xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfo.cpp (revision 4d3fc8b0570b29fb0d6ee9525f104d52176ff0d4)
1 //===-- RISCVInstrInfo.cpp - RISCV Instruction Information ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the RISCV implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "RISCVInstrInfo.h"
14 #include "MCTargetDesc/RISCVMatInt.h"
15 #include "RISCV.h"
16 #include "RISCVMachineFunctionInfo.h"
17 #include "RISCVSubtarget.h"
18 #include "RISCVTargetMachine.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/RegisterScavenging.h"
28 #include "llvm/MC/MCInstBuilder.h"
29 #include "llvm/MC/TargetRegistry.h"
30 #include "llvm/Support/ErrorHandling.h"
31 
32 using namespace llvm;
33 
34 #define GEN_CHECK_COMPRESS_INSTR
35 #include "RISCVGenCompressInstEmitter.inc"
36 
37 #define GET_INSTRINFO_CTOR_DTOR
38 #define GET_INSTRINFO_NAMED_OPS
39 #include "RISCVGenInstrInfo.inc"
40 
41 static cl::opt<bool> PreferWholeRegisterMove(
42     "riscv-prefer-whole-register-move", cl::init(false), cl::Hidden,
43     cl::desc("Prefer whole register move for vector registers."));
44 
45 namespace llvm {
46 namespace RISCVVPseudosTable {
47 
48 using namespace RISCV;
49 
50 #define GET_RISCVVPseudosTable_IMPL
51 #include "RISCVGenSearchableTables.inc"
52 
53 } // namespace RISCVVPseudosTable
54 } // namespace llvm
55 
56 RISCVInstrInfo::RISCVInstrInfo(RISCVSubtarget &STI)
57     : RISCVGenInstrInfo(RISCV::ADJCALLSTACKDOWN, RISCV::ADJCALLSTACKUP),
58       STI(STI) {}
59 
60 MCInst RISCVInstrInfo::getNop() const {
61   if (STI.getFeatureBits()[RISCV::FeatureStdExtC])
62     return MCInstBuilder(RISCV::C_NOP);
63   return MCInstBuilder(RISCV::ADDI)
64       .addReg(RISCV::X0)
65       .addReg(RISCV::X0)
66       .addImm(0);
67 }
68 
69 unsigned RISCVInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
70                                              int &FrameIndex) const {
71   switch (MI.getOpcode()) {
72   default:
73     return 0;
74   case RISCV::LB:
75   case RISCV::LBU:
76   case RISCV::LH:
77   case RISCV::LHU:
78   case RISCV::FLH:
79   case RISCV::LW:
80   case RISCV::FLW:
81   case RISCV::LWU:
82   case RISCV::LD:
83   case RISCV::FLD:
84     break;
85   }
86 
87   if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
88       MI.getOperand(2).getImm() == 0) {
89     FrameIndex = MI.getOperand(1).getIndex();
90     return MI.getOperand(0).getReg();
91   }
92 
93   return 0;
94 }
95 
96 unsigned RISCVInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
97                                             int &FrameIndex) const {
98   switch (MI.getOpcode()) {
99   default:
100     return 0;
101   case RISCV::SB:
102   case RISCV::SH:
103   case RISCV::SW:
104   case RISCV::FSH:
105   case RISCV::FSW:
106   case RISCV::SD:
107   case RISCV::FSD:
108     break;
109   }
110 
111   if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
112       MI.getOperand(2).getImm() == 0) {
113     FrameIndex = MI.getOperand(1).getIndex();
114     return MI.getOperand(0).getReg();
115   }
116 
117   return 0;
118 }
119 
120 static bool forwardCopyWillClobberTuple(unsigned DstReg, unsigned SrcReg,
121                                         unsigned NumRegs) {
122   return DstReg > SrcReg && (DstReg - SrcReg) < NumRegs;
123 }
124 
125 static bool isConvertibleToVMV_V_V(const RISCVSubtarget &STI,
126                                    const MachineBasicBlock &MBB,
127                                    MachineBasicBlock::const_iterator MBBI,
128                                    MachineBasicBlock::const_iterator &DefMBBI,
129                                    RISCVII::VLMUL LMul) {
130   if (PreferWholeRegisterMove)
131     return false;
132 
133   assert(MBBI->getOpcode() == TargetOpcode::COPY &&
134          "Unexpected COPY instruction.");
135   Register SrcReg = MBBI->getOperand(1).getReg();
136   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
137 
138   bool FoundDef = false;
139   bool FirstVSetVLI = false;
140   unsigned FirstSEW = 0;
141   while (MBBI != MBB.begin()) {
142     --MBBI;
143     if (MBBI->isMetaInstruction())
144       continue;
145 
146     if (MBBI->getOpcode() == RISCV::PseudoVSETVLI ||
147         MBBI->getOpcode() == RISCV::PseudoVSETVLIX0 ||
148         MBBI->getOpcode() == RISCV::PseudoVSETIVLI) {
149       // There is a vsetvli between COPY and source define instruction.
150       // vy = def_vop ...  (producing instruction)
151       // ...
152       // vsetvli
153       // ...
154       // vx = COPY vy
155       if (!FoundDef) {
156         if (!FirstVSetVLI) {
157           FirstVSetVLI = true;
158           unsigned FirstVType = MBBI->getOperand(2).getImm();
159           RISCVII::VLMUL FirstLMul = RISCVVType::getVLMUL(FirstVType);
160           FirstSEW = RISCVVType::getSEW(FirstVType);
161           // The first encountered vsetvli must have the same lmul as the
162           // register class of COPY.
163           if (FirstLMul != LMul)
164             return false;
165         }
166         // Only permit `vsetvli x0, x0, vtype` between COPY and the source
167         // define instruction.
168         if (MBBI->getOperand(0).getReg() != RISCV::X0)
169           return false;
170         if (MBBI->getOperand(1).isImm())
171           return false;
172         if (MBBI->getOperand(1).getReg() != RISCV::X0)
173           return false;
174         continue;
175       }
176 
177       // MBBI is the first vsetvli before the producing instruction.
178       unsigned VType = MBBI->getOperand(2).getImm();
179       // If there is a vsetvli between COPY and the producing instruction.
180       if (FirstVSetVLI) {
181         // If SEW is different, return false.
182         if (RISCVVType::getSEW(VType) != FirstSEW)
183           return false;
184       }
185 
186       // If the vsetvli is tail undisturbed, keep the whole register move.
187       if (!RISCVVType::isTailAgnostic(VType))
188         return false;
189 
190       // The checking is conservative. We only have register classes for
191       // LMUL = 1/2/4/8. We should be able to convert vmv1r.v to vmv.v.v
192       // for fractional LMUL operations. However, we could not use the vsetvli
193       // lmul for widening operations. The result of widening operation is
194       // 2 x LMUL.
195       return LMul == RISCVVType::getVLMUL(VType);
196     } else if (MBBI->isInlineAsm() || MBBI->isCall()) {
197       return false;
198     } else if (MBBI->getNumDefs()) {
199       // Check all the instructions which will change VL.
200       // For example, vleff has implicit def VL.
201       if (MBBI->modifiesRegister(RISCV::VL))
202         return false;
203 
204       // Only converting whole register copies to vmv.v.v when the defining
205       // value appears in the explicit operands.
206       for (const MachineOperand &MO : MBBI->explicit_operands()) {
207         if (!MO.isReg() || !MO.isDef())
208           continue;
209         if (!FoundDef && TRI->isSubRegisterEq(MO.getReg(), SrcReg)) {
210           // We only permit the source of COPY has the same LMUL as the defined
211           // operand.
212           // There are cases we need to keep the whole register copy if the LMUL
213           // is different.
214           // For example,
215           // $x0 = PseudoVSETIVLI 4, 73   // vsetivli zero, 4, e16,m2,ta,m
216           // $v28m4 = PseudoVWADD_VV_M2 $v26m2, $v8m2
217           // # The COPY may be created by vlmul_trunc intrinsic.
218           // $v26m2 = COPY renamable $v28m2, implicit killed $v28m4
219           //
220           // After widening, the valid value will be 4 x e32 elements. If we
221           // convert the COPY to vmv.v.v, it will only copy 4 x e16 elements.
222           // FIXME: The COPY of subregister of Zvlsseg register will not be able
223           // to convert to vmv.v.[v|i] under the constraint.
224           if (MO.getReg() != SrcReg)
225             return false;
226 
227           // In widening reduction instructions with LMUL_1 input vector case,
228           // only checking the LMUL is insufficient due to reduction result is
229           // always LMUL_1.
230           // For example,
231           // $x11 = PseudoVSETIVLI 1, 64 // vsetivli a1, 1, e8, m1, ta, mu
232           // $v8m1 = PseudoVWREDSUM_VS_M1 $v26, $v27
233           // $v26 = COPY killed renamable $v8
234           // After widening, The valid value will be 1 x e16 elements. If we
235           // convert the COPY to vmv.v.v, it will only copy 1 x e8 elements.
236           uint64_t TSFlags = MBBI->getDesc().TSFlags;
237           if (RISCVII::isRVVWideningReduction(TSFlags))
238             return false;
239 
240           // Found the definition.
241           FoundDef = true;
242           DefMBBI = MBBI;
243           // If the producing instruction does not depend on vsetvli, do not
244           // convert COPY to vmv.v.v. For example, VL1R_V or PseudoVRELOAD.
245           if (!RISCVII::hasSEWOp(TSFlags))
246             return false;
247           break;
248         }
249       }
250     }
251   }
252 
253   return false;
254 }
255 
256 void RISCVInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
257                                  MachineBasicBlock::iterator MBBI,
258                                  const DebugLoc &DL, MCRegister DstReg,
259                                  MCRegister SrcReg, bool KillSrc) const {
260   if (RISCV::GPRRegClass.contains(DstReg, SrcReg)) {
261     BuildMI(MBB, MBBI, DL, get(RISCV::ADDI), DstReg)
262         .addReg(SrcReg, getKillRegState(KillSrc))
263         .addImm(0);
264     return;
265   }
266 
267   // Handle copy from csr
268   if (RISCV::VCSRRegClass.contains(SrcReg) &&
269       RISCV::GPRRegClass.contains(DstReg)) {
270     const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
271     BuildMI(MBB, MBBI, DL, get(RISCV::CSRRS), DstReg)
272       .addImm(RISCVSysReg::lookupSysRegByName(TRI.getName(SrcReg))->Encoding)
273       .addReg(RISCV::X0);
274     return;
275   }
276 
277   // FPR->FPR copies and VR->VR copies.
