xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoZfh.td (revision 51015e6d0f570239b0c2088dc6cf2b018928375d)
1//===-- RISCVInstrInfoZfh.td - RISC-V 'Zfh' instructions ---*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the RISC-V instructions from the standard 'Zfh'
10// half-precision floating-point extension, version 1.0.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// RISC-V specific DAG Nodes.
16//===----------------------------------------------------------------------===//
17
18def SDT_RISCVFMV_H_X
19    : SDTypeProfile<1, 1, [SDTCisVT<0, f16>, SDTCisVT<1, XLenVT>]>;
20def SDT_RISCVFMV_X_EXTH
21    : SDTypeProfile<1, 1, [SDTCisVT<0, XLenVT>, SDTCisVT<1, f16>]>;
22
23def riscv_fmv_h_x
24    : SDNode<"RISCVISD::FMV_H_X", SDT_RISCVFMV_H_X>;
25def riscv_fmv_x_anyexth
26    : SDNode<"RISCVISD::FMV_X_ANYEXTH", SDT_RISCVFMV_X_EXTH>;
27def riscv_fmv_x_signexth
28    : SDNode<"RISCVISD::FMV_X_SIGNEXTH", SDT_RISCVFMV_X_EXTH>;
29
30//===----------------------------------------------------------------------===//
31// Operand and SDNode transformation definitions.
32//===----------------------------------------------------------------------===//
33
34// Zhinxmin and Zhinx
35
36def FPR16INX : RegisterOperand<GPRF16> {
37  let ParserMatchClass = GPRAsFPR;
38  let DecoderMethod = "DecodeGPRRegisterClass";
39}
40
41def ZfhExt           : ExtInfo<0, [HasStdExtZfh]>;
42def Zfh64Ext         : ExtInfo<0, [HasStdExtZfh,             IsRV64]>;
43def ZfhminExt        : ExtInfo<0, [HasStdExtZfhOrZfhmin]>;
44def ZhinxExt         : ExtInfo<1, [HasStdExtZhinx]>;
45def ZhinxminExt      : ExtInfo<1, [HasStdExtZhinxOrZhinxmin]>;
46def Zhinx64Ext       : ExtInfo<1, [HasStdExtZhinx,           IsRV64]>;
47
48def ZfhminDExt       : ExtInfo<0, [HasStdExtZfhOrZfhmin,     HasStdExtD]>;
49def ZhinxminZdinxExt : ExtInfo<1, [HasStdExtZhinxOrZhinxmin, HasStdExtZdinx]>;
50
51def H     : ExtInfo_r<ZfhExt,     FPR16>;
52def H_INX : ExtInfo_r<ZhinxExt, FPR16INX>;
53
54def HH        : ExtInfo_rr<ZfhExt,           FPR16,    FPR16>;
55def HH_INX    : ExtInfo_rr<ZhinxExt,         FPR16INX, FPR16INX>;
56def XH        : ExtInfo_rr<ZfhExt,           GPR,      FPR16>;
57def XH_INX    : ExtInfo_rr<ZhinxExt,         GPR,      FPR16INX>;
58def HX        : ExtInfo_rr<ZfhExt,           FPR16,    GPR>;
59def HX_INX    : ExtInfo_rr<ZhinxExt,         FPR16INX, GPR>;
60def XH_64     : ExtInfo_rr<Zfh64Ext,         GPR,      FPR16>;
61def HX_64     : ExtInfo_rr<Zfh64Ext,         FPR16,    GPR>;
62def XH_INX_64 : ExtInfo_rr<Zhinx64Ext,       GPR,      FPR16INX>;
63def HX_INX_64 : ExtInfo_rr<Zhinx64Ext,       FPR16INX, GPR>;
64def HFmin     : ExtInfo_rr<ZfhminExt,        FPR16,    FPR32>;
