst::isFPPredicate(VecPred)) {
1474 
1475     // Use VMXOR_MM and VMXNOR_MM to generate all true/false mask
1476     if ((VecPred == CmpInst::FCMP_FALSE) || (VecPred == CmpInst::FCMP_TRUE))
1477       return getRISCVInstructionCost(RISCV::VMXOR_MM, LT.second, CostKind);
1478 
1479     // If we do not support the input floating point vector type, use the base
1480     // one which will calculate as:
1481     // ScalarizeCost + Num * Cost for fixed vector,
1482     // InvalidCost for scalable vector.
1483     if ((ValTy->getScalarSizeInBits() == 16 && !ST->hasVInstructionsF16()) ||
1484         (ValTy->getScalarSizeInBits() == 32 && !ST->hasVInstructionsF32()) ||
1485         (ValTy->getScalarSizeInBits() == 64 && !ST->hasVInstructionsF64()))
1486       return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
1487                                        I);
1488 
1489     // Assuming vector fp compare and mask instructions are all the same cost
1490     // until a need arises to differentiate them.
1491     switch (VecPred) {
1492     case CmpInst::FCMP_ONE: // vmflt.vv + vmflt.vv + vmor.mm
1493     case CmpInst::FCMP_ORD: // vmfeq.vv + vmfeq.vv + vmand.mm
1494     case CmpInst::FCMP_UNO: // vmfne.vv + vmfne.vv + vmor.mm
1495     case CmpInst::FCMP_UEQ: // vmflt.vv + vmflt.vv + vmnor.mm
1496       return LT.first * getRISCVInstructionCost(
1497                             {RISCV::VMFLT_VV, RISCV::VMFLT_VV, RISCV::VMOR_MM},
1498                             LT.second, CostKind);
1499 
1500     case CmpInst::FCMP_UGT: // vmfle.vv + vmnot.m
1501     case CmpInst::FCMP_UGE: // vmflt.vv + vmnot.m
1502     case CmpInst::FCMP_ULT: // vmfle.vv + vmnot.m
1503     case CmpInst::FCMP_ULE: // vmflt.vv + vmnot.m
1504       return LT.first *
1505              getRISCVInstructionCost({RISCV::VMFLT_VV, RISCV::VMNAND_MM},
1506                                      LT.second, CostKind);
1507 
1508     case CmpInst::FCMP_OEQ: // vmfeq.vv
1509     case CmpInst::FCMP_OGT: // vmflt.vv
1510     case CmpInst::FCMP_OGE: // vmfle.vv
1511     case CmpInst::FCMP_OLT: // vmflt.vv
1512     case CmpInst::FCMP_OLE: // vmfle.vv
1513     case CmpInst::FCMP_UNE: // vmfne.vv
1514       return LT.first *
1515              getRISCVInstructionCost(RISCV::VMFLT_VV, LT.second, CostKind);
1516     default:
1517       break;
1518     }
1519   }
1520 
1521   // With ShortForwardBranchOpt or ConditionalMoveFusion, scalar icmp + select
1522   // instructions will lower to SELECT_CC and lower to PseudoCCMOVGPR which will
1523   // generate a conditional branch + mv. The cost of scalar (icmp + select) will
1524   // be (0 + select instr cost).
1525   if (ST->hasConditionalMoveFusion() && I && isa<ICmpInst>(I) &&
1526       ValTy->isIntegerTy() && !I->user_empty()) {
1527     if (all_of(I->users(), [&](const User *U) {
1528           return match(U, m_Select(m_Specific(I), m_Value(), m_Value())) &&
1529                  U->getType()->isIntegerTy() &&
1530                  !isa<ConstantData>(U->getOperand(1)) &&
1531                  !isa<ConstantData>(U->getOperand(2));
1532         }))
1533       return 0;
1534   }
1535 
1536   // TODO: Add cost for scalar type.
1537 
1538   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
1539 }
1540 
1541 InstructionCost RISCVTTIImpl::getCFInstrCost(unsigned Opcode,
1542                                              TTI::TargetCostKind CostKind,
1543                                              const Instruction *I) {
1544   if (CostKind != TTI::TCK_RecipThroughput)
1545     return Opcode == Instruction::PHI ? 0 : 1;
1546   // Branches are assumed to be predicted.
1547   return 0;
1548 }
1549 
1550 InstructionCost RISCVTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
1551                                                  TTI::TargetCostKind CostKind,
1552                                                  unsigned Index, Value *Op0,
1553                                                  Value *Op1) {
1554   assert(Val->isVectorTy() && "This must be a vector type");
1555 
1556   if (Opcode != Instruction::ExtractElement &&
1557       Opcode != Instruction::InsertElement)
1558     return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
1559 
1560   // Legalize the type.
