xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVMakeCompressible.cpp (revision 5b56413d04e608379c9a306373554a8e4d321bc0)
1 //===-- RISCVMakeCompressible.cpp - Make more instructions compressible ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass searches for instructions that are prevented from being compressed
10 // by one of the following:
11 //
12 //   1. The use of a single uncompressed register.
13 //   2. A base register + offset where the offset is too large to be compressed
14 //   and the base register may or may not be compressed.
15 //
16 //
17 // For case 1, if a compressed register is available, then the uncompressed
18 // register is copied to the compressed register and its uses are replaced.
19 //
20 // For example, storing zero uses the uncompressible zero register:
21 //   sw zero, 0(a0)   # if zero
22 //   sw zero, 8(a0)   # if zero
23 //   sw zero, 4(a0)   # if zero
24 //   sw zero, 24(a0)   # if zero
25 //
26 // If a compressed register (e.g. a1) is available, the above can be transformed
27 // to the following to improve code size:
28 //   li a1, 0
29 //   c.sw a1, 0(a0)
30 //   c.sw a1, 8(a0)
31 //   c.sw a1, 4(a0)
32 //   c.sw a1, 24(a0)
33 //
34 //
35 // For case 2, if a compressed register is available, then the original base
36 // is copied and adjusted such that:
37 //
38 //   new_base_register = base_register + adjustment
39 //   base_register + large_offset = new_base_register + small_offset
40 //
41 // For example, the following offsets are too large for c.sw:
42 //   lui a2, 983065
43 //   sw  a1, -236(a2)
44 //   sw  a1, -240(a2)
45 //   sw  a1, -244(a2)
46 //   sw  a1, -248(a2)
47 //   sw  a1, -252(a2)
48 //   sw  a0, -256(a2)
49 //
50 // If a compressed register is available (e.g. a3), a new base could be created
51 // such that the addresses can accessed with a compressible offset, thus
52 // improving code size:
53 //   lui a2, 983065
54 //   addi  a3, a2, -256
55 //   c.sw  a1, 20(a3)
56 //   c.sw  a1, 16(a3)
57 //   c.sw  a1, 12(a3)
58 //   c.sw  a1, 8(a3)
59 //   c.sw  a1, 4(a3)
60 //   c.sw  a0, 0(a3)
61 //
62 //
63 // This optimization is only applied if there are enough uses of the copied
64 // register for code size to be reduced.
65 //
66 //===----------------------------------------------------------------------===//
67 
68 #include "RISCV.h"
69 #include "RISCVSubtarget.h"
70 #include "llvm/CodeGen/Passes.h"
71 #include "llvm/CodeGen/RegisterScavenging.h"
72 #include "llvm/MC/TargetRegistry.h"
73 #include "llvm/Support/Debug.h"
74 
75 using namespace llvm;
76 
77 #define DEBUG_TYPE "riscv-make-compressible"
78 #define RISCV_COMPRESS_INSTRS_NAME "RISC-V Make Compressible"
79 
80 namespace {
81 
82 struct RISCVMakeCompressibleOpt : public MachineFunctionPass {
83   static char ID;
84 
85   bool runOnMachineFunction(MachineFunction &Fn) override;
86 
87   RISCVMakeCompressibleOpt() : MachineFunctionPass(ID) {}
88 
89   StringRef getPassName() const override { return RISCV_COMPRESS_INSTRS_NAME; }
90 };
91 } // namespace
92 
93 char RISCVMakeCompressibleOpt::ID = 0;
94 INITIALIZE_PASS(RISCVMakeCompressibleOpt, "riscv-make-compressible",
95                 RISCV_COMPRESS_INSTRS_NAME, false, false)
96 
97 // Return log2(widthInBytes) of load/store done by Opcode.
98 static unsigned log2LdstWidth(unsigned Opcode) {
99   switch (Opcode) {
100   default:
101     llvm_unreachable("Unexpected opcode");
102   case RISCV::LW:
103   case RISCV::SW:
104   case RISCV::FLW:
105   case RISCV::FSW:
106     return 2;
107   case RISCV::LD:
108   case RISCV::SD:
109   case RISCV::FLD:
110   case RISCV::FSD:
111     return 3;
112   }
113 }
114 
115 // Return a mask for the offset bits of a non-stack-pointer based compressed
116 // load/store.