278   unsigned Opc;
279   bool IsScalableVector = true;
280   unsigned NF = 1;
281   RISCVII::VLMUL LMul = RISCVII::LMUL_1;
282   unsigned SubRegIdx = RISCV::sub_vrm1_0;
283   if (RISCV::FPR16RegClass.contains(DstReg, SrcReg)) {
284     Opc = RISCV::FSGNJ_H;
285     IsScalableVector = false;
286   } else if (RISCV::FPR32RegClass.contains(DstReg, SrcReg)) {
287     Opc = RISCV::FSGNJ_S;
288     IsScalableVector = false;
289   } else if (RISCV::FPR64RegClass.contains(DstReg, SrcReg)) {
290     Opc = RISCV::FSGNJ_D;
291     IsScalableVector = false;
292   } else if (RISCV::VRRegClass.contains(DstReg, SrcReg)) {
293     Opc = RISCV::PseudoVMV1R_V;
294     LMul = RISCVII::LMUL_1;
295   } else if (RISCV::VRM2RegClass.contains(DstReg, SrcReg)) {
296     Opc = RISCV::PseudoVMV2R_V;
297     LMul = RISCVII::LMUL_2;
298   } else if (RISCV::VRM4RegClass.contains(DstReg, SrcReg)) {
299     Opc = RISCV::PseudoVMV4R_V;
300     LMul = RISCVII::LMUL_4;
301   } else if (RISCV::VRM8RegClass.contains(DstReg, SrcReg)) {
302     Opc = RISCV::PseudoVMV8R_V;
303     LMul = RISCVII::LMUL_8;
304   } else if (RISCV::VRN2M1RegClass.contains(DstReg, SrcReg)) {
305     Opc = RISCV::PseudoVMV1R_V;
306     SubRegIdx = RISCV::sub_vrm1_0;
307     NF = 2;
308     LMul = RISCVII::LMUL_1;
309   } else if (RISCV::VRN2M2RegClass.contains(DstReg, SrcReg)) {
310     Opc = RISCV::PseudoVMV2R_V;
311     SubRegIdx = RISCV::sub_vrm2_0;
312     NF = 2;
313     LMul = RISCVII::LMUL_2;
314   } else if (RISCV::VRN2M4RegClass.contains(DstReg, SrcReg)) {
315     Opc = RISCV::PseudoVMV4R_V;
316     SubRegIdx = RISCV::sub_vrm4_0;
317     NF = 2;
318     LMul = RISCVII::LMUL_4;
319   } else if (RISCV::VRN3M1RegClass.contains(DstReg, SrcReg)) {
320     Opc = RISCV::PseudoVMV1R_V;
321     SubRegIdx = RISCV::sub_vrm1_0;
322     NF = 3;
323     LMul = RISCVII::LMUL_1;
324   } else if (RISCV::VRN3M2RegClass.contains(DstReg, SrcReg)) {
325     Opc = RISCV::PseudoVMV2R_V;
326     SubRegIdx = RISCV::sub_vrm2_0;
327     NF = 3;
328     LMul = RISCVII::LMUL_2;
329   } else if (RISCV::VRN4M1RegClass.contains(DstReg, SrcReg)) {
330     Opc = RISCV::PseudoVMV1R_V;
331     SubRegIdx = RISCV::sub_vrm1_0;
332     NF = 4;
333     LMul = RISCVII::LMUL_1;
334   } else if (RISCV::VRN4M2RegClass.contains(DstReg, SrcReg)) {
335     Opc = RISCV::PseudoVMV2R_V;
336     SubRegIdx = RISCV::sub_vrm2_0;
337     NF = 4;
338     LMul = RISCVII::LMUL_2;
339   } else if (RISCV::VRN5M1RegClass.contains(DstReg, SrcReg)) {
340     Opc = RISCV::PseudoVMV1R_V;
341     SubRegIdx = RISCV::sub_vrm1_0;
342     NF = 5;
343     LMul = RISCVII::LMUL_1;
344   } else if (RISCV::VRN6M1RegClass.contains(DstReg, SrcReg)) {
345     Opc = RISCV::PseudoVMV1R_V;
346     SubRegIdx = RISCV::sub_vrm1_0;
347     NF = 6;
348     LMul = RISCVII::LMUL_1;
349   } else if (RISCV::VRN7M1RegClass.contains(DstReg, SrcReg)) {
350     Opc = RISCV::PseudoVMV1R_V;
351     SubRegIdx = RISCV::sub_vrm1_0;
352     NF = 7;
353     LMul = RISCVII::LMUL_1;
354   } else if (RISCV::VRN8M1RegClass.contains(DstReg, SrcReg)) {
355     Opc = RISCV::PseudoVMV1R_V;
356     SubRegIdx = RISCV::sub_vrm1_0;
357     NF = 8;
358     LMul = RISCVII::LMUL_1;
359   } else {
360     llvm_unreachable("Impossible reg-to-reg copy");
361   }
362 
363   if (IsScalableVector) {
364     bool UseVMV_V_V = false;
365     MachineBasicBlock::const_iterator DefMBBI;
366     unsigned DefExplicitOpNum;
367     unsigned VIOpc;
368     if (isConvertibleToVMV_V_V(STI, MBB, MBBI, DefMBBI, LMul)) {
369       UseVMV_V_V = true;
370       DefExplicitOpNum = DefMBBI->getNumExplicitOperands();
371       // We only need to handle LMUL = 1/2/4/8 here because we only define
372       // vector register classes for LMUL = 1/2/4/8.
373       switch (LMul) {
374       default:
375         llvm_unreachable("Impossible LMUL for vector register copy.");
376       case RISCVII::LMUL_1:
377         Opc = RISCV::PseudoVMV_V_V_M1;
378         VIOpc = RISCV::PseudoVMV_V_I_M1;
379         break;
380       case RISCVII::LMUL_2:
381         Opc = RISCV::PseudoVMV_V_V_M2;
382         VIOpc = RISCV::PseudoVMV_V_I_M2;
383         break;
384       case RISCVII::LMUL_4:
385         Opc = RISCV::PseudoVMV_V_V_M4;
386         VIOpc = RISCV::PseudoVMV_V_I_M4;
387         break;
388       case RISCVII::LMUL_8:
389         Opc = RISCV::PseudoVMV_V_V_M8;
390         VIOpc = RISCV::PseudoVMV_V_I_M8;
391         break;
392       }
393     }
394 
395     bool UseVMV_V_I = false;
396     if (UseVMV_V_V && (DefMBBI->getOpcode() == VIOpc)) {
397       UseVMV_V_I = true;
398       Opc = VIOpc;
399     }
400 
401     if (NF == 1) {
402       auto MIB = BuildMI(MBB, MBBI, DL, get(Opc), DstReg);
403       if (UseVMV_V_I)
404         MIB = MIB.add(DefMBBI->getOperand(1));
405       else
406         MIB = MIB.addReg(SrcReg, getKillRegState(KillSrc));
407       if (UseVMV_V_V) {
408         // The last two arguments of vector instructions are
409         // AVL, SEW. We also need to append the implicit-use vl and vtype.
410         MIB.add(DefMBBI->getOperand(DefExplicitOpNum - 2)); // AVL
411         MIB.add(DefMBBI->getOperand(DefExplicitOpNum - 1)); // SEW
412         MIB.addReg(RISCV::VL, RegState::Implicit);
413         MIB.addReg(RISCV::VTYPE, RegState::Implicit);
414       }
415     } else {
416       const TargetRegisterInfo *TRI = STI.getRegisterInfo();
417 
418       int I = 0, End = NF, Incr = 1;
419       unsigned SrcEncoding = TRI->getEncodingValue(SrcReg);
420       unsigned DstEncoding = TRI->getEncodingValue(DstReg);
421       unsigned LMulVal;
422       bool Fractional;
423       std::tie(LMulVal, Fractional) = RISCVVType::decodeVLMUL(LMul);
424       assert(!Fractional && "It is impossible be fractional lmul here.");
425       if (forwardCopyWillClobberTuple(DstEncoding, SrcEncoding, NF * LMulVal)) {
426         I = NF - 1;
427         End = -1;
428         Incr = -1;
429       }
430 
431       for (; I != End; I += Incr) {
432         auto MIB = BuildMI(MBB, MBBI, DL, get(Opc),
433                            TRI->getSubReg(DstReg, SubRegIdx + I));
434         if (UseVMV_V_I)
435           MIB = MIB.add(DefMBBI->getOperand(1));
436         else
437           MIB = MIB.addReg(TRI->getSubReg(SrcReg, SubRegIdx + I),
438                            getKillRegState(KillSrc));
439         if (UseVMV_V_V) {
440           MIB.add(DefMBBI->getOperand(DefExplicitOpNum - 2)); // AVL
441           MIB.add(DefMBBI->getOperand(DefExplicitOpNum - 1)); // SEW
442           MIB.addReg(RISCV::VL, RegState::Implicit);
443           MIB.addReg(RISCV::VTYPE, RegState::Implicit);
444         }
445       }
446     }
447   } else {
448     BuildMI(MBB, MBBI, DL, get(Opc), DstReg)
449         .addReg(SrcReg, getKillRegState(KillSrc))
450         .addReg(SrcReg, getKillRegState(KillSrc));
451   }
452 }
453 
454 void RISCVInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
455                                          MachineBasicBlock::iterator I,
456                                          Register SrcReg, bool IsKill, int FI,
457                                          const TargetRegisterClass *RC,
458                                          const TargetRegisterInfo *TRI) const {
459   DebugLoc DL;
460   if (I != MBB.end())
461     DL = I->getDebugLoc();
462 
463   MachineFunction *MF = MBB.getParent();
464   MachineFrameInfo &MFI = MF->getFrameInfo();
465 
466   unsigned Opcode;
467   bool IsScalableVector = true;
468   bool IsZvlsseg = true;
469   if (RISCV::GPRRegClass.hasSubClassEq(RC)) {
470     Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
471              RISCV::SW : RISCV::SD;
472     IsScalableVector = false;
473   } else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) {
474     Opcode = RISCV::FSH;
475     IsScalableVector = false;
476   } else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) {
477     Opcode = RISCV::FSW;
478     IsScalableVector = false;
479   } else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) {
480     Opcode = RISCV::FSD;
481     IsScalableVector = false;
482   } else if (RISCV::VRRegClass.hasSubClassEq(RC)) {
483     Opcode = RISCV::PseudoVSPILL_M1;
484     IsZvlsseg = false;
485   } else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) {
486     Opcode = RISCV::PseudoVSPILL_M2;
487     IsZvlsseg = false;
488   } else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) {
489     Opcode = RISCV::PseudoVSPILL_M4;
490     IsZvlsseg = false;
491   } else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) {
492     Opcode = RISCV::PseudoVSPILL_M8;
493     IsZvlsseg = false;
494   } else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC))
495     Opcode = RISCV::PseudoVSPILL2_M1;
496   else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC))
497     Opcode = RISCV::PseudoVSPILL2_M2;
498   else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC))
499     Opcode = RISCV::PseudoVSPILL2_M4;
500   else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC))
501     Opcode = RISCV::PseudoVSPILL3_M1;
502   else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC))
503     Opcode = RISCV::PseudoVSPILL3_M2;
504   else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC))
505     Opcode = RISCV::PseudoVSPILL4_M1;
506   else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC))
507     Opcode = RISCV::PseudoVSPILL4_M2;
508   else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC))
509     Opcode = RISCV::PseudoVSPILL5_M1;
510   else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC))
511     Opcode = RISCV::PseudoVSPILL6_M1;
512   else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC))
513     Opcode = RISCV::PseudoVSPILL7_M1;
514   else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC))
515     Opcode = RISCV::PseudoVSPILL8_M1;
516   else
517     llvm_unreachable("Can't store this register to stack slot");
518 
519   if (IsScalableVector) {
520     MachineMemOperand *MMO = MF->getMachineMemOperand(
521         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
522         MemoryLocation::UnknownSize, MFI.getObjectAlign(FI));
523 
524     MFI.setStackID(FI, TargetStackID::ScalableVector);
525     auto MIB = BuildMI(MBB, I, DL, get(Opcode))
526                    .addReg(SrcReg, getKillRegState(IsKill))
527                    .addFrameIndex(FI)
528                    .addMemOperand(MMO);
529     if (IsZvlsseg) {
530       // For spilling/reloading Zvlsseg registers, append the dummy field for
531       // the scaled vector length. The argument will be used when expanding
532       // these pseudo instructions.
