xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVISelLowering.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "RISCV.h"
16 #include "RISCVMachineFunctionInfo.h"
17 #include "RISCVRegisterInfo.h"
18 #include "RISCVSubtarget.h"
19 #include "RISCVTargetMachine.h"
20 #include "Utils/RISCVMatInt.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAGISel.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IntrinsicsRISCV.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "riscv-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
46                                          const RISCVSubtarget &STI)
47     : TargetLowering(TM), Subtarget(STI) {
48 
49   if (Subtarget.isRV32E())
50     report_fatal_error("Codegen not yet implemented for RV32E");
51 
52   RISCVABI::ABI ABI = Subtarget.getTargetABI();
53   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
54 
55   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
56       !Subtarget.hasStdExtF()) {
57     errs() << "Hard-float 'f' ABI can't be used for a target that "
58                 "doesn't support the F instruction set extension (ignoring "
59                           "target-abi)\n";
60     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
61   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
62              !Subtarget.hasStdExtD()) {
63     errs() << "Hard-float 'd' ABI can't be used for a target that "
64               "doesn't support the D instruction set extension (ignoring "
65               "target-abi)\n";
66     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
67   }
68 
69   switch (ABI) {
70   default:
71     report_fatal_error("Don't know how to lower this ABI");
72   case RISCVABI::ABI_ILP32:
73   case RISCVABI::ABI_ILP32F:
74   case RISCVABI::ABI_ILP32D:
75   case RISCVABI::ABI_LP64:
76   case RISCVABI::ABI_LP64F:
77   case RISCVABI::ABI_LP64D:
78     break;
79   }
80 
81   MVT XLenVT = Subtarget.getXLenVT();
82 
83   // Set up the register classes.
84   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
85 
86   if (Subtarget.hasStdExtF())
87     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
88   if (Subtarget.hasStdExtD())
89     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
90 
91   // Compute derived properties from the register classes.
92   computeRegisterProperties(STI.getRegisterInfo());
93 
94   setStackPointerRegisterToSaveRestore(RISCV::X2);
95 
96   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
97     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
98 
99   // TODO: add all necessary setOperationAction calls.
100   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
101 
102   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
103   setOperationAction(ISD::BR_CC, XLenVT, Expand);
104   setOperationAction(ISD::SELECT, XLenVT, Custom);
105   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
106 
107   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
108   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
109 
110   setOperationAction(ISD::VASTART, MVT::Other, Custom);
111   setOperationAction(ISD::VAARG, MVT::Other, Expand);
112   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
113   setOperationAction(ISD::VAEND, MVT::Other, Expand);
114 
115   for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
116     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
117 
118   if (Subtarget.is64Bit()) {
119     setOperationAction(ISD::ADD, MVT::i32, Custom);
120     setOperationAction(ISD::SUB, MVT::i32, Custom);
121     setOperationAction(ISD::SHL, MVT::i32, Custom);
122     setOperationAction(ISD::SRA, MVT::i32, Custom);
123     setOperationAction(ISD::SRL, MVT::i32, Custom);
124   }
125 
126   if (!Subtarget.hasStdExtM()) {
127     setOperationAction(ISD::MUL, XLenVT, Expand);
128     setOperationAction(ISD::MULHS, XLenVT, Expand);
129     setOperationAction(ISD::MULHU, XLenVT, Expand);
130     setOperationAction(ISD::SDIV, XLenVT, Expand);
131     setOperationAction(ISD::UDIV, XLenVT, Expand);
132     setOperationAction(ISD::SREM, XLenVT, Expand);
133     setOperationAction(ISD::UREM, XLenVT, Expand);
134   }
135 
136   if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) {
137     setOperationAction(ISD::MUL, MVT::i32, Custom);
138     setOperationAction(ISD::SDIV, MVT::i32, Custom);
139     setOperationAction(ISD::UDIV, MVT::i32, Custom);
140     setOperationAction(ISD::UREM, MVT::i32, Custom);
141   }
142 
143   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
144   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
145   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
146   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
147 
148   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
149   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
150   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
151 
152   if (!(Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp())) {
153     setOperationAction(ISD::ROTL, XLenVT, Expand);
154     setOperationAction(ISD::ROTR, XLenVT, Expand);
155   }
156 
157   if (!Subtarget.hasStdExtZbp())
158     setOperationAction(ISD::BSWAP, XLenVT, Expand);
159 
160   if (!Subtarget.hasStdExtZbb()) {
161     setOperationAction(ISD::CTTZ, XLenVT, Expand);
162     setOperationAction(ISD::CTLZ, XLenVT, Expand);
163     setOperationAction(ISD::CTPOP, XLenVT, Expand);
164   }
165 
166   if (Subtarget.hasStdExtZbp())
167     setOperationAction(ISD::BITREVERSE, XLenVT, Legal);
168 
169   if (Subtarget.hasStdExtZbt()) {
170     setOperationAction(ISD::FSHL, XLenVT, Legal);
171     setOperationAction(ISD::FSHR, XLenVT, Legal);
172   }
173 
174   ISD::CondCode FPCCToExtend[] = {
175       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
176       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
177       ISD::SETGE,  ISD::SETNE};
178 
179   ISD::NodeType FPOpToExtend[] = {
180       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
181       ISD::FP_TO_FP16};
182 
183   if (Subtarget.hasStdExtF()) {
184     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
185     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
186     for (auto CC : FPCCToExtend)
187       setCondCodeAction(CC, MVT::f32, Expand);
188     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
189     setOperationAction(ISD::SELECT, MVT::f32, Custom);
190     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
191     for (auto Op : FPOpToExtend)
192       setOperationAction(Op, MVT::f32, Expand);
193     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
194     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
195   }
196 
197   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
198     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
199 
200   if (Subtarget.hasStdExtD()) {
201     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
202     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
203     for (auto CC : FPCCToExtend)
204       setCondCodeAction(CC, MVT::f64, Expand);
205     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
206     setOperationAction(ISD::SELECT, MVT::f64, Custom);
207     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
208     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
209     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
210     for (auto Op : FPOpToExtend)
211       setOperationAction(Op, MVT::f64, Expand);
212     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
213     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
214   }
215 
216   if (Subtarget.is64Bit() &&
217       !(Subtarget.hasStdExtD() || Subtarget.hasStdExtF())) {
218     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
219     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
220     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
221     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
222   }
223 
224   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
225   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
226   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
227 
228   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
229 
230   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
231   // Unfortunately this can't be determined just from the ISA naming string.
232   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
233                      Subtarget.is64Bit() ? Legal : Custom);
234 
235   setOperationAction(ISD::TRAP, MVT::Other, Legal);
236   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
237   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
238 
239   if (Subtarget.hasStdExtA()) {
240     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
241     setMinCmpXchgSizeInBits(32);
242   } else {
243     setMaxAtomicSizeInBitsSupported(0);
244   }
245 
246   setBooleanContents(ZeroOrOneBooleanContent);
247 
248   // Function alignments.
249   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
250   setMinFunctionAlignment(FunctionAlignment);
251   setPrefFunctionAlignment(FunctionAlignment);
252 
253   // Effectively disable jump table generation.
254   setMinimumJumpTableEntries(INT_MAX);
255 
256   // Jumps are expensive, compared to logic
257   setJumpIsExpensive();
258 
259   // We can use any register for comparisons
260   setHasMultipleConditionRegisters();
261 }
262 
263 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
264                                             EVT VT) const {
265   if (!VT.isVector())
266     return getPointerTy(DL);
267   return VT.changeVectorElementTypeToInteger();
268 }
269 
270 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
271                                              const CallInst &I,
272                                              MachineFunction &MF,
273                                              unsigned Intrinsic) const {
274   switch (Intrinsic) {
275   default:
276     return false;
277   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
278   case Intrinsic::riscv_masked_atomicrmw_add_i32:
279   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
280   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
281   case Intrinsic::riscv_masked_atomicrmw_max_i32:
282   case Intrinsic::riscv_masked_atomicrmw_min_i32:
283   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
284   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
285   case Intrinsic::riscv_masked_cmpxchg_i32:
286     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
287     Info.opc = ISD::INTRINSIC_W_CHAIN;
288     Info.memVT = MVT::getVT(PtrTy->getElementType());
289     Info.ptrVal = I.getArgOperand(0);
290     Info.offset = 0;
291     Info.align = Align(4);
292     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
293                  MachineMemOperand::MOVolatile;
294     return true;
295   }
296 }
297 
298 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
299                                                 const AddrMode &AM, Type *Ty,
300                                                 unsigned AS,
301                                                 Instruction *I) const {
302   // No global is ever allowed as a base.
303   if (AM.BaseGV)
304     return false;
305 
306   // Require a 12-bit signed offset.
307   if (!isInt<12>(AM.BaseOffs))
308     return false;
309 
310   switch (AM.Scale) {
311   case 0: // "r+i" or just "i", depending on HasBaseReg.
312     break;
313   case 1:
314     if (!AM.HasBaseReg) // allow "r+i".
315       break;
316     return false; // disallow "r+r" or "r+r+i".
317   default:
318     return false;
319   }
320 
321   return true;
322 }
323 
324 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
325   return isInt<12>(Imm);
326 }
327 
328 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
329   return isInt<12>(Imm);
330 }
331 
332 // On RV32, 64-bit integers are split into their high and low parts and held
333 // in two different registers, so the trunc is free since the low register can
334 // just be used.
335 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
336   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
337     return false;
338   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
339   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
340   return (SrcBits == 64 && DestBits == 32);
341 }
342 
343 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
344   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
345       !SrcVT.isInteger() || !DstVT.isInteger())
346     return false;
347   unsigned SrcBits = SrcVT.getSizeInBits();
348   unsigned DestBits = DstVT.getSizeInBits();
349   return (SrcBits == 64 && DestBits == 32);
350 }
351 
352 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
353   // Zexts are free if they can be combined with a load.
354   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
355     EVT MemVT = LD->getMemoryVT();
356     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
357          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
358         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
359          LD->getExtensionType() == ISD::ZEXTLOAD))
360       return true;
361   }
362 
363   return TargetLowering::isZExtFree(Val, VT2);
364 }
365 
366 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
367   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
368 }
369 
370 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
371                                        bool ForCodeSize) const {
372   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
373     return false;
374   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
375     return false;
376   if (Imm.isNegZero())
377     return false;
378   return Imm.isZero();
379 }
380 
381 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
382   return (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
383          (VT == MVT::f64 && Subtarget.hasStdExtD());
384 }
385 
386 // Changes the condition code and swaps operands if necessary, so the SetCC
387 // operation matches one of the comparisons supported directly in the RISC-V
388 // ISA.
389 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
390   switch (CC) {
391   default:
392     break;
393   case ISD::SETGT:
394   case ISD::SETLE:
395   case ISD::SETUGT:
396   case ISD::SETULE:
397     CC = ISD::getSetCCSwappedOperands(CC);
398     std::swap(LHS, RHS);
399     break;
400   }
401 }
402 
403 // Return the RISC-V branch opcode that matches the given DAG integer
404 // condition code. The CondCode must be one of those supported by the RISC-V
405 // ISA (see normaliseSetCC).