1561   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Val);
1562 
1563   // This type is legalized to a scalar type.
1564   if (!LT.second.isVector()) {
1565     auto *FixedVecTy = cast<FixedVectorType>(Val);
1566     // If Index is a known constant, cost is zero.
1567     if (Index != -1U)
1568       return 0;
1569     // Extract/InsertElement with non-constant index is very costly when
1570     // scalarized; estimate cost of loads/stores sequence via the stack:
1571     // ExtractElement cost: store vector to stack, load scalar;
1572     // InsertElement cost: store vector to stack, store scalar, load vector.
1573     Type *ElemTy = FixedVecTy->getElementType();
1574     auto NumElems = FixedVecTy->getNumElements();
1575     auto Align = DL.getPrefTypeAlign(ElemTy);
1576     InstructionCost LoadCost =
1577         getMemoryOpCost(Instruction::Load, ElemTy, Align, 0, CostKind);
1578     InstructionCost StoreCost =
1579         getMemoryOpCost(Instruction::Store, ElemTy, Align, 0, CostKind);
1580     return Opcode == Instruction::ExtractElement
1581                ? StoreCost * NumElems + LoadCost
1582                : (StoreCost + LoadCost) * NumElems + StoreCost;
1583   }
1584 
1585   // For unsupported scalable vector.
1586   if (LT.second.isScalableVector() && !LT.first.isValid())
1587     return LT.first;
1588 
1589   if (!isTypeLegal(Val))
1590     return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
1591 
1592   // Mask vector extract/insert is expanded via e8.
1593   if (Val->getScalarSizeInBits() == 1) {
1594     VectorType *WideTy =
1595       VectorType::get(IntegerType::get(Val->getContext(), 8),
1596                       cast<VectorType>(Val)->getElementCount());
1597     if (Opcode == Instruction::ExtractElement) {
1598       InstructionCost ExtendCost
1599         = getCastInstrCost(Instruction::ZExt, WideTy, Val,
1600                            TTI::CastContextHint::None, CostKind);
1601       InstructionCost ExtractCost
1602         = getVectorInstrCost(Opcode, WideTy, CostKind, Index, nullptr, nullptr);
1603       return ExtendCost + ExtractCost;
1604     }
1605     InstructionCost ExtendCost
1606       = getCastInstrCost(Instruction::ZExt, WideTy, Val,
1607                          TTI::CastContextHint::None, CostKind);
1608     InstructionCost InsertCost
1609       = getVectorInstrCost(Opcode, WideTy, CostKind, Index, nullptr, nullptr);
1610     InstructionCost TruncCost
1611       = getCastInstrCost(Instruction::Trunc, Val, WideTy,
1612                          TTI::CastContextHint::None, CostKind);
1613     return ExtendCost + InsertCost + TruncCost;
1614   }
1615 
1616 
1617   // In RVV, we could use vslidedown + vmv.x.s to extract element from vector
1618   // and vslideup + vmv.s.x to insert element to vector.
1619   unsigned BaseCost = 1;
1620   // When insertelement we should add the index with 1 as the input of vslideup.
1621   unsigned SlideCost = Opcode == Instruction::InsertElement ? 2 : 1;
1622 
1623   if (Index != -1U) {
1624     // The type may be split. For fixed-width vectors we can normalize the
1625     // index to the new type.
1626     if (LT.second.isFixedLengthVector()) {
1627       unsigned Width = LT.second.getVectorNumElements();
1628       Index = Index % Width;
1629     }
1630 
1631     // We could extract/insert the first element without vslidedown/vslideup.
1632     if (Index == 0)
1633       SlideCost = 0;
1634     else if (Opcode == Instruction::InsertElement)
1635       SlideCost = 1; // With a constant index, we do not need to use addi.
1636   }
1637 
1638   // Extract i64 in the target that has XLEN=32 need more instruction.
1639   if (Val->getScalarType()->isIntegerTy() &&
1640       ST->getXLen() < Val->getScalarSizeInBits()) {
1641     // For extractelement, we need the following instructions:
1642     // vsetivli zero, 1, e64, m1, ta, mu (not count)
1643     // vslidedown.vx v8, v8, a0
1644     // vmv.x.s a0, v8
1645     // li a1, 32
1646     // vsrl.vx v8, v8, a1
1647     // vmv.x.s a1, v8
1648 
1649     // For insertelement, we need the following instructions:
1650     // vsetivli zero, 2, e32, m4, ta, mu (not count)
1651     // vmv.v.i v12, 0
1652     // vslide1up.vx v16, v12, a1
1653     // vslide1up.vx v12, v16, a0
1654     // addi a0, a2, 1
1655     // vsetvli zero, a0, e64, m4, tu, mu (not count)
1656     // vslideup.vx v8, v12, a2
1657 
1658     // TODO: should we count these special vsetvlis?
