1//===-- RISCVInstrInfo.td - Target Description for RISCV ---*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file describes the RISC-V instructions in TableGen format. 10// 11//===----------------------------------------------------------------------===// 12 13//===----------------------------------------------------------------------===// 14// RISC-V specific DAG Nodes. 15//===----------------------------------------------------------------------===// 16 17// Target-independent type requirements, but with target-specific formats. 18def SDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>, 19 SDTCisVT<1, i32>]>; 20def SDT_CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, 21 SDTCisVT<1, i32>]>; 22 23// Target-dependent type requirements. 24def SDT_RISCVCall : SDTypeProfile<0, -1, [SDTCisVT<0, XLenVT>]>; 25def SDT_RISCVSelectCC : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>, 26 SDTCisSameAs<0, 4>, 27 SDTCisSameAs<4, 5>]>; 28 29// Target-independent nodes, but with target-specific formats. 30def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_CallSeqStart, 31 [SDNPHasChain, SDNPOutGlue]>; 32def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_CallSeqEnd, 33 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; 34 35// Target-dependent nodes. 36def riscv_call : SDNode<"RISCVISD::CALL", SDT_RISCVCall, 37 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 38 SDNPVariadic]>; 39def riscv_ret_flag : SDNode<"RISCVISD::RET_FLAG", SDTNone, 40 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 41def riscv_uret_flag : SDNode<"RISCVISD::URET_FLAG", SDTNone, 42 [SDNPHasChain, SDNPOptInGlue]>; 43def riscv_sret_flag : SDNode<"RISCVISD::SRET_FLAG", SDTNone, 44 [SDNPHasChain, SDNPOptInGlue]>; 45def riscv_mret_flag : SDNode<"RISCVISD::MRET_FLAG", SDTNone, 46 [SDNPHasChain, SDNPOptInGlue]>; 47def riscv_selectcc : SDNode<"RISCVISD::SELECT_CC", SDT_RISCVSelectCC, 48 [SDNPInGlue]>; 49def riscv_tail : SDNode<"RISCVISD::TAIL", SDT_RISCVCall, 50 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 51 SDNPVariadic]>; 52def riscv_sllw : SDNode<"RISCVISD::SLLW", SDTIntShiftOp>; 53def riscv_sraw : SDNode<"RISCVISD::SRAW", SDTIntShiftOp>; 54def riscv_srlw : SDNode<"RISCVISD::SRLW", SDTIntShiftOp>; 55 56//===----------------------------------------------------------------------===// 57// Operand and SDNode transformation definitions. 58//===----------------------------------------------------------------------===// 59 60class ImmXLenAsmOperand<string prefix, string suffix = ""> : AsmOperandClass { 61 let Name = prefix # "ImmXLen" # suffix; 62 let RenderMethod = "addImmOperands"; 63 let DiagnosticType = !strconcat("Invalid", Name); 64} 65 66class ImmAsmOperand<string prefix, int width, string suffix> : AsmOperandClass { 67 let Name = prefix # "Imm" # width # suffix; 68 let RenderMethod = "addImmOperands"; 69 let DiagnosticType = !strconcat("Invalid", Name); 70} 71 72def ImmZeroAsmOperand : AsmOperandClass { 73 let Name = "ImmZero"; 74 let RenderMethod = "addImmOperands"; 75 let DiagnosticType = !strconcat("Invalid", Name); 76} 77 78class SImmAsmOperand<int width, string suffix = ""> 79 : ImmAsmOperand<"S", width, suffix> { 80} 81 82class UImmAsmOperand<int width, string suffix = ""> 83 : ImmAsmOperand<"U", width, suffix> { 84} 85 86def FenceArg : AsmOperandClass { 87 let Name = "FenceArg"; 88 let RenderMethod = "addFenceArgOperands"; 89 let DiagnosticType = "InvalidFenceArg"; 90} 91 92def fencearg : Operand<XLenVT> { 93 let ParserMatchClass = FenceArg; 94 let PrintMethod = "printFenceArg"; 95 let DecoderMethod = "decodeUImmOperand<4>"; 96 let OperandType = "OPERAND_UIMM4"; 97 let OperandNamespace = "RISCVOp"; 98} 99 100def UImmLog2XLenAsmOperand : AsmOperandClass { 101 let Name = "UImmLog2XLen"; 102 let RenderMethod = "addImmOperands"; 103 let DiagnosticType = "InvalidUImmLog2XLen"; 104} 105 106def uimmlog2xlen : Operand<XLenVT>, ImmLeaf<XLenVT, [{ 107 if (Subtarget->is64Bit()) 108 return isUInt<6>(Imm); 109 return isUInt<5>(Imm); 110}]> { 111 let ParserMatchClass = UImmLog2XLenAsmOperand; 112 // TODO: should ensure invalid shamt is rejected when decoding. 113 let DecoderMethod = "decodeUImmOperand<6>"; 114 let MCOperandPredicate = [{ 115 int64_t Imm; 116 if (!MCOp.evaluateAsConstantImm(Imm)) 117 return false; 118 if (STI.getTargetTriple().isArch64Bit()) 119 return isUInt<6>(Imm); 120 return isUInt<5>(Imm); 121 }]; 122 let OperandType = "OPERAND_UIMMLOG2XLEN"; 123 let OperandNamespace = "RISCVOp"; 124} 125 126def uimm5 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isUInt<5>(Imm);}]> { 127 let ParserMatchClass = UImmAsmOperand<5>; 128 let DecoderMethod = "decodeUImmOperand<5>"; 129 let OperandType = "OPERAND_UIMM5"; 130 let OperandNamespace = "RISCVOp"; 131} 132 133def simm12 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isInt<12>(Imm);}]> { 134 let ParserMatchClass = SImmAsmOperand<12>; 135 let EncoderMethod = "getImmOpValue"; 136 let DecoderMethod = "decodeSImmOperand<12>"; 137 let MCOperandPredicate = [{ 138 int64_t Imm; 139 if (MCOp.evaluateAsConstantImm(Imm)) 140 return isInt<12>(Imm); 141 return MCOp.isBareSymbolRef(); 142 }]; 143 let OperandType = "OPERAND_SIMM12"; 144 let OperandNamespace = "RISCVOp"; 145} 146 147// A 13-bit signed immediate where the least significant bit is zero. 148def simm13_lsb0 : Operand<OtherVT> { 149 let ParserMatchClass = SImmAsmOperand<13, "Lsb0">; 150 let EncoderMethod = "getImmOpValueAsr1"; 151 let DecoderMethod = "decodeSImmOperandAndLsl1<13>"; 152 let MCOperandPredicate = [{ 153 int64_t Imm; 154 if (MCOp.evaluateAsConstantImm(Imm)) 155 return isShiftedInt<12, 1>(Imm); 156 return MCOp.isBareSymbolRef(); 157 }]; 158 let