xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInsertWriteVXRM.cpp (revision b9fa1500cb2265b95927e19b9d2119ca26d65be3)
1 //===-- RISCVInsertWriteVXRM.cpp - Insert Write of RISC-V VXRM CSR --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts writes to the VXRM CSR as needed by vector instructions.
10 // Each instruction that uses VXRM carries an operand that contains its required
11 // VXRM value. This pass tries to optimize placement to avoid redundant writes
12 // to VXRM.
13 //
14 // This is done using 2 dataflow algorithms. The first is a forward data flow
15 // to calculate where a VXRM value is available. The second is a backwards
16 // dataflow to determine where a VXRM value is anticipated.
17 //
18 // Finally, we use the results of these two dataflows to insert VXRM writes
19 // where a value is anticipated, but not available.
20 //
21 // FIXME: This pass does not split critical edges, so there can still be some
22 // redundancy.
23 //
24 // FIXME: If we are willing to have writes that aren't always needed, we could
25 // reduce the number of VXRM writes in some cases.
26 //===----------------------------------------------------------------------===//
27 
28 #include "MCTargetDesc/RISCVBaseInfo.h"
29 #include "RISCV.h"
30 #include "RISCVSubtarget.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include <queue>
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "riscv-insert-write-vxrm"
37 #define RISCV_INSERT_WRITE_VXRM_NAME "RISC-V Insert Write VXRM Pass"
38 
39 namespace {
40 
41 class VXRMInfo {
42   uint8_t VXRMImm = 0;
43 
44   enum : uint8_t {
45     Uninitialized,
46     Static,
47     Unknown,
48   } State = Uninitialized;
49 
50 public:
51   VXRMInfo() {}
52 
53   static VXRMInfo getUnknown() {
54     VXRMInfo Info;
55     Info.setUnknown();
56     return Info;
57   }
58 
59   bool isValid() const { return State != Uninitialized; }
60   void setUnknown() { State = Unknown; }
61   bool isUnknown() const { return State == Unknown; }
62 
63   bool isStatic() const { return State == Static; }
64 
65   void setVXRMImm(unsigned Imm) {
66     assert(Imm <= 3 && "Unexpected VXRM value");
67     VXRMImm = Imm;
68     State = Static;
69   }
70   unsigned getVXRMImm() const {
71     assert(isStatic() && VXRMImm <= 3 && "Unexpected state");
72     return VXRMImm;
73   }
74 
75   bool operator==(const VXRMInfo &Other) const {
76     // Uninitialized is only equal to another Uninitialized.
77     if (State != Other.State)
78       return false;
79 
80     if (isStatic())
81       return VXRMImm == Other.VXRMImm;
82 
83     assert((isValid() || isUnknown()) && "Unexpected state");
84     return true;
85   }
86 
87   bool operator!=(const VXRMInfo &Other) const { return !(*this == Other); }
88 
89   // Calculate the VXRMInfo visible to a block assuming this and Other are
90   // both predecessors.
91   VXRMInfo intersect(const VXRMInfo &Other) const {
92     // If the new value isn't valid, ignore it.
93     if (!Other.isValid())
94       return *this;
95 
96     // If this value isn't valid, this must be the first predecessor, use it.
97     if (!isValid())
98       return Other;
99 
100     // If either is unknown, the result is unknown.
101     if (isUnknown() || Other.isUnknown())
102       return VXRMInfo::getUnknown();
103 
104     // If we have an exact match, return this.
105     if (*this == Other)
106       return *this;
107 
108     // Otherwise the result is unknown.
109     return VXRMInfo::getUnknown();
110   }
111 
112 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
113   /// Support for debugging, callable in GDB: V->dump()
114   LLVM_DUMP_METHOD void dump() const {
115     print(dbgs());
116     dbgs() << "\n";
117   }
118 
119   void print(raw_ostream &OS) const {
120     OS << '{';
121     if (!isValid())
122       OS << "Uninitialized";
123     else if (isUnknown())
124       OS << "Unknown";
125     else
126       OS << getVXRMImm();
127     OS << '}';
128   }
129 #endif
130 };
131 
132 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
133 LLVM_ATTRIBUTE_USED
134 inline raw_ostream &operator<<(raw_ostream &OS, const VXRMInfo &V) {
135   V.print(OS);
136   return OS;
137 }
138 #endif
139 
140 struct BlockData {
141   // Indicates if the block uses VXRM. Uninitialized means no use.
142   VXRMInfo VXRMUse;
143 
144   // Indicates the VXRM output from the block. Unitialized means transparent.
