xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfo.td (revision 78cd75393ec79565c63927bf200f06f839a1dc05)
1//===-- RISCVInstrInfo.td - Target Description for RISC-V --*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the RISC-V instructions in TableGen format.
10//
11//===----------------------------------------------------------------------===//
12
13//===----------------------------------------------------------------------===//
14// RISC-V specific DAG Nodes.
15//===----------------------------------------------------------------------===//
16
17// Target-independent type requirements, but with target-specific formats.
18def SDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>,
19                                       SDTCisVT<1, i32>]>;
20def SDT_CallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>,
21                                     SDTCisVT<1, i32>]>;
22
23// Target-dependent type requirements.
24def SDT_RISCVCall     : SDTypeProfile<0, -1, [SDTCisVT<0, XLenVT>]>;
25def SDT_RISCVSelectCC : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>,
26                                             SDTCisVT<3, OtherVT>,
27                                             SDTCisSameAs<0, 4>,
28                                             SDTCisSameAs<4, 5>]>;
29def SDT_RISCVBrCC : SDTypeProfile<0, 4, [SDTCisSameAs<0, 1>,
30                                         SDTCisVT<2, OtherVT>,
31                                         SDTCisVT<3, OtherVT>]>;
32def SDT_RISCVReadCSR  : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisInt<1>]>;
33def SDT_RISCVWriteCSR : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisInt<1>]>;
34def SDT_RISCVSwapCSR  : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
35                                             SDTCisInt<2>]>;
36def SDT_RISCVReadCycleWide : SDTypeProfile<2, 0, [SDTCisVT<0, i32>,
37                                                  SDTCisVT<1, i32>]>;
38def SDT_RISCVIntUnaryOpW : SDTypeProfile<1, 1, [
39  SDTCisSameAs<0, 1>, SDTCisVT<0, i64>
40]>;
41def SDT_RISCVIntBinOpW : SDTypeProfile<1, 2, [
42  SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<0, i64>
43]>;
44def SDT_RISCVIntShiftDOpW : SDTypeProfile<1, 3, [
45  SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<0, i64>, SDTCisVT<3, i64>
46]>;
47
48// Target-independent nodes, but with target-specific formats.
49def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_CallSeqStart,
50                           [SDNPHasChain, SDNPOutGlue]>;
51def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_CallSeqEnd,
52                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
53
54// Target-dependent nodes.
55def riscv_call      : SDNode<"RISCVISD::CALL", SDT_RISCVCall,
56                             [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
57                              SDNPVariadic]>;
58def riscv_ret_glue  : SDNode<"RISCVISD::RET_GLUE", SDTNone,
59                             [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
60def riscv_sret_glue : SDNode<"RISCVISD::SRET_GLUE", SDTNone,
61                             [SDNPHasChain, SDNPOptInGlue]>;
62def riscv_mret_glue : SDNode<"RISCVISD::MRET_GLUE", SDTNone,
63                             [SDNPHasChain, SDNPOptInGlue]>;
64def riscv_selectcc  : SDNode<"RISCVISD::SELECT_CC", SDT_RISCVSelectCC>;
65def riscv_brcc      : SDNode<"RISCVISD::BR_CC", SDT_RISCVBrCC,
66                             [SDNPHasChain]>;
67def riscv_tail      : SDNode<"RISCVISD::TAIL", SDT_RISCVCall,
68                             [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
69                              SDNPVariadic]>;
70def riscv_sllw      : SDNode<"RISCVISD::SLLW", SDT_RISCVIntBinOpW>;
71def riscv_sraw      : SDNode<"RISCVISD::SRAW", SDT_RISCVIntBinOpW>;
72def riscv_srlw      : SDNode<"RISCVISD::SRLW", SDT_RISCVIntBinOpW>;
73def riscv_read_csr  : SDNode<"RISCVISD::READ_CSR", SDT_RISCVReadCSR,
74                             [SDNPHasChain]>;
75def riscv_write_csr : SDNode<"RISCVISD::WRITE_CSR", SDT_RISCVWriteCSR,
76                             [SDNPHasChain]>;
77def riscv_swap_csr  : SDNode<"RISCVISD::SWAP_CSR", SDT_RISCVSwapCSR,
78                             [SDNPHasChain]>;
79
80def riscv_read_cycle_wide : SDNode<"RISCVISD::READ_CYCLE_WIDE",
81                                   SDT_RISCVReadCycleWide,
82                                   [SDNPHasChain, SDNPSideEffect]>;
83
84def riscv_add_lo : SDNode<"RISCVISD::ADD_LO", SDTIntBinOp>;
85def riscv_hi : SDNode<"RISCVISD::HI", SDTIntUnaryOp>;
86def riscv_lla : SDNode<"RISCVISD::LLA", SDTIntUnaryOp>;
87def riscv_lga : SDNode<"RISCVISD::LGA", SDTLoad,
88                       [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
89def riscv_add_tprel : SDNode<"RISCVISD::ADD_TPREL",
90                             SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>,
91                                                  SDTCisSameAs<0, 2>,
92                                                  SDTCisSameAs<0, 3>,
93                                                  SDTCisInt<0>]>>;
94
95def riscv_la_tls_ie : SDNode<"RISCVISD::LA_TLS_IE", SDTLoad,
96                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
97def riscv_la_tls_gd : SDNode<"RISCVISD::LA_TLS_GD", SDTIntUnaryOp>;
98
99//===----------------------------------------------------------------------===//
100// Operand and SDNode transformation definitions.
101//===----------------------------------------------------------------------===//
102
103class ImmXLenAsmOperand<string prefix, string suffix = ""> : AsmOperandClass {
104  let Name = prefix # "ImmXLen" # suffix;
105  let RenderMethod = "addImmOperands";
106  let DiagnosticType = !strconcat("Invalid", Name);
107}
108
109class ImmAsmOperand<string prefix, int width, string suffix> : AsmOperandClass {
110  let Name = prefix # "Imm" # width # suffix;
111  let RenderMethod = "addImmOperands";
112  let DiagnosticType = !strconcat("Invalid", Name);
113}
114
115def ImmZeroAsmOperand : AsmOperandClass {
116  let Name = "ImmZero";
117  let RenderMethod = "addImmOperands";
118  let DiagnosticType = !strconcat("Invalid", Name);
119}
120
121// A parse method for (${gpr}) or 0(${gpr}), where the 0 is be silently ignored.
122def ZeroOffsetMemOpOperand : AsmOperandClass {
123  let Name = "ZeroOffsetMemOpOperand";
124  let RenderMethod = "addRegOperands";
125  let PredicateMethod = "isGPR";
126  let ParserMethod = "parseZeroOffsetMemOp";
127}
128
129class MemOperand<RegisterClass regClass> : RegisterOperand<regClass>{
130  let OperandType = "OPERAND_MEMORY";
131}
132
133def GPRMemZeroOffset : MemOperand<GPR> {
134  let ParserMatchClass = ZeroOffsetMemOpOperand;
135  let PrintMethod = "printZeroOffsetMemOp";
136}
137
138def GPRMem : MemOperand<GPR>;
139
140def SPMem : MemOperand<SP>;
141
142def GPRCMem : MemOperand<GPRC>;
143
144class SImmAsmOperand<int width, string suffix = "">
145    : ImmAsmOperand<"S", width, suffix> {
146}
147
148class UImmAsmOperand<int width, string suffix = "">
149    : ImmAsmOperand<"U", width, suffix> {
150}
151
152def FenceArg : AsmOperandClass {
153  let Name = "FenceArg";
154  let RenderMethod = "addFenceArgOperands";
155  let ParserMethod = "parseFenceArg";
156}
157
158def fencearg : Operand<XLenVT> {
159  let ParserMatchClass = FenceArg;
160  let PrintMethod = "printFenceArg";
161  let DecoderMethod = "decodeUImmOperand<4>";
162  let OperandType = "OPERAND_UIMM4";
163  let OperandNamespace = "RISCVOp";
164}
165
166def UImmLog2XLenAsmOperand : AsmOperandClass {
167  let Name = "UImmLog2XLen";
168  let RenderMethod = "addImmOperands";
169  let DiagnosticType = "InvalidUImmLog2XLen";
170}
171
172def uimmlog2xlen : Operand<XLenVT>, ImmLeaf<XLenVT, [{
173  if (Subtarget->is64Bit())
174    return isUInt<6>(Imm);
175  return isUInt<5>(Imm);
176}]> {
177  let ParserMatchClass = UImmLog2XLenAsmOperand;
178  // TODO: should ensure invalid shamt is rejected when decoding.
179  let DecoderMethod = "decodeUImmOperand<6>";
180  let MCOperandPredicate = [{
181    int64_t Imm;
182    if (!MCOp.evaluateAsConstantImm(Imm))
183      return false;
184    if (STI.getTargetTriple().isArch64Bit())
185      return isUInt<6>(Imm);
186    return isUInt<5>(Imm);
187  }];
188  let OperandType = "OPERAND_UIMMLOG2XLEN";
189  let OperandNamespace = "RISCVOp";
190}
191
192def uimm1 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isUInt<1>(Imm);}]> {
193  let ParserMatchClass = UImmAsmOperand<1>;
194  let DecoderMethod = "decodeUImmOperand<1>";
195  let OperandType = "OPERAND_UIMM1";
196  let OperandNamespace = "RISCVOp";
197}
198
199def uimm2 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isUInt<2>(Imm);}]> {
200  let ParserMatchClass = UImmAsmOperand<2>;
201  let DecoderMethod = "decodeUImmOperand<2>";
202  let OperandType = "OPERAND_UIMM2";
203  let OperandNamespace = "RISCVOp";
204  let MCOperandPredicate = [{
205    int64_t Imm;
206    if (!MCOp.evaluateAsConstantImm(Imm))
207      return false;
208    return isUInt<2>(Imm);
209  }];
210}
211
212def uimm3 : Operand<XLenVT> {
213  let ParserMatchClass = UImmAsmOperand<3>;
214  let DecoderMethod = "decodeUImmOperand<3>";
215  let OperandType = "OPERAND_UIMM3";
216  let OperandNamespace = "RISCVOp";
217}
218
219def uimm4 : Operand<XLenVT> {
220  let ParserMatchClass = UImmAsmOperand<4>;
221  let DecoderMethod = "decodeUImmOperand<4>";
222  let OperandType = "OPERAND_UIMM4";
223  let OperandNamespace = "RISCVOp";
224}
225
226def uimm5 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isUInt<5>(Imm);}]> {
227  let ParserMatchClass = UImmAsmOperand<5>;
228  let DecoderMethod = "decodeUImmOperand<5>";
229  let OperandType = "OPERAND_UIMM5";
230  let OperandNamespace = "RISCVOp";
231}
232
233def InsnDirectiveOpcode : AsmOperandClass {
234  let Name = "InsnDirectiveOpcode";
235  let ParserMethod = "parseInsnDirectiveOpcode";
236  let RenderMethod = "addImmOperands";
237  let PredicateMethod = "isImm";
238}
239
240def uimm6 : Operand<XLenVT> {
241  let ParserMatchClass = UImmAsmOperand<6>;
242  let DecoderMethod = "decodeUImmOperand<6>";
243  let OperandType = "OPERAND_UIMM6";
244  let OperandNamespace = "RISCVOp";
245}
246
247def uimm7_opcode : Operand<XLenVT> {
248  let ParserMatchClass = InsnDirectiveOpcode;
249  let DecoderMethod = "decodeUImmOperand<7>";
250  let OperandType = "OPERAND_UIMM7";
251  let OperandNamespace = "RISCVOp";
252}
253
254def uimm7 : Operand<XLenVT> {
255  let ParserMatchClass = UImmAsmOperand<7>;
256  let DecoderMethod = "decodeUImmOperand<7>";
257  let OperandType = "OPERAND_UIMM7";
258  let OperandNamespace = "RISCVOp";
259}
260
261def uimm8 : Operand<XLenVT> {
262  let ParserMatchClass = UImmAsmOperand<8>;
263  let DecoderMethod = "decodeUImmOperand<8>";
264  let OperandType = "OPERAND_UIMM8";
265  let OperandNamespace = "RISCVOp";
266}
267
268def simm12 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isInt<12>(Imm);}]> {
269  let ParserMatchClass = SImmAsmOperand<12>;
270  let EncoderMethod = "getImmOpValue";
271  let DecoderMethod = "decodeSImmOperand<12>";
272  let MCOperandPredicate = [{
273    int64_t Imm;
274    if (MCOp.evaluateAsConstantImm(Imm))
275      return isInt<12>(Imm);
276    return MCOp.isBareSymbolRef();
277  }];
278  let OperandType = "OPERAND_SIMM12";
279  let OperandNamespace = "RISCVOp";
280}
281
282// A 12-bit signed immediate which cannot fit in 6-bit signed immediate,
283// but even negative value fit in 12-bit.
