xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoZfh.td (revision 4f5890a0fb086324a657f3cd7ba1abc57274e0db)
1//===-- RISCVInstrInfoZfh.td - RISC-V 'Zfh' instructions ---*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the RISC-V instructions from the standard 'Zfh'
10// half-precision floating-point extension, version 1.0.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// RISC-V specific DAG Nodes.
16//===----------------------------------------------------------------------===//
17
18def SDT_RISCVFMV_H_X
19    : SDTypeProfile<1, 1, [SDTCisVT<0, f16>, SDTCisVT<1, XLenVT>]>;
20def SDT_RISCVFMV_X_ANYEXTH
21    : SDTypeProfile<1, 1, [SDTCisVT<0, XLenVT>, SDTCisVT<1, f16>]>;
22
23def riscv_fmv_h_x
24    : SDNode<"RISCVISD::FMV_H_X", SDT_RISCVFMV_H_X>;
25def riscv_fmv_x_anyexth
26    : SDNode<"RISCVISD::FMV_X_ANYEXTH", SDT_RISCVFMV_X_ANYEXTH>;
27
28//===----------------------------------------------------------------------===//
29// Operand and SDNode transformation definitions.
30//===----------------------------------------------------------------------===//
31
32// Zhinxmin and Zhinx
33
34def FPR16INX : RegisterOperand<GPRF16> {
35  let ParserMatchClass = GPRAsFPR;
36  let DecoderMethod = "DecodeGPRRegisterClass";
37}
38
39def ZfhExt           : ExtInfo<0, [HasStdExtZfh]>;
40def Zfh64Ext         : ExtInfo<0, [HasStdExtZfh,             IsRV64]>;
41def ZfhminExt        : ExtInfo<0, [HasStdExtZfhOrZfhmin]>;
42def ZhinxExt         : ExtInfo<1, [HasStdExtZhinx]>;
43def ZhinxminExt      : ExtInfo<1, [HasStdExtZhinxOrZhinxmin]>;
44def Zhinx64Ext       : ExtInfo<1, [HasStdExtZhinx,           IsRV64]>;
45
46def ZfhminDExt       : ExtInfo<0, [HasStdExtZfhOrZfhmin,     HasStdExtD]>;
47def ZhinxminZdinxExt : ExtInfo<1, [HasStdExtZhinxOrZhinxmin, HasStdExtZdinx]>;
48
49def H     : ExtInfo_r<ZfhExt,     FPR16>;
50def H_INX : ExtInfo_r<ZhinxExt, FPR16INX>;
51
52def HH        : ExtInfo_rr<ZfhExt,           FPR16,    FPR16>;
53def HH_INX    : ExtInfo_rr<ZhinxExt,         FPR16INX, FPR16INX>;
54def XH        : ExtInfo_rr<ZfhExt,           GPR,      FPR16>;
55def XH_INX    : ExtInfo_rr<ZhinxExt,         GPR,      FPR16INX>;
56def HX        : ExtInfo_rr<ZfhExt,           FPR16,    GPR>;
57def HX_INX    : ExtInfo_rr<ZhinxExt,         FPR16INX, GPR>;
58def XH_64     : ExtInfo_rr<Zfh64Ext,         GPR,      FPR16>;
59def HX_64     : ExtInfo_rr<Zfh64Ext,         FPR16,    GPR>;
60def XH_INX_64 : ExtInfo_rr<Zhinx64Ext,       GPR,      FPR16INX>;
61def HX_INX_64 : ExtInfo_rr<Zhinx64Ext,       FPR16INX, GPR>;
62def HFmin     : ExtInfo_rr<ZfhminExt,        FPR16,    FPR32>;
