1 //===-- RISCVMakeCompressible.cpp - Make more instructions compressible ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass searches for instructions that are prevented from being compressed 10 // by one of the following: 11 // 12 // 1. The use of a single uncompressed register. 13 // 2. A base register + offset where the offset is too large to be compressed 14 // and the base register may or may not be compressed. 15 // 16 // 17 // For case 1, if a compressed register is available, then the uncompressed 18 // register is copied to the compressed register and its uses are replaced. 19 // 20 // For example, storing zero uses the uncompressible zero register: 21 // sw zero, 0(a0) # if zero 22 // sw zero, 8(a0) # if zero 23 // sw zero, 4(a0) # if zero 24 // sw zero, 24(a0) # if zero 25 // 26 // If a compressed register (e.g. a1) is available, the above can be transformed 27 // to the following to improve code size: 28 // li a1, 0 29 // c.sw a1, 0(a0) 30 // c.sw a1, 8(a0) 31 // c.sw a1, 4(a0) 32 // c.sw a1, 24(a0) 33 // 34 // 35 // For case 2, if a compressed register is available, then the original base 36 // is copied and adjusted such that: 37 // 38 // new_base_register = base_register + adjustment 39 // base_register + large_offset = new_base_register + small_offset 40 // 41 // For example, the following offsets are too large for c.sw: 42 // lui a2, 983065 43 // sw a1, -236(a2) 44 // sw a1, -240(a2) 45 // sw a1, -244(a2) 46 // sw a1, -248(a2) 47 // sw a1, -252(a2) 48 // sw a0, -256(a2) 49 // 50 // If a compressed register is available (e.g. a3), a new base could be created 51 // such that the addresses can accessed with a compressible offset, thus 52 // improving code size: 53 // lui a2, 983065 54 // addi a3, a2, -256 55 // c.sw a1, 20(a3) 56 // c.sw a1, 16(a3) 57 // c.sw a1, 12(a3) 58 // c.sw a1, 8(a3) 59 // c.sw a1, 4(a3) 60 // c.sw a0, 0(a3) 61 // 62 // 63 // This optimization is only applied if there are enough uses of the copied 64 // register for code size to be reduced. 65 // 66 //===----------------------------------------------------------------------===// 67 68 #include "RISCV.h" 69 #include "RISCVSubtarget.h" 70 #include "llvm/CodeGen/Passes.h" 71 #include "llvm/CodeGen/RegisterScavenging.h" 72 #include "llvm/MC/TargetRegistry.h" 73 #include "llvm/Support/Debug.h" 74 75 using namespace llvm; 76 77 #define DEBUG_TYPE "riscv-make-compressible" 78 #define RISCV_COMPRESS_INSTRS_NAME "RISC-V Make Compressible" 79 80 namespace { 81 82 struct RISCVMakeCompressibleOpt : public MachineFunctionPass { 83 static char ID; 84 85 bool runOnMachineFunction(MachineFunction &Fn) override; 86 87 RISCVMakeCompressibleOpt() : MachineFunctionPass(ID) {} 88 89 StringRef getPassName() const override { return RISCV_COMPRESS_INSTRS_NAME; } 90 }; 91 } // namespace 92 93 char RISCVMakeCompressibleOpt::ID = 0; 94 INITIALIZE_PASS(RISCVMakeCompressibleOpt, "riscv-make-compressible", 95 RISCV_COMPRESS_INSTRS_NAME, false, false) 96 97 // Return log2(widthInBytes) of load/store done by Opcode. 98 static unsigned log2LdstWidth(unsigned Opcode) { 99 switch (Opcode) { 100 default: 101 llvm_unreachable("Unexpected opcode"); 102 case RISCV::LW: 103 case RISCV::SW: 104 case RISCV::FLW: 105 case RISCV::FSW: 106 return 2; 107 case RISCV::LD: 108 case RISCV::SD: 109 case RISCV::FLD: 110 case RISCV::FSD: 111 return 3; 112 } 113 } 114 115 // Return a mask for the offset bits of a non-stack-pointer based compressed 116 // load/store. 117 static uint8_t compressedLDSTOffsetMask(unsigned Opcode) { 118 return 0x1f << log2LdstWidth(Opcode); 119 } 120 121 // Return true if Offset fits within a compressed stack-pointer based 122 // load/store. 