xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoF.td (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1//===-- RISCVInstrInfoF.td - RISC-V 'F' instructions -------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the RISC-V instructions from the standard 'F',
10// Single-Precision Floating-Point instruction set extension.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// RISC-V specific DAG Nodes.
16//===----------------------------------------------------------------------===//
17
18def SDT_RISCVFMV_W_X_RV64
19    : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisVT<1, i64>]>;
20def SDT_RISCVFMV_X_ANYEXTW_RV64
21    : SDTypeProfile<1, 1, [SDTCisVT<0, i64>, SDTCisVT<1, f32>]>;
22def STD_RISCVFCVT_W_RV64
23    : SDTypeProfile<1, 1, [SDTCisVT<0, i64>, SDTCisFP<1>]>;
24
25def riscv_fmv_w_x_rv64
26    : SDNode<"RISCVISD::FMV_W_X_RV64", SDT_RISCVFMV_W_X_RV64>;
27def riscv_fmv_x_anyextw_rv64
28    : SDNode<"RISCVISD::FMV_X_ANYEXTW_RV64", SDT_RISCVFMV_X_ANYEXTW_RV64>;
29def riscv_fcvt_w_rv64
30    : SDNode<"RISCVISD::FCVT_W_RV64", STD_RISCVFCVT_W_RV64>;
31def riscv_fcvt_wu_rv64
32    : SDNode<"RISCVISD::FCVT_WU_RV64", STD_RISCVFCVT_W_RV64>;
33
34//===----------------------------------------------------------------------===//
35// Operand and SDNode transformation definitions.
36//===----------------------------------------------------------------------===//
37
38// Floating-point rounding mode
39
40def FRMArg : AsmOperandClass {
41  let Name = "FRMArg";
42  let RenderMethod = "addFRMArgOperands";
43  let DiagnosticType = "InvalidFRMArg";
44}
45
46def frmarg : Operand<XLenVT> {
47  let ParserMatchClass = FRMArg;
48  let PrintMethod = "printFRMArg";
49  let DecoderMethod = "decodeFRMArg";
50}
51
52//===----------------------------------------------------------------------===//
53// Instruction class templates
54//===----------------------------------------------------------------------===//
55
56let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
57class FPFMAS_rrr_frm<RISCVOpcode opcode, string opcodestr>
58    : RVInstR4Frm<0b00, opcode, (outs FPR32:$rd),
59                  (ins FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, frmarg:$funct3),
60                  opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">;
61
62class FPFMASDynFrmAlias<FPFMAS_rrr_frm Inst, string OpcodeStr>
63    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2, $rs3",
64                (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
65
66let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
67class FPALUS_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
68    : RVInstR<funct7, funct3, OPC_OP_FP, (outs FPR32:$rd),
69              (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">;
70
71let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
72class FPALUS_rr_frm<bits<7> funct7, string opcodestr>
73    : RVInstRFrm<funct7, OPC_OP_FP, (outs FPR32:$rd),
74                 (ins FPR32:$rs1, FPR32:$rs2, frmarg:$funct3), opcodestr,
75                  "$rd, $rs1, $rs2, $funct3">;
76
77class FPALUSDynFrmAlias<FPALUS_rr_frm Inst, string OpcodeStr>
78    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2",
79                (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, 0b111)>;
80
81let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
82class FPUnaryOp_r<bits<7> funct7, bits<3> funct3, RegisterClass rdty,
83                RegisterClass rs1ty, string opcodestr>
84    : RVInstR<funct7, funct3, OPC_OP_FP, (outs rdty:$rd), (ins rs1ty:$rs1),
85              opcodestr, "$rd, $rs1">;
86
87let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
88class FPUnaryOp_r_frm<bits<7> funct7, RegisterClass rdty, RegisterClass rs1ty,
89                      string opcodestr>
90    : RVInstRFrm<funct7, OPC_OP_FP, (outs rdty:$rd),
