xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoD.td (revision 480093f4440d54b30b3025afeac24b48f2ba7a2e)
1//===-- RISCVInstrInfoD.td - RISC-V 'D' instructions -------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the RISC-V instructions from the standard 'D',
10// Double-Precision Floating-Point instruction set extension.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// RISC-V specific DAG Nodes.
16//===----------------------------------------------------------------------===//
17
18def SDT_RISCVBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
19                                                 SDTCisVT<1, i32>,
20                                                 SDTCisSameAs<1, 2>]>;
21def SDT_RISCVSplitF64     : SDTypeProfile<2, 1, [SDTCisVT<0, i32>,
22                                                 SDTCisVT<1, i32>,
23                                                 SDTCisVT<2, f64>]>;
24
25def RISCVBuildPairF64 : SDNode<"RISCVISD::BuildPairF64", SDT_RISCVBuildPairF64>;
26def RISCVSplitF64     : SDNode<"RISCVISD::SplitF64", SDT_RISCVSplitF64>;
27
28//===----------------------------------------------------------------------===//
29// Instruction Class Templates
30//===----------------------------------------------------------------------===//
31
32let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
33class FPFMAD_rrr_frm<RISCVOpcode opcode, string opcodestr>
34    : RVInstR4<0b01, opcode, (outs FPR64:$rd),
35               (ins FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, frmarg:$funct3),
36                opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">;
37
38class FPFMADDynFrmAlias<FPFMAD_rrr_frm Inst, string OpcodeStr>
39    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2, $rs3",
40                (Inst FPR64:$rd, FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
41
42let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
43class FPALUD_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
44    : RVInstR<funct7, funct3, OPC_OP_FP, (outs FPR64:$rd),
45              (ins FPR64:$rs1, FPR64:$rs2), opcodestr, "$rd, $rs1, $rs2">;
46
47let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
48class FPALUD_rr_frm<bits<7> funct7, string opcodestr>
49    : RVInstRFrm<funct7, OPC_OP_FP, (outs FPR64:$rd),
50                (ins FPR64:$rs1, FPR64:$rs2, frmarg:$funct3), opcodestr,
51                 "$rd, $rs1, $rs2, $funct3">;
52
53class FPALUDDynFrmAlias<FPALUD_rr_frm Inst, string OpcodeStr>
54    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2",
55                (Inst FPR64:$rd, FPR64:$rs1, FPR64:$rs2, 0b111)>;
56
57let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
58class FPCmpD_rr<bits<3> funct3, string opcodestr>
59    : RVInstR<0b1010001, funct3, OPC_OP_FP, (outs GPR:$rd),
60              (ins FPR64:$rs1, FPR64:$rs2), opcodestr, "$rd, $rs1, $rs2">;
61
62//===----------------------------------------------------------------------===//
63// Instructions
64//===----------------------------------------------------------------------===//
65
66let Predicates = [HasStdExtD] in {
67
68let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
69def FLD : RVInstI<0b011, OPC_LOAD_FP, (outs FPR64:$rd),
70                  (ins GPR:$rs1, simm12:$imm12),
71                  "fld", "$rd, ${imm12}(${rs1})">;
72
73// Operands for stores are in the order srcreg, base, offset rather than
74// reflecting the order these fields are specified in the instruction
75// encoding.
76let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
77def FSD : RVInstS<0b011, OPC_STORE_FP, (outs),
78                  (ins FPR64:$rs2, GPR:$rs1, simm12:$imm12),
79                   "fsd", "$rs2, ${imm12}(${rs1})">;
80
81def FMADD_D  : FPFMAD_rrr_frm<OPC_MADD, "fmadd.d">;
82def          : FPFMADDynFrmAlias<FMADD_D, "fmadd.d">;
83def FMSUB_D  : FPFMAD_rrr_frm<OPC_MSUB, "fmsub.d">;
84def          : FPFMADDynFrmAlias<FMSUB_D, "fmsub.d">;
85def FNMSUB_D : FPFMAD_rrr_frm<OPC_NMSUB, "fnmsub.d">;