284def simm12_no6 : ImmLeaf<XLenVT, [{
285  return isInt<12>(Imm) && !isInt<6>(Imm) && isInt<12>(-Imm);}]>;
286
287// A 13-bit signed immediate where the least significant bit is zero.
288def simm13_lsb0 : Operand<OtherVT> {
289  let ParserMatchClass = SImmAsmOperand<13, "Lsb0">;
290  let PrintMethod = "printBranchOperand";
291  let EncoderMethod = "getImmOpValueAsr1";
292  let DecoderMethod = "decodeSImmOperandAndLsl1<13>";
293  let MCOperandPredicate = [{
294    int64_t Imm;
295    if (MCOp.evaluateAsConstantImm(Imm))
296      return isShiftedInt<12, 1>(Imm);
297    return MCOp.isBareSymbolRef();
298  }];
299  let OperandType = "OPERAND_PCREL";
300}
301
302class UImm20Operand : Operand<XLenVT> {
303  let EncoderMethod = "getImmOpValue";
304  let DecoderMethod = "decodeUImmOperand<20>";
305  let MCOperandPredicate = [{
306    int64_t Imm;
307    if (MCOp.evaluateAsConstantImm(Imm))
308      return isUInt<20>(Imm);
309    return MCOp.isBareSymbolRef();
310  }];
311  let OperandType = "OPERAND_UIMM20";
312  let OperandNamespace = "RISCVOp";
313}
314
315def uimm20_lui : UImm20Operand {
316  let ParserMatchClass = UImmAsmOperand<20, "LUI">;
317}
318def uimm20_auipc : UImm20Operand {
319  let ParserMatchClass = UImmAsmOperand<20, "AUIPC">;
320}
321
322def Simm21Lsb0JALAsmOperand : SImmAsmOperand<21, "Lsb0JAL"> {
323  let ParserMethod = "parseJALOffset";
324}
325
326// A 21-bit signed immediate where the least significant bit is zero.
327def simm21_lsb0_jal : Operand<OtherVT> {
328  let ParserMatchClass = Simm21Lsb0JALAsmOperand;
329  let PrintMethod = "printBranchOperand";
330  let EncoderMethod = "getImmOpValueAsr1";
331  let DecoderMethod = "decodeSImmOperandAndLsl1<21>";
332  let MCOperandPredicate = [{
333    int64_t Imm;
334    if (MCOp.evaluateAsConstantImm(Imm))
335      return isShiftedInt<20, 1>(Imm);
336    return MCOp.isBareSymbolRef();
337  }];
338  let OperandType = "OPERAND_PCREL";
339}
340
341def BareSymbol : AsmOperandClass {
342  let Name = "BareSymbol";
343  let RenderMethod = "addImmOperands";
344  let DiagnosticType = "InvalidBareSymbol";
345  let ParserMethod = "parseBareSymbol";
346}
347
348// A bare symbol.
349def bare_symbol : Operand<XLenVT> {
350  let ParserMatchClass = BareSymbol;
351}
352
353def CallSymbol : AsmOperandClass {
354  let Name = "CallSymbol";
355  let RenderMethod = "addImmOperands";
356  let DiagnosticType = "InvalidCallSymbol";
357  let ParserMethod = "parseCallSymbol";
358}
359
360// A bare symbol used in call/tail only.
361def call_symbol : Operand<XLenVT> {
362  let ParserMatchClass = CallSymbol;
363}
364
365def PseudoJumpSymbol : AsmOperandClass {
366  let Name = "PseudoJumpSymbol";
367  let RenderMethod = "addImmOperands";
368  let DiagnosticType = "InvalidPseudoJumpSymbol";
369  let ParserMethod = "parsePseudoJumpSymbol";
370}
371
372// A bare symbol used for pseudo jumps only.
373def pseudo_jump_symbol : Operand<XLenVT> {
374  let ParserMatchClass = PseudoJumpSymbol;
375}
376
377def TPRelAddSymbol : AsmOperandClass {
378  let Name = "TPRelAddSymbol";
379  let RenderMethod = "addImmOperands";
380  let DiagnosticType = "InvalidTPRelAddSymbol";
381  let ParserMethod = "parseOperandWithModifier";
382}
383
384// A bare symbol with the %tprel_add variant.
385def tprel_add_symbol : Operand<XLenVT> {
386  let ParserMatchClass = TPRelAddSymbol;
387}
388
389def CSRSystemRegister : AsmOperandClass {
390  let Name = "CSRSystemRegister";
391  let ParserMethod = "parseCSRSystemRegister";
392  let DiagnosticType = "InvalidCSRSystemRegister";
393}
394
395def csr_sysreg : Operand<XLenVT> {
396  let ParserMatchClass = CSRSystemRegister;
397  let PrintMethod = "printCSRSystemRegister";
398  let DecoderMethod = "decodeUImmOperand<12>";
399  let OperandType = "OPERAND_UIMM12";
400  let OperandNamespace = "RISCVOp";
401}
402
403// A parameterized register class alternative to i32imm/i64imm from Target.td.
404def ixlenimm : Operand<XLenVT>;
405
406def ixlenimm_li : Operand<XLenVT> {
407  let ParserMatchClass = ImmXLenAsmOperand<"", "LI">;
408}
409
410// Accepts subset of LI operands, used by LAImm and LLAImm
411def ixlenimm_li_restricted : Operand<XLenVT> {
412  let ParserMatchClass = ImmXLenAsmOperand<"", "LI_Restricted">;
413}
414
415// Standalone (codegen-only) immleaf patterns.
416
417// A 6-bit constant greater than 32.
418def uimm6gt32 : ImmLeaf<XLenVT, [{
419  return isUInt<6>(Imm) && Imm > 32;
420}]>;
421
422// Addressing modes.
423// Necessary because a frameindex can't be matched directly in a pattern.
424def FrameAddrRegImm : ComplexPattern<iPTR, 2, "SelectFrameAddrRegImm",
425                                     [frameindex, or, add]>;
426def AddrRegImm : ComplexPattern<iPTR, 2, "SelectAddrRegImm">;
427
428// Return the negation of an immediate value.
429def NegImm : SDNodeXForm<imm, [{
430  return CurDAG->getTargetConstant(-N->getSExtValue(), SDLoc(N),
431                                   N->getValueType(0));
432}]>;
433
434// Return an immediate value minus 32.
435def ImmSub32 : SDNodeXForm<imm, [{
436  return CurDAG->getTargetConstant(N->getSExtValue() - 32, SDLoc(N),
437                                   N->getValueType(0));
438}]>;
439
440// Return an immediate subtracted from XLen.
441def ImmSubFromXLen : SDNodeXForm<imm, [{
442  uint64_t XLen = Subtarget->getXLen();
443  return CurDAG->getTargetConstant(XLen - N->getZExtValue(), SDLoc(N),
444                                   N->getValueType(0));
445}]>;
446
447// Return an immediate subtracted from 32.
448def ImmSubFrom32 : SDNodeXForm<imm, [{
449  return CurDAG->getTargetConstant(32 - N->getZExtValue(), SDLoc(N),
450                                   N->getValueType(0));
451}]>;
452
453// Check if (add r, imm) can be optimized to (ADDI (ADDI r, imm0), imm1),
454// in which imm = imm0 + imm1 and both imm0 and imm1 are simm12. We make imm0
455// as large as possible and imm1 as small as possible so that we might be able
456// to use c.addi for the small immediate.
457def AddiPair : PatLeaf<(imm), [{
458  if (!N->hasOneUse())
459    return false;
460  // The immediate operand must be in range [-4096,-2049] or [2048,4094].
461  int64_t Imm = N->getSExtValue();
462  return (-4096 <= Imm && Imm <= -2049) || (2048 <= Imm && Imm <= 4094);
463}]>;
464
465// Return imm - (imm < 0 ? -2048 : 2047).
466def AddiPairImmSmall : SDNodeXForm<imm, [{
467  int64_t Imm = N->getSExtValue();
468  int64_t Adj = N->getSExtValue() < 0 ? -2048 : 2047;
469  return CurDAG->getTargetConstant(Imm - Adj, SDLoc(N),
470                                   N->getValueType(0));
471}]>;
472
473// Return -2048 if immediate is negative or 2047 if positive. These are the
474// largest simm12 values.
475def AddiPairImmLarge : SDNodeXForm<imm, [{
476  int64_t Imm = N->getSExtValue() < 0 ? -2048 : 2047;
477  return CurDAG->getTargetConstant(Imm, SDLoc(N),
478                                   N->getValueType(0));
479}]>;
480
481def TrailingZeros : SDNodeXForm<imm, [{
482  return CurDAG->getTargetConstant(llvm::countr_zero(N->getZExtValue()),
483                                   SDLoc(N), N->getValueType(0));
484}]>;
485
486def XLenSubTrailingOnes : SDNodeXForm<imm, [{
487  uint64_t XLen = Subtarget->getXLen();
488  uint64_t TrailingOnes = llvm::countr_one(N->getZExtValue());
489  return CurDAG->getTargetConstant(XLen - TrailingOnes, SDLoc(N),
490                                   N->getValueType(0));
491}]>;
492
493// Checks if this mask is a non-empty sequence of ones starting at the
494// most/least significant bit with the remainder zero and exceeds simm32/simm12.
495def LeadingOnesMask : PatLeaf<(imm), [{
496  if (!N->hasOneUse())
497    return false;
498  return !isInt<32>(N->getSExtValue()) && isMask_64(~N->getSExtValue());
499}], TrailingZeros>;
500
501def TrailingOnesMask : PatLeaf<(imm), [{
502  if (!N->hasOneUse())
503    return false;
504  return !isInt<12>(N->getSExtValue()) && isMask_64(N->getZExtValue());
505}], XLenSubTrailingOnes>;
506
507// Similar to LeadingOnesMask, but only consider leading ones in the lower 32
508// bits.
509def LeadingOnesWMask : PatLeaf<(imm), [{
510  if (!N->hasOneUse())
511    return false;
512  // If the value is a uint32 but not an int32, it must have bit 31 set and
513  // bits 63:32 cleared. After that we're looking for a shifted mask but not
514  // an all ones mask.
515  int64_t Imm = N->getSExtValue();
516  return !isInt<32>(Imm) && isUInt<32>(Imm) && isShiftedMask_64(Imm) &&
517         Imm != UINT64_C(0xffffffff);
518}], TrailingZeros>;
519
520//===----------------------------------------------------------------------===//
521// Instruction Formats
522//===----------------------------------------------------------------------===//
523
524include "RISCVInstrFormats.td"
525
526//===----------------------------------------------------------------------===//
527// Instruction Class Templates
528//===----------------------------------------------------------------------===//
529
530let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
531class BranchCC_rri<bits<3> funct3, string opcodestr>
532    : RVInstB<funct3, OPC_BRANCH, (outs),
533              (ins GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12),
534              opcodestr, "$rs1, $rs2, $imm12">,
535      Sched<[WriteJmp, ReadJmp, ReadJmp]> {
536  let isBranch = 1;
537  let isTerminator = 1;
538}
539
540let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in {
541class Load_ri<bits<3> funct3, string opcodestr>
542    : RVInstI<funct3, OPC_LOAD, (outs GPR:$rd), (ins GPRMem:$rs1, simm12:$imm12),
543              opcodestr, "$rd, ${imm12}(${rs1})">;
544
545class HLoad_r<bits<7> funct7, bits<5> funct5, string opcodestr>
546    : RVInstR<funct7, 0b100, OPC_SYSTEM, (outs GPR:$rd),
547              (ins GPRMemZeroOffset:$rs1), opcodestr, "$rd, $rs1"> {
548  let rs2 = funct5;
549}
550}
551
552// Operands for stores are in the order srcreg, base, offset rather than
553// reflecting the order these fields are specified in the instruction
554// encoding.