91                 (ins rs1ty:$rs1, frmarg:$funct3), opcodestr,
92                  "$rd, $rs1, $funct3">;
93
94class FPUnaryOpDynFrmAlias<FPUnaryOp_r_frm Inst, string OpcodeStr,
95                           RegisterClass rdty, RegisterClass rs1ty>
96    : InstAlias<OpcodeStr#" $rd, $rs1",
97                (Inst rdty:$rd, rs1ty:$rs1, 0b111)>;
98
99let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
100class FPCmpS_rr<bits<3> funct3, string opcodestr>
101    : RVInstR<0b1010000, funct3, OPC_OP_FP, (outs GPR:$rd),
102              (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">,
103      Sched<[WriteFCmp32, ReadFCmp32, ReadFCmp32]>;
104
105//===----------------------------------------------------------------------===//
106// Instructions
107//===----------------------------------------------------------------------===//
108
109let Predicates = [HasStdExtF] in {
110let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
111def FLW : RVInstI<0b010, OPC_LOAD_FP, (outs FPR32:$rd),
112                  (ins GPR:$rs1, simm12:$imm12),
113                   "flw", "$rd, ${imm12}(${rs1})">,
114          Sched<[WriteFLD32, ReadFMemBase]>;
115
116// Operands for stores are in the order srcreg, base, offset rather than
117// reflecting the order these fields are specified in the instruction
118// encoding.
119let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
120def FSW : RVInstS<0b010, OPC_STORE_FP, (outs),
121                  (ins FPR32:$rs2, GPR:$rs1, simm12:$imm12),
122                   "fsw", "$rs2, ${imm12}(${rs1})">,
123          Sched<[WriteFST32, ReadStoreData, ReadFMemBase]>;
124
125def FMADD_S  : FPFMAS_rrr_frm<OPC_MADD, "fmadd.s">,
126               Sched<[WriteFMA32, ReadFMA32, ReadFMA32, ReadFMA32]>;
127def          : FPFMASDynFrmAlias<FMADD_S, "fmadd.s">;
128def FMSUB_S  : FPFMAS_rrr_frm<OPC_MSUB, "fmsub.s">,
129               Sched<[WriteFMA32, ReadFMA32, ReadFMA32, ReadFMA32]>;
130def          : FPFMASDynFrmAlias<FMSUB_S, "fmsub.s">;
131def FNMSUB_S : FPFMAS_rrr_frm<OPC_NMSUB, "fnmsub.s">,
132               Sched<[WriteFMA32, ReadFMA32, ReadFMA32, ReadFMA32]>;
133def          : FPFMASDynFrmAlias<FNMSUB_S, "fnmsub.s">;
134def FNMADD_S : FPFMAS_rrr_frm<OPC_NMADD, "fnmadd.s">,
135               Sched<[WriteFMA32, ReadFMA32, ReadFMA32, ReadFMA32]>;
136def          : FPFMASDynFrmAlias<FNMADD_S, "fnmadd.s">;
137
138def FADD_S : FPALUS_rr_frm<0b0000000, "fadd.s">,
139             Sched<[WriteFALU32, ReadFALU32, ReadFALU32]>;
140def        : FPALUSDynFrmAlias<FADD_S, "fadd.s">;
141def FSUB_S : FPALUS_rr_frm<0b0000100, "fsub.s">,
142             Sched<[WriteFALU32, ReadFALU32, ReadFALU32]>;
143def        : FPALUSDynFrmAlias<FSUB_S, "fsub.s">;
144def FMUL_S : FPALUS_rr_frm<0b0001000, "fmul.s">,
145             Sched<[WriteFMul32, ReadFMul32, ReadFMul32]>;
146def        : FPALUSDynFrmAlias<FMUL_S, "fmul.s">;
147def FDIV_S : FPALUS_rr_frm<0b0001100, "fdiv.s">,
148             Sched<[WriteFDiv32, ReadFDiv32, ReadFDiv32]>;
149def        : FPALUSDynFrmAlias<FDIV_S, "fdiv.s">;
150
151def FSQRT_S : FPUnaryOp_r_frm<0b0101100, FPR32, FPR32, "fsqrt.s">,
152              Sched<[WriteFSqrt32, ReadFSqrt32]> {
153  let rs2 = 0b00000;
154}
155def         : FPUnaryOpDynFrmAlias<FSQRT_S, "fsqrt.s", FPR32, FPR32>;
156
157def FSGNJ_S  : FPALUS_rr<0b0010000, 0b000, "fsgnj.s">,
158               Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>;
159def FSGNJN_S : FPALUS_rr<0b0010000, 0b001, "fsgnjn.s">,
160               Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>;
161def FSGNJX_S : FPALUS_rr<0b0010000, 0b010, "fsgnjx.s">,
162               Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>;
163def FMIN_S   : FPALUS_rr<0b0010100, 0b000, "fmin.s">,
164               Sched<[WriteFMinMax32, ReadFMinMax32, ReadFMinMax32]>;
165def FMAX_S   : FPALUS_rr<0b0010100, 0b001, "fmax.s">,
