xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoF.td (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1//===-- RISCVInstrInfoF.td - RISC-V 'F' instructions -------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the RISC-V instructions from the standard 'F',
10// Single-Precision Floating-Point instruction set extension.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// RISC-V specific DAG Nodes.
16//===----------------------------------------------------------------------===//
17
18def SDT_RISCVFMV_W_X_RV64
19    : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisVT<1, i64>]>;
20def SDT_RISCVFMV_X_ANYEXTW_RV64
21    : SDTypeProfile<1, 1, [SDTCisVT<0, i64>, SDTCisVT<1, f32>]>;
22def STD_RISCVFCVT_W_RV64
23    : SDTypeProfile<1, 1, [SDTCisVT<0, i64>, SDTCisFP<1>]>;
24def STD_RISCVFCVT_X
25    : SDTypeProfile<1, 1, [SDTCisVT<0, XLenVT>, SDTCisFP<1>]>;
26
27def riscv_fmv_w_x_rv64
28    : SDNode<"RISCVISD::FMV_W_X_RV64", SDT_RISCVFMV_W_X_RV64>;
29def riscv_fmv_x_anyextw_rv64
30    : SDNode<"RISCVISD::FMV_X_ANYEXTW_RV64", SDT_RISCVFMV_X_ANYEXTW_RV64>;
31def riscv_fcvt_w_rtz_rv64
32    : SDNode<"RISCVISD::FCVT_W_RTZ_RV64", STD_RISCVFCVT_W_RV64>;
33def riscv_fcvt_wu_rtz_rv64
34    : SDNode<"RISCVISD::FCVT_WU_RTZ_RV64", STD_RISCVFCVT_W_RV64>;
35def riscv_fcvt_x_rtz
36    : SDNode<"RISCVISD::FCVT_X_RTZ", STD_RISCVFCVT_X>;
37def riscv_fcvt_xu_rtz
38    : SDNode<"RISCVISD::FCVT_XU_RTZ", STD_RISCVFCVT_X>;
39
40//===----------------------------------------------------------------------===//
41// Operand and SDNode transformation definitions.
42//===----------------------------------------------------------------------===//
43
44// Floating-point rounding mode
45
46def FRMArg : AsmOperandClass {
47  let Name = "FRMArg";
48  let RenderMethod = "addFRMArgOperands";
49  let DiagnosticType = "InvalidFRMArg";
50}
51
52def frmarg : Operand<XLenVT> {
53  let ParserMatchClass = FRMArg;
54  let PrintMethod = "printFRMArg";
55  let DecoderMethod = "decodeFRMArg";
56}
57
58//===----------------------------------------------------------------------===//
59// Instruction class templates
60//===----------------------------------------------------------------------===//
61
62let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
63class FPFMAS_rrr_frm<RISCVOpcode opcode, string opcodestr>
64    : RVInstR4Frm<0b00, opcode, (outs FPR32:$rd),
65                  (ins FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, frmarg:$funct3),
66                  opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">;
67
68class FPFMASDynFrmAlias<FPFMAS_rrr_frm Inst, string OpcodeStr>
69    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2, $rs3",
70                (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
71
72let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
73class FPALUS_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
74    : RVInstR<funct7, funct3, OPC_OP_FP, (outs FPR32:$rd),
75              (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">;
76
77let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
78class FPALUS_rr_frm<bits<7> funct7, string opcodestr>
79    : RVInstRFrm<funct7, OPC_OP_FP, (outs FPR32:$rd),
80                 (ins FPR32:$rs1, FPR32:$rs2, frmarg:$funct3), opcodestr,
81                  "$rd, $rs1, $rs2, $funct3">;
82
83class FPALUSDynFrmAlias<FPALUS_rr_frm Inst, string OpcodeStr>
84    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2",
85                (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, 0b111)>;
86
87let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
88class FPUnaryOp_r<bits<7> funct7, bits<3> funct3, RegisterClass rdty,
89                RegisterClass rs1ty, string opcodestr>
90    : RVInstR<funct7, funct3, OPC_OP_FP, (outs rdty:$rd), (ins rs1ty:$rs1),
91              opcodestr, "$rd, $rs1">;
92
93let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
