xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoD.td (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1//===-- RISCVInstrInfoD.td - RISC-V 'D' instructions -------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the RISC-V instructions from the standard 'D',
10// Double-Precision Floating-Point instruction set extension.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// RISC-V specific DAG Nodes.
16//===----------------------------------------------------------------------===//
17
18def SDT_RISCVBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
19                                                 SDTCisVT<1, i32>,
20                                                 SDTCisSameAs<1, 2>]>;
21def SDT_RISCVSplitF64     : SDTypeProfile<2, 1, [SDTCisVT<0, i32>,
22                                                 SDTCisVT<1, i32>,
23                                                 SDTCisVT<2, f64>]>;
24
25def RISCVBuildPairF64 : SDNode<"RISCVISD::BuildPairF64", SDT_RISCVBuildPairF64>;
26def RISCVSplitF64     : SDNode<"RISCVISD::SplitF64", SDT_RISCVSplitF64>;
27
28def AddrRegImmINX : ComplexPattern<iPTR, 2, "SelectAddrRegImmINX">;
29
30//===----------------------------------------------------------------------===//
31// Operand and SDNode transformation definitions.
32//===----------------------------------------------------------------------===//
33
34// Zdinx
35
36def GPRPairAsFPR : AsmOperandClass {
37  let Name = "GPRPairAsFPR";
38  let ParserMethod = "parseGPRAsFPR";
39  let PredicateMethod = "isGPRAsFPR";
40  let RenderMethod = "addRegOperands";
41}
42
43def GPRF64AsFPR : AsmOperandClass {
44  let Name = "GPRF64AsFPR";
45  let PredicateMethod = "isGPRAsFPR";
46  let ParserMethod = "parseGPRAsFPR";
47  let RenderMethod = "addRegOperands";
48}
49
50def FPR64INX : RegisterOperand<GPR> {
51  let ParserMatchClass = GPRF64AsFPR;
52  let DecoderMethod = "DecodeGPRRegisterClass";
53}
54
55def FPR64IN32X : RegisterOperand<GPRPair> {
56  let ParserMatchClass = GPRPairAsFPR;
57}
58
59def DExt       : ExtInfo<"", "", [HasStdExtD], f64, FPR64, FPR32, FPR64, ?>;
60
61def ZdinxExt   : ExtInfo<"_INX", "RVZfinx", [HasStdExtZdinx, IsRV64],
62                         f64, FPR64INX, FPR32INX, FPR64INX, ?>;
63def Zdinx32Ext : ExtInfo<"_IN32X", "RV32Zdinx", [HasStdExtZdinx, IsRV32],
64                         f64, FPR64IN32X, FPR32INX, FPR64IN32X, ?>;
65
66defvar DExts     = [DExt, ZdinxExt, Zdinx32Ext];
67defvar DExtsRV64 = [DExt, ZdinxExt];
68
69//===----------------------------------------------------------------------===//
70// Instructions
71//===----------------------------------------------------------------------===//
72
73let Predicates = [HasStdExtD] in {
74def FLD : FPLoad_r<0b011, "fld", FPR64, WriteFLD64>;
75
76// Operands for stores are in the order srcreg, base, offset rather than
77// reflecting the order these fields are specified in the instruction
78// encoding.
79def FSD : FPStore_r<0b011, "fsd", FPR64, WriteFST64>;
80} // Predicates = [HasStdExtD]
81
82foreach Ext = DExts in {
83  let SchedRW = [WriteFMA64, ReadFMA64, ReadFMA64, ReadFMA64Addend] in {
84    defm FMADD_D  : FPFMA_rrr_frm_m<OPC_MADD,  0b01, "fmadd.d",  Ext>;
85    defm FMSUB_D  : FPFMA_rrr_frm_m<OPC_MSUB,  0b01, "fmsub.d",  Ext>;
86    defm FNMSUB_D : FPFMA_rrr_frm_m<OPC_NMSUB, 0b01, "fnmsub.d", Ext>;
87    defm FNMADD_D : FPFMA_rrr_frm_m<OPC_NMADD, 0b01, "fnmadd.d", Ext>;
88  }
89
90  let SchedRW = [WriteFAdd64, ReadFAdd64, ReadFAdd64] in {
91    defm FADD_D : FPALU_rr_frm_m<0b0000001, "fadd.d", Ext, Commutable=1>;
92    defm FSUB_D : FPALU_rr_frm_m<0b0000101, "fsub.d", Ext>;
93  }
94  let SchedRW = [WriteFMul64, ReadFMul64, ReadFMul64] in
95  defm FMUL_D : FPALU_rr_frm_m<0b0001001, "fmul.d", Ext, Commutable=1>;
96
97  let SchedRW = [WriteFDiv64, ReadFDiv64, ReadFDiv64] in
98  defm FDIV_D : FPALU_rr_frm_m<0b0001101, "fdiv.d", Ext>;
99
100  defm FSQRT_D : FPUnaryOp_r_frm_m<0b0101101, 0b00000, Ext, Ext.PrimaryTy,
101                                   Ext.PrimaryTy, "fsqrt.d">,
102                 Sched<[WriteFSqrt64, ReadFSqrt64]>;
103
104  let SchedRW = [WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64],
105      mayRaiseFPException = 0 in {
106    defm FSGNJ_D  : FPALU_rr_m<0b0010001, 0b000, "fsgnj.d",  Ext>;
107    defm FSGNJN_D : FPALU_rr_m<0b0010001, 0b001, "fsgnjn.d", Ext>;
108    defm FSGNJX_D : FPALU_rr_m<0b0010001, 0b010, "fsgnjx.d", Ext>;