533       MIB.addReg(RISCV::X0);
534     }
535   } else {
536     MachineMemOperand *MMO = MF->getMachineMemOperand(
537         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
538         MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
539 
540     BuildMI(MBB, I, DL, get(Opcode))
541         .addReg(SrcReg, getKillRegState(IsKill))
542         .addFrameIndex(FI)
543         .addImm(0)
544         .addMemOperand(MMO);
545   }
546 }
547 
548 void RISCVInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
549                                           MachineBasicBlock::iterator I,
550                                           Register DstReg, int FI,
551                                           const TargetRegisterClass *RC,
552                                           const TargetRegisterInfo *TRI) const {
553   DebugLoc DL;
554   if (I != MBB.end())
555     DL = I->getDebugLoc();
556 
557   MachineFunction *MF = MBB.getParent();
558   MachineFrameInfo &MFI = MF->getFrameInfo();
559 
560   unsigned Opcode;
561   bool IsScalableVector = true;
562   bool IsZvlsseg = true;
563   if (RISCV::GPRRegClass.hasSubClassEq(RC)) {
564     Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
565              RISCV::LW : RISCV::LD;
566     IsScalableVector = false;
567   } else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) {
568     Opcode = RISCV::FLH;
569     IsScalableVector = false;
570   } else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) {
571     Opcode = RISCV::FLW;
572     IsScalableVector = false;
573   } else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) {
574     Opcode = RISCV::FLD;
575     IsScalableVector = false;
576   } else if (RISCV::VRRegClass.hasSubClassEq(RC)) {
577     Opcode = RISCV::PseudoVRELOAD_M1;
578     IsZvlsseg = false;
579   } else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) {
580     Opcode = RISCV::PseudoVRELOAD_M2;
581     IsZvlsseg = false;
582   } else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) {
583     Opcode = RISCV::PseudoVRELOAD_M4;
584     IsZvlsseg = false;
585   } else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) {
586     Opcode = RISCV::PseudoVRELOAD_M8;
587     IsZvlsseg = false;
588   } else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC))
589     Opcode = RISCV::PseudoVRELOAD2_M1;
590   else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC))
591     Opcode = RISCV::PseudoVRELOAD2_M2;
592   else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC))
593     Opcode = RISCV::PseudoVRELOAD2_M4;
594   else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC))
595     Opcode = RISCV::PseudoVRELOAD3_M1;
596   else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC))
597     Opcode = RISCV::PseudoVRELOAD3_M2;
598   else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC))
599     Opcode = RISCV::PseudoVRELOAD4_M1;
600   else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC))
601     Opcode = RISCV::PseudoVRELOAD4_M2;
602   else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC))
603     Opcode = RISCV::PseudoVRELOAD5_M1;
604   else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC))
605     Opcode = RISCV::PseudoVRELOAD6_M1;
606   else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC))
607     Opcode = RISCV::PseudoVRELOAD7_M1;
608   else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC))
609     Opcode = RISCV::PseudoVRELOAD8_M1;
610   else
611     llvm_unreachable("Can't load this register from stack slot");
612 
613   if (IsScalableVector) {
614     MachineMemOperand *MMO = MF->getMachineMemOperand(
615         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
616         MemoryLocation::UnknownSize, MFI.getObjectAlign(FI));
617 
618     MFI.setStackID(FI, TargetStackID::ScalableVector);
619     auto MIB = BuildMI(MBB, I, DL, get(Opcode), DstReg)
620                    .addFrameIndex(FI)
621                    .addMemOperand(MMO);
622     if (IsZvlsseg) {
623       // For spilling/reloading Zvlsseg registers, append the dummy field for
624       // the scaled vector length. The argument will be used when expanding
625       // these pseudo instructions.
626       MIB.addReg(RISCV::X0);
627     }
628   } else {
629     MachineMemOperand *MMO = MF->getMachineMemOperand(
630         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
631         MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
632 
633     BuildMI(MBB, I, DL, get(Opcode), DstReg)
634         .addFrameIndex(FI)
635         .addImm(0)
636         .addMemOperand(MMO);
637   }
638 }
639 
640 MachineInstr *RISCVInstrInfo::foldMemoryOperandImpl(
641     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
642     MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS,
643     VirtRegMap *VRM) const {
644   const MachineFrameInfo &MFI = MF.getFrameInfo();
645 
646   // The below optimizations narrow the load so they are only valid for little
647   // endian.
648   // TODO: Support big endian by adding an offset into the frame object?
649   if (MF.getDataLayout().isBigEndian())
650     return nullptr;
651 
652   // Fold load from stack followed by sext.w into lw.
653   // TODO: Fold with sext.b, sext.h, zext.b, zext.h, zext.w?
654   if (Ops.size() != 1 || Ops[0] != 1)
655    return nullptr;
656 
657   unsigned LoadOpc;
658   switch (MI.getOpcode()) {
659   default:
660     if (RISCV::isSEXT_W(MI)) {
661       LoadOpc = RISCV::LW;
662       break;
663     }
664     if (RISCV::isZEXT_W(MI)) {
665       LoadOpc = RISCV::LWU;
666       break;
667     }
668     if (RISCV::isZEXT_B(MI)) {
669       LoadOpc = RISCV::LBU;
670       break;
671     }
672     return nullptr;
673   case RISCV::SEXT_H:
674     LoadOpc = RISCV::LH;
675     break;
676   case RISCV::SEXT_B:
677     LoadOpc = RISCV::LB;
678     break;
679   case RISCV::ZEXT_H_RV32:
680   case RISCV::ZEXT_H_RV64:
681     LoadOpc = RISCV::LHU;
682     break;
683   }
684 
685   MachineMemOperand *MMO = MF.getMachineMemOperand(
686       MachinePointerInfo::getFixedStack(MF, FrameIndex),
687       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIndex),
688       MFI.getObjectAlign(FrameIndex));
689 
690   Register DstReg = MI.getOperand(0).getReg();
691   return BuildMI(*MI.getParent(), InsertPt, MI.getDebugLoc(), get(LoadOpc),
692                  DstReg)
693       .addFrameIndex(FrameIndex)
694       .addImm(0)
695       .addMemOperand(MMO);
696 }
697 
698 void RISCVInstrInfo::movImm(MachineBasicBlock &MBB,
699                             MachineBasicBlock::iterator MBBI,
700                             const DebugLoc &DL, Register DstReg, uint64_t Val,
701                             MachineInstr::MIFlag Flag) const {
702   Register SrcReg = RISCV::X0;
703 
704   if (!STI.is64Bit() && !isInt<32>(Val))
705     report_fatal_error("Should only materialize 32-bit constants for RV32");
706 
707   RISCVMatInt::InstSeq Seq =
708       RISCVMatInt::generateInstSeq(Val, STI.getFeatureBits());
709   assert(!Seq.empty());
710 
711   for (RISCVMatInt::Inst &Inst : Seq) {
712     switch (Inst.getOpndKind()) {
713     case RISCVMatInt::Imm:
714       BuildMI(MBB, MBBI, DL, get(Inst.Opc), DstReg)
715           .addImm(Inst.Imm)
716           .setMIFlag(Flag);
717       break;
718     case RISCVMatInt::RegX0:
719       BuildMI(MBB, MBBI, DL, get(Inst.Opc), DstReg)
720           .addReg(SrcReg, RegState::Kill)
721           .addReg(RISCV::X0)
722           .setMIFlag(Flag);
723       break;
724     case RISCVMatInt::RegReg:
725       BuildMI(MBB, MBBI, DL, get(Inst.Opc), DstReg)
726           .addReg(SrcReg, RegState::Kill)
727           .addReg(SrcReg, RegState::Kill)
728           .setMIFlag(Flag);
729       break;
730     case RISCVMatInt::RegImm:
731       BuildMI(MBB, MBBI, DL, get(Inst.Opc), DstReg)
732           .addReg(SrcReg, RegState::Kill)
733           .addImm(Inst.Imm)
734           .setMIFlag(Flag);
735       break;
736     }
737 
738     // Only the first instruction has X0 as its source.
739     SrcReg = DstReg;
740   }
741 }
742 
743 static RISCVCC::CondCode getCondFromBranchOpc(unsigned Opc) {
744   switch (Opc) {
745   default:
746     return RISCVCC::COND_INVALID;
747   case RISCV::BEQ:
748     return RISCVCC::COND_EQ;
749   case RISCV::BNE:
750     return RISCVCC::COND_NE;
751   case RISCV::BLT:
752     return RISCVCC::COND_LT;
753   case RISCV::BGE:
754     return RISCVCC::COND_GE;
755   case RISCV::BLTU:
756     return RISCVCC::COND_LTU;
757   case RISCV::BGEU:
758     return RISCVCC::COND_GEU;
759   }
760 }
761 
762 // The contents of values added to Cond are not examined outside of
763 // RISCVInstrInfo, giving us flexibility in what to push to it. For RISCV, we
764 // push BranchOpcode, Reg1, Reg2.
765 static void parseCondBranch(MachineInstr &LastInst, MachineBasicBlock *&Target,
766                             SmallVectorImpl<MachineOperand> &Cond) {
767   // Block ends with fall-through condbranch.
768   assert(LastInst.getDesc().isConditionalBranch() &&
769          "Unknown conditional branch");
770   Target = LastInst.getOperand(2).getMBB();
771   unsigned CC = getCondFromBranchOpc(LastInst.getOpcode());
772   Cond.push_back(MachineOperand::CreateImm(CC));
773   Cond.push_back(LastInst.getOperand(0));
774   Cond.push_back(LastInst.getOperand(1));
775 }
776 
777 const MCInstrDesc &RISCVInstrInfo::getBrCond(RISCVCC::CondCode CC) const {
778   switch (CC) {
779   default:
780     llvm_unreachable("Unknown condition code!");
781   case RISCVCC::COND_EQ:
782     return get(RISCV::BEQ);
783   case RISCVCC::COND_NE:
784     return get(RISCV::BNE);
785   case RISCVCC::COND_LT:
786     return get(RISCV::BLT);
787   case RISCVCC::COND_GE:
788     return get(RISCV::BGE);
789   case RISCVCC::COND_LTU:
790     return get(RISCV::BLTU);
791   case RISCVCC::COND_GEU:
792     return get(RISCV::BGEU);
793   }
794 }
795 
796 RISCVCC::CondCode RISCVCC::getOppositeBranchCondition(RISCVCC::CondCode CC) {
797   switch (CC) {
798   default:
799     llvm_unreachable("Unrecognized conditional branch");
800   case RISCVCC::COND_EQ:
801     return RISCVCC::COND_NE;
802   case RISCVCC::COND_NE:
803     return RISCVCC::COND_EQ;
804   case RISCVCC::COND_LT:
805     return RISCVCC::COND_GE;
806   case RISCVCC::COND_GE:
807     return RISCVCC::COND_LT;
808   case RISCVCC::COND_LTU:
809     return RISCVCC::COND_GEU;
810   case RISCVCC::COND_GEU:
811     return RISCVCC::COND_LTU;
812   }
813 }
814 
815 bool RISCVInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
816                                    MachineBasicBlock *&TBB,
817                                    MachineBasicBlock *&FBB,
818                                    SmallVectorImpl<MachineOperand> &Cond,
819                                    bool AllowModify) const {
820   TBB = FBB = nullptr;
821   Cond.clear();
822 
823   // If the block has no terminators, it just falls into the block after it.