166               Sched<[WriteFMinMax32, ReadFMinMax32, ReadFMinMax32]>;
167
168def FCVT_W_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.w.s">,
169               Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]> {
170  let rs2 = 0b00000;
171}
172def          : FPUnaryOpDynFrmAlias<FCVT_W_S, "fcvt.w.s", GPR, FPR32>;
173
174def FCVT_WU_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.wu.s">,
175                Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]> {
176  let rs2 = 0b00001;
177}
178def           : FPUnaryOpDynFrmAlias<FCVT_WU_S, "fcvt.wu.s", GPR, FPR32>;
179
180def FMV_X_W : FPUnaryOp_r<0b1110000, 0b000, GPR, FPR32, "fmv.x.w">,
181              Sched<[WriteFMovF32ToI32, ReadFMovF32ToI32]> {
182  let rs2 = 0b00000;
183}
184
185def FEQ_S : FPCmpS_rr<0b010, "feq.s">;
186def FLT_S : FPCmpS_rr<0b001, "flt.s">;
187def FLE_S : FPCmpS_rr<0b000, "fle.s">;
188
189def FCLASS_S : FPUnaryOp_r<0b1110000, 0b001, GPR, FPR32, "fclass.s">,
190               Sched<[WriteFClass32, ReadFClass32]> {
191  let rs2 = 0b00000;
192}
193
194def FCVT_S_W : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.w">,
195               Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]> {
196  let rs2 = 0b00000;
197}
198def          : FPUnaryOpDynFrmAlias<FCVT_S_W, "fcvt.s.w", FPR32, GPR>;
199
200def FCVT_S_WU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.wu">,
201                Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]> {
202  let rs2 = 0b00001;
203}
204def           : FPUnaryOpDynFrmAlias<FCVT_S_WU, "fcvt.s.wu", FPR32, GPR>;
205
206def FMV_W_X : FPUnaryOp_r<0b1111000, 0b000, FPR32, GPR, "fmv.w.x">,
207              Sched<[WriteFMovI32ToF32, ReadFMovI32ToF32]> {
208  let rs2 = 0b00000;
209}
210} // Predicates = [HasStdExtF]
211
212let Predicates = [HasStdExtF, IsRV64] in {
213def FCVT_L_S  : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.l.s">,
214                Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]> {
215  let rs2 = 0b00010;
216}
217def           : FPUnaryOpDynFrmAlias<FCVT_L_S, "fcvt.l.s", GPR, FPR32>;
218
219def FCVT_LU_S  : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.lu.s">,
220                 Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]> {
221  let rs2 = 0b00011;
222}
223def            : FPUnaryOpDynFrmAlias<FCVT_LU_S, "fcvt.lu.s", GPR, FPR32>;
224
225def FCVT_S_L : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.l">,
226               Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]> {
227  let rs2 = 0b00010;
228}
229def          : FPUnaryOpDynFrmAlias<FCVT_S_L, "fcvt.s.l", FPR32, GPR>;
230
231def FCVT_S_LU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.lu">,
232                Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]> {
233  let rs2 = 0b00011;
234}
235def           : FPUnaryOpDynFrmAlias<FCVT_S_LU, "fcvt.s.lu", FPR32, GPR>;
236} // Predicates = [HasStdExtF, IsRV64]
237
238//===----------------------------------------------------------------------===//
239// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
240//===----------------------------------------------------------------------===//
241
242let Predicates = [HasStdExtF] in {
243def : InstAlias<"flw $rd, (${rs1})",  (FLW FPR32:$rd,  GPR:$rs1, 0), 0>;
244def : InstAlias<"fsw $rs2, (${rs1})", (FSW FPR32:$rs2, GPR:$rs1, 0), 0>;
245
246def : InstAlias<"fmv.s $rd, $rs",  (FSGNJ_S  FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
247def : InstAlias<"fabs.s $rd, $rs", (FSGNJX_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
248def : InstAlias<"fneg.s $rd, $rs", (FSGNJN_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
249
250// fgt.s/fge.s are recognised by the GNU assembler but the canonical
251// flt.s/fle.s forms will always be printed. Therefore, set a zero weight.