OperandType = "OPERAND_SIMM13_LSB0"; 159 let OperandNamespace = "RISCVOp"; 160} 161 162class UImm20Operand : Operand<XLenVT> { 163 let EncoderMethod = "getImmOpValue"; 164 let DecoderMethod = "decodeUImmOperand<20>"; 165 let MCOperandPredicate = [{ 166 int64_t Imm; 167 if (MCOp.evaluateAsConstantImm(Imm)) 168 return isUInt<20>(Imm); 169 return MCOp.isBareSymbolRef(); 170 }]; 171 let OperandType = "OPERAND_UIMM20"; 172 let OperandNamespace = "RISCVOp"; 173} 174 175def uimm20_lui : UImm20Operand { 176 let ParserMatchClass = UImmAsmOperand<20, "LUI">; 177} 178def uimm20_auipc : UImm20Operand { 179 let ParserMatchClass = UImmAsmOperand<20, "AUIPC">; 180} 181 182def Simm21Lsb0JALAsmOperand : SImmAsmOperand<21, "Lsb0JAL"> { 183 let ParserMethod = "parseJALOffset"; 184} 185 186// A 21-bit signed immediate where the least significant bit is zero. 187def simm21_lsb0_jal : Operand<OtherVT> { 188 let ParserMatchClass = Simm21Lsb0JALAsmOperand; 189 let EncoderMethod = "getImmOpValueAsr1"; 190 let DecoderMethod = "decodeSImmOperandAndLsl1<21>"; 191 let MCOperandPredicate = [{ 192 int64_t Imm; 193 if (MCOp.evaluateAsConstantImm(Imm)) 194 return isShiftedInt<20, 1>(Imm); 195 return MCOp.isBareSymbolRef(); 196 }]; 197 let OperandType = "OPERAND_SIMM21_LSB0"; 198 let OperandNamespace = "RISCVOp"; 199} 200 201def BareSymbol : AsmOperandClass { 202 let Name = "BareSymbol"; 203 let RenderMethod = "addImmOperands"; 204 let DiagnosticType = "InvalidBareSymbol"; 205 let ParserMethod = "parseBareSymbol"; 206} 207 208// A bare symbol. 209def bare_symbol : Operand<XLenVT> { 210 let ParserMatchClass = BareSymbol; 211} 212 213def CallSymbol : AsmOperandClass { 214 let Name = "CallSymbol"; 215 let RenderMethod = "addImmOperands"; 216 let DiagnosticType = "InvalidCallSymbol"; 217 let ParserMethod = "parseCallSymbol"; 218} 219 220// A bare symbol used in call/tail only. 221def call_symbol : Operand<XLenVT> { 222 let ParserMatchClass = CallSymbol; 223} 224 225def TPRelAddSymbol : AsmOperandClass { 226 let Name = "TPRelAddSymbol"; 227 let RenderMethod = "addImmOperands"; 228 let DiagnosticType = "InvalidTPRelAddSymbol"; 229 let ParserMethod = "parseOperandWithModifier"; 230} 231 232// A bare symbol with the %tprel_add variant. 233def tprel_add_symbol : Operand<XLenVT> { 234 let ParserMatchClass = TPRelAddSymbol; 235} 236 237def CSRSystemRegister : AsmOperandClass { 238 let Name = "CSRSystemRegister"; 239 let ParserMethod = "parseCSRSystemRegister"; 240 let DiagnosticType = "InvalidCSRSystemRegister"; 241} 242 243def csr_sysreg : Operand<XLenVT> { 244 let ParserMatchClass = CSRSystemRegister; 245 let PrintMethod = "printCSRSystemRegister"; 246 let DecoderMethod = "decodeUImmOperand<12>"; 247 let OperandType = "OPERAND_UIMM12"; 248 let OperandNamespace = "RISCVOp"; 249} 250 251// A parameterized register class alternative to i32imm/i64imm from Target.td. 252def ixlenimm : Operand<XLenVT>; 253 254def ixlenimm_li : Operand<XLenVT> { 255 let ParserMatchClass = ImmXLenAsmOperand<"", "LI">; 256} 257 258// Standalone (codegen-only) immleaf patterns. 259def simm32 : ImmLeaf<XLenVT, [{return isInt<32>(Imm);}]>; 260def simm32hi20 : ImmLeaf<XLenVT, [{return isShiftedInt<20, 12>(Imm);}]>; 261// A mask value that won't affect significant shift bits. 262def immbottomxlenset : ImmLeaf<XLenVT, [{ 263 if (Subtarget->is64Bit()) 264 return countTrailingOnes<uint64_t>(Imm) >= 6; 265 return countTrailingOnes<uint64_t>(Imm) >= 5; 266}]>; 267 268// Addressing modes. 269// Necessary because a frameindex can't be matched directly in a pattern. 270def AddrFI : ComplexPattern<iPTR, 1, "SelectAddrFI", [frameindex], []>; 271 272// Extract least significant 12 bits from an immediate value and sign extend 273// them. 274def LO12Sext : SDNodeXForm<imm, [{ 275 return CurDAG->getTargetConstant(SignExtend64<12>(N->getZExtValue()), 276 SDLoc(N), N->getValueType(0)); 277}]>; 278 279// Extract the most significant 20 bits from an immediate value. Add 1 if bit 280// 11 is 1, to compensate for the low 12 bits in the matching immediate addi 281// or ld/st being negative. 282def HI20 : SDNodeXForm<imm, [{ 283 return CurDAG->getTargetConstant(((N->getZExtValue()+0x800) >> 12) & 0xfffff, 284 SDLoc(N), N->getValueType(0)); 285}]>; 286 287//===----------------------------------------------------------------------===// 288// Instruction Formats 289//===----------------------------------------------------------------------===// 290 291include "RISCVInstrFormats.td" 292 293//===----------------------------------------------------------------------===// 294// Instruction Class Templates 295//===----------------------------------------------------------------------===// 296 297let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in 298class BranchCC_rri<bits<3> funct3, string opcodestr> 299 : RVInstB<funct3, OPC_BRANCH, (outs), 300 (ins GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12), 301 opcodestr, "$rs1, $rs2, $imm12">, 302 Sched<[WriteJmp]> { 303 let isBranch = 1; 304 let isTerminator = 1; 305} 306 307let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in 308class Load_ri<bits<3> funct3, string opcodestr> 309 : RVInstI<funct3, OPC_LOAD, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12), 310 opcodestr, "$rd, ${imm12}(${rs1})">; 311 312// Operands for stores are in the order srcreg, base, offset rather than 313// reflecting the order these fields are specified in the instruction 314// encoding. 