824   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
825   if (I == MBB.end() || !isUnpredicatedTerminator(*I))
826     return false;
827 
828   // Count the number of terminators and find the first unconditional or
829   // indirect branch.
830   MachineBasicBlock::iterator FirstUncondOrIndirectBr = MBB.end();
831   int NumTerminators = 0;
832   for (auto J = I.getReverse(); J != MBB.rend() && isUnpredicatedTerminator(*J);
833        J++) {
834     NumTerminators++;
835     if (J->getDesc().isUnconditionalBranch() ||
836         J->getDesc().isIndirectBranch()) {
837       FirstUncondOrIndirectBr = J.getReverse();
838     }
839   }
840 
841   // If AllowModify is true, we can erase any terminators after
842   // FirstUncondOrIndirectBR.
843   if (AllowModify && FirstUncondOrIndirectBr != MBB.end()) {
844     while (std::next(FirstUncondOrIndirectBr) != MBB.end()) {
845       std::next(FirstUncondOrIndirectBr)->eraseFromParent();
846       NumTerminators--;
847     }
848     I = FirstUncondOrIndirectBr;
849   }
850 
851   // We can't handle blocks that end in an indirect branch.
852   if (I->getDesc().isIndirectBranch())
853     return true;
854 
855   // We can't handle blocks with more than 2 terminators.
856   if (NumTerminators > 2)
857     return true;
858 
859   // Handle a single unconditional branch.
860   if (NumTerminators == 1 && I->getDesc().isUnconditionalBranch()) {
861     TBB = getBranchDestBlock(*I);
862     return false;
863   }
864 
865   // Handle a single conditional branch.
866   if (NumTerminators == 1 && I->getDesc().isConditionalBranch()) {
867     parseCondBranch(*I, TBB, Cond);
868     return false;
869   }
870 
871   // Handle a conditional branch followed by an unconditional branch.
872   if (NumTerminators == 2 && std::prev(I)->getDesc().isConditionalBranch() &&
873       I->getDesc().isUnconditionalBranch()) {
874     parseCondBranch(*std::prev(I), TBB, Cond);
875     FBB = getBranchDestBlock(*I);
876     return false;
877   }
878 
879   // Otherwise, we can't handle this.
880   return true;
881 }
882 
883 unsigned RISCVInstrInfo::removeBranch(MachineBasicBlock &MBB,
884                                       int *BytesRemoved) const {
885   if (BytesRemoved)
886     *BytesRemoved = 0;
887   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
888   if (I == MBB.end())
889     return 0;
890 
891   if (!I->getDesc().isUnconditionalBranch() &&
892       !I->getDesc().isConditionalBranch())
893     return 0;
894 
895   // Remove the branch.
896   if (BytesRemoved)
897     *BytesRemoved += getInstSizeInBytes(*I);
898   I->eraseFromParent();
899 
900   I = MBB.end();
901 
902   if (I == MBB.begin())
903     return 1;
904   --I;
905   if (!I->getDesc().isConditionalBranch())
906     return 1;
907 
908   // Remove the branch.
909   if (BytesRemoved)
910     *BytesRemoved += getInstSizeInBytes(*I);
911   I->eraseFromParent();
912   return 2;
913 }
914 
915 // Inserts a branch into the end of the specific MachineBasicBlock, returning
916 // the number of instructions inserted.
917 unsigned RISCVInstrInfo::insertBranch(
918     MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
919     ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
920   if (BytesAdded)
921     *BytesAdded = 0;
922 
923   // Shouldn't be a fall through.
924   assert(TBB && "insertBranch must not be told to insert a fallthrough");
925   assert((Cond.size() == 3 || Cond.size() == 0) &&
926          "RISCV branch conditions have two components!");
927 
928   // Unconditional branch.
929   if (Cond.empty()) {
930     MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(TBB);
931     if (BytesAdded)
932       *BytesAdded += getInstSizeInBytes(MI);
933     return 1;
934   }
935 
936   // Either a one or two-way conditional branch.
937   auto CC = static_cast<RISCVCC::CondCode>(Cond[0].getImm());
938   MachineInstr &CondMI =
939       *BuildMI(&MBB, DL, getBrCond(CC)).add(Cond[1]).add(Cond[2]).addMBB(TBB);
940   if (BytesAdded)
941     *BytesAdded += getInstSizeInBytes(CondMI);
942 
943   // One-way conditional branch.
944   if (!FBB)
945     return 1;
946 
947   // Two-way conditional branch.
948   MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(FBB);
949   if (BytesAdded)
950     *BytesAdded += getInstSizeInBytes(MI);
951   return 2;
952 }
953 
954 void RISCVInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB,
955                                           MachineBasicBlock &DestBB,
956                                           MachineBasicBlock &RestoreBB,
957                                           const DebugLoc &DL, int64_t BrOffset,
958                                           RegScavenger *RS) const {
959   assert(RS && "RegScavenger required for long branching");
960   assert(MBB.empty() &&
961          "new block should be inserted for expanding unconditional branch");
962   assert(MBB.pred_size() == 1);
963 
964   MachineFunction *MF = MBB.getParent();
965   MachineRegisterInfo &MRI = MF->getRegInfo();
966 
967   if (!isInt<32>(BrOffset))
968     report_fatal_error(
969         "Branch offsets outside of the signed 32-bit range not supported");
970 
971   // FIXME: A virtual register must be used initially, as the register
972   // scavenger won't work with empty blocks (SIInstrInfo::insertIndirectBranch
973   // uses the same workaround).
974   Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
975   auto II = MBB.end();
976 
977   MachineInstr &MI = *BuildMI(MBB, II, DL, get(RISCV::PseudoJump))
978                           .addReg(ScratchReg, RegState::Define | RegState::Dead)
979                           .addMBB(&DestBB, RISCVII::MO_CALL);
980 
981   RS->enterBasicBlockEnd(MBB);
982   Register Scav = RS->scavengeRegisterBackwards(RISCV::GPRRegClass,
983                                                 MI.getIterator(), false, 0);
984   // TODO: The case when there is no scavenged register needs special handling.
985   assert(Scav != RISCV::NoRegister && "No register is scavenged!");
986   MRI.replaceRegWith(ScratchReg, Scav);
987   MRI.clearVirtRegs();
988   RS->setRegUsed(Scav);
989 }
990 
991 bool RISCVInstrInfo::reverseBranchCondition(
992     SmallVectorImpl<MachineOperand> &Cond) const {
993   assert((Cond.size() == 3) && "Invalid branch condition!");
994   auto CC = static_cast<RISCVCC::CondCode>(Cond[0].getImm());
995   Cond[0].setImm(getOppositeBranchCondition(CC));
996   return false;
997 }
998 
999 MachineBasicBlock *
1000 RISCVInstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
1001   assert(MI.getDesc().isBranch() && "Unexpected opcode!");
1002   // The branch target is always the last operand.
1003   int NumOp = MI.getNumExplicitOperands();
1004   return MI.getOperand(NumOp - 1).getMBB();
1005 }
1006 
1007 bool RISCVInstrInfo::isBranchOffsetInRange(unsigned BranchOp,
1008                                            int64_t BrOffset) const {
1009   unsigned XLen = STI.getXLen();
1010   // Ideally we could determine the supported branch offset from the
1011   // RISCVII::FormMask, but this can't be used for Pseudo instructions like
1012   // PseudoBR.
1013   switch (BranchOp) {
1014   default:
1015     llvm_unreachable("Unexpected opcode!");
1016   case RISCV::BEQ:
1017   case RISCV::BNE:
1018   case RISCV::BLT:
1019   case RISCV::BGE:
1020   case RISCV::BLTU:
1021   case RISCV::BGEU:
1022     return isIntN(13, BrOffset);
1023   case RISCV::JAL:
1024   case RISCV::PseudoBR:
1025     return isIntN(21, BrOffset);
1026   case RISCV::PseudoJump:
1027     return isIntN(32, SignExtend64(BrOffset + 0x800, XLen));
1028   }
1029 }
1030 
1031 unsigned RISCVInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1032   if (MI.isMetaInstruction())
1033     return 0;
1034 
1035   unsigned Opcode = MI.getOpcode();
1036 
1037   if (Opcode == TargetOpcode::INLINEASM ||
1038       Opcode == TargetOpcode::INLINEASM_BR) {
1039     const MachineFunction &MF = *MI.getParent()->getParent();
1040     const auto &TM = static_cast<const RISCVTargetMachine &>(MF.getTarget());
1041     return getInlineAsmLength(MI.getOperand(0).getSymbolName(),
1042                               *TM.getMCAsmInfo());
1043   }
1044 
1045   if (MI.getParent() && MI.getParent()->getParent()) {
1046     const auto MF = MI.getMF();
1047     const auto &TM = static_cast<const RISCVTargetMachine &>(MF->getTarget());
1048     const MCRegisterInfo &MRI = *TM.getMCRegisterInfo();
1049     const MCSubtargetInfo &STI = *TM.getMCSubtargetInfo();
1050     const RISCVSubtarget &ST = MF->getSubtarget<RISCVSubtarget>();
1051     if (isCompressibleInst(MI, &ST, MRI, STI))
1052       return 2;
1053   }
1054   return get(Opcode).getSize();
1055 }
1056 
1057 bool RISCVInstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const {
1058   const unsigned Opcode = MI.getOpcode();
1059   switch (Opcode) {
1060   default:
1061     break;
1062   case RISCV::FSGNJ_D:
1063   case RISCV::FSGNJ_S:
1064   case RISCV::FSGNJ_H:
1065     // The canonical floating-point move is fsgnj rd, rs, rs.