86def          : FPFMADDynFrmAlias<FNMSUB_D, "fnmsub.d">;
87def FNMADD_D : FPFMAD_rrr_frm<OPC_NMADD, "fnmadd.d">;
88def          : FPFMADDynFrmAlias<FNMADD_D, "fnmadd.d">;
89
90def FADD_D : FPALUD_rr_frm<0b0000001, "fadd.d">;
91def        : FPALUDDynFrmAlias<FADD_D, "fadd.d">;
92def FSUB_D : FPALUD_rr_frm<0b0000101, "fsub.d">;
93def        : FPALUDDynFrmAlias<FSUB_D, "fsub.d">;
94def FMUL_D : FPALUD_rr_frm<0b0001001, "fmul.d">;
95def        : FPALUDDynFrmAlias<FMUL_D, "fmul.d">;
96def FDIV_D : FPALUD_rr_frm<0b0001101, "fdiv.d">;
97def        : FPALUDDynFrmAlias<FDIV_D, "fdiv.d">;
98
99def FSQRT_D : FPUnaryOp_r_frm<0b0101101, FPR64, FPR64, "fsqrt.d"> {
100  let rs2 = 0b00000;
101}
102def         : FPUnaryOpDynFrmAlias<FSQRT_D, "fsqrt.d", FPR64, FPR64>;
103
104def FSGNJ_D  : FPALUD_rr<0b0010001, 0b000, "fsgnj.d">;
105def FSGNJN_D : FPALUD_rr<0b0010001, 0b001, "fsgnjn.d">;
106def FSGNJX_D : FPALUD_rr<0b0010001, 0b010, "fsgnjx.d">;
107def FMIN_D   : FPALUD_rr<0b0010101, 0b000, "fmin.d">;
108def FMAX_D   : FPALUD_rr<0b0010101, 0b001, "fmax.d">;
109
110def FCVT_S_D : FPUnaryOp_r_frm<0b0100000, FPR32, FPR64, "fcvt.s.d"> {
111  let rs2 = 0b00001;
112}
113def          : FPUnaryOpDynFrmAlias<FCVT_S_D, "fcvt.s.d", FPR32, FPR64>;
114
115def FCVT_D_S : FPUnaryOp_r<0b0100001, 0b000, FPR64, FPR32, "fcvt.d.s"> {
116  let rs2 = 0b00000;
117}
118
119def FEQ_D : FPCmpD_rr<0b010, "feq.d">;
120def FLT_D : FPCmpD_rr<0b001, "flt.d">;
121def FLE_D : FPCmpD_rr<0b000, "fle.d">;
122
123def FCLASS_D : FPUnaryOp_r<0b1110001, 0b001, GPR, FPR64, "fclass.d"> {
124  let rs2 = 0b00000;
125}
126
127def FCVT_W_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.w.d"> {
128  let rs2 = 0b00000;
129}
130def          : FPUnaryOpDynFrmAlias<FCVT_W_D, "fcvt.w.d", GPR, FPR64>;
131
132def FCVT_WU_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.wu.d"> {
133  let rs2 = 0b00001;
134}
135def           : FPUnaryOpDynFrmAlias<FCVT_WU_D, "fcvt.wu.d", GPR, FPR64>;
136
137def FCVT_D_W : FPUnaryOp_r<0b1101001, 0b000, FPR64, GPR, "fcvt.d.w"> {
138  let rs2 = 0b00000;
139}
140
141def FCVT_D_WU : FPUnaryOp_r<0b1101001, 0b000, FPR64, GPR, "fcvt.d.wu"> {
142  let rs2 = 0b00001;
143}
144} // Predicates = [HasStdExtD]
145
146let Predicates = [HasStdExtD, IsRV64] in {
147def FCVT_L_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.l.d"> {
148  let rs2 = 0b00010;
149}
150def          : FPUnaryOpDynFrmAlias<FCVT_L_D, "fcvt.l.d", GPR, FPR64>;
151
152def FCVT_LU_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.lu.d"> {
153  let rs2 = 0b00011;
154}
155def           : FPUnaryOpDynFrmAlias<FCVT_LU_D, "fcvt.lu.d", GPR, FPR64>;
156
157def FMV_X_D : FPUnaryOp_r<0b1110001, 0b000, GPR, FPR64, "fmv.x.d"> {
158  let rs2 = 0b00000;
159}
160
161def FCVT_D_L : FPUnaryOp_r_frm<0b1101001, FPR64, GPR, "fcvt.d.l"> {
162  let rs2 = 0b00010;
163}
164def          : FPUnaryOpDynFrmAlias<FCVT_D_L, "fcvt.d.l", FPR64, GPR>;
165
166def FCVT_D_LU : FPUnaryOp_r_frm<0b1101001, FPR64, GPR, "fcvt.d.lu"> {
167  let rs2 = 0b00011;
168}
169def           : FPUnaryOpDynFrmAlias<FCVT_D_LU, "fcvt.d.lu", FPR64, GPR>;
170
171def FMV_D_X : FPUnaryOp_r<0b1111001, 0b000, FPR64, GPR, "fmv.d.x"> {
172  let rs2 = 0b00000;
173}
174} // Predicates = [HasStdExtD, IsRV64]
175
176//===----------------------------------------------------------------------===//
177// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
178//===----------------------------------------------------------------------===//
179
180let Predicates = [HasStdExtD] in {
181def : InstAlias<"fld $rd, (${rs1})",  (FLD FPR64:$rd,  GPR:$rs1, 0), 0>;
182def : InstAlias<"fsd $rs2, (${rs1})", (FSD FPR64:$rs2, GPR:$rs1, 0), 0>;
183
184def : InstAlias<"fmv.d $rd, $rs",  (FSGNJ_D  FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
185def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
186def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
187
188// fgt.d/fge.d are recognised by the GNU assembler but the canonical
189// flt.d/fle.d forms will always be printed. Therefore, set a zero weight.