109  }
110
111  let SchedRW = [WriteFMinMax64, ReadFMinMax64, ReadFMinMax64] in {
112    defm FMIN_D   : FPALU_rr_m<0b0010101, 0b000, "fmin.d", Ext, Commutable=1>;
113    defm FMAX_D   : FPALU_rr_m<0b0010101, 0b001, "fmax.d", Ext, Commutable=1>;
114  }
115
116  defm FCVT_S_D : FPUnaryOp_r_frm_m<0b0100000, 0b00001, Ext, Ext.F32Ty,
117                                    Ext.PrimaryTy, "fcvt.s.d">,
118                  Sched<[WriteFCvtF64ToF32, ReadFCvtF64ToF32]>;
119
120  defm FCVT_D_S : FPUnaryOp_r_frmlegacy_m<0b0100001, 0b00000, Ext, Ext.PrimaryTy,
121                                          Ext.F32Ty, "fcvt.d.s">,
122                  Sched<[WriteFCvtF32ToF64, ReadFCvtF32ToF64]>;
123
124  let SchedRW = [WriteFCmp64, ReadFCmp64, ReadFCmp64] in {
125    defm FEQ_D : FPCmp_rr_m<0b1010001, 0b010, "feq.d", Ext, Commutable=1>;
126    defm FLT_D : FPCmp_rr_m<0b1010001, 0b001, "flt.d", Ext>;
127    defm FLE_D : FPCmp_rr_m<0b1010001, 0b000, "fle.d", Ext>;
128  }
129
130  let mayRaiseFPException = 0 in
131  defm FCLASS_D : FPUnaryOp_r_m<0b1110001, 0b00000, 0b001, Ext, GPR, Ext.PrimaryTy,
132                                "fclass.d">,
133                  Sched<[WriteFClass64, ReadFClass64]>;
134
135  let IsSignExtendingOpW = 1 in
136  defm FCVT_W_D : FPUnaryOp_r_frm_m<0b1100001, 0b00000, Ext, GPR, Ext.PrimaryTy,
137                                    "fcvt.w.d">,
138                 Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]>;
139
140  let IsSignExtendingOpW = 1 in
141  defm FCVT_WU_D : FPUnaryOp_r_frm_m<0b1100001, 0b00001, Ext, GPR, Ext.PrimaryTy,
142                                     "fcvt.wu.d">,
143                   Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]>;
144
145  defm FCVT_D_W : FPUnaryOp_r_frmlegacy_m<0b1101001, 0b00000, Ext, Ext.PrimaryTy, GPR,
146                                          "fcvt.d.w">,
147                  Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]>;
148
149  defm FCVT_D_WU : FPUnaryOp_r_frmlegacy_m<0b1101001, 0b00001, Ext, Ext.PrimaryTy, GPR,
150                                           "fcvt.d.wu">,
151                   Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]>;
152} // foreach Ext = DExts
153
154foreach Ext = DExtsRV64 in {
155  defm FCVT_L_D : FPUnaryOp_r_frm_m<0b1100001, 0b00010, Ext, GPR, Ext.PrimaryTy,
156                                    "fcvt.l.d", [IsRV64]>,
157                  Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]>;
158
159  defm FCVT_LU_D : FPUnaryOp_r_frm_m<0b1100001, 0b00011, Ext, GPR, Ext.PrimaryTy,
160                                     "fcvt.lu.d", [IsRV64]>,
161                   Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]>;
162
163  defm FCVT_D_L : FPUnaryOp_r_frm_m<0b1101001, 0b00010, Ext, Ext.PrimaryTy, GPR,
164                                    "fcvt.d.l", [IsRV64]>,
165                  Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]>;
166
167  defm FCVT_D_LU : FPUnaryOp_r_frm_m<0b1101001, 0b00011, Ext, Ext.PrimaryTy, GPR,
168                                     "fcvt.d.lu", [IsRV64]>,
169                   Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]>;
170} // foreach Ext = DExts64
171
172let Predicates = [HasStdExtD, IsRV64], mayRaiseFPException = 0 in
173def FMV_X_D : FPUnaryOp_r<0b1110001, 0b00000, 0b000, GPR, FPR64, "fmv.x.d">,
174              Sched<[WriteFMovF64ToI64, ReadFMovF64ToI64]>;
175
176let Predicates = [HasStdExtD, IsRV64], mayRaiseFPException = 0 in
177def FMV_D_X : FPUnaryOp_r<0b1111001, 0b00000, 0b000, FPR64, GPR, "fmv.d.x">,
178              Sched<[WriteFMovI64ToF64, ReadFMovI64ToF64]>;
179
180//===----------------------------------------------------------------------===//
181// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
182//===----------------------------------------------------------------------===//
183
184let Predicates = [HasStdExtD] in {
185def : InstAlias<"fld $rd, (${rs1})",  (FLD FPR64:$rd,  GPR:$rs1, 0), 0>;
186def : InstAlias<"fsd $rs2, (${rs1})", (FSD FPR64:$rs2, GPR:$rs1, 0), 0>;
187
188def : InstAlias<"fmv.d $rd, $rs",  (FSGNJ_D  FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
189def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
190def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
191
192// fgt.d/fge.d are recognised by the GNU assembler but the canonical
193// flt.d/fle.d forms will always be printed. Therefore, set a zero weight.
