xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoF.td (revision 0b37c1590418417c894529d371800dfac71ef887)
1//===-- RISCVInstrInfoF.td - RISC-V 'F' instructions -------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the RISC-V instructions from the standard 'F',
10// Single-Precision Floating-Point instruction set extension.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// RISC-V specific DAG Nodes.
16//===----------------------------------------------------------------------===//
17
18def SDT_RISCVFMV_W_X_RV64
19    : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisVT<1, i64>]>;
20def SDT_RISCVFMV_X_ANYEXTW_RV64
21    : SDTypeProfile<1, 1, [SDTCisVT<0, i64>, SDTCisVT<1, f32>]>;
22
23def riscv_fmv_w_x_rv64
24    : SDNode<"RISCVISD::FMV_W_X_RV64", SDT_RISCVFMV_W_X_RV64>;
25def riscv_fmv_x_anyextw_rv64
26    : SDNode<"RISCVISD::FMV_X_ANYEXTW_RV64", SDT_RISCVFMV_X_ANYEXTW_RV64>;
27
28//===----------------------------------------------------------------------===//
29// Operand and SDNode transformation definitions.
30//===----------------------------------------------------------------------===//
31
32// Floating-point rounding mode
33
34def FRMArg : AsmOperandClass {
35  let Name = "FRMArg";
36  let RenderMethod = "addFRMArgOperands";
37  let DiagnosticType = "InvalidFRMArg";
38}
39
40def frmarg : Operand<XLenVT> {
41  let ParserMatchClass = FRMArg;
42  let PrintMethod = "printFRMArg";
43  let DecoderMethod = "decodeFRMArg";
44}
45
46//===----------------------------------------------------------------------===//
47// Instruction class templates
48//===----------------------------------------------------------------------===//
49
50let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
51class FPFMAS_rrr_frm<RISCVOpcode opcode, string opcodestr>
52    : RVInstR4<0b00, opcode, (outs FPR32:$rd),
53               (ins FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, frmarg:$funct3),
54                opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">;
55
56class FPFMASDynFrmAlias<FPFMAS_rrr_frm Inst, string OpcodeStr>
57    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2, $rs3",
58                (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
59
60let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
61class FPALUS_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
62    : RVInstR<funct7, funct3, OPC_OP_FP, (outs FPR32:$rd),
63              (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">;
64
65let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
66class FPALUS_rr_frm<bits<7> funct7, string opcodestr>
67    : RVInstRFrm<funct7, OPC_OP_FP, (outs FPR32:$rd),
68                 (ins FPR32:$rs1, FPR32:$rs2, frmarg:$funct3), opcodestr,
69                  "$rd, $rs1, $rs2, $funct3">;
70
71class FPALUSDynFrmAlias<FPALUS_rr_frm Inst, string OpcodeStr>
72    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2",
73                (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, 0b111)>;
74
75let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
76class FPUnaryOp_r<bits<7> funct7, bits<3> funct3, RegisterClass rdty,
77                RegisterClass rs1ty, string opcodestr>
78    : RVInstR<funct7, funct3, OPC_OP_FP, (outs rdty:$rd), (ins rs1ty:$rs1),
79              opcodestr, "$rd, $rs1">;
80
81let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
82class FPUnaryOp_r_frm<bits<7> funct7, RegisterClass rdty, RegisterClass rs1ty,
83                      string opcodestr>
84    : RVInstRFrm<funct7, OPC_OP_FP, (outs rdty:$rd),
85                 (ins rs1ty:$rs1, frmarg:$funct3), opcodestr,
86                  "$rd, $rs1, $funct3">;
87
88class FPUnaryOpDynFrmAlias<FPUnaryOp_r_frm Inst, string OpcodeStr,
89                           RegisterClass rdty, RegisterClass rs1ty>
90    : InstAlias<OpcodeStr#" $rd, $rs1",
91                (Inst rdty:$rd, rs1ty:$rs1, 0b111)>;
92
93let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
94class FPCmpS_rr<bits<3> funct3, string opcodestr>
95    : RVInstR<0b1010000, funct3, OPC_OP_FP, (outs GPR:$rd),
96              (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">;
97
98//===----------------------------------------------------------------------===//
99// Instructions
100//===----------------------------------------------------------------------===//
101
102let Predicates = [HasStdExtF] in {
103let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
104def FLW : RVInstI<0b010, OPC_LOAD_FP, (outs FPR32:$rd),
105                  (ins GPR:$rs1, simm12:$imm12),
106                   "flw", "$rd, ${imm12}(${rs1})">;
107
108// Operands for stores are in the order srcreg, base, offset rather than
109// reflecting the order these fields are specified in the instruction
110// encoding.