190def : InstAlias<"fgt.d $rd, $rs, $rt",
191                (FLT_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
192def : InstAlias<"fge.d $rd, $rs, $rt",
193                (FLE_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
194
195def PseudoFLD  : PseudoFloatLoad<"fld", FPR64>;
196def PseudoFSD  : PseudoStore<"fsd", FPR64>;
197} // Predicates = [HasStdExtD]
198
199//===----------------------------------------------------------------------===//
200// Pseudo-instructions and codegen patterns
201//===----------------------------------------------------------------------===//
202
203class PatFpr64Fpr64<SDPatternOperator OpNode, RVInstR Inst>
204    : Pat<(OpNode FPR64:$rs1, FPR64:$rs2), (Inst $rs1, $rs2)>;
205
206class PatFpr64Fpr64DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst>
207    : Pat<(OpNode FPR64:$rs1, FPR64:$rs2), (Inst $rs1, $rs2, 0b111)>;
208
209let Predicates = [HasStdExtD] in {
210
211/// Float conversion operations
212
213// f64 -> f32, f32 -> f64
214def : Pat<(fpround FPR64:$rs1), (FCVT_S_D FPR64:$rs1, 0b111)>;
215def : Pat<(fpextend FPR32:$rs1), (FCVT_D_S FPR32:$rs1)>;
216
217// [u]int<->double conversion patterns must be gated on IsRV32 or IsRV64, so
218// are defined later.
219
220/// Float arithmetic operations
221
222def : PatFpr64Fpr64DynFrm<fadd, FADD_D>;
223def : PatFpr64Fpr64DynFrm<fsub, FSUB_D>;
224def : PatFpr64Fpr64DynFrm<fmul, FMUL_D>;
225def : PatFpr64Fpr64DynFrm<fdiv, FDIV_D>;
226
227def : Pat<(fsqrt FPR64:$rs1), (FSQRT_D FPR64:$rs1, 0b111)>;
228
229def : Pat<(fneg FPR64:$rs1), (FSGNJN_D $rs1, $rs1)>;
230def : Pat<(fabs FPR64:$rs1), (FSGNJX_D $rs1, $rs1)>;
231
232def : PatFpr64Fpr64<fcopysign, FSGNJ_D>;
233def : Pat<(fcopysign FPR64:$rs1, (fneg FPR64:$rs2)), (FSGNJN_D $rs1, $rs2)>;
234def : Pat<(fcopysign FPR64:$rs1, FPR32:$rs2), (FSGNJ_D $rs1, (FCVT_D_S $rs2))>;
235def : Pat<(fcopysign FPR32:$rs1, FPR64:$rs2), (FSGNJ_S $rs1, (FCVT_S_D $rs2,
236                                                              0b111))>;
237
238// fmadd: rs1 * rs2 + rs3
239def : Pat<(fma FPR64:$rs1, FPR64:$rs2, FPR64:$rs3),
240          (FMADD_D $rs1, $rs2, $rs3, 0b111)>;
241
242// fmsub: rs1 * rs2 - rs3
243def : Pat<(fma FPR64:$rs1, FPR64:$rs2, (fneg FPR64:$rs3)),
244          (FMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
245
246// fnmsub: -rs1 * rs2 + rs3
247def : Pat<(fma (fneg FPR64:$rs1), FPR64:$rs2, FPR64:$rs3),
248          (FNMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
249
250// fnmadd: -rs1 * rs2 - rs3
251def : Pat<(fma (fneg FPR64:$rs1), FPR64:$rs2, (fneg FPR64:$rs3)),
252          (FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
253
254// The RISC-V 2.2 user-level ISA spec defines fmin and fmax as returning the
255// canonical NaN when giving a signaling NaN. This doesn't match the LLVM
256// behaviour (see https://bugs.llvm.org/show_bug.cgi?id=27363). However, the
257// draft 2.3 ISA spec changes the definition of fmin and fmax in a way that
258// matches LLVM's fminnum and fmaxnum
259// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
260def : PatFpr64Fpr64<fminnum, FMIN_D>;
261def : PatFpr64Fpr64<fmaxnum, FMAX_D>;
262
263/// Setcc
264
265def : PatFpr64Fpr64<seteq, FEQ_D>;
266def : PatFpr64Fpr64<setoeq, FEQ_D>;
267def : PatFpr64Fpr64<setlt, FLT_D>;
268def : PatFpr64Fpr64<setolt, FLT_D>;
269def : PatFpr64Fpr64<setle, FLE_D>;
270def : PatFpr64Fpr64<setole, FLE_D>;
271
272// Define pattern expansions for setcc operations which aren't directly
273// handled by a RISC-V instruction and aren't expanded in the SelectionDAG
274// Legalizer.