1659     BaseCost = Opcode == Instruction::InsertElement ? 3 : 4;
1660   }
1661   return BaseCost + SlideCost;
1662 }
1663 
1664 InstructionCost RISCVTTIImpl::getArithmeticInstrCost(
1665     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
1666     TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
1667     ArrayRef<const Value *> Args, const Instruction *CxtI) {
1668 
1669   // TODO: Handle more cost kinds.
1670   if (CostKind != TTI::TCK_RecipThroughput)
1671     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
1672                                          Args, CxtI);
1673 
1674   if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
1675     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
1676                                          Args, CxtI);
1677 
1678   // Skip if scalar size of Ty is bigger than ELEN.
1679   if (isa<VectorType>(Ty) && Ty->getScalarSizeInBits() > ST->getELen())
1680     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
1681                                          Args, CxtI);
1682 
1683   // Legalize the type.
1684   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
1685 
1686   // TODO: Handle scalar type.
1687   if (!LT.second.isVector())
1688     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
1689                                          Args, CxtI);
1690 
1691   auto getConstantMatCost =
1692     [&](unsigned Operand, TTI::OperandValueInfo OpInfo) -> InstructionCost {
1693     if (OpInfo.isUniform() && TLI->canSplatOperand(Opcode, Operand))
1694       // Two sub-cases:
1695       // * Has a 5 bit immediate operand which can be splatted.
1696       // * Has a larger immediate which must be materialized in scalar register
1697       // We return 0 for both as we currently ignore the cost of materializing
1698       // scalar constants in GPRs.
1699       return 0;
1700 
1701     return getConstantPoolLoadCost(Ty, CostKind);
1702   };
1703 
1704   // Add the cost of materializing any constant vectors required.
1705   InstructionCost ConstantMatCost = 0;
1706   if (Op1Info.isConstant())
1707     ConstantMatCost += getConstantMatCost(0, Op1Info);
1708   if (Op2Info.isConstant())
1709     ConstantMatCost += getConstantMatCost(1, Op2Info);
1710 
1711   unsigned Op;
1712   switch (TLI->InstructionOpcodeToISD(Opcode)) {
1713   case ISD::ADD:
1714   case ISD::SUB:
1715     Op = RISCV::VADD_VV;
1716     break;
1717   case ISD::SHL:
1718   case ISD::SRL:
1719   case ISD::SRA:
1720     Op = RISCV::VSLL_VV;
1721     break;
1722   case ISD::AND:
1723   case ISD::OR:
1724   case ISD::XOR:
1725     Op = (Ty->getScalarSizeInBits() == 1) ? RISCV::VMAND_MM : RISCV::VAND_VV;
1726     break;
1727   case ISD::MUL:
1728   case ISD::MULHS:
1729   case ISD::MULHU:
1730     Op = RISCV::VMUL_VV;
1731     break;
1732   case ISD::SDIV:
1733   case ISD::UDIV:
1734     Op = RISCV::VDIV_VV;
1735     break;
1736   case ISD::SREM:
1737   case ISD::UREM:
1738     Op = RISCV::VREM_VV;
1739     break;
1740   case ISD::FADD:
1741   case ISD::FSUB:
1742     // TODO: Address FP16 with VFHMIN
1743     Op = RISCV::VFADD_VV;
1744     break;
1745   case ISD::FMUL:
1746     // TODO: Address FP16 with VFHMIN
1747     Op = RISCV::VFMUL_VV;
1748     break;
1749   case ISD::FDIV:
1750     Op = RISCV::VFDIV_VV;
1751     break;
1752   case ISD::FNEG:
1753     Op = RISCV::VFSGNJN_VV;
1754     break;
1755   default:
1756     // Assuming all other instructions have the same cost until a need arises to
1757     // differentiate them.
1758     return ConstantMatCost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind,
1759                                                            Op1Info, Op2Info,
1760                                                            Args, CxtI);
1761   }
1762 
1763   InstructionCost InstrCost = getRISCVInstructionCost(Op, LT.second, CostKind);
1764   // We use BasicTTIImpl to calculate scalar costs, which assumes floating point
1765   // ops are twice as expensive as integer ops. Do the same for vectors so
1766   // scalar floating point ops aren't cheaper than their vector equivalents.