315let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in 316class Store_rri<bits<3> funct3, string opcodestr> 317 : RVInstS<funct3, OPC_STORE, (outs), 318 (ins GPR:$rs2, GPR:$rs1, simm12:$imm12), 319 opcodestr, "$rs2, ${imm12}(${rs1})">; 320 321let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in 322class ALU_ri<bits<3> funct3, string opcodestr> 323 : RVInstI<funct3, OPC_OP_IMM, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12), 324 opcodestr, "$rd, $rs1, $imm12">, 325 Sched<[WriteIALU, ReadIALU]>; 326 327let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in 328class Shift_ri<bit arithshift, bits<3> funct3, string opcodestr> 329 : RVInstIShift<arithshift, funct3, OPC_OP_IMM, (outs GPR:$rd), 330 (ins GPR:$rs1, uimmlog2xlen:$shamt), opcodestr, 331 "$rd, $rs1, $shamt">, 332 Sched<[WriteShift, ReadShift]>; 333 334let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in 335class ALU_rr<bits<7> funct7, bits<3> funct3, string opcodestr> 336 : RVInstR<funct7, funct3, OPC_OP, (outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2), 337 opcodestr, "$rd, $rs1, $rs2">; 338 339let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in 340class CSR_ir<bits<3> funct3, string opcodestr> 341 : RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd), (ins csr_sysreg:$imm12, GPR:$rs1), 342 opcodestr, "$rd, $imm12, $rs1">, Sched<[WriteCSR, ReadCSR]>; 343 344let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in 345class CSR_ii<bits<3> funct3, string opcodestr> 346 : RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd), 347 (ins csr_sysreg:$imm12, uimm5:$rs1), 348 opcodestr, "$rd, $imm12, $rs1">, Sched<[WriteCSR]>; 349 350let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in 351class ShiftW_ri<bit arithshift, bits<3> funct3, string opcodestr> 352 : RVInstIShiftW<arithshift, funct3, OPC_OP_IMM_32, (outs GPR:$rd), 353 (ins GPR:$rs1, uimm5:$shamt), opcodestr, 354 "$rd, $rs1, $shamt">, 355 Sched<[WriteShift32, ReadShift32]>; 356 357let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in 358class ALUW_rr<bits<7> funct7, bits<3> funct3, string opcodestr> 359 : RVInstR<funct7, funct3, OPC_OP_32, (outs GPR:$rd), 360 (ins GPR:$rs1, GPR:$rs2), opcodestr, "$rd, $rs1, $rs2">; 361 362let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in 363class Priv<string opcodestr, bits<7> funct7> 364 : RVInstR<funct7, 0b000, OPC_SYSTEM, (outs), (ins GPR:$rs1, GPR:$rs2), 365 opcodestr, "">; 366 367//===----------------------------------------------------------------------===// 368// Instructions 369//===----------------------------------------------------------------------===// 370 371let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in { 372let isReMaterializable = 1, isAsCheapAsAMove = 1 in 373def LUI : RVInstU<OPC_LUI, (outs GPR:$rd), (ins uimm20_lui:$imm20), 374 "lui", "$rd, $imm20">, Sched<[WriteIALU]>; 375 376def AUIPC : RVInstU<OPC_AUIPC, (outs GPR:$rd), (ins uimm20_auipc:$imm20), 377 "auipc", "$rd, $imm20">, Sched<[WriteIALU]>; 378 379let isCall = 1 in 380def JAL : RVInstJ<OPC_JAL, (outs GPR:$rd), (ins simm21_lsb0_jal:$imm20), 381 "jal", "$rd, $imm20">, Sched<[WriteJal]>; 382 383let isCall = 1 in 384def JALR : RVInstI<0b000, OPC_JALR, (outs GPR:$rd), 385 (ins GPR:$rs1, simm12:$imm12), 386 "jalr", "$rd, ${imm12}(${rs1})">, 387 Sched<[WriteJalr, ReadJalr]>; 388} // hasSideEffects = 0, mayLoad = 0, mayStore = 0 389 390def BEQ : BranchCC_rri<0b000, "beq">; 391def BNE : BranchCC_rri<0b001, "bne">; 392def BLT : BranchCC_rri<0b100, "blt">; 393def BGE : BranchCC_rri<0b101, "bge">; 394def BLTU : BranchCC_rri<0b110, "bltu">; 395def BGEU : BranchCC_rri<0b111, "bgeu">; 396 397def LB : Load_ri<0b000, "lb">, Sched<[WriteLDB, ReadMemBase]>; 398def LH : Load_ri<0b001, "lh">, Sched<[WriteLDH, ReadMemBase]>; 399def LW : Load_ri<0b010, "lw">, Sched<[WriteLDW, ReadMemBase]>; 400def LBU : Load_ri<0b100, "lbu">, Sched<[WriteLDB, ReadMemBase]>; 401def LHU : Load_ri<0b101, "lhu">, Sched<[WriteLDH, ReadMemBase]>; 402 403def SB : Store_rri<0b000, "sb">, Sched<[WriteSTB, ReadStoreData, ReadMemBase]>; 404def SH : Store_rri<0b001, "sh">, Sched<[WriteSTH, ReadStoreData, ReadMemBase]>; 405def SW : Store_rri<0b010, "sw">, Sched<[WriteSTW, ReadStoreData, ReadMemBase]>; 406 407// ADDI isn't always rematerializable, but isReMaterializable will be used as 408// a hint which is verified in isReallyTriviallyReMaterializable. 409let isReMaterializable = 1, isAsCheapAsAMove = 1 in 410def ADDI : ALU_ri<0b000, "addi">; 411 412def SLTI : ALU_ri<0b010, "slti">; 413def SLTIU : ALU_ri<0b011, "sltiu">; 414 415let isReMaterializable = 1, isAsCheapAsAMove = 1 in { 416def XORI : ALU_ri<0b100, "xori">; 417def ORI : ALU_ri<0b110, "ori">; 418} 419 420def ANDI : ALU_ri<0b111, "andi">; 421 422def SLLI : Shift_ri<0, 0b001, "slli">; 423def SRLI : Shift_ri<0, 0b101, "srli">; 424def SRAI : Shift_ri<1, 0b101, "srai">; 425 426def ADD : ALU_rr<0b0000000, 0b000, "add">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; 427def SUB : ALU_rr<0b0100000, 0b000, "sub">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; 428def SLL : ALU_rr<0b0000000, 0b001, "sll">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; 429def SLT : ALU_rr<0b0000000, 0b010, "slt">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; 430def SLTU : ALU_rr<0b0000000, 0b011, "sltu">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; 431def XOR : ALU_rr<0b0000000, 0b100, "xor">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; 432def SRL : ALU_rr<0b0000000, 0b101, "srl">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; 433def SRA : ALU_rr<0b0100000, 0b101, "sra">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; 434def OR : ALU_rr<0b0000000, 0b110, "or">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; 435def AND : ALU_rr<0b0000000, 0b111, "and">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; 436 437let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in { 438def FENCE : RVInstI<0b000, OPC_MISC_MEM, (outs), 439 (ins fencearg:$pred, fencearg:$succ), 440 "fence", "$pred, $succ">, Sched<[]> { 441 bits<4> pred; 442 bits<4> succ; 443 444 let rs1 = 0; 445 let rd = 0; 446 let imm12 = {0b0000,pred,succ}; 447} 448 449def FENCE_TSO : RVInstI<0b000, OPC_MISC_MEM, (outs), (ins), "fence.tso", "">, Sched<[]> { 450 let rs1 = 0; 451 let rd = 0; 452 let imm12 = {0b1000,0b0011,0b0011}; 453} 454 455def FENCE_I : RVInstI<0b001, OPC_MISC_MEM, (outs), (ins), "fence.i", "">, Sched<[]> { 456 let rs1 = 0; 457 let rd = 0; 458 let imm12 = 0; 459} 460 461def ECALL : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ecall", "">, Sched<[WriteJmp]> { 462 let rs1 = 0; 463 let rd = 0; 464 let imm12 = 0; 465} 466 467def EBREAK : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ebreak", "">, 468 Sched<[]> { 469 let rs1 = 0; 470 let rd = 0; 471 let imm12 = 1; 472} 473 474// This is a de facto standard (as set by GNU binutils) 32-bit unimplemented 475// instruction (i.e., it should always trap, if your implementation has invalid 476// instruction traps). 477def UNIMP : RVInstI<0b001, OPC_SYSTEM, (outs), (ins), "unimp", "">, 478 Sched<[]> { 479 let rs1 = 0; 480 let rd = 0; 481 let imm12 = 0b110000000000; 482} 483} // hasSideEffects = 1, mayLoad = 0, mayStore = 0 484 485def CSRRW : CSR_ir<0b001, "csrrw">; 486def CSRRS : CSR_ir<0b010, "csrrs">; 487def CSRRC : CSR_ir<0b011, "csrrc">; 488 489def CSRRWI : CSR_ii<0b101, "csrrwi">; 490def CSRRSI : CSR_ii<0b110, "csrrsi">; 491def CSRRCI : CSR_ii<0b111, "csrrci">; 492 493/// RV64I instructions 494 495let Predicates = [IsRV64] in { 496def LWU : Load_ri<0b110, "lwu">, Sched<[WriteLDWU, ReadMemBase]>; 497def LD : Load_ri<0b011, "ld">, Sched<[WriteLDD, ReadMemBase]>; 498def SD : Store_rri<0b011, "sd">, Sched<[WriteSTD, ReadStoreData, ReadMemBase]>; 499 500let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in 501def ADDIW : RVInstI<0b000, OPC_OP_IMM_32, (outs GPR:$rd), 502 (ins GPR:$rs1, simm12:$imm12), 503 "addiw", "$rd, $rs1, $imm12">, 504 Sched<[WriteIALU32, ReadIALU32]>; 505 506def SLLIW : ShiftW_ri<0, 0b001, "slliw">; 507def SRLIW : ShiftW_ri<0, 0b101, "srliw">; 508def SRAIW : ShiftW_ri<1, 0b101, "sraiw">; 509 510def ADDW : ALUW_rr<0b0000000, 0b000, "addw">, 511 Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>; 512def SUBW : ALUW_rr<0b0100000, 0b000, "subw">, 513 Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>; 514def SLLW : ALUW_rr<0b0000000, 0b001, "sllw">, 515 Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>; 516def SRLW : ALUW_rr<0b0000000, 0b101, "srlw">, 517 Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>; 518def SRAW : ALUW_rr<0b0100000, 0b101, "sraw">, 519 Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>; 520} // Predicates = [IsRV64] 521 522//===----------------------------------------------------------------------===// 523// Privileged instructions 524//===----------------------------------------------------------------------===// 525 526let isBarrier = 1, isReturn = 1, isTerminator = 1 in { 527def URET : Priv<"uret", 0b0000000>, Sched<[]> { 528 let rd = 0; 529 let rs1 = 0; 530 let rs2 = 0b00010; 531} 532 533def SRET : Priv<"sret", 0b0001000>, Sched<[]> { 534 let rd = 0; 535 let rs1 = 0; 536 let rs2 = 0b00010; 537} 538 539def MRET : Priv<"mret", 0b0011000>, Sched<[]> { 540 let rd = 0; 541 let rs1 = 0; 542 let rs2 = 0b00010; 543} 544} // isBarrier = 1, isReturn = 1, isTerminator = 1 545 546def WFI : Priv<"wfi", 0b0001000>, Sched<[]> { 547 let rd = 0; 548 let rs1 = 0; 549 let rs2 = 0b00101; 550} 551 552let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in 553def SFENCE_VMA : RVInstR<0b0001001, 0b000, OPC_SYSTEM, (outs), 554 (ins GPR:$rs1, GPR:$rs2), 555 "sfence.vma", "$rs1, $rs2">, Sched<[]> { 556 let rd = 0; 557} 558 559//===----------------------------------------------------------------------===// 560// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20) 561//===----------------------------------------------------------------------===// 562 563def : InstAlias<"nop", (ADDI X0, X0, 0)>; 564 565// Note that the size is 32 because up to 8 32-bit instructions are needed to 566// generate an arbitrary 64-bit immediate. However, the size does not really 567// matter since PseudoLI is currently only used in the AsmParser where it gets 568// expanded to real instructions immediately. 569let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 32, 570 isCodeGenOnly = 0, isAsmParserOnly = 1 in 571def PseudoLI : Pseudo<(outs GPR:$rd), (ins ixlenimm_li:$imm), [], 572 "li", "$rd, $imm">; 573 574def PseudoLB : PseudoLoad<"lb">; 575def PseudoLBU : PseudoLoad<"lbu">; 576def PseudoLH : PseudoLoad<"lh">; 577def PseudoLHU : PseudoLoad<"lhu">; 578def PseudoLW : PseudoLoad<"lw">; 579 580def PseudoSB : PseudoStore<"sb">; 581def PseudoSH : PseudoStore<"sh">; 582def PseudoSW : PseudoStore<"sw">; 583 584let Predicates = [IsRV64] in { 585def PseudoLWU : PseudoLoad<"lwu">; 586def PseudoLD : PseudoLoad<"ld">; 587def PseudoSD : PseudoStore<"sd">; 588} // Predicates = [IsRV64] 589 590def : InstAlias<"mv $rd, $rs", (ADDI GPR:$rd, GPR:$rs, 0)>; 591def : InstAlias<"not $rd, $rs", (XORI GPR:$rd, GPR:$rs, -1)>; 592def : InstAlias<"neg $rd, $rs", (SUB GPR:$rd, X0, GPR:$rs)>; 593 594let Predicates = [IsRV64] in { 595def : InstAlias<"negw $rd, $rs", (SUBW GPR:$rd, X0, GPR:$rs)>; 596def : InstAlias<"sext.w $rd, $rs", (ADDIW GPR:$rd, GPR:$rs, 0)>; 597} // Predicates = [IsRV64] 598 599def : InstAlias<"seqz $rd, $rs", (SLTIU GPR:$rd, GPR:$rs, 1)>; 600def : InstAlias<"snez $rd, $rs", (SLTU GPR:$rd, X0, GPR:$rs)>; 601def : InstAlias<"sltz $rd, $rs", (SLT GPR:$rd, GPR:$rs, X0)>; 602def : InstAlias<"sgtz $rd, $rs", (SLT GPR:$rd, X0, GPR:$rs)>; 603 604// sgt/sgtu are recognised by the GNU assembler but the canonical slt/sltu 605// form will always be printed. Therefore, set a zero weight. 