406 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
407   switch (CC) {
408   default:
409     llvm_unreachable("Unsupported CondCode");
410   case ISD::SETEQ:
411     return RISCV::BEQ;
412   case ISD::SETNE:
413     return RISCV::BNE;
414   case ISD::SETLT:
415     return RISCV::BLT;
416   case ISD::SETGE:
417     return RISCV::BGE;
418   case ISD::SETULT:
419     return RISCV::BLTU;
420   case ISD::SETUGE:
421     return RISCV::BGEU;
422   }
423 }
424 
425 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
426                                             SelectionDAG &DAG) const {
427   switch (Op.getOpcode()) {
428   default:
429     report_fatal_error("unimplemented operand");
430   case ISD::GlobalAddress:
431     return lowerGlobalAddress(Op, DAG);
432   case ISD::BlockAddress:
433     return lowerBlockAddress(Op, DAG);
434   case ISD::ConstantPool:
435     return lowerConstantPool(Op, DAG);
436   case ISD::GlobalTLSAddress:
437     return lowerGlobalTLSAddress(Op, DAG);
438   case ISD::SELECT:
439     return lowerSELECT(Op, DAG);
440   case ISD::VASTART:
441     return lowerVASTART(Op, DAG);
442   case ISD::FRAMEADDR:
443     return lowerFRAMEADDR(Op, DAG);
444   case ISD::RETURNADDR:
445     return lowerRETURNADDR(Op, DAG);
446   case ISD::SHL_PARTS:
447     return lowerShiftLeftParts(Op, DAG);
448   case ISD::SRA_PARTS:
449     return lowerShiftRightParts(Op, DAG, true);
450   case ISD::SRL_PARTS:
451     return lowerShiftRightParts(Op, DAG, false);
452   case ISD::BITCAST: {
453     assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() &&
454            "Unexpected custom legalisation");
455     SDLoc DL(Op);
456     SDValue Op0 = Op.getOperand(0);
457     if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32)
458       return SDValue();
459     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
460     SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
461     return FPConv;
462   }
463   case ISD::INTRINSIC_WO_CHAIN:
464     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
465   }
466 }
467 
468 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
469                              SelectionDAG &DAG, unsigned Flags) {
470   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
471 }
472 
473 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
474                              SelectionDAG &DAG, unsigned Flags) {
475   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
476                                    Flags);
477 }
478 
479 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
480                              SelectionDAG &DAG, unsigned Flags) {
481   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
482                                    N->getOffset(), Flags);
483 }
484 
485 template <class NodeTy>
486 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
487                                      bool IsLocal) const {
488   SDLoc DL(N);
489   EVT Ty = getPointerTy(DAG.getDataLayout());
490 
491   if (isPositionIndependent()) {
492     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
493     if (IsLocal)
494       // Use PC-relative addressing to access the symbol. This generates the
495       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
496       // %pcrel_lo(auipc)).
497       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
498 
499     // Use PC-relative addressing to access the GOT for this symbol, then load
500     // the address from the GOT. This generates the pattern (PseudoLA sym),
501     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
502     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
503   }
504 
505   switch (getTargetMachine().getCodeModel()) {
506   default:
507     report_fatal_error("Unsupported code model for lowering");
508   case CodeModel::Small: {
509     // Generate a sequence for accessing addresses within the first 2 GiB of
510     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
511     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
512     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
513     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
514     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
515   }
516   case CodeModel::Medium: {
517     // Generate a sequence for accessing addresses within any 2GiB range within
518     // the address space. This generates the pattern (PseudoLLA sym), which
519     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
520     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
521     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
522   }
523   }
524 }
525 
526 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
527                                                 SelectionDAG &DAG) const {
528   SDLoc DL(Op);
529   EVT Ty = Op.getValueType();
530   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
531   int64_t Offset = N->getOffset();
532   MVT XLenVT = Subtarget.getXLenVT();
533 
534   const GlobalValue *GV = N->getGlobal();
535   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
536   SDValue Addr = getAddr(N, DAG, IsLocal);
537 
538   // In order to maximise the opportunity for common subexpression elimination,
539   // emit a separate ADD node for the global address offset instead of folding
540   // it in the global address node. Later peephole optimisations may choose to
541   // fold it back in when profitable.
542   if (Offset != 0)
543     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
544                        DAG.getConstant(Offset, DL, XLenVT));
545   return Addr;
546 }
547 
548 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
549                                                SelectionDAG &DAG) const {
550   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
551 
552   return getAddr(N, DAG);
553 }
554 
555 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
556                                                SelectionDAG &DAG) const {
557   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
558 
559   return getAddr(N, DAG);
560 }
561 
562 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
563                                               SelectionDAG &DAG,
564                                               bool UseGOT) const {
565   SDLoc DL(N);
566   EVT Ty = getPointerTy(DAG.getDataLayout());
567   const GlobalValue *GV = N->getGlobal();
568   MVT XLenVT = Subtarget.getXLenVT();
569 
570   if (UseGOT) {
571     // Use PC-relative addressing to access the GOT for this TLS symbol, then
572     // load the address from the GOT and add the thread pointer. This generates
573     // the pattern (PseudoLA_TLS_IE sym), which expands to
574     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
575     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
576     SDValue Load =
577         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
578 
579     // Add the thread pointer.
580     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
581     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
582   }
583 
584   // Generate a sequence for accessing the address relative to the thread
585   // pointer, with the appropriate adjustment for the thread pointer offset.
586   // This generates the pattern
587   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
588   SDValue AddrHi =
589       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
590   SDValue AddrAdd =
591       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
592   SDValue AddrLo =
593       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
594 
595   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
596   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
597   SDValue MNAdd = SDValue(
598       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
599       0);
600   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
601 }
602 
603 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
604                                                SelectionDAG &DAG) const {
605   SDLoc DL(N);
606   EVT Ty = getPointerTy(DAG.getDataLayout());
607   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
608   const GlobalValue *GV = N->getGlobal();
609 
610   // Use a PC-relative addressing mode to access the global dynamic GOT address.
611   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
612   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
613   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
614   SDValue Load =
615       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
616 
617   // Prepare argument list to generate call.
618   ArgListTy Args;
619   ArgListEntry Entry;
620   Entry.Node = Load;
621   Entry.Ty = CallTy;
622   Args.push_back(Entry);
623 
624   // Setup call to __tls_get_addr.
625   TargetLowering::CallLoweringInfo CLI(DAG);
626   CLI.setDebugLoc(DL)
627       .setChain(DAG.getEntryNode())
628       .setLibCallee(CallingConv::C, CallTy,
629                     DAG.getExternalSymbol("__tls_get_addr", Ty),
630                     std::move(Args));
631 
632   return LowerCallTo(CLI).first;
633 }
634 
635 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
636                                                    SelectionDAG &DAG) const {
637   SDLoc DL(Op);
638   EVT Ty = Op.getValueType();
639   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
640   int64_t Offset = N->getOffset();
641   MVT XLenVT = Subtarget.getXLenVT();
642 
643   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
644 
645   SDValue Addr;
646   switch (Model) {
647   case TLSModel::LocalExec:
648     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
649     break;
650   case TLSModel::InitialExec:
651     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
652     break;
653   case TLSModel::LocalDynamic:
654   case TLSModel::GeneralDynamic:
655     Addr = getDynamicTLSAddr(N, DAG);
656     break;
657   }
658 
659   // In order to maximise the opportunity for common subexpression elimination,
660   // emit a separate ADD node for the global address offset instead of folding
661   // it in the global address node. Later peephole optimisations may choose to
662   // fold it back in when profitable.
663   if (Offset != 0)
664     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
665                        DAG.getConstant(Offset, DL, XLenVT));
666   return Addr;
667 }
668 
669 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
670   SDValue CondV = Op.getOperand(0);
671   SDValue TrueV = Op.getOperand(1);
672   SDValue FalseV = Op.getOperand(2);
673   SDLoc DL(Op);
674   MVT XLenVT = Subtarget.getXLenVT();
675 
676   // If the result type is XLenVT and CondV is the output of a SETCC node
677   // which also operated on XLenVT inputs, then merge the SETCC node into the
678   // lowered RISCVISD::SELECT_CC to take advantage of the integer
679   // compare+branch instructions. i.e.:
680   // (select (setcc lhs, rhs, cc), truev, falsev)
681   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
682   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
683       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
684     SDValue LHS = CondV.getOperand(0);
685     SDValue RHS = CondV.getOperand(1);
686     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
687     ISD::CondCode CCVal = CC->get();
688 
689     normaliseSetCC(LHS, RHS, CCVal);
690 
691     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
692     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
693     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
694     return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
695   }
696 
697   // Otherwise:
698   // (select condv, truev, falsev)
699   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
700   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
701   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
702 
703   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
704   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
705 
706   return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
707 }
708 
709 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
710   MachineFunction &MF = DAG.getMachineFunction();
711   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
712 
713   SDLoc DL(Op);
714   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
715                                  getPointerTy(MF.getDataLayout()));
716 
717   // vastart just stores the address of the VarArgsFrameIndex slot into the
718   // memory location argument.
719   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
720   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
721                       MachinePointerInfo(SV));
722 }
723 
724 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
725                                             SelectionDAG &DAG) const {
726   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
727   MachineFunction &MF = DAG.getMachineFunction();
728   MachineFrameInfo &MFI = MF.getFrameInfo();
729   MFI.setFrameAddressIsTaken(true);
730   Register FrameReg = RI.getFrameRegister(MF);
731   int XLenInBytes = Subtarget.getXLen() / 8;
732 
733   EVT VT = Op.getValueType();
734   SDLoc DL(Op);
735   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
736   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
737   while (Depth--) {
738     int Offset = -(XLenInBytes * 2);
739     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
740                               DAG.getIntPtrConstant(Offset, DL));
741     FrameAddr =
742         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
743   }
744   return FrameAddr;
745 }
746 
747 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
748                                              SelectionDAG &DAG) const {
749   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
750   MachineFunction &MF = DAG.getMachineFunction();
751   MachineFrameInfo &MFI = MF.getFrameInfo();
752   MFI.setReturnAddressIsTaken(true);
753   MVT XLenVT = Subtarget.getXLenVT();
754   int XLenInBytes = Subtarget.getXLen() / 8;
755 
756   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
757     return SDValue();
758 
759   EVT VT = Op.getValueType();
760   SDLoc DL(Op);
761   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
762   if (Depth) {
763     int Off = -XLenInBytes;
764     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
765     SDValue Offset = DAG.getConstant(Off, DL, VT);
766     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
767                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
768                        MachinePointerInfo());
769   }
770 
771   // Return the value of the return address register, marking it an implicit
772   // live-in.
773   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
774   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
775 }
776 
777 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
778                                                  SelectionDAG &DAG) const {
779   SDLoc DL(Op);
780   SDValue Lo = Op.getOperand(0);
781   SDValue Hi = Op.getOperand(1);
782   SDValue Shamt = Op.getOperand(2);
783   EVT VT = Lo.getValueType();
784 
785   // if Shamt-XLEN < 0: // Shamt < XLEN
786   //   Lo = Lo << Shamt
787   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
788   // else:
789   //   Lo = 0
790   //   Hi = Lo << (Shamt-XLEN)
791 
792   SDValue Zero = DAG.getConstant(0, DL, VT);
793   SDValue One = DAG.getConstant(1, DL, VT);
794   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
795   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
796   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
797   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
798 
799   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
800   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
801   SDValue ShiftRightLo =
802       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
803   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
804   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
805   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
806 
807   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
808 
809   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
810   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
811 
812   SDValue Parts[2] = {Lo, Hi};
813   return DAG.getMergeValues(Parts, DL);
814 }
815 
816 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
817                                                   bool IsSRA) const {
818   SDLoc DL(Op);
819   SDValue Lo = Op.getOperand(0);
820   SDValue Hi = Op.getOperand(1);
821   SDValue Shamt = Op.getOperand(2);
822   EVT VT = Lo.getValueType();
823 
824   // SRA expansion:
825   //   if Shamt-XLEN < 0: // Shamt < XLEN
826   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
827   //     Hi = Hi >>s Shamt
828   //   else:
829   //     Lo = Hi >>s (Shamt-XLEN);
830   //     Hi = Hi >>s (XLEN-1)
831   //
832   // SRL expansion:
833   //   if Shamt-XLEN < 0: // Shamt < XLEN
834   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
835   //     Hi = Hi >>u Shamt
836   //   else:
837   //     Lo = Hi >>u (Shamt-XLEN);
838   //     Hi = 0;
839 
840   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
841 
842   SDValue Zero = DAG.getConstant(0, DL, VT);
843   SDValue One = DAG.getConstant(1, DL, VT);
844   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
845   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
846   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
847   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
848 
849   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
850   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
851   SDValue ShiftLeftHi =
852       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
853   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
854   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
855   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
856   SDValue HiFalse =
857       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
858 
859   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
860 
861   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
862   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
863 
864   SDValue Parts[2] = {Lo, Hi};
865   return DAG.getMergeValues(Parts, DL);
866 }
867 
868 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
869                                                      SelectionDAG &DAG) const {
870   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
871   SDLoc DL(Op);
872   switch (IntNo) {
873   default:
874     return SDValue();    // Don't custom lower most intrinsics.