555let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in {
556class Store_rri<bits<3> funct3, string opcodestr>
557    : RVInstS<funct3, OPC_STORE, (outs),
558              (ins GPR:$rs2, GPRMem:$rs1, simm12:$imm12),
559              opcodestr, "$rs2, ${imm12}(${rs1})">;
560
561class HStore_rr<bits<7> funct7, string opcodestr>
562    : RVInstR<funct7, 0b100, OPC_SYSTEM, (outs),
563              (ins GPR:$rs2, GPRMemZeroOffset:$rs1),
564               opcodestr, "$rs2, $rs1"> {
565  let rd = 0;
566}
567}
568
569let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
570class ALU_ri<bits<3> funct3, string opcodestr>
571    : RVInstI<funct3, OPC_OP_IMM, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12),
572              opcodestr, "$rd, $rs1, $imm12">,
573      Sched<[WriteIALU, ReadIALU]>;
574
575let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
576class Shift_ri<bits<5> imm11_7, bits<3> funct3, string opcodestr>
577    : RVInstIShift<imm11_7, funct3, OPC_OP_IMM, (outs GPR:$rd),
578                   (ins GPR:$rs1, uimmlog2xlen:$shamt), opcodestr,
579                   "$rd, $rs1, $shamt">,
580      Sched<[WriteShiftImm, ReadShiftImm]>;
581
582let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
583class ALU_rr<bits<7> funct7, bits<3> funct3, string opcodestr,
584             bit Commutable = 0>
585    : RVInstR<funct7, funct3, OPC_OP, (outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2),
586              opcodestr, "$rd, $rs1, $rs2"> {
587  let isCommutable = Commutable;
588}
589
590let hasNoSchedulingInfo = 1,
591    hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
592class CSR_ir<bits<3> funct3, string opcodestr>
593    : RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd), (ins csr_sysreg:$imm12, GPR:$rs1),
594              opcodestr, "$rd, $imm12, $rs1">, Sched<[WriteCSR, ReadCSR]>;
595
596let hasNoSchedulingInfo = 1,
597    hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
598class CSR_ii<bits<3> funct3, string opcodestr>
599    : RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd),
600              (ins csr_sysreg:$imm12, uimm5:$rs1),
601              opcodestr, "$rd, $imm12, $rs1">, Sched<[WriteCSR]>;
602
603let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
604class ShiftW_ri<bits<7> imm11_5, bits<3> funct3, string opcodestr>
605    : RVInstIShiftW<imm11_5, funct3, OPC_OP_IMM_32, (outs GPR:$rd),
606                    (ins GPR:$rs1, uimm5:$shamt), opcodestr,
607                    "$rd, $rs1, $shamt">,
608      Sched<[WriteShiftImm32, ReadShiftImm32]>;
609
610let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
611class ALUW_rr<bits<7> funct7, bits<3> funct3, string opcodestr,
612              bit Commutable = 0>
613    : RVInstR<funct7, funct3, OPC_OP_32, (outs GPR:$rd),
614              (ins GPR:$rs1, GPR:$rs2), opcodestr, "$rd, $rs1, $rs2"> {
615  let isCommutable = Commutable;
616}
617
618let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
619class Priv<string opcodestr, bits<7> funct7>
620    : RVInstR<funct7, 0b000, OPC_SYSTEM, (outs), (ins GPR:$rs1, GPR:$rs2),
621              opcodestr, "">;
622
623let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
624class Priv_rr<string opcodestr, bits<7> funct7>
625    : RVInstR<funct7, 0b000, OPC_SYSTEM, (outs), (ins GPR:$rs1, GPR:$rs2),
626              opcodestr, "$rs1, $rs2"> {
627  let rd = 0;
628}
629
630//===----------------------------------------------------------------------===//
631// Instructions
632//===----------------------------------------------------------------------===//
633
634let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
635let isReMaterializable = 1, isAsCheapAsAMove = 1,
636    IsSignExtendingOpW = 1 in
637def LUI : RVInstU<OPC_LUI, (outs GPR:$rd), (ins uimm20_lui:$imm20),
638                  "lui", "$rd, $imm20">, Sched<[WriteIALU]>;
639
640def AUIPC : RVInstU<OPC_AUIPC, (outs GPR:$rd), (ins uimm20_auipc:$imm20),
641                    "auipc", "$rd, $imm20">, Sched<[WriteIALU]>;
642
643def JAL : RVInstJ<OPC_JAL, (outs GPR:$rd), (ins simm21_lsb0_jal:$imm20),
644                  "jal", "$rd, $imm20">, Sched<[WriteJal]>;
645
646def JALR : RVInstI<0b000, OPC_JALR, (outs GPR:$rd),
647                   (ins GPR:$rs1, simm12:$imm12),
648                   "jalr", "$rd, ${imm12}(${rs1})">,
649           Sched<[WriteJalr, ReadJalr]>;
650} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
651
652def BEQ  : BranchCC_rri<0b000, "beq">;
653def BNE  : BranchCC_rri<0b001, "bne">;
654def BLT  : BranchCC_rri<0b100, "blt">;
655def BGE  : BranchCC_rri<0b101, "bge">;
656def BLTU : BranchCC_rri<0b110, "bltu">;
657def BGEU : BranchCC_rri<0b111, "bgeu">;
658
659let IsSignExtendingOpW = 1 in {
660def LB  : Load_ri<0b000, "lb">, Sched<[WriteLDB, ReadMemBase]>;
661def LH  : Load_ri<0b001, "lh">, Sched<[WriteLDH, ReadMemBase]>;
662def LW  : Load_ri<0b010, "lw">, Sched<[WriteLDW, ReadMemBase]>;
663def LBU : Load_ri<0b100, "lbu">, Sched<[WriteLDB, ReadMemBase]>;
664def LHU : Load_ri<0b101, "lhu">, Sched<[WriteLDH, ReadMemBase]>;
665}
666
667def SB : Store_rri<0b000, "sb">, Sched<[WriteSTB, ReadStoreData, ReadMemBase]>;
668def SH : Store_rri<0b001, "sh">, Sched<[WriteSTH, ReadStoreData, ReadMemBase]>;
669def SW : Store_rri<0b010, "sw">, Sched<[WriteSTW, ReadStoreData, ReadMemBase]>;
670
671// ADDI isn't always rematerializable, but isReMaterializable will be used as
672// a hint which is verified in isReallyTriviallyReMaterializable.
673let isReMaterializable = 1, isAsCheapAsAMove = 1 in
674def ADDI  : ALU_ri<0b000, "addi">;
675
676let IsSignExtendingOpW = 1 in {
677def SLTI  : ALU_ri<0b010, "slti">;
678def SLTIU : ALU_ri<0b011, "sltiu">;
679}
680
681let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
682def XORI  : ALU_ri<0b100, "xori">;
683def ORI   : ALU_ri<0b110, "ori">;
684}
685
686def ANDI  : ALU_ri<0b111, "andi">;
687
688def SLLI : Shift_ri<0b00000, 0b001, "slli">;
689def SRLI : Shift_ri<0b00000, 0b101, "srli">;
690def SRAI : Shift_ri<0b01000, 0b101, "srai">;
691
692def ADD  : ALU_rr<0b0000000, 0b000, "add", Commutable=1>,
693           Sched<[WriteIALU, ReadIALU, ReadIALU]>;
694def SUB  : ALU_rr<0b0100000, 0b000, "sub">,
695           Sched<[WriteIALU, ReadIALU, ReadIALU]>;
696def SLL  : ALU_rr<0b0000000, 0b001, "sll">,
697           Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>;
698let IsSignExtendingOpW = 1 in {
699def SLT  : ALU_rr<0b0000000, 0b010, "slt">,
700           Sched<[WriteIALU, ReadIALU, ReadIALU]>;
701def SLTU : ALU_rr<0b0000000, 0b011, "sltu">,
702           Sched<[WriteIALU, ReadIALU, ReadIALU]>;
703}
704def XOR  : ALU_rr<0b0000000, 0b100, "xor", Commutable=1>,
705           Sched<[WriteIALU, ReadIALU, ReadIALU]>;
706def SRL  : ALU_rr<0b0000000, 0b101, "srl">,
707           Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>;
708def SRA  : ALU_rr<0b0100000, 0b101, "sra">,
709           Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>;
710def OR   : ALU_rr<0b0000000, 0b110, "or", Commutable=1>,
711           Sched<[WriteIALU, ReadIALU, ReadIALU]>;
712def AND  : ALU_rr<0b0000000, 0b111, "and", Commutable=1>,
713           Sched<[WriteIALU, ReadIALU, ReadIALU]>;
714
715let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in {
716def FENCE : RVInstI<0b000, OPC_MISC_MEM, (outs),
717                    (ins fencearg:$pred, fencearg:$succ),
718                    "fence", "$pred, $succ">, Sched<[]> {
719  bits<4> pred;
720  bits<4> succ;
721
722  let rs1 = 0;
723  let rd = 0;
724  let imm12 = {0b0000,pred,succ};
725}
726
727def FENCE_TSO : RVInstI<0b000, OPC_MISC_MEM, (outs), (ins), "fence.tso", "">, Sched<[]> {
728  let rs1 = 0;
729  let rd = 0;
730  let imm12 = {0b1000,0b0011,0b0011};
731}
732
733def FENCE_I : RVInstI<0b001, OPC_MISC_MEM, (outs), (ins), "fence.i", "">, Sched<[]> {
734  let rs1 = 0;
735  let rd = 0;
736  let imm12 = 0;
737}
738
739def ECALL : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ecall", "">, Sched<[WriteJmp]> {
740  let rs1 = 0;
741  let rd = 0;
742  let imm12 = 0;
743}
744
745def EBREAK : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ebreak", "">,
746             Sched<[]> {
747  let rs1 = 0;
748  let rd = 0;
749  let imm12 = 1;
750}
751
752// This is a de facto standard (as set by GNU binutils) 32-bit unimplemented
753// instruction (i.e., it should always trap, if your implementation has invalid
754// instruction traps).
755def UNIMP : RVInstI<0b001, OPC_SYSTEM, (outs), (ins), "unimp", "">,
756            Sched<[]> {
757  let rs1 = 0;
758  let rd = 0;
759  let imm12 = 0b110000000000;
760}
761
762let Predicates = [HasStdExtZawrs] in {
763def WRS_NTO : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "wrs.nto", "">,
764              Sched<[]> {
765  let rs1 = 0;
766  let rd = 0;
767  let imm12 = 0b000000001101;
768}
769
770def WRS_STO : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "wrs.sto", "">,
771              Sched<[]> {
772  let rs1 = 0;
773  let rd = 0;
774  let imm12 = 0b000000011101;
775}
776} // Predicates = [HasStdExtZawrs]
777
778} // hasSideEffects = 1, mayLoad = 0, mayStore = 0
779
780def CSRRW : CSR_ir<0b001, "csrrw">;
781def CSRRS : CSR_ir<0b010, "csrrs">;
782def CSRRC : CSR_ir<0b011, "csrrc">;
783
784def CSRRWI : CSR_ii<0b101, "csrrwi">;
785def CSRRSI : CSR_ii<0b110, "csrrsi">;
786def CSRRCI : CSR_ii<0b111, "csrrci">;
787
788/// RV64I instructions
789
790let Predicates = [IsRV64] in {
791def LWU   : Load_ri<0b110, "lwu">, Sched<[WriteLDW, ReadMemBase]>;
792def LD    : Load_ri<0b011, "ld">, Sched<[WriteLDD, ReadMemBase]>;
793def SD    : Store_rri<0b011, "sd">, Sched<[WriteSTD, ReadStoreData, ReadMemBase]>;
794
795let IsSignExtendingOpW = 1 in {
796let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
797def ADDIW : RVInstI<0b000, OPC_OP_IMM_32, (outs GPR:$rd),
798                    (ins GPR:$rs1, simm12:$imm12),
799                    "addiw", "$rd, $rs1, $imm12">,
800            Sched<[WriteIALU32, ReadIALU32]>;
801
802def SLLIW : ShiftW_ri<0b0000000, 0b001, "slliw">;
803def SRLIW : ShiftW_ri<0b0000000, 0b101, "srliw">;
804def SRAIW : ShiftW_ri<0b0100000, 0b101, "sraiw">;
805
806def ADDW  : ALUW_rr<0b0000000, 0b000, "addw", Commutable=1>,
807            Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
808def SUBW  : ALUW_rr<0b0100000, 0b000, "subw">,
809            Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
810def SLLW  : ALUW_rr<0b0000000, 0b001, "sllw">,
811            Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>;
812def SRLW  : ALUW_rr<0b0000000, 0b101, "srlw">,
813            Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>;
814def SRAW  : ALUW_rr<0b0100000, 0b101, "sraw">,
815            Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>;
816} // IsSignExtendingOpW = 1
817} // Predicates = [IsRV64]
818
819//===----------------------------------------------------------------------===//
820// Privileged instructions
821//===----------------------------------------------------------------------===//
822
823let isBarrier = 1, isReturn = 1, isTerminator = 1 in {
824def SRET : Priv<"sret", 0b0001000>, Sched<[]> {
825  let rd = 0;
826  let rs1 = 0;
827  let rs2 = 0b00010;
828}
829
830def MRET : Priv<"mret", 0b0011000>, Sched<[]> {
831  let rd = 0;
832  let rs1 = 0;
833  let rs2 = 0b00010;
834}
835} // isBarrier = 1, isReturn = 1, isTerminator = 1
836
837def WFI : Priv<"wfi", 0b0001000>, Sched<[]> {
838  let rd = 0;
839  let rs1 = 0;
840  let rs2 = 0b00101;
841}
842
843let Predicates = [HasStdExtSvinval] in {
844def SFENCE_W_INVAL : Priv<"sfence.w.inval", 0b0001100>, Sched<[]> {
845  let rd = 0;
846  let rs1 = 0;
847  let rs2 = 0;
848}
849
850def SFENCE_INVAL_IR : Priv<"sfence.inval.ir", 0b0001100>, Sched<[]> {
851  let rd = 0;
852  let rs1 = 0;
853  let rs2 = 0b00001;
854}
855def SINVAL_VMA  : Priv_rr<"sinval.vma", 0b0001011>, Sched<[]>;
856def HINVAL_VVMA : Priv_rr<"hinval.vvma", 0b0010011>, Sched<[]>;
857def HINVAL_GVMA : Priv_rr<"hinval.gvma", 0b0110011>, Sched<[]>;
858} // Predicates = [HasStdExtSvinval]
859
860def SFENCE_VMA  : Priv_rr<"sfence.vma", 0b0001001>, Sched<[]>;
861
862let Predicates = [HasStdExtH] in {
863def HFENCE_VVMA : Priv_rr<"hfence.vvma", 0b0010001>, Sched<[]>;
864def HFENCE_GVMA : Priv_rr<"hfence.gvma", 0b0110001>, Sched<[]>;
865
866def HLV_B   : HLoad_r<0b0110000, 0b00000, "hlv.b">, Sched<[]>;
867def HLV_BU  : HLoad_r<0b0110000, 0b00001, "hlv.bu">, Sched<[]>;
868def HLV_H   : HLoad_r<0b0110010, 0b00000, "hlv.h">, Sched<[]>;
869def HLV_HU  : HLoad_r<0b0110010, 0b00001, "hlv.hu">, Sched<[]>;
870def HLVX_HU : HLoad_r<0b0110010, 0b00011, "hlvx.hu">, Sched<[]>;
871def HLV_W   : HLoad_r<0b0110100, 0b00000, "hlv.w">, Sched<[]>;
872def HLVX_WU : HLoad_r<0b0110100, 0b00011, "hlvx.wu">, Sched<[]>;
873def HSV_B   : HStore_rr<0b0110001, "hsv.b">, Sched<[]>;
874def HSV_H   : HStore_rr<0b0110011, "hsv.h">, Sched<[]>;
875def HSV_W   : HStore_rr<0b0110101, "hsv.w">, Sched<[]>;
876}
877let Predicates = [IsRV64, HasStdExtH] in {
878def HLV_WU  : HLoad_r<0b0110100, 0b00001, "hlv.wu">, Sched<[]>;
879def HLV_D   : HLoad_r<0b0110110, 0b00000, "hlv.d">, Sched<[]>;
880def HSV_D   : HStore_rr<0b0110111, "hsv.d">, Sched<[]>;
881}
882
883//===----------------------------------------------------------------------===//
884// Debug instructions
885//===----------------------------------------------------------------------===//
886
887let isBarrier = 1, isReturn = 1, isTerminator = 1 in {
888def DRET : Priv<"dret", 0b0111101>, Sched<[]> {
889  let rd = 0;
890  let rs1 = 0;
891  let rs2 = 0b10010;
892}
893} // isBarrier = 1, isReturn = 1, isTerminator = 1
894
895//===----------------------------------------------------------------------===//
896// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
897//===----------------------------------------------------------------------===//
898
899def : InstAlias<"nop",           (ADDI      X0,      X0,       0)>;
900
901// Note that the size is 32 because up to 8 32-bit instructions are needed to
902// generate an arbitrary 64-bit immediate. However, the size does not really
903// matter since PseudoLI is currently only used in the AsmParser where it gets
904// expanded to real instructions immediately.
