xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoM.td (revision 54c1a65736ec012b583ade1d53c477e182c574e4)
1//===-- RISCVInstrInfoM.td - RISC-V 'M' instructions -------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the RISC-V instructions from the standard 'M', Integer
10// Multiplication and Division instruction set extension.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// RISC-V specific DAG Nodes.
16//===----------------------------------------------------------------------===//
17
18def riscv_mulhsu : SDNode<"RISCVISD::MULHSU", SDTIntBinOp>;
19def riscv_divw  : SDNode<"RISCVISD::DIVW",  SDT_RISCVIntBinOpW>;
20def riscv_divuw : SDNode<"RISCVISD::DIVUW", SDT_RISCVIntBinOpW>;
21def riscv_remuw : SDNode<"RISCVISD::REMUW", SDT_RISCVIntBinOpW>;
22
23//===----------------------------------------------------------------------===//
24// Instructions
25//===----------------------------------------------------------------------===//
26
27let Predicates = [HasStdExtM] in {
28def MUL     : ALU_rr<0b0000001, 0b000, "mul">,
29              Sched<[WriteIMul, ReadIMul, ReadIMul]>;
30def MULH    : ALU_rr<0b0000001, 0b001, "mulh">,
31              Sched<[WriteIMul, ReadIMul, ReadIMul]>;
32def MULHSU  : ALU_rr<0b0000001, 0b010, "mulhsu">,
33              Sched<[WriteIMul, ReadIMul, ReadIMul]>;
34def MULHU   : ALU_rr<0b0000001, 0b011, "mulhu">,
35              Sched<[WriteIMul, ReadIMul, ReadIMul]>;
36def DIV     : ALU_rr<0b0000001, 0b100, "div">,
37              Sched<[WriteIDiv, ReadIDiv, ReadIDiv]>;
38def DIVU    : ALU_rr<0b0000001, 0b101, "divu">,
39              Sched<[WriteIDiv, ReadIDiv, ReadIDiv]>;
40def REM     : ALU_rr<0b0000001, 0b110, "rem">,
41              Sched<[WriteIDiv, ReadIDiv, ReadIDiv]>;
42def REMU    : ALU_rr<0b0000001, 0b111, "remu">,
43              Sched<[WriteIDiv, ReadIDiv, ReadIDiv]>;
44} // Predicates = [HasStdExtM]
45
46let Predicates = [HasStdExtM, IsRV64] in {
47def MULW    : ALUW_rr<0b0000001, 0b000, "mulw">,
48              Sched<[WriteIMul32, ReadIMul32, ReadIMul32]>;
49def DIVW    : ALUW_rr<0b0000001, 0b100, "divw">,
50              Sched<[WriteIDiv32, ReadIDiv32, ReadIDiv32]>;
51def DIVUW   : ALUW_rr<0b0000001, 0b101, "divuw">,
52              Sched<[WriteIDiv32, ReadIDiv32, ReadIDiv32]>;
53def REMW    : ALUW_rr<0b0000001, 0b110, "remw">,
54              Sched<[WriteIDiv32, ReadIDiv32, ReadIDiv32]>;
55def REMUW   : ALUW_rr<0b0000001, 0b111, "remuw">,
56              Sched<[WriteIDiv32, ReadIDiv32, ReadIDiv32]>;
57} // Predicates = [HasStdExtM, IsRV64]
58
59//===----------------------------------------------------------------------===//
60// Pseudo-instructions and codegen patterns
61//===----------------------------------------------------------------------===//
62
63let Predicates = [HasStdExtM] in {
64def : PatGprGpr<mul, MUL>;
65def : PatGprGpr<mulhs, MULH>;
66def : PatGprGpr<mulhu, MULHU>;
67def : PatGprGpr<riscv_mulhsu, MULHSU>;
68def : PatGprGpr<sdiv, DIV>;
69def : PatGprGpr<udiv, DIVU>;
70def : PatGprGpr<srem, REM>;
71def : PatGprGpr<urem, REMU>;
72} // Predicates = [HasStdExtM]
73
74let Predicates = [HasStdExtM, IsRV64] in {
75def : Pat<(sext_inreg (mul GPR:$rs1, GPR:$rs2), i32),
76          (MULW GPR:$rs1, GPR:$rs2)>;
77
78def : PatGprGpr<riscv_divw, DIVW>;
79def : PatGprGpr<riscv_divuw, DIVUW>;
80def : PatGprGpr<riscv_remuw, REMUW>;
81
82// Handle the specific cases where using DIVU/REMU would be correct and result
83// in fewer instructions than emitting DIVUW/REMUW then zero-extending the
84// result.
85def : Pat<(and (riscv_divuw (assertzexti32 GPR:$rs1),
86                            (assertzexti32 GPR:$rs2)), 0xffffffff),
87          (DIVU GPR:$rs1, GPR:$rs2)>;
88def : Pat<(and (riscv_remuw (assertzexti32 GPR:$rs1),
89                            (assertzexti32 GPR:$rs2)), 0xffffffff),
90          (REMU GPR:$rs1, GPR:$rs2)>;
91
92// Although the sexti32 operands may not have originated from an i32 srem,
93// this pattern is safe as it is impossible for two sign extended inputs to
94// produce a result where res[63:32]=0 and res[31]=1.
95def : Pat<(srem (sexti32 (i64 GPR:$rs1)), (sexti32 (i64 GPR:$rs2))),
96          (REMW GPR:$rs1, GPR:$rs2)>;
97} // Predicates = [HasStdExtM, IsRV64]
98
99let Predicates = [HasStdExtM, IsRV64, NotHasStdExtZba] in {
100// Special case for calculating the full 64-bit product of a 32x32 unsigned
101// multiply where the inputs aren't known to be zero extended. We can shift the
102// inputs left by 32 and use a MULHU. This saves two SRLIs needed to finish
103// zeroing the upper 32 bits.
104// TODO: If one of the operands is zero extended and the other isn't, we might
105// still be better off shifting both left by 32.
106def : Pat<(i64 (mul (and GPR:$rs1, 0xffffffff), (and GPR:$rs2, 0xffffffff))),
107          (MULHU (SLLI GPR:$rs1, 32), (SLLI GPR:$rs2, 32))>;
108// Prevent matching the first part of this pattern to mulw. The mul here has
109// additionals users or the ANDs would have been removed. The above pattern
110// will be used for the other users. If we form a mulw we'll keep the ANDs alive
111// and they'll still become SLLI+SRLI.
112def : Pat<(sext_inreg (mul (and GPR:$rs1, 0xffffffff),
113                           (and GPR:$rs2, 0xffffffff)), i32),
114          (ADDIW (MULHU (SLLI GPR:$rs1, 32), (SLLI GPR:$rs2, 32)), 0)>;
115} // Predicates = [HasStdExtM, IsRV64, NotHasStdExtZba]
116