606def : InstAlias<"sgt $rd, $rs, $rt", (SLT GPR:$rd, GPR:$rt, GPR:$rs), 0>; 607def : InstAlias<"sgtu $rd, $rs, $rt", (SLTU GPR:$rd, GPR:$rt, GPR:$rs), 0>; 608 609def : InstAlias<"beqz $rs, $offset", 610 (BEQ GPR:$rs, X0, simm13_lsb0:$offset)>; 611def : InstAlias<"bnez $rs, $offset", 612 (BNE GPR:$rs, X0, simm13_lsb0:$offset)>; 613def : InstAlias<"blez $rs, $offset", 614 (BGE X0, GPR:$rs, simm13_lsb0:$offset)>; 615def : InstAlias<"bgez $rs, $offset", 616 (BGE GPR:$rs, X0, simm13_lsb0:$offset)>; 617def : InstAlias<"bltz $rs, $offset", 618 (BLT GPR:$rs, X0, simm13_lsb0:$offset)>; 619def : InstAlias<"bgtz $rs, $offset", 620 (BLT X0, GPR:$rs, simm13_lsb0:$offset)>; 621 622// Always output the canonical mnemonic for the pseudo branch instructions. 623// The GNU tools emit the canonical mnemonic for the branch pseudo instructions 624// as well (e.g. "bgt" will be recognised by the assembler but never printed by 625// objdump). Match this behaviour by setting a zero weight. 626def : InstAlias<"bgt $rs, $rt, $offset", 627 (BLT GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>; 628def : InstAlias<"ble $rs, $rt, $offset", 629 (BGE GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>; 630def : InstAlias<"bgtu $rs, $rt, $offset", 631 (BLTU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>; 632def : InstAlias<"bleu $rs, $rt, $offset", 633 (BGEU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>; 634 635def : InstAlias<"j $offset", (JAL X0, simm21_lsb0_jal:$offset)>; 636def : InstAlias<"jal $offset", (JAL X1, simm21_lsb0_jal:$offset)>; 637 638// Non-zero offset aliases of "jalr" are the lowest weight, followed by the 639// two-register form, then the one-register forms and finally "ret". 640def : InstAlias<"jr $rs", (JALR X0, GPR:$rs, 0), 3>; 641def : InstAlias<"jr ${offset}(${rs})", (JALR X0, GPR:$rs, simm12:$offset)>; 642def : InstAlias<"jalr $rs", (JALR X1, GPR:$rs, 0), 3>; 643def : InstAlias<"jalr ${offset}(${rs})", (JALR X1, GPR:$rs, simm12:$offset)>; 644def : InstAlias<"jalr $rd, $rs", (JALR GPR:$rd, GPR:$rs, 0), 2>; 645def : InstAlias<"ret", (JALR X0, X1, 0), 4>; 646 647// Non-canonical forms for jump targets also accepted by the assembler. 648def : InstAlias<"jr $rs, $offset", (JALR X0, GPR:$rs, simm12:$offset), 0>; 649def : InstAlias<"jalr $rs, $offset", (JALR X1, GPR:$rs, simm12:$offset), 0>; 650def : InstAlias<"jalr $rd, $rs, $offset", (JALR GPR:$rd, GPR:$rs, simm12:$offset), 0>; 651 652def : InstAlias<"fence", (FENCE 0xF, 0xF)>; // 0xF == iorw 653 654def : InstAlias<"rdinstret $rd", (CSRRS GPR:$rd, INSTRET.Encoding, X0)>; 655def : InstAlias<"rdcycle $rd", (CSRRS GPR:$rd, CYCLE.Encoding, X0)>; 656def : InstAlias<"rdtime $rd", (CSRRS GPR:$rd, TIME.Encoding, X0)>; 657 658let Predicates = [IsRV32] in { 659def : InstAlias<"rdinstreth $rd", (CSRRS GPR:$rd, INSTRETH.Encoding, X0)>; 660def : InstAlias<"rdcycleh $rd", (CSRRS GPR:$rd, CYCLEH.Encoding, X0)>; 661def : InstAlias<"rdtimeh $rd", (CSRRS GPR:$rd, TIMEH.Encoding, X0)>; 662} // Predicates = [IsRV32] 663 664def : InstAlias<"csrr $rd, $csr", (CSRRS GPR:$rd, csr_sysreg:$csr, X0)>; 665def : InstAlias<"csrw $csr, $rs", (CSRRW X0, csr_sysreg:$csr, GPR:$rs)>; 666def : InstAlias<"csrs $csr, $rs", (CSRRS X0, csr_sysreg:$csr, GPR:$rs)>; 667def : InstAlias<"csrc $csr, $rs", (CSRRC X0, csr_sysreg:$csr, GPR:$rs)>; 668 669def : InstAlias<"csrwi $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>; 670def : InstAlias<"csrsi $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>; 671def : InstAlias<"csrci $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>; 672 673let EmitPriority = 0 in { 674def : InstAlias<"csrw $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>; 675def : InstAlias<"csrs $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>; 676def : InstAlias<"csrc $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>; 677 678def : InstAlias<"csrrw $rd, $csr, $imm", (CSRRWI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>; 679def : InstAlias<"csrrs $rd, $csr, $imm", (CSRRSI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>; 680def : InstAlias<"csrrc $rd, $csr, $imm", (CSRRCI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>; 681} 682 683def : InstAlias<"sfence.vma", (SFENCE_VMA X0, X0)>; 684def : InstAlias<"sfence.vma $rs", (SFENCE_VMA GPR:$rs, X0)>; 685 686let EmitPriority = 0 in { 687def : InstAlias<"lb $rd, (${rs1})", 688 (LB GPR:$rd, GPR:$rs1, 0)>; 689def : InstAlias<"lh $rd, (${rs1})", 690 (LH GPR:$rd, GPR:$rs1, 0)>; 691def : InstAlias<"lw $rd, (${rs1})", 692 (LW GPR:$rd, GPR:$rs1, 0)>; 693def : InstAlias<"lbu $rd, (${rs1})", 694 (LBU GPR:$rd, GPR:$rs1, 0)>; 695def : InstAlias<"lhu $rd, (${rs1})", 696 (LHU GPR:$rd, GPR:$rs1, 0)>; 697 698def : InstAlias<"sb $rs2, (${rs1})", 699 (SB GPR:$rs2, GPR:$rs1, 0)>; 700def : InstAlias<"sh $rs2, (${rs1})", 701 (SH GPR:$rs2, GPR:$rs1, 0)>; 702def : InstAlias<"sw $rs2, (${rs1})", 703 (SW GPR:$rs2, GPR:$rs1, 0)>; 704 705def : InstAlias<"add $rd, $rs1, $imm12", 706 (ADDI GPR:$rd, GPR:$rs1, simm12:$imm12)>; 707def : InstAlias<"and $rd, $rs1, $imm12", 708 (ANDI GPR:$rd, GPR:$rs1, simm12:$imm12)>; 709def : InstAlias<"xor $rd, $rs1, $imm12", 710 (XORI GPR:$rd, GPR:$rs1, simm12:$imm12)>; 711def : InstAlias<"or $rd, $rs1, $imm12", 712 (ORI GPR:$rd, GPR:$rs1, simm12:$imm12)>; 713def : InstAlias<"sll $rd, $rs1, $shamt", 714 (SLLI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>; 715def : InstAlias<"srl $rd, $rs1, $shamt", 716 (SRLI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>; 