905let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 32,
906    isCodeGenOnly = 0, isAsmParserOnly = 1 in
907def PseudoLI : Pseudo<(outs GPR:$rd), (ins ixlenimm_li:$imm), [],
908                      "li", "$rd, $imm">;
909
910def PseudoLB  : PseudoLoad<"lb">;
911def PseudoLBU : PseudoLoad<"lbu">;
912def PseudoLH  : PseudoLoad<"lh">;
913def PseudoLHU : PseudoLoad<"lhu">;
914def PseudoLW  : PseudoLoad<"lw">;
915
916def PseudoSB  : PseudoStore<"sb">;
917def PseudoSH  : PseudoStore<"sh">;
918def PseudoSW  : PseudoStore<"sw">;
919
920let Predicates = [IsRV64] in {
921def PseudoLWU : PseudoLoad<"lwu">;
922def PseudoLD  : PseudoLoad<"ld">;
923def PseudoSD  : PseudoStore<"sd">;
924} // Predicates = [IsRV64]
925
926def : InstAlias<"li $rd, $imm",  (ADDI GPR:$rd, X0, simm12:$imm)>;
927def : InstAlias<"mv $rd, $rs",   (ADDI GPR:$rd, GPR:$rs,       0)>;
928def : InstAlias<"not $rd, $rs",  (XORI GPR:$rd, GPR:$rs,      -1)>;
929def : InstAlias<"neg $rd, $rs",  (SUB  GPR:$rd,      X0, GPR:$rs)>;
930
931let Predicates = [IsRV64] in {
932def : InstAlias<"negw $rd, $rs",   (SUBW  GPR:$rd,      X0, GPR:$rs)>;
933def : InstAlias<"sext.w $rd, $rs", (ADDIW GPR:$rd, GPR:$rs,       0)>;
934} // Predicates = [IsRV64]
935
936def : InstAlias<"seqz $rd, $rs", (SLTIU GPR:$rd, GPR:$rs,       1)>;
937def : InstAlias<"snez $rd, $rs", (SLTU  GPR:$rd,      X0, GPR:$rs)>;
938def : InstAlias<"sltz $rd, $rs", (SLT   GPR:$rd, GPR:$rs,      X0)>;
939def : InstAlias<"sgtz $rd, $rs", (SLT   GPR:$rd,      X0, GPR:$rs)>;
940
941// sgt/sgtu are recognised by the GNU assembler but the canonical slt/sltu
942// form will always be printed. Therefore, set a zero weight.
943def : InstAlias<"sgt $rd, $rs, $rt", (SLT GPR:$rd, GPR:$rt, GPR:$rs), 0>;
944def : InstAlias<"sgtu $rd, $rs, $rt", (SLTU GPR:$rd, GPR:$rt, GPR:$rs), 0>;
945
946def : InstAlias<"beqz $rs, $offset",
947                (BEQ GPR:$rs,      X0, simm13_lsb0:$offset)>;
948def : InstAlias<"bnez $rs, $offset",
949                (BNE GPR:$rs,      X0, simm13_lsb0:$offset)>;
950def : InstAlias<"blez $rs, $offset",
951                (BGE      X0, GPR:$rs, simm13_lsb0:$offset)>;
952def : InstAlias<"bgez $rs, $offset",
953                (BGE GPR:$rs,      X0, simm13_lsb0:$offset)>;
954def : InstAlias<"bltz $rs, $offset",
955                (BLT GPR:$rs,      X0, simm13_lsb0:$offset)>;
956def : InstAlias<"bgtz $rs, $offset",
957                (BLT      X0, GPR:$rs, simm13_lsb0:$offset)>;
958
959// Always output the canonical mnemonic for the pseudo branch instructions.
960// The GNU tools emit the canonical mnemonic for the branch pseudo instructions
961// as well (e.g. "bgt" will be recognised by the assembler but never printed by
962// objdump). Match this behaviour by setting a zero weight.
963def : InstAlias<"bgt $rs, $rt, $offset",
964                (BLT  GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
965def : InstAlias<"ble $rs, $rt, $offset",
966                (BGE  GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
967def : InstAlias<"bgtu $rs, $rt, $offset",
968                (BLTU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
969def : InstAlias<"bleu $rs, $rt, $offset",
970                (BGEU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
971
972def : InstAlias<"j $offset",   (JAL X0, simm21_lsb0_jal:$offset)>;
973def : InstAlias<"jal $offset", (JAL X1, simm21_lsb0_jal:$offset)>;
974
975// Non-zero offset aliases of "jalr" are the lowest weight, followed by the
976// two-register form, then the one-register forms and finally "ret".
977def : InstAlias<"jr $rs",                (JALR      X0, GPR:$rs, 0), 3>;
978def : InstAlias<"jr ${offset}(${rs})",   (JALR      X0, GPR:$rs, simm12:$offset)>;
979def : InstAlias<"jalr $rs",              (JALR      X1, GPR:$rs, 0), 3>;
980def : InstAlias<"jalr ${offset}(${rs})", (JALR      X1, GPR:$rs, simm12:$offset)>;
981def : InstAlias<"jalr $rd, $rs",         (JALR GPR:$rd, GPR:$rs, 0), 2>;
982def : InstAlias<"ret",                   (JALR      X0,      X1, 0), 4>;
983
984// Non-canonical forms for jump targets also accepted by the assembler.
985def : InstAlias<"jr $rs, $offset",        (JALR      X0, GPR:$rs, simm12:$offset), 0>;
986def : InstAlias<"jalr $rs, $offset",      (JALR      X1, GPR:$rs, simm12:$offset), 0>;
987def : InstAlias<"jalr $rd, $rs, $offset", (JALR GPR:$rd, GPR:$rs, simm12:$offset), 0>;
988
989def : InstAlias<"fence", (FENCE 0xF, 0xF)>; // 0xF == iorw
990
991let Predicates = [HasStdExtZihintpause] in
992def : InstAlias<"pause", (FENCE 0x1, 0x0)>; // 0x1 == w
993
994def : InstAlias<"rdinstret $rd", (CSRRS GPR:$rd, INSTRET.Encoding, X0)>;
995def : InstAlias<"rdcycle $rd",   (CSRRS GPR:$rd, CYCLE.Encoding, X0)>;
996def : InstAlias<"rdtime $rd",    (CSRRS GPR:$rd, TIME.Encoding, X0)>;
997
998let Predicates = [IsRV32] in {
999def : InstAlias<"rdinstreth $rd", (CSRRS GPR:$rd, INSTRETH.Encoding, X0)>;
1000def : InstAlias<"rdcycleh $rd",   (CSRRS GPR:$rd, CYCLEH.Encoding, X0)>;
1001def : InstAlias<"rdtimeh $rd",    (CSRRS GPR:$rd, TIMEH.Encoding, X0)>;
1002} // Predicates = [IsRV32]
1003
1004def : InstAlias<"csrr $rd, $csr", (CSRRS GPR:$rd, csr_sysreg:$csr,      X0)>;
1005def : InstAlias<"csrw $csr, $rs", (CSRRW      X0, csr_sysreg:$csr, GPR:$rs)>;
1006def : InstAlias<"csrs $csr, $rs", (CSRRS      X0, csr_sysreg:$csr, GPR:$rs)>;
1007def : InstAlias<"csrc $csr, $rs", (CSRRC      X0, csr_sysreg:$csr, GPR:$rs)>;
1008
1009def : InstAlias<"csrwi $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
1010def : InstAlias<"csrsi $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
1011def : InstAlias<"csrci $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;
1012
1013let EmitPriority = 0 in {
1014def : InstAlias<"csrw $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
1015def : InstAlias<"csrs $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
1016def : InstAlias<"csrc $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;
1017
1018def : InstAlias<"csrrw $rd, $csr, $imm", (CSRRWI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
1019def : InstAlias<"csrrs $rd, $csr, $imm", (CSRRSI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
1020def : InstAlias<"csrrc $rd, $csr, $imm", (CSRRCI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
1021}
1022
1023def : InstAlias<"sfence.vma",     (SFENCE_VMA      X0, X0)>;
1024def : InstAlias<"sfence.vma $rs", (SFENCE_VMA GPR:$rs, X0)>;
1025
1026def : InstAlias<"hfence.gvma",     (HFENCE_GVMA      X0, X0)>;
1027def : InstAlias<"hfence.gvma $rs", (HFENCE_GVMA GPR:$rs, X0)>;
1028
1029def : InstAlias<"hfence.vvma",     (HFENCE_VVMA      X0, X0)>;
1030def : InstAlias<"hfence.vvma $rs", (HFENCE_VVMA GPR:$rs, X0)>;
1031
1032let Predicates = [HasStdExtZihintntl] in {
1033  def : InstAlias<"ntl.p1",     (ADD   X0, X0, X2)>;
1034  def : InstAlias<"ntl.pall",   (ADD   X0, X0, X3)>;
1035  def : InstAlias<"ntl.s1",     (ADD   X0, X0, X4)>;
1036  def : InstAlias<"ntl.all",    (ADD   X0, X0, X5)>;
1037} // Predicates = [HasStdExtZihintntl]
1038
1039let EmitPriority = 0 in {
1040def : InstAlias<"lb $rd, (${rs1})",
1041                (LB  GPR:$rd, GPR:$rs1, 0)>;
1042def : InstAlias<"lh $rd, (${rs1})",
1043                (LH  GPR:$rd, GPR:$rs1, 0)>;
1044def : InstAlias<"lw $rd, (${rs1})",
1045                (LW  GPR:$rd, GPR:$rs1, 0)>;
1046def : InstAlias<"lbu $rd, (${rs1})",
1047                (LBU  GPR:$rd, GPR:$rs1, 0)>;
1048def : InstAlias<"lhu $rd, (${rs1})",
1049                (LHU  GPR:$rd, GPR:$rs1, 0)>;
1050
1051def : InstAlias<"sb $rs2, (${rs1})",
1052                (SB  GPR:$rs2, GPR:$rs1, 0)>;
1053def : InstAlias<"sh $rs2, (${rs1})",
1054                (SH  GPR:$rs2, GPR:$rs1, 0)>;
1055def : InstAlias<"sw $rs2, (${rs1})",
1056                (SW  GPR:$rs2, GPR:$rs1, 0)>;
1057
1058def : InstAlias<"add $rd, $rs1, $imm12",
1059                (ADDI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
1060def : InstAlias<"and $rd, $rs1, $imm12",
1061                (ANDI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
1062def : InstAlias<"xor $rd, $rs1, $imm12",
1063                (XORI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
1064def : InstAlias<"or $rd, $rs1, $imm12",
1065                (ORI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
1066def : InstAlias<"sll $rd, $rs1, $shamt",
1067                (SLLI  GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
1068def : InstAlias<"srl $rd, $rs1, $shamt",
1069                (SRLI  GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
1070def : InstAlias<"sra $rd, $rs1, $shamt",
1071                (SRAI  GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
1072let Predicates = [IsRV64] in {
1073def : InstAlias<"lwu $rd, (${rs1})",
1074                (LWU  GPR:$rd, GPR:$rs1, 0)>;
1075def : InstAlias<"ld $rd, (${rs1})",
1076                (LD  GPR:$rd, GPR:$rs1, 0)>;
1077def : InstAlias<"sd $rs2, (${rs1})",
1078                (SD  GPR:$rs2, GPR:$rs1, 0)>;
1079
1080def : InstAlias<"addw $rd, $rs1, $imm12",
1081                (ADDIW  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
1082def : InstAlias<"sllw $rd, $rs1, $shamt",
1083                (SLLIW  GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
1084def : InstAlias<"srlw $rd, $rs1, $shamt",
1085                (SRLIW  GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
1086def : InstAlias<"sraw $rd, $rs1, $shamt",
1087                (SRAIW  GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
1088} // Predicates = [IsRV64]
1089def : InstAlias<"slt $rd, $rs1, $imm12",
1090                (SLTI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
1091def : InstAlias<"sltu $rd, $rs1, $imm12",
1092                (SLTIU  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
1093}
1094
1095def : MnemonicAlias<"move", "mv">;
1096
1097// The SCALL and SBREAK instructions wererenamed to ECALL and EBREAK in
1098// version 2.1 of the user-level ISA. Like the GNU toolchain, we still accept
1099// the old name for backwards compatibility.