194def : InstAlias<"fgt.d $rd, $rs, $rt",
195                (FLT_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
196def : InstAlias<"fge.d $rd, $rs, $rt",
197                (FLE_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
198
199def PseudoFLD  : PseudoFloatLoad<"fld", FPR64>;
200def PseudoFSD  : PseudoStore<"fsd", FPR64>;
201let usesCustomInserter = 1 in {
202def PseudoQuietFLE_D : PseudoQuietFCMP<FPR64>;
203def PseudoQuietFLT_D : PseudoQuietFCMP<FPR64>;
204}
205} // Predicates = [HasStdExtD]
206
207let Predicates = [HasStdExtZdinx, IsRV64] in {
208def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D_INX FPR64INX:$rd, FPR64INX:$rs, FPR64INX:$rs)>;
209def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D_INX FPR64INX:$rd, FPR64INX:$rs, FPR64INX:$rs)>;
210
211def : InstAlias<"fgt.d $rd, $rs, $rt",
212                (FLT_D_INX GPR:$rd, FPR64INX:$rt, FPR64INX:$rs), 0>;
213def : InstAlias<"fge.d $rd, $rs, $rt",
214                (FLE_D_INX GPR:$rd, FPR64INX:$rt, FPR64INX:$rs), 0>;
215let usesCustomInserter = 1 in {
216def PseudoQuietFLE_D_INX : PseudoQuietFCMP<FPR64INX>;
217def PseudoQuietFLT_D_INX : PseudoQuietFCMP<FPR64INX>;
218}
219} // Predicates = [HasStdExtZdinx, IsRV64]
220
221let Predicates = [HasStdExtZdinx, IsRV32] in {
222def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D_IN32X FPR64IN32X:$rd, FPR64IN32X:$rs, FPR64IN32X:$rs)>;
223def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D_IN32X FPR64IN32X:$rd, FPR64IN32X:$rs, FPR64IN32X:$rs)>;
224
225def : InstAlias<"fgt.d $rd, $rs, $rt",
226                (FLT_D_IN32X GPR:$rd, FPR64IN32X:$rt, FPR64IN32X:$rs), 0>;
227def : InstAlias<"fge.d $rd, $rs, $rt",
228                (FLE_D_IN32X GPR:$rd, FPR64IN32X:$rt, FPR64IN32X:$rs), 0>;
229let usesCustomInserter = 1 in {
230def PseudoQuietFLE_D_IN32X : PseudoQuietFCMP<FPR64IN32X>;
231def PseudoQuietFLT_D_IN32X : PseudoQuietFCMP<FPR64IN32X>;
232}
233} // Predicates = [HasStdExtZdinx, IsRV32]
234
235//===----------------------------------------------------------------------===//
236// Pseudo-instructions and codegen patterns
237//===----------------------------------------------------------------------===//
238
239let Predicates = [HasStdExtD] in {
240
241/// Float conversion operations
242
243// f64 -> f32, f32 -> f64
244def : Pat<(any_fpround FPR64:$rs1), (FCVT_S_D FPR64:$rs1, FRM_DYN)>;
245def : Pat<(any_fpextend FPR32:$rs1), (FCVT_D_S FPR32:$rs1, FRM_RNE)>;
246} // Predicates = [HasStdExtD]
247
248let Predicates = [HasStdExtZdinx, IsRV64] in {
249/// Float conversion operations
250
251// f64 -> f32, f32 -> f64
252def : Pat<(any_fpround FPR64INX:$rs1), (FCVT_S_D_INX FPR64INX:$rs1, FRM_DYN)>;
253def : Pat<(any_fpextend FPR32INX:$rs1), (FCVT_D_S_INX FPR32INX:$rs1, FRM_RNE)>;
254} // Predicates = [HasStdExtZdinx, IsRV64]
255
256let Predicates = [HasStdExtZdinx, IsRV32] in {
257/// Float conversion operations
258
259// f64 -> f32, f32 -> f64
260def : Pat<(any_fpround FPR64IN32X:$rs1), (FCVT_S_D_IN32X FPR64IN32X:$rs1, FRM_DYN)>;
261def : Pat<(any_fpextend FPR32INX:$rs1), (FCVT_D_S_IN32X FPR32INX:$rs1, FRM_RNE)>;
262} // Predicates = [HasStdExtZdinx, IsRV32]
263
264// [u]int<->double conversion patterns must be gated on IsRV32 or IsRV64, so
265// are defined later.