117 static uint8_t compressedLDSTOffsetMask(unsigned Opcode) {
118   return 0x1f << log2LdstWidth(Opcode);
119 }
120 
121 // Return true if Offset fits within a compressed stack-pointer based
122 // load/store.
123 static bool compressibleSPOffset(int64_t Offset, unsigned Opcode) {
124   return log2LdstWidth(Opcode) == 2 ? isShiftedUInt<6, 2>(Offset)
125                                     : isShiftedUInt<6, 3>(Offset);
126 }
127 
128 // Given an offset for a load/store, return the adjustment required to the base
129 // register such that the address can be accessed with a compressible offset.
130 // This will return 0 if the offset is already compressible.
131 static int64_t getBaseAdjustForCompression(int64_t Offset, unsigned Opcode) {
132   // Return the excess bits that do not fit in a compressible offset.
133   return Offset & ~compressedLDSTOffsetMask(Opcode);
134 }
135 
136 // Return true if Reg is in a compressed register class.
137 static bool isCompressedReg(Register Reg) {
138   return RISCV::GPRCRegClass.contains(Reg) ||
139          RISCV::FPR32CRegClass.contains(Reg) ||
140          RISCV::FPR64CRegClass.contains(Reg);
141 }
142 
143 // Return true if MI is a load for which there exists a compressed version.
144 static bool isCompressibleLoad(const MachineInstr &MI) {
145   const RISCVSubtarget &STI = MI.getMF()->getSubtarget<RISCVSubtarget>();
146   const unsigned Opcode = MI.getOpcode();
147 
148   return Opcode == RISCV::LW || (!STI.is64Bit() && Opcode == RISCV::FLW) ||
149          Opcode == RISCV::LD || Opcode == RISCV::FLD;
150 }
151 
152 // Return true if MI is a store for which there exists a compressed version.
153 static bool isCompressibleStore(const MachineInstr &MI) {
154   const RISCVSubtarget &STI = MI.getMF()->getSubtarget<RISCVSubtarget>();
155   const unsigned Opcode = MI.getOpcode();
156 
157   return Opcode == RISCV::SW || (!STI.is64Bit() && Opcode == RISCV::FSW) ||
158          Opcode == RISCV::SD || Opcode == RISCV::FSD;
159 }
160 
161 // Find a single register and/or large offset which, if compressible, would
162 // allow the given instruction to be compressed.
163 //
164 // Possible return values:
165 //
166 //   {Reg, 0}               - Uncompressed Reg needs replacing with a compressed
167 //                            register.
168 //   {Reg, N}               - Reg needs replacing with a compressed register and
169 //                            N needs adding to the new register. (Reg may be
170 //                            compressed or uncompressed).
171 //   {RISCV::NoRegister, 0} - No suitable optimization found for this
172 //   instruction.
173 static RegImmPair getRegImmPairPreventingCompression(const MachineInstr &MI) {
174   const unsigned Opcode = MI.getOpcode();
175 
176   if (isCompressibleLoad(MI) || isCompressibleStore(MI)) {
177     const MachineOperand &MOImm = MI.getOperand(2);
178     if (!MOImm.isImm())
179       return RegImmPair(RISCV::NoRegister, 0);
180 
181     int64_t Offset = MOImm.getImm();
182     int64_t NewBaseAdjust = getBaseAdjustForCompression(Offset, Opcode);
183     Register Base = MI.getOperand(1).getReg();
184 
185     // Memory accesses via the stack pointer do not have a requirement for
186     // either of the registers to be compressible and can take a larger offset.
187     if (RISCV::SPRegClass.contains(Base)) {
188       if (!compressibleSPOffset(Offset, Opcode) && NewBaseAdjust)
189         return RegImmPair(Base, NewBaseAdjust);
190     } else {
191       Register SrcDest = MI.getOperand(0).getReg();
192       bool SrcDestCompressed = isCompressedReg(SrcDest);
193       bool BaseCompressed = isCompressedReg(Base);
194 
195       // If only Base and/or offset prevent compression, then return Base and
196       // any adjustment required to make the offset compressible.