1100def : MnemonicAlias<"scall", "ecall">;
1101def : MnemonicAlias<"sbreak", "ebreak">;
1102
1103// This alias was added to the spec in December 2020. Don't print it by default
1104// to allow assembly we print to be compatible with versions of GNU assembler
1105// that don't support this alias.
1106def : InstAlias<"zext.b $rd, $rs", (ANDI GPR:$rd, GPR:$rs, 0xFF), 0>;
1107
1108//===----------------------------------------------------------------------===//
1109// .insn directive instructions
1110//===----------------------------------------------------------------------===//
1111
1112def AnyRegOperand : AsmOperandClass {
1113  let Name = "AnyRegOperand";
1114  let RenderMethod = "addRegOperands";
1115  let PredicateMethod = "isAnyReg";
1116}
1117
1118def AnyReg : Operand<XLenVT> {
1119  let OperandType = "OPERAND_REGISTER";
1120  let ParserMatchClass = AnyRegOperand;
1121}
1122
1123// isCodeGenOnly = 1 to hide them from the tablegened assembly parser.
1124let isCodeGenOnly = 1, hasSideEffects = 1, mayLoad = 1, mayStore = 1,
1125    hasNoSchedulingInfo = 1 in {
1126def InsnR : DirectiveInsnR<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode, uimm3:$funct3,
1127                                                   uimm7:$funct7, AnyReg:$rs1,
1128                                                   AnyReg:$rs2),
1129                           "$opcode, $funct3, $funct7, $rd, $rs1, $rs2">;
1130def InsnR4 : DirectiveInsnR4<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode,
1131                                                     uimm3:$funct3,
1132                                                     uimm2:$funct2,
1133                                                     AnyReg:$rs1, AnyReg:$rs2,
1134                                                     AnyReg:$rs3),
1135                            "$opcode, $funct3, $funct2, $rd, $rs1, $rs2, $rs3">;
1136def InsnI : DirectiveInsnI<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode, uimm3:$funct3,
1137                                                   AnyReg:$rs1, simm12:$imm12),
1138                           "$opcode, $funct3, $rd, $rs1, $imm12">;
1139def InsnI_Mem : DirectiveInsnI<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode,
1140                                                       uimm3:$funct3,
1141                                                       AnyReg:$rs1,
1142                                                       simm12:$imm12),
1143                               "$opcode, $funct3, $rd, ${imm12}(${rs1})">;
1144def InsnB : DirectiveInsnB<(outs), (ins uimm7_opcode:$opcode, uimm3:$funct3,
1145                                        AnyReg:$rs1, AnyReg:$rs2,
1146                                        simm13_lsb0:$imm12),
1147                           "$opcode, $funct3, $rs1, $rs2, $imm12">;
1148def InsnU : DirectiveInsnU<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode,
1149                                                   uimm20_lui:$imm20),
1150                           "$opcode, $rd, $imm20">;
1151def InsnJ : DirectiveInsnJ<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode,
1152                                                   simm21_lsb0_jal:$imm20),
1153                           "$opcode, $rd, $imm20">;
1154def InsnS : DirectiveInsnS<(outs), (ins uimm7_opcode:$opcode, uimm3:$funct3,
1155                                        AnyReg:$rs2, AnyReg:$rs1,
1156                                        simm12:$imm12),
1157                           "$opcode, $funct3, $rs2, ${imm12}(${rs1})">;
1158}
1159
1160// Use InstAliases to match these so that we can combine the insn and format
1161// into a mnemonic to use as the key for the tablegened asm matcher table. The
1162// parser will take care of creating these fake mnemonics and will only do it
1163// for known formats.
1164let EmitPriority = 0 in {
1165def : InstAlias<".insn_r $opcode, $funct3, $funct7, $rd, $rs1, $rs2",
1166                (InsnR AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3, uimm7:$funct7,
1167                       AnyReg:$rs1, AnyReg:$rs2)>;
1168// Accept 4 register form of ".insn r" as alias for ".insn r4".
1169def : InstAlias<".insn_r $opcode, $funct3, $funct2, $rd, $rs1, $rs2, $rs3",
1170                (InsnR4 AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3, uimm2:$funct2,
1171                        AnyReg:$rs1, AnyReg:$rs2, AnyReg:$rs3)>;
1172def : InstAlias<".insn_r4 $opcode, $funct3, $funct2, $rd, $rs1, $rs2, $rs3",
1173                (InsnR4 AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3, uimm2:$funct2,
1174                        AnyReg:$rs1, AnyReg:$rs2, AnyReg:$rs3)>;
1175def : InstAlias<".insn_i $opcode, $funct3, $rd, $rs1, $imm12",
1176                (InsnI AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs1,
1177                       simm12:$imm12)>;
1178def : InstAlias<".insn_i $opcode, $funct3, $rd, ${imm12}(${rs1})",
1179                (InsnI_Mem AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3,
1180                           AnyReg:$rs1, simm12:$imm12)>;
1181def : InstAlias<".insn_b $opcode, $funct3, $rs1, $rs2, $imm12",
1182                (InsnB uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs1,
1183                       AnyReg:$rs2, simm13_lsb0:$imm12)>;
1184// Accept sb as an alias for b.
1185def : InstAlias<".insn_sb $opcode, $funct3, $rs1, $rs2, $imm12",
1186                (InsnB uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs1,
1187                       AnyReg:$rs2, simm13_lsb0:$imm12)>;
1188def : InstAlias<".insn_u $opcode, $rd, $imm20",
1189                (InsnU AnyReg:$rd, uimm7_opcode:$opcode, uimm20_lui:$imm20)>;
1190def : InstAlias<".insn_j $opcode, $rd, $imm20",
1191                (InsnJ AnyReg:$rd, uimm7_opcode:$opcode, simm21_lsb0_jal:$imm20)>;
1192// Accept uj as an alias for j.
1193def : InstAlias<".insn_uj $opcode, $rd, $imm20",
1194                (InsnJ AnyReg:$rd, uimm7_opcode:$opcode, simm21_lsb0_jal:$imm20)>;
1195def : InstAlias<".insn_s $opcode, $funct3, $rs2, ${imm12}(${rs1})",
1196                (InsnS uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs2,
1197                       AnyReg:$rs1, simm12:$imm12)>;
1198}
1199
1200//===----------------------------------------------------------------------===//
1201// Pseudo-instructions and codegen patterns
1202//
1203// Naming convention: For 'generic' pattern classes, we use the naming
1204// convention PatTy1Ty2. For pattern classes which offer a more complex
1205// expansion, prefix the class name, e.g. BccPat.
1206//===----------------------------------------------------------------------===//
1207
1208/// Generic pattern classes
1209
1210class PatGpr<SDPatternOperator OpNode, RVInst Inst, ValueType vt = XLenVT>
1211    : Pat<(vt (OpNode (vt GPR:$rs1))), (Inst GPR:$rs1)>;
1212class PatGprGpr<SDPatternOperator OpNode, RVInst Inst, ValueType vt = XLenVT>
1213    : Pat<(vt (OpNode (vt GPR:$rs1), (vt GPR:$rs2))), (Inst GPR:$rs1, GPR:$rs2)>;
1214
1215class PatGprImm<SDPatternOperator OpNode, RVInst Inst, ImmLeaf ImmType>
1216    : Pat<(XLenVT (OpNode (XLenVT GPR:$rs1), ImmType:$imm)),
1217          (Inst GPR:$rs1, ImmType:$imm)>;
1218class PatGprSimm12<SDPatternOperator OpNode, RVInstI Inst>
1219    : PatGprImm<OpNode, Inst, simm12>;
1220class PatGprUimmLog2XLen<SDPatternOperator OpNode, RVInstIShift Inst>
1221    : PatGprImm<OpNode, Inst, uimmlog2xlen>;
1222
1223/// Predicates
1224
1225def assertsexti32 : PatFrag<(ops node:$src), (assertsext node:$src), [{
1226  return cast<VTSDNode>(N->getOperand(1))->getVT().bitsLE(MVT::i32);
1227}]>;
1228def sexti16 : ComplexPattern<XLenVT, 1, "selectSExtBits<16>">;
1229def sexti32 : ComplexPattern<i64, 1, "selectSExtBits<32>">;
1230def assertzexti32 : PatFrag<(ops node:$src), (assertzext node:$src), [{
1231  return cast<VTSDNode>(N->getOperand(1))->getVT().bitsLE(MVT::i32);
1232}]>;
1233def zexti32 : ComplexPattern<i64, 1, "selectZExtBits<32>">;
1234def zexti16 : ComplexPattern<XLenVT, 1, "selectZExtBits<16>">;
1235def zexti8 : ComplexPattern<XLenVT, 1, "selectZExtBits<8>">;
1236
1237def ext : PatFrags<(ops node:$A), [(sext node:$A), (zext node:$A)]>;
1238
1239class binop_oneuse<SDPatternOperator operator>
1240    : PatFrag<(ops node:$A, node:$B),
1241              (operator node:$A, node:$B), [{
1242  return N->hasOneUse();
1243}]>;
1244
1245def and_oneuse : binop_oneuse<and>;
1246def mul_oneuse : binop_oneuse<mul>;
1247
1248def mul_const_oneuse : PatFrag<(ops node:$A, node:$B),
1249                               (mul node:$A, node:$B), [{
1250  if (auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1251    return N1C->hasOneUse();
1252  return false;
1253}]>;
1254
1255class unop_oneuse<SDPatternOperator operator>
1256    : PatFrag<(ops node:$A),
1257              (operator node:$A), [{
1258  return N->hasOneUse();
1259}]>;
1260
1261def sext_oneuse   : unop_oneuse<sext>;
1262def zext_oneuse   : unop_oneuse<zext>;
1263def anyext_oneuse : unop_oneuse<anyext>;
1264def ext_oneuse    : unop_oneuse<ext>;
1265def fpext_oneuse  : unop_oneuse<any_fpextend>;
1266
1267/// Simple arithmetic operations
1268
1269def : PatGprGpr<add, ADD>;
1270def : PatGprSimm12<add, ADDI>;
1271def : PatGprGpr<sub, SUB>;
1272def : PatGprGpr<or, OR>;
1273def : PatGprSimm12<or, ORI>;
1274def : PatGprGpr<and, AND>;
1275def : PatGprSimm12<and, ANDI>;
1276def : PatGprGpr<xor, XOR>;
1277def : PatGprSimm12<xor, XORI>;
1278def : PatGprUimmLog2XLen<shl, SLLI>;
1279def : PatGprUimmLog2XLen<srl, SRLI>;
1280def : PatGprUimmLog2XLen<sra, SRAI>;
1281
1282// Select 'or' as ADDI if the immediate bits are known to be 0 in $rs1. This
1283// can improve compressibility.