145   VXRMInfo VXRMOut;
146 
147   // Keeps track of the available VXRM value at the start of the basic bloc.
148   VXRMInfo AvailableIn;
149 
150   // Keeps track of the available VXRM value at the end of the basic block.
151   VXRMInfo AvailableOut;
152 
153   // Keeps track of what VXRM is anticipated at the start of the basic block.
154   VXRMInfo AnticipatedIn;
155 
156   // Keeps track of what VXRM is anticipated at the end of the basic block.
157   VXRMInfo AnticipatedOut;
158 
159   // Keeps track of whether the block is already in the queue.
160   bool InQueue;
161 
162   BlockData() = default;
163 };
164 
165 class RISCVInsertWriteVXRM : public MachineFunctionPass {
166   const TargetInstrInfo *TII;
167 
168   std::vector<BlockData> BlockInfo;
169   std::queue<const MachineBasicBlock *> WorkList;
170 
171 public:
172   static char ID;
173 
174   RISCVInsertWriteVXRM() : MachineFunctionPass(ID) {}
175 
176   bool runOnMachineFunction(MachineFunction &MF) override;
177 
178   void getAnalysisUsage(AnalysisUsage &AU) const override {
179     AU.setPreservesCFG();
180     MachineFunctionPass::getAnalysisUsage(AU);
181   }
182 
183   StringRef getPassName() const override {
184     return RISCV_INSERT_WRITE_VXRM_NAME;
185   }
186 
187 private:
188   bool computeVXRMChanges(const MachineBasicBlock &MBB);
189   void computeAvailable(const MachineBasicBlock &MBB);
190   void computeAnticipated(const MachineBasicBlock &MBB);
191   void emitWriteVXRM(MachineBasicBlock &MBB);
192 };
193 
194 } // end anonymous namespace
195 
196 char RISCVInsertWriteVXRM::ID = 0;
197 
198 INITIALIZE_PASS(RISCVInsertWriteVXRM, DEBUG_TYPE, RISCV_INSERT_WRITE_VXRM_NAME,
199                 false, false)
200 
201 static bool ignoresVXRM(const MachineInstr &MI) {
202   switch (RISCV::getRVVMCOpcode(MI.getOpcode())) {
203   default:
204     return false;
205   case RISCV::VNCLIP_WI:
206   case RISCV::VNCLIPU_WI:
207     return MI.getOperand(3).getImm() == 0;
208   }
209 }
210 
211 bool RISCVInsertWriteVXRM::computeVXRMChanges(const MachineBasicBlock &MBB) {
212   BlockData &BBInfo = BlockInfo[MBB.getNumber()];
213 
214   bool NeedVXRMWrite = false;
215   for (const MachineInstr &MI : MBB) {
216     int VXRMIdx = RISCVII::getVXRMOpNum(MI.getDesc());
217     if (VXRMIdx >= 0 && !ignoresVXRM(MI)) {
218       unsigned NewVXRMImm = MI.getOperand(VXRMIdx).getImm();
219 
220       if (!BBInfo.VXRMUse.isValid())
221         BBInfo.VXRMUse.setVXRMImm(NewVXRMImm);
222 
223       BBInfo.VXRMOut.setVXRMImm(NewVXRMImm);
224       NeedVXRMWrite = true;
225       continue;
226     }
227 
228     if (MI.isCall() || MI.isInlineAsm() || MI.modifiesRegister(RISCV::VXRM)) {
229       if (!BBInfo.VXRMUse.isValid())
230         BBInfo.VXRMUse.setUnknown();
231 
232       BBInfo.VXRMOut.setUnknown();
233     }
234   }
235 
236   return NeedVXRMWrite;
237 }
238 
239 void RISCVInsertWriteVXRM::computeAvailable(const MachineBasicBlock &MBB) {
240   BlockData &BBInfo = BlockInfo[MBB.getNumber()];
241 
242   BBInfo.InQueue = false;
243 
244   VXRMInfo Available;
245   if (MBB.pred_empty()) {
246     Available.setUnknown();
247   } else {
248     for (const MachineBasicBlock *P : MBB.predecessors())
249       Available = Available.intersect(BlockInfo[P->getNumber()].AvailableOut);
250   }
251 
252   // If we don't have any valid available info, wait until we do.
