1 //===-- RISCVMakeCompressible.cpp - Make more instructions compressible ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass searches for instructions that are prevented from being compressed 10 // by one of the following: 11 // 12 // 1. The use of a single uncompressed register. 13 // 2. A base register + offset where the offset is too large to be compressed 14 // and the base register may or may not be compressed. 15 // 16 // 17 // For case 1, if a compressed register is available, then the uncompressed 18 // register is copied to the compressed register and its uses are replaced. 19 // 20 // For example, storing zero uses the uncompressible zero register: 21 // sw zero, 0(a0) # if zero 22 // sw zero, 8(a0) # if zero 23 // sw zero, 4(a0) # if zero 24 // sw zero, 24(a0) # if zero 25 // 26 // If a compressed register (e.g. a1) is available, the above can be transformed 27 // to the following to improve code size: 28 // li a1, 0 29 // c.sw a1, 0(a0) 30 // c.sw a1, 8(a0) 31 // c.sw a1, 4(a0) 32 // c.sw a1, 24(a0) 33 // 34 // 35 // For case 2, if a compressed register is available, then the original base 36 // is copied and adjusted such that: 37 // 38 // new_base_register = base_register + adjustment 39 // base_register + large_offset = new_base_register + small_offset 40 // 41 // For example, the following offsets are too large for c.sw: 42 // lui a2, 983065 43 // sw a1, -236(a2) 44 // sw a1, -240(a2) 45 // sw a1, -244(a2) 46 // sw a1, -248(a2) 47 // sw a1, -252(a2) 48 // sw a0, -256(a2) 49 // 50 // If a compressed register is available (e.g. a3), a new base could be created 51 // such that the addresses can accessed with a compressible offset, thus 52 // improving code size: 53 // lui a2, 983065 54 // addi a3, a2, -256 55 // c.sw a1, 20(a3) 56 // c.sw a1, 16(a3) 57 // c.sw a1, 12(a3) 58 // c.sw a1, 8(a3) 59 // c.sw a1, 4(a3) 60 // c.sw a0, 0(a3) 61 // 62 // 63 // This optimization is only applied if there are enough uses of the copied 64 // register for code size to be reduced. 65 // 66 //===----------------------------------------------------------------------===// 67 68 #include "RISCV.h" 69 #include "RISCVSubtarget.h" 70 #include "llvm/CodeGen/Passes.h" 71 #include "llvm/CodeGen/RegisterScavenging.h" 72 #include "llvm/MC/TargetRegistry.h" 73 #include "llvm/Support/Debug.h" 74 75 using namespace llvm; 76 77 #define DEBUG_TYPE "riscv-make-compressible" 78 #define RISCV_COMPRESS_INSTRS_NAME "RISC-V Make Compressible" 79 80 namespace { 81 82 struct RISCVMakeCompressibleOpt : public MachineFunctionPass { 83 static char ID; 84 85 bool runOnMachineFunction(MachineFunction &Fn) override; 86 87 RISCVMakeCompressibleOpt() : MachineFunctionPass(ID) {} 88 89 StringRef getPassName() const override { return RISCV_COMPRESS_INSTRS_NAME; } 90 }; 91 } // namespace 92 93 char RISCVMakeCompressibleOpt::ID = 0; 94 INITIALIZE_PASS(RISCVMakeCompressibleOpt, "riscv-make-compressible", 95 RISCV_COMPRESS_INSTRS_NAME, false, false) 96 97 // Return log2(widthInBytes) of load/store done by Opcode. 98 static unsigned log2LdstWidth(unsigned Opcode) { 99 switch (Opcode) { 100 default: 101 llvm_unreachable("Unexpected opcode"); 102 case RISCV::LBU: 103 case RISCV::SB: 104 return 0; 105 case RISCV::LH: 106 case RISCV::LHU: 107 case RISCV::SH: 108 return 1; 109 case RISCV::LW: 110 case RISCV::SW: 111 case RISCV::FLW: 112 case RISCV::FSW: 113 return 2; 114 case RISCV::LD: 115 case RISCV::SD: 116 case RISCV::FLD: 117 case RISCV::FSD: 118 return 3; 119 } 120 } 121 122 // Return bit field size of immediate operand of Opcode. 123 static unsigned offsetMask(unsigned Opcode) { 124 switch (Opcode) { 125 default: 126 llvm_unreachable("Unexpected opcode"); 127 case RISCV::LBU: 128 case RISCV::SB: 129 return maskTrailingOnes<unsigned>(2U); 130 case RISCV::LH: 131 case RISCV::LHU: 132 case RISCV::SH: 133 return maskTrailingOnes<unsigned>(1U); 134 case RISCV::LW: 135 case RISCV::SW: 136 case RISCV::FLW: 137 case RISCV::FSW: 138 case RISCV::LD: 139 case RISCV::SD: 140 case RISCV::FLD: 141 case RISCV::FSD: 142 return maskTrailingOnes<unsigned>(5U); 143 } 144 } 145 146 // Return a mask for the offset bits of a non-stack-pointer based compressed 147 // load/store. 