252def : InstAlias<"fgt.s $rd, $rs, $rt",
253                (FLT_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>;
254def : InstAlias<"fge.s $rd, $rs, $rt",
255                (FLE_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>;
256
257// The following csr instructions actually alias instructions from the base ISA.
258// However, it only makes sense to support them when the F extension is enabled.
259// NOTE: "frcsr", "frrm", and "frflags" are more specialized version of "csrr".
260def : InstAlias<"frcsr $rd",      (CSRRS GPR:$rd, SysRegFCSR.Encoding, X0), 2>;
261def : InstAlias<"fscsr $rd, $rs", (CSRRW GPR:$rd, SysRegFCSR.Encoding, GPR:$rs)>;
262def : InstAlias<"fscsr $rs",      (CSRRW      X0, SysRegFCSR.Encoding, GPR:$rs), 2>;
263
264// frsr, fssr are obsolete aliases replaced by frcsr, fscsr, so give them
265// zero weight.
266def : InstAlias<"frsr $rd",       (CSRRS GPR:$rd, SysRegFCSR.Encoding, X0), 0>;
267def : InstAlias<"fssr $rd, $rs",  (CSRRW GPR:$rd, SysRegFCSR.Encoding, GPR:$rs), 0>;
268def : InstAlias<"fssr $rs",       (CSRRW      X0, SysRegFCSR.Encoding, GPR:$rs), 0>;
269
270def : InstAlias<"frrm $rd",        (CSRRS  GPR:$rd, SysRegFRM.Encoding, X0), 2>;
271def : InstAlias<"fsrm $rd, $rs",   (CSRRW  GPR:$rd, SysRegFRM.Encoding, GPR:$rs)>;
272def : InstAlias<"fsrm $rs",        (CSRRW       X0, SysRegFRM.Encoding, GPR:$rs), 2>;
273def : InstAlias<"fsrmi $rd, $imm", (CSRRWI GPR:$rd, SysRegFRM.Encoding, uimm5:$imm)>;
274def : InstAlias<"fsrmi $imm",      (CSRRWI      X0, SysRegFRM.Encoding, uimm5:$imm), 2>;
275
276def : InstAlias<"frflags $rd",        (CSRRS  GPR:$rd, SysRegFFLAGS.Encoding, X0), 2>;
277def : InstAlias<"fsflags $rd, $rs",   (CSRRW  GPR:$rd, SysRegFFLAGS.Encoding, GPR:$rs)>;
278def : InstAlias<"fsflags $rs",        (CSRRW       X0, SysRegFFLAGS.Encoding, GPR:$rs), 2>;
279def : InstAlias<"fsflagsi $rd, $imm", (CSRRWI GPR:$rd, SysRegFFLAGS.Encoding, uimm5:$imm)>;
280def : InstAlias<"fsflagsi $imm",      (CSRRWI      X0, SysRegFFLAGS.Encoding, uimm5:$imm), 2>;
281
282// fmv.w.x and fmv.x.w were previously known as fmv.s.x and fmv.x.s. Both
283// spellings should be supported by standard tools.