123 static bool compressibleSPOffset(int64_t Offset, unsigned Opcode) { 124 return log2LdstWidth(Opcode) == 2 ? isShiftedUInt<6, 2>(Offset) 125 : isShiftedUInt<6, 3>(Offset); 126 } 127 128 // Given an offset for a load/store, return the adjustment required to the base 129 // register such that the address can be accessed with a compressible offset. 130 // This will return 0 if the offset is already compressible. 131 static int64_t getBaseAdjustForCompression(int64_t Offset, unsigned Opcode) { 132 // Return the excess bits that do not fit in a compressible offset. 133 return Offset & ~compressedLDSTOffsetMask(Opcode); 134 } 135 136 // Return true if Reg is in a compressed register class. 137 static bool isCompressedReg(Register Reg) { 138 return RISCV::GPRCRegClass.contains(Reg) || 139 RISCV::FPR32CRegClass.contains(Reg) || 140 RISCV::FPR64CRegClass.contains(Reg); 141 } 142 143 // Return true if MI is a load for which there exists a compressed version. 144 static bool isCompressibleLoad(const MachineInstr &MI) { 145 const RISCVSubtarget &STI = MI.getMF()->getSubtarget<RISCVSubtarget>(); 146 const unsigned Opcode = MI.getOpcode(); 147 148 return Opcode == RISCV::LW || (!STI.is64Bit() && Opcode == RISCV::FLW) || 149 Opcode == RISCV::LD || Opcode == RISCV::FLD; 150 } 151 152 // Return true if MI is a store for which there exists a compressed version. 153 static bool isCompressibleStore(const MachineInstr &MI) { 154 const RISCVSubtarget &STI = MI.getMF()->getSubtarget<RISCVSubtarget>(); 155 const unsigned Opcode = MI.getOpcode(); 156 157 return Opcode == RISCV::SW || (!STI.is64Bit() && Opcode == RISCV::FSW) || 158 Opcode == RISCV::SD || Opcode == RISCV::FSD; 159 } 160 161 // Find a single register and/or large offset which, if compressible, would 162 // allow the given instruction to be compressed. 163 // 164 // Possible return values: 165 // 166 // {Reg, 0} - Uncompressed Reg needs replacing with a compressed 167 // register. 168 // {Reg, N} - Reg needs replacing with a compressed register and 169 // N needs adding to the new register. (Reg may be 170 // compressed or uncompressed). 171 // {RISCV::NoRegister, 0} - No suitable optimization found for this 172 // instruction. 173 static RegImmPair getRegImmPairPreventingCompression(const MachineInstr &MI) { 174 const unsigned Opcode = MI.getOpcode(); 175 176 if (isCompressibleLoad(MI) || isCompressibleStore(MI)) { 177 const MachineOperand &MOImm = MI.getOperand(2); 178 if (!MOImm.isImm()) 179 return RegImmPair(RISCV::NoRegister, 0); 180 181 int64_t Offset = MOImm.getImm(); 182 int64_t NewBaseAdjust = getBaseAdjustForCompression(Offset, Opcode); 183 Register Base = MI.getOperand(1).getReg(); 184 185 // Memory accesses via the stack pointer do not have a requirement for 186 // either of the registers to be compressible and can take a larger offset. 187 if (RISCV::SPRegClass.contains(Base)) { 188 if (!compressibleSPOffset(Offset, Opcode) && NewBaseAdjust) 189 return RegImmPair(Base, NewBaseAdjust); 190 } else { 191 Register SrcDest = MI.getOperand(0).getReg(); 192 bool SrcDestCompressed = isCompressedReg(SrcDest); 193 bool BaseCompressed = isCompressedReg(Base); 194 195 // If only Base and/or offset prevent compression, then return Base and 196 // any adjustment required to make the offset compressible. 