xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoM.td (revision b5a3a89c50671a1ad29e7c43fe15e7b16feac239)
1//===-- RISCVInstrInfoM.td - RISC-V 'M' instructions -------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the RISC-V instructions from the standard 'M', Integer
10// Multiplication and Division instruction set extension.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// RISC-V specific DAG Nodes.
16//===----------------------------------------------------------------------===//
17
18def riscv_mulhsu : SDNode<"RISCVISD::MULHSU", SDTIntBinOp>;
19def riscv_divw  : SDNode<"RISCVISD::DIVW",  SDT_RISCVIntBinOpW>;
20def riscv_divuw : SDNode<"RISCVISD::DIVUW", SDT_RISCVIntBinOpW>;
21def riscv_remuw : SDNode<"RISCVISD::REMUW", SDT_RISCVIntBinOpW>;
22
23//===----------------------------------------------------------------------===//
24// Instructions
25//===----------------------------------------------------------------------===//
26
27let Predicates = [HasStdExtMOrZmmul] in {
28def MUL     : ALU_rr<0b0000001, 0b000, "mul", /*Commutable*/1>,
29              Sched<[WriteIMul, ReadIMul, ReadIMul]>;
30def MULH    : ALU_rr<0b0000001, 0b001, "mulh", /*Commutable*/1>,
31              Sched<[WriteIMul, ReadIMul, ReadIMul]>;
32def MULHSU  : ALU_rr<0b0000001, 0b010, "mulhsu">,
33              Sched<[WriteIMul, ReadIMul, ReadIMul]>;
34def MULHU   : ALU_rr<0b0000001, 0b011, "mulhu", /*Commutable*/1>,
35              Sched<[WriteIMul, ReadIMul, ReadIMul]>;
36} // Predicates = [HasStdExtMOrZmmul]
37
38let Predicates = [HasStdExtM] in {
39def DIV     : ALU_rr<0b0000001, 0b100, "div">,
40              Sched<[WriteIDiv, ReadIDiv, ReadIDiv]>;
41def DIVU    : ALU_rr<0b0000001, 0b101, "divu">,
42              Sched<[WriteIDiv, ReadIDiv, ReadIDiv]>;
43def REM     : ALU_rr<0b0000001, 0b110, "rem">,
44              Sched<[WriteIDiv, ReadIDiv, ReadIDiv]>;
45def REMU    : ALU_rr<0b0000001, 0b111, "remu">,
46              Sched<[WriteIDiv, ReadIDiv, ReadIDiv]>;
47} // Predicates = [HasStdExtM]
48
49let Predicates = [HasStdExtMOrZmmul, IsRV64], IsSignExtendingOpW = 1 in {
50def MULW    : ALUW_rr<0b0000001, 0b000, "mulw", /*Commutable*/1>,
51              Sched<[WriteIMul32, ReadIMul32, ReadIMul32]>;
52} // Predicates = [HasStdExtMOrZmmul, IsRV64]
53
54let Predicates = [HasStdExtM, IsRV64], IsSignExtendingOpW = 1 in {
55def DIVW    : ALUW_rr<0b0000001, 0b100, "divw">,
56              Sched<[WriteIDiv32, ReadIDiv32, ReadIDiv32]>;
57def DIVUW   : ALUW_rr<0b0000001, 0b101, "divuw">,
58              Sched<[WriteIDiv32, ReadIDiv32, ReadIDiv32]>;
59def REMW    : ALUW_rr<0b0000001, 0b110, "remw">,
60              Sched<[WriteIDiv32, ReadIDiv32, ReadIDiv32]>;
61def REMUW   : ALUW_rr<0b0000001, 0b111, "remuw">,
62              Sched<[WriteIDiv32, ReadIDiv32, ReadIDiv32]>;
63} // Predicates = [HasStdExtM, IsRV64]
64
65//===----------------------------------------------------------------------===//
66// Pseudo-instructions and codegen patterns
67//===----------------------------------------------------------------------===//
68
69let Predicates = [HasStdExtMOrZmmul] in {
70def : PatGprGpr<mul, MUL>;
71def : PatGprGpr<mulhs, MULH>;
72def : PatGprGpr<mulhu, MULHU>;
73def : PatGprGpr<riscv_mulhsu, MULHSU>;
74} // Predicates = [HasStdExtMOrZmmul]
75
76let Predicates = [HasStdExtM] in {
77def : PatGprGpr<sdiv, DIV>;
78def : PatGprGpr<udiv, DIVU>;
79def : PatGprGpr<srem, REM>;
80def : PatGprGpr<urem, REMU>;
81} // Predicates = [HasStdExtM]
82
83// Select W instructions if only the lower 32-bits of the result are used.
84let Predicates = [HasStdExtMOrZmmul, IsRV64] in
85def : PatGprGpr<binop_allwusers<mul>, MULW>;
86
87let Predicates = [HasStdExtM, IsRV64] in {
88def : PatGprGpr<riscv_divw, DIVW>;
89def : PatGprGpr<riscv_divuw, DIVUW>;
90def : PatGprGpr<riscv_remuw, REMUW>;
91
92// Handle the specific cases where using DIVU/REMU would be correct and result
93// in fewer instructions than emitting DIVUW/REMUW then zero-extending the
94// result.
95def : Pat<(and (riscv_divuw (assertzexti32 GPR:$rs1),
96                            (assertzexti32 GPR:$rs2)), 0xffffffff),
97          (DIVU GPR:$rs1, GPR:$rs2)>;
98def : Pat<(and (riscv_remuw (assertzexti32 GPR:$rs1),
99                            (assertzexti32 GPR:$rs2)), 0xffffffff),
100          (REMU GPR:$rs1, GPR:$rs2)>;
101
102// Although the sexti32 operands may not have originated from an i32 srem,
103// this pattern is safe as it is impossible for two sign extended inputs to
104// produce a result where res[63:32]=0 and res[31]=1.
105def : Pat<(srem (sexti32 (i64 GPR:$rs1)), (sexti32 (i64 GPR:$rs2))),
106          (REMW GPR:$rs1, GPR:$rs2)>;
107} // Predicates = [HasStdExtM, IsRV64]
108
109let Predicates = [HasStdExtMOrZmmul, IsRV64, NotHasStdExtZba] in {
110// Special case for calculating the full 64-bit product of a 32x32 unsigned
111// multiply where the inputs aren't known to be zero extended. We can shift the
112// inputs left by 32 and use a MULHU. This saves two SRLIs needed to finish
113// zeroing the upper 32 bits.
114def : Pat<(i64 (mul (and GPR:$rs1, 0xffffffff), (and GPR:$rs2, 0xffffffff))),
115          (MULHU (SLLI GPR:$rs1, 32), (SLLI GPR:$rs2, 32))>;
116} // Predicates = [HasStdExtMOrZmmul, IsRV64, NotHasStdExtZba]
117