63def HF_INXmin : ExtInfo_rr<ZhinxminExt,      FPR16INX, FPR32INX>;
64def HF_INX    : ExtInfo_rr<ZhinxExt,         FPR16INX, FPR32INX>;
65def FHmin     : ExtInfo_rr<ZfhminExt,        FPR32,    FPR16>;
66def FH_INXmin : ExtInfo_rr<ZhinxminExt,      FPR32INX, FPR16INX>;
67def FH_INX    : ExtInfo_rr<ZhinxExt,         FPR32INX, FPR16INX>;
68def DHmin     : ExtInfo_rr<ZfhminDExt,       FPR64,    FPR16>;
69def DH_INXmin : ExtInfo_rr<ZhinxminZdinxExt, FPR64INX, FPR16INX>;
70def HDmin     : ExtInfo_rr<ZfhminDExt,       FPR16,    FPR64>;
71def HD_INXmin : ExtInfo_rr<ZhinxminZdinxExt, FPR16INX, FPR64INX>;
72
73defvar HINX     = [H,     H_INX];
74defvar HHINX    = [HH,    HH_INX];
75defvar XHINX    = [XH,    XH_INX];
76defvar HXINX    = [HX,    HX_INX];
77defvar XHIN64X  = [XH_64, XH_INX_64];
78defvar HXIN64X  = [HX_64, HX_INX_64];
79defvar HFINXmin = [HFmin, HF_INXmin];
80defvar FHINXmin = [FHmin, FH_INXmin];
81defvar DHINXmin = [DHmin, DH_INXmin];
82defvar HDINXmin = [HDmin, HD_INXmin];
83
84//===----------------------------------------------------------------------===//
85// Instructions
86//===----------------------------------------------------------------------===//
87
88let Predicates = [HasStdExtZfhOrZfhmin] in {
89def FLH : FPLoad_r<0b001, "flh", FPR16, WriteFLD16>;
90
91// Operands for stores are in the order srcreg, base, offset rather than
92// reflecting the order these fields are specified in the instruction
93// encoding.
94def FSH : FPStore_r<0b001, "fsh", FPR16, WriteFST16>;
95} // Predicates = [HasStdExtZfhOrZfhmin]
96
97let SchedRW = [WriteFMA16, ReadFMA16, ReadFMA16, ReadFMA16] in {
98defm FMADD_H  : FPFMA_rrr_frm_m<OPC_MADD,  0b10, "fmadd.h",  HINX>;
99defm FMSUB_H  : FPFMA_rrr_frm_m<OPC_MSUB,  0b10, "fmsub.h",  HINX>;
100defm FNMSUB_H : FPFMA_rrr_frm_m<OPC_NMSUB, 0b10, "fnmsub.h", HINX>;
101defm FNMADD_H : FPFMA_rrr_frm_m<OPC_NMADD, 0b10, "fnmadd.h", HINX>;
102}
103
104defm : FPFMADynFrmAlias_m<FMADD_H,  "fmadd.h",  HINX>;
105defm : FPFMADynFrmAlias_m<FMSUB_H,  "fmsub.h",  HINX>;
106defm : FPFMADynFrmAlias_m<FNMSUB_H, "fnmsub.h", HINX>;
107defm : FPFMADynFrmAlias_m<FNMADD_H, "fnmadd.h", HINX>;
108
109let SchedRW = [WriteFALU16, ReadFALU16, ReadFALU16] in {
110defm FADD_H : FPALU_rr_frm_m<0b0000010, "fadd.h", HINX>;
111defm FSUB_H : FPALU_rr_frm_m<0b0000110, "fsub.h", HINX>;
112}
113let SchedRW = [WriteFMul16, ReadFMul16, ReadFMul16] in
114defm FMUL_H : FPALU_rr_frm_m<0b0001010, "fmul.h", HINX>;
115
116let SchedRW = [WriteFDiv16, ReadFDiv16, ReadFDiv16] in
117defm FDIV_H : FPALU_rr_frm_m<0b0001110, "fdiv.h", HINX>;
118
119defm : FPALUDynFrmAlias_m<FADD_H, "fadd.h", HINX>;