284def : MnemonicAlias<"fmv.s.x", "fmv.w.x">;
285def : MnemonicAlias<"fmv.x.s", "fmv.x.w">;
286
287def PseudoFLW  : PseudoFloatLoad<"flw", FPR32>;
288def PseudoFSW  : PseudoStore<"fsw", FPR32>;
289} // Predicates = [HasStdExtF]
290
291//===----------------------------------------------------------------------===//
292// Pseudo-instructions and codegen patterns
293//===----------------------------------------------------------------------===//
294
295/// Floating point constants
296def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
297
298/// Generic pattern classes
299class PatFpr32Fpr32<SDPatternOperator OpNode, RVInstR Inst>
300    : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2)>;
301
302class PatFpr32Fpr32DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst>
303    : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2, 0b111)>;
304
305let Predicates = [HasStdExtF] in {
306
307/// Float constants
308def : Pat<(f32 (fpimm0)), (FMV_W_X X0)>;
309
310/// Float conversion operations
311
312// [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so
313// are defined later.
314
315/// Float arithmetic operations
316
317def : PatFpr32Fpr32DynFrm<fadd, FADD_S>;
318def : PatFpr32Fpr32DynFrm<fsub, FSUB_S>;
319def : PatFpr32Fpr32DynFrm<fmul, FMUL_S>;
320def : PatFpr32Fpr32DynFrm<fdiv, FDIV_S>;
321
322def : Pat<(fsqrt FPR32:$rs1), (FSQRT_S FPR32:$rs1, 0b111)>;
323
324def : Pat<(fneg FPR32:$rs1), (FSGNJN_S $rs1, $rs1)>;
325def : Pat<(fabs FPR32:$rs1), (FSGNJX_S $rs1, $rs1)>;
326
327def : PatFpr32Fpr32<fcopysign, FSGNJ_S>;
328def : Pat<(fcopysign FPR32:$rs1, (fneg FPR32:$rs2)), (FSGNJN_S $rs1, $rs2)>;
329
330// fmadd: rs1 * rs2 + rs3
331def : Pat<(fma FPR32:$rs1, FPR32:$rs2, FPR32:$rs3),
332          (FMADD_S $rs1, $rs2, $rs3, 0b111)>;
333
334// fmsub: rs1 * rs2 - rs3
335def : Pat<(fma FPR32:$rs1, FPR32:$rs2, (fneg FPR32:$rs3)),
336          (FMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
337
338// fnmsub: -rs1 * rs2 + rs3
339def : Pat<(fma (fneg FPR32:$rs1), FPR32:$rs2, FPR32:$rs3),
340          (FNMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
341
342// fnmadd: -rs1 * rs2 - rs3
343def : Pat<(fma (fneg FPR32:$rs1), FPR32:$rs2, (fneg FPR32:$rs3)),
344          (FNMADD_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
345
346// The ratified 20191213 ISA spec defines fmin and fmax in a way that matches
347// LLVM's fminnum and fmaxnum
348// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
349def : PatFpr32Fpr32<fminnum, FMIN_S>;
350def : PatFpr32Fpr32<fmaxnum, FMAX_S>;
351
352/// Setcc
353
354def : PatFpr32Fpr32<seteq, FEQ_S>;
355def : PatFpr32Fpr32<setoeq, FEQ_S>;
356def : PatFpr32Fpr32<setlt, FLT_S>;
357def : PatFpr32Fpr32<setolt, FLT_S>;
358def : PatFpr32Fpr32<setle, FLE_S>;
359def : PatFpr32Fpr32<setole, FLE_S>;
360
361def Select_FPR32_Using_CC_GPR : SelectCC_rrirr<FPR32, GPR>;
362
363/// Loads
364
365defm : LdPat<load, FLW, f32>;
366
367/// Stores
368
369defm : StPat<store, FSW, FPR32, f32>;
370
371} // Predicates = [HasStdExtF]
372
373let Predicates = [HasStdExtF, IsRV32] in {
374// Moves (no conversion)
375def : Pat<(bitconvert (i32 GPR:$rs1)), (FMV_W_X GPR:$rs1)>;
376def : Pat<(i32 (bitconvert FPR32:$rs1)), (FMV_X_W FPR32:$rs1)>;
377
378// float->[u]int. Round-to-zero must be used.