111let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
112def FSW : RVInstS<0b010, OPC_STORE_FP, (outs),
113                  (ins FPR32:$rs2, GPR:$rs1, simm12:$imm12),
114                   "fsw", "$rs2, ${imm12}(${rs1})">;
115
116def FMADD_S  : FPFMAS_rrr_frm<OPC_MADD, "fmadd.s">;
117def          : FPFMASDynFrmAlias<FMADD_S, "fmadd.s">;
118def FMSUB_S  : FPFMAS_rrr_frm<OPC_MSUB, "fmsub.s">;
119def          : FPFMASDynFrmAlias<FMSUB_S, "fmsub.s">;
120def FNMSUB_S : FPFMAS_rrr_frm<OPC_NMSUB, "fnmsub.s">;
121def          : FPFMASDynFrmAlias<FNMSUB_S, "fnmsub.s">;
122def FNMADD_S : FPFMAS_rrr_frm<OPC_NMADD, "fnmadd.s">;
123def          : FPFMASDynFrmAlias<FNMADD_S, "fnmadd.s">;
124
125def FADD_S : FPALUS_rr_frm<0b0000000, "fadd.s">;
126def        : FPALUSDynFrmAlias<FADD_S, "fadd.s">;
127def FSUB_S : FPALUS_rr_frm<0b0000100, "fsub.s">;
128def        : FPALUSDynFrmAlias<FSUB_S, "fsub.s">;
129def FMUL_S : FPALUS_rr_frm<0b0001000, "fmul.s">;
130def        : FPALUSDynFrmAlias<FMUL_S, "fmul.s">;
131def FDIV_S : FPALUS_rr_frm<0b0001100, "fdiv.s">;
132def        : FPALUSDynFrmAlias<FDIV_S, "fdiv.s">;
133
134def FSQRT_S : FPUnaryOp_r_frm<0b0101100, FPR32, FPR32, "fsqrt.s"> {
135  let rs2 = 0b00000;
136}
137def         : FPUnaryOpDynFrmAlias<FSQRT_S, "fsqrt.s", FPR32, FPR32>;
138
139def FSGNJ_S  : FPALUS_rr<0b0010000, 0b000, "fsgnj.s">;
140def FSGNJN_S : FPALUS_rr<0b0010000, 0b001, "fsgnjn.s">;
141def FSGNJX_S : FPALUS_rr<0b0010000, 0b010, "fsgnjx.s">;
142def FMIN_S   : FPALUS_rr<0b0010100, 0b000, "fmin.s">;
143def FMAX_S   : FPALUS_rr<0b0010100, 0b001, "fmax.s">;
144
145def FCVT_W_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.w.s"> {
146  let rs2 = 0b00000;
147}
148def          : FPUnaryOpDynFrmAlias<FCVT_W_S, "fcvt.w.s", GPR, FPR32>;
149
150def FCVT_WU_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.wu.s"> {
151  let rs2 = 0b00001;
152}
153def           : FPUnaryOpDynFrmAlias<FCVT_WU_S, "fcvt.wu.s", GPR, FPR32>;
154
155def FMV_X_W : FPUnaryOp_r<0b1110000, 0b000, GPR, FPR32, "fmv.x.w"> {
156  let rs2 = 0b00000;
157}
158
159def FEQ_S : FPCmpS_rr<0b010, "feq.s">;
160def FLT_S : FPCmpS_rr<0b001, "flt.s">;
161def FLE_S : FPCmpS_rr<0b000, "fle.s">;
162
163def FCLASS_S : FPUnaryOp_r<0b1110000, 0b001, GPR, FPR32, "fclass.s"> {
164  let rs2 = 0b00000;
165}
166
167def FCVT_S_W : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.w"> {
168  let rs2 = 0b00000;
169}
170def          : FPUnaryOpDynFrmAlias<FCVT_S_W, "fcvt.s.w", FPR32, GPR>;
171
172def FCVT_S_WU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.wu"> {
173  let rs2 = 0b00001;
174}
175def           : FPUnaryOpDynFrmAlias<FCVT_S_WU, "fcvt.s.wu", FPR32, GPR>;
176
177def FMV_W_X : FPUnaryOp_r<0b1111000, 0b000, FPR32, GPR, "fmv.w.x"> {
178  let rs2 = 0b00000;
179}
180} // Predicates = [HasStdExtF]
181
182let Predicates = [HasStdExtF, IsRV64] in {
183def FCVT_L_S  : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.l.s"> {
184  let rs2 = 0b00010;
185}
186def           : FPUnaryOpDynFrmAlias<FCVT_L_S, "fcvt.l.s", GPR, FPR32>;
187
188def FCVT_LU_S  : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.lu.s"> {
189  let rs2 = 0b00011;
190}
191def            : FPUnaryOpDynFrmAlias<FCVT_LU_S, "fcvt.lu.s", GPR, FPR32>;
192
193def FCVT_S_L : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.l"> {