65def HF_INXmin : ExtInfo_rr<ZhinxminExt,      FPR16INX, FPR32INX>;
66def HF_INX    : ExtInfo_rr<ZhinxExt,         FPR16INX, FPR32INX>;
67def FHmin     : ExtInfo_rr<ZfhminExt,        FPR32,    FPR16>;
68def FH_INXmin : ExtInfo_rr<ZhinxminExt,      FPR32INX, FPR16INX>;
69def FH_INX    : ExtInfo_rr<ZhinxExt,         FPR32INX, FPR16INX>;
70def DHmin     : ExtInfo_rr<ZfhminDExt,       FPR64,    FPR16>;
71def DH_INXmin : ExtInfo_rr<ZhinxminZdinxExt, FPR64INX, FPR16INX>;
72def HDmin     : ExtInfo_rr<ZfhminDExt,       FPR16,    FPR64>;
73def HD_INXmin : ExtInfo_rr<ZhinxminZdinxExt, FPR16INX, FPR64INX>;
74
75defvar HINX     = [H,     H_INX];
76defvar HHINX    = [HH,    HH_INX];
77defvar XHINX    = [XH,    XH_INX];
78defvar HXINX    = [HX,    HX_INX];
79defvar XHIN64X  = [XH_64, XH_INX_64];
80defvar HXIN64X  = [HX_64, HX_INX_64];
81defvar HFINXmin = [HFmin, HF_INXmin];
82defvar FHINXmin = [FHmin, FH_INXmin];
83defvar DHINXmin = [DHmin, DH_INXmin];
84defvar HDINXmin = [HDmin, HD_INXmin];
85
86//===----------------------------------------------------------------------===//
87// Instructions
88//===----------------------------------------------------------------------===//
89
90let Predicates = [HasStdExtZfhOrZfhmin] in {
91def FLH : FPLoad_r<0b001, "flh", FPR16, WriteFLD16>;
92
93// Operands for stores are in the order srcreg, base, offset rather than
94// reflecting the order these fields are specified in the instruction
95// encoding.
96def FSH : FPStore_r<0b001, "fsh", FPR16, WriteFST16>;
97} // Predicates = [HasStdExtZfhOrZfhmin]
98
99let SchedRW = [WriteFMA16, ReadFMA16, ReadFMA16, ReadFMA16] in {
100defm FMADD_H  : FPFMA_rrr_frm_m<OPC_MADD,  0b10, "fmadd.h",  HINX>;
101defm FMSUB_H  : FPFMA_rrr_frm_m<OPC_MSUB,  0b10, "fmsub.h",  HINX>;
102defm FNMSUB_H : FPFMA_rrr_frm_m<OPC_NMSUB, 0b10, "fnmsub.h", HINX>;
103defm FNMADD_H : FPFMA_rrr_frm_m<OPC_NMADD, 0b10, "fnmadd.h", HINX>;
104}
105
106defm : FPFMADynFrmAlias_m<FMADD_H,  "fmadd.h",  HINX>;
107defm : FPFMADynFrmAlias_m<FMSUB_H,  "fmsub.h",  HINX>;
108defm : FPFMADynFrmAlias_m<FNMSUB_H, "fnmsub.h", HINX>;
109defm : FPFMADynFrmAlias_m<FNMADD_H, "fnmadd.h", HINX>;
110
111let SchedRW = [WriteFALU16, ReadFALU16, ReadFALU16] in {
112defm FADD_H : FPALU_rr_frm_m<0b0000010, "fadd.h", HINX, /*Commutable*/1>;
113defm FSUB_H : FPALU_rr_frm_m<0b0000110, "fsub.h", HINX>;
114}
115let SchedRW = [WriteFMul16, ReadFMul16, ReadFMul16] in
116defm FMUL_H : FPALU_rr_frm_m<0b0001010, "fmul.h", HINX, /*Commutable*/1>;
117
118let SchedRW = [WriteFDiv16, ReadFDiv16, ReadFDiv16] in
119defm FDIV_H : FPALU_rr_frm_m<0b0001110, "fdiv.h", HINX>;
120
121defm : FPALUDynFrmAlias_m<FADD_H, "fadd.h", HINX>;
