xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVISelLowering.cpp (revision dc319d05aec8408641320dc12ff93370b6640265)
1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "RISCV.h"
16 #include "RISCVMachineFunctionInfo.h"
17 #include "RISCVRegisterInfo.h"
18 #include "RISCVSubtarget.h"
19 #include "RISCVTargetMachine.h"
20 #include "Utils/RISCVMatInt.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAGISel.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IntrinsicsRISCV.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "riscv-lower"
41 
42 STATISTIC(NumTailCalls, "Number of tail calls");
43 
44 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
45                                          const RISCVSubtarget &STI)
46     : TargetLowering(TM), Subtarget(STI) {
47 
48   if (Subtarget.isRV32E())
49     report_fatal_error("Codegen not yet implemented for RV32E");
50 
51   RISCVABI::ABI ABI = Subtarget.getTargetABI();
52   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
53 
54   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
55       !Subtarget.hasStdExtF()) {
56     errs() << "Hard-float 'f' ABI can't be used for a target that "
57                 "doesn't support the F instruction set extension (ignoring "
58                           "target-abi)\n";
59     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
60   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
61              !Subtarget.hasStdExtD()) {
62     errs() << "Hard-float 'd' ABI can't be used for a target that "
63               "doesn't support the D instruction set extension (ignoring "
64               "target-abi)\n";
65     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
66   }
67 
68   switch (ABI) {
69   default:
70     report_fatal_error("Don't know how to lower this ABI");
71   case RISCVABI::ABI_ILP32:
72   case RISCVABI::ABI_ILP32F:
73   case RISCVABI::ABI_ILP32D:
74   case RISCVABI::ABI_LP64:
75   case RISCVABI::ABI_LP64F:
76   case RISCVABI::ABI_LP64D:
77     break;
78   }
79 
80   MVT XLenVT = Subtarget.getXLenVT();
81 
82   // Set up the register classes.
83   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
84 
85   if (Subtarget.hasStdExtF())
86     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
87   if (Subtarget.hasStdExtD())
88     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
89 
90   // Compute derived properties from the register classes.
91   computeRegisterProperties(STI.getRegisterInfo());
92 
93   setStackPointerRegisterToSaveRestore(RISCV::X2);
94 
95   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
96     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
97 
98   // TODO: add all necessary setOperationAction calls.
99   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
100 
101   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
102   setOperationAction(ISD::BR_CC, XLenVT, Expand);
103   setOperationAction(ISD::SELECT, XLenVT, Custom);
104   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
105 
106   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
107   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
108 
109   setOperationAction(ISD::VASTART, MVT::Other, Custom);
110   setOperationAction(ISD::VAARG, MVT::Other, Expand);
111   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
112   setOperationAction(ISD::VAEND, MVT::Other, Expand);
113 
114   for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
115     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
116 
117   if (Subtarget.is64Bit()) {
118     setOperationAction(ISD::ADD, MVT::i32, Custom);
119     setOperationAction(ISD::SUB, MVT::i32, Custom);
120     setOperationAction(ISD::SHL, MVT::i32, Custom);
121     setOperationAction(ISD::SRA, MVT::i32, Custom);
122     setOperationAction(ISD::SRL, MVT::i32, Custom);
123   }
124 
125   if (!Subtarget.hasStdExtM()) {
126     setOperationAction(ISD::MUL, XLenVT, Expand);
127     setOperationAction(ISD::MULHS, XLenVT, Expand);
128     setOperationAction(ISD::MULHU, XLenVT, Expand);
129     setOperationAction(ISD::SDIV, XLenVT, Expand);
130     setOperationAction(ISD::UDIV, XLenVT, Expand);
131     setOperationAction(ISD::SREM, XLenVT, Expand);
132     setOperationAction(ISD::UREM, XLenVT, Expand);
133   }
134 
135   if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) {
136     setOperationAction(ISD::MUL, MVT::i32, Custom);
137     setOperationAction(ISD::SDIV, MVT::i32, Custom);
138     setOperationAction(ISD::UDIV, MVT::i32, Custom);
139     setOperationAction(ISD::UREM, MVT::i32, Custom);
140   }
141 
142   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
143   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
144   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
145   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
146 
147   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
148   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
149   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
150 
151   setOperationAction(ISD::ROTL, XLenVT, Expand);
152   setOperationAction(ISD::ROTR, XLenVT, Expand);
153   setOperationAction(ISD::BSWAP, XLenVT, Expand);
154   setOperationAction(ISD::CTTZ, XLenVT, Expand);
155   setOperationAction(ISD::CTLZ, XLenVT, Expand);
156   setOperationAction(ISD::CTPOP, XLenVT, Expand);