875   case Intrinsic::thread_pointer: {
876     EVT PtrVT = getPointerTy(DAG.getDataLayout());
877     return DAG.getRegister(RISCV::X4, PtrVT);
878   }
879   }
880 }
881 
882 // Returns the opcode of the target-specific SDNode that implements the 32-bit
883 // form of the given Opcode.
884 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
885   switch (Opcode) {
886   default:
887     llvm_unreachable("Unexpected opcode");
888   case ISD::SHL:
889     return RISCVISD::SLLW;
890   case ISD::SRA:
891     return RISCVISD::SRAW;
892   case ISD::SRL:
893     return RISCVISD::SRLW;
894   case ISD::SDIV:
895     return RISCVISD::DIVW;
896   case ISD::UDIV:
897     return RISCVISD::DIVUW;
898   case ISD::UREM:
899     return RISCVISD::REMUW;
900   }
901 }
902 
903 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
904 // Because i32 isn't a legal type for RV64, these operations would otherwise
905 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
906 // later one because the fact the operation was originally of type i32 is
907 // lost.
908 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) {
909   SDLoc DL(N);
910   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
911   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
912   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
913   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
914   // ReplaceNodeResults requires we maintain the same type for the return value.
915   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
916 }
917 
918 // Converts the given 32-bit operation to a i64 operation with signed extension
919 // semantic to reduce the signed extension instructions.
920 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
921   SDLoc DL(N);
922   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
923   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
924   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
925   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
926                                DAG.getValueType(MVT::i32));
927   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
928 }
929 
930 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
931                                              SmallVectorImpl<SDValue> &Results,
932                                              SelectionDAG &DAG) const {
933   SDLoc DL(N);
934   switch (N->getOpcode()) {
935   default:
936     llvm_unreachable("Don't know how to custom type legalize this operation!");
937   case ISD::STRICT_FP_TO_SINT:
938   case ISD::STRICT_FP_TO_UINT:
939   case ISD::FP_TO_SINT:
940   case ISD::FP_TO_UINT: {
941     bool IsStrict = N->isStrictFPOpcode();
942     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
943            "Unexpected custom legalisation");
944     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
945     RTLIB::Libcall LC;
946     if (N->getOpcode() == ISD::FP_TO_SINT ||
947         N->getOpcode() == ISD::STRICT_FP_TO_SINT)
948       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
949     else
950       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
951     MakeLibCallOptions CallOptions;
952     EVT OpVT = Op0.getValueType();
953     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
954     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
955     SDValue Result;
956     std::tie(Result, Chain) =
957         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
958     Results.push_back(Result);
959     if (IsStrict)
960       Results.push_back(Chain);
961     break;
962   }
963   case ISD::READCYCLECOUNTER: {
964     assert(!Subtarget.is64Bit() &&
965            "READCYCLECOUNTER only has custom type legalization on riscv32");
966 
967     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
968     SDValue RCW =
969         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
970 
971     Results.push_back(
972         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
973     Results.push_back(RCW.getValue(2));
974     break;
975   }
976   case ISD::ADD:
977   case ISD::SUB:
978   case ISD::MUL:
979     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
980            "Unexpected custom legalisation");
981     if (N->getOperand(1).getOpcode() == ISD::Constant)
982       return;
983     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
984     break;
985   case ISD::SHL:
986   case ISD::SRA:
987   case ISD::SRL:
988     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
989            "Unexpected custom legalisation");
990     if (N->getOperand(1).getOpcode() == ISD::Constant)
991       return;
992     Results.push_back(customLegalizeToWOp(N, DAG));
993     break;
994   case ISD::SDIV:
995   case ISD::UDIV:
996   case ISD::UREM:
997     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
998            Subtarget.hasStdExtM() && "Unexpected custom legalisation");
999     if (N->getOperand(0).getOpcode() == ISD::Constant ||
1000         N->getOperand(1).getOpcode() == ISD::Constant)
1001       return;
1002     Results.push_back(customLegalizeToWOp(N, DAG));
1003     break;
1004   case ISD::BITCAST: {
1005     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
1006            Subtarget.hasStdExtF() && "Unexpected custom legalisation");
1007     SDLoc DL(N);
1008     SDValue Op0 = N->getOperand(0);
1009     if (Op0.getValueType() != MVT::f32)
1010       return;
1011     SDValue FPConv =
1012         DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
1013     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
1014     break;
1015   }
1016   }
1017 }
1018 
1019 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
1020                                                DAGCombinerInfo &DCI) const {
1021   SelectionDAG &DAG = DCI.DAG;
1022 
1023   switch (N->getOpcode()) {
1024   default:
1025     break;
1026   case RISCVISD::SplitF64: {
1027     SDValue Op0 = N->getOperand(0);
1028     // If the input to SplitF64 is just BuildPairF64 then the operation is
1029     // redundant. Instead, use BuildPairF64's operands directly.
1030     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
1031       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
1032 
1033     SDLoc DL(N);
1034 
1035     // It's cheaper to materialise two 32-bit integers than to load a double
1036     // from the constant pool and transfer it to integer registers through the
1037     // stack.
1038     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
1039       APInt V = C->getValueAPF().bitcastToAPInt();
1040       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
1041       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
1042       return DCI.CombineTo(N, Lo, Hi);
1043     }
1044 
1045     // This is a target-specific version of a DAGCombine performed in
1046     // DAGCombiner::visitBITCAST. It performs the equivalent of:
1047     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
1048     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
1049     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
1050         !Op0.getNode()->hasOneUse())
1051       break;
1052     SDValue NewSplitF64 =
1053         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
1054                     Op0.getOperand(0));
1055     SDValue Lo = NewSplitF64.getValue(0);
1056     SDValue Hi = NewSplitF64.getValue(1);
1057     APInt SignBit = APInt::getSignMask(32);
1058     if (Op0.getOpcode() == ISD::FNEG) {
1059       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
1060                                   DAG.getConstant(SignBit, DL, MVT::i32));
1061       return DCI.CombineTo(N, Lo, NewHi);
1062     }
1063     assert(Op0.getOpcode() == ISD::FABS);
1064     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
1065                                 DAG.getConstant(~SignBit, DL, MVT::i32));
1066     return DCI.CombineTo(N, Lo, NewHi);
1067   }
1068   case RISCVISD::SLLW:
1069   case RISCVISD::SRAW:
1070   case RISCVISD::SRLW: {
1071     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
1072     SDValue LHS = N->getOperand(0);
1073     SDValue RHS = N->getOperand(1);
1074     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
1075     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
1076     if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) ||
1077         (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)))
1078       return SDValue();
1079     break;
1080   }
1081   case RISCVISD::FMV_X_ANYEXTW_RV64: {
1082     SDLoc DL(N);
1083     SDValue Op0 = N->getOperand(0);
1084     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
1085     // conversion is unnecessary and can be replaced with an ANY_EXTEND
1086     // of the FMV_W_X_RV64 operand.
1087     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
1088       SDValue AExtOp =
1089           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0));
1090       return DCI.CombineTo(N, AExtOp);
1091     }
1092 
1093     // This is a target-specific version of a DAGCombine performed in
1094     // DAGCombiner::visitBITCAST. It performs the equivalent of:
1095     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
1096     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
1097     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
1098         !Op0.getNode()->hasOneUse())
1099       break;
1100     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
1101                                  Op0.getOperand(0));
1102     APInt SignBit = APInt::getSignMask(32).sext(64);
1103     if (Op0.getOpcode() == ISD::FNEG) {
1104       return DCI.CombineTo(N,
1105                            DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
1106                                        DAG.getConstant(SignBit, DL, MVT::i64)));
1107     }
1108     assert(Op0.getOpcode() == ISD::FABS);
1109     return DCI.CombineTo(N,
1110                          DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
1111                                      DAG.getConstant(~SignBit, DL, MVT::i64)));
1112   }
1113   }
1114 
1115   return SDValue();
1116 }
1117 
1118 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
1119     const SDNode *N, CombineLevel Level) const {
1120   // The following folds are only desirable if `(OP _, c1 << c2)` can be
1121   // materialised in fewer instructions than `(OP _, c1)`:
1122   //
1123   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
1124   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
1125   SDValue N0 = N->getOperand(0);
1126   EVT Ty = N0.getValueType();
1127   if (Ty.isScalarInteger() &&
1128       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
1129     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
1130     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
1131     if (C1 && C2) {
1132       APInt C1Int = C1->getAPIntValue();
1133       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
1134 
1135       // We can materialise `c1 << c2` into an add immediate, so it's "free",
1136       // and the combine should happen, to potentially allow further combines
1137       // later.
1138       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
1139           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
1140         return true;
1141 
1142       // We can materialise `c1` in an add immediate, so it's "free", and the
1143       // combine should be prevented.
1144       if (C1Int.getMinSignedBits() <= 64 &&
1145           isLegalAddImmediate(C1Int.getSExtValue()))
1146         return false;
1147 
1148       // Neither constant will fit into an immediate, so find materialisation
1149       // costs.
1150       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
1151                                               Subtarget.is64Bit());
1152       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
1153           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
1154 
1155       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
1156       // combine should be prevented.
1157       if (C1Cost < ShiftedC1Cost)
1158         return false;
1159     }
1160   }
1161   return true;
1162 }
1163 
1164 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
1165     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
1166     unsigned Depth) const {
1167   switch (Op.getOpcode()) {
1168   default:
1169     break;
1170   case RISCVISD::SLLW:
1171   case RISCVISD::SRAW:
1172   case RISCVISD::SRLW:
1173   case RISCVISD::DIVW:
1174   case RISCVISD::DIVUW:
1175   case RISCVISD::REMUW:
1176     // TODO: As the result is sign-extended, this is conservatively correct. A
1177     // more precise answer could be calculated for SRAW depending on known
1178     // bits in the shift amount.
1179     return 33;
1180   }
1181 
1182   return 1;
1183 }
1184 
1185 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
1186                                                   MachineBasicBlock *BB) {
1187   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
1188 
1189   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
1190   // Should the count have wrapped while it was being read, we need to try
1191   // again.
1192   // ...
1193   // read:
1194   // rdcycleh x3 # load high word of cycle
1195   // rdcycle  x2 # load low word of cycle
1196   // rdcycleh x4 # load high word of cycle
1197   // bne x3, x4, read # check if high word reads match, otherwise try again
1198   // ...
1199 
1200   MachineFunction &MF = *BB->getParent();
1201   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1202   MachineFunction::iterator It = ++BB->getIterator();
1203 
1204   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1205   MF.insert(It, LoopMBB);
1206 
1207   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1208   MF.insert(It, DoneMBB);
1209 
1210   // Transfer the remainder of BB and its successor edges to DoneMBB.