122defm : FPALUDynFrmAlias_m<FSUB_H, "fsub.h", HINX>;
123defm : FPALUDynFrmAlias_m<FMUL_H, "fmul.h", HINX>;
124defm : FPALUDynFrmAlias_m<FDIV_H, "fdiv.h", HINX>;
125
126defm FSQRT_H : FPUnaryOp_r_frm_m<0b0101110, 0b00000, HHINX, "fsqrt.h">,
127               Sched<[WriteFSqrt16, ReadFSqrt16]>;
128defm         : FPUnaryOpDynFrmAlias_m<FSQRT_H, "fsqrt.h", HHINX>;
129
130let SchedRW = [WriteFSGNJ16, ReadFSGNJ16, ReadFSGNJ16],
131    mayRaiseFPException = 0 in {
132defm FSGNJ_H  : FPALU_rr_m<0b0010010, 0b000, "fsgnj.h",  HINX>;
133defm FSGNJN_H : FPALU_rr_m<0b0010010, 0b001, "fsgnjn.h", HINX>;
134defm FSGNJX_H : FPALU_rr_m<0b0010010, 0b010, "fsgnjx.h", HINX>;
135}
136
137let SchedRW = [WriteFMinMax16, ReadFMinMax16, ReadFMinMax16] in {
138defm FMIN_H   : FPALU_rr_m<0b0010110, 0b000, "fmin.h", HINX, /*Commutable*/1>;
139defm FMAX_H   : FPALU_rr_m<0b0010110, 0b001, "fmax.h", HINX, /*Commutable*/1>;
140}
141
142defm FCVT_W_H : FPUnaryOp_r_frm_m<0b1100010, 0b00000, XHINX, "fcvt.w.h">,
143                Sched<[WriteFCvtF16ToI32, ReadFCvtF16ToI32]>;
144defm          : FPUnaryOpDynFrmAlias_m<FCVT_W_H, "fcvt.w.h", XHINX>;
145
146defm FCVT_WU_H : FPUnaryOp_r_frm_m<0b1100010, 0b00001, XHINX, "fcvt.wu.h">,
147                 Sched<[WriteFCvtF16ToI32, ReadFCvtF16ToI32]>;
148defm           : FPUnaryOpDynFrmAlias_m<FCVT_WU_H, "fcvt.wu.h", XHINX>;
149
150defm FCVT_H_W : FPUnaryOp_r_frm_m<0b1101010, 0b00000, HXINX, "fcvt.h.w">,
151                Sched<[WriteFCvtI32ToF16, ReadFCvtI32ToF16]>;
152defm          : FPUnaryOpDynFrmAlias_m<FCVT_H_W, "fcvt.h.w", HXINX>;
153
154defm FCVT_H_WU : FPUnaryOp_r_frm_m<0b1101010, 0b00001, HXINX, "fcvt.h.wu">,
155                 Sched<[WriteFCvtI32ToF16, ReadFCvtI32ToF16]>;
156defm           : FPUnaryOpDynFrmAlias_m<FCVT_H_WU, "fcvt.h.wu", HXINX>;
157
158defm FCVT_H_S : FPUnaryOp_r_frm_m<0b0100010, 0b00000, HFINXmin, "fcvt.h.s">,
159                Sched<[WriteFCvtF32ToF16, ReadFCvtF32ToF16]>;
160defm          : FPUnaryOpDynFrmAlias_m<FCVT_H_S, "fcvt.h.s", HFINXmin>;
161
162defm FCVT_S_H : FPUnaryOp_r_m<0b0100000, 0b00010, 0b000, FHINXmin, "fcvt.s.h">,
163               Sched<[WriteFCvtF16ToF32, ReadFCvtF16ToF32]>;
164
165let Predicates = [HasStdExtZfhOrZfhmin] in {
166let mayRaiseFPException = 0 in
167def FMV_X_H : FPUnaryOp_r<0b1110010, 0b00000, 0b000, GPR, FPR16, "fmv.x.h">,
168              Sched<[WriteFMovF16ToI16, ReadFMovF16ToI16]>;
169
170let mayRaiseFPException = 0 in
171def FMV_H_X : FPUnaryOp_r<0b1111010, 0b00000, 0b000, FPR16, GPR, "fmv.h.x">,
172              Sched<[WriteFMovI16ToF16, ReadFMovI16ToF16]>;
173} // Predicates = [HasStdExtZfhOrZfhmin]
174