94class FPUnaryOp_r_frm<bits<7> funct7, RegisterClass rdty, RegisterClass rs1ty,
95                      string opcodestr>
96    : RVInstRFrm<funct7, OPC_OP_FP, (outs rdty:$rd),
97                 (ins rs1ty:$rs1, frmarg:$funct3), opcodestr,
98                  "$rd, $rs1, $funct3">;
99
100class FPUnaryOpDynFrmAlias<FPUnaryOp_r_frm Inst, string OpcodeStr,
101                           RegisterClass rdty, RegisterClass rs1ty>
102    : InstAlias<OpcodeStr#" $rd, $rs1",
103                (Inst rdty:$rd, rs1ty:$rs1, 0b111)>;
104
105let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
106class FPCmpS_rr<bits<3> funct3, string opcodestr>
107    : RVInstR<0b1010000, funct3, OPC_OP_FP, (outs GPR:$rd),
108              (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">,
109      Sched<[WriteFCmp32, ReadFCmp32, ReadFCmp32]>;
110
111//===----------------------------------------------------------------------===//
112// Instructions
113//===----------------------------------------------------------------------===//
114
115let Predicates = [HasStdExtF] in {
116let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
117def FLW : RVInstI<0b010, OPC_LOAD_FP, (outs FPR32:$rd),
118                  (ins GPR:$rs1, simm12:$imm12),
119                   "flw", "$rd, ${imm12}(${rs1})">,
120          Sched<[WriteFLD32, ReadFMemBase]>;
121
122// Operands for stores are in the order srcreg, base, offset rather than
123// reflecting the order these fields are specified in the instruction
124// encoding.
125let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
126def FSW : RVInstS<0b010, OPC_STORE_FP, (outs),
127                  (ins FPR32:$rs2, GPR:$rs1, simm12:$imm12),
128                   "fsw", "$rs2, ${imm12}(${rs1})">,
129          Sched<[WriteFST32, ReadStoreData, ReadFMemBase]>;
130
131def FMADD_S  : FPFMAS_rrr_frm<OPC_MADD, "fmadd.s">,
132               Sched<[WriteFMA32, ReadFMA32, ReadFMA32, ReadFMA32]>;
133def          : FPFMASDynFrmAlias<FMADD_S, "fmadd.s">;
134def FMSUB_S  : FPFMAS_rrr_frm<OPC_MSUB, "fmsub.s">,
135               Sched<[WriteFMA32, ReadFMA32, ReadFMA32, ReadFMA32]>;
136def          : FPFMASDynFrmAlias<FMSUB_S, "fmsub.s">;
137def FNMSUB_S : FPFMAS_rrr_frm<OPC_NMSUB, "fnmsub.s">,
138               Sched<[WriteFMA32, ReadFMA32, ReadFMA32, ReadFMA32]>;
139def          : FPFMASDynFrmAlias<FNMSUB_S, "fnmsub.s">;
140def FNMADD_S : FPFMAS_rrr_frm<OPC_NMADD, "fnmadd.s">,
141               Sched<[WriteFMA32, ReadFMA32, ReadFMA32, ReadFMA32]>;
142def          : FPFMASDynFrmAlias<FNMADD_S, "fnmadd.s">;
143
144def FADD_S : FPALUS_rr_frm<0b0000000, "fadd.s">,
145             Sched<[WriteFALU32, ReadFALU32, ReadFALU32]>;
146def        : FPALUSDynFrmAlias<FADD_S, "fadd.s">;
147def FSUB_S : FPALUS_rr_frm<0b0000100, "fsub.s">,
148             Sched<[WriteFALU32, ReadFALU32, ReadFALU32]>;
149def        : FPALUSDynFrmAlias<FSUB_S, "fsub.s">;
150def FMUL_S : FPALUS_rr_frm<0b0001000, "fmul.s">,
151             Sched<[WriteFMul32, ReadFMul32, ReadFMul32]>;
152def        : FPALUSDynFrmAlias<FMUL_S, "fmul.s">;
153def FDIV_S : FPALUS_rr_frm<0b0001100, "fdiv.s">,
154             Sched<[WriteFDiv32, ReadFDiv32, ReadFDiv32]>;
155def        : FPALUSDynFrmAlias<FDIV_S, "fdiv.s">;
156
157def FSQRT_S : FPUnaryOp_r_frm<0b0101100, FPR32, FPR32, "fsqrt.s">,
158              Sched<[WriteFSqrt32, ReadFSqrt32]> {
159  let rs2 = 0b00000;
160}
161def         : FPUnaryOpDynFrmAlias<FSQRT_S, "fsqrt.s", FPR32, FPR32>;
162
163def FSGNJ_S  : FPALUS_rr<0b0010000, 0b000, "fsgnj.s">,
164               Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>;
165def FSGNJN_S : FPALUS_rr<0b0010000, 0b001, "fsgnjn.s">,
166               Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>;
167def FSGNJX_S : FPALUS_rr<0b0010000, 0b010, "fsgnjx.s">,
168               Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>;
169def FMIN_S   : FPALUS_rr<0b0010100, 0b000, "fmin.s">,