120defm : FPALUDynFrmAlias_m<FSUB_H, "fsub.h", HINX>;
121defm : FPALUDynFrmAlias_m<FMUL_H, "fmul.h", HINX>;
122defm : FPALUDynFrmAlias_m<FDIV_H, "fdiv.h", HINX>;
123
124defm FSQRT_H : FPUnaryOp_r_frm_m<0b0101110, 0b00000, HHINX, "fsqrt.h">,
125               Sched<[WriteFSqrt16, ReadFSqrt16]>;
126defm         : FPUnaryOpDynFrmAlias_m<FSQRT_H, "fsqrt.h", HHINX>;
127
128let SchedRW = [WriteFSGNJ16, ReadFSGNJ16, ReadFSGNJ16],
129    mayRaiseFPException = 0 in {
130defm FSGNJ_H  : FPALU_rr_m<0b0010010, 0b000, "fsgnj.h",  HINX>;
131defm FSGNJN_H : FPALU_rr_m<0b0010010, 0b001, "fsgnjn.h", HINX>;
132defm FSGNJX_H : FPALU_rr_m<0b0010010, 0b010, "fsgnjx.h", HINX>;
133}
134
135let SchedRW = [WriteFMinMax16, ReadFMinMax16, ReadFMinMax16] in {
136defm FMIN_H   : FPALU_rr_m<0b0010110, 0b000, "fmin.h", HINX>;
137defm FMAX_H   : FPALU_rr_m<0b0010110, 0b001, "fmax.h", HINX>;
138}
139
140defm FCVT_W_H : FPUnaryOp_r_frm_m<0b1100010, 0b00000, XHINX, "fcvt.w.h">,
141                Sched<[WriteFCvtF16ToI32, ReadFCvtF16ToI32]>;
142defm          : FPUnaryOpDynFrmAlias_m<FCVT_W_H, "fcvt.w.h", XHINX>;
143
144defm FCVT_WU_H : FPUnaryOp_r_frm_m<0b1100010, 0b00001, XHINX, "fcvt.wu.h">,
145                 Sched<[WriteFCvtF16ToI32, ReadFCvtF16ToI32]>;
146defm           : FPUnaryOpDynFrmAlias_m<FCVT_WU_H, "fcvt.wu.h", XHINX>;
147
148defm FCVT_H_W : FPUnaryOp_r_frm_m<0b1101010, 0b00000, HXINX, "fcvt.h.w">,
149                Sched<[WriteFCvtI32ToF16, ReadFCvtI32ToF16]>;
150defm          : FPUnaryOpDynFrmAlias_m<FCVT_H_W, "fcvt.h.w", HXINX>;
151
152defm FCVT_H_WU : FPUnaryOp_r_frm_m<0b1101010, 0b00001, HXINX, "fcvt.h.wu">,
153                 Sched<[WriteFCvtI32ToF16, ReadFCvtI32ToF16]>;
154defm           : FPUnaryOpDynFrmAlias_m<FCVT_H_WU, "fcvt.h.wu", HXINX>;
155
156defm FCVT_H_S : FPUnaryOp_r_frm_m<0b0100010, 0b00000, HFINXmin, "fcvt.h.s">,
157                Sched<[WriteFCvtF32ToF16, ReadFCvtF32ToF16]>;
158defm          : FPUnaryOpDynFrmAlias_m<FCVT_H_S, "fcvt.h.s", HFINXmin>;
159
160defm FCVT_S_H : FPUnaryOp_r_m<0b0100000, 0b00010, 0b000, FHINXmin, "fcvt.s.h">,
161               Sched<[WriteFCvtF16ToF32, ReadFCvtF16ToF32]>;
162
163let Predicates = [HasStdExtZfhOrZfhmin] in {
164let mayRaiseFPException = 0 in
165def FMV_X_H : FPUnaryOp_r<0b1110010, 0b00000, 0b000, GPR, FPR16, "fmv.x.h">,
166              Sched<[WriteFMovF16ToI16, ReadFMovF16ToI16]>;
167
168let mayRaiseFPException = 0 in
169def FMV_H_X : FPUnaryOp_r<0b1111010, 0b00000, 0b000, FPR16, GPR, "fmv.h.x">,
170              Sched<[WriteFMovI16ToF16, ReadFMovI16ToF16]>;
171} // Predicates = [HasStdExtZfhOrZfhmin]
172
173let SchedRW = [WriteFCmp16, ReadFCmp16, ReadFCmp16] in {