253   if (!Available.isValid())
254     return;
255 
256   if (Available != BBInfo.AvailableIn) {
257     BBInfo.AvailableIn = Available;
258     LLVM_DEBUG(dbgs() << "AvailableIn state of " << printMBBReference(MBB)
259                       << " changed to " << BBInfo.AvailableIn << "\n");
260   }
261 
262   if (BBInfo.VXRMOut.isValid())
263     Available = BBInfo.VXRMOut;
264 
265   if (Available == BBInfo.AvailableOut)
266     return;
267 
268   BBInfo.AvailableOut = Available;
269   LLVM_DEBUG(dbgs() << "AvailableOut state of " << printMBBReference(MBB)
270                     << " changed to " << BBInfo.AvailableOut << "\n");
271 
272   // Add the successors to the work list so that we can propagate.
273   for (MachineBasicBlock *S : MBB.successors()) {
274     if (!BlockInfo[S->getNumber()].InQueue) {
275       BlockInfo[S->getNumber()].InQueue = true;
276       WorkList.push(S);
277     }
278   }
279 }
280 
281 void RISCVInsertWriteVXRM::computeAnticipated(const MachineBasicBlock &MBB) {
282   BlockData &BBInfo = BlockInfo[MBB.getNumber()];
283 
284   BBInfo.InQueue = false;
285 
286   VXRMInfo Anticipated;
287   if (MBB.succ_empty()) {
288     Anticipated.setUnknown();
289   } else {
290     for (const MachineBasicBlock *S : MBB.successors())
291       Anticipated =
292           Anticipated.intersect(BlockInfo[S->getNumber()].AnticipatedIn);
293   }
294 
295   // If we don't have any valid anticipated info, wait until we do.
296   if (!Anticipated.isValid())
297     return;
298 
299   if (Anticipated != BBInfo.AnticipatedOut) {
300     BBInfo.AnticipatedOut = Anticipated;
301     LLVM_DEBUG(dbgs() << "AnticipatedOut state of " << printMBBReference(MBB)
302                       << " changed to " << BBInfo.AnticipatedOut << "\n");
303   }
304 
305   // If this block reads VXRM, copy it.
306   if (BBInfo.VXRMUse.isValid())
307     Anticipated = BBInfo.VXRMUse;
308 
309   if (Anticipated == BBInfo.AnticipatedIn)
310     return;
311 
312   BBInfo.AnticipatedIn = Anticipated;
313   LLVM_DEBUG(dbgs() << "AnticipatedIn state of " << printMBBReference(MBB)
314                     << " changed to " << BBInfo.AnticipatedIn << "\n");
315 
316   // Add the predecessors to the work list so that we can propagate.
317   for (MachineBasicBlock *P : MBB.predecessors()) {
318     if (!BlockInfo[P->getNumber()].InQueue) {
319       BlockInfo[P->getNumber()].InQueue = true;
320       WorkList.push(P);
321     }
322   }
323 }
324 
325 void RISCVInsertWriteVXRM::emitWriteVXRM(MachineBasicBlock &MBB) {
326   const BlockData &BBInfo = BlockInfo[MBB.getNumber()];
327 
328   VXRMInfo Info = BBInfo.AvailableIn;
329 
330   // Flag to indicates we need to insert a VXRM write. We want to delay it as
331   // late as possible in this block.
332   bool PendingInsert = false;
333 
334   // Insert VXRM write if anticipated and not available.
335   if (BBInfo.AnticipatedIn.isStatic()) {
336     // If this is the entry block and the value is anticipated, insert.
337     if (MBB.isEntryBlock()) {
338       PendingInsert = true;
339     } else {
340       // Search for any predecessors that wouldn't satisfy our requirement and
341       // insert a write VXRM if needed.
342       // NOTE: If one predecessor is able to provide the requirement, but
343       // another isn't, it means we have a critical edge. The better placement
344       // would be to split the critical edge.
345       for (MachineBasicBlock *P : MBB.predecessors()) {
346         const BlockData &PInfo = BlockInfo[P->getNumber()];
347         // If it's available out of the predecessor, then we're ok.
348         if (PInfo.AvailableOut.isStatic() &&
349             PInfo.AvailableOut.getVXRMImm() ==
350                 BBInfo.AnticipatedIn.getVXRMImm())
351           continue;
352         // If the predecessor anticipates this value for all its succesors,
353         // then a write to VXRM would have already occured before this block is
354         // executed.