194  let rs2 = 0b00010;
195}
196def          : FPUnaryOpDynFrmAlias<FCVT_S_L, "fcvt.s.l", FPR32, GPR>;
197
198def FCVT_S_LU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.lu"> {
199  let rs2 = 0b00011;
200}
201def           : FPUnaryOpDynFrmAlias<FCVT_S_LU, "fcvt.s.lu", FPR32, GPR>;
202} // Predicates = [HasStdExtF, IsRV64]
203
204//===----------------------------------------------------------------------===//
205// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
206//===----------------------------------------------------------------------===//
207
208let Predicates = [HasStdExtF] in {
209def : InstAlias<"flw $rd, (${rs1})",  (FLW FPR32:$rd,  GPR:$rs1, 0), 0>;
210def : InstAlias<"fsw $rs2, (${rs1})", (FSW FPR32:$rs2, GPR:$rs1, 0), 0>;
211
212def : InstAlias<"fmv.s $rd, $rs",  (FSGNJ_S  FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
213def : InstAlias<"fabs.s $rd, $rs", (FSGNJX_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
214def : InstAlias<"fneg.s $rd, $rs", (FSGNJN_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
215
216// fgt.s/fge.s are recognised by the GNU assembler but the canonical
217// flt.s/fle.s forms will always be printed. Therefore, set a zero weight.
218def : InstAlias<"fgt.s $rd, $rs, $rt",
219                (FLT_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>;
220def : InstAlias<"fge.s $rd, $rs, $rt",
221                (FLE_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>;
222
223// The following csr instructions actually alias instructions from the base ISA.
224// However, it only makes sense to support them when the F extension is enabled.
225// NOTE: "frcsr", "frrm", and "frflags" are more specialized version of "csrr".
226def : InstAlias<"frcsr $rd",      (CSRRS GPR:$rd, FCSR.Encoding, X0), 2>;
227def : InstAlias<"fscsr $rd, $rs", (CSRRW GPR:$rd, FCSR.Encoding, GPR:$rs)>;
228def : InstAlias<"fscsr $rs",      (CSRRW      X0, FCSR.Encoding, GPR:$rs), 2>;
229
230// frsr, fssr are obsolete aliases replaced by frcsr, fscsr, so give them
231// zero weight.
232def : InstAlias<"frsr $rd",       (CSRRS GPR:$rd, FCSR.Encoding, X0), 0>;
233def : InstAlias<"fssr $rd, $rs",  (CSRRW GPR:$rd, FCSR.Encoding, GPR:$rs), 0>;
234def : InstAlias<"fssr $rs",       (CSRRW      X0, FCSR.Encoding, GPR:$rs), 0>;
235
236def : InstAlias<"frrm $rd",        (CSRRS  GPR:$rd, FRM.Encoding, X0), 2>;
237def : InstAlias<"fsrm $rd, $rs",   (CSRRW  GPR:$rd, FRM.Encoding, GPR:$rs)>;
238def : InstAlias<"fsrm $rs",        (CSRRW       X0, FRM.Encoding, GPR:$rs), 2>;
239def : InstAlias<"fsrmi $rd, $imm", (CSRRWI GPR:$rd, FRM.Encoding, uimm5:$imm)>;
240def : InstAlias<"fsrmi $imm",      (CSRRWI      X0, FRM.Encoding, uimm5:$imm), 2>;
241
242def : InstAlias<"frflags $rd",        (CSRRS  GPR:$rd, FFLAGS.Encoding, X0), 2>;
243def : InstAlias<"fsflags $rd, $rs",   (CSRRW  GPR:$rd, FFLAGS.Encoding, GPR:$rs)>;
244def : InstAlias<"fsflags $rs",        (CSRRW       X0, FFLAGS.Encoding, GPR:$rs), 2>;
245def : InstAlias<"fsflagsi $rd, $imm", (CSRRWI GPR:$rd, FFLAGS.Encoding, uimm5:$imm)>;
246def : InstAlias<"fsflagsi $imm",      (CSRRWI      X0, FFLAGS.Encoding, uimm5:$imm), 2>;
247
248// fmv.w.x and fmv.x.w were previously known as fmv.s.x and fmv.x.s. Both
249// spellings should be supported by standard tools.