1284def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1285  KnownBits Known0 = CurDAG->computeKnownBits(N->getOperand(0), 0);
1286  KnownBits Known1 = CurDAG->computeKnownBits(N->getOperand(1), 0);
1287  return KnownBits::haveNoCommonBitsSet(Known0, Known1);
1288}]>;
1289def : PatGprSimm12<or_is_add, ADDI>;
1290
1291// negate of low bit can be done via two (compressible) shifts.  The negate
1292// is never compressible since rs1 and rd can't be the same register.
1293def : Pat<(XLenVT (sub 0, (and_oneuse GPR:$rs, 1))),
1294          (SRAI (SLLI $rs, (ImmSubFromXLen (XLenVT 1))),
1295                (ImmSubFromXLen (XLenVT 1)))>;
1296
1297// AND with leading/trailing ones mask exceeding simm32/simm12.
1298def : Pat<(i64 (and GPR:$rs, LeadingOnesMask:$mask)),
1299          (SLLI (SRLI $rs, LeadingOnesMask:$mask), LeadingOnesMask:$mask)>;
1300def : Pat<(XLenVT (and GPR:$rs, TrailingOnesMask:$mask)),
1301          (SRLI (SLLI $rs, TrailingOnesMask:$mask), TrailingOnesMask:$mask)>;
1302
1303// Match both a plain shift and one where the shift amount is masked (this is
1304// typically introduced when the legalizer promotes the shift amount and
1305// zero-extends it). For RISC-V, the mask is unnecessary as shifts in the base
1306// ISA only read the least significant 5 bits (RV32I) or 6 bits (RV64I).
1307def shiftMaskXLen : ComplexPattern<XLenVT, 1, "selectShiftMaskXLen", [], [], 0>;
1308def shiftMask32   : ComplexPattern<i64, 1, "selectShiftMask32", [], [], 0>;
1309
1310class shiftop<SDPatternOperator operator>
1311    : PatFrag<(ops node:$val, node:$count),
1312              (operator node:$val, (XLenVT (shiftMaskXLen node:$count)))>;
1313class shiftopw<SDPatternOperator operator>
1314    : PatFrag<(ops node:$val, node:$count),
1315              (operator node:$val, (i64 (shiftMask32 node:$count)))>;
1316
1317def : PatGprGpr<shiftop<shl>, SLL>;
1318def : PatGprGpr<shiftop<srl>, SRL>;
1319def : PatGprGpr<shiftop<sra>, SRA>;
1320
1321// This is a special case of the ADD instruction used to facilitate the use of a
1322// fourth operand to emit a relocation on a symbol relating to this instruction.
1323// The relocation does not affect any bits of the instruction itself but is used
1324// as a hint to the linker.
1325let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0 in
1326def PseudoAddTPRel : Pseudo<(outs GPR:$rd),
1327                            (ins GPR:$rs1, GPR:$rs2, tprel_add_symbol:$src), [],
1328                            "add", "$rd, $rs1, $rs2, $src">;
1329
1330/// FrameIndex calculations
1331
1332def : Pat<(FrameAddrRegImm (iPTR GPR:$rs1), simm12:$imm12),
1333          (ADDI GPR:$rs1, simm12:$imm12)>;
1334
1335/// HI and ADD_LO address nodes.
1336
1337def : Pat<(riscv_hi tglobaladdr:$in), (LUI tglobaladdr:$in)>;
1338def : Pat<(riscv_hi tblockaddress:$in), (LUI tblockaddress:$in)>;
1339def : Pat<(riscv_hi tjumptable:$in), (LUI tjumptable:$in)>;
1340def : Pat<(riscv_hi tconstpool:$in), (LUI tconstpool:$in)>;
1341
1342def : Pat<(riscv_add_lo GPR:$hi, tglobaladdr:$lo),
1343          (ADDI GPR:$hi, tglobaladdr:$lo)>;
1344def : Pat<(riscv_add_lo GPR:$hi, tblockaddress:$lo),
1345          (ADDI GPR:$hi, tblockaddress:$lo)>;
1346def : Pat<(riscv_add_lo GPR:$hi, tjumptable:$lo),
1347          (ADDI GPR:$hi, tjumptable:$lo)>;
1348def : Pat<(riscv_add_lo GPR:$hi, tconstpool:$lo),
1349          (ADDI GPR:$hi, tconstpool:$lo)>;
1350
1351/// TLS address nodes.
1352
1353def : Pat<(riscv_hi tglobaltlsaddr:$in), (LUI tglobaltlsaddr:$in)>;
1354def : Pat<(riscv_add_tprel GPR:$rs1, GPR:$rs2, tglobaltlsaddr:$src),
1355          (PseudoAddTPRel GPR:$rs1, GPR:$rs2, tglobaltlsaddr:$src)>;
1356def : Pat<(riscv_add_lo GPR:$src, tglobaltlsaddr:$lo),
1357          (ADDI GPR:$src, tglobaltlsaddr:$lo)>;
1358
1359/// Setcc
1360
1361def : PatGprGpr<setlt, SLT>;
1362def : PatGprSimm12<setlt, SLTI>;
1363def : PatGprGpr<setult, SLTU>;
1364def : PatGprSimm12<setult, SLTIU>;
1365
1366// RISC-V doesn't have general instructions for integer setne/seteq, but we can
1367// check for equality with 0. These ComplexPatterns rewrite the setne/seteq into
1368// something that can be compared with 0.
1369// These ComplexPatterns must be used in pairs.
1370def riscv_setne : ComplexPattern<XLenVT, 1, "selectSETNE", [setcc]>;
1371def riscv_seteq : ComplexPattern<XLenVT, 1, "selectSETEQ", [setcc]>;
1372
1373// Define pattern expansions for setcc operations that aren't directly
1374// handled by a RISC-V instruction.
1375def : Pat<(riscv_seteq (XLenVT GPR:$rs1)), (SLTIU GPR:$rs1, 1)>;
1376def : Pat<(riscv_setne (XLenVT GPR:$rs1)), (SLTU (XLenVT X0), GPR:$rs1)>;
1377def : Pat<(XLenVT (setne (XLenVT GPR:$rs1), -1)), (SLTIU GPR:$rs1, -1)>;
1378
1379def IntCCtoRISCVCC : SDNodeXForm<riscv_selectcc, [{
1380  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
1381  RISCVCC::CondCode BrCC = getRISCVCCForIntCC(CC);
1382  return CurDAG->getTargetConstant(BrCC, SDLoc(N), Subtarget->getXLenVT());
1383}]>;
1384
1385def riscv_selectcc_frag : PatFrag<(ops node:$lhs, node:$rhs, node:$cc,
1386                                       node:$truev, node:$falsev),
1387                                  (riscv_selectcc node:$lhs, node:$rhs,
1388                                                  node:$cc, node:$truev,
1389                                                  node:$falsev), [{}],
1390                                  IntCCtoRISCVCC>;
1391
1392let Predicates = [HasShortForwardBranchOpt], isSelect = 1,
1393    Constraints = "$dst = $falsev", isCommutable = 1, Size = 8 in {
1394// This instruction moves $truev to $dst when the condition is true. It will
1395// be expanded to control flow in RISCVExpandPseudoInsts.
1396def PseudoCCMOVGPR : Pseudo<(outs GPR:$dst),
1397                            (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
1398                             GPR:$falsev, GPR:$truev),
1399                            [(set GPR:$dst,
1400                              (riscv_selectcc_frag:$cc (XLenVT GPR:$lhs),
1401                                                       GPR:$rhs, cond,
1402                                                       (XLenVT GPR:$truev),
1403                                                       GPR:$falsev))]>,
1404                     Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp,
1405                            ReadSFBALU, ReadSFBALU]>;
1406}
1407
1408// Conditional binops, that updates update $dst to (op rs1, rs2) when condition
1409// is true. Returns $falsev otherwise. Selected by optimizeSelect.
1410// TODO: Can we use DefaultOperands on the regular binop to accomplish this more
1411// like how ARM does predication?
1412let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 8,
1413    Constraints = "$dst = $falsev" in {
1414def PseudoCCADD : Pseudo<(outs GPR:$dst),
1415                         (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
1416                          GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
1417                  Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp,
1418                         ReadSFBALU, ReadSFBALU, ReadSFBALU]>;
1419def PseudoCCSUB : Pseudo<(outs GPR:$dst),
1420                         (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
1421                          GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
1422                  Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp,
1423                         ReadSFBALU, ReadSFBALU, ReadSFBALU]>;
1424def PseudoCCAND : Pseudo<(outs GPR:$dst),
1425                         (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
1426                          GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
1427                  Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp,
1428                         ReadSFBALU, ReadSFBALU, ReadSFBALU]>;
1429def PseudoCCOR  : Pseudo<(outs GPR:$dst),
1430                         (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
1431                          GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
1432                  Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp,
1433                         ReadSFBALU, ReadSFBALU, ReadSFBALU]>;
1434def PseudoCCXOR : Pseudo<(outs GPR:$dst),
1435                         (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
1436                          GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
1437                  Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp,
1438                         ReadSFBALU, ReadSFBALU, ReadSFBALU]>;
1439
1440// RV64I instructions
1441def PseudoCCADDW : Pseudo<(outs GPR:$dst),
1442                          (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
1443                           GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
1444                   Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp,
1445                          ReadSFBALU, ReadSFBALU, ReadSFBALU]>;
1446def PseudoCCSUBW : Pseudo<(outs GPR:$dst),
1447                          (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
1448                           GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
1449                   Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp,
1450                          ReadSFBALU, ReadSFBALU, ReadSFBALU]>;
1451}
1452
1453multiclass SelectCC_GPR_rrirr<DAGOperand valty, ValueType vt> {
1454  let usesCustomInserter = 1 in
1455  def _Using_CC_GPR : Pseudo<(outs valty:$dst),
1456                             (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
1457                              valty:$truev, valty:$falsev),
1458                             [(set valty:$dst,
1459                               (riscv_selectcc_frag:$cc (XLenVT GPR:$lhs), GPR:$rhs, cond,
1460                                                        (vt valty:$truev), valty:$falsev))]>;
1461  // Explicitly select 0 in the condition to X0. The register coalescer doesn't
1462  // always do it.
1463  def : Pat<(riscv_selectcc_frag:$cc (XLenVT GPR:$lhs), 0, cond, (vt valty:$truev),
1464                                     valty:$falsev),
1465            (!cast<Instruction>(NAME#"_Using_CC_GPR") GPR:$lhs, (XLenVT X0),
1466             (IntCCtoRISCVCC $cc), valty:$truev, valty:$falsev)>;
1467}
1468
1469let Predicates = [NoShortForwardBranchOpt] in
1470defm Select_GPR : SelectCC_GPR_rrirr<GPR, XLenVT>;
1471
1472class SelectCompressOpt<CondCode Cond>
1473    : Pat<(riscv_selectcc_frag:$select (XLenVT GPR:$lhs), simm12_no6:$Constant, Cond,
1474                                       (XLenVT GPR:$truev), GPR:$falsev),
1475    (Select_GPR_Using_CC_GPR (ADDI GPR:$lhs, (NegImm simm12:$Constant)), (XLenVT X0),
1476                          (IntCCtoRISCVCC $select), GPR:$truev, GPR:$falsev)>;
1477
1478def OptForMinSize : Predicate<"MF ? MF->getFunction().hasMinSize() : false">;
1479
1480let Predicates = [HasStdExtC, OptForMinSize] in {
1481  def : SelectCompressOpt<SETEQ>;
1482  def : SelectCompressOpt<SETNE>;
1483}
1484
1485/// Branches and jumps
1486
1487// Match `riscv_brcc` and lower to the appropriate RISC-V branch instruction.
1488multiclass BccPat<CondCode Cond, RVInstB Inst> {
1489  def : Pat<(riscv_brcc (XLenVT GPR:$rs1), GPR:$rs2, Cond, bb:$imm12),
1490            (Inst GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12)>;
1491  // Explicitly select 0 to X0. The register coalescer doesn't always do it.