1767   if (Ty->isFPOrFPVectorTy())
1768     InstrCost *= 2;
1769   return ConstantMatCost + LT.first * InstrCost;
1770 }
1771 
1772 // TODO: Deduplicate from TargetTransformInfoImplCRTPBase.
1773 InstructionCost RISCVTTIImpl::getPointersChainCost(
1774     ArrayRef<const Value *> Ptrs, const Value *Base,
1775     const TTI::PointersChainInfo &Info, Type *AccessTy,
1776     TTI::TargetCostKind CostKind) {
1777   InstructionCost Cost = TTI::TCC_Free;
1778   // In the basic model we take into account GEP instructions only
1779   // (although here can come alloca instruction, a value, constants and/or
1780   // constant expressions, PHIs, bitcasts ... whatever allowed to be used as a
1781   // pointer). Typically, if Base is a not a GEP-instruction and all the
1782   // pointers are relative to the same base address, all the rest are
1783   // either GEP instructions, PHIs, bitcasts or constants. When we have same
1784   // base, we just calculate cost of each non-Base GEP as an ADD operation if
1785   // any their index is a non-const.
1786   // If no known dependecies between the pointers cost is calculated as a sum
1787   // of costs of GEP instructions.
1788   for (auto [I, V] : enumerate(Ptrs)) {
1789     const auto *GEP = dyn_cast<GetElementPtrInst>(V);
1790     if (!GEP)
1791       continue;
1792     if (Info.isSameBase() && V != Base) {
1793       if (GEP->hasAllConstantIndices())
1794         continue;
1795       // If the chain is unit-stride and BaseReg + stride*i is a legal
1796       // addressing mode, then presume the base GEP is sitting around in a
1797       // register somewhere and check if we can fold the offset relative to
1798       // it.
1799       unsigned Stride = DL.getTypeStoreSize(AccessTy);
1800       if (Info.isUnitStride() &&
1801           isLegalAddressingMode(AccessTy,
1802                                 /* BaseGV */ nullptr,
1803                                 /* BaseOffset */ Stride * I,
1804                                 /* HasBaseReg */ true,
1805                                 /* Scale */ 0,
1806                                 GEP->getType()->getPointerAddressSpace()))
1807         continue;
1808       Cost += getArithmeticInstrCost(Instruction::Add, GEP->getType(), CostKind,
1809                                      {TTI::OK_AnyValue, TTI::OP_None},
1810                                      {TTI::OK_AnyValue, TTI::OP_None},
1811                                      std::nullopt);
1812     } else {
1813       SmallVector<const Value *> Indices(GEP->indices());
1814       Cost += getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
1815                          Indices, AccessTy, CostKind);
1816     }
1817   }
1818   return Cost;
1819 }
1820 
1821 void RISCVTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1822                                            TTI::UnrollingPreferences &UP,
1823                                            OptimizationRemarkEmitter *ORE) {
1824   // TODO: More tuning on benchmarks and metrics with changes as needed
1825   //       would apply to all settings below to enable performance.
1826 
1827 
1828   if (ST->enableDefaultUnroll())
1829     return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE);
1830 
1831   // Enable Upper bound unrolling universally, not dependant upon the conditions
1832   // below.
1833   UP.UpperBound = true;
1834 
1835   // Disable loop unrolling for Oz and Os.
1836   UP.OptSizeThreshold = 0;
1837   UP.PartialOptSizeThreshold = 0;
1838   if (L->getHeader()->getParent()->hasOptSize())
1839     return;
1840 
1841   SmallVector<BasicBlock *, 4> ExitingBlocks;
1842   L->getExitingBlocks(ExitingBlocks);
1843   LLVM_DEBUG(dbgs() << "Loop has:\n"
1844                     << "Blocks: " << L->getNumBlocks() << "\n"
1845                     << "Exit blocks: " << ExitingBlocks.size() << "\n");
1846 
1847   // Only allow another exit other than the latch. This acts as an early exit
1848   // as it mirrors the profitability calculation of the runtime unroller.
1849   if (ExitingBlocks.size() > 2)
1850     return;
1851 
1852   // Limit the CFG of the loop body for targets with a branch predictor.
1853   // Allowing 4 blocks permits if-then-else diamonds in the body.
1854   if (L->getNumBlocks() > 4)
1855     return;
1856 
1857   // Don't unroll vectorized loops, including the remainder loop
1858   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
1859     return;
1860 
1861   // Scan the loop: don't unroll loops with calls as this could prevent
1862   // inlining.