170               Sched<[WriteFMinMax32, ReadFMinMax32, ReadFMinMax32]>;
171def FMAX_S   : FPALUS_rr<0b0010100, 0b001, "fmax.s">,
172               Sched<[WriteFMinMax32, ReadFMinMax32, ReadFMinMax32]>;
173
174def FCVT_W_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.w.s">,
175               Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]> {
176  let rs2 = 0b00000;
177}
178def          : FPUnaryOpDynFrmAlias<FCVT_W_S, "fcvt.w.s", GPR, FPR32>;
179
180def FCVT_WU_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.wu.s">,
181                Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]> {
182  let rs2 = 0b00001;
183}
184def           : FPUnaryOpDynFrmAlias<FCVT_WU_S, "fcvt.wu.s", GPR, FPR32>;
185
186def FMV_X_W : FPUnaryOp_r<0b1110000, 0b000, GPR, FPR32, "fmv.x.w">,
187              Sched<[WriteFMovF32ToI32, ReadFMovF32ToI32]> {
188  let rs2 = 0b00000;
189}
190
191def FEQ_S : FPCmpS_rr<0b010, "feq.s">;
192def FLT_S : FPCmpS_rr<0b001, "flt.s">;
193def FLE_S : FPCmpS_rr<0b000, "fle.s">;
194
195def FCLASS_S : FPUnaryOp_r<0b1110000, 0b001, GPR, FPR32, "fclass.s">,
196               Sched<[WriteFClass32, ReadFClass32]> {
197  let rs2 = 0b00000;
198}
199
200def FCVT_S_W : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.w">,
201               Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]> {
202  let rs2 = 0b00000;
203}
204def          : FPUnaryOpDynFrmAlias<FCVT_S_W, "fcvt.s.w", FPR32, GPR>;
205
206def FCVT_S_WU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.wu">,
207                Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]> {
208  let rs2 = 0b00001;
209}
210def           : FPUnaryOpDynFrmAlias<FCVT_S_WU, "fcvt.s.wu", FPR32, GPR>;
211
212def FMV_W_X : FPUnaryOp_r<0b1111000, 0b000, FPR32, GPR, "fmv.w.x">,
213              Sched<[WriteFMovI32ToF32, ReadFMovI32ToF32]> {
214  let rs2 = 0b00000;
215}
216} // Predicates = [HasStdExtF]
217
218let Predicates = [HasStdExtF, IsRV64] in {
219def FCVT_L_S  : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.l.s">,
220                Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]> {
221  let rs2 = 0b00010;
222}
223def           : FPUnaryOpDynFrmAlias<FCVT_L_S, "fcvt.l.s", GPR, FPR32>;
224
225def FCVT_LU_S  : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.lu.s">,
226                 Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]> {
227  let rs2 = 0b00011;
228}
229def            : FPUnaryOpDynFrmAlias<FCVT_LU_S, "fcvt.lu.s", GPR, FPR32>;
230
231def FCVT_S_L : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.l">,
232               Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]> {
233  let rs2 = 0b00010;
234}
235def          : FPUnaryOpDynFrmAlias<FCVT_S_L, "fcvt.s.l", FPR32, GPR>;
236
237def FCVT_S_LU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.lu">,
238                Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]> {
239  let rs2 = 0b00011;
240}
241def           : FPUnaryOpDynFrmAlias<FCVT_S_LU, "fcvt.s.lu", FPR32, GPR>;
242} // Predicates = [HasStdExtF, IsRV64]
243
244//===----------------------------------------------------------------------===//
245// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
246//===----------------------------------------------------------------------===//
247
248let Predicates = [HasStdExtF] in {
249def : InstAlias<"flw $rd, (${rs1})",  (FLW FPR32:$rd,  GPR:$rs1, 0), 0>;
250def : InstAlias<"fsw $rs2, (${rs1})", (FSW FPR32:$rs2, GPR:$rs1, 0), 0>;
251
252def : InstAlias<"fmv.s $rd, $rs",  (FSGNJ_S  FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
253def : InstAlias<"fabs.s $rd, $rs", (FSGNJX_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
254def : InstAlias<"fneg.s $rd, $rs", (FSGNJN_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
255
256// fgt.s/fge.s are recognised by the GNU assembler but the canonical
257// flt.s/fle.s forms will always be printed. Therefore, set a zero weight.