266
267/// Float arithmetic operations
268
269foreach Ext = DExts in {
270  defm : PatFprFprDynFrm_m<any_fadd, FADD_D, Ext>;
271  defm : PatFprFprDynFrm_m<any_fsub, FSUB_D, Ext>;
272  defm : PatFprFprDynFrm_m<any_fmul, FMUL_D, Ext>;
273  defm : PatFprFprDynFrm_m<any_fdiv, FDIV_D, Ext>;
274}
275
276let Predicates = [HasStdExtD] in {
277def : Pat<(any_fsqrt FPR64:$rs1), (FSQRT_D FPR64:$rs1, FRM_DYN)>;
278
279def : Pat<(fneg FPR64:$rs1), (FSGNJN_D $rs1, $rs1)>;
280def : Pat<(fabs FPR64:$rs1), (FSGNJX_D $rs1, $rs1)>;
281
282def : Pat<(riscv_fclass FPR64:$rs1), (FCLASS_D $rs1)>;
283
284def : PatFprFpr<fcopysign, FSGNJ_D, FPR64, f64>;
285def : Pat<(fcopysign FPR64:$rs1, (fneg FPR64:$rs2)), (FSGNJN_D $rs1, $rs2)>;
286def : Pat<(fcopysign FPR64:$rs1, FPR32:$rs2), (FSGNJ_D $rs1, (FCVT_D_S $rs2,
287                                                              FRM_RNE))>;
288def : Pat<(fcopysign FPR32:$rs1, FPR64:$rs2), (FSGNJ_S $rs1, (FCVT_S_D $rs2,
289                                                              FRM_DYN))>;
290
291// fmadd: rs1 * rs2 + rs3
292def : Pat<(any_fma FPR64:$rs1, FPR64:$rs2, FPR64:$rs3),
293          (FMADD_D $rs1, $rs2, $rs3, FRM_DYN)>;
294
295// fmsub: rs1 * rs2 - rs3
296def : Pat<(any_fma FPR64:$rs1, FPR64:$rs2, (fneg FPR64:$rs3)),
297          (FMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, FRM_DYN)>;
298
299// fnmsub: -rs1 * rs2 + rs3
300def : Pat<(any_fma (fneg FPR64:$rs1), FPR64:$rs2, FPR64:$rs3),
301          (FNMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, FRM_DYN)>;
302
303// fnmadd: -rs1 * rs2 - rs3
304def : Pat<(any_fma (fneg FPR64:$rs1), FPR64:$rs2, (fneg FPR64:$rs3)),
305          (FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, FRM_DYN)>;
306
307// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
308def : Pat<(fneg (any_fma_nsz FPR64:$rs1, FPR64:$rs2, FPR64:$rs3)),
309          (FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, FRM_DYN)>;
310} // Predicates = [HasStdExtD]
311
312let Predicates = [HasStdExtZdinx, IsRV64] in {
313def : Pat<(any_fsqrt FPR64INX:$rs1), (FSQRT_D_INX FPR64INX:$rs1, FRM_DYN)>;
314
315def : Pat<(fneg FPR64INX:$rs1), (FSGNJN_D_INX $rs1, $rs1)>;
316def : Pat<(fabs FPR64INX:$rs1), (FSGNJX_D_INX $rs1, $rs1)>;
317
318def : Pat<(riscv_fclass FPR64INX:$rs1), (FCLASS_D_INX $rs1)>;
319
320def : PatFprFpr<fcopysign, FSGNJ_D_INX, FPR64INX, f64>;
321def : Pat<(fcopysign FPR64INX:$rs1, (fneg FPR64INX:$rs2)),
322          (FSGNJN_D_INX $rs1, $rs2)>;
323def : Pat<(fcopysign FPR64INX:$rs1, FPR32INX:$rs2),
324          (FSGNJ_D_INX $rs1, (FCVT_D_S_INX $rs2, FRM_RNE))>;
325def : Pat<(fcopysign FPR32INX:$rs1, FPR64INX:$rs2),
326          (FSGNJ_S_INX $rs1, (FCVT_S_D_INX $rs2, FRM_DYN))>;
327
328// fmadd: rs1 * rs2 + rs3
329def : Pat<(any_fma FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3),
330          (FMADD_D_INX $rs1, $rs2, $rs3, FRM_DYN)>;
331
332// fmsub: rs1 * rs2 - rs3
333def : Pat<(any_fma FPR64INX:$rs1, FPR64INX:$rs2, (fneg FPR64INX:$rs3)),
334          (FMSUB_D_INX FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3, FRM_DYN)>;
335
336// fnmsub: -rs1 * rs2 + rs3
337def : Pat<(any_fma (fneg FPR64INX:$rs1), FPR64INX:$rs2, FPR64INX:$rs3),
338          (FNMSUB_D_INX FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3, FRM_DYN)>;
339
340// fnmadd: -rs1 * rs2 - rs3
341def : Pat<(any_fma (fneg FPR64INX:$rs1), FPR64INX:$rs2, (fneg FPR64INX:$rs3)),
342          (FNMADD_D_INX FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3, FRM_DYN)>;
343
344// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