1492  def : Pat<(riscv_brcc (XLenVT GPR:$rs1), 0, Cond, bb:$imm12),
1493            (Inst GPR:$rs1, (XLenVT X0), simm13_lsb0:$imm12)>;
1494}
1495
1496class BrccCompressOpt<CondCode Cond, RVInstB Inst>
1497    : Pat<(riscv_brcc GPR:$lhs, simm12_no6:$Constant, Cond, bb:$place),
1498          (Inst (ADDI GPR:$lhs, (NegImm simm12:$Constant)), (XLenVT X0), bb:$place)>;
1499
1500defm : BccPat<SETEQ, BEQ>;
1501defm : BccPat<SETNE, BNE>;
1502defm : BccPat<SETLT, BLT>;
1503defm : BccPat<SETGE, BGE>;
1504defm : BccPat<SETULT, BLTU>;
1505defm : BccPat<SETUGE, BGEU>;
1506
1507let Predicates = [HasStdExtC, OptForMinSize] in {
1508  def : BrccCompressOpt<SETEQ, BEQ>;
1509  def : BrccCompressOpt<SETNE, BNE>;
1510}
1511
1512class LongBccPseudo : Pseudo<(outs),
1513                             (ins GPR:$rs1, GPR:$rs2, simm21_lsb0_jal:$imm20),
1514                             []> {
1515  let Size = 8;
1516  let isBarrier = 1;
1517  let isBranch = 1;
1518  let hasSideEffects = 0;
1519  let mayStore = 0;
1520  let mayLoad = 0;
1521  let isAsmParserOnly = 1;
1522  let hasNoSchedulingInfo = 1;
1523}
1524
1525def PseudoLongBEQ : LongBccPseudo;
1526def PseudoLongBNE : LongBccPseudo;
1527def PseudoLongBLT : LongBccPseudo;
1528def PseudoLongBGE : LongBccPseudo;
1529def PseudoLongBLTU : LongBccPseudo;
1530def PseudoLongBGEU : LongBccPseudo;
1531
1532let isBarrier = 1, isBranch = 1, isTerminator = 1 in
1533def PseudoBR : Pseudo<(outs), (ins simm21_lsb0_jal:$imm20), [(br bb:$imm20)]>,
1534               PseudoInstExpansion<(JAL X0, simm21_lsb0_jal:$imm20)>;
1535
1536let isBarrier = 1, isBranch = 1, isIndirectBranch = 1, isTerminator = 1 in
1537def PseudoBRIND : Pseudo<(outs), (ins GPRJALR:$rs1, simm12:$imm12), []>,
1538                  PseudoInstExpansion<(JALR X0, GPR:$rs1, simm12:$imm12)>;
1539
1540def : Pat<(brind GPRJALR:$rs1), (PseudoBRIND GPRJALR:$rs1, 0)>;
1541def : Pat<(brind (add GPRJALR:$rs1, simm12:$imm12)),
1542          (PseudoBRIND GPRJALR:$rs1, simm12:$imm12)>;
1543
1544// PseudoCALLReg is a generic pseudo instruction for calls which will eventually
1545// expand to auipc and jalr while encoding, with any given register used as the
1546// destination.
1547// Define AsmString to print "call" when compile with -S flag.
1548// Define isCodeGenOnly = 0 to support parsing assembly "call" instruction.
1549let isCall = 1, isBarrier = 1, isCodeGenOnly = 0, Size = 8, hasSideEffects = 0,
1550    mayStore = 0, mayLoad = 0 in
1551def PseudoCALLReg : Pseudo<(outs GPR:$rd), (ins call_symbol:$func), [],
1552                           "call", "$rd, $func">,
1553                    Sched<[WriteIALU, WriteJalr, ReadJalr]>;
1554
1555// PseudoCALL is a pseudo instruction which will eventually expand to auipc
1556// and jalr while encoding. This is desirable, as an auipc+jalr pair with
1557// R_RISCV_CALL and R_RISCV_RELAX relocations can be be relaxed by the linker
1558// if the offset fits in a signed 21-bit immediate.
1559// Define AsmString to print "call" when compile with -S flag.
1560// Define isCodeGenOnly = 0 to support parsing assembly "call" instruction.
1561let isCall = 1, Defs = [X1], isCodeGenOnly = 0, Size = 8 in
1562def PseudoCALL : Pseudo<(outs), (ins call_symbol:$func), [],
1563                        "call", "$func">,
1564                 Sched<[WriteIALU, WriteJalr, ReadJalr]>;
1565
1566def : Pat<(riscv_call tglobaladdr:$func), (PseudoCALL tglobaladdr:$func)>;
1567def : Pat<(riscv_call texternalsym:$func), (PseudoCALL texternalsym:$func)>;
1568
1569def : Pat<(riscv_sret_glue), (SRET (XLenVT X0), (XLenVT X0))>;
1570def : Pat<(riscv_mret_glue), (MRET (XLenVT X0), (XLenVT X0))>;
1571
1572let isCall = 1, Defs = [X1] in
1573def PseudoCALLIndirect : Pseudo<(outs), (ins GPRJALR:$rs1),
1574                                [(riscv_call GPRJALR:$rs1)]>,
1575                         PseudoInstExpansion<(JALR X1, GPR:$rs1, 0)>;
1576
1577let isBarrier = 1, isReturn = 1, isTerminator = 1 in
1578def PseudoRET : Pseudo<(outs), (ins), [(riscv_ret_glue)]>,
1579                PseudoInstExpansion<(JALR X0, X1, 0)>;
1580
1581// PseudoTAIL is a pseudo instruction similar to PseudoCALL and will eventually
1582// expand to auipc and jalr while encoding.
1583// Define AsmString to print "tail" when compile with -S flag.
1584let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2],
1585    Size = 8, isCodeGenOnly = 0 in
1586def PseudoTAIL : Pseudo<(outs), (ins call_symbol:$dst), [],
1587                        "tail", "$dst">,
1588                 Sched<[WriteIALU, WriteJalr, ReadJalr]>;
1589
1590let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2] in
1591def PseudoTAILIndirect : Pseudo<(outs), (ins GPRTC:$rs1),
1592                                [(riscv_tail GPRTC:$rs1)]>,
1593                         PseudoInstExpansion<(JALR X0, GPR:$rs1, 0)>;
1594
1595def : Pat<(riscv_tail (iPTR tglobaladdr:$dst)),
1596          (PseudoTAIL tglobaladdr:$dst)>;
1597def : Pat<(riscv_tail (iPTR texternalsym:$dst)),
1598          (PseudoTAIL texternalsym:$dst)>;
1599
1600let isCall = 0, isBarrier = 1, isBranch = 1, isTerminator = 1, Size = 8,
1601    isCodeGenOnly = 0, hasSideEffects = 0, mayStore = 0, mayLoad = 0 in
1602def PseudoJump : Pseudo<(outs GPR:$rd), (ins pseudo_jump_symbol:$target), [],
1603                        "jump", "$target, $rd">,
1604                 Sched<[WriteIALU, WriteJalr, ReadJalr]>;
1605
1606let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 8, isCodeGenOnly = 0,
1607    isAsmParserOnly = 1 in
1608def PseudoLLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
1609                       "lla", "$dst, $src">;
1610
1611// Refer to comment on PseudoLI for explanation of Size=32
1612let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 8, isCodeGenOnly = 0,
1613    isAsmParserOnly = 1 in
1614def PseudoLLAImm : Pseudo<(outs GPR:$dst), (ins ixlenimm_li_restricted:$imm), [],
1615                          "lla", "$dst, $imm">;
1616def : Pat<(riscv_lla tglobaladdr:$in), (PseudoLLA tglobaladdr:$in)>;
1617def : Pat<(riscv_lla tblockaddress:$in), (PseudoLLA tblockaddress:$in)>;
1618def : Pat<(riscv_lla tjumptable:$in), (PseudoLLA tjumptable:$in)>;
1619def : Pat<(riscv_lla tconstpool:$in), (PseudoLLA tconstpool:$in)>;
1620
1621let hasSideEffects = 0, mayLoad = 1, mayStore = 0, Size = 8, isCodeGenOnly = 0,
1622    isAsmParserOnly = 1 in
1623def PseudoLGA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
1624                       "lga", "$dst, $src">;
1625
1626def : Pat<(iPTR (riscv_lga tglobaladdr:$in)), (PseudoLGA tglobaladdr:$in)>;
1627
1628let hasSideEffects = 0, mayLoad = 1, mayStore = 0, Size = 8, isCodeGenOnly = 0,
1629    isAsmParserOnly = 1 in
1630def PseudoLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
1631                      "la", "$dst, $src">;
1632
1633// Refer to comment on PseudoLI for explanation of Size=32
1634let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 32,
1635    isCodeGenOnly = 0, isAsmParserOnly = 1 in
1636def PseudoLAImm : Pseudo<(outs GPR:$rd), (ins ixlenimm_li_restricted:$imm), [],
1637                         "la", "$rd, $imm">;
1638
1639let hasSideEffects = 0, mayLoad = 1, mayStore = 0, Size = 8, isCodeGenOnly = 0,
1640    isAsmParserOnly = 1 in
1641def PseudoLA_TLS_IE : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
1642                             "la.tls.ie", "$dst, $src">;
1643
1644def : Pat<(iPTR (riscv_la_tls_ie tglobaltlsaddr:$in)),
1645          (PseudoLA_TLS_IE  tglobaltlsaddr:$in)>;
1646
1647let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 8, isCodeGenOnly = 0,
1648    isAsmParserOnly = 1 in
1649def PseudoLA_TLS_GD : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
1650                             "la.tls.gd", "$dst, $src">;
1651
1652def : Pat<(riscv_la_tls_gd tglobaltlsaddr:$in),
1653          (PseudoLA_TLS_GD  tglobaltlsaddr:$in)>;
1654
1655/// Sign/Zero Extends
1656
1657// There are single-instruction versions of these in Zbb, so disable these
1658// Pseudos if that extension is present.
1659let hasSideEffects = 0, mayLoad = 0,
1660    mayStore = 0, isCodeGenOnly = 0, isAsmParserOnly = 1 in {
1661def PseudoSEXT_B : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "sext.b", "$rd, $rs">;
1662def PseudoSEXT_H : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "sext.h", "$rd, $rs">;
1663// rv64's sext.w is defined above, using InstAlias<"sext.w ...
1664// zext.b is defined above, using InstAlias<"zext.b ...
1665def PseudoZEXT_H : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "zext.h", "$rd, $rs">;
1666} // hasSideEffects = 0, ...
1667
1668let Predicates = [IsRV64], hasSideEffects = 0, mayLoad = 0, mayStore = 0,
1669  isCodeGenOnly = 0, isAsmParserOnly = 1 in {
1670def PseudoZEXT_W : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "zext.w", "$rd, $rs">;
1671} // Predicates = [IsRV64], ...
1672
1673/// Loads
1674
1675class LdPat<PatFrag LoadOp, RVInst Inst, ValueType vt = XLenVT>
1676    : Pat<(vt (LoadOp (AddrRegImm (XLenVT GPR:$rs1), simm12:$imm12))),
1677          (Inst GPR:$rs1, simm12:$imm12)>;
1678
1679def : LdPat<sextloadi8, LB>;
1680def : LdPat<extloadi8, LBU>; // Prefer unsigned due to no c.lb in Zcb.
1681def : LdPat<sextloadi16, LH>;
1682def : LdPat<extloadi16, LH>;
1683def : LdPat<load, LW, i32>, Requires<[IsRV32]>;
1684def : LdPat<zextloadi8, LBU>;
1685def : LdPat<zextloadi16, LHU>;
1686
1687/// Stores
1688
1689class StPat<PatFrag StoreOp, RVInst Inst, RegisterClass StTy,
1690            ValueType vt>
1691    : Pat<(StoreOp (vt StTy:$rs2), (AddrRegImm (XLenVT GPR:$rs1),
1692                   simm12:$imm12)),
1693          (Inst StTy:$rs2, GPR:$rs1, simm12:$imm12)>;
1694
1695def : StPat<truncstorei8, SB, GPR, XLenVT>;
1696def : StPat<truncstorei16, SH, GPR, XLenVT>;
1697def : StPat<store, SW, GPR, i32>, Requires<[IsRV32]>;
1698
1699/// Fences
1700
1701// Refer to Table A.6 in the version 2.3 draft of the RISC-V Instruction Set
1702// Manual: Volume I.
1703
1704// fence acquire -> fence r, rw
1705def : Pat<(atomic_fence (XLenVT 4), (timm)), (FENCE 0b10, 0b11)>;
1706// fence release -> fence rw, w
1707def : Pat<(atomic_fence (XLenVT 5), (timm)), (FENCE 0b11, 0b1)>;
1708// fence acq_rel -> fence.tso
1709def : Pat<(atomic_fence (XLenVT 6), (timm)), (FENCE_TSO)>;
1710// fence seq_cst -> fence rw, rw
1711def : Pat<(atomic_fence (XLenVT 7), (timm)), (FENCE 0b11, 0b11)>;
1712
1713// Lowering for atomic load and store is defined in RISCVInstrInfoA.td.
1714// Although these are lowered to fence+load/store instructions defined in the
1715// base RV32I/RV64I ISA, this lowering is only used when the A extension is
1716// present. This is necessary as it isn't valid to mix __atomic_* libcalls
1717// with inline atomic operations for the same object.
1718
1719/// Access to system registers
1720
1721// Helpers for defining specific operations. They are defined for each system
1722// register separately. Side effect is not used because dependencies are
1723// expressed via use-def properties.