1066     return MI.getOperand(1).isReg() && MI.getOperand(2).isReg() &&
1067            MI.getOperand(1).getReg() == MI.getOperand(2).getReg();
1068   case RISCV::ADDI:
1069   case RISCV::ORI:
1070   case RISCV::XORI:
1071     return (MI.getOperand(1).isReg() &&
1072             MI.getOperand(1).getReg() == RISCV::X0) ||
1073            (MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0);
1074   }
1075   return MI.isAsCheapAsAMove();
1076 }
1077 
1078 Optional<DestSourcePair>
1079 RISCVInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
1080   if (MI.isMoveReg())
1081     return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1082   switch (MI.getOpcode()) {
1083   default:
1084     break;
1085   case RISCV::ADDI:
1086     // Operand 1 can be a frameindex but callers expect registers
1087     if (MI.getOperand(1).isReg() && MI.getOperand(2).isImm() &&
1088         MI.getOperand(2).getImm() == 0)
1089       return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1090     break;
1091   case RISCV::FSGNJ_D:
1092   case RISCV::FSGNJ_S:
1093   case RISCV::FSGNJ_H:
1094     // The canonical floating-point move is fsgnj rd, rs, rs.
1095     if (MI.getOperand(1).isReg() && MI.getOperand(2).isReg() &&
1096         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
1097       return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1098     break;
1099   }
1100   return None;
1101 }
1102 
1103 bool RISCVInstrInfo::verifyInstruction(const MachineInstr &MI,
1104                                        StringRef &ErrInfo) const {
1105   const MCInstrInfo *MCII = STI.getInstrInfo();
1106   MCInstrDesc const &Desc = MCII->get(MI.getOpcode());
1107 
1108   for (auto &OI : enumerate(Desc.operands())) {
1109     unsigned OpType = OI.value().OperandType;
1110     if (OpType >= RISCVOp::OPERAND_FIRST_RISCV_IMM &&
1111         OpType <= RISCVOp::OPERAND_LAST_RISCV_IMM) {
1112       const MachineOperand &MO = MI.getOperand(OI.index());
1113       if (MO.isImm()) {
1114         int64_t Imm = MO.getImm();
1115         bool Ok;
1116         switch (OpType) {
1117         default:
1118           llvm_unreachable("Unexpected operand type");
1119 
1120           // clang-format off
1121 #define CASE_OPERAND_UIMM(NUM)                                                 \
1122   case RISCVOp::OPERAND_UIMM##NUM:                                             \
1123     Ok = isUInt<NUM>(Imm);                                                     \
1124     break;
1125         CASE_OPERAND_UIMM(2)
1126         CASE_OPERAND_UIMM(3)
1127         CASE_OPERAND_UIMM(4)
1128         CASE_OPERAND_UIMM(5)
1129         CASE_OPERAND_UIMM(7)
1130         CASE_OPERAND_UIMM(12)
1131         CASE_OPERAND_UIMM(20)
1132           // clang-format on
1133         case RISCVOp::OPERAND_SIMM12:
1134           Ok = isInt<12>(Imm);
1135           break;
1136         case RISCVOp::OPERAND_SIMM12_LSB00000:
1137           Ok = isShiftedInt<7, 5>(Imm);
1138           break;
1139         case RISCVOp::OPERAND_UIMMLOG2XLEN:
1140           if (STI.getTargetTriple().isArch64Bit())
1141             Ok = isUInt<6>(Imm);
1142           else
1143             Ok = isUInt<5>(Imm);
1144           break;
1145         case RISCVOp::OPERAND_RVKRNUM:
1146           Ok = Imm >= 0 && Imm <= 10;
1147           break;
1148         }
1149         if (!Ok) {
1150           ErrInfo = "Invalid immediate";
1151           return false;
1152         }
1153       }
1154     }
1155   }
1156 
1157   return true;
1158 }
1159 
1160 // Return true if get the base operand, byte offset of an instruction and the
1161 // memory width. Width is the size of memory that is being loaded/stored.
1162 bool RISCVInstrInfo::getMemOperandWithOffsetWidth(
1163     const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
1164     unsigned &Width, const TargetRegisterInfo *TRI) const {
1165   if (!LdSt.mayLoadOrStore())
1166     return false;
1167 
1168   // Here we assume the standard RISC-V ISA, which uses a base+offset
1169   // addressing mode. You'll need to relax these conditions to support custom
1170   // load/stores instructions.
1171   if (LdSt.getNumExplicitOperands() != 3)
1172     return false;
1173   if (!LdSt.getOperand(1).isReg() || !LdSt.getOperand(2).isImm())
1174     return false;
1175 
1176   if (!LdSt.hasOneMemOperand())
1177     return false;
1178 
1179   Width = (*LdSt.memoperands_begin())->getSize();
1180   BaseReg = &LdSt.getOperand(1);
1181   Offset = LdSt.getOperand(2).getImm();
1182   return true;
1183 }
1184 
1185 bool RISCVInstrInfo::areMemAccessesTriviallyDisjoint(
1186     const MachineInstr &MIa, const MachineInstr &MIb) const {
1187   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
1188   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
1189 
1190   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
1191       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
1192     return false;
1193 
1194   // Retrieve the base register, offset from the base register and width. Width
1195   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
1196   // base registers are identical, and the offset of a lower memory access +
1197   // the width doesn't overlap the offset of a higher memory access,
1198   // then the memory accesses are different.
1199   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
1200   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
1201   int64_t OffsetA = 0, OffsetB = 0;
1202   unsigned int WidthA = 0, WidthB = 0;
1203   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
1204       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
1205     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
1206       int LowOffset = std::min(OffsetA, OffsetB);
1207       int HighOffset = std::max(OffsetA, OffsetB);
1208       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1209       if (LowOffset + LowWidth <= HighOffset)
1210         return true;
1211     }
1212   }
1213   return false;
1214 }
1215 
1216 std::pair<unsigned, unsigned>
1217 RISCVInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1218   const unsigned Mask = RISCVII::MO_DIRECT_FLAG_MASK;
1219   return std::make_pair(TF & Mask, TF & ~Mask);
1220 }
1221 
1222 ArrayRef<std::pair<unsigned, const char *>>
1223 RISCVInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1224   using namespace RISCVII;
1225   static const std::pair<unsigned, const char *> TargetFlags[] = {
1226       {MO_CALL, "riscv-call"},
1227       {MO_PLT, "riscv-plt"},
1228       {MO_LO, "riscv-lo"},
1229       {MO_HI, "riscv-hi"},
1230       {MO_PCREL_LO, "riscv-pcrel-lo"},
1231       {MO_PCREL_HI, "riscv-pcrel-hi"},
1232       {MO_GOT_HI, "riscv-got-hi"},
1233       {MO_TPREL_LO, "riscv-tprel-lo"},
1234       {MO_TPREL_HI, "riscv-tprel-hi"},
1235       {MO_TPREL_ADD, "riscv-tprel-add"},
1236       {MO_TLS_GOT_HI, "riscv-tls-got-hi"},
1237       {MO_TLS_GD_HI, "riscv-tls-gd-hi"}};
1238   return makeArrayRef(TargetFlags);
1239 }
1240 bool RISCVInstrInfo::isFunctionSafeToOutlineFrom(
1241     MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
1242   const Function &F = MF.getFunction();
1243 
1244   // Can F be deduplicated by the linker? If it can, don't outline from it.
1245   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
1246     return false;
1247 
1248   // Don't outline from functions with section markings; the program could
1249   // expect that all the code is in the named section.
1250   if (F.hasSection())
1251     return false;
1252 
1253   // It's safe to outline from MF.
1254   return true;
1255 }
1256 
1257 bool RISCVInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
1258                                             unsigned &Flags) const {
1259   // More accurate safety checking is done in getOutliningCandidateInfo.
1260   return TargetInstrInfo::isMBBSafeToOutlineFrom(MBB, Flags);
1261 }
1262 
1263 // Enum values indicating how an outlined call should be constructed.
1264 enum MachineOutlinerConstructionID {
1265   MachineOutlinerDefault
1266 };
1267 
1268 bool RISCVInstrInfo::shouldOutlineFromFunctionByDefault(
1269     MachineFunction &MF) const {
1270   return MF.getFunction().hasMinSize();
1271 }
1272 
1273 outliner::OutlinedFunction RISCVInstrInfo::getOutliningCandidateInfo(
1274     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
1275 
1276   // First we need to filter out candidates where the X5 register (IE t0) can't
1277   // be used to setup the function call.
1278   auto CannotInsertCall = [](outliner::Candidate &C) {
1279     const TargetRegisterInfo *TRI = C.getMF()->getSubtarget().getRegisterInfo();
1280     return !C.isAvailableAcrossAndOutOfSeq(RISCV::X5, *TRI);
1281   };
1282 
1283   llvm::erase_if(RepeatedSequenceLocs, CannotInsertCall);
1284 
1285   // If the sequence doesn't have enough candidates left, then we're done.
1286   if (RepeatedSequenceLocs.size() < 2)
1287     return outliner::OutlinedFunction();
1288 
1289   unsigned SequenceSize = 0;
1290 
1291   auto I = RepeatedSequenceLocs[0].front();
1292   auto E = std::next(RepeatedSequenceLocs[0].back());
1293   for (; I != E; ++I)
1294     SequenceSize += getInstSizeInBytes(*I);
1295 
1296   // call t0, function = 8 bytes.
1297   unsigned CallOverhead = 8;
1298   for (auto &C : RepeatedSequenceLocs)
1299     C.setCallInfo(MachineOutlinerDefault, CallOverhead);
1300 
1301   // jr t0 = 4 bytes, 2 bytes if compressed instructions are enabled.
1302   unsigned FrameOverhead = 4;
1303   if (RepeatedSequenceLocs[0].getMF()->getSubtarget()
1304           .getFeatureBits()[RISCV::FeatureStdExtC])
1305     FrameOverhead = 2;
1306 
1307   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
1308                                     FrameOverhead, MachineOutlinerDefault);
1309 }
1310 
1311 outliner::InstrType
1312 RISCVInstrInfo::getOutliningType(MachineBasicBlock::iterator &MBBI,
1313                                  unsigned Flags) const {
1314   MachineInstr &MI = *MBBI;
1315   MachineBasicBlock *MBB = MI.getParent();
1316   const TargetRegisterInfo *TRI =
1317       MBB->getParent()->getSubtarget().getRegisterInfo();
1318 
1319   // Positions generally can't safely be outlined.
1320   if (MI.isPosition()) {
1321     // We can manually strip out CFI instructions later.
1322     if (MI.isCFIInstruction())
1323       // If current function has exception handling code, we can't outline &
1324       // strip these CFI instructions since it may break .eh_frame section
1325       // needed in unwinding.
1326       return MI.getMF()->getFunction().needsUnwindTableEntry()
1327                  ? outliner::InstrType::Illegal
1328                  : outliner::InstrType::Invisible;
1329 
1330     return outliner::InstrType::Illegal;
1331   }
1332 
1333   // Don't trust the user to write safe inline assembly.
1334   if (MI.isInlineAsm())
1335     return outliner::InstrType::Illegal;
1336 
1337   // We can't outline branches to other basic blocks.
1338   if (MI.isTerminator() && !MBB->succ_empty())
1339     return outliner::InstrType::Illegal;
1340 
1341   // We need support for tail calls to outlined functions before return
1342   // statements can be allowed.
1343   if (MI.isReturn())
1344     return outliner::InstrType::Illegal;
1345 
1346   // Don't allow modifying the X5 register which we use for return addresses for
1347   // these outlined functions.