197 if ((!BaseCompressed || NewBaseAdjust) && SrcDestCompressed) 198 return RegImmPair(Base, NewBaseAdjust); 199 200 // For loads, we can only change the base register since dest is defined 201 // rather than used. 202 // 203 // For stores, we can change SrcDest (and Base if SrcDest == Base) but 204 // cannot resolve an uncompressible offset in this case. 205 if (isCompressibleStore(MI)) { 206 if (!SrcDestCompressed && (BaseCompressed || SrcDest == Base) && 207 !NewBaseAdjust) 208 return RegImmPair(SrcDest, NewBaseAdjust); 209 } 210 } 211 } 212 return RegImmPair(RISCV::NoRegister, 0); 213 } 214 215 // Check all uses after FirstMI of the given register, keeping a vector of 216 // instructions that would be compressible if the given register (and offset if 217 // applicable) were compressible. 218 // 219 // If there are enough uses for this optimization to improve code size and a 220 // compressed register is available, return that compressed register. 221 static Register analyzeCompressibleUses(MachineInstr &FirstMI, 222 RegImmPair RegImm, 223 SmallVectorImpl<MachineInstr *> &MIs) { 224 MachineBasicBlock &MBB = *FirstMI.getParent(); 225 const TargetRegisterInfo *TRI = 226 MBB.getParent()->getSubtarget().getRegisterInfo(); 227 228 for (MachineBasicBlock::instr_iterator I = FirstMI.getIterator(), 229 E = MBB.instr_end(); 230 I != E; ++I) { 231 MachineInstr &MI = *I; 232 233 // Determine if this is an instruction which would benefit from using the 234 // new register. 235 RegImmPair CandidateRegImm = getRegImmPairPreventingCompression(MI); 236 if (CandidateRegImm.Reg == RegImm.Reg && CandidateRegImm.Imm == RegImm.Imm) 237 MIs.push_back(&MI); 238 239 // If RegImm.Reg is modified by this instruction, then we cannot optimize 240 // past this instruction. If the register is already compressed, then it may 241 // possible to optimize a large offset in the current instruction - this 242 // will have been detected by the preceeding call to 243 // getRegImmPairPreventingCompression. 244 if (MI.modifiesRegister(RegImm.Reg, TRI)) 245 break; 246 } 247 248 // Adjusting the base costs one new uncompressed addi and therefore three uses 249 // are required for a code size reduction. If no base adjustment is required, 250 // then copying the register costs one new c.mv (or c.li Rd, 0 for "copying" 251 // the zero register) and therefore two uses are required for a code size 252 // reduction. 253 if (MIs.size() < 2 || (RegImm.Imm != 0 && MIs.size() < 3)) 254 return RISCV::NoRegister; 255 256 // Find a compressible register which will be available from the first 257 // instruction we care about to the last. 258 const TargetRegisterClass *RCToScavenge; 259 260 // Work out the compressed register class from which to scavenge. 261 if (RISCV::GPRRegClass.contains(RegImm.Reg)) 262 RCToScavenge = &RISCV::GPRCRegClass; 263 else if (RISCV::FPR32RegClass.contains(RegImm.Reg)) 264 RCToScavenge = &RISCV::FPR32CRegClass; 265 else if (RISCV::FPR64RegClass.contains(RegImm.Reg)) 266 RCToScavenge = &RISCV::FPR64CRegClass; 267 else 268 return RISCV::NoRegister; 269 270 RegScavenger RS; 271 RS.enterBasicBlockEnd(MBB); 272 RS.backward(std::next(MIs.back()->getIterator())); 273 return RS.scavengeRegisterBackwards(*RCToScavenge, FirstMI.getIterator(), 274 /*RestoreAfter=*/false, /*SPAdj=*/0, 275 /*AllowSpill=*/false); 276 } 277 278 // Update uses of the old register in the given instruction to the new register. 279 static void updateOperands(MachineInstr &MI, RegImmPair OldRegImm, 280 Register NewReg) { 281 unsigned Opcode = MI.getOpcode(); 282 283 // If this pass is extended to support more instructions, the check for 284 // definedness may need to be strengthened. 285 assert((isCompressibleLoad(MI) || isCompressibleStore(MI)) && 286 "Unsupported instruction for this optimization."); 287 288 int SkipN = 0; 289 290 // Skip the first (value) operand to a store instruction (except if the store 291 // offset is zero) in order to avoid an incorrect transformation. 