717def : InstAlias<"sra $rd, $rs1, $shamt", 718 (SRAI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>; 719let Predicates = [IsRV64] in { 720def : InstAlias<"lwu $rd, (${rs1})", 721 (LWU GPR:$rd, GPR:$rs1, 0)>; 722def : InstAlias<"ld $rd, (${rs1})", 723 (LD GPR:$rd, GPR:$rs1, 0)>; 724def : InstAlias<"sd $rs2, (${rs1})", 725 (SD GPR:$rs2, GPR:$rs1, 0)>; 726 727def : InstAlias<"addw $rd, $rs1, $imm12", 728 (ADDIW GPR:$rd, GPR:$rs1, simm12:$imm12)>; 729def : InstAlias<"sllw $rd, $rs1, $shamt", 730 (SLLIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>; 731def : InstAlias<"srlw $rd, $rs1, $shamt", 732 (SRLIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>; 733def : InstAlias<"sraw $rd, $rs1, $shamt", 734 (SRAIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>; 735} // Predicates = [IsRV64] 736def : InstAlias<"slt $rd, $rs1, $imm12", 737 (SLTI GPR:$rd, GPR:$rs1, simm12:$imm12)>; 738def : InstAlias<"sltu $rd, $rs1, $imm12", 739 (SLTIU GPR:$rd, GPR:$rs1, simm12:$imm12)>; 740} 741 742def : MnemonicAlias<"move", "mv">; 743 744// The SCALL and SBREAK instructions wererenamed to ECALL and EBREAK in 745// version 2.1 of the user-level ISA. Like the GNU toolchain, we still accept 746// the old name for backwards compatibility. 747def : MnemonicAlias<"scall", "ecall">; 748def : MnemonicAlias<"sbreak", "ebreak">; 749 750//===----------------------------------------------------------------------===// 751// Pseudo-instructions and codegen patterns 752// 753// Naming convention: For 'generic' pattern classes, we use the naming 754// convention PatTy1Ty2. For pattern classes which offer a more complex 755// expension, prefix the class name, e.g. BccPat. 756//===----------------------------------------------------------------------===// 757 758/// Generic pattern classes 759 760class PatGprGpr<SDPatternOperator OpNode, RVInst Inst> 761 : Pat<(OpNode GPR:$rs1, GPR:$rs2), (Inst GPR:$rs1, GPR:$rs2)>; 762class PatGprSimm12<SDPatternOperator OpNode, RVInstI Inst> 763 : Pat<(OpNode GPR:$rs1, simm12:$imm12), (Inst GPR:$rs1, simm12:$imm12)>; 764class PatGprUimmLog2XLen<SDPatternOperator OpNode, RVInstIShift Inst> 765 : Pat<(OpNode GPR:$rs1, uimmlog2xlen:$shamt), 766 (Inst GPR:$rs1, uimmlog2xlen:$shamt)>; 767 768/// Predicates 769 770def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{ 771 return isOrEquivalentToAdd(N); 772}]>; 773def assertsexti32 : PatFrag<(ops node:$src), (assertsext node:$src), [{ 774 return cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32; 775}]>; 776def sexti32 : PatFrags<(ops node:$src), 777 [(sext_inreg node:$src, i32), 778 (assertsexti32 node:$src)]>; 779def assertzexti32 : PatFrag<(ops node:$src), (assertzext node:$src), [{ 780 return cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32; 781}]>; 782def zexti32 : PatFrags<(ops node:$src), 783 [(and node:$src, 0xffffffff), 784 (assertzexti32 node:$src)]>; 785 786/// Immediates 787 788def : Pat<(simm12:$imm), (ADDI X0, simm12:$imm)>; 789def : Pat<(simm32hi20:$imm), (LUI (HI20 imm:$imm))>; 790def : Pat<(simm32:$imm), (ADDI (LUI (HI20 imm:$imm)), (LO12Sext imm:$imm))>, 791 Requires<[IsRV32]>; 792 793/// Simple arithmetic operations 794 795def : PatGprGpr<add, ADD>; 796def : PatGprSimm12<add, ADDI>; 797def : PatGprGpr<sub, SUB>; 798def : PatGprGpr<or, OR>; 799def : PatGprSimm12<or, ORI>; 800def : PatGprGpr<and, AND>; 801def : PatGprSimm12<and, ANDI>; 802def : PatGprGpr<xor, XOR>; 803def : PatGprSimm12<xor, XORI>; 804def : PatGprUimmLog2XLen<shl, SLLI>; 805def : PatGprUimmLog2XLen<srl, SRLI>; 806def : PatGprUimmLog2XLen<sra, SRAI>; 807 808// Match both a plain shift and one where the shift amount is masked (this is 809// typically introduced when the legalizer promotes the shift amount and 810// zero-extends it). For RISC-V, the mask is unnecessary as shifts in the base 811// ISA only read the least significant 5 bits (RV32I) or 6 bits (RV64I). 812class shiftop<SDPatternOperator operator> 813 : PatFrags<(ops node:$val, node:$count), 814 [(operator node:$val, node:$count), 815 (operator node:$val, (and node:$count, immbottomxlenset))]>; 816 817def : PatGprGpr<shiftop<shl>, SLL>; 818def : PatGprGpr<shiftop<srl>, SRL>; 819def : PatGprGpr<shiftop<sra>, SRA>; 820 821// This is a special case of the ADD instruction used to facilitate the use of a 822// fourth operand to emit a relocation on a symbol relating to this instruction. 823// The relocation does not affect any bits of the instruction itself but is used 824// as a hint to the linker. 825let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0 in 826def PseudoAddTPRel : Pseudo<(outs GPR:$rd), 827 (ins GPR:$rs1, GPR:$rs2, tprel_add_symbol:$src), [], 828 "add", "$rd, $rs1, $rs2, $src">; 829 830/// FrameIndex calculations 831 832def : Pat<(add (i32 AddrFI:$Rs), simm12:$imm12), 833 (ADDI (i32 AddrFI:$Rs), simm12:$imm12)>; 834def : Pat<(IsOrAdd (i32 AddrFI:$Rs), simm12:$imm12), 835 (ADDI (i32 AddrFI:$Rs), simm12:$imm12)>; 836 837/// Setcc 838 839def : PatGprGpr<setlt, SLT>; 840def : PatGprSimm12<setlt, SLTI>; 841def : PatGprGpr<setult, SLTU>; 842def : PatGprSimm12<setult, SLTIU>; 843 844// Define pattern expansions for setcc operations that aren't directly 845// handled by a RISC-V instruction. 