1348   if (MI.modifiesRegister(RISCV::X5, TRI) ||
1349       MI.getDesc().hasImplicitDefOfPhysReg(RISCV::X5))
1350     return outliner::InstrType::Illegal;
1351 
1352   // Make sure the operands don't reference something unsafe.
1353   for (const auto &MO : MI.operands())
1354     if (MO.isMBB() || MO.isBlockAddress() || MO.isCPI() || MO.isJTI())
1355       return outliner::InstrType::Illegal;
1356 
1357   // Don't allow instructions which won't be materialized to impact outlining
1358   // analysis.
1359   if (MI.isMetaInstruction())
1360     return outliner::InstrType::Invisible;
1361 
1362   return outliner::InstrType::Legal;
1363 }
1364 
1365 void RISCVInstrInfo::buildOutlinedFrame(
1366     MachineBasicBlock &MBB, MachineFunction &MF,
1367     const outliner::OutlinedFunction &OF) const {
1368 
1369   // Strip out any CFI instructions
1370   bool Changed = true;
1371   while (Changed) {
1372     Changed = false;
1373     auto I = MBB.begin();
1374     auto E = MBB.end();
1375     for (; I != E; ++I) {
1376       if (I->isCFIInstruction()) {
1377         I->removeFromParent();
1378         Changed = true;
1379         break;
1380       }
1381     }
1382   }
1383 
1384   MBB.addLiveIn(RISCV::X5);
1385 
1386   // Add in a return instruction to the end of the outlined frame.
1387   MBB.insert(MBB.end(), BuildMI(MF, DebugLoc(), get(RISCV::JALR))
1388       .addReg(RISCV::X0, RegState::Define)
1389       .addReg(RISCV::X5)
1390       .addImm(0));
1391 }
1392 
1393 MachineBasicBlock::iterator RISCVInstrInfo::insertOutlinedCall(
1394     Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
1395     MachineFunction &MF, outliner::Candidate &C) const {
1396 
1397   // Add in a call instruction to the outlined function at the given location.
1398   It = MBB.insert(It,
1399                   BuildMI(MF, DebugLoc(), get(RISCV::PseudoCALLReg), RISCV::X5)
1400                       .addGlobalAddress(M.getNamedValue(MF.getName()), 0,
1401                                         RISCVII::MO_CALL));
1402   return It;
1403 }
1404 
1405 // MIR printer helper function to annotate Operands with a comment.
1406 std::string RISCVInstrInfo::createMIROperandComment(
1407     const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
1408     const TargetRegisterInfo *TRI) const {
1409   // Print a generic comment for this operand if there is one.
1410   std::string GenericComment =
1411       TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
1412   if (!GenericComment.empty())
1413     return GenericComment;
1414 
1415   // If not, we must have an immediate operand.
1416   if (!Op.isImm())
1417     return std::string();
1418 
1419   std::string Comment;
1420   raw_string_ostream OS(Comment);
1421 
1422   uint64_t TSFlags = MI.getDesc().TSFlags;
1423 
1424   // Print the full VType operand of vsetvli/vsetivli instructions, and the SEW
1425   // operand of vector codegen pseudos.
1426   if ((MI.getOpcode() == RISCV::VSETVLI || MI.getOpcode() == RISCV::VSETIVLI ||
1427        MI.getOpcode() == RISCV::PseudoVSETVLI ||
1428        MI.getOpcode() == RISCV::PseudoVSETIVLI ||
1429        MI.getOpcode() == RISCV::PseudoVSETVLIX0) &&
1430       OpIdx == 2) {
1431     unsigned Imm = MI.getOperand(OpIdx).getImm();
1432     RISCVVType::printVType(Imm, OS);
1433   } else if (RISCVII::hasSEWOp(TSFlags)) {
1434     unsigned NumOperands = MI.getNumExplicitOperands();
1435     bool HasPolicy = RISCVII::hasVecPolicyOp(TSFlags);
1436 
1437     // The SEW operand is before any policy operand.
1438     if (OpIdx != NumOperands - HasPolicy - 1)
1439       return std::string();
1440 
1441     unsigned Log2SEW = MI.getOperand(OpIdx).getImm();
1442     unsigned SEW = Log2SEW ? 1 << Log2SEW : 8;
1443     assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");
1444 
1445     OS << "e" << SEW;
1446   }
1447 
1448   OS.flush();
1449   return Comment;
1450 }
1451 
1452 // clang-format off
1453 #define CASE_VFMA_OPCODE_COMMON(OP, TYPE, LMUL)                                \
1454   RISCV::PseudoV##OP##_##TYPE##_##LMUL
1455 
1456 #define CASE_VFMA_OPCODE_LMULS_M1(OP, TYPE)                                    \
1457   CASE_VFMA_OPCODE_COMMON(OP, TYPE, M1):                                       \
1458   case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M2):                                  \
1459   case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M4):                                  \
1460   case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M8)
1461 
1462 #define CASE_VFMA_OPCODE_LMULS_MF2(OP, TYPE)                                   \
1463   CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF2):                                      \
1464   case CASE_VFMA_OPCODE_LMULS_M1(OP, TYPE)
1465 
1466 #define CASE_VFMA_OPCODE_LMULS_MF4(OP, TYPE)                                   \
1467   CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF4):                                      \
1468   case CASE_VFMA_OPCODE_LMULS_MF2(OP, TYPE)
1469 
1470 #define CASE_VFMA_OPCODE_LMULS(OP, TYPE)                                       \
1471   CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF8):                                      \
1472   case CASE_VFMA_OPCODE_LMULS_MF4(OP, TYPE)
1473 
1474 #define CASE_VFMA_SPLATS(OP)                                                   \
1475   CASE_VFMA_OPCODE_LMULS_MF4(OP, VF16):                                        \
1476   case CASE_VFMA_OPCODE_LMULS_MF2(OP, VF32):                                   \
1477   case CASE_VFMA_OPCODE_LMULS_M1(OP, VF64)
1478 // clang-format on
1479 
1480 bool RISCVInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
1481                                            unsigned &SrcOpIdx1,
1482                                            unsigned &SrcOpIdx2) const {
1483   const MCInstrDesc &Desc = MI.getDesc();
1484   if (!Desc.isCommutable())
1485     return false;
1486 
1487   switch (MI.getOpcode()) {
1488   case CASE_VFMA_SPLATS(FMADD):
1489   case CASE_VFMA_SPLATS(FMSUB):
1490   case CASE_VFMA_SPLATS(FMACC):
1491   case CASE_VFMA_SPLATS(FMSAC):
1492   case CASE_VFMA_SPLATS(FNMADD):
1493   case CASE_VFMA_SPLATS(FNMSUB):
1494   case CASE_VFMA_SPLATS(FNMACC):
1495   case CASE_VFMA_SPLATS(FNMSAC):
1496   case CASE_VFMA_OPCODE_LMULS_MF4(FMACC, VV):
1497   case CASE_VFMA_OPCODE_LMULS_MF4(FMSAC, VV):
1498   case CASE_VFMA_OPCODE_LMULS_MF4(FNMACC, VV):
1499   case CASE_VFMA_OPCODE_LMULS_MF4(FNMSAC, VV):
1500   case CASE_VFMA_OPCODE_LMULS(MADD, VX):
1501   case CASE_VFMA_OPCODE_LMULS(NMSUB, VX):
1502   case CASE_VFMA_OPCODE_LMULS(MACC, VX):
1503   case CASE_VFMA_OPCODE_LMULS(NMSAC, VX):
1504   case CASE_VFMA_OPCODE_LMULS(MACC, VV):
1505   case CASE_VFMA_OPCODE_LMULS(NMSAC, VV): {
1506     // If the tail policy is undisturbed we can't commute.
1507     assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags));
1508     if ((MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 1) == 0)
1509       return false;
1510 
1511     // For these instructions we can only swap operand 1 and operand 3 by
1512     // changing the opcode.
1513     unsigned CommutableOpIdx1 = 1;
1514     unsigned CommutableOpIdx2 = 3;
1515     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
1516                               CommutableOpIdx2))
1517       return false;
1518     return true;
1519   }
1520   case CASE_VFMA_OPCODE_LMULS_MF4(FMADD, VV):
1521   case CASE_VFMA_OPCODE_LMULS_MF4(FMSUB, VV):
1522   case CASE_VFMA_OPCODE_LMULS_MF4(FNMADD, VV):
1523   case CASE_VFMA_OPCODE_LMULS_MF4(FNMSUB, VV):
1524   case CASE_VFMA_OPCODE_LMULS(MADD, VV):
1525   case CASE_VFMA_OPCODE_LMULS(NMSUB, VV): {
1526     // If the tail policy is undisturbed we can't commute.
1527     assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags));
1528     if ((MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 1) == 0)
1529       return false;
1530 
1531     // For these instructions we have more freedom. We can commute with the
1532     // other multiplicand or with the addend/subtrahend/minuend.
1533 
1534     // Any fixed operand must be from source 1, 2 or 3.
1535     if (SrcOpIdx1 != CommuteAnyOperandIndex && SrcOpIdx1 > 3)
1536       return false;
1537     if (SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx2 > 3)
1538       return false;
1539 
1540     // It both ops are fixed one must be the tied source.
1541     if (SrcOpIdx1 != CommuteAnyOperandIndex &&
1542         SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx1 != 1 && SrcOpIdx2 != 1)
1543       return false;
1544 
1545     // Look for two different register operands assumed to be commutable
1546     // regardless of the FMA opcode. The FMA opcode is adjusted later if
1547     // needed.
1548     if (SrcOpIdx1 == CommuteAnyOperandIndex ||
1549         SrcOpIdx2 == CommuteAnyOperandIndex) {
1550       // At least one of operands to be commuted is not specified and
1551       // this method is free to choose appropriate commutable operands.
1552       unsigned CommutableOpIdx1 = SrcOpIdx1;
1553       if (SrcOpIdx1 == SrcOpIdx2) {
1554         // Both of operands are not fixed. Set one of commutable
1555         // operands to the tied source.
1556         CommutableOpIdx1 = 1;
1557       } else if (SrcOpIdx1 == CommuteAnyOperandIndex) {
1558         // Only one of the operands is not fixed.
1559         CommutableOpIdx1 = SrcOpIdx2;
1560       }
1561 
1562       // CommutableOpIdx1 is well defined now. Let's choose another commutable
1563       // operand and assign its index to CommutableOpIdx2.
1564       unsigned CommutableOpIdx2;
1565       if (CommutableOpIdx1 != 1) {
1566         // If we haven't already used the tied source, we must use it now.
1567         CommutableOpIdx2 = 1;
1568       } else {
1569         Register Op1Reg = MI.getOperand(CommutableOpIdx1).getReg();
1570 
1571         // The commuted operands should have different registers.
1572         // Otherwise, the commute transformation does not change anything and
1573         // is useless. We use this as a hint to make our decision.
1574         if (Op1Reg != MI.getOperand(2).getReg())
1575           CommutableOpIdx2 = 2;
1576         else
1577           CommutableOpIdx2 = 3;
1578       }
1579 
1580       // Assign the found pair of commutable indices to SrcOpIdx1 and
1581       // SrcOpIdx2 to return those values.