174defm FEQ_H : FPCmp_rr_m<0b1010010, 0b010, "feq.h", HINX>;
175defm FLT_H : FPCmp_rr_m<0b1010010, 0b001, "flt.h", HINX>;
176defm FLE_H : FPCmp_rr_m<0b1010010, 0b000, "fle.h", HINX>;
177}
178
179let mayRaiseFPException = 0 in
180defm FCLASS_H : FPUnaryOp_r_m<0b1110010, 0b00000, 0b001, XHINX, "fclass.h">,
181                Sched<[WriteFClass16, ReadFClass16]>;
182
183defm FCVT_L_H  : FPUnaryOp_r_frm_m<0b1100010, 0b00010, XHIN64X, "fcvt.l.h">,
184                 Sched<[WriteFCvtF16ToI64, ReadFCvtF16ToI64]>;
185defm           : FPUnaryOpDynFrmAlias_m<FCVT_L_H, "fcvt.l.h", XHIN64X>;
186
187defm FCVT_LU_H  : FPUnaryOp_r_frm_m<0b1100010, 0b00011, XHIN64X, "fcvt.lu.h">,
188                  Sched<[WriteFCvtF16ToI64, ReadFCvtF16ToI64]>;
189defm            : FPUnaryOpDynFrmAlias_m<FCVT_LU_H, "fcvt.lu.h", XHIN64X>;
190
191defm FCVT_H_L : FPUnaryOp_r_frm_m<0b1101010, 0b00010, HXIN64X, "fcvt.h.l">,
192                Sched<[WriteFCvtI64ToF16, ReadFCvtI64ToF16]>;
193defm          : FPUnaryOpDynFrmAlias_m<FCVT_H_L, "fcvt.h.l", HXIN64X>;
194
195defm FCVT_H_LU : FPUnaryOp_r_frm_m<0b1101010, 0b00011, HXIN64X, "fcvt.h.lu">,
196                 Sched<[WriteFCvtI64ToF16, ReadFCvtI64ToF16]>;
197defm           : FPUnaryOpDynFrmAlias_m<FCVT_H_LU, "fcvt.h.lu", HXIN64X>;
198
199defm FCVT_H_D : FPUnaryOp_r_frm_m<0b0100010, 0b00001, HDINXmin, "fcvt.h.d">,
200                Sched<[WriteFCvtF64ToF16, ReadFCvtF64ToF16]>;
201defm          : FPUnaryOpDynFrmAlias_m<FCVT_H_D, "fcvt.h.d", HDINXmin>;
202
203defm FCVT_D_H : FPUnaryOp_r_m<0b0100001, 0b00010, 0b000, DHINXmin, "fcvt.d.h">,
204                Sched<[WriteFCvtF16ToF64, ReadFCvtF16ToF64]>;
205
206//===----------------------------------------------------------------------===//
207// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
208//===----------------------------------------------------------------------===//
209
210let Predicates = [HasStdExtZfhOrZfhmin] in {
211def : InstAlias<"flh $rd, (${rs1})",  (FLH FPR16:$rd,  GPR:$rs1, 0), 0>;
212def : InstAlias<"fsh $rs2, (${rs1})", (FSH FPR16:$rs2, GPR:$rs1, 0), 0>;
213} // Predicates = [HasStdExtZfhOrZfhmin]
214
215let Predicates = [HasStdExtZfh] in {
216def : InstAlias<"fmv.h $rd, $rs",  (FSGNJ_H  FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
217def : InstAlias<"fabs.h $rd, $rs", (FSGNJX_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
218def : InstAlias<"fneg.h $rd, $rs", (FSGNJN_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
219
220// fgt.h/fge.h are recognised by the GNU assembler but the canonical
221// flt.h/fle.h forms will always be printed. Therefore, set a zero weight.