355         if (PInfo.AnticipatedOut.isStatic() &&
356             PInfo.AnticipatedOut.getVXRMImm() ==
357                 BBInfo.AnticipatedIn.getVXRMImm())
358           continue;
359         PendingInsert = true;
360         break;
361       }
362     }
363 
364     Info = BBInfo.AnticipatedIn;
365   }
366 
367   for (MachineInstr &MI : MBB) {
368     int VXRMIdx = RISCVII::getVXRMOpNum(MI.getDesc());
369     if (VXRMIdx >= 0 && !ignoresVXRM(MI)) {
370       unsigned NewVXRMImm = MI.getOperand(VXRMIdx).getImm();
371 
372       if (PendingInsert || !Info.isStatic() ||
373           Info.getVXRMImm() != NewVXRMImm) {
374         assert((!PendingInsert ||
375                 (Info.isStatic() && Info.getVXRMImm() == NewVXRMImm)) &&
376                "Pending VXRM insertion mismatch");
377         LLVM_DEBUG(dbgs() << "Inserting before "; MI.print(dbgs()));
378         BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(RISCV::WriteVXRMImm))
379             .addImm(NewVXRMImm);
380         PendingInsert = false;
381       }
382 
383       MI.addOperand(MachineOperand::CreateReg(RISCV::VXRM, /*IsDef*/ false,
384                                               /*IsImp*/ true));
385       Info.setVXRMImm(NewVXRMImm);
386       continue;
387     }
388 
389     if (MI.isCall() || MI.isInlineAsm() || MI.modifiesRegister(RISCV::VXRM))
390       Info.setUnknown();
391   }
392 
393   // If all our successors anticipate a value, do the insert.
394   // NOTE: It's possible that not all predecessors of our successor provide the
395   // correct value. This can occur on critical edges. If we don't split the
396   // critical edge we'll also have a write vxrm in the succesor that is
397   // redundant with this one.
398   if (PendingInsert ||
399       (BBInfo.AnticipatedOut.isStatic() &&
400        (!Info.isStatic() ||
401         Info.getVXRMImm() != BBInfo.AnticipatedOut.getVXRMImm()))) {
402     assert((!PendingInsert ||
403             (Info.isStatic() && BBInfo.AnticipatedOut.isStatic() &&
404              Info.getVXRMImm() == BBInfo.AnticipatedOut.getVXRMImm())) &&
405            "Pending VXRM insertion mismatch");
406     LLVM_DEBUG(dbgs() << "Inserting at end of " << printMBBReference(MBB)
407                       << " changing to " << BBInfo.AnticipatedOut << "\n");
408     BuildMI(MBB, MBB.getFirstTerminator(), DebugLoc(),
409             TII->get(RISCV::WriteVXRMImm))
410         .addImm(BBInfo.AnticipatedOut.getVXRMImm());
411   }
412 }
413 
414 bool RISCVInsertWriteVXRM::runOnMachineFunction(MachineFunction &MF) {
415   // Skip if the vector extension is not enabled.
416   const RISCVSubtarget &ST = MF.getSubtarget<RISCVSubtarget>();
417   if (!ST.hasVInstructions())
418     return false;
419 
420   TII = ST.getInstrInfo();
421 
422   assert(BlockInfo.empty() && "Expect empty block infos");
423   BlockInfo.resize(MF.getNumBlockIDs());
424 
425   // Phase 1 - collect block information.
426   bool NeedVXRMChange = false;
427   for (const MachineBasicBlock &MBB : MF)
428     NeedVXRMChange |= computeVXRMChanges(MBB);
429 
430   if (!NeedVXRMChange) {
431     BlockInfo.clear();
432     return false;
433   }
434 
435   // Phase 2 - Compute available VXRM using a forward walk.
436   for (const MachineBasicBlock &MBB : MF) {
437     WorkList.push(&MBB);
438     BlockInfo[MBB.getNumber()].InQueue = true;
439   }
440   while (!WorkList.empty()) {
441     const MachineBasicBlock &MBB = *WorkList.front();
442     WorkList.pop();
443     computeAvailable(MBB);
444   }
445 
446   // Phase 3 - Compute anticipated VXRM using a backwards walk.
447   for (const MachineBasicBlock &MBB : llvm::reverse(MF)) {
448     WorkList.push(&MBB);
449     BlockInfo[MBB.getNumber()].InQueue = true;
450   }
451   while (!WorkList.empty()) {
452     const MachineBasicBlock &MBB = *WorkList.front();
453     WorkList.pop();
454     computeAnticipated(MBB);
455   }
456 
457   // Phase 4 - Emit VXRM writes at the earliest place possible.
458   for (MachineBasicBlock &MBB : MF)
459     emitWriteVXRM(MBB);
460 
461   BlockInfo.clear();
462 
463   return true;
464 }
465 
466 FunctionPass *llvm::createRISCVInsertWriteVXRMPass() {
467   return new RISCVInsertWriteVXRM();
468 }
469