258def : InstAlias<"fgt.s $rd, $rs, $rt",
259                (FLT_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>;
260def : InstAlias<"fge.s $rd, $rs, $rt",
261                (FLE_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>;
262
263// The following csr instructions actually alias instructions from the base ISA.
264// However, it only makes sense to support them when the F extension is enabled.
265// NOTE: "frcsr", "frrm", and "frflags" are more specialized version of "csrr".
266def : InstAlias<"frcsr $rd",      (CSRRS GPR:$rd, SysRegFCSR.Encoding, X0), 2>;
267def : InstAlias<"fscsr $rd, $rs", (CSRRW GPR:$rd, SysRegFCSR.Encoding, GPR:$rs)>;
268def : InstAlias<"fscsr $rs",      (CSRRW      X0, SysRegFCSR.Encoding, GPR:$rs), 2>;
269
270// frsr, fssr are obsolete aliases replaced by frcsr, fscsr, so give them
271// zero weight.
272def : InstAlias<"frsr $rd",       (CSRRS GPR:$rd, SysRegFCSR.Encoding, X0), 0>;
273def : InstAlias<"fssr $rd, $rs",  (CSRRW GPR:$rd, SysRegFCSR.Encoding, GPR:$rs), 0>;
274def : InstAlias<"fssr $rs",       (CSRRW      X0, SysRegFCSR.Encoding, GPR:$rs), 0>;
275
276def : InstAlias<"frrm $rd",        (CSRRS  GPR:$rd, SysRegFRM.Encoding, X0), 2>;
277def : InstAlias<"fsrm $rd, $rs",   (CSRRW  GPR:$rd, SysRegFRM.Encoding, GPR:$rs)>;
278def : InstAlias<"fsrm $rs",        (CSRRW       X0, SysRegFRM.Encoding, GPR:$rs), 2>;
279def : InstAlias<"fsrmi $rd, $imm", (CSRRWI GPR:$rd, SysRegFRM.Encoding, uimm5:$imm)>;
280def : InstAlias<"fsrmi $imm",      (CSRRWI      X0, SysRegFRM.Encoding, uimm5:$imm), 2>;
281
282def : InstAlias<"frflags $rd",        (CSRRS  GPR:$rd, SysRegFFLAGS.Encoding, X0), 2>;
283def : InstAlias<"fsflags $rd, $rs",   (CSRRW  GPR:$rd, SysRegFFLAGS.Encoding, GPR:$rs)>;
284def : InstAlias<"fsflags $rs",        (CSRRW       X0, SysRegFFLAGS.Encoding, GPR:$rs), 2>;
285def : InstAlias<"fsflagsi $rd, $imm", (CSRRWI GPR:$rd, SysRegFFLAGS.Encoding, uimm5:$imm)>;
286def : InstAlias<"fsflagsi $imm",      (CSRRWI      X0, SysRegFFLAGS.Encoding, uimm5:$imm), 2>;
287
288// fmv.w.x and fmv.x.w were previously known as fmv.s.x and fmv.x.s. Both
289// spellings should be supported by standard tools.