222def : InstAlias<"fgt.h $rd, $rs, $rt",
223                (FLT_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>;
224def : InstAlias<"fge.h $rd, $rs, $rt",
225                (FLE_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>;
226} // Predicates = [HasStdExtZfh]
227
228let Predicates = [HasStdExtZfhOrZfhmin] in {
229def PseudoFLH  : PseudoFloatLoad<"flh", FPR16>;
230def PseudoFSH  : PseudoStore<"fsh", FPR16>;
231let usesCustomInserter = 1 in {
232def PseudoQuietFLE_H : PseudoQuietFCMP<FPR16>;
233def PseudoQuietFLT_H : PseudoQuietFCMP<FPR16>;
234}
235} // Predicates = [HasStdExtZfhOrZfhmin]
236
237let Predicates = [HasStdExtZhinx] in {
238def : InstAlias<"fmv.h $rd, $rs",  (FSGNJ_H_INX  FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>;
239def : InstAlias<"fabs.h $rd, $rs", (FSGNJX_H_INX FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>;
240def : InstAlias<"fneg.h $rd, $rs", (FSGNJN_H_INX FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>;
241
242def : InstAlias<"fgt.h $rd, $rs, $rt",
243                (FLT_H_INX GPR:$rd, FPR16INX:$rt, FPR16INX:$rs), 0>;
244def : InstAlias<"fge.h $rd, $rs, $rt",
245                (FLE_H_INX GPR:$rd, FPR16INX:$rt, FPR16INX:$rs), 0>;
246} // Predicates = [HasStdExtZhinx]
247
248//===----------------------------------------------------------------------===//
249// Pseudo-instructions and codegen patterns
250//===----------------------------------------------------------------------===//
251
252/// Generic pattern classes
253class PatFpr16Fpr16<SDPatternOperator OpNode, RVInstR Inst>
254    : Pat<(OpNode FPR16:$rs1, FPR16:$rs2), (Inst $rs1, $rs2)>;
255
256class PatFpr16Fpr16DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst>
257    : Pat<(OpNode FPR16:$rs1, FPR16:$rs2), (Inst $rs1, $rs2, 0b111)>;
258
259let Predicates = [HasStdExtZfh] in {
260
261/// Float constants
262def : Pat<(f16 (fpimm0)), (FMV_H_X X0)>;
263def : Pat<(f16 (fpimmneg0)), (FSGNJN_H (FMV_H_X X0), (FMV_H_X X0))>;
264
265/// Float conversion operations
266
267// [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so
268// are defined later.
269
270/// Float arithmetic operations
271
272def : PatFpr16Fpr16DynFrm<any_fadd, FADD_H>;
273def : PatFpr16Fpr16DynFrm<any_fsub, FSUB_H>;
274def : PatFpr16Fpr16DynFrm<any_fmul, FMUL_H>;
275def : PatFpr16Fpr16DynFrm<any_fdiv, FDIV_H>;
276
277def : Pat<(any_fsqrt FPR16:$rs1), (FSQRT_H FPR16:$rs1, 0b111)>;
278
279def : Pat<(fneg FPR16:$rs1), (FSGNJN_H $rs1, $rs1)>;
280def : Pat<(fabs FPR16:$rs1), (FSGNJX_H $rs1, $rs1)>;
281
282def : PatFpr16Fpr16<fcopysign, FSGNJ_H>;
283def : Pat<(fcopysign FPR16:$rs1, (fneg FPR16:$rs2)), (FSGNJN_H $rs1, $rs2)>;
284def : Pat<(fcopysign FPR16:$rs1, FPR32:$rs2),
285          (FSGNJ_H $rs1, (FCVT_H_S $rs2, 0b111))>;
286def : Pat<(fcopysign FPR32:$rs1, FPR16:$rs2), (FSGNJ_S $rs1, (FCVT_S_H $rs2))>;
287
288// fmadd: rs1 * rs2 + rs3
289def : Pat<(any_fma FPR16:$rs1, FPR16:$rs2, FPR16:$rs3),
290          (FMADD_H $rs1, $rs2, $rs3, 0b111)>;
291
292// fmsub: rs1 * rs2 - rs3
293def : Pat<(any_fma FPR16:$rs1, FPR16:$rs2, (fneg FPR16:$rs3)),
294          (FMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, 0b111)>;
295
296// fnmsub: -rs1 * rs2 + rs3
297def : Pat<(any_fma (fneg FPR16:$rs1), FPR16:$rs2, FPR16:$rs3),
298          (FNMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, 0b111)>;
299
300// fnmadd: -rs1 * rs2 - rs3
301def : Pat<(any_fma (fneg FPR16:$rs1), FPR16:$rs2, (fneg FPR16:$rs3)),
302          (FNMADD_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, 0b111)>;
303
304// The ratified 20191213 ISA spec defines fmin and fmax in a way that matches
305// LLVM's fminnum and fmaxnum
306// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
307def : PatFpr16Fpr16<fminnum, FMIN_H>;
308def : PatFpr16Fpr16<fmaxnum, FMAX_H>;
309
310/// Setcc
311// FIXME: SETEQ/SETLT/SETLE imply nonans, can we pick better instructions for
312// strict versions of those.