175let SchedRW = [WriteFCmp16, ReadFCmp16, ReadFCmp16] in {
176defm FEQ_H : FPCmp_rr_m<0b1010010, 0b010, "feq.h", HINX, /*Commutable*/1>;
177defm FLT_H : FPCmp_rr_m<0b1010010, 0b001, "flt.h", HINX>;
178defm FLE_H : FPCmp_rr_m<0b1010010, 0b000, "fle.h", HINX>;
179}
180
181let mayRaiseFPException = 0 in
182defm FCLASS_H : FPUnaryOp_r_m<0b1110010, 0b00000, 0b001, XHINX, "fclass.h">,
183                Sched<[WriteFClass16, ReadFClass16]>;
184
185defm FCVT_L_H  : FPUnaryOp_r_frm_m<0b1100010, 0b00010, XHIN64X, "fcvt.l.h">,
186                 Sched<[WriteFCvtF16ToI64, ReadFCvtF16ToI64]>;
187defm           : FPUnaryOpDynFrmAlias_m<FCVT_L_H, "fcvt.l.h", XHIN64X>;
188
189defm FCVT_LU_H  : FPUnaryOp_r_frm_m<0b1100010, 0b00011, XHIN64X, "fcvt.lu.h">,
190                  Sched<[WriteFCvtF16ToI64, ReadFCvtF16ToI64]>;
191defm            : FPUnaryOpDynFrmAlias_m<FCVT_LU_H, "fcvt.lu.h", XHIN64X>;
192
193defm FCVT_H_L : FPUnaryOp_r_frm_m<0b1101010, 0b00010, HXIN64X, "fcvt.h.l">,
194                Sched<[WriteFCvtI64ToF16, ReadFCvtI64ToF16]>;
195defm          : FPUnaryOpDynFrmAlias_m<FCVT_H_L, "fcvt.h.l", HXIN64X>;
196
197defm FCVT_H_LU : FPUnaryOp_r_frm_m<0b1101010, 0b00011, HXIN64X, "fcvt.h.lu">,
198                 Sched<[WriteFCvtI64ToF16, ReadFCvtI64ToF16]>;
199defm           : FPUnaryOpDynFrmAlias_m<FCVT_H_LU, "fcvt.h.lu", HXIN64X>;
200
201defm FCVT_H_D : FPUnaryOp_r_frm_m<0b0100010, 0b00001, HDINXmin, "fcvt.h.d">,
202                Sched<[WriteFCvtF64ToF16, ReadFCvtF64ToF16]>;
203defm          : FPUnaryOpDynFrmAlias_m<FCVT_H_D, "fcvt.h.d", HDINXmin>;
204
205defm FCVT_D_H : FPUnaryOp_r_m<0b0100001, 0b00010, 0b000, DHINXmin, "fcvt.d.h">,
206                Sched<[WriteFCvtF16ToF64, ReadFCvtF16ToF64]>;
207
208//===----------------------------------------------------------------------===//
209// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
210//===----------------------------------------------------------------------===//
211
212let Predicates = [HasStdExtZfhOrZfhmin] in {
213def : InstAlias<"flh $rd, (${rs1})",  (FLH FPR16:$rd,  GPR:$rs1, 0), 0>;
214def : InstAlias<"fsh $rs2, (${rs1})", (FSH FPR16:$rs2, GPR:$rs1, 0), 0>;
215} // Predicates = [HasStdExtZfhOrZfhmin]
216
217let Predicates = [HasStdExtZfh] in {
218def : InstAlias<"fmv.h $rd, $rs",  (FSGNJ_H  FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
219def : InstAlias<"fabs.h $rd, $rs", (FSGNJX_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
220def : InstAlias<"fneg.h $rd, $rs", (FSGNJN_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
221
222// fgt.h/fge.h are recognised by the GNU assembler but the canonical
223// flt.h/fle.h forms will always be printed. Therefore, set a zero weight.