290def : MnemonicAlias<"fmv.s.x", "fmv.w.x">;
291def : MnemonicAlias<"fmv.x.s", "fmv.x.w">;
292
293def PseudoFLW  : PseudoFloatLoad<"flw", FPR32>;
294def PseudoFSW  : PseudoStore<"fsw", FPR32>;
295} // Predicates = [HasStdExtF]
296
297//===----------------------------------------------------------------------===//
298// Pseudo-instructions and codegen patterns
299//===----------------------------------------------------------------------===//
300
301/// Floating point constants
302def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
303
304/// Generic pattern classes
305class PatFpr32Fpr32<SDPatternOperator OpNode, RVInstR Inst>
306    : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2)>;
307
308class PatFpr32Fpr32DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst>
309    : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2, 0b111)>;
310
311let Predicates = [HasStdExtF] in {
312
313/// Float constants
314def : Pat<(f32 (fpimm0)), (FMV_W_X X0)>;
315
316/// Float conversion operations
317
318// [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so
319// are defined later.
320
321/// Float arithmetic operations
322
323def : PatFpr32Fpr32DynFrm<fadd, FADD_S>;
324def : PatFpr32Fpr32DynFrm<fsub, FSUB_S>;
325def : PatFpr32Fpr32DynFrm<fmul, FMUL_S>;
326def : PatFpr32Fpr32DynFrm<fdiv, FDIV_S>;
327
328def : Pat<(fsqrt FPR32:$rs1), (FSQRT_S FPR32:$rs1, 0b111)>;
329
330def : Pat<(fneg FPR32:$rs1), (FSGNJN_S $rs1, $rs1)>;
331def : Pat<(fabs FPR32:$rs1), (FSGNJX_S $rs1, $rs1)>;
332
333def : PatFpr32Fpr32<fcopysign, FSGNJ_S>;
334def : Pat<(fcopysign FPR32:$rs1, (fneg FPR32:$rs2)), (FSGNJN_S $rs1, $rs2)>;
335
336// fmadd: rs1 * rs2 + rs3
337def : Pat<(fma FPR32:$rs1, FPR32:$rs2, FPR32:$rs3),
338          (FMADD_S $rs1, $rs2, $rs3, 0b111)>;
339
340// fmsub: rs1 * rs2 - rs3
341def : Pat<(fma FPR32:$rs1, FPR32:$rs2, (fneg FPR32:$rs3)),
342          (FMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
343
344// fnmsub: -rs1 * rs2 + rs3
345def : Pat<(fma (fneg FPR32:$rs1), FPR32:$rs2, FPR32:$rs3),
346          (FNMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
347
348// fnmadd: -rs1 * rs2 - rs3
349def : Pat<(fma (fneg FPR32:$rs1), FPR32:$rs2, (fneg FPR32:$rs3)),
350          (FNMADD_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
351
352// The ratified 20191213 ISA spec defines fmin and fmax in a way that matches
353// LLVM's fminnum and fmaxnum
354// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
355def : PatFpr32Fpr32<fminnum, FMIN_S>;
356def : PatFpr32Fpr32<fmaxnum, FMAX_S>;
357
358/// Setcc
359
360def : PatFpr32Fpr32<seteq, FEQ_S>;
361def : PatFpr32Fpr32<setoeq, FEQ_S>;
362def : PatFpr32Fpr32<setlt, FLT_S>;
363def : PatFpr32Fpr32<setolt, FLT_S>;
364def : PatFpr32Fpr32<setle, FLE_S>;
365def : PatFpr32Fpr32<setole, FLE_S>;
366
367def Select_FPR32_Using_CC_GPR : SelectCC_rrirr<FPR32, GPR>;
368
369/// Loads
370
371defm : LdPat<load, FLW, f32>;
372
373/// Stores
374
375defm : StPat<store, FSW, FPR32, f32>;
376
377} // Predicates = [HasStdExtF]
378
379let Predicates = [HasStdExtF, IsRV32] in {
380// Moves (no conversion)
381def : Pat<(bitconvert (i32 GPR:$rs1)), (FMV_W_X GPR:$rs1)>;
382def : Pat<(i32 (bitconvert FPR32:$rs1)), (FMV_X_W FPR32:$rs1)>;
383
384// float->[u]int. Round-to-zero must be used.