313
314// Match non-signaling FEQ_D
315def : PatSetCC<FPR16, any_fsetcc, SETEQ, FEQ_H>;
316def : PatSetCC<FPR16, any_fsetcc, SETOEQ, FEQ_H>;
317def : PatSetCC<FPR16, strict_fsetcc, SETLT, PseudoQuietFLT_H>;
318def : PatSetCC<FPR16, strict_fsetcc, SETOLT, PseudoQuietFLT_H>;
319def : PatSetCC<FPR16, strict_fsetcc, SETLE, PseudoQuietFLE_H>;
320def : PatSetCC<FPR16, strict_fsetcc, SETOLE, PseudoQuietFLE_H>;
321
322// Match signaling FEQ_H
323def : Pat<(strict_fsetccs FPR16:$rs1, FPR16:$rs2, SETEQ),
324          (AND (FLE_H $rs1, $rs2),
325               (FLE_H $rs2, $rs1))>;
326def : Pat<(strict_fsetccs FPR16:$rs1, FPR16:$rs2, SETOEQ),
327          (AND (FLE_H $rs1, $rs2),
328               (FLE_H $rs2, $rs1))>;
329// If both operands are the same, use a single FLE.
330def : Pat<(strict_fsetccs FPR16:$rs1, FPR16:$rs1, SETEQ),
331          (FLE_H $rs1, $rs1)>;
332def : Pat<(strict_fsetccs FPR16:$rs1, FPR16:$rs1, SETOEQ),
333          (FLE_H $rs1, $rs1)>;
334
335def : PatSetCC<FPR16, any_fsetccs, SETLT, FLT_H>;
336def : PatSetCC<FPR16, any_fsetccs, SETOLT, FLT_H>;
337def : PatSetCC<FPR16, any_fsetccs, SETLE, FLE_H>;
338def : PatSetCC<FPR16, any_fsetccs, SETOLE, FLE_H>;
339
340def Select_FPR16_Using_CC_GPR : SelectCC_rrirr<FPR16, GPR>;
341} // Predicates = [HasStdExtZfh]
342
343let Predicates = [HasStdExtZfhOrZfhmin] in {
344/// Loads
345
346defm : LdPat<load, FLH, f16>;
347
348/// Stores
349
350defm : StPat<store, FSH, FPR16, f16>;
351
352/// Float conversion operations
353
354// f32 -> f16, f16 -> f32
355def : Pat<(any_fpround FPR32:$rs1), (FCVT_H_S FPR32:$rs1, 0b111)>;
356def : Pat<(any_fpextend FPR16:$rs1), (FCVT_S_H FPR16:$rs1)>;
357
358// Moves (no conversion)
359def : Pat<(riscv_fmv_h_x GPR:$src), (FMV_H_X GPR:$src)>;
360def : Pat<(riscv_fmv_x_anyexth FPR16:$src), (FMV_X_H FPR16:$src)>;
361} // Predicates = [HasStdExtZfhOrZfhmin]
362
363let Predicates = [HasStdExtZfh, IsRV32] in {
364// half->[u]int. Round-to-zero must be used.
365def : Pat<(i32 (any_fp_to_sint FPR16:$rs1)), (FCVT_W_H $rs1, 0b001)>;
366def : Pat<(i32 (any_fp_to_uint FPR16:$rs1)), (FCVT_WU_H $rs1, 0b001)>;
367
368// Saturating float->[u]int32.