1582       if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
1583                                 CommutableOpIdx2))
1584         return false;
1585     }
1586 
1587     return true;
1588   }
1589   }
1590 
1591   return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1592 }
1593 
1594 #define CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, LMUL)               \
1595   case RISCV::PseudoV##OLDOP##_##TYPE##_##LMUL:                                \
1596     Opc = RISCV::PseudoV##NEWOP##_##TYPE##_##LMUL;                             \
1597     break;
1598 
1599 #define CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE)                   \
1600   CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M1)                       \
1601   CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M2)                       \
1602   CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M4)                       \
1603   CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M8)
1604 
1605 #define CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE)                  \
1606   CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF2)                      \
1607   CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE)
1608 
1609 #define CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE)                  \
1610   CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF4)                      \
1611   CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE)
1612 
1613 #define CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, TYPE)                      \
1614   CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF8)                      \
1615   CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE)
1616 
1617 #define CASE_VFMA_CHANGE_OPCODE_SPLATS(OLDOP, NEWOP)                           \
1618   CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, VF16)                        \
1619   CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, VF32)                        \
1620   CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, VF64)
1621 
1622 MachineInstr *RISCVInstrInfo::commuteInstructionImpl(MachineInstr &MI,
1623                                                      bool NewMI,
1624                                                      unsigned OpIdx1,
1625                                                      unsigned OpIdx2) const {
1626   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
1627     if (NewMI)
1628       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
1629     return MI;
1630   };
1631 
1632   switch (MI.getOpcode()) {
1633   case CASE_VFMA_SPLATS(FMACC):
1634   case CASE_VFMA_SPLATS(FMADD):
1635   case CASE_VFMA_SPLATS(FMSAC):
1636   case CASE_VFMA_SPLATS(FMSUB):
1637   case CASE_VFMA_SPLATS(FNMACC):
1638   case CASE_VFMA_SPLATS(FNMADD):
1639   case CASE_VFMA_SPLATS(FNMSAC):
1640   case CASE_VFMA_SPLATS(FNMSUB):
1641   case CASE_VFMA_OPCODE_LMULS_MF4(FMACC, VV):
1642   case CASE_VFMA_OPCODE_LMULS_MF4(FMSAC, VV):
1643   case CASE_VFMA_OPCODE_LMULS_MF4(FNMACC, VV):
1644   case CASE_VFMA_OPCODE_LMULS_MF4(FNMSAC, VV):
1645   case CASE_VFMA_OPCODE_LMULS(MADD, VX):
1646   case CASE_VFMA_OPCODE_LMULS(NMSUB, VX):
1647   case CASE_VFMA_OPCODE_LMULS(MACC, VX):
1648   case CASE_VFMA_OPCODE_LMULS(NMSAC, VX):
1649   case CASE_VFMA_OPCODE_LMULS(MACC, VV):
1650   case CASE_VFMA_OPCODE_LMULS(NMSAC, VV): {
1651     // It only make sense to toggle these between clobbering the
1652     // addend/subtrahend/minuend one of the multiplicands.
1653     assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index");
1654     assert((OpIdx1 == 3 || OpIdx2 == 3) && "Unexpected opcode index");
1655     unsigned Opc;
1656     switch (MI.getOpcode()) {
1657       default:
1658         llvm_unreachable("Unexpected opcode");
1659       CASE_VFMA_CHANGE_OPCODE_SPLATS(FMACC, FMADD)
1660       CASE_VFMA_CHANGE_OPCODE_SPLATS(FMADD, FMACC)
1661       CASE_VFMA_CHANGE_OPCODE_SPLATS(FMSAC, FMSUB)
1662       CASE_VFMA_CHANGE_OPCODE_SPLATS(FMSUB, FMSAC)
1663       CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMACC, FNMADD)
1664       CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMADD, FNMACC)
1665       CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMSAC, FNMSUB)
1666       CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMSUB, FNMSAC)
1667       CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FMACC, FMADD, VV)
1668       CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FMSAC, FMSUB, VV)
1669       CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FNMACC, FNMADD, VV)
1670       CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FNMSAC, FNMSUB, VV)
1671       CASE_VFMA_CHANGE_OPCODE_LMULS(MACC, MADD, VX)
1672       CASE_VFMA_CHANGE_OPCODE_LMULS(MADD, MACC, VX)
1673       CASE_VFMA_CHANGE_OPCODE_LMULS(NMSAC, NMSUB, VX)
1674       CASE_VFMA_CHANGE_OPCODE_LMULS(NMSUB, NMSAC, VX)
1675       CASE_VFMA_CHANGE_OPCODE_LMULS(MACC, MADD, VV)
1676       CASE_VFMA_CHANGE_OPCODE_LMULS(NMSAC, NMSUB, VV)
1677     }
1678 
1679     auto &WorkingMI = cloneIfNew(MI);
1680     WorkingMI.setDesc(get(Opc));
1681     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1682                                                    OpIdx1, OpIdx2);
1683   }
1684   case CASE_VFMA_OPCODE_LMULS_MF4(FMADD, VV):
1685   case CASE_VFMA_OPCODE_LMULS_MF4(FMSUB, VV):
1686   case CASE_VFMA_OPCODE_LMULS_MF4(FNMADD, VV):
1687   case CASE_VFMA_OPCODE_LMULS_MF4(FNMSUB, VV):
1688   case CASE_VFMA_OPCODE_LMULS(MADD, VV):
1689   case CASE_VFMA_OPCODE_LMULS(NMSUB, VV): {
1690     assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index");
1691     // If one of the operands, is the addend we need to change opcode.
1692     // Otherwise we're just swapping 2 of the multiplicands.
1693     if (OpIdx1 == 3 || OpIdx2 == 3) {
1694       unsigned Opc;
1695       switch (MI.getOpcode()) {
1696         default:
1697           llvm_unreachable("Unexpected opcode");
1698         CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FMADD, FMACC, VV)
1699         CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FMSUB, FMSAC, VV)
1700         CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FNMADD, FNMACC, VV)
1701         CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FNMSUB, FNMSAC, VV)
1702         CASE_VFMA_CHANGE_OPCODE_LMULS(MADD, MACC, VV)
1703         CASE_VFMA_CHANGE_OPCODE_LMULS(NMSUB, NMSAC, VV)
1704       }
1705 
1706       auto &WorkingMI = cloneIfNew(MI);
1707       WorkingMI.setDesc(get(Opc));
1708       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1709                                                      OpIdx1, OpIdx2);
1710     }
1711     // Let the default code handle it.
1712     break;
1713   }
1714   }
1715 
1716   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1717 }
1718 
1719 #undef CASE_VFMA_CHANGE_OPCODE_SPLATS
1720 #undef CASE_VFMA_CHANGE_OPCODE_LMULS
1721 #undef CASE_VFMA_CHANGE_OPCODE_COMMON
1722 #undef CASE_VFMA_SPLATS
1723 #undef CASE_VFMA_OPCODE_LMULS
1724 #undef CASE_VFMA_OPCODE_COMMON
1725 
1726 // clang-format off
1727 #define CASE_WIDEOP_OPCODE_COMMON(OP, LMUL)                                    \
1728   RISCV::PseudoV##OP##_##LMUL##_TIED
1729 
1730 #define CASE_WIDEOP_OPCODE_LMULS_MF4(OP)                                       \
1731   CASE_WIDEOP_OPCODE_COMMON(OP, MF4):                                          \
1732   case CASE_WIDEOP_OPCODE_COMMON(OP, MF2):                                     \
1733   case CASE_WIDEOP_OPCODE_COMMON(OP, M1):                                      \
1734   case CASE_WIDEOP_OPCODE_COMMON(OP, M2):                                      \
1735   case CASE_WIDEOP_OPCODE_COMMON(OP, M4)
1736 
1737 #define CASE_WIDEOP_OPCODE_LMULS(OP)                                           \
1738   CASE_WIDEOP_OPCODE_COMMON(OP, MF8):                                          \
1739   case CASE_WIDEOP_OPCODE_LMULS_MF4(OP)
1740 // clang-format on
1741 
1742 #define CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, LMUL)                             \
1743   case RISCV::PseudoV##OP##_##LMUL##_TIED:                                     \
1744     NewOpc = RISCV::PseudoV##OP##_##LMUL;                                      \
1745     break;
1746 
1747 #define CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP)                                 \
1748   CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF4)                                    \
1749   CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF2)                                    \
1750   CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M1)                                     \
1751   CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M2)                                     \
1752   CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M4)
1753 
1754 #define CASE_WIDEOP_CHANGE_OPCODE_LMULS(OP)                                    \
1755   CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF8)                                    \
1756   CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP)
1757 
1758 MachineInstr *RISCVInstrInfo::convertToThreeAddress(MachineInstr &MI,
1759                                                     LiveVariables *LV,
1760                                                     LiveIntervals *LIS) const {
1761   switch (MI.getOpcode()) {
1762   default:
1763     break;
1764   case CASE_WIDEOP_OPCODE_LMULS_MF4(FWADD_WV):
1765   case CASE_WIDEOP_OPCODE_LMULS_MF4(FWSUB_WV):
1766   case CASE_WIDEOP_OPCODE_LMULS(WADD_WV):
1767   case CASE_WIDEOP_OPCODE_LMULS(WADDU_WV):
1768   case CASE_WIDEOP_OPCODE_LMULS(WSUB_WV):
1769   case CASE_WIDEOP_OPCODE_LMULS(WSUBU_WV): {
1770     // If the tail policy is undisturbed we can't convert.
1771     assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags) &&
1772            MI.getNumExplicitOperands() == 6);
1773     if ((MI.getOperand(5).getImm() & 1) == 0)
1774       return nullptr;
1775 
1776     // clang-format off
1777     unsigned NewOpc;
1778     switch (MI.getOpcode()) {
1779     default:
1780       llvm_unreachable("Unexpected opcode");
1781     CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(FWADD_WV)
1782     CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(FWSUB_WV)
1783     CASE_WIDEOP_CHANGE_OPCODE_LMULS(WADD_WV)
1784     CASE_WIDEOP_CHANGE_OPCODE_LMULS(WADDU_WV)
1785     CASE_WIDEOP_CHANGE_OPCODE_LMULS(WSUB_WV)
1786     CASE_WIDEOP_CHANGE_OPCODE_LMULS(WSUBU_WV)
1787     }
1788     // clang-format on
1789 
1790     MachineBasicBlock &MBB = *MI.getParent();
1791     MachineInstrBuilder MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
1792                                   .add(MI.getOperand(0))
1793                                   .add(MI.getOperand(1))
1794                                   .add(MI.getOperand(2))
1795                                   .add(MI.getOperand(3))
1796                                   .add(MI.getOperand(4));
1797     MIB.copyImplicitOps(MI);
1798 
1799     if (LV) {
1800       unsigned NumOps = MI.getNumOperands();
1801       for (unsigned I = 1; I < NumOps; ++I) {
1802         MachineOperand &Op = MI.getOperand(I);
1803         if (Op.isReg() && Op.isKill())
1804           LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
1805       }
1806     }
1807 
1808     if (LIS) {
1809       SlotIndex Idx = LIS->ReplaceMachineInstrInMaps(MI, *MIB);
1810 
1811       if (MI.getOperand(0).isEarlyClobber()) {
1812         // Use operand 1 was tied to early-clobber def operand 0, so its live
1813         // interval could have ended at an early-clobber slot. Now they are not
1814         // tied we need to update it to the normal register slot.