345def : Pat<(fneg (any_fma_nsz FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3)),
346          (FNMADD_D_INX FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3, FRM_DYN)>;
347} // Predicates = [HasStdExtZdinx, IsRV64]
348
349let Predicates = [HasStdExtZdinx, IsRV32] in {
350def : Pat<(any_fsqrt FPR64IN32X:$rs1), (FSQRT_D_IN32X FPR64IN32X:$rs1, FRM_DYN)>;
351
352def : Pat<(fneg FPR64IN32X:$rs1), (FSGNJN_D_IN32X $rs1, $rs1)>;
353def : Pat<(fabs FPR64IN32X:$rs1), (FSGNJX_D_IN32X $rs1, $rs1)>;
354
355def : Pat<(riscv_fclass FPR64IN32X:$rs1), (FCLASS_D_IN32X $rs1)>;
356
357def : PatFprFpr<fcopysign, FSGNJ_D_IN32X, FPR64IN32X, f64>;
358def : Pat<(fcopysign FPR64IN32X:$rs1, (fneg FPR64IN32X:$rs2)),
359          (FSGNJN_D_IN32X $rs1, $rs2)>;
360def : Pat<(fcopysign FPR64IN32X:$rs1, FPR32INX:$rs2),
361          (FSGNJ_D_IN32X $rs1, (FCVT_D_S_INX $rs2, FRM_RNE))>;
362def : Pat<(fcopysign FPR32INX:$rs1, FPR64IN32X:$rs2),
363          (FSGNJ_S_INX $rs1, (FCVT_S_D_IN32X $rs2, FRM_DYN))>;
364
365// fmadd: rs1 * rs2 + rs3
366def : Pat<(any_fma FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3),
367          (FMADD_D_IN32X $rs1, $rs2, $rs3, FRM_DYN)>;
368
369// fmsub: rs1 * rs2 - rs3
370def : Pat<(any_fma FPR64IN32X:$rs1, FPR64IN32X:$rs2, (fneg FPR64IN32X:$rs3)),
371          (FMSUB_D_IN32X FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3, FRM_DYN)>;
372
373// fnmsub: -rs1 * rs2 + rs3
374def : Pat<(any_fma (fneg FPR64IN32X:$rs1), FPR64IN32X:$rs2, FPR64IN32X:$rs3),
375          (FNMSUB_D_IN32X FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3, FRM_DYN)>;
376
377// fnmadd: -rs1 * rs2 - rs3
378def : Pat<(any_fma (fneg FPR64IN32X:$rs1), FPR64IN32X:$rs2, (fneg FPR64IN32X:$rs3)),
379          (FNMADD_D_IN32X FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3, FRM_DYN)>;
380
381// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
382def : Pat<(fneg (any_fma_nsz FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3)),
383          (FNMADD_D_IN32X FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3, FRM_DYN)>;
384} // Predicates = [HasStdExtZdinx, IsRV32]
385
386// The ratified 20191213 ISA spec defines fmin and fmax in a way that matches
387// LLVM's fminnum and fmaxnum.
388// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
389foreach Ext = DExts in {
390  defm : PatFprFpr_m<fminnum, FMIN_D, Ext>;
391  defm : PatFprFpr_m<fmaxnum, FMAX_D, Ext>;
392  defm : PatFprFpr_m<riscv_fmin, FMIN_D, Ext>;
393  defm : PatFprFpr_m<riscv_fmax, FMAX_D, Ext>;
394}
395
396/// Setcc
397// FIXME: SETEQ/SETLT/SETLE imply nonans, can we pick better instructions for
398// strict versions of those.
399
400// Match non-signaling FEQ_D
401foreach Ext = DExts in {
402  defm : PatSetCC_m<any_fsetcc,    SETEQ,  FEQ_D,            Ext>;
403  defm : PatSetCC_m<any_fsetcc,    SETOEQ, FEQ_D,            Ext>;
404  defm : PatSetCC_m<strict_fsetcc, SETLT,  PseudoQuietFLT_D, Ext>;
405  defm : PatSetCC_m<strict_fsetcc, SETOLT, PseudoQuietFLT_D, Ext>;
406  defm : PatSetCC_m<strict_fsetcc, SETLE,  PseudoQuietFLE_D, Ext>;
407  defm : PatSetCC_m<strict_fsetcc, SETOLE, PseudoQuietFLE_D, Ext>;
408}
409
410let Predicates = [HasStdExtD] in {
411// Match signaling FEQ_D
412def : Pat<(XLenVT (strict_fsetccs FPR64:$rs1, FPR64:$rs2, SETEQ)),
413          (AND (XLenVT (FLE_D $rs1, $rs2)),
414               (XLenVT (FLE_D $rs2, $rs1)))>;
415def : Pat<(XLenVT (strict_fsetccs FPR64:$rs1, FPR64:$rs2, SETOEQ)),
416          (AND (XLenVT (FLE_D $rs1, $rs2)),
417               (XLenVT (FLE_D $rs2, $rs1)))>;
418// If both operands are the same, use a single FLE.