1211   DoneMBB->splice(DoneMBB->begin(), BB,
1212                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1213   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
1214 
1215   BB->addSuccessor(LoopMBB);
1216 
1217   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1218   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1219   Register LoReg = MI.getOperand(0).getReg();
1220   Register HiReg = MI.getOperand(1).getReg();
1221   DebugLoc DL = MI.getDebugLoc();
1222 
1223   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1224   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
1225       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1226       .addReg(RISCV::X0);
1227   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
1228       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
1229       .addReg(RISCV::X0);
1230   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
1231       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1232       .addReg(RISCV::X0);
1233 
1234   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
1235       .addReg(HiReg)
1236       .addReg(ReadAgainReg)
1237       .addMBB(LoopMBB);
1238 
1239   LoopMBB->addSuccessor(LoopMBB);
1240   LoopMBB->addSuccessor(DoneMBB);
1241 
1242   MI.eraseFromParent();
1243 
1244   return DoneMBB;
1245 }
1246 
1247 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
1248                                              MachineBasicBlock *BB) {
1249   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
1250 
1251   MachineFunction &MF = *BB->getParent();
1252   DebugLoc DL = MI.getDebugLoc();
1253   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1254   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1255   Register LoReg = MI.getOperand(0).getReg();
1256   Register HiReg = MI.getOperand(1).getReg();
1257   Register SrcReg = MI.getOperand(2).getReg();
1258   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
1259   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
1260 
1261   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
1262                           RI);
1263   MachineMemOperand *MMO =
1264       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1265                               MachineMemOperand::MOLoad, 8, Align(8));
1266   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
1267       .addFrameIndex(FI)
1268       .addImm(0)
1269       .addMemOperand(MMO);
1270   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
1271       .addFrameIndex(FI)
1272       .addImm(4)
1273       .addMemOperand(MMO);
1274   MI.eraseFromParent(); // The pseudo instruction is gone now.
1275   return BB;
1276 }
1277 
1278 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
1279                                                  MachineBasicBlock *BB) {
1280   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
1281          "Unexpected instruction");
1282 
1283   MachineFunction &MF = *BB->getParent();
1284   DebugLoc DL = MI.getDebugLoc();
1285   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1286   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1287   Register DstReg = MI.getOperand(0).getReg();
1288   Register LoReg = MI.getOperand(1).getReg();
1289   Register HiReg = MI.getOperand(2).getReg();
1290   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
1291   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
1292 
1293   MachineMemOperand *MMO =
1294       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1295                               MachineMemOperand::MOStore, 8, Align(8));
1296   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1297       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
1298       .addFrameIndex(FI)
1299       .addImm(0)
1300       .addMemOperand(MMO);
1301   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1302       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
1303       .addFrameIndex(FI)
1304       .addImm(4)
1305       .addMemOperand(MMO);
1306   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
1307   MI.eraseFromParent(); // The pseudo instruction is gone now.
1308   return BB;
1309 }
1310 
1311 static bool isSelectPseudo(MachineInstr &MI) {
1312   switch (MI.getOpcode()) {
1313   default:
1314     return false;
1315   case RISCV::Select_GPR_Using_CC_GPR:
1316   case RISCV::Select_FPR32_Using_CC_GPR:
1317   case RISCV::Select_FPR64_Using_CC_GPR:
1318     return true;
1319   }
1320 }
1321 
1322 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
1323                                            MachineBasicBlock *BB) {
1324   // To "insert" Select_* instructions, we actually have to insert the triangle
1325   // control-flow pattern.  The incoming instructions know the destination vreg
1326   // to set, the condition code register to branch on, the true/false values to
1327   // select between, and the condcode to use to select the appropriate branch.
1328   //
1329   // We produce the following control flow:
1330   //     HeadMBB
1331   //     |  \
1332   //     |  IfFalseMBB
1333   //     | /
1334   //    TailMBB
1335   //
1336   // When we find a sequence of selects we attempt to optimize their emission
1337   // by sharing the control flow. Currently we only handle cases where we have
1338   // multiple selects with the exact same condition (same LHS, RHS and CC).
1339   // The selects may be interleaved with other instructions if the other
1340   // instructions meet some requirements we deem safe:
1341   // - They are debug instructions. Otherwise,
1342   // - They do not have side-effects, do not access memory and their inputs do
1343   //   not depend on the results of the select pseudo-instructions.
1344   // The TrueV/FalseV operands of the selects cannot depend on the result of
1345   // previous selects in the sequence.
1346   // These conditions could be further relaxed. See the X86 target for a
1347   // related approach and more information.
1348   Register LHS = MI.getOperand(1).getReg();
1349   Register RHS = MI.getOperand(2).getReg();
1350   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
1351 
1352   SmallVector<MachineInstr *, 4> SelectDebugValues;
1353   SmallSet<Register, 4> SelectDests;
1354   SelectDests.insert(MI.getOperand(0).getReg());
1355 
1356   MachineInstr *LastSelectPseudo = &MI;
1357 
1358   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
1359        SequenceMBBI != E; ++SequenceMBBI) {
1360     if (SequenceMBBI->isDebugInstr())
1361       continue;
1362     else if (isSelectPseudo(*SequenceMBBI)) {
1363       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
1364           SequenceMBBI->getOperand(2).getReg() != RHS ||
1365           SequenceMBBI->getOperand(3).getImm() != CC ||
1366           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
1367           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
1368         break;
1369       LastSelectPseudo = &*SequenceMBBI;
1370       SequenceMBBI->collectDebugValues(SelectDebugValues);
1371       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
1372     } else {
1373       if (SequenceMBBI->hasUnmodeledSideEffects() ||
1374           SequenceMBBI->mayLoadOrStore())
1375         break;
1376       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
1377             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
1378           }))
1379         break;
1380     }
1381   }
1382 
1383   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1384   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1385   DebugLoc DL = MI.getDebugLoc();
1386   MachineFunction::iterator I = ++BB->getIterator();
1387 
1388   MachineBasicBlock *HeadMBB = BB;
1389   MachineFunction *F = BB->getParent();
1390   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
1391   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
1392 
1393   F->insert(I, IfFalseMBB);
1394   F->insert(I, TailMBB);
1395 
1396   // Transfer debug instructions associated with the selects to TailMBB.
1397   for (MachineInstr *DebugInstr : SelectDebugValues) {
1398     TailMBB->push_back(DebugInstr->removeFromParent());
1399   }
1400 
1401   // Move all instructions after the sequence to TailMBB.
1402   TailMBB->splice(TailMBB->end(), HeadMBB,
1403                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
1404   // Update machine-CFG edges by transferring all successors of the current
1405   // block to the new block which will contain the Phi nodes for the selects.
1406   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
1407   // Set the successors for HeadMBB.
1408   HeadMBB->addSuccessor(IfFalseMBB);
1409   HeadMBB->addSuccessor(TailMBB);
1410 
1411   // Insert appropriate branch.
1412   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
1413 
1414   BuildMI(HeadMBB, DL, TII.get(Opcode))
1415     .addReg(LHS)
1416     .addReg(RHS)
1417     .addMBB(TailMBB);
1418 
1419   // IfFalseMBB just falls through to TailMBB.
1420   IfFalseMBB->addSuccessor(TailMBB);
1421 
1422   // Create PHIs for all of the select pseudo-instructions.
1423   auto SelectMBBI = MI.getIterator();
1424   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
1425   auto InsertionPoint = TailMBB->begin();
1426   while (SelectMBBI != SelectEnd) {
1427     auto Next = std::next(SelectMBBI);
1428     if (isSelectPseudo(*SelectMBBI)) {
1429       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
1430       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
1431               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
1432           .addReg(SelectMBBI->getOperand(4).getReg())
1433           .addMBB(HeadMBB)
1434           .addReg(SelectMBBI->getOperand(5).getReg())
1435           .addMBB(IfFalseMBB);
1436       SelectMBBI->eraseFromParent();
1437     }
1438     SelectMBBI = Next;
1439   }
1440 
1441   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
1442   return TailMBB;
1443 }
1444 
1445 MachineBasicBlock *
1446 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1447                                                  MachineBasicBlock *BB) const {
1448   switch (MI.getOpcode()) {
1449   default:
1450     llvm_unreachable("Unexpected instr type to insert");
1451   case RISCV::ReadCycleWide:
1452     assert(!Subtarget.is64Bit() &&
1453            "ReadCycleWrite is only to be used on riscv32");
1454     return emitReadCycleWidePseudo(MI, BB);
1455   case RISCV::Select_GPR_Using_CC_GPR:
1456   case RISCV::Select_FPR32_Using_CC_GPR:
1457   case RISCV::Select_FPR64_Using_CC_GPR:
1458     return emitSelectPseudo(MI, BB);
1459   case RISCV::BuildPairF64Pseudo:
1460     return emitBuildPairF64Pseudo(MI, BB);
1461   case RISCV::SplitF64Pseudo:
1462     return emitSplitF64Pseudo(MI, BB);
1463   }
1464 }
1465 
1466 // Calling Convention Implementation.
1467 // The expectations for frontend ABI lowering vary from target to target.
1468 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
1469 // details, but this is a longer term goal. For now, we simply try to keep the
1470 // role of the frontend as simple and well-defined as possible. The rules can
1471 // be summarised as:
1472 // * Never split up large scalar arguments. We handle them here.
1473 // * If a hardfloat calling convention is being used, and the struct may be
1474 // passed in a pair of registers (fp+fp, int+fp), and both registers are
1475 // available, then pass as two separate arguments. If either the GPRs or FPRs
1476 // are exhausted, then pass according to the rule below.
1477 // * If a struct could never be passed in registers or directly in a stack
1478 // slot (as it is larger than 2*XLEN and the floating point rules don't
1479 // apply), then pass it using a pointer with the byval attribute.
1480 // * If a struct is less than 2*XLEN, then coerce to either a two-element
1481 // word-sized array or a 2*XLEN scalar (depending on alignment).
1482 // * The frontend can determine whether a struct is returned by reference or
1483 // not based on its size and fields. If it will be returned by reference, the
1484 // frontend must modify the prototype so a pointer with the sret annotation is
1485 // passed as the first argument. This is not necessary for large scalar
1486 // returns.
1487 // * Struct return values and varargs should be coerced to structs containing
1488 // register-size fields in the same situations they would be for fixed
1489 // arguments.
1490 
1491 static const MCPhysReg ArgGPRs[] = {
1492   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
1493   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
1494 };
1495 static const MCPhysReg ArgFPR32s[] = {
1496   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
1497   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
1498 };
1499 static const MCPhysReg ArgFPR64s[] = {
1500   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
1501   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
1502 };
1503 
1504 // Pass a 2*XLEN argument that has been split into two XLEN values through
1505 // registers or the stack as necessary.
1506 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
1507                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
1508                                 MVT ValVT2, MVT LocVT2,
1509                                 ISD::ArgFlagsTy ArgFlags2) {
1510   unsigned XLenInBytes = XLen / 8;
1511   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1512     // At least one half can be passed via register.
1513     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
1514                                      VA1.getLocVT(), CCValAssign::Full));
1515   } else {
1516     // Both halves must be passed on the stack, with proper alignment.
1517     Align StackAlign =
1518         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
1519     State.addLoc(
1520         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
1521                             State.AllocateStack(XLenInBytes, StackAlign),
1522                             VA1.getLocVT(), CCValAssign::Full));
1523     State.addLoc(CCValAssign::getMem(
1524         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
1525         LocVT2, CCValAssign::Full));
1526     return false;
1527   }
1528 
1529   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1530     // The second half can also be passed via register.
1531     State.addLoc(
1532         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
1533   } else {
1534     // The second half is passed via the stack, without additional alignment.
1535     State.addLoc(CCValAssign::getMem(
1536         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
1537         LocVT2, CCValAssign::Full));
1538   }
1539 
1540   return false;
1541 }
1542 
1543 // Implements the RISC-V calling convention. Returns true upon failure.
1544 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
1545                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
1546                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
1547                      bool IsRet, Type *OrigTy) {
1548   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
1549   assert(XLen == 32 || XLen == 64);
1550   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
1551 
1552   // Any return value split in to more than two values can't be returned
1553   // directly.
1554   if (IsRet && ValNo > 1)
1555     return true;
1556 
1557   // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a
1558   // variadic argument, or if no F32 argument registers are available.
1559   bool UseGPRForF32 = true;
1560   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
1561   // variadic argument, or if no F64 argument registers are available.
1562   bool UseGPRForF64 = true;
1563 
1564   switch (ABI) {
1565   default:
1566     llvm_unreachable("Unexpected ABI");
1567   case RISCVABI::ABI_ILP32:
1568   case RISCVABI::ABI_LP64:
1569     break;
1570   case RISCVABI::ABI_ILP32F:
1571   case RISCVABI::ABI_LP64F:
1572     UseGPRForF32 = !IsFixed;
1573     break;
1574   case RISCVABI::ABI_ILP32D:
1575   case RISCVABI::ABI_LP64D:
1576     UseGPRForF32 = !IsFixed;
1577     UseGPRForF64 = !IsFixed;
1578     break;
1579   }
1580 
1581   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s))
1582     UseGPRForF32 = true;
1583   if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s))
1584     UseGPRForF64 = true;
1585 
1586   // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local
1587   // variables rather than directly checking against the target ABI.
1588 
1589   if (UseGPRForF32 && ValVT == MVT::f32) {
1590     LocVT = XLenVT;
1591     LocInfo = CCValAssign::BCvt;
1592   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
1593     LocVT = MVT::i64;
1594     LocInfo = CCValAssign::BCvt;
1595   }
1596 
1597   // If this is a variadic argument, the RISC-V calling convention requires
1598   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
1599   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
1600   // be used regardless of whether the original argument was split during
1601   // legalisation or not. The argument will not be passed by registers if the
1602   // original type is larger than 2*XLEN, so the register alignment rule does
1603   // not apply.