224def : InstAlias<"fgt.h $rd, $rs, $rt",
225                (FLT_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>;
226def : InstAlias<"fge.h $rd, $rs, $rt",
227                (FLE_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>;
228} // Predicates = [HasStdExtZfh]
229
230let Predicates = [HasStdExtZfhOrZfhmin] in {
231def PseudoFLH  : PseudoFloatLoad<"flh", FPR16>;
232def PseudoFSH  : PseudoStore<"fsh", FPR16>;
233let usesCustomInserter = 1 in {
234def PseudoQuietFLE_H : PseudoQuietFCMP<FPR16>;
235def PseudoQuietFLT_H : PseudoQuietFCMP<FPR16>;
236}
237} // Predicates = [HasStdExtZfhOrZfhmin]
238
239let Predicates = [HasStdExtZhinx] in {
240def : InstAlias<"fmv.h $rd, $rs",  (FSGNJ_H_INX  FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>;
241def : InstAlias<"fabs.h $rd, $rs", (FSGNJX_H_INX FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>;
242def : InstAlias<"fneg.h $rd, $rs", (FSGNJN_H_INX FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>;
243
244def : InstAlias<"fgt.h $rd, $rs, $rt",
245                (FLT_H_INX GPR:$rd, FPR16INX:$rt, FPR16INX:$rs), 0>;
246def : InstAlias<"fge.h $rd, $rs, $rt",
247                (FLE_H_INX GPR:$rd, FPR16INX:$rt, FPR16INX:$rs), 0>;
248} // Predicates = [HasStdExtZhinx]
249
250//===----------------------------------------------------------------------===//
251// Pseudo-instructions and codegen patterns
252//===----------------------------------------------------------------------===//
253
254let Predicates = [HasStdExtZfh] in {
255
256/// Float constants
257def : Pat<(f16 (fpimm0)), (FMV_H_X X0)>;
258def : Pat<(f16 (fpimmneg0)), (FSGNJN_H (FMV_H_X X0), (FMV_H_X X0))>;
259
260/// Float conversion operations
261
262// [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so
263// are defined later.
264
265/// Float arithmetic operations
266
267def : PatFprFprDynFrm<any_fadd, FADD_H, FPR16>;
268def : PatFprFprDynFrm<any_fsub, FSUB_H, FPR16>;
269def : PatFprFprDynFrm<any_fmul, FMUL_H, FPR16>;
270def : PatFprFprDynFrm<any_fdiv, FDIV_H, FPR16>;
271
272def : Pat<(any_fsqrt FPR16:$rs1), (FSQRT_H FPR16:$rs1, 0b111)>;
273
274def : Pat<(fneg FPR16:$rs1), (FSGNJN_H $rs1, $rs1)>;
275def : Pat<(fabs FPR16:$rs1), (FSGNJX_H $rs1, $rs1)>;
276
277def : PatFprFpr<fcopysign, FSGNJ_H, FPR16>;
278def : Pat<(fcopysign FPR16:$rs1, (fneg FPR16:$rs2)), (FSGNJN_H $rs1, $rs2)>;
279def : Pat<(fcopysign FPR16:$rs1, FPR32:$rs2),
280          (FSGNJ_H $rs1, (FCVT_H_S $rs2, 0b111))>;
281def : Pat<(fcopysign FPR32:$rs1, FPR16:$rs2), (FSGNJ_S $rs1, (FCVT_S_H $rs2))>;
282
283// fmadd: rs1 * rs2 + rs3
284def : Pat<(any_fma FPR16:$rs1, FPR16:$rs2, FPR16:$rs3),
285          (FMADD_H $rs1, $rs2, $rs3, 0b111)>;
286
287// fmsub: rs1 * rs2 - rs3
288def : Pat<(any_fma FPR16:$rs1, FPR16:$rs2, (fneg FPR16:$rs3)),
289          (FMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, 0b111)>;
290
291// fnmsub: -rs1 * rs2 + rs3
292def : Pat<(any_fma (fneg FPR16:$rs1), FPR16:$rs2, FPR16:$rs3),
293          (FNMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, 0b111)>;
294
295// fnmadd: -rs1 * rs2 - rs3
296def : Pat<(any_fma (fneg FPR16:$rs1), FPR16:$rs2, (fneg FPR16:$rs3)),
297          (FNMADD_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, 0b111)>;
298
299// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
300def : Pat<(fneg (any_fma_nsz FPR16:$rs1, FPR16:$rs2, FPR16:$rs3)),
301          (FNMADD_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, 0b111)>;
302
303// The ratified 20191213 ISA spec defines fmin and fmax in a way that matches
304// LLVM's fminnum and fmaxnum
305// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
306def : PatFprFpr<fminnum, FMIN_H, FPR16>;
307def : PatFprFpr<fmaxnum, FMAX_H, FPR16>;
308
309/// Setcc
310// FIXME: SETEQ/SETLT/SETLE imply nonans, can we pick better instructions for
311// strict versions of those.