419def : Pat<(XLenVT (strict_fsetccs FPR64:$rs1, FPR64:$rs1, SETEQ)),
420          (FLE_D $rs1, $rs1)>;
421def : Pat<(XLenVT (strict_fsetccs FPR64:$rs1, FPR64:$rs1, SETOEQ)),
422          (FLE_D $rs1, $rs1)>;
423
424def : PatSetCC<FPR64, any_fsetccs, SETLT, FLT_D, f64>;
425def : PatSetCC<FPR64, any_fsetccs, SETOLT, FLT_D, f64>;
426def : PatSetCC<FPR64, any_fsetccs, SETLE, FLE_D, f64>;
427def : PatSetCC<FPR64, any_fsetccs, SETOLE, FLE_D, f64>;
428} // Predicates = [HasStdExtD]
429
430let Predicates = [HasStdExtZdinx, IsRV64] in {
431// Match signaling FEQ_D
432def : Pat<(XLenVT (strict_fsetccs (f64 FPR64INX:$rs1), FPR64INX:$rs2, SETEQ)),
433          (AND (XLenVT (FLE_D_INX $rs1, $rs2)),
434               (XLenVT (FLE_D_INX $rs2, $rs1)))>;
435def : Pat<(XLenVT (strict_fsetccs (f64 FPR64INX:$rs1), FPR64INX:$rs2, SETOEQ)),
436          (AND (XLenVT (FLE_D_INX $rs1, $rs2)),
437               (XLenVT (FLE_D_INX $rs2, $rs1)))>;
438// If both operands are the same, use a single FLE.
439def : Pat<(XLenVT (strict_fsetccs (f64 FPR64INX:$rs1), FPR64INX:$rs1, SETEQ)),
440          (FLE_D_INX $rs1, $rs1)>;
441def : Pat<(XLenVT (strict_fsetccs (f64 FPR64INX:$rs1), FPR64INX:$rs1, SETOEQ)),
442          (FLE_D_INX $rs1, $rs1)>;
443
444def : PatSetCC<FPR64INX, any_fsetccs, SETLT,  FLT_D_INX, f64>;
445def : PatSetCC<FPR64INX, any_fsetccs, SETOLT, FLT_D_INX, f64>;
446def : PatSetCC<FPR64INX, any_fsetccs, SETLE,  FLE_D_INX, f64>;
447def : PatSetCC<FPR64INX, any_fsetccs, SETOLE, FLE_D_INX, f64>;
448} // Predicates = [HasStdExtZdinx, IsRV64]
449
450let Predicates = [HasStdExtZdinx, IsRV32] in {
451// Match signaling FEQ_D
452def : Pat<(XLenVT (strict_fsetccs FPR64IN32X:$rs1, FPR64IN32X:$rs2, SETEQ)),
453          (AND (XLenVT (FLE_D_IN32X $rs1, $rs2)),
454               (XLenVT (FLE_D_IN32X $rs2, $rs1)))>;
455def : Pat<(XLenVT (strict_fsetccs FPR64IN32X:$rs1, FPR64IN32X:$rs2, SETOEQ)),
456          (AND (XLenVT (FLE_D_IN32X $rs1, $rs2)),
457               (XLenVT (FLE_D_IN32X $rs2, $rs1)))>;
458// If both operands are the same, use a single FLE.
459def : Pat<(XLenVT (strict_fsetccs FPR64IN32X:$rs1, FPR64IN32X:$rs1, SETEQ)),
460          (FLE_D_IN32X $rs1, $rs1)>;
461def : Pat<(XLenVT (strict_fsetccs FPR64IN32X:$rs1, FPR64IN32X:$rs1, SETOEQ)),
462          (FLE_D_IN32X $rs1, $rs1)>;
463
464def : PatSetCC<FPR64IN32X, any_fsetccs, SETLT,  FLT_D_IN32X, f64>;
465def : PatSetCC<FPR64IN32X, any_fsetccs, SETOLT, FLT_D_IN32X, f64>;
466def : PatSetCC<FPR64IN32X, any_fsetccs, SETLE,  FLE_D_IN32X, f64>;
467def : PatSetCC<FPR64IN32X, any_fsetccs, SETOLE, FLE_D_IN32X, f64>;
468} // Predicates = [HasStdExtZdinx, IsRV32]
469
470let Predicates = [HasStdExtD] in {
471defm Select_FPR64 : SelectCC_GPR_rrirr<FPR64, f64>;
472
473def PseudoFROUND_D : PseudoFROUND<FPR64, f64>;
474
475/// Loads
476
477def : LdPat<load, FLD, f64>;
478
479/// Stores
480
481def : StPat<store, FSD, FPR64, f64>;
482
483/// Pseudo-instructions needed for the soft-float ABI with RV32D
484
485// Moves two GPRs to an FPR.
486let usesCustomInserter = 1 in
487def BuildPairF64Pseudo
488    : Pseudo<(outs FPR64:$dst), (ins GPR:$src1, GPR:$src2),
489             [(set FPR64:$dst, (RISCVBuildPairF64 GPR:$src1, GPR:$src2))]>;
490
491// Moves an FPR to two GPRs.