148 static uint8_t compressedLDSTOffsetMask(unsigned Opcode) { 149 return offsetMask(Opcode) << log2LdstWidth(Opcode); 150 } 151 152 // Return true if Offset fits within a compressed stack-pointer based 153 // load/store. 154 static bool compressibleSPOffset(int64_t Offset, unsigned Opcode) { 155 // Compressed sp-based loads and stores only work for 32/64 bits. 156 switch (log2LdstWidth(Opcode)) { 157 case 2: 158 return isShiftedUInt<6, 2>(Offset); 159 case 3: 160 return isShiftedUInt<6, 3>(Offset); 161 } 162 return false; 163 } 164 165 // Given an offset for a load/store, return the adjustment required to the base 166 // register such that the address can be accessed with a compressible offset. 167 // This will return 0 if the offset is already compressible. 168 static int64_t getBaseAdjustForCompression(int64_t Offset, unsigned Opcode) { 169 // Return the excess bits that do not fit in a compressible offset. 170 return Offset & ~compressedLDSTOffsetMask(Opcode); 171 } 172 173 // Return true if Reg is in a compressed register class. 174 static bool isCompressedReg(Register Reg) { 175 return RISCV::GPRCRegClass.contains(Reg) || 176 RISCV::FPR32CRegClass.contains(Reg) || 177 RISCV::FPR64CRegClass.contains(Reg); 178 } 179 180 // Return true if MI is a load for which there exists a compressed version. 181 static bool isCompressibleLoad(const MachineInstr &MI) { 182 const RISCVSubtarget &STI = MI.getMF()->getSubtarget<RISCVSubtarget>(); 183 184 switch (MI.getOpcode()) { 185 default: 186 return false; 187 case RISCV::LBU: 188 case RISCV::LH: 189 case RISCV::LHU: 190 return STI.hasStdExtZcb(); 191 case RISCV::LW: 192 case RISCV::LD: 193 return STI.hasStdExtCOrZca(); 194 case RISCV::FLW: 195 return !STI.is64Bit() && STI.hasStdExtCOrZcfOrZce(); 196 case RISCV::FLD: 197 return STI.hasStdExtCOrZcd(); 198 } 199 } 200 201 // Return true if MI is a store for which there exists a compressed version. 202 static bool isCompressibleStore(const MachineInstr &MI) { 203 const RISCVSubtarget &STI = MI.getMF()->getSubtarget<RISCVSubtarget>(); 204 205 switch (MI.getOpcode()) { 206 default: 207 return false; 208 case RISCV::SB: 209 case RISCV::SH: 210 return STI.hasStdExtZcb(); 211 case RISCV::SW: 212 case RISCV::SD: 213 return STI.hasStdExtCOrZca(); 214 case RISCV::FSW: 215 return !STI.is64Bit() && STI.hasStdExtCOrZcfOrZce(); 216 case RISCV::FSD: 217 return STI.hasStdExtCOrZcd(); 218 } 219 } 220 221 // Find a single register and/or large offset which, if compressible, would 222 // allow the given instruction to be compressed. 223 // 224 // Possible return values: 225 // 226 // {Reg, 0} - Uncompressed Reg needs replacing with a compressed 227 // register. 228 // {Reg, N} - Reg needs replacing with a compressed register and 229 // N needs adding to the new register. (Reg may be 230 // compressed or uncompressed). 231 // {RISCV::NoRegister, 0} - No suitable optimization found for this 232 // instruction. 233 static RegImmPair getRegImmPairPreventingCompression(const MachineInstr &MI) { 234 const unsigned Opcode = MI.getOpcode(); 235 236 if (isCompressibleLoad(MI) || isCompressibleStore(MI)) { 237 const MachineOperand &MOImm = MI.getOperand(2); 238 if (!MOImm.isImm()) 239 return RegImmPair(RISCV::NoRegister, 0); 240 241 int64_t Offset = MOImm.getImm(); 242 int64_t NewBaseAdjust = getBaseAdjustForCompression(Offset, Opcode); 243 Register Base = MI.getOperand(1).getReg(); 244 245 // Memory accesses via the stack pointer do not have a requirement for 246 // either of the registers to be compressible and can take a larger offset. 