1815         LiveInterval &LI = LIS->getInterval(MI.getOperand(1).getReg());
1816         LiveRange::Segment *S = LI.getSegmentContaining(Idx);
1817         if (S->end == Idx.getRegSlot(true))
1818           S->end = Idx.getRegSlot();
1819       }
1820     }
1821 
1822     return MIB;
1823   }
1824   }
1825 
1826   return nullptr;
1827 }
1828 
1829 #undef CASE_WIDEOP_CHANGE_OPCODE_LMULS
1830 #undef CASE_WIDEOP_CHANGE_OPCODE_COMMON
1831 #undef CASE_WIDEOP_OPCODE_LMULS
1832 #undef CASE_WIDEOP_OPCODE_COMMON
1833 
1834 Register RISCVInstrInfo::getVLENFactoredAmount(MachineFunction &MF,
1835                                                MachineBasicBlock &MBB,
1836                                                MachineBasicBlock::iterator II,
1837                                                const DebugLoc &DL,
1838                                                int64_t Amount,
1839                                                MachineInstr::MIFlag Flag) const {
1840   assert(Amount > 0 && "There is no need to get VLEN scaled value.");
1841   assert(Amount % 8 == 0 &&
1842          "Reserve the stack by the multiple of one vector size.");
1843 
1844   MachineRegisterInfo &MRI = MF.getRegInfo();
1845   int64_t NumOfVReg = Amount / 8;
1846 
1847   Register VL = MRI.createVirtualRegister(&RISCV::GPRRegClass);
1848   BuildMI(MBB, II, DL, get(RISCV::PseudoReadVLENB), VL)
1849     .setMIFlag(Flag);
1850   assert(isInt<32>(NumOfVReg) &&
1851          "Expect the number of vector registers within 32-bits.");
1852   if (isPowerOf2_32(NumOfVReg)) {
1853     uint32_t ShiftAmount = Log2_32(NumOfVReg);
1854     if (ShiftAmount == 0)
1855       return VL;
1856     BuildMI(MBB, II, DL, get(RISCV::SLLI), VL)
1857         .addReg(VL, RegState::Kill)
1858         .addImm(ShiftAmount)
1859         .setMIFlag(Flag);
1860   } else if (STI.hasStdExtZba() &&
1861              ((NumOfVReg % 3 == 0 && isPowerOf2_64(NumOfVReg / 3)) ||
1862               (NumOfVReg % 5 == 0 && isPowerOf2_64(NumOfVReg / 5)) ||
1863               (NumOfVReg % 9 == 0 && isPowerOf2_64(NumOfVReg / 9)))) {
1864     // We can use Zba SHXADD+SLLI instructions for multiply in some cases.
1865     unsigned Opc;
1866     uint32_t ShiftAmount;
1867     if (NumOfVReg % 9 == 0) {
1868       Opc = RISCV::SH3ADD;
1869       ShiftAmount = Log2_64(NumOfVReg / 9);
1870     } else if (NumOfVReg % 5 == 0) {
1871       Opc = RISCV::SH2ADD;
1872       ShiftAmount = Log2_64(NumOfVReg / 5);
1873     } else if (NumOfVReg % 3 == 0) {
1874       Opc = RISCV::SH1ADD;
1875       ShiftAmount = Log2_64(NumOfVReg / 3);
1876     } else {
1877       llvm_unreachable("Unexpected number of vregs");
1878     }
1879     if (ShiftAmount)
1880       BuildMI(MBB, II, DL, get(RISCV::SLLI), VL)
1881           .addReg(VL, RegState::Kill)
1882           .addImm(ShiftAmount)
1883           .setMIFlag(Flag);
1884     BuildMI(MBB, II, DL, get(Opc), VL)
1885         .addReg(VL, RegState::Kill)
1886         .addReg(VL)
1887         .setMIFlag(Flag);
1888   } else if (isPowerOf2_32(NumOfVReg - 1)) {
1889     Register ScaledRegister = MRI.createVirtualRegister(&RISCV::GPRRegClass);
1890     uint32_t ShiftAmount = Log2_32(NumOfVReg - 1);
1891     BuildMI(MBB, II, DL, get(RISCV::SLLI), ScaledRegister)
1892         .addReg(VL)
1893         .addImm(ShiftAmount)
1894         .setMIFlag(Flag);
1895     BuildMI(MBB, II, DL, get(RISCV::ADD), VL)
1896         .addReg(ScaledRegister, RegState::Kill)
1897         .addReg(VL, RegState::Kill)
1898         .setMIFlag(Flag);
1899   } else if (isPowerOf2_32(NumOfVReg + 1)) {
1900     Register ScaledRegister = MRI.createVirtualRegister(&RISCV::GPRRegClass);
1901     uint32_t ShiftAmount = Log2_32(NumOfVReg + 1);
1902     BuildMI(MBB, II, DL, get(RISCV::SLLI), ScaledRegister)
1903         .addReg(VL)
1904         .addImm(ShiftAmount)
1905         .setMIFlag(Flag);
1906     BuildMI(MBB, II, DL, get(RISCV::SUB), VL)
1907         .addReg(ScaledRegister, RegState::Kill)
1908         .addReg(VL, RegState::Kill)
1909         .setMIFlag(Flag);
1910   } else {
1911     Register N = MRI.createVirtualRegister(&RISCV::GPRRegClass);
1912     movImm(MBB, II, DL, N, NumOfVReg, Flag);
1913     if (!STI.hasStdExtM() && !STI.hasStdExtZmmul())
1914       MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
1915           MF.getFunction(),
1916           "M- or Zmmul-extension must be enabled to calculate the vscaled size/"
1917           "offset."});
1918     BuildMI(MBB, II, DL, get(RISCV::MUL), VL)
1919         .addReg(VL, RegState::Kill)
1920         .addReg(N, RegState::Kill)
1921         .setMIFlag(Flag);
1922   }
1923 
1924   return VL;
1925 }
1926 
1927 // Returns true if this is the sext.w pattern, addiw rd, rs1, 0.
1928 bool RISCV::isSEXT_W(const MachineInstr &MI) {
1929   return MI.getOpcode() == RISCV::ADDIW && MI.getOperand(1).isReg() &&
1930          MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0;
1931 }
1932 
1933 // Returns true if this is the zext.w pattern, adduw rd, rs1, x0.
1934 bool RISCV::isZEXT_W(const MachineInstr &MI) {
1935   return MI.getOpcode() == RISCV::ADD_UW && MI.getOperand(1).isReg() &&
1936          MI.getOperand(2).isReg() && MI.getOperand(2).getReg() == RISCV::X0;
1937 }
1938 
1939 // Returns true if this is the zext.b pattern, andi rd, rs1, 255.
1940 bool RISCV::isZEXT_B(const MachineInstr &MI) {
1941   return MI.getOpcode() == RISCV::ANDI && MI.getOperand(1).isReg() &&
1942          MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 255;
1943 }
1944 
1945 static bool isRVVWholeLoadStore(unsigned Opcode) {
1946   switch (Opcode) {
1947   default:
1948     return false;
1949   case RISCV::VS1R_V:
1950   case RISCV::VS2R_V:
1951   case RISCV::VS4R_V:
1952   case RISCV::VS8R_V:
1953   case RISCV::VL1RE8_V:
1954   case RISCV::VL2RE8_V:
1955   case RISCV::VL4RE8_V:
1956   case RISCV::VL8RE8_V:
1957   case RISCV::VL1RE16_V:
1958   case RISCV::VL2RE16_V:
1959   case RISCV::VL4RE16_V:
1960   case RISCV::VL8RE16_V:
1961   case RISCV::VL1RE32_V:
1962   case RISCV::VL2RE32_V:
1963   case RISCV::VL4RE32_V:
1964   case RISCV::VL8RE32_V:
1965   case RISCV::VL1RE64_V:
1966   case RISCV::VL2RE64_V:
1967   case RISCV::VL4RE64_V:
1968   case RISCV::VL8RE64_V:
1969     return true;
1970   }
1971 }
1972 
1973 bool RISCV::isRVVSpill(const MachineInstr &MI) {
1974   // RVV lacks any support for immediate addressing for stack addresses, so be
1975   // conservative.
1976   unsigned Opcode = MI.getOpcode();
1977   if (!RISCVVPseudosTable::getPseudoInfo(Opcode) &&
1978       !isRVVWholeLoadStore(Opcode) && !isRVVSpillForZvlsseg(Opcode))
1979     return false;
1980   return true;
1981 }
1982 
1983 Optional<std::pair<unsigned, unsigned>>
1984 RISCV::isRVVSpillForZvlsseg(unsigned Opcode) {
1985   switch (Opcode) {
1986   default:
1987     return None;
1988   case RISCV::PseudoVSPILL2_M1:
1989   case RISCV::PseudoVRELOAD2_M1:
1990     return std::make_pair(2u, 1u);
1991   case RISCV::PseudoVSPILL2_M2:
1992   case RISCV::PseudoVRELOAD2_M2:
1993     return std::make_pair(2u, 2u);
1994   case RISCV::PseudoVSPILL2_M4:
1995   case RISCV::PseudoVRELOAD2_M4:
1996     return std::make_pair(2u, 4u);
1997   case RISCV::PseudoVSPILL3_M1:
1998   case RISCV::PseudoVRELOAD3_M1:
1999     return std::make_pair(3u, 1u);
2000   case RISCV::PseudoVSPILL3_M2:
2001   case RISCV::PseudoVRELOAD3_M2:
2002     return std::make_pair(3u, 2u);
2003   case RISCV::PseudoVSPILL4_M1:
2004   case RISCV::PseudoVRELOAD4_M1:
2005     return std::make_pair(4u, 1u);
2006   case RISCV::PseudoVSPILL4_M2:
2007   case RISCV::PseudoVRELOAD4_M2:
2008     return std::make_pair(4u, 2u);
2009   case RISCV::PseudoVSPILL5_M1:
2010   case RISCV::PseudoVRELOAD5_M1:
2011     return std::make_pair(5u, 1u);
2012   case RISCV::PseudoVSPILL6_M1:
2013   case RISCV::PseudoVRELOAD6_M1:
2014     return std::make_pair(6u, 1u);
2015   case RISCV::PseudoVSPILL7_M1:
2016   case RISCV::PseudoVRELOAD7_M1:
2017     return std::make_pair(7u, 1u);
2018   case RISCV::PseudoVSPILL8_M1:
2019   case RISCV::PseudoVRELOAD8_M1:
2020     return std::make_pair(8u, 1u);
2021   }
2022 }
2023 
2024 bool RISCV::isFaultFirstLoad(const MachineInstr &MI) {
2025   return MI.getNumExplicitDefs() == 2 && MI.modifiesRegister(RISCV::VL) &&
2026          !MI.isInlineAsm();
2027 }
2028