369def : Pat<(i32 (riscv_fcvt_x FPR16:$rs1, timm:$frm)), (FCVT_W_H $rs1, timm:$frm)>;
370def : Pat<(i32 (riscv_fcvt_xu FPR16:$rs1, timm:$frm)), (FCVT_WU_H $rs1, timm:$frm)>;
371
372// half->int32 with current rounding mode.
373def : Pat<(i32 (any_lrint FPR16:$rs1)), (FCVT_W_H $rs1, 0b111)>;
374
375// half->int32 rounded to nearest with ties rounded away from zero.
376def : Pat<(i32 (any_lround FPR16:$rs1)), (FCVT_W_H $rs1, 0b100)>;
377
378// [u]int->half. Match GCC and default to using dynamic rounding mode.
379def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_H_W $rs1, 0b111)>;
380def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_H_WU $rs1, 0b111)>;
381} // Predicates = [HasStdExtZfh, IsRV32]
382
383let Predicates = [HasStdExtZfh, IsRV64] in {
384// Use target specific isd nodes to help us remember the result is sign
385// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
386// duplicated if it has another user that didn't need the sign_extend.
387def : Pat<(riscv_any_fcvt_w_rv64 FPR16:$rs1, timm:$frm),  (FCVT_W_H $rs1, timm:$frm)>;
388def : Pat<(riscv_any_fcvt_wu_rv64 FPR16:$rs1, timm:$frm), (FCVT_WU_H $rs1, timm:$frm)>;
389
390// half->[u]int64. Round-to-zero must be used.
391def : Pat<(i64 (any_fp_to_sint FPR16:$rs1)), (FCVT_L_H $rs1, 0b001)>;
392def : Pat<(i64 (any_fp_to_uint FPR16:$rs1)), (FCVT_LU_H $rs1, 0b001)>;
393
394// Saturating float->[u]int64.
395def : Pat<(i64 (riscv_fcvt_x FPR16:$rs1, timm:$frm)), (FCVT_L_H $rs1, timm:$frm)>;
396def : Pat<(i64 (riscv_fcvt_xu FPR16:$rs1, timm:$frm)), (FCVT_LU_H $rs1, timm:$frm)>;
397
398// half->int64 with current rounding mode.
399def : Pat<(i64 (any_lrint FPR16:$rs1)), (FCVT_L_H $rs1, 0b111)>;
400def : Pat<(i64 (any_llrint FPR16:$rs1)), (FCVT_L_H $rs1, 0b111)>;
401
402// half->int64 rounded to nearest with ties rounded away from zero.
403def : Pat<(i64 (any_lround FPR16:$rs1)), (FCVT_L_H $rs1, 0b100)>;
404def : Pat<(i64 (any_llround FPR16:$rs1)), (FCVT_L_H $rs1, 0b100)>;
405
406// [u]int->fp. Match GCC and default to using dynamic rounding mode.
407def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_H_W $rs1, 0b111)>;
408def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_H_WU $rs1, 0b111)>;
409def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_H_L $rs1, 0b111)>;
410def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_H_LU $rs1, 0b111)>;
411} // Predicates = [HasStdExtZfh, IsRV64]
412
413let Predicates = [HasStdExtZfhOrZfhmin, HasStdExtD] in {
414/// Float conversion operations
415// f64 -> f16, f16 -> f64
416def : Pat<(any_fpround FPR64:$rs1), (FCVT_H_D FPR64:$rs1, 0b111)>;
417def : Pat<(any_fpextend FPR16:$rs1), (FCVT_D_H FPR16:$rs1)>;
418
419/// Float arithmetic operations
420def : Pat<(fcopysign FPR16:$rs1, FPR64:$rs2),
421          (FSGNJ_H $rs1, (FCVT_H_D $rs2, 0b111))>;
422def : Pat<(fcopysign FPR64:$rs1, FPR16:$rs2), (FSGNJ_D $rs1, (FCVT_D_H $rs2))>;
423} // Predicates = [HasStdExtZfhOrZfhmin, HasStdExtD]
424