1604   unsigned TwoXLenInBytes = (2 * XLen) / 8;
1605   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
1606       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
1607     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
1608     // Skip 'odd' register if necessary.
1609     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
1610       State.AllocateReg(ArgGPRs);
1611   }
1612 
1613   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
1614   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
1615       State.getPendingArgFlags();
1616 
1617   assert(PendingLocs.size() == PendingArgFlags.size() &&
1618          "PendingLocs and PendingArgFlags out of sync");
1619 
1620   // Handle passing f64 on RV32D with a soft float ABI or when floating point
1621   // registers are exhausted.
1622   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
1623     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
1624            "Can't lower f64 if it is split");
1625     // Depending on available argument GPRS, f64 may be passed in a pair of
1626     // GPRs, split between a GPR and the stack, or passed completely on the
1627     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
1628     // cases.
1629     Register Reg = State.AllocateReg(ArgGPRs);
1630     LocVT = MVT::i32;
1631     if (!Reg) {
1632       unsigned StackOffset = State.AllocateStack(8, Align(8));
1633       State.addLoc(
1634           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1635       return false;
1636     }
1637     if (!State.AllocateReg(ArgGPRs))
1638       State.AllocateStack(4, Align(4));
1639     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1640     return false;
1641   }
1642 
1643   // Split arguments might be passed indirectly, so keep track of the pending
1644   // values.
1645   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
1646     LocVT = XLenVT;
1647     LocInfo = CCValAssign::Indirect;
1648     PendingLocs.push_back(
1649         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
1650     PendingArgFlags.push_back(ArgFlags);
1651     if (!ArgFlags.isSplitEnd()) {
1652       return false;
1653     }
1654   }
1655 
1656   // If the split argument only had two elements, it should be passed directly
1657   // in registers or on the stack.
1658   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
1659     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
1660     // Apply the normal calling convention rules to the first half of the
1661     // split argument.
1662     CCValAssign VA = PendingLocs[0];
1663     ISD::ArgFlagsTy AF = PendingArgFlags[0];
1664     PendingLocs.clear();
1665     PendingArgFlags.clear();
1666     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
1667                                ArgFlags);
1668   }
1669 
1670   // Allocate to a register if possible, or else a stack slot.
1671   Register Reg;
1672   if (ValVT == MVT::f32 && !UseGPRForF32)
1673     Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s);
1674   else if (ValVT == MVT::f64 && !UseGPRForF64)
1675     Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s);
1676   else
1677     Reg = State.AllocateReg(ArgGPRs);
1678   unsigned StackOffset =
1679       Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8));
1680 
1681   // If we reach this point and PendingLocs is non-empty, we must be at the
1682   // end of a split argument that must be passed indirectly.
1683   if (!PendingLocs.empty()) {
1684     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
1685     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
1686 
1687     for (auto &It : PendingLocs) {
1688       if (Reg)
1689         It.convertToReg(Reg);
1690       else
1691         It.convertToMem(StackOffset);
1692       State.addLoc(It);
1693     }
1694     PendingLocs.clear();
1695     PendingArgFlags.clear();
1696     return false;
1697   }
1698 
1699   assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) &&
1700          "Expected an XLenVT at this stage");
1701 
1702   if (Reg) {
1703     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1704     return false;
1705   }
1706 
1707   // When an f32 or f64 is passed on the stack, no bit-conversion is needed.
1708   if (ValVT == MVT::f32 || ValVT == MVT::f64) {
1709     LocVT = ValVT;
1710     LocInfo = CCValAssign::Full;
1711   }
1712   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1713   return false;
1714 }
1715 
1716 void RISCVTargetLowering::analyzeInputArgs(
1717     MachineFunction &MF, CCState &CCInfo,
1718     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
1719   unsigned NumArgs = Ins.size();
1720   FunctionType *FType = MF.getFunction().getFunctionType();
1721 
1722   for (unsigned i = 0; i != NumArgs; ++i) {
1723     MVT ArgVT = Ins[i].VT;
1724     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
1725 
1726     Type *ArgTy = nullptr;
1727     if (IsRet)
1728       ArgTy = FType->getReturnType();
1729     else if (Ins[i].isOrigArg())
1730       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
1731 
1732     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1733     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1734                  ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy)) {
1735       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
1736                         << EVT(ArgVT).getEVTString() << '\n');
1737       llvm_unreachable(nullptr);
1738     }
1739   }
1740 }
1741 
1742 void RISCVTargetLowering::analyzeOutputArgs(
1743     MachineFunction &MF, CCState &CCInfo,
1744     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
1745     CallLoweringInfo *CLI) const {
1746   unsigned NumArgs = Outs.size();
1747 
1748   for (unsigned i = 0; i != NumArgs; i++) {
1749     MVT ArgVT = Outs[i].VT;
1750     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
1751     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
1752 
1753     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1754     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1755                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
1756       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
1757                         << EVT(ArgVT).getEVTString() << "\n");
1758       llvm_unreachable(nullptr);
1759     }
1760   }
1761 }
1762 
1763 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
1764 // values.
1765 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
1766                                    const CCValAssign &VA, const SDLoc &DL) {
1767   switch (VA.getLocInfo()) {
1768   default:
1769     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1770   case CCValAssign::Full:
1771     break;
1772   case CCValAssign::BCvt:
1773     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1774       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
1775       break;
1776     }
1777     Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
1778     break;
1779   }
1780   return Val;
1781 }
1782 
1783 // The caller is responsible for loading the full value if the argument is
1784 // passed with CCValAssign::Indirect.
1785 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
1786                                 const CCValAssign &VA, const SDLoc &DL) {
1787   MachineFunction &MF = DAG.getMachineFunction();
1788   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1789   EVT LocVT = VA.getLocVT();
1790   SDValue Val;
1791   const TargetRegisterClass *RC;
1792 
1793   switch (LocVT.getSimpleVT().SimpleTy) {
1794   default:
1795     llvm_unreachable("Unexpected register type");
1796   case MVT::i32:
1797   case MVT::i64:
1798     RC = &RISCV::GPRRegClass;
1799     break;
1800   case MVT::f32:
1801     RC = &RISCV::FPR32RegClass;
1802     break;
1803   case MVT::f64:
1804     RC = &RISCV::FPR64RegClass;
1805     break;
1806   }
1807 
1808   Register VReg = RegInfo.createVirtualRegister(RC);
1809   RegInfo.addLiveIn(VA.getLocReg(), VReg);
1810   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1811 
1812   if (VA.getLocInfo() == CCValAssign::Indirect)
1813     return Val;
1814 
1815   return convertLocVTToValVT(DAG, Val, VA, DL);
1816 }
1817 
1818 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
1819                                    const CCValAssign &VA, const SDLoc &DL) {
1820   EVT LocVT = VA.getLocVT();
1821 
1822   switch (VA.getLocInfo()) {
1823   default:
1824     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1825   case CCValAssign::Full:
1826     break;
1827   case CCValAssign::BCvt:
1828     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1829       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
1830       break;
1831     }
1832     Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
1833     break;
1834   }
1835   return Val;
1836 }
1837 
1838 // The caller is responsible for loading the full value if the argument is
1839 // passed with CCValAssign::Indirect.
1840 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
1841                                 const CCValAssign &VA, const SDLoc &DL) {
1842   MachineFunction &MF = DAG.getMachineFunction();
1843   MachineFrameInfo &MFI = MF.getFrameInfo();
1844   EVT LocVT = VA.getLocVT();
1845   EVT ValVT = VA.getValVT();
1846   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
1847   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
1848                                  VA.getLocMemOffset(), /*Immutable=*/true);
1849   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1850   SDValue Val;
1851 
1852   ISD::LoadExtType ExtType;
1853   switch (VA.getLocInfo()) {
1854   default:
1855     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1856   case CCValAssign::Full:
1857   case CCValAssign::Indirect:
1858   case CCValAssign::BCvt:
1859     ExtType = ISD::NON_EXTLOAD;
1860     break;
1861   }
1862   Val = DAG.getExtLoad(
1863       ExtType, DL, LocVT, Chain, FIN,
1864       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
1865   return Val;
1866 }
1867 
1868 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
1869                                        const CCValAssign &VA, const SDLoc &DL) {
1870   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
1871          "Unexpected VA");
1872   MachineFunction &MF = DAG.getMachineFunction();
1873   MachineFrameInfo &MFI = MF.getFrameInfo();
1874   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1875 
1876   if (VA.isMemLoc()) {
1877     // f64 is passed on the stack.
1878     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
1879     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1880     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
1881                        MachinePointerInfo::getFixedStack(MF, FI));
1882   }
1883 
1884   assert(VA.isRegLoc() && "Expected register VA assignment");
1885 
1886   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1887   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
1888   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
1889   SDValue Hi;
1890   if (VA.getLocReg() == RISCV::X17) {
1891     // Second half of f64 is passed on the stack.
1892     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
1893     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1894     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
1895                      MachinePointerInfo::getFixedStack(MF, FI));
1896   } else {
1897     // Second half of f64 is passed in another GPR.
1898     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1899     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
1900     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
1901   }
1902   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1903 }
1904 
1905 // FastCC has less than 1% performance improvement for some particular
1906 // benchmark. But theoretically, it may has benenfit for some cases.
1907 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
1908                             CCValAssign::LocInfo LocInfo,
1909                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
1910 
1911   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
1912     // X5 and X6 might be used for save-restore libcall.
1913     static const MCPhysReg GPRList[] = {
1914         RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
1915         RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
1916         RISCV::X29, RISCV::X30, RISCV::X31};
1917     if (unsigned Reg = State.AllocateReg(GPRList)) {
1918       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1919       return false;
1920     }
1921   }
1922 
1923   if (LocVT == MVT::f32) {
1924     static const MCPhysReg FPR32List[] = {
1925         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
1926         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
1927         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
1928         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
1929     if (unsigned Reg = State.AllocateReg(FPR32List)) {
1930       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1931       return false;
1932     }
1933   }
1934 
1935   if (LocVT == MVT::f64) {
1936     static const MCPhysReg FPR64List[] = {
1937         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
1938         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
1939         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
1940         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
1941     if (unsigned Reg = State.AllocateReg(FPR64List)) {
1942       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1943       return false;
1944     }
1945   }
1946 
1947   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
1948     unsigned Offset4 = State.AllocateStack(4, Align(4));
1949     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
1950     return false;
1951   }
1952 
1953   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
1954     unsigned Offset5 = State.AllocateStack(8, Align(8));
1955     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
1956     return false;
1957   }
1958 
1959   return true; // CC didn't match.
1960 }
1961 
1962 // Transform physical registers into virtual registers.
1963 SDValue RISCVTargetLowering::LowerFormalArguments(
1964     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1965     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1966     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1967 
1968   switch (CallConv) {
1969   default:
1970     report_fatal_error("Unsupported calling convention");
1971   case CallingConv::C:
1972   case CallingConv::Fast:
1973     break;
1974   }
1975 
1976   MachineFunction &MF = DAG.getMachineFunction();
1977 
1978   const Function &Func = MF.getFunction();
1979   if (Func.hasFnAttribute("interrupt")) {
1980     if (!Func.arg_empty())
1981       report_fatal_error(
1982         "Functions with the interrupt attribute cannot have arguments!");
1983 
1984     StringRef Kind =
1985       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
1986 
1987     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
1988       report_fatal_error(
1989         "Function interrupt attribute argument not supported!");
1990   }
1991 
1992   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1993   MVT XLenVT = Subtarget.getXLenVT();
1994   unsigned XLenInBytes = Subtarget.getXLen() / 8;
1995   // Used with vargs to acumulate store chains.
1996   std::vector<SDValue> OutChains;
1997 
1998   // Assign locations to all of the incoming arguments.
1999   SmallVector<CCValAssign, 16> ArgLocs;
2000   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2001 
2002   if (CallConv == CallingConv::Fast)
2003     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
2004   else
2005     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
2006 
2007   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2008     CCValAssign &VA = ArgLocs[i];
2009     SDValue ArgValue;
2010     // Passing f64 on RV32D with a soft float ABI must be handled as a special
2011     // case.