292 // e.g. sd a0, 808(a0) to addi a2, a0, 768; sd a2, 40(a2) 293 if (isCompressibleStore(MI) && OldRegImm.Imm != 0) 294 SkipN = 1; 295 296 // Update registers 297 for (MachineOperand &MO : drop_begin(MI.operands(), SkipN)) 298 if (MO.isReg() && MO.getReg() == OldRegImm.Reg) { 299 // Do not update operands that define the old register. 300 // 301 // The new register was scavenged for the range of instructions that are 302 // being updated, therefore it should not be defined within this range 303 // except possibly in the final instruction. 304 if (MO.isDef()) { 305 assert(isCompressibleLoad(MI)); 306 continue; 307 } 308 // Update reg 309 MO.setReg(NewReg); 310 } 311 312 // Update offset 313 MachineOperand &MOImm = MI.getOperand(2); 314 int64_t NewOffset = MOImm.getImm() & compressedLDSTOffsetMask(Opcode); 315 MOImm.setImm(NewOffset); 316 } 317 318 bool RISCVMakeCompressibleOpt::runOnMachineFunction(MachineFunction &Fn) { 319 // This is a size optimization. 320 if (skipFunction(Fn.getFunction()) || !Fn.getFunction().hasMinSize()) 321 return false; 322 323 const RISCVSubtarget &STI = Fn.getSubtarget<RISCVSubtarget>(); 324 const RISCVInstrInfo &TII = *STI.getInstrInfo(); 325 326 // This optimization only makes sense if compressed instructions are emitted. 327 // FIXME: Support Zca, Zcf, Zcd granularity. 328 if (!STI.hasStdExtC()) 329 return false; 330 331 for (MachineBasicBlock &MBB : Fn) { 332 LLVM_DEBUG(dbgs() << "MBB: " << MBB.getName() << "\n"); 333 for (MachineInstr &MI : MBB) { 334 // Determine if this instruction would otherwise be compressed if not for 335 // an uncompressible register or offset. 336 RegImmPair RegImm = getRegImmPairPreventingCompression(MI); 337 if (!RegImm.Reg && RegImm.Imm == 0) 338 continue; 339 340 // Determine if there is a set of instructions for which replacing this 341 // register with a compressed register (and compressible offset if 342 // applicable) is possible and will allow compression. 343 SmallVector<MachineInstr *, 8> MIs; 344 Register NewReg = analyzeCompressibleUses(MI, RegImm, MIs); 345 if (!NewReg) 346 continue; 347 348 // Create the appropriate copy and/or offset. 349 if (RISCV::GPRRegClass.contains(RegImm.Reg)) { 350 assert(isInt<12>(RegImm.Imm)); 351 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(RISCV::ADDI), NewReg) 352 .addReg(RegImm.Reg) 353 .addImm(RegImm.Imm); 354 } else { 355 // If we are looking at replacing an FPR register we don't expect to 356 // have any offset. The only compressible FP instructions with an offset 357 // are loads and stores, for which the offset applies to the GPR operand 358 // not the FPR operand. 359 assert(RegImm.Imm == 0); 360 unsigned Opcode = RISCV::FPR32RegClass.contains(RegImm.Reg) 361 ? RISCV::FSGNJ_S 362 : RISCV::FSGNJ_D; 363 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(Opcode), NewReg) 364 .addReg(RegImm.Reg) 365 .addReg(RegImm.Reg); 366 } 367 368 // Update the set of instructions to use the compressed register and 369 // compressible offset instead. These instructions should now be 370 // compressible. 371 // TODO: Update all uses if RegImm.Imm == 0? Not just those that are 372 // expected to become compressible. 373 for (MachineInstr *UpdateMI : MIs) 374 updateOperands(*UpdateMI, RegImm, NewReg); 375 } 376 } 377 return true; 378 } 379 380 /// Returns an instance of the Make Compressible Optimization pass. 381 FunctionPass *llvm::createRISCVMakeCompressibleOptPass() { 382 return new RISCVMakeCompressibleOpt(); 383 } 384