250def : MnemonicAlias<"fmv.s.x", "fmv.w.x">;
251def : MnemonicAlias<"fmv.x.s", "fmv.x.w">;
252
253def PseudoFLW  : PseudoFloatLoad<"flw", FPR32>;
254def PseudoFSW  : PseudoStore<"fsw", FPR32>;
255} // Predicates = [HasStdExtF]
256
257//===----------------------------------------------------------------------===//
258// Pseudo-instructions and codegen patterns
259//===----------------------------------------------------------------------===//
260
261/// Generic pattern classes
262class PatFpr32Fpr32<SDPatternOperator OpNode, RVInstR Inst>
263    : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2)>;
264
265class PatFpr32Fpr32DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst>
266    : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2, 0b111)>;
267
268let Predicates = [HasStdExtF] in {
269
270/// Float conversion operations
271
272// Moves (no conversion)
273def : Pat<(bitconvert GPR:$rs1), (FMV_W_X GPR:$rs1)>;
274def : Pat<(bitconvert FPR32:$rs1), (FMV_X_W FPR32:$rs1)>;
275
276// [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so
277// are defined later.
278
279/// Float arithmetic operations
280
281def : PatFpr32Fpr32DynFrm<fadd, FADD_S>;
282def : PatFpr32Fpr32DynFrm<fsub, FSUB_S>;
283def : PatFpr32Fpr32DynFrm<fmul, FMUL_S>;
284def : PatFpr32Fpr32DynFrm<fdiv, FDIV_S>;
285
286def : Pat<(fsqrt FPR32:$rs1), (FSQRT_S FPR32:$rs1, 0b111)>;
287
288def : Pat<(fneg FPR32:$rs1), (FSGNJN_S $rs1, $rs1)>;
289def : Pat<(fabs FPR32:$rs1), (FSGNJX_S $rs1, $rs1)>;
290
291def : PatFpr32Fpr32<fcopysign, FSGNJ_S>;
292def : Pat<(fcopysign FPR32:$rs1, (fneg FPR32:$rs2)), (FSGNJN_S $rs1, $rs2)>;
293
294// fmadd: rs1 * rs2 + rs3
295def : Pat<(fma FPR32:$rs1, FPR32:$rs2, FPR32:$rs3),
296          (FMADD_S $rs1, $rs2, $rs3, 0b111)>;
297
298// fmsub: rs1 * rs2 - rs3
299def : Pat<(fma FPR32:$rs1, FPR32:$rs2, (fneg FPR32:$rs3)),
300          (FMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
301
302// fnmsub: -rs1 * rs2 + rs3
303def : Pat<(fma (fneg FPR32:$rs1), FPR32:$rs2, FPR32:$rs3),
304          (FNMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
305
306// fnmadd: -rs1 * rs2 - rs3
307def : Pat<(fma (fneg FPR32:$rs1), FPR32:$rs2, (fneg FPR32:$rs3)),
308          (FNMADD_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
309
310// The RISC-V 2.2 user-level ISA spec defines fmin and fmax as returning the
311// canonical NaN when given a signaling NaN. This doesn't match the LLVM
312// behaviour (see https://bugs.llvm.org/show_bug.cgi?id=27363). However, the
313// draft 2.3 ISA spec changes the definition of fmin and fmax in a way that
314// matches LLVM's fminnum and fmaxnum
315// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
316def : PatFpr32Fpr32<fminnum, FMIN_S>;
317def : PatFpr32Fpr32<fmaxnum, FMAX_S>;
318
319/// Setcc
320
321def : PatFpr32Fpr32<seteq, FEQ_S>;
322def : PatFpr32Fpr32<setoeq, FEQ_S>;
323def : PatFpr32Fpr32<setlt, FLT_S>;
324def : PatFpr32Fpr32<setolt, FLT_S>;
325def : PatFpr32Fpr32<setle, FLE_S>;
326def : PatFpr32Fpr32<setole, FLE_S>;
327
328// Define pattern expansions for setcc operations which aren't directly
329// handled by a RISC-V instruction and aren't expanded in the SelectionDAG
330// Legalizer.