2012     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
2013       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
2014     else if (VA.isRegLoc())
2015       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
2016     else
2017       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
2018 
2019     if (VA.getLocInfo() == CCValAssign::Indirect) {
2020       // If the original argument was split and passed by reference (e.g. i128
2021       // on RV32), we need to load all parts of it here (using the same
2022       // address).
2023       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
2024                                    MachinePointerInfo()));
2025       unsigned ArgIndex = Ins[i].OrigArgIndex;
2026       assert(Ins[i].PartOffset == 0);
2027       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
2028         CCValAssign &PartVA = ArgLocs[i + 1];
2029         unsigned PartOffset = Ins[i + 1].PartOffset;
2030         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
2031                                       DAG.getIntPtrConstant(PartOffset, DL));
2032         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
2033                                      MachinePointerInfo()));
2034         ++i;
2035       }
2036       continue;
2037     }
2038     InVals.push_back(ArgValue);
2039   }
2040 
2041   if (IsVarArg) {
2042     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
2043     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
2044     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
2045     MachineFrameInfo &MFI = MF.getFrameInfo();
2046     MachineRegisterInfo &RegInfo = MF.getRegInfo();
2047     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
2048 
2049     // Offset of the first variable argument from stack pointer, and size of
2050     // the vararg save area. For now, the varargs save area is either zero or
2051     // large enough to hold a0-a7.
2052     int VaArgOffset, VarArgsSaveSize;
2053 
2054     // If all registers are allocated, then all varargs must be passed on the
2055     // stack and we don't need to save any argregs.
2056     if (ArgRegs.size() == Idx) {
2057       VaArgOffset = CCInfo.getNextStackOffset();
2058       VarArgsSaveSize = 0;
2059     } else {
2060       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
2061       VaArgOffset = -VarArgsSaveSize;
2062     }
2063 
2064     // Record the frame index of the first variable argument
2065     // which is a value necessary to VASTART.
2066     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
2067     RVFI->setVarArgsFrameIndex(FI);
2068 
2069     // If saving an odd number of registers then create an extra stack slot to
2070     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
2071     // offsets to even-numbered registered remain 2*XLEN-aligned.
2072     if (Idx % 2) {
2073       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
2074       VarArgsSaveSize += XLenInBytes;
2075     }
2076 
2077     // Copy the integer registers that may have been used for passing varargs
2078     // to the vararg save area.
2079     for (unsigned I = Idx; I < ArgRegs.size();
2080          ++I, VaArgOffset += XLenInBytes) {
2081       const Register Reg = RegInfo.createVirtualRegister(RC);
2082       RegInfo.addLiveIn(ArgRegs[I], Reg);
2083       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
2084       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
2085       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2086       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
2087                                    MachinePointerInfo::getFixedStack(MF, FI));
2088       cast<StoreSDNode>(Store.getNode())
2089           ->getMemOperand()
2090           ->setValue((Value *)nullptr);
2091       OutChains.push_back(Store);
2092     }
2093     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
2094   }
2095 
2096   // All stores are grouped in one node to allow the matching between
2097   // the size of Ins and InVals. This only happens for vararg functions.
2098   if (!OutChains.empty()) {
2099     OutChains.push_back(Chain);
2100     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
2101   }
2102 
2103   return Chain;
2104 }
2105 
2106 /// isEligibleForTailCallOptimization - Check whether the call is eligible
2107 /// for tail call optimization.
2108 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
2109 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
2110     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
2111     const SmallVector<CCValAssign, 16> &ArgLocs) const {
2112 
2113   auto &Callee = CLI.Callee;
2114   auto CalleeCC = CLI.CallConv;
2115   auto &Outs = CLI.Outs;
2116   auto &Caller = MF.getFunction();
2117   auto CallerCC = Caller.getCallingConv();
2118 
2119   // Exception-handling functions need a special set of instructions to
2120   // indicate a return to the hardware. Tail-calling another function would
2121   // probably break this.
2122   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
2123   // should be expanded as new function attributes are introduced.
2124   if (Caller.hasFnAttribute("interrupt"))
2125     return false;
2126 
2127   // Do not tail call opt if the stack is used to pass parameters.
2128   if (CCInfo.getNextStackOffset() != 0)
2129     return false;
2130 
2131   // Do not tail call opt if any parameters need to be passed indirectly.
2132   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
2133   // passed indirectly. So the address of the value will be passed in a
2134   // register, or if not available, then the address is put on the stack. In
2135   // order to pass indirectly, space on the stack often needs to be allocated
2136   // in order to store the value. In this case the CCInfo.getNextStackOffset()
2137   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
2138   // are passed CCValAssign::Indirect.
2139   for (auto &VA : ArgLocs)
2140     if (VA.getLocInfo() == CCValAssign::Indirect)
2141       return false;
2142 
2143   // Do not tail call opt if either caller or callee uses struct return
2144   // semantics.
2145   auto IsCallerStructRet = Caller.hasStructRetAttr();
2146   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
2147   if (IsCallerStructRet || IsCalleeStructRet)
2148     return false;
2149 
2150   // Externally-defined functions with weak linkage should not be
2151   // tail-called. The behaviour of branch instructions in this situation (as
2152   // used for tail calls) is implementation-defined, so we cannot rely on the
2153   // linker replacing the tail call with a return.
2154   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2155     const GlobalValue *GV = G->getGlobal();
2156     if (GV->hasExternalWeakLinkage())
2157       return false;
2158   }
2159 
2160   // The callee has to preserve all registers the caller needs to preserve.
2161   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
2162   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2163   if (CalleeCC != CallerCC) {
2164     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2165     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2166       return false;
2167   }
2168 
2169   // Byval parameters hand the function a pointer directly into the stack area
2170   // we want to reuse during a tail call. Working around this *is* possible
2171   // but less efficient and uglier in LowerCall.
2172   for (auto &Arg : Outs)
2173     if (Arg.Flags.isByVal())
2174       return false;
2175 
2176   return true;
2177 }
2178 
2179 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
2180 // and output parameter nodes.
2181 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
2182                                        SmallVectorImpl<SDValue> &InVals) const {
2183   SelectionDAG &DAG = CLI.DAG;
2184   SDLoc &DL = CLI.DL;
2185   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2186   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2187   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2188   SDValue Chain = CLI.Chain;
2189   SDValue Callee = CLI.Callee;
2190   bool &IsTailCall = CLI.IsTailCall;
2191   CallingConv::ID CallConv = CLI.CallConv;
2192   bool IsVarArg = CLI.IsVarArg;
2193   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2194   MVT XLenVT = Subtarget.getXLenVT();
2195 
2196   MachineFunction &MF = DAG.getMachineFunction();
2197 
2198   // Analyze the operands of the call, assigning locations to each operand.
2199   SmallVector<CCValAssign, 16> ArgLocs;
2200   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2201 
2202   if (CallConv == CallingConv::Fast)
2203     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
2204   else
2205     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
2206 
2207   // Check if it's really possible to do a tail call.
2208   if (IsTailCall)
2209     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
2210 
2211   if (IsTailCall)
2212     ++NumTailCalls;
2213   else if (CLI.CB && CLI.CB->isMustTailCall())
2214     report_fatal_error("failed to perform tail call elimination on a call "
2215                        "site marked musttail");
2216 
2217   // Get a count of how many bytes are to be pushed on the stack.
2218   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
2219 
2220   // Create local copies for byval args
2221   SmallVector<SDValue, 8> ByValArgs;
2222   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2223     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2224     if (!Flags.isByVal())
2225       continue;
2226 
2227     SDValue Arg = OutVals[i];
2228     unsigned Size = Flags.getByValSize();
2229     Align Alignment = Flags.getNonZeroByValAlign();
2230 
2231     int FI =
2232         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
2233     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2234     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
2235 
2236     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
2237                           /*IsVolatile=*/false,
2238                           /*AlwaysInline=*/false, IsTailCall,
2239                           MachinePointerInfo(), MachinePointerInfo());
2240     ByValArgs.push_back(FIPtr);
2241   }
2242 
2243   if (!IsTailCall)
2244     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
2245 
2246   // Copy argument values to their designated locations.
2247   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
2248   SmallVector<SDValue, 8> MemOpChains;
2249   SDValue StackPtr;
2250   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
2251     CCValAssign &VA = ArgLocs[i];
2252     SDValue ArgValue = OutVals[i];
2253     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2254 
2255     // Handle passing f64 on RV32D with a soft float ABI as a special case.
2256     bool IsF64OnRV32DSoftABI =
2257         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
2258     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
2259       SDValue SplitF64 = DAG.getNode(
2260           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
2261       SDValue Lo = SplitF64.getValue(0);
2262       SDValue Hi = SplitF64.getValue(1);
2263 
2264       Register RegLo = VA.getLocReg();
2265       RegsToPass.push_back(std::make_pair(RegLo, Lo));
2266 
2267       if (RegLo == RISCV::X17) {
2268         // Second half of f64 is passed on the stack.
2269         // Work out the address of the stack slot.
2270         if (!StackPtr.getNode())
2271           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2272         // Emit the store.
2273         MemOpChains.push_back(
2274             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
2275       } else {
2276         // Second half of f64 is passed in another GPR.
2277         assert(RegLo < RISCV::X31 && "Invalid register pair");
2278         Register RegHigh = RegLo + 1;
2279         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
2280       }
2281       continue;
2282     }
2283 
2284     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
2285     // as any other MemLoc.
2286 
2287     // Promote the value if needed.
2288     // For now, only handle fully promoted and indirect arguments.
2289     if (VA.getLocInfo() == CCValAssign::Indirect) {
2290       // Store the argument in a stack slot and pass its address.
2291       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
2292       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2293       MemOpChains.push_back(
2294           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
2295                        MachinePointerInfo::getFixedStack(MF, FI)));
2296       // If the original argument was split (e.g. i128), we need
2297       // to store all parts of it here (and pass just one address).
2298       unsigned ArgIndex = Outs[i].OrigArgIndex;
2299       assert(Outs[i].PartOffset == 0);
2300       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
2301         SDValue PartValue = OutVals[i + 1];
2302         unsigned PartOffset = Outs[i + 1].PartOffset;
2303         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
2304                                       DAG.getIntPtrConstant(PartOffset, DL));
2305         MemOpChains.push_back(
2306             DAG.getStore(Chain, DL, PartValue, Address,
2307                          MachinePointerInfo::getFixedStack(MF, FI)));
2308         ++i;
2309       }
2310       ArgValue = SpillSlot;
2311     } else {
2312       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
2313     }
2314 
2315     // Use local copy if it is a byval arg.
2316     if (Flags.isByVal())
2317       ArgValue = ByValArgs[j++];
2318 
2319     if (VA.isRegLoc()) {
2320       // Queue up the argument copies and emit them at the end.
2321       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
2322     } else {
2323       assert(VA.isMemLoc() && "Argument not register or memory");
2324       assert(!IsTailCall && "Tail call not allowed if stack is used "
2325                             "for passing parameters");
2326 
2327       // Work out the address of the stack slot.
2328       if (!StackPtr.getNode())
2329         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2330       SDValue Address =
2331           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
2332                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
2333 
2334       // Emit the store.
2335       MemOpChains.push_back(
2336           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
2337     }
2338   }
2339 
2340   // Join the stores, which are independent of one another.
2341   if (!MemOpChains.empty())
2342     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2343 
2344   SDValue Glue;
2345 
2346   // Build a sequence of copy-to-reg nodes, chained and glued together.
2347   for (auto &Reg : RegsToPass) {
2348     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
2349     Glue = Chain.getValue(1);
2350   }
2351 
2352   // Validate that none of the argument registers have been marked as
2353   // reserved, if so report an error. Do the same for the return address if this
2354   // is not a tailcall.
2355   validateCCReservedRegs(RegsToPass, MF);
2356   if (!IsTailCall &&
2357       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
2358     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2359         MF.getFunction(),
2360         "Return address register required, but has been reserved."});
2361 
2362   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
2363   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
2364   // split it and then direct call can be matched by PseudoCALL.
2365   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
2366     const GlobalValue *GV = S->getGlobal();
2367 
2368     unsigned OpFlags = RISCVII::MO_CALL;
2369     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
2370       OpFlags = RISCVII::MO_PLT;
2371 
2372     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2373   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2374     unsigned OpFlags = RISCVII::MO_CALL;
2375 
2376     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
2377                                                  nullptr))
2378       OpFlags = RISCVII::MO_PLT;
2379 
2380     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
2381   }
2382 
2383   // The first call operand is the chain and the second is the target address.