247 if (RISCV::SPRegClass.contains(Base)) { 248 if (!compressibleSPOffset(Offset, Opcode) && NewBaseAdjust) 249 return RegImmPair(Base, NewBaseAdjust); 250 } else { 251 Register SrcDest = MI.getOperand(0).getReg(); 252 bool SrcDestCompressed = isCompressedReg(SrcDest); 253 bool BaseCompressed = isCompressedReg(Base); 254 255 // If only Base and/or offset prevent compression, then return Base and 256 // any adjustment required to make the offset compressible. 257 if ((!BaseCompressed || NewBaseAdjust) && SrcDestCompressed) 258 return RegImmPair(Base, NewBaseAdjust); 259 260 // For loads, we can only change the base register since dest is defined 261 // rather than used. 262 // 263 // For stores, we can change SrcDest (and Base if SrcDest == Base) but 264 // cannot resolve an uncompressible offset in this case. 265 if (isCompressibleStore(MI)) { 266 if (!SrcDestCompressed && (BaseCompressed || SrcDest == Base) && 267 !NewBaseAdjust) 268 return RegImmPair(SrcDest, NewBaseAdjust); 269 } 270 } 271 } 272 return RegImmPair(RISCV::NoRegister, 0); 273 } 274 275 // Check all uses after FirstMI of the given register, keeping a vector of 276 // instructions that would be compressible if the given register (and offset if 277 // applicable) were compressible. 278 // 279 // If there are enough uses for this optimization to improve code size and a 280 // compressed register is available, return that compressed register. 281 static Register analyzeCompressibleUses(MachineInstr &FirstMI, 282 RegImmPair RegImm, 283 SmallVectorImpl<MachineInstr *> &MIs) { 284 MachineBasicBlock &MBB = *FirstMI.getParent(); 285 const TargetRegisterInfo *TRI = 286 MBB.getParent()->getSubtarget().getRegisterInfo(); 287 288 for (MachineBasicBlock::instr_iterator I = FirstMI.getIterator(), 289 E = MBB.instr_end(); 290 I != E; ++I) { 291 MachineInstr &MI = *I; 292 293 // Determine if this is an instruction which would benefit from using the 294 // new register. 295 RegImmPair CandidateRegImm = getRegImmPairPreventingCompression(MI); 296 if (CandidateRegImm.Reg == RegImm.Reg && CandidateRegImm.Imm == RegImm.Imm) 297 MIs.push_back(&MI); 298 299 // If RegImm.Reg is modified by this instruction, then we cannot optimize 300 // past this instruction. If the register is already compressed, then it may 301 // possible to optimize a large offset in the current instruction - this 302 // will have been detected by the preceeding call to 303 // getRegImmPairPreventingCompression. 304 if (MI.modifiesRegister(RegImm.Reg, TRI)) 305 break; 306 } 307 308 // Adjusting the base costs one new uncompressed addi and therefore three uses 309 // are required for a code size reduction. If no base adjustment is required, 310 // then copying the register costs one new c.mv (or c.li Rd, 0 for "copying" 311 // the zero register) and therefore two uses are required for a code size 312 // reduction. 313 if (MIs.size() < 2 || (RegImm.Imm != 0 && MIs.size() < 3)) 314 return RISCV::NoRegister; 315 316 // Find a compressible register which will be available from the first 317 // instruction we care about to the last. 318 const TargetRegisterClass *RCToScavenge; 319 320 // Work out the compressed register class from which to scavenge. 321 if (RISCV::GPRRegClass.contains(RegImm.Reg)) 322 RCToScavenge = &RISCV::GPRCRegClass; 323 else if (RISCV::FPR32RegClass.contains(RegImm.Reg)) 324 RCToScavenge = &RISCV::FPR32CRegClass; 325 else if (RISCV::FPR64RegClass.contains(RegImm.Reg)) 326 RCToScavenge = &RISCV::FPR64CRegClass; 327 else 328 return RISCV::NoRegister; 329 330 RegScavenger RS; 331 RS.enterBasicBlockEnd(MBB); 332 RS.backward(std::next(MIs.back()->getIterator())); 333 return RS.scavengeRegisterBackwards(*RCToScavenge, FirstMI.getIterator(), 334 /*RestoreAfter=*/false, /*SPAdj=*/0, 335 /*AllowSpill=*/false); 336 } 337 338 // Update uses of the old register in the given instruction to the new register. 