1863   InstructionCost Cost = 0;
1864   for (auto *BB : L->getBlocks()) {
1865     for (auto &I : *BB) {
1866       // Initial setting - Don't unroll loops containing vectorized
1867       // instructions.
1868       if (I.getType()->isVectorTy())
1869         return;
1870 
1871       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
1872         if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
1873           if (!isLoweredToCall(F))
1874             continue;
1875         }
1876         return;
1877       }
1878 
1879       SmallVector<const Value *> Operands(I.operand_values());
1880       Cost += getInstructionCost(&I, Operands,
1881                                  TargetTransformInfo::TCK_SizeAndLatency);
1882     }
1883   }
1884 
1885   LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
1886 
1887   UP.Partial = true;
1888   UP.Runtime = true;
1889   UP.UnrollRemainder = true;
1890   UP.UnrollAndJam = true;
1891   UP.UnrollAndJamInnerLoopThreshold = 60;
1892 
1893   // Force unrolling small loops can be very useful because of the branch
1894   // taken cost of the backedge.
1895   if (Cost < 12)
1896     UP.Force = true;
1897 }
1898 
1899 void RISCVTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1900                                          TTI::PeelingPreferences &PP) {
1901   BaseT::getPeelingPreferences(L, SE, PP);
1902 }
1903 
1904 unsigned RISCVTTIImpl::getRegUsageForType(Type *Ty) {
1905   TypeSize Size = DL.getTypeSizeInBits(Ty);
1906   if (Ty->isVectorTy()) {
1907     if (Size.isScalable() && ST->hasVInstructions())
1908       return divideCeil(Size.getKnownMinValue(), RISCV::RVVBitsPerBlock);
1909 
1910     if (ST->useRVVForFixedLengthVectors())
1911       return divideCeil(Size, ST->getRealMinVLen());
1912   }
1913 
1914   return BaseT::getRegUsageForType(Ty);
1915 }
1916 
1917 unsigned RISCVTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
1918   if (SLPMaxVF.getNumOccurrences())
1919     return SLPMaxVF;
1920 
1921   // Return how many elements can fit in getRegisterBitwidth.  This is the
1922   // same routine as used in LoopVectorizer.  We should probably be
1923   // accounting for whether we actually have instructions with the right
1924   // lane type, but we don't have enough information to do that without
1925   // some additional plumbing which hasn't been justified yet.
1926   TypeSize RegWidth =
1927     getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
1928   // If no vector registers, or absurd element widths, disable
1929   // vectorization by returning 1.
1930   return std::max<unsigned>(1U, RegWidth.getFixedValue() / ElemWidth);
1931 }
1932 
1933 bool RISCVTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
1934                                  const TargetTransformInfo::LSRCost &C2) {
1935   // RISC-V specific here are "instruction number 1st priority".
1936   // If we need to emit adds inside the loop to add up base registers, then
1937   // we need at least one extra temporary register.
1938   unsigned C1NumRegs = C1.NumRegs + (C1.NumBaseAdds != 0);
1939   unsigned C2NumRegs = C2.NumRegs + (C2.NumBaseAdds != 0);
1940   return std::tie(C1.Insns, C1NumRegs, C1.AddRecCost,
1941                   C1.NumIVMuls, C1.NumBaseAdds,
1942                   C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
1943          std::tie(C2.Insns, C2NumRegs, C2.AddRecCost,
1944                   C2.NumIVMuls, C2.NumBaseAdds,
1945                   C2.ScaleCost, C2.ImmCost, C2.SetupCost);
1946 }
1947 
1948 bool RISCVTTIImpl::isLegalMaskedCompressStore(Type *DataTy, Align Alignment) {
1949   auto *VTy = dyn_cast<VectorType>(DataTy);
1950   if (!VTy || VTy->isScalableTy())
1951     return false;
1952 
1953   if (!isLegalMaskedLoadStore(DataTy, Alignment))
1954     return false;
1955   return true;
1956 }
1957 
1958 bool RISCVTTIImpl::areInlineCompatible(const Function *Caller,
1959                                        const Function *Callee) const {
1960   const TargetMachine &TM = getTLI()->getTargetMachine();
1961 
1962   const FeatureBitset &CallerBits =
1963       TM.getSubtargetImpl(*Caller)->getFeatureBits();
1964   const FeatureBitset &CalleeBits =
1965       TM.getSubtargetImpl(*Callee)->getFeatureBits();
1966 
1967   // Inline a callee if its target-features are a subset of the callers
1968   // target-features.
1969   return (CallerBits & CalleeBits) == CalleeBits;
1970 }
1971