2384   SmallVector<SDValue, 8> Ops;
2385   Ops.push_back(Chain);
2386   Ops.push_back(Callee);
2387 
2388   // Add argument registers to the end of the list so that they are
2389   // known live into the call.
2390   for (auto &Reg : RegsToPass)
2391     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
2392 
2393   if (!IsTailCall) {
2394     // Add a register mask operand representing the call-preserved registers.
2395     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2396     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2397     assert(Mask && "Missing call preserved mask for calling convention");
2398     Ops.push_back(DAG.getRegisterMask(Mask));
2399   }
2400 
2401   // Glue the call to the argument copies, if any.
2402   if (Glue.getNode())
2403     Ops.push_back(Glue);
2404 
2405   // Emit the call.
2406   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2407 
2408   if (IsTailCall) {
2409     MF.getFrameInfo().setHasTailCall();
2410     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
2411   }
2412 
2413   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
2414   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2415   Glue = Chain.getValue(1);
2416 
2417   // Mark the end of the call, which is glued to the call itself.
2418   Chain = DAG.getCALLSEQ_END(Chain,
2419                              DAG.getConstant(NumBytes, DL, PtrVT, true),
2420                              DAG.getConstant(0, DL, PtrVT, true),
2421                              Glue, DL);
2422   Glue = Chain.getValue(1);
2423 
2424   // Assign locations to each value returned by this call.
2425   SmallVector<CCValAssign, 16> RVLocs;
2426   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
2427   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
2428 
2429   // Copy all of the result registers out of their specified physreg.
2430   for (auto &VA : RVLocs) {
2431     // Copy the value out
2432     SDValue RetValue =
2433         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
2434     // Glue the RetValue to the end of the call sequence
2435     Chain = RetValue.getValue(1);
2436     Glue = RetValue.getValue(2);
2437 
2438     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2439       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
2440       SDValue RetValue2 =
2441           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
2442       Chain = RetValue2.getValue(1);
2443       Glue = RetValue2.getValue(2);
2444       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
2445                              RetValue2);
2446     }
2447 
2448     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
2449 
2450     InVals.push_back(RetValue);
2451   }
2452 
2453   return Chain;
2454 }
2455 
2456 bool RISCVTargetLowering::CanLowerReturn(
2457     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
2458     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2459   SmallVector<CCValAssign, 16> RVLocs;
2460   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2461   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2462     MVT VT = Outs[i].VT;
2463     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2464     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
2465     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
2466                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
2467       return false;
2468   }
2469   return true;
2470 }
2471 
2472 SDValue
2473 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2474                                  bool IsVarArg,
2475                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2476                                  const SmallVectorImpl<SDValue> &OutVals,
2477                                  const SDLoc &DL, SelectionDAG &DAG) const {
2478   const MachineFunction &MF = DAG.getMachineFunction();
2479   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2480 
2481   // Stores the assignment of the return value to a location.
2482   SmallVector<CCValAssign, 16> RVLocs;
2483 
2484   // Info about the registers and stack slot.
2485   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2486                  *DAG.getContext());
2487 
2488   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
2489                     nullptr);
2490 
2491   SDValue Glue;
2492   SmallVector<SDValue, 4> RetOps(1, Chain);
2493 
2494   // Copy the result values into the output registers.
2495   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
2496     SDValue Val = OutVals[i];
2497     CCValAssign &VA = RVLocs[i];
2498     assert(VA.isRegLoc() && "Can only return in registers!");
2499 
2500     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2501       // Handle returning f64 on RV32D with a soft float ABI.
2502       assert(VA.isRegLoc() && "Expected return via registers");
2503       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
2504                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
2505       SDValue Lo = SplitF64.getValue(0);
2506       SDValue Hi = SplitF64.getValue(1);
2507       Register RegLo = VA.getLocReg();
2508       assert(RegLo < RISCV::X31 && "Invalid register pair");
2509       Register RegHi = RegLo + 1;
2510 
2511       if (STI.isRegisterReservedByUser(RegLo) ||
2512           STI.isRegisterReservedByUser(RegHi))
2513         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2514             MF.getFunction(),
2515             "Return value register required, but has been reserved."});
2516 
2517       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
2518       Glue = Chain.getValue(1);
2519       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
2520       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
2521       Glue = Chain.getValue(1);
2522       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
2523     } else {
2524       // Handle a 'normal' return.
2525       Val = convertValVTToLocVT(DAG, Val, VA, DL);
2526       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
2527 
2528       if (STI.isRegisterReservedByUser(VA.getLocReg()))
2529         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2530             MF.getFunction(),
2531             "Return value register required, but has been reserved."});
2532 
2533       // Guarantee that all emitted copies are stuck together.
2534       Glue = Chain.getValue(1);
2535       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2536     }
2537   }
2538 
2539   RetOps[0] = Chain; // Update chain.
2540 
2541   // Add the glue node if we have it.
2542   if (Glue.getNode()) {
2543     RetOps.push_back(Glue);
2544   }
2545 
2546   // Interrupt service routines use different return instructions.
2547   const Function &Func = DAG.getMachineFunction().getFunction();
2548   if (Func.hasFnAttribute("interrupt")) {
2549     if (!Func.getReturnType()->isVoidTy())
2550       report_fatal_error(
2551           "Functions with the interrupt attribute must have void return type!");
2552 
2553     MachineFunction &MF = DAG.getMachineFunction();
2554     StringRef Kind =
2555       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
2556 
2557     unsigned RetOpc;
2558     if (Kind == "user")
2559       RetOpc = RISCVISD::URET_FLAG;
2560     else if (Kind == "supervisor")
2561       RetOpc = RISCVISD::SRET_FLAG;
2562     else
2563       RetOpc = RISCVISD::MRET_FLAG;
2564 
2565     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
2566   }
2567 
2568   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
2569 }
2570 
2571 void RISCVTargetLowering::validateCCReservedRegs(
2572     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
2573     MachineFunction &MF) const {
2574   const Function &F = MF.getFunction();
2575   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2576 
2577   if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) {
2578         return STI.isRegisterReservedByUser(Reg.first);
2579       }))
2580     F.getContext().diagnose(DiagnosticInfoUnsupported{
2581         F, "Argument register required, but has been reserved."});
2582 }
2583 
2584 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2585   return CI->isTailCall();
2586 }
2587 
2588 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
2589   switch ((RISCVISD::NodeType)Opcode) {
2590   case RISCVISD::FIRST_NUMBER:
2591     break;
2592   case RISCVISD::RET_FLAG:
2593     return "RISCVISD::RET_FLAG";
2594   case RISCVISD::URET_FLAG:
2595     return "RISCVISD::URET_FLAG";
2596   case RISCVISD::SRET_FLAG:
2597     return "RISCVISD::SRET_FLAG";
2598   case RISCVISD::MRET_FLAG:
2599     return "RISCVISD::MRET_FLAG";
2600   case RISCVISD::CALL:
2601     return "RISCVISD::CALL";
2602   case RISCVISD::SELECT_CC:
2603     return "RISCVISD::SELECT_CC";
2604   case RISCVISD::BuildPairF64:
2605     return "RISCVISD::BuildPairF64";
2606   case RISCVISD::SplitF64:
2607     return "RISCVISD::SplitF64";
2608   case RISCVISD::TAIL:
2609     return "RISCVISD::TAIL";
2610   case RISCVISD::SLLW:
2611     return "RISCVISD::SLLW";
2612   case RISCVISD::SRAW:
2613     return "RISCVISD::SRAW";
2614   case RISCVISD::SRLW:
2615     return "RISCVISD::SRLW";
2616   case RISCVISD::DIVW:
2617     return "RISCVISD::DIVW";
2618   case RISCVISD::DIVUW:
2619     return "RISCVISD::DIVUW";
2620   case RISCVISD::REMUW:
2621     return "RISCVISD::REMUW";
2622   case RISCVISD::FMV_W_X_RV64:
2623     return "RISCVISD::FMV_W_X_RV64";
2624   case RISCVISD::FMV_X_ANYEXTW_RV64:
2625     return "RISCVISD::FMV_X_ANYEXTW_RV64";
2626   case RISCVISD::READ_CYCLE_WIDE:
2627     return "RISCVISD::READ_CYCLE_WIDE";
2628   }
2629   return nullptr;
2630 }
2631 
2632 /// getConstraintType - Given a constraint letter, return the type of
2633 /// constraint it is for this target.
2634 RISCVTargetLowering::ConstraintType
2635 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
2636   if (Constraint.size() == 1) {
2637     switch (Constraint[0]) {
2638     default:
2639       break;
2640     case 'f':
2641       return C_RegisterClass;
2642     case 'I':
2643     case 'J':
2644     case 'K':
2645       return C_Immediate;
2646     case 'A':
2647       return C_Memory;
2648     }
2649   }
2650   return TargetLowering::getConstraintType(Constraint);
2651 }
2652 
2653 std::pair<unsigned, const TargetRegisterClass *>
2654 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2655                                                   StringRef Constraint,
2656                                                   MVT VT) const {
2657   // First, see if this is a constraint that directly corresponds to a
2658   // RISCV register class.
2659   if (Constraint.size() == 1) {
2660     switch (Constraint[0]) {
2661     case 'r':
2662       return std::make_pair(0U, &RISCV::GPRRegClass);
2663     case 'f':
2664       if (Subtarget.hasStdExtF() && VT == MVT::f32)
2665         return std::make_pair(0U, &RISCV::FPR32RegClass);
2666       if (Subtarget.hasStdExtD() && VT == MVT::f64)
2667         return std::make_pair(0U, &RISCV::FPR64RegClass);
2668       break;
2669     default:
2670       break;
2671     }
2672   }
2673 
2674   // Clang will correctly decode the usage of register name aliases into their
2675   // official names. However, other frontends like `rustc` do not. This allows
2676   // users of these frontends to use the ABI names for registers in LLVM-style
2677   // register constraints.
2678   Register XRegFromAlias = StringSwitch<Register>(Constraint.lower())
2679                                .Case("{zero}", RISCV::X0)
2680                                .Case("{ra}", RISCV::X1)
2681                                .Case("{sp}", RISCV::X2)
2682                                .Case("{gp}", RISCV::X3)
2683                                .Case("{tp}", RISCV::X4)
2684                                .Case("{t0}", RISCV::X5)
2685                                .Case("{t1}", RISCV::X6)
2686                                .Case("{t2}", RISCV::X7)
2687                                .Cases("{s0}", "{fp}", RISCV::X8)
2688                                .Case("{s1}", RISCV::X9)
2689                                .Case("{a0}", RISCV::X10)
2690                                .Case("{a1}", RISCV::X11)
2691                                .Case("{a2}", RISCV::X12)
2692                                .Case("{a3}", RISCV::X13)
2693                                .Case("{a4}", RISCV::X14)
2694                                .Case("{a5}", RISCV::X15)
2695                                .Case("{a6}", RISCV::X16)
2696                                .Case("{a7}", RISCV::X17)
2697                                .Case("{s2}", RISCV::X18)
2698                                .Case("{s3}", RISCV::X19)
2699                                .Case("{s4}", RISCV::X20)
2700                                .Case("{s5}", RISCV::X21)
2701                                .Case("{s6}", RISCV::X22)
2702                                .Case("{s7}", RISCV::X23)
2703                                .Case("{s8}", RISCV::X24)
2704                                .Case("{s9}", RISCV::X25)
2705                                .Case("{s10}", RISCV::X26)
2706                                .Case("{s11}", RISCV::X27)
2707                                .Case("{t3}", RISCV::X28)
2708                                .Case("{t4}", RISCV::X29)
2709                                .Case("{t5}", RISCV::X30)
2710                                .Case("{t6}", RISCV::X31)
2711                                .Default(RISCV::NoRegister);
2712   if (XRegFromAlias != RISCV::NoRegister)
2713     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
2714 
2715   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
2716   // TableGen record rather than the AsmName to choose registers for InlineAsm
2717   // constraints, plus we want to match those names to the widest floating point
2718   // register type available, manually select floating point registers here.