379def : Pat<(i32 (fp_to_sint FPR32:$rs1)), (FCVT_W_S $rs1, 0b001)>;
380def : Pat<(i32 (fp_to_uint FPR32:$rs1)), (FCVT_WU_S $rs1, 0b001)>;
381
382// float->int32 with current rounding mode.
383def : Pat<(i32 (lrint FPR32:$rs1)), (FCVT_W_S $rs1, 0b111)>;
384
385// float->int32 rounded to nearest with ties rounded away from zero.
386def : Pat<(i32 (lround FPR32:$rs1)), (FCVT_W_S $rs1, 0b100)>;
387
388// [u]int->float. Match GCC and default to using dynamic rounding mode.
389def : Pat<(sint_to_fp (i32 GPR:$rs1)), (FCVT_S_W $rs1, 0b111)>;
390def : Pat<(uint_to_fp (i32 GPR:$rs1)), (FCVT_S_WU $rs1, 0b111)>;
391} // Predicates = [HasStdExtF, IsRV32]
392
393let Predicates = [HasStdExtF, IsRV64] in {
394// Moves (no conversion)
395def : Pat<(riscv_fmv_w_x_rv64 GPR:$src), (FMV_W_X GPR:$src)>;
396def : Pat<(riscv_fmv_x_anyextw_rv64 FPR32:$src), (FMV_X_W FPR32:$src)>;
397def : Pat<(sext_inreg (riscv_fmv_x_anyextw_rv64 FPR32:$src), i32),
398          (FMV_X_W FPR32:$src)>;
399
400// Use target specific isd nodes to help us remember the result is sign
401// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
402// duplicated if it has another user that didn't need the sign_extend.
403def : Pat<(riscv_fcvt_w_rv64 FPR32:$rs1),  (FCVT_W_S $rs1, 0b001)>;
404def : Pat<(riscv_fcvt_wu_rv64 FPR32:$rs1), (FCVT_WU_S $rs1, 0b001)>;
405
406// float->[u]int64. Round-to-zero must be used.
407def : Pat<(i64 (fp_to_sint FPR32:$rs1)), (FCVT_L_S $rs1, 0b001)>;
408def : Pat<(i64 (fp_to_uint FPR32:$rs1)), (FCVT_LU_S $rs1, 0b001)>;
409
410// float->int64 with current rounding mode.
411def : Pat<(i64 (lrint FPR32:$rs1)), (FCVT_L_S $rs1, 0b111)>;
412def : Pat<(i64 (llrint FPR32:$rs1)), (FCVT_L_S $rs1, 0b111)>;
413
414// float->int64 rounded to neartest with ties rounded away from zero.
415def : Pat<(i64 (lround FPR32:$rs1)), (FCVT_L_S $rs1, 0b100)>;
416def : Pat<(i64 (llround FPR32:$rs1)), (FCVT_L_S $rs1, 0b100)>;
417
418// [u]int->fp. Match GCC and default to using dynamic rounding mode.
419def : Pat<(sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_S_W $rs1, 0b111)>;
420def : Pat<(uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_S_WU $rs1, 0b111)>;
421def : Pat<(sint_to_fp (i64 GPR:$rs1)), (FCVT_S_L $rs1, 0b111)>;
422def : Pat<(uint_to_fp (i64 GPR:$rs1)), (FCVT_S_LU $rs1, 0b111)>;
423} // Predicates = [HasStdExtF, IsRV64]
424