846def : Pat<(seteq GPR:$rs1, 0), (SLTIU GPR:$rs1, 1)>; 847def : Pat<(seteq GPR:$rs1, GPR:$rs2), (SLTIU (XOR GPR:$rs1, GPR:$rs2), 1)>; 848def : Pat<(seteq GPR:$rs1, simm12:$imm12), 849 (SLTIU (XORI GPR:$rs1, simm12:$imm12), 1)>; 850def : Pat<(setne GPR:$rs1, 0), (SLTU X0, GPR:$rs1)>; 851def : Pat<(setne GPR:$rs1, GPR:$rs2), (SLTU X0, (XOR GPR:$rs1, GPR:$rs2))>; 852def : Pat<(setne GPR:$rs1, simm12:$imm12), 853 (SLTU X0, (XORI GPR:$rs1, simm12:$imm12))>; 854def : Pat<(setugt GPR:$rs1, GPR:$rs2), (SLTU GPR:$rs2, GPR:$rs1)>; 855def : Pat<(setuge GPR:$rs1, GPR:$rs2), (XORI (SLTU GPR:$rs1, GPR:$rs2), 1)>; 856def : Pat<(setule GPR:$rs1, GPR:$rs2), (XORI (SLTU GPR:$rs2, GPR:$rs1), 1)>; 857def : Pat<(setgt GPR:$rs1, GPR:$rs2), (SLT GPR:$rs2, GPR:$rs1)>; 858def : Pat<(setge GPR:$rs1, GPR:$rs2), (XORI (SLT GPR:$rs1, GPR:$rs2), 1)>; 859def : Pat<(setle GPR:$rs1, GPR:$rs2), (XORI (SLT GPR:$rs2, GPR:$rs1), 1)>; 860 861let usesCustomInserter = 1 in 862class SelectCC_rrirr<RegisterClass valty, RegisterClass cmpty> 863 : Pseudo<(outs valty:$dst), 864 (ins cmpty:$lhs, cmpty:$rhs, ixlenimm:$imm, 865 valty:$truev, valty:$falsev), 866 [(set valty:$dst, (riscv_selectcc cmpty:$lhs, cmpty:$rhs, 867 (XLenVT imm:$imm), valty:$truev, valty:$falsev))]>; 868 869def Select_GPR_Using_CC_GPR : SelectCC_rrirr<GPR, GPR>; 870 871/// Branches and jumps 872 873// Match `(brcond (CondOp ..), ..)` and lower to the appropriate RISC-V branch 874// instruction. 875class BccPat<PatFrag CondOp, RVInstB Inst> 876 : Pat<(brcond (XLenVT (CondOp GPR:$rs1, GPR:$rs2)), bb:$imm12), 877 (Inst GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12)>; 878 879def : BccPat<seteq, BEQ>; 880def : BccPat<setne, BNE>; 881def : BccPat<setlt, BLT>; 882def : BccPat<setge, BGE>; 883def : BccPat<setult, BLTU>; 884def : BccPat<setuge, BGEU>; 885 886class BccSwapPat<PatFrag CondOp, RVInst InstBcc> 887 : Pat<(brcond (XLenVT (CondOp GPR:$rs1, GPR:$rs2)), bb:$imm12), 888 (InstBcc GPR:$rs2, GPR:$rs1, bb:$imm12)>; 889 890// Condition codes that don't have matching RISC-V branch instructions, but 891// are trivially supported by swapping the two input operands 892def : BccSwapPat<setgt, BLT>; 893def : BccSwapPat<setle, BGE>; 894def : BccSwapPat<setugt, BLTU>; 895def : BccSwapPat<setule, BGEU>; 896 897// An extra pattern is needed for a brcond without a setcc (i.e. where the 898// condition was calculated elsewhere). 899def : Pat<(brcond GPR:$cond, bb:$imm12), (BNE GPR:$cond, X0, bb:$imm12)>; 900 901let isBarrier = 1, isBranch = 1, isTerminator = 1 in 902def PseudoBR : Pseudo<(outs), (ins simm21_lsb0_jal:$imm20), [(br bb:$imm20)]>, 903 PseudoInstExpansion<(JAL X0, simm21_lsb0_jal:$imm20)>; 904 905let isCall = 1, Defs=[X1] in 906let isBarrier = 1, isBranch = 1, isIndirectBranch = 1, isTerminator = 1 in 907def PseudoBRIND : Pseudo<(outs), (ins GPR:$rs1, simm12:$imm12), []>, 908 PseudoInstExpansion<(JALR X0, GPR:$rs1, simm12:$imm12)>; 909 910def : Pat<(brind GPR:$rs1), (PseudoBRIND GPR:$rs1, 0)>; 911def : Pat<(brind (add GPR:$rs1, simm12:$imm12)), 912 (PseudoBRIND GPR:$rs1, simm12:$imm12)>; 913 914// PseudoCALLReg is a generic pseudo instruction for calls which will eventually 915// expand to auipc and jalr while encoding, with any given register used as the 916// destination. 917// Define AsmString to print "call" when compile with -S flag. 918// Define isCodeGenOnly = 0 to support parsing assembly "call" instruction. 919let isCall = 1, isBarrier = 1, isCodeGenOnly = 0, hasSideEffects = 0, 920 mayStore = 0, mayLoad = 0 in 921def PseudoCALLReg : Pseudo<(outs GPR:$rd), (ins call_symbol:$func), []> { 922 let AsmString = "call\t$rd, $func"; 923} 924 925// PseudoCALL is a pseudo instruction which will eventually expand to auipc 926// and jalr while encoding. This is desirable, as an auipc+jalr pair with 927// R_RISCV_CALL and R_RISCV_RELAX relocations can be be relaxed by the linker 928// if the offset fits in a signed 21-bit immediate. 929// Define AsmString to print "call" when compile with -S flag. 930// Define isCodeGenOnly = 0 to support parsing assembly "call" instruction. 931let isCall = 1, Defs = [X1], isCodeGenOnly = 0 in 932def PseudoCALL : Pseudo<(outs), (ins call_symbol:$func), []> { 933 let AsmString = "call\t$func"; 934} 935 936def : Pat<(riscv_call tglobaladdr:$func), (PseudoCALL tglobaladdr:$func)>; 937def : Pat<(riscv_call texternalsym:$func), (PseudoCALL texternalsym:$func)>; 938 939def : Pat<(riscv_uret_flag), (URET X0, X0)>; 940def : Pat<(riscv_sret_flag), (SRET X0, X0)>; 941def : Pat<(riscv_mret_flag), (MRET X0, X0)>; 942 943let isCall = 1, Defs = [X1] in 944def PseudoCALLIndirect : Pseudo<(outs), (ins GPR:$rs1), 945 [(riscv_call GPR:$rs1)]>, 946 PseudoInstExpansion<(JALR X1, GPR:$rs1, 0)>; 947 948let isBarrier = 1, isReturn = 1, isTerminator = 1 in 949def PseudoRET : Pseudo<(outs), (ins), [(riscv_ret_flag)]>, 950 PseudoInstExpansion<(JALR X0, X1, 0)>; 951 952// PseudoTAIL is a pseudo instruction similar to PseudoCALL and will eventually 953// expand to auipc and jalr while encoding. 954// Define AsmString to print "tail" when compile with -S flag. 955let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2], 956 isCodeGenOnly = 0 in 957def PseudoTAIL : Pseudo<(outs), (ins call_symbol:$dst), []> { 958 let AsmString = "tail\t$dst"; 959} 960 961let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2] in 962def PseudoTAILIndirect : Pseudo<(outs), (ins GPRTC:$rs1), 963 [(riscv_tail GPRTC:$rs1)]>, 964 PseudoInstExpansion<(JALR X0, GPR:$rs1, 0)>; 965 966def : Pat<(riscv_tail (iPTR tglobaladdr:$dst)), 967 (PseudoTAIL texternalsym:$dst)>; 968def : Pat<(riscv_tail (iPTR texternalsym:$dst)), 969 (PseudoTAIL texternalsym:$dst)>; 970 971let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0, 972 isAsmParserOnly = 1 in 973def PseudoLLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], 974 "lla", "$dst, $src">; 975 976let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0, 977 isAsmParserOnly = 1 in 978def PseudoLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], 979 "la", "$dst, $src">; 980 981let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0, 982 isAsmParserOnly = 1 in 