2719   //
2720   // The second case is the ABI name of the register, so that frontends can also
2721   // use the ABI names in register constraint lists.
2722   if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) {
2723     std::pair<Register, Register> FReg =
2724         StringSwitch<std::pair<Register, Register>>(Constraint.lower())
2725             .Cases("{f0}", "{ft0}", {RISCV::F0_F, RISCV::F0_D})
2726             .Cases("{f1}", "{ft1}", {RISCV::F1_F, RISCV::F1_D})
2727             .Cases("{f2}", "{ft2}", {RISCV::F2_F, RISCV::F2_D})
2728             .Cases("{f3}", "{ft3}", {RISCV::F3_F, RISCV::F3_D})
2729             .Cases("{f4}", "{ft4}", {RISCV::F4_F, RISCV::F4_D})
2730             .Cases("{f5}", "{ft5}", {RISCV::F5_F, RISCV::F5_D})
2731             .Cases("{f6}", "{ft6}", {RISCV::F6_F, RISCV::F6_D})
2732             .Cases("{f7}", "{ft7}", {RISCV::F7_F, RISCV::F7_D})
2733             .Cases("{f8}", "{fs0}", {RISCV::F8_F, RISCV::F8_D})
2734             .Cases("{f9}", "{fs1}", {RISCV::F9_F, RISCV::F9_D})
2735             .Cases("{f10}", "{fa0}", {RISCV::F10_F, RISCV::F10_D})
2736             .Cases("{f11}", "{fa1}", {RISCV::F11_F, RISCV::F11_D})
2737             .Cases("{f12}", "{fa2}", {RISCV::F12_F, RISCV::F12_D})
2738             .Cases("{f13}", "{fa3}", {RISCV::F13_F, RISCV::F13_D})
2739             .Cases("{f14}", "{fa4}", {RISCV::F14_F, RISCV::F14_D})
2740             .Cases("{f15}", "{fa5}", {RISCV::F15_F, RISCV::F15_D})
2741             .Cases("{f16}", "{fa6}", {RISCV::F16_F, RISCV::F16_D})
2742             .Cases("{f17}", "{fa7}", {RISCV::F17_F, RISCV::F17_D})
2743             .Cases("{f18}", "{fs2}", {RISCV::F18_F, RISCV::F18_D})
2744             .Cases("{f19}", "{fs3}", {RISCV::F19_F, RISCV::F19_D})
2745             .Cases("{f20}", "{fs4}", {RISCV::F20_F, RISCV::F20_D})
2746             .Cases("{f21}", "{fs5}", {RISCV::F21_F, RISCV::F21_D})
2747             .Cases("{f22}", "{fs6}", {RISCV::F22_F, RISCV::F22_D})
2748             .Cases("{f23}", "{fs7}", {RISCV::F23_F, RISCV::F23_D})
2749             .Cases("{f24}", "{fs8}", {RISCV::F24_F, RISCV::F24_D})
2750             .Cases("{f25}", "{fs9}", {RISCV::F25_F, RISCV::F25_D})
2751             .Cases("{f26}", "{fs10}", {RISCV::F26_F, RISCV::F26_D})
2752             .Cases("{f27}", "{fs11}", {RISCV::F27_F, RISCV::F27_D})
2753             .Cases("{f28}", "{ft8}", {RISCV::F28_F, RISCV::F28_D})
2754             .Cases("{f29}", "{ft9}", {RISCV::F29_F, RISCV::F29_D})
2755             .Cases("{f30}", "{ft10}", {RISCV::F30_F, RISCV::F30_D})
2756             .Cases("{f31}", "{ft11}", {RISCV::F31_F, RISCV::F31_D})
2757             .Default({RISCV::NoRegister, RISCV::NoRegister});
2758     if (FReg.first != RISCV::NoRegister)
2759       return Subtarget.hasStdExtD()
2760                  ? std::make_pair(FReg.second, &RISCV::FPR64RegClass)
2761                  : std::make_pair(FReg.first, &RISCV::FPR32RegClass);
2762   }
2763 
2764   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2765 }
2766 
2767 unsigned
2768 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
2769   // Currently only support length 1 constraints.
2770   if (ConstraintCode.size() == 1) {
2771     switch (ConstraintCode[0]) {
2772     case 'A':
2773       return InlineAsm::Constraint_A;
2774     default:
2775       break;
2776     }
2777   }
2778 
2779   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
2780 }
2781 
2782 void RISCVTargetLowering::LowerAsmOperandForConstraint(
2783     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2784     SelectionDAG &DAG) const {
2785   // Currently only support length 1 constraints.
2786   if (Constraint.length() == 1) {
2787     switch (Constraint[0]) {
2788     case 'I':
2789       // Validate & create a 12-bit signed immediate operand.
2790       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2791         uint64_t CVal = C->getSExtValue();
2792         if (isInt<12>(CVal))
2793           Ops.push_back(
2794               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2795       }
2796       return;
2797     case 'J':
2798       // Validate & create an integer zero operand.
2799       if (auto *C = dyn_cast<ConstantSDNode>(Op))
2800         if (C->getZExtValue() == 0)
2801           Ops.push_back(
2802               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
2803       return;
2804     case 'K':
2805       // Validate & create a 5-bit unsigned immediate operand.
2806       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2807         uint64_t CVal = C->getZExtValue();
2808         if (isUInt<5>(CVal))
2809           Ops.push_back(
2810               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2811       }
2812       return;
2813     default:
2814       break;
2815     }
2816   }
2817   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2818 }
2819 
2820 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
2821                                                    Instruction *Inst,
2822                                                    AtomicOrdering Ord) const {
2823   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
2824     return Builder.CreateFence(Ord);
2825   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
2826     return Builder.CreateFence(AtomicOrdering::Release);
2827   return nullptr;
2828 }
2829 
2830 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
2831                                                     Instruction *Inst,
2832                                                     AtomicOrdering Ord) const {
2833   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
2834     return Builder.CreateFence(AtomicOrdering::Acquire);
2835   return nullptr;
2836 }
2837 
2838 TargetLowering::AtomicExpansionKind
2839 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
2840   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
2841   // point operations can't be used in an lr/sc sequence without breaking the
2842   // forward-progress guarantee.
2843   if (AI->isFloatingPointOperation())
2844     return AtomicExpansionKind::CmpXChg;
2845 
2846   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
2847   if (Size == 8 || Size == 16)
2848     return AtomicExpansionKind::MaskedIntrinsic;
2849   return AtomicExpansionKind::None;
2850 }
2851 
2852 static Intrinsic::ID
2853 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
2854   if (XLen == 32) {
2855     switch (BinOp) {
2856     default:
2857       llvm_unreachable("Unexpected AtomicRMW BinOp");
2858     case AtomicRMWInst::Xchg:
2859       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
2860     case AtomicRMWInst::Add:
2861       return Intrinsic::riscv_masked_atomicrmw_add_i32;
2862     case AtomicRMWInst::Sub:
2863       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
2864     case AtomicRMWInst::Nand:
2865       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
2866     case AtomicRMWInst::Max:
2867       return Intrinsic::riscv_masked_atomicrmw_max_i32;
2868     case AtomicRMWInst::Min:
2869       return Intrinsic::riscv_masked_atomicrmw_min_i32;
2870     case AtomicRMWInst::UMax:
2871       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
2872     case AtomicRMWInst::UMin:
2873       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
2874     }
2875   }
2876 
2877   if (XLen == 64) {
2878     switch (BinOp) {
2879     default:
2880       llvm_unreachable("Unexpected AtomicRMW BinOp");
2881     case AtomicRMWInst::Xchg:
2882       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
2883     case AtomicRMWInst::Add:
2884       return Intrinsic::riscv_masked_atomicrmw_add_i64;
2885     case AtomicRMWInst::Sub:
2886       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
2887     case AtomicRMWInst::Nand:
2888       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
2889     case AtomicRMWInst::Max:
2890       return Intrinsic::riscv_masked_atomicrmw_max_i64;
2891     case AtomicRMWInst::Min:
2892       return Intrinsic::riscv_masked_atomicrmw_min_i64;
2893     case AtomicRMWInst::UMax:
2894       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
2895     case AtomicRMWInst::UMin:
2896       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
2897     }
2898   }
2899 
2900   llvm_unreachable("Unexpected XLen\n");
2901 }
2902 
2903 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
2904     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
2905     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
2906   unsigned XLen = Subtarget.getXLen();
2907   Value *Ordering =
2908       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
2909   Type *Tys[] = {AlignedAddr->getType()};
2910   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
2911       AI->getModule(),
2912       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
2913 
2914   if (XLen == 64) {
2915     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
2916     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2917     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
2918   }
2919 
2920   Value *Result;
2921 
2922   // Must pass the shift amount needed to sign extend the loaded value prior
2923   // to performing a signed comparison for min/max. ShiftAmt is the number of
2924   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
2925   // is the number of bits to left+right shift the value in order to
2926   // sign-extend.
2927   if (AI->getOperation() == AtomicRMWInst::Min ||
2928       AI->getOperation() == AtomicRMWInst::Max) {
2929     const DataLayout &DL = AI->getModule()->getDataLayout();
2930     unsigned ValWidth =
2931         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
2932     Value *SextShamt =
2933         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
2934     Result = Builder.CreateCall(LrwOpScwLoop,
2935                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
2936   } else {
2937     Result =
2938         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
2939   }
2940 
2941   if (XLen == 64)
2942     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2943   return Result;
2944 }
2945 
2946 TargetLowering::AtomicExpansionKind
2947 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
2948     AtomicCmpXchgInst *CI) const {
2949   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
2950   if (Size == 8 || Size == 16)
2951     return AtomicExpansionKind::MaskedIntrinsic;
2952   return AtomicExpansionKind::None;
2953 }
2954 
2955 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
2956     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
2957     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
2958   unsigned XLen = Subtarget.getXLen();
2959   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
2960   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
2961   if (XLen == 64) {
2962     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
2963     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
2964     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2965     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
2966   }
2967   Type *Tys[] = {AlignedAddr->getType()};
2968   Function *MaskedCmpXchg =
2969       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
2970   Value *Result = Builder.CreateCall(
2971       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
2972   if (XLen == 64)
2973     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2974   return Result;
2975 }
2976 
2977 Register RISCVTargetLowering::getExceptionPointerRegister(
2978     const Constant *PersonalityFn) const {
2979   return RISCV::X10;
2980 }
2981 
2982 Register RISCVTargetLowering::getExceptionSelectorRegister(
2983     const Constant *PersonalityFn) const {
2984   return RISCV::X11;
2985 }
2986 
2987 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
2988   // Return false to suppress the unnecessary extensions if the LibCall
2989   // arguments or return value is f32 type for LP64 ABI.
2990   RISCVABI::ABI ABI = Subtarget.getTargetABI();
2991   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
2992     return false;
2993 
2994   return true;
2995 }
2996 
2997 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
2998                                                  SDValue C) const {
2999   // Check integral scalar types.
3000   if (VT.isScalarInteger()) {
3001     // Do not perform the transformation on riscv32 with the M extension.
3002     if (!Subtarget.is64Bit() && Subtarget.hasStdExtM())
3003       return false;
3004     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
3005       if (ConstNode->getAPIntValue().getBitWidth() > 8 * sizeof(int64_t))
3006         return false;
3007       int64_t Imm = ConstNode->getSExtValue();
3008       if (isPowerOf2_64(Imm + 1) || isPowerOf2_64(Imm - 1) ||
3009           isPowerOf2_64(1 - Imm) || isPowerOf2_64(-1 - Imm))
3010         return true;
3011     }
3012   }
3013 
3014   return false;
3015 }
3016 
3017 #define GET_REGISTER_MATCHER
3018 #include "RISCVGenAsmMatcher.inc"
3019 
3020 Register
3021 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
3022                                        const MachineFunction &MF) const {
3023   Register Reg = MatchRegisterAltName(RegName);
3024   if (Reg == RISCV::NoRegister)
3025     Reg = MatchRegisterName(RegName);
3026   if (Reg == RISCV::NoRegister)
3027     report_fatal_error(
3028         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
3029   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
3030   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
3031     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
3032                              StringRef(RegName) + "\"."));
3033   return Reg;
3034 }
3035