492let usesCustomInserter = 1 in
493def SplitF64Pseudo
494    : Pseudo<(outs GPR:$dst1, GPR:$dst2), (ins FPR64:$src),
495             [(set GPR:$dst1, GPR:$dst2, (RISCVSplitF64 FPR64:$src))]>;
496
497} // Predicates = [HasStdExtD]
498
499let Predicates = [HasStdExtZdinx, IsRV64] in {
500defm Select_FPR64INX : SelectCC_GPR_rrirr<FPR64INX, f64>;
501
502def PseudoFROUND_D_INX : PseudoFROUND<FPR64INX, f64>;
503
504/// Loads
505def : LdPat<load, LD, f64>;
506
507/// Stores
508def : StPat<store, SD, GPR, f64>;
509} // Predicates = [HasStdExtZdinx, IsRV64]
510
511let Predicates = [HasStdExtZdinx, IsRV32] in {
512defm Select_FPR64IN32X : SelectCC_GPR_rrirr<FPR64IN32X, f64>;
513
514def PseudoFROUND_D_IN32X : PseudoFROUND<FPR64IN32X, f64>;
515
516/// Loads
517let isCall = 0, mayLoad = 1, mayStore = 0, Size = 8, isCodeGenOnly = 1 in
518def PseudoRV32ZdinxLD : Pseudo<(outs GPRPair:$dst), (ins GPR:$rs1, simm12:$imm12), []>;
519def : Pat<(f64 (load (AddrRegImmINX (XLenVT GPR:$rs1), simm12:$imm12))),
520          (PseudoRV32ZdinxLD GPR:$rs1, simm12:$imm12)>;
521
522/// Stores
523let isCall = 0, mayLoad = 0, mayStore = 1, Size = 8, isCodeGenOnly = 1 in
524def PseudoRV32ZdinxSD : Pseudo<(outs), (ins GPRPair:$rs2, GPRNoX0:$rs1, simm12:$imm12), []>;
525def : Pat<(store (f64 GPRPair:$rs2), (AddrRegImmINX (XLenVT GPR:$rs1), simm12:$imm12)),
526          (PseudoRV32ZdinxSD GPRPair:$rs2, GPR:$rs1, simm12:$imm12)>;
527} // Predicates = [HasStdExtZdinx, IsRV32]
528
529let Predicates = [HasStdExtD] in {
530
531// double->[u]int. Round-to-zero must be used.
532def : Pat<(i32 (any_fp_to_sint FPR64:$rs1)), (FCVT_W_D FPR64:$rs1, FRM_RTZ)>;
533def : Pat<(i32 (any_fp_to_uint FPR64:$rs1)), (FCVT_WU_D FPR64:$rs1, FRM_RTZ)>;
534
535// Saturating double->[u]int32.
536def : Pat<(i32 (riscv_fcvt_x FPR64:$rs1, timm:$frm)), (FCVT_W_D $rs1, timm:$frm)>;
537def : Pat<(i32 (riscv_fcvt_xu FPR64:$rs1, timm:$frm)), (FCVT_WU_D $rs1, timm:$frm)>;
538
539// float->int32 with current rounding mode.
540def : Pat<(i32 (any_lrint FPR64:$rs1)), (FCVT_W_D $rs1, FRM_DYN)>;
541
542// float->int32 rounded to nearest with ties rounded away from zero.
543def : Pat<(i32 (any_lround FPR64:$rs1)), (FCVT_W_D $rs1, FRM_RMM)>;
544
545// [u]int->double.
546def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_D_W GPR:$rs1, FRM_RNE)>;
547def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_D_WU GPR:$rs1, FRM_RNE)>;
548} // Predicates = [HasStdExtD]
549
550let Predicates = [HasStdExtZdinx, IsRV32] in {
551
552// double->[u]int. Round-to-zero must be used.
553def : Pat<(i32 (any_fp_to_sint FPR64IN32X:$rs1)), (FCVT_W_D_IN32X FPR64IN32X:$rs1, FRM_RTZ)>;
554def : Pat<(i32 (any_fp_to_uint FPR64IN32X:$rs1)), (FCVT_WU_D_IN32X FPR64IN32X:$rs1, FRM_RTZ)>;
555
556// Saturating double->[u]int32.
557def : Pat<(i32 (riscv_fcvt_x FPR64IN32X:$rs1, timm:$frm)), (FCVT_W_D_IN32X $rs1, timm:$frm)>;
558def : Pat<(i32 (riscv_fcvt_xu FPR64IN32X:$rs1, timm:$frm)), (FCVT_WU_D_IN32X $rs1, timm:$frm)>;
559
560// float->int32 with current rounding mode.
561def : Pat<(i32 (any_lrint FPR64IN32X:$rs1)), (FCVT_W_D_IN32X $rs1, FRM_DYN)>;
562
563// float->int32 rounded to nearest with ties rounded away from zero.
564def : Pat<(i32 (any_lround FPR64IN32X:$rs1)), (FCVT_W_D_IN32X $rs1, FRM_RMM)>;
565
566// [u]int->double.
567def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_D_W_IN32X GPR:$rs1, FRM_RNE)>;
568def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_D_WU_IN32X GPR:$rs1, FRM_RNE)>;
569} // Predicates = [HasStdExtZdinx, IsRV32]
570
571let Predicates = [HasStdExtD, IsRV64] in {
572
573// Moves (no conversion)
574def : Pat<(bitconvert (i64 GPR:$rs1)), (FMV_D_X GPR:$rs1)>;
575def : Pat<(i64 (bitconvert FPR64:$rs1)), (FMV_X_D FPR64:$rs1)>;
576
577// Use target specific isd nodes to help us remember the result is sign
578// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
579// duplicated if it has another user that didn't need the sign_extend.