339 static void updateOperands(MachineInstr &MI, RegImmPair OldRegImm, 340 Register NewReg) { 341 unsigned Opcode = MI.getOpcode(); 342 343 // If this pass is extended to support more instructions, the check for 344 // definedness may need to be strengthened. 345 assert((isCompressibleLoad(MI) || isCompressibleStore(MI)) && 346 "Unsupported instruction for this optimization."); 347 348 int SkipN = 0; 349 350 // Skip the first (value) operand to a store instruction (except if the store 351 // offset is zero) in order to avoid an incorrect transformation. 352 // e.g. sd a0, 808(a0) to addi a2, a0, 768; sd a2, 40(a2) 353 if (isCompressibleStore(MI) && OldRegImm.Imm != 0) 354 SkipN = 1; 355 356 // Update registers 357 for (MachineOperand &MO : drop_begin(MI.operands(), SkipN)) 358 if (MO.isReg() && MO.getReg() == OldRegImm.Reg) { 359 // Do not update operands that define the old register. 360 // 361 // The new register was scavenged for the range of instructions that are 362 // being updated, therefore it should not be defined within this range 363 // except possibly in the final instruction. 364 if (MO.isDef()) { 365 assert(isCompressibleLoad(MI)); 366 continue; 367 } 368 // Update reg 369 MO.setReg(NewReg); 370 } 371 372 // Update offset 373 MachineOperand &MOImm = MI.getOperand(2); 374 int64_t NewOffset = MOImm.getImm() & compressedLDSTOffsetMask(Opcode); 375 MOImm.setImm(NewOffset); 376 } 377 378 bool RISCVMakeCompressibleOpt::runOnMachineFunction(MachineFunction &Fn) { 379 // This is a size optimization. 380 if (skipFunction(Fn.getFunction()) || !Fn.getFunction().hasMinSize()) 381 return false; 382 383 const RISCVSubtarget &STI = Fn.getSubtarget<RISCVSubtarget>(); 384 const RISCVInstrInfo &TII = *STI.getInstrInfo(); 385 386 // This optimization only makes sense if compressed instructions are emitted. 387 if (!STI.hasStdExtCOrZca()) 388 return false; 389 390 for (MachineBasicBlock &MBB : Fn) { 391 LLVM_DEBUG(dbgs() << "MBB: " << MBB.getName() << "\n"); 392 for (MachineInstr &MI : MBB) { 393 // Determine if this instruction would otherwise be compressed if not for 394 // an uncompressible register or offset. 395 RegImmPair RegImm = getRegImmPairPreventingCompression(MI); 396 if (!RegImm.Reg && RegImm.Imm == 0) 397 continue; 398 399 // Determine if there is a set of instructions for which replacing this 400 // register with a compressed register (and compressible offset if 401 // applicable) is possible and will allow compression. 402 SmallVector<MachineInstr *, 8> MIs; 403 Register NewReg = analyzeCompressibleUses(MI, RegImm, MIs); 404 if (!NewReg) 405 continue; 406 407 // Create the appropriate copy and/or offset. 408 if (RISCV::GPRRegClass.contains(RegImm.Reg)) { 409 assert(isInt<12>(RegImm.Imm)); 410 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(RISCV::ADDI), NewReg) 411 .addReg(RegImm.Reg) 412 .addImm(RegImm.Imm); 413 } else { 414 // If we are looking at replacing an FPR register we don't expect to 415 // have any offset. The only compressible FP instructions with an offset 416 // are loads and stores, for which the offset applies to the GPR operand 417 // not the FPR operand. 418 assert(RegImm.Imm == 0); 419 unsigned Opcode = RISCV::FPR32RegClass.contains(RegImm.Reg) 420 ? RISCV::FSGNJ_S 421 : RISCV::FSGNJ_D; 422 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(Opcode), NewReg) 423 .addReg(RegImm.Reg) 424 .addReg(RegImm.Reg); 425 } 426 427 // Update the set of instructions to use the compressed register and 428 // compressible offset instead. These instructions should now be 429 // compressible. 430 // TODO: Update all uses if RegImm.Imm == 0? Not just those that are 431 // expected to become compressible. 432 for (MachineInstr *UpdateMI : MIs) 433 updateOperands(*UpdateMI, RegImm, NewReg); 434 } 435 } 436 return true; 437 } 438 439 /// Returns an instance of the Make Compressible Optimization pass. 440 FunctionPass *llvm::createRISCVMakeCompressibleOptPass() { 441 return new RISCVMakeCompressibleOpt(); 442 } 443