1724
1725class ReadSysReg<SysReg SR, list<Register> Regs>
1726  : Pseudo<(outs GPR:$rd), (ins),
1727           [(set GPR:$rd, (XLenVT (riscv_read_csr (XLenVT SR.Encoding))))]>,
1728    PseudoInstExpansion<(CSRRS GPR:$rd, SR.Encoding, X0)> {
1729  let hasSideEffects = 0;
1730  let Uses = Regs;
1731}
1732
1733class WriteSysReg<SysReg SR, list<Register> Regs>
1734  : Pseudo<(outs), (ins GPR:$val),
1735           [(riscv_write_csr (XLenVT SR.Encoding), (XLenVT GPR:$val))]>,
1736    PseudoInstExpansion<(CSRRW X0, SR.Encoding, GPR:$val)> {
1737  let hasSideEffects = 0;
1738  let Defs = Regs;
1739}
1740
1741class WriteSysRegImm<SysReg SR, list<Register> Regs>
1742  : Pseudo<(outs), (ins uimm5:$val),
1743           [(riscv_write_csr (XLenVT SR.Encoding), uimm5:$val)]>,
1744    PseudoInstExpansion<(CSRRWI X0, SR.Encoding, uimm5:$val)> {
1745  let hasSideEffects = 0;
1746  let Defs = Regs;
1747}
1748
1749class SwapSysReg<SysReg SR, list<Register> Regs>
1750  : Pseudo<(outs GPR:$rd), (ins GPR:$val),
1751           [(set GPR:$rd, (riscv_swap_csr (XLenVT SR.Encoding), (XLenVT GPR:$val)))]>,
1752    PseudoInstExpansion<(CSRRW GPR:$rd, SR.Encoding, GPR:$val)> {
1753  let hasSideEffects = 0;
1754  let Uses = Regs;
1755  let Defs = Regs;
1756}
1757
1758class SwapSysRegImm<SysReg SR, list<Register> Regs>
1759  : Pseudo<(outs GPR:$rd), (ins uimm5:$val),
1760           [(set GPR:$rd, (XLenVT (riscv_swap_csr (XLenVT SR.Encoding), uimm5:$val)))]>,
1761    PseudoInstExpansion<(CSRRWI GPR:$rd, SR.Encoding, uimm5:$val)> {
1762  let hasSideEffects = 0;
1763  let Uses = Regs;
1764  let Defs = Regs;
1765}
1766
1767def ReadFRM : ReadSysReg<SysRegFRM, [FRM]>;
1768def WriteFRM : WriteSysReg<SysRegFRM, [FRM]>;
1769def WriteFRMImm : WriteSysRegImm<SysRegFRM, [FRM]>;
1770def SwapFRMImm : SwapSysRegImm<SysRegFRM, [FRM]>;
1771
1772def WriteVXRMImm : WriteSysRegImm<SysRegVXRM, [VXRM]>;
1773
1774let hasSideEffects = true in {
1775def ReadFFLAGS : ReadSysReg<SysRegFFLAGS, [FFLAGS]>;
1776def WriteFFLAGS : WriteSysReg<SysRegFFLAGS, [FFLAGS]>;
1777}
1778/// Other pseudo-instructions
1779
1780// Pessimistically assume the stack pointer will be clobbered
1781let Defs = [X2], Uses = [X2] in {
1782def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
1783                              [(callseq_start timm:$amt1, timm:$amt2)]>;
1784def ADJCALLSTACKUP   : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
1785                              [(callseq_end timm:$amt1, timm:$amt2)]>;
1786} // Defs = [X2], Uses = [X2]
1787
1788/// RV64 patterns
1789
1790let Predicates = [IsRV64, NotHasStdExtZba] in {
1791def : Pat<(i64 (and GPR:$rs1, 0xffffffff)), (SRLI (SLLI GPR:$rs1, 32), 32)>;
1792
1793// If we're shifting a 32-bit zero extended value left by 0-31 bits, use 2
1794// shifts instead of 3. This can occur when unsigned is used to index an array.
1795def : Pat<(i64 (shl (and GPR:$rs1, 0xffffffff), uimm5:$shamt)),
1796          (SRLI (SLLI GPR:$rs1, 32), (ImmSubFrom32 uimm5:$shamt))>;
1797}
1798
1799// PatFrag to allow ADDW/SUBW/MULW/SLLW to be selected from i64 add/sub/mul/shl
1800// if only the lower 32 bits of their result is used.
1801class binop_allwusers<SDPatternOperator operator>
1802    : PatFrag<(ops node:$lhs, node:$rhs),
1803              (i64 (operator node:$lhs, node:$rhs)), [{
1804  return hasAllWUsers(Node);
1805}]>;
1806
1807def sexti32_allwusers : PatFrag<(ops node:$src),
1808                                (sext_inreg node:$src, i32), [{
1809  return hasAllWUsers(Node);
1810}]>;
1811
1812def ImmSExt32 : SDNodeXForm<imm, [{
1813  return CurDAG->getTargetConstant(SignExtend64<32>(N->getSExtValue()),
1814                                   SDLoc(N), N->getValueType(0));
1815}]>;
1816// Look for constants where the upper 32 bits are 0, but sign extending bit 31
1817// would be an simm12.
1818def u32simm12 : ImmLeaf<XLenVT, [{
1819  return isUInt<32>(Imm) && isInt<12>(SignExtend64<32>(Imm));
1820}], ImmSExt32>;
1821
1822let Predicates = [IsRV64] in {
1823
1824def : Pat<(i64 (and GPR:$rs, LeadingOnesWMask:$mask)),
1825          (SLLI (SRLIW $rs, LeadingOnesWMask:$mask), LeadingOnesWMask:$mask)>;
1826
1827/// sext and zext
1828
1829// Sign extend is not needed if all users are W instructions.
1830def : Pat<(sexti32_allwusers GPR:$rs1), (XLenVT GPR:$rs1)>;
1831
1832def : Pat<(sext_inreg GPR:$rs1, i32), (ADDIW GPR:$rs1, 0)>;
1833
1834/// ALU operations
1835
1836def : Pat<(i64 (srl (and GPR:$rs1, 0xffffffff), uimm5:$shamt)),
1837          (SRLIW GPR:$rs1, uimm5:$shamt)>;
1838def : Pat<(i64 (srl (shl GPR:$rs1, (i64 32)), uimm6gt32:$shamt)),
1839          (SRLIW GPR:$rs1, (ImmSub32 uimm6gt32:$shamt))>;
1840def : Pat<(sra (sext_inreg GPR:$rs1, i32), uimm5:$shamt),
1841          (SRAIW GPR:$rs1, uimm5:$shamt)>;
1842def : Pat<(i64 (sra (shl GPR:$rs1, (i64 32)), uimm6gt32:$shamt)),
1843          (SRAIW GPR:$rs1, (ImmSub32 uimm6gt32:$shamt))>;
1844
1845def : PatGprGpr<shiftopw<riscv_sllw>, SLLW>;
1846def : PatGprGpr<shiftopw<riscv_srlw>, SRLW>;
1847def : PatGprGpr<shiftopw<riscv_sraw>, SRAW>;
1848
1849// Select W instructions if only the lower 32 bits of the result are used.
1850def : PatGprGpr<binop_allwusers<add>, ADDW>;
1851def : PatGprSimm12<binop_allwusers<add>, ADDIW>;
1852def : PatGprGpr<binop_allwusers<sub>, SUBW>;
1853def : PatGprImm<binop_allwusers<shl>, SLLIW, uimm5>;
1854
1855// If this is a shr of a value sign extended from i32, and all the users only
1856// use the lower 32 bits, we can use an sraiw to remove the sext_inreg. This
1857// occurs because SimplifyDemandedBits prefers srl over sra.
1858def : Pat<(binop_allwusers<srl> (sext_inreg GPR:$rs1, i32), uimm5:$shamt),
1859          (SRAIW GPR:$rs1, uimm5:$shamt)>;
1860
1861// Use binop_allwusers to recover immediates that may have been broken by
1862// SimplifyDemandedBits.
1863def : Pat<(binop_allwusers<and> GPR:$rs1, u32simm12:$imm),
1864          (ANDI GPR:$rs1, u32simm12:$imm)>;
1865
1866def : Pat<(binop_allwusers<or> GPR:$rs1, u32simm12:$imm),
1867          (ORI GPR:$rs1, u32simm12:$imm)>;
1868
1869def : Pat<(binop_allwusers<xor> GPR:$rs1, u32simm12:$imm),
1870          (XORI GPR:$rs1, u32simm12:$imm)>;
1871/// Loads
1872
1873def : LdPat<sextloadi32, LW, i64>;
1874def : LdPat<extloadi32, LW, i64>;
1875def : LdPat<zextloadi32, LWU, i64>;
1876def : LdPat<load, LD, i64>;
1877
1878/// Stores
1879
1880def : StPat<truncstorei32, SW, GPR, i64>;
1881def : StPat<store, SD, GPR, i64>;
1882} // Predicates = [IsRV64]
1883
1884/// readcyclecounter
1885// On RV64, we can directly read the 64-bit "cycle" CSR.
1886let Predicates = [IsRV64] in
1887def : Pat<(i64 (readcyclecounter)), (CSRRS CYCLE.Encoding, (XLenVT X0))>;
1888// On RV32, ReadCycleWide will be expanded to the suggested loop reading both
1889// halves of the 64-bit "cycle" CSR.
1890let Predicates = [IsRV32], usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
1891def ReadCycleWide : Pseudo<(outs GPR:$lo, GPR:$hi), (ins),
1892                           [(set GPR:$lo, GPR:$hi, (riscv_read_cycle_wide))],
1893                           "", "">;
1894
1895/// traps
1896
1897// We lower `trap` to `unimp`, as this causes a hard exception on nearly all
1898// systems.
1899def : Pat<(trap), (UNIMP)>;
1900
1901// We lower `debugtrap` to `ebreak`, as this will get the attention of the
1902// debugger if possible.
1903def : Pat<(debugtrap), (EBREAK)>;
1904
1905let Predicates = [IsRV64], Uses = [X5],
1906    Defs = [X1, X6, X7, X28, X29, X30, X31] in
1907def HWASAN_CHECK_MEMACCESS_SHORTGRANULES
1908  : Pseudo<(outs), (ins GPRJALR:$ptr, i32imm:$accessinfo),
1909           [(int_hwasan_check_memaccess_shortgranules X5, GPRJALR:$ptr,
1910                                                      (i32 timm:$accessinfo))]>;
1911
1912// This gets lowered into a 20-byte instruction sequence (at most)
1913let hasSideEffects = 0, mayLoad = 1, mayStore = 0,
1914    Defs = [ X6, X7, X28, X29, X30, X31 ], Size = 20 in {
1915def KCFI_CHECK
1916  : Pseudo<(outs), (ins GPRJALR:$ptr, i32imm:$type), []>, Sched<[]>;
1917}
1918
1919/// Simple optimization
1920def : Pat<(XLenVT (add GPR:$rs1, (AddiPair:$rs2))),
1921          (ADDI (ADDI GPR:$rs1, (AddiPairImmLarge AddiPair:$rs2)),
1922                (AddiPairImmSmall GPR:$rs2))>;
1923
1924let Predicates = [IsRV64] in {
1925// Select W instructions if only the lower 32-bits of the result are used.
1926def : Pat<(binop_allwusers<add> GPR:$rs1, (AddiPair:$rs2)),
1927          (ADDIW (ADDIW GPR:$rs1, (AddiPairImmLarge AddiPair:$rs2)),
1928                 (AddiPairImmSmall AddiPair:$rs2))>;
1929}
1930
1931//===----------------------------------------------------------------------===//
1932// Standard extensions
1933//===----------------------------------------------------------------------===//
1934
1935// Multiply and Division
1936include "RISCVInstrInfoM.td"
1937
1938// Atomic
1939include "RISCVInstrInfoA.td"
1940
1941// Scalar FP
1942include "RISCVInstrInfoF.td"
1943include "RISCVInstrInfoD.td"
1944include "RISCVInstrInfoZfh.td"
1945include "RISCVInstrInfoZfbfmin.td"
1946include "RISCVInstrInfoZfa.td"
1947
1948// Scalar bitmanip and cryptography
1949include "RISCVInstrInfoZb.td"
1950include "RISCVInstrInfoZk.td"
1951
1952// Vector
1953include "RISCVInstrInfoV.td"
1954include "RISCVInstrInfoZvfbf.td"
1955include "RISCVInstrInfoZvk.td"
1956
1957// Integer
1958include "RISCVInstrInfoZicbo.td"
1959include "RISCVInstrInfoZicond.td"
1960
1961// Compressed
1962include "RISCVInstrInfoC.td"
1963include "RISCVInstrInfoZc.td"
1964
1965//===----------------------------------------------------------------------===//
1966// Vendor extensions
1967//===----------------------------------------------------------------------===//
1968
1969include "RISCVInstrInfoXVentana.td"
1970include "RISCVInstrInfoXTHead.td"
1971include "RISCVInstrInfoXSf.td"
1972include "RISCVInstrInfoXCV.td"
1973