197       if ((!BaseCompressed || NewBaseAdjust) && SrcDestCompressed)
198         return RegImmPair(Base, NewBaseAdjust);
199 
200       // For loads, we can only change the base register since dest is defined
201       // rather than used.
202       //
203       // For stores, we can change SrcDest (and Base if SrcDest == Base) but
204       // cannot resolve an uncompressible offset in this case.
205       if (isCompressibleStore(MI)) {
206         if (!SrcDestCompressed && (BaseCompressed || SrcDest == Base) &&
207             !NewBaseAdjust)
208           return RegImmPair(SrcDest, NewBaseAdjust);
209       }
210     }
211   }
212   return RegImmPair(RISCV::NoRegister, 0);
213 }
214 
215 // Check all uses after FirstMI of the given register, keeping a vector of
216 // instructions that would be compressible if the given register (and offset if
217 // applicable) were compressible.
218 //
219 // If there are enough uses for this optimization to improve code size and a
220 // compressed register is available, return that compressed register.
221 static Register analyzeCompressibleUses(MachineInstr &FirstMI,
222                                         RegImmPair RegImm,
223                                         SmallVectorImpl<MachineInstr *> &MIs) {
224   MachineBasicBlock &MBB = *FirstMI.getParent();
225   const TargetRegisterInfo *TRI =
226       MBB.getParent()->getSubtarget().getRegisterInfo();
227 
228   for (MachineBasicBlock::instr_iterator I = FirstMI.getIterator(),
229                                          E = MBB.instr_end();
230        I != E; ++I) {
231     MachineInstr &MI = *I;
232 
233     // Determine if this is an instruction which would benefit from using the
234     // new register.
235     RegImmPair CandidateRegImm = getRegImmPairPreventingCompression(MI);
236     if (CandidateRegImm.Reg == RegImm.Reg && CandidateRegImm.Imm == RegImm.Imm)
237       MIs.push_back(&MI);
238 
239     // If RegImm.Reg is modified by this instruction, then we cannot optimize
240     // past this instruction. If the register is already compressed, then it may
241     // possible to optimize a large offset in the current instruction - this
242     // will have been detected by the preceeding call to
243     // getRegImmPairPreventingCompression.
244     if (MI.modifiesRegister(RegImm.Reg, TRI))
245       break;
246   }
247 
248   // Adjusting the base costs one new uncompressed addi and therefore three uses
249   // are required for a code size reduction. If no base adjustment is required,
250   // then copying the register costs one new c.mv (or c.li Rd, 0 for "copying"
251   // the zero register) and therefore two uses are required for a code size
252   // reduction.
253   if (MIs.size() < 2 || (RegImm.Imm != 0 && MIs.size() < 3))
254     return RISCV::NoRegister;
255 
256   // Find a compressible register which will be available from the first
257   // instruction we care about to the last.
258   const TargetRegisterClass *RCToScavenge;
259 
260   // Work out the compressed register class from which to scavenge.
261   if (RISCV::GPRRegClass.contains(RegImm.Reg))
262     RCToScavenge = &RISCV::GPRCRegClass;
263   else if (RISCV::FPR32RegClass.contains(RegImm.Reg))
264     RCToScavenge = &RISCV::FPR32CRegClass;
265   else if (RISCV::FPR64RegClass.contains(RegImm.Reg))
266     RCToScavenge = &RISCV::FPR64CRegClass;
267   else
268     return RISCV::NoRegister;
269 
270   RegScavenger RS;
271   RS.enterBasicBlockEnd(MBB);
272   RS.backward(std::next(MIs.back()->getIterator()));
273   return RS.scavengeRegisterBackwards(*RCToScavenge, FirstMI.getIterator(),
274                                       /*RestoreAfter=*/false, /*SPAdj=*/0,
275                                       /*AllowSpill=*/false);
276 }
277 
278 // Update uses of the old register in the given instruction to the new register.
279 static void updateOperands(MachineInstr &MI, RegImmPair OldRegImm,
280                            Register NewReg) {
281   unsigned Opcode = MI.getOpcode();
282 
283   // If this pass is extended to support more instructions, the check for
284   // definedness may need to be strengthened.