275
276def : Pat<(seto FPR64:$rs1, FPR64:$rs2),
277          (AND (FEQ_D FPR64:$rs1, FPR64:$rs1),
278               (FEQ_D FPR64:$rs2, FPR64:$rs2))>;
279
280def : Pat<(setuo FPR64:$rs1, FPR64:$rs2),
281          (SLTIU (AND (FEQ_D FPR64:$rs1, FPR64:$rs1),
282                      (FEQ_D FPR64:$rs2, FPR64:$rs2)),
283                 1)>;
284
285def Select_FPR64_Using_CC_GPR : SelectCC_rrirr<FPR64, GPR>;
286
287/// Loads
288
289defm : LdPat<load, FLD>;
290
291/// Stores
292
293defm : StPat<store, FSD, FPR64>;
294
295/// Pseudo-instructions needed for the soft-float ABI with RV32D
296
297// Moves two GPRs to an FPR.
298let usesCustomInserter = 1 in
299def BuildPairF64Pseudo
300    : Pseudo<(outs FPR64:$dst), (ins GPR:$src1, GPR:$src2),
301             [(set FPR64:$dst, (RISCVBuildPairF64 GPR:$src1, GPR:$src2))]>;
302
303// Moves an FPR to two GPRs.
304let usesCustomInserter = 1 in
305def SplitF64Pseudo
306    : Pseudo<(outs GPR:$dst1, GPR:$dst2), (ins FPR64:$src),
307             [(set GPR:$dst1, GPR:$dst2, (RISCVSplitF64 FPR64:$src))]>;
308
309} // Predicates = [HasStdExtD]
310
311let Predicates = [HasStdExtD, IsRV32] in {
312// double->[u]int. Round-to-zero must be used.
313def : Pat<(fp_to_sint FPR64:$rs1), (FCVT_W_D FPR64:$rs1, 0b001)>;
314def : Pat<(fp_to_uint FPR64:$rs1), (FCVT_WU_D FPR64:$rs1, 0b001)>;
315
316// [u]int->double.
317def : Pat<(sint_to_fp GPR:$rs1), (FCVT_D_W GPR:$rs1)>;
318def : Pat<(uint_to_fp GPR:$rs1), (FCVT_D_WU GPR:$rs1)>;
319} // Predicates = [HasStdExtD, IsRV32]
320
321let Predicates = [HasStdExtD, IsRV64] in {
322def : Pat<(bitconvert GPR:$rs1), (FMV_D_X GPR:$rs1)>;
323def : Pat<(bitconvert FPR64:$rs1), (FMV_X_D FPR64:$rs1)>;
324
325// FP->[u]int32 is mostly handled by the FP->[u]int64 patterns. This is safe
326// because fpto[u|s]i produce poison if the value can't fit into the target.
327// We match the single case below because fcvt.wu.d sign-extends its result so
328// is cheaper than fcvt.lu.d+sext.w.
329def : Pat<(sext_inreg (zexti32 (fp_to_uint FPR64:$rs1)), i32),
330          (FCVT_WU_D $rs1, 0b001)>;
331
332// [u]int32->fp
333def : Pat<(sint_to_fp (sext_inreg GPR:$rs1, i32)), (FCVT_D_W $rs1)>;
334def : Pat<(uint_to_fp (zexti32 GPR:$rs1)), (FCVT_D_WU $rs1)>;
335
336def : Pat<(fp_to_sint FPR64:$rs1), (FCVT_L_D FPR64:$rs1, 0b001)>;
337def : Pat<(fp_to_uint FPR64:$rs1), (FCVT_LU_D FPR64:$rs1, 0b001)>;
338
339// [u]int64->fp. Match GCC and default to using dynamic rounding mode.
340def : Pat<(sint_to_fp GPR:$rs1), (FCVT_D_L GPR:$rs1, 0b111)>;
341def : Pat<(uint_to_fp GPR:$rs1), (FCVT_D_LU GPR:$rs1, 0b111)>;
342} // Predicates = [HasStdExtD, IsRV64]
343