983def PseudoLA_TLS_IE : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], 984 "la.tls.ie", "$dst, $src">; 985 986let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0, 987 isAsmParserOnly = 1 in 988def PseudoLA_TLS_GD : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], 989 "la.tls.gd", "$dst, $src">; 990 991/// Loads 992 993multiclass LdPat<PatFrag LoadOp, RVInst Inst> { 994 def : Pat<(LoadOp GPR:$rs1), (Inst GPR:$rs1, 0)>; 995 def : Pat<(LoadOp AddrFI:$rs1), (Inst AddrFI:$rs1, 0)>; 996 def : Pat<(LoadOp (add GPR:$rs1, simm12:$imm12)), 997 (Inst GPR:$rs1, simm12:$imm12)>; 998 def : Pat<(LoadOp (add AddrFI:$rs1, simm12:$imm12)), 999 (Inst AddrFI:$rs1, simm12:$imm12)>; 1000 def : Pat<(LoadOp (IsOrAdd AddrFI:$rs1, simm12:$imm12)), 1001 (Inst AddrFI:$rs1, simm12:$imm12)>; 1002} 1003 1004defm : LdPat<sextloadi8, LB>; 1005defm : LdPat<extloadi8, LB>; 1006defm : LdPat<sextloadi16, LH>; 1007defm : LdPat<extloadi16, LH>; 1008defm : LdPat<load, LW>, Requires<[IsRV32]>; 1009defm : LdPat<zextloadi8, LBU>; 1010defm : LdPat<zextloadi16, LHU>; 1011 1012/// Stores 1013 1014multiclass StPat<PatFrag StoreOp, RVInst Inst, RegisterClass StTy> { 1015 def : Pat<(StoreOp StTy:$rs2, GPR:$rs1), (Inst StTy:$rs2, GPR:$rs1, 0)>; 1016 def : Pat<(StoreOp StTy:$rs2, AddrFI:$rs1), (Inst StTy:$rs2, AddrFI:$rs1, 0)>; 1017 def : Pat<(StoreOp StTy:$rs2, (add GPR:$rs1, simm12:$imm12)), 1018 (Inst StTy:$rs2, GPR:$rs1, simm12:$imm12)>; 1019 def : Pat<(StoreOp StTy:$rs2, (add AddrFI:$rs1, simm12:$imm12)), 1020 (Inst StTy:$rs2, AddrFI:$rs1, simm12:$imm12)>; 1021 def : Pat<(StoreOp StTy:$rs2, (IsOrAdd AddrFI:$rs1, simm12:$imm12)), 1022 (Inst StTy:$rs2, AddrFI:$rs1, simm12:$imm12)>; 1023} 1024 1025defm : StPat<truncstorei8, SB, GPR>; 1026defm : StPat<truncstorei16, SH, GPR>; 1027defm : StPat<store, SW, GPR>, Requires<[IsRV32]>; 1028 1029/// Fences 1030 1031// Refer to Table A.6 in the version 2.3 draft of the RISC-V Instruction Set 1032// Manual: Volume I. 1033 1034// fence acquire -> fence r, rw 1035def : Pat<(atomic_fence (XLenVT 4), (timm)), (FENCE 0b10, 0b11)>; 1036// fence release -> fence rw, w 1037def : Pat<(atomic_fence (XLenVT 5), (timm)), (FENCE 0b11, 0b1)>; 1038// fence acq_rel -> fence.tso 1039def : Pat<(atomic_fence (XLenVT 6), (timm)), (FENCE_TSO)>; 1040// fence seq_cst -> fence rw, rw 1041def : Pat<(atomic_fence (XLenVT 7), (timm)), (FENCE 0b11, 0b11)>; 1042 1043// Lowering for atomic load and store is defined in RISCVInstrInfoA.td. 1044// Although these are lowered to fence+load/store instructions defined in the 1045// base RV32I/RV64I ISA, this lowering is only used when the A extension is 1046// present. This is necessary as it isn't valid to mix __atomic_* libcalls 1047// with inline atomic operations for the same object. 1048 1049/// Other pseudo-instructions 1050 1051// Pessimistically assume the stack pointer will be clobbered 1052let Defs = [X2], Uses = [X2] in { 1053def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 1054 [(callseq_start timm:$amt1, timm:$amt2)]>; 1055def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 1056 [(callseq_end timm:$amt1, timm:$amt2)]>; 1057} // Defs = [X2], Uses = [X2] 1058 1059/// RV64 patterns 1060 1061let Predicates = [IsRV64] in { 1062 1063/// sext and zext 1064 1065def : Pat<(sext_inreg GPR:$rs1, i32), (ADDIW GPR:$rs1, 0)>; 1066def : Pat<(and GPR:$rs1, 0xffffffff), (SRLI (SLLI GPR:$rs1, 32), 32)>; 1067 1068/// ALU operations 1069 1070def : Pat<(sext_inreg (add GPR:$rs1, GPR:$rs2), i32), 1071 (ADDW GPR:$rs1, GPR:$rs2)>; 1072def : Pat<(sext_inreg (add GPR:$rs1, simm12:$imm12), i32), 1073 (ADDIW GPR:$rs1, simm12:$imm12)>; 1074def : Pat<(sext_inreg (sub GPR:$rs1, GPR:$rs2), i32), 1075 (SUBW GPR:$rs1, GPR:$rs2)>; 1076def : Pat<(sext_inreg (shl GPR:$rs1, uimm5:$shamt), i32), 1077 (SLLIW GPR:$rs1, uimm5:$shamt)>; 1078// (srl (zexti32 ...), uimm5:$shamt) is matched with custom code due to the 1079// need to undo manipulation of the mask value performed by DAGCombine. 1080def : Pat<(sra (sext_inreg GPR:$rs1, i32), uimm5:$shamt), 1081 (SRAIW GPR:$rs1, uimm5:$shamt)>; 1082 1083def : PatGprGpr<riscv_sllw, SLLW>; 1084def : PatGprGpr<riscv_srlw, SRLW>; 1085def : PatGprGpr<riscv_sraw, SRAW>; 1086 1087/// Loads 1088 1089defm : LdPat<sextloadi32, LW>; 1090defm : LdPat<extloadi32, LW>; 1091defm : LdPat<zextloadi32, LWU>; 1092defm : LdPat<load, LD>; 1093 1094/// Stores 1095 1096defm : StPat<truncstorei32, SW, GPR>; 1097defm : StPat<store, SD, GPR>; 1098} // Predicates = [IsRV64] 1099 1100/// readcyclecounter 1101// On RV64, we can directly read the 64-bit "cycle" CSR. 1102let Predicates = [IsRV64] in 1103def : Pat<(readcyclecounter), (CSRRS CYCLE.Encoding, X0)>; 1104// On RV32, ReadCycleWide will be expanded to the suggested loop reading both 1105// halves of the 64-bit "cycle" CSR. 1106let Predicates = [IsRV32], usesCustomInserter = 1, hasSideEffects = 0, 1107mayLoad = 0, mayStore = 0, hasNoSchedulingInfo = 1 in 1108def ReadCycleWide : Pseudo<(outs GPR:$lo, GPR:$hi), (ins), [], "", "">; 1109 1110/// traps 1111 1112// We lower `trap` to `unimp`, as this causes a hard exception on nearly all 1113// systems. 1114def : Pat<(trap), (UNIMP)>; 1115 1116// We lower `debugtrap` to `ebreak`, as this will get the attention of the 1117// debugger if possible. 1118def : Pat<(debugtrap), (EBREAK)>; 1119 1120//===----------------------------------------------------------------------===// 1121// Standard extensions 1122//===----------------------------------------------------------------------===// 1123 1124include "RISCVInstrInfoM.td" 1125include "RISCVInstrInfoA.td" 1126include "RISCVInstrInfoF.td" 1127include "RISCVInstrInfoD.td" 1128include "RISCVInstrInfoC.td" 1129