580def : Pat<(riscv_any_fcvt_w_rv64 FPR64:$rs1, timm:$frm),  (FCVT_W_D $rs1, timm:$frm)>;
581def : Pat<(riscv_any_fcvt_wu_rv64 FPR64:$rs1, timm:$frm), (FCVT_WU_D $rs1, timm:$frm)>;
582
583// [u]int32->fp
584def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_D_W $rs1, FRM_RNE)>;
585def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_D_WU $rs1, FRM_RNE)>;
586
587// Saturating double->[u]int64.
588def : Pat<(i64 (riscv_fcvt_x FPR64:$rs1, timm:$frm)), (FCVT_L_D $rs1, timm:$frm)>;
589def : Pat<(i64 (riscv_fcvt_xu FPR64:$rs1, timm:$frm)), (FCVT_LU_D $rs1, timm:$frm)>;
590
591// double->[u]int64. Round-to-zero must be used.
592def : Pat<(i64 (any_fp_to_sint FPR64:$rs1)), (FCVT_L_D FPR64:$rs1, FRM_RTZ)>;
593def : Pat<(i64 (any_fp_to_uint FPR64:$rs1)), (FCVT_LU_D FPR64:$rs1, FRM_RTZ)>;
594
595// double->int64 with current rounding mode.
596def : Pat<(i64 (any_lrint FPR64:$rs1)), (FCVT_L_D $rs1, FRM_DYN)>;
597def : Pat<(i64 (any_llrint FPR64:$rs1)), (FCVT_L_D $rs1, FRM_DYN)>;
598
599// double->int64 rounded to nearest with ties rounded away from zero.
600def : Pat<(i64 (any_lround FPR64:$rs1)), (FCVT_L_D $rs1, FRM_RMM)>;
601def : Pat<(i64 (any_llround FPR64:$rs1)), (FCVT_L_D $rs1, FRM_RMM)>;
602
603// [u]int64->fp. Match GCC and default to using dynamic rounding mode.
604def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_D_L GPR:$rs1, FRM_DYN)>;
605def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_D_LU GPR:$rs1, FRM_DYN)>;
606} // Predicates = [HasStdExtD, IsRV64]
607
608let Predicates = [HasStdExtZdinx, IsRV64] in {
609
610// Moves (no conversion)
611def : Pat<(f64 (bitconvert (i64 GPR:$rs1))), (COPY_TO_REGCLASS GPR:$rs1, GPR)>;
612def : Pat<(i64 (bitconvert (f64 GPR:$rs1))), (COPY_TO_REGCLASS GPR:$rs1, GPR)>;
613
614// Use target specific isd nodes to help us remember the result is sign
615// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
616// duplicated if it has another user that didn't need the sign_extend.
617def : Pat<(riscv_any_fcvt_w_rv64 FPR64INX:$rs1, timm:$frm),  (FCVT_W_D_INX $rs1, timm:$frm)>;
618def : Pat<(riscv_any_fcvt_wu_rv64 FPR64INX:$rs1, timm:$frm), (FCVT_WU_D_INX $rs1, timm:$frm)>;
619
620// [u]int32->fp
621def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_D_W_INX $rs1, FRM_RNE)>;
622def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_D_WU_INX $rs1, FRM_RNE)>;
623
624// Saturating double->[u]int64.
625def : Pat<(i64 (riscv_fcvt_x FPR64INX:$rs1, timm:$frm)), (FCVT_L_D_INX $rs1, timm:$frm)>;
626def : Pat<(i64 (riscv_fcvt_xu FPR64INX:$rs1, timm:$frm)), (FCVT_LU_D_INX $rs1, timm:$frm)>;
627
628// double->[u]int64. Round-to-zero must be used.
629def : Pat<(i64 (any_fp_to_sint FPR64INX:$rs1)), (FCVT_L_D_INX FPR64INX:$rs1, FRM_RTZ)>;
630def : Pat<(i64 (any_fp_to_uint FPR64INX:$rs1)), (FCVT_LU_D_INX FPR64INX:$rs1, FRM_RTZ)>;
631
632// double->int64 with current rounding mode.
633def : Pat<(i64 (any_lrint FPR64INX:$rs1)), (FCVT_L_D_INX $rs1, FRM_DYN)>;
634def : Pat<(i64 (any_llrint FPR64INX:$rs1)), (FCVT_L_D_INX $rs1, FRM_DYN)>;
635
636// double->int64 rounded to nearest with ties rounded away from zero.
637def : Pat<(i64 (any_lround FPR64INX:$rs1)), (FCVT_L_D_INX $rs1, FRM_RMM)>;
638def : Pat<(i64 (any_llround FPR64INX:$rs1)), (FCVT_L_D_INX $rs1, FRM_RMM)>;
639
640// [u]int64->fp. Match GCC and default to using dynamic rounding mode.
641def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_D_L_INX GPR:$rs1, FRM_DYN)>;
642def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_D_LU_INX GPR:$rs1, FRM_DYN)>;
643} // Predicates = [HasStdExtZdinx, IsRV64]
644