285   assert((isCompressibleLoad(MI) || isCompressibleStore(MI)) &&
286          "Unsupported instruction for this optimization.");
287 
288   int SkipN = 0;
289 
290   // Skip the first (value) operand to a store instruction (except if the store
291   // offset is zero) in order to avoid an incorrect transformation.
292   // e.g. sd a0, 808(a0) to addi a2, a0, 768; sd a2, 40(a2)
293   if (isCompressibleStore(MI) && OldRegImm.Imm != 0)
294     SkipN = 1;
295 
296   // Update registers
297   for (MachineOperand &MO : drop_begin(MI.operands(), SkipN))
298     if (MO.isReg() && MO.getReg() == OldRegImm.Reg) {
299       // Do not update operands that define the old register.
300       //
301       // The new register was scavenged for the range of instructions that are
302       // being updated, therefore it should not be defined within this range
303       // except possibly in the final instruction.
304       if (MO.isDef()) {
305         assert(isCompressibleLoad(MI));
306         continue;
307       }
308       // Update reg
309       MO.setReg(NewReg);
310     }
311 
312   // Update offset
313   MachineOperand &MOImm = MI.getOperand(2);
314   int64_t NewOffset = MOImm.getImm() & compressedLDSTOffsetMask(Opcode);
315   MOImm.setImm(NewOffset);
316 }
317 
318 bool RISCVMakeCompressibleOpt::runOnMachineFunction(MachineFunction &Fn) {
319   // This is a size optimization.
320   if (skipFunction(Fn.getFunction()) || !Fn.getFunction().hasMinSize())
321     return false;
322 
323   const RISCVSubtarget &STI = Fn.getSubtarget<RISCVSubtarget>();
324   const RISCVInstrInfo &TII = *STI.getInstrInfo();
325 
326   // This optimization only makes sense if compressed instructions are emitted.
327   // FIXME: Support Zca, Zcf, Zcd granularity.
328   if (!STI.hasStdExtC())
329     return false;
330 
331   for (MachineBasicBlock &MBB : Fn) {
332     LLVM_DEBUG(dbgs() << "MBB: " << MBB.getName() << "\n");
333     for (MachineInstr &MI : MBB) {
334       // Determine if this instruction would otherwise be compressed if not for
335       // an uncompressible register or offset.
336       RegImmPair RegImm = getRegImmPairPreventingCompression(MI);
337       if (!RegImm.Reg && RegImm.Imm == 0)
338         continue;
339 
340       // Determine if there is a set of instructions for which replacing this
341       // register with a compressed register (and compressible offset if
342       // applicable) is possible and will allow compression.
343       SmallVector<MachineInstr *, 8> MIs;
344       Register NewReg = analyzeCompressibleUses(MI, RegImm, MIs);
345       if (!NewReg)
346         continue;
347 
348       // Create the appropriate copy and/or offset.
349       if (RISCV::GPRRegClass.contains(RegImm.Reg)) {
350         assert(isInt<12>(RegImm.Imm));
351         BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(RISCV::ADDI), NewReg)
352             .addReg(RegImm.Reg)
353             .addImm(RegImm.Imm);
354       } else {
355         // If we are looking at replacing an FPR register we don't expect to
356         // have any offset. The only compressible FP instructions with an offset
357         // are loads and stores, for which the offset applies to the GPR operand
358         // not the FPR operand.
359         assert(RegImm.Imm == 0);
360         unsigned Opcode = RISCV::FPR32RegClass.contains(RegImm.Reg)
361                               ? RISCV::FSGNJ_S
362                               : RISCV::FSGNJ_D;
363         BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(Opcode), NewReg)
364             .addReg(RegImm.Reg)
365             .addReg(RegImm.Reg);
366       }
367 
368       // Update the set of instructions to use the compressed register and
369       // compressible offset instead. These instructions should now be
370       // compressible.
371       // TODO: Update all uses if RegImm.Imm == 0? Not just those that are
372       // expected to become compressible.
373       for (MachineInstr *UpdateMI : MIs)
374         updateOperands(*UpdateMI, RegImm, NewReg);
375     }
376   }
377   return true;
378 }
379 
380 /// Returns an instance of the Make Compressible Optimization pass.
381 FunctionPass *llvm::createRISCVMakeCompressibleOptPass() {
382   return new RISCVMakeCompressibleOpt();
383 }
384