312
313// Match non-signaling FEQ_D
314def : PatSetCC<FPR16, any_fsetcc, SETEQ, FEQ_H>;
315def : PatSetCC<FPR16, any_fsetcc, SETOEQ, FEQ_H>;
316def : PatSetCC<FPR16, strict_fsetcc, SETLT, PseudoQuietFLT_H>;
317def : PatSetCC<FPR16, strict_fsetcc, SETOLT, PseudoQuietFLT_H>;
318def : PatSetCC<FPR16, strict_fsetcc, SETLE, PseudoQuietFLE_H>;
319def : PatSetCC<FPR16, strict_fsetcc, SETOLE, PseudoQuietFLE_H>;
320
321// Match signaling FEQ_H
322def : Pat<(strict_fsetccs FPR16:$rs1, FPR16:$rs2, SETEQ),
323          (AND (FLE_H $rs1, $rs2),
324               (FLE_H $rs2, $rs1))>;
325def : Pat<(strict_fsetccs FPR16:$rs1, FPR16:$rs2, SETOEQ),
326          (AND (FLE_H $rs1, $rs2),
327               (FLE_H $rs2, $rs1))>;
328// If both operands are the same, use a single FLE.
329def : Pat<(strict_fsetccs FPR16:$rs1, FPR16:$rs1, SETEQ),
330          (FLE_H $rs1, $rs1)>;
331def : Pat<(strict_fsetccs FPR16:$rs1, FPR16:$rs1, SETOEQ),
332          (FLE_H $rs1, $rs1)>;
333
334def : PatSetCC<FPR16, any_fsetccs, SETLT, FLT_H>;
335def : PatSetCC<FPR16, any_fsetccs, SETOLT, FLT_H>;
336def : PatSetCC<FPR16, any_fsetccs, SETLE, FLE_H>;
337def : PatSetCC<FPR16, any_fsetccs, SETOLE, FLE_H>;
338
339def Select_FPR16_Using_CC_GPR : SelectCC_rrirr<FPR16, GPR>;
340} // Predicates = [HasStdExtZfh]
341
342let Predicates = [HasStdExtZfhOrZfhmin] in {
343/// Loads
344
345defm : LdPat<load, FLH, f16>;
346
347/// Stores
348
349defm : StPat<store, FSH, FPR16, f16>;
350
351/// Float conversion operations
352
353// f32 -> f16, f16 -> f32
354def : Pat<(any_fpround FPR32:$rs1), (FCVT_H_S FPR32:$rs1, 0b111)>;
355def : Pat<(any_fpextend FPR16:$rs1), (FCVT_S_H FPR16:$rs1)>;
356
357// Moves (no conversion)
358def : Pat<(riscv_fmv_h_x GPR:$src), (FMV_H_X GPR:$src)>;
359def : Pat<(riscv_fmv_x_anyexth FPR16:$src), (FMV_X_H FPR16:$src)>;
360def : Pat<(riscv_fmv_x_signexth FPR16:$src), (FMV_X_H FPR16:$src)>;
361} // Predicates = [HasStdExtZfhOrZfhmin]
362
363let Predicates = [HasStdExtZfh, IsRV32] in {
364// half->[u]int. Round-to-zero must be used.
365def : Pat<(i32 (any_fp_to_sint FPR16:$rs1)), (FCVT_W_H $rs1, 0b001)>;
366def : Pat<(i32 (any_fp_to_uint FPR16:$rs1)), (FCVT_WU_H $rs1, 0b001)>;
367
368// Saturating float->[u]int32.