385def : Pat<(i32 (fp_to_sint FPR32:$rs1)), (FCVT_W_S $rs1, 0b001)>;
386def : Pat<(i32 (fp_to_uint FPR32:$rs1)), (FCVT_WU_S $rs1, 0b001)>;
387
388// Saturating float->[u]int32.
389def : Pat<(i32 (riscv_fcvt_x_rtz FPR32:$rs1)), (FCVT_W_S $rs1, 0b001)>;
390def : Pat<(i32 (riscv_fcvt_xu_rtz FPR32:$rs1)), (FCVT_WU_S $rs1, 0b001)>;
391
392// float->int32 with current rounding mode.
393def : Pat<(i32 (lrint FPR32:$rs1)), (FCVT_W_S $rs1, 0b111)>;
394
395// float->int32 rounded to nearest with ties rounded away from zero.
396def : Pat<(i32 (lround FPR32:$rs1)), (FCVT_W_S $rs1, 0b100)>;
397
398// [u]int->float. Match GCC and default to using dynamic rounding mode.
399def : Pat<(sint_to_fp (i32 GPR:$rs1)), (FCVT_S_W $rs1, 0b111)>;
400def : Pat<(uint_to_fp (i32 GPR:$rs1)), (FCVT_S_WU $rs1, 0b111)>;
401} // Predicates = [HasStdExtF, IsRV32]
402
403let Predicates = [HasStdExtF, IsRV64] in {
404// Moves (no conversion)
405def : Pat<(riscv_fmv_w_x_rv64 GPR:$src), (FMV_W_X GPR:$src)>;
406def : Pat<(riscv_fmv_x_anyextw_rv64 FPR32:$src), (FMV_X_W FPR32:$src)>;
407def : Pat<(sext_inreg (riscv_fmv_x_anyextw_rv64 FPR32:$src), i32),
408          (FMV_X_W FPR32:$src)>;
409
410// Use target specific isd nodes to help us remember the result is sign
411// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
412// duplicated if it has another user that didn't need the sign_extend.
413def : Pat<(riscv_fcvt_w_rtz_rv64 FPR32:$rs1),  (FCVT_W_S $rs1, 0b001)>;
414def : Pat<(riscv_fcvt_wu_rtz_rv64 FPR32:$rs1), (FCVT_WU_S $rs1, 0b001)>;
415
416// float->[u]int64. Round-to-zero must be used.
417def : Pat<(i64 (fp_to_sint FPR32:$rs1)), (FCVT_L_S $rs1, 0b001)>;
418def : Pat<(i64 (fp_to_uint FPR32:$rs1)), (FCVT_LU_S $rs1, 0b001)>;
419
420// Saturating float->[u]int64.
421def : Pat<(i64 (riscv_fcvt_x_rtz FPR32:$rs1)), (FCVT_L_S $rs1, 0b001)>;
422def : Pat<(i64 (riscv_fcvt_xu_rtz FPR32:$rs1)), (FCVT_LU_S $rs1, 0b001)>;
423
424// float->int64 with current rounding mode.
425def : Pat<(i64 (lrint FPR32:$rs1)), (FCVT_L_S $rs1, 0b111)>;
426def : Pat<(i64 (llrint FPR32:$rs1)), (FCVT_L_S $rs1, 0b111)>;
427
428// float->int64 rounded to neartest with ties rounded away from zero.
429def : Pat<(i64 (lround FPR32:$rs1)), (FCVT_L_S $rs1, 0b100)>;
430def : Pat<(i64 (llround FPR32:$rs1)), (FCVT_L_S $rs1, 0b100)>;
431
432// [u]int->fp. Match GCC and default to using dynamic rounding mode.
433def : Pat<(sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_S_W $rs1, 0b111)>;
434def : Pat<(uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_S_WU $rs1, 0b111)>;
435def : Pat<(sint_to_fp (i64 GPR:$rs1)), (FCVT_S_L $rs1, 0b111)>;
436def : Pat<(uint_to_fp (i64 GPR:$rs1)), (FCVT_S_LU $rs1, 0b111)>;
437} // Predicates = [HasStdExtF, IsRV64]
438