331
332def : Pat<(seto FPR32:$rs1, FPR32:$rs2),
333          (AND (FEQ_S FPR32:$rs1, FPR32:$rs1),
334               (FEQ_S FPR32:$rs2, FPR32:$rs2))>;
335
336def : Pat<(setuo FPR32:$rs1, FPR32:$rs2),
337          (SLTIU (AND (FEQ_S FPR32:$rs1, FPR32:$rs1),
338                      (FEQ_S FPR32:$rs2, FPR32:$rs2)),
339                 1)>;
340
341def Select_FPR32_Using_CC_GPR : SelectCC_rrirr<FPR32, GPR>;
342
343/// Loads
344
345defm : LdPat<load, FLW>;
346
347/// Stores
348
349defm : StPat<store, FSW, FPR32>;
350
351} // Predicates = [HasStdExtF]
352
353let Predicates = [HasStdExtF, IsRV32] in {
354// float->[u]int. Round-to-zero must be used.
355def : Pat<(fp_to_sint FPR32:$rs1), (FCVT_W_S $rs1, 0b001)>;
356def : Pat<(fp_to_uint FPR32:$rs1), (FCVT_WU_S $rs1, 0b001)>;
357
358// [u]int->float. Match GCC and default to using dynamic rounding mode.
359def : Pat<(sint_to_fp GPR:$rs1), (FCVT_S_W $rs1, 0b111)>;
360def : Pat<(uint_to_fp GPR:$rs1), (FCVT_S_WU $rs1, 0b111)>;
361} // Predicates = [HasStdExtF, IsRV32]
362
363let Predicates = [HasStdExtF, IsRV32] in {
364// FP->[u]int. Round-to-zero must be used
365def : Pat<(fp_to_sint FPR32:$rs1), (FCVT_W_S $rs1, 0b001)>;
366def : Pat<(fp_to_uint FPR32:$rs1), (FCVT_WU_S $rs1, 0b001)>;
367
368// [u]int->fp. Match GCC and default to using dynamic rounding mode.
369def : Pat<(sint_to_fp GPR:$rs1), (FCVT_S_W $rs1, 0b111)>;
370def : Pat<(uint_to_fp GPR:$rs1), (FCVT_S_WU $rs1, 0b111)>;
371} // Predicates = [HasStdExtF, IsRV32]
372
373let Predicates = [HasStdExtF, IsRV64] in {
374def : Pat<(riscv_fmv_w_x_rv64 GPR:$src), (FMV_W_X GPR:$src)>;
375def : Pat<(riscv_fmv_x_anyextw_rv64 FPR32:$src), (FMV_X_W FPR32:$src)>;
376def : Pat<(sexti32 (riscv_fmv_x_anyextw_rv64 FPR32:$src)),
377          (FMV_X_W FPR32:$src)>;
378
379// FP->[u]int32 is mostly handled by the FP->[u]int64 patterns. This is safe
380// because fpto[u|s]i produces poison if the value can't fit into the target.
381// We match the single case below because fcvt.wu.s sign-extends its result so
382// is cheaper than fcvt.lu.s+sext.w.
383def : Pat<(sext_inreg (assertzexti32 (fp_to_uint FPR32:$rs1)), i32),
384          (FCVT_WU_S $rs1, 0b001)>;
385
386// FP->[u]int64
387def : Pat<(fp_to_sint FPR32:$rs1), (FCVT_L_S $rs1, 0b001)>;
388def : Pat<(fp_to_uint FPR32:$rs1), (FCVT_LU_S $rs1, 0b001)>;
389
390// [u]int->fp. Match GCC and default to using dynamic rounding mode.
391def : Pat<(sint_to_fp (sext_inreg GPR:$rs1, i32)), (FCVT_S_W $rs1, 0b111)>;
392def : Pat<(uint_to_fp (zexti32 GPR:$rs1)), (FCVT_S_WU $rs1, 0b111)>;
393def : Pat<(sint_to_fp GPR:$rs1), (FCVT_S_L $rs1, 0b111)>;
394def : Pat<(uint_to_fp GPR:$rs1), (FCVT_S_LU $rs1, 0b111)>;
395} // Predicates = [HasStdExtF, IsRV64]
396