369def : Pat<(i32 (riscv_fcvt_x FPR16:$rs1, timm:$frm)), (FCVT_W_H $rs1, timm:$frm)>;
370def : Pat<(i32 (riscv_fcvt_xu FPR16:$rs1, timm:$frm)), (FCVT_WU_H $rs1, timm:$frm)>;
371
372// half->int32 with current rounding mode.
373def : Pat<(i32 (any_lrint FPR16:$rs1)), (FCVT_W_H $rs1, 0b111)>;
374
375// half->int32 rounded to nearest with ties rounded away from zero.
376def : Pat<(i32 (any_lround FPR16:$rs1)), (FCVT_W_H $rs1, 0b100)>;
377
378// [u]int->half. Match GCC and default to using dynamic rounding mode.
379def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_H_W $rs1, 0b111)>;
380def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_H_WU $rs1, 0b111)>;
381} // Predicates = [HasStdExtZfh, IsRV32]
382
383let Predicates = [HasStdExtZfh, IsRV64] in {
384// Use target specific isd nodes to help us remember the result is sign
385// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
386// duplicated if it has another user that didn't need the sign_extend.
387def : Pat<(riscv_any_fcvt_w_rv64 FPR16:$rs1, timm:$frm),  (FCVT_W_H $rs1, timm:$frm)>;
388def : Pat<(riscv_any_fcvt_wu_rv64 FPR16:$rs1, timm:$frm), (FCVT_WU_H $rs1, timm:$frm)>;
389
390// half->[u]int64. Round-to-zero must be used.
391def : Pat<(i64 (any_fp_to_sint FPR16:$rs1)), (FCVT_L_H $rs1, 0b001)>;
392def : Pat<(i64 (any_fp_to_uint FPR16:$rs1)), (FCVT_LU_H $rs1, 0b001)>;
393
394// Saturating float->[u]int64.
395def : Pat<(i64 (riscv_fcvt_x FPR16:$rs1, timm:$frm)), (FCVT_L_H $rs1, timm:$frm)>;
396def : Pat<(i64 (riscv_fcvt_xu FPR16:$rs1, timm:$frm)), (FCVT_LU_H $rs1, timm:$frm)>;
397
398// half->int64 with current rounding mode.
399def : Pat<(i64 (any_lrint FPR16:$rs1)), (FCVT_L_H $rs1, 0b111)>;
400def : Pat<(i64 (any_llrint FPR16:$rs1)), (FCVT_L_H $rs1, 0b111)>;
401
402// half->int64 rounded to nearest with ties rounded away from zero.
403def : Pat<(i64 (any_lround FPR16:$rs1)), (FCVT_L_H $rs1, 0b100)>;
404def : Pat<(i64 (any_llround FPR16:$rs1)), (FCVT_L_H $rs1, 0b100)>;
405
406// [u]int->fp. Match GCC and default to using dynamic rounding mode.
407def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_H_W $rs1, 0b111)>;
408def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_H_WU $rs1, 0b111)>;
409def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_H_L $rs1, 0b111)>;
410def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_H_LU $rs1, 0b111)>;
411} // Predicates = [HasStdExtZfh, IsRV64]
412
413let Predicates = [HasStdExtZfhOrZfhmin, HasStdExtD] in {
414/// Float conversion operations
415// f64 -> f16, f16 -> f64
416def : Pat<(any_fpround FPR64:$rs1), (FCVT_H_D FPR64:$rs1, 0b111)>;
417def : Pat<(any_fpextend FPR16:$rs1), (FCVT_D_H FPR16:$rs1)>;
418
419/// Float arithmetic operations
420def : Pat<(fcopysign FPR16:$rs1, FPR64:$rs2),
421          (FSGNJ_H $rs1, (FCVT_H_D $rs2, 0b111))>;
422def : Pat<(fcopysign FPR64:$rs1, FPR16:$rs2), (FSGNJ_D $rs1, (FCVT_D_H $rs2))>;
423} // Predicates = [HasStdExtZfhOrZfhmin, HasStdExtD]
424