157 
158   ISD::CondCode FPCCToExtend[] = {
159       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
160       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
161       ISD::SETGE,  ISD::SETNE};
162 
163   ISD::NodeType FPOpToExtend[] = {
164       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
165       ISD::FP_TO_FP16};
166 
167   if (Subtarget.hasStdExtF()) {
168     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
169     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
170     for (auto CC : FPCCToExtend)
171       setCondCodeAction(CC, MVT::f32, Expand);
172     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
173     setOperationAction(ISD::SELECT, MVT::f32, Custom);
174     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
175     for (auto Op : FPOpToExtend)
176       setOperationAction(Op, MVT::f32, Expand);
177     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
178     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
179   }
180 
181   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
182     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
183 
184   if (Subtarget.hasStdExtD()) {
185     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
186     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
187     for (auto CC : FPCCToExtend)
188       setCondCodeAction(CC, MVT::f64, Expand);
189     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
190     setOperationAction(ISD::SELECT, MVT::f64, Custom);
191     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
192     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
193     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
194     for (auto Op : FPOpToExtend)
195       setOperationAction(Op, MVT::f64, Expand);
196     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
197     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
198   }
199 
200   if (Subtarget.is64Bit() &&
201       !(Subtarget.hasStdExtD() || Subtarget.hasStdExtF())) {
202     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
203     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
204     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
205     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
206   }
207 
208   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
209   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
210   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
211 
212   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
213 
214   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
215   // Unfortunately this can't be determined just from the ISA naming string.
216   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
217                      Subtarget.is64Bit() ? Legal : Custom);
218 
219   setOperationAction(ISD::TRAP, MVT::Other, Legal);
220   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
221 
222   if (Subtarget.hasStdExtA()) {
223     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
224     setMinCmpXchgSizeInBits(32);
225   } else {
226     setMaxAtomicSizeInBitsSupported(0);
227   }
228 
229   setBooleanContents(ZeroOrOneBooleanContent);
230 
231   // Function alignments.
232   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
233   setMinFunctionAlignment(FunctionAlignment);
234   setPrefFunctionAlignment(FunctionAlignment);
235 
236   // Effectively disable jump table generation.
237   setMinimumJumpTableEntries(INT_MAX);
238 }
239 
240 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
241                                             EVT VT) const {
242   if (!VT.isVector())
243     return getPointerTy(DL);
244   return VT.changeVectorElementTypeToInteger();
245 }
246 
247 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
248                                              const CallInst &I,
249                                              MachineFunction &MF,
250                                              unsigned Intrinsic) const {
251   switch (Intrinsic) {
252   default:
253     return false;
254   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
255   case Intrinsic::riscv_masked_atomicrmw_add_i32:
256   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
257   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
258   case Intrinsic::riscv_masked_atomicrmw_max_i32:
259   case Intrinsic::riscv_masked_atomicrmw_min_i32:
260   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
261   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
262   case Intrinsic::riscv_masked_cmpxchg_i32:
263     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
264     Info.opc = ISD::INTRINSIC_W_CHAIN;
265     Info.memVT = MVT::getVT(PtrTy->getElementType());
266     Info.ptrVal = I.getArgOperand(0);
267     Info.offset = 0;
268     Info.align = Align(4);
269     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
270                  MachineMemOperand::MOVolatile;
271     return true;
272   }
273 }
274 
275 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
276                                                 const AddrMode &AM, Type *Ty,
277                                                 unsigned AS,
278                                                 Instruction *I) const {
279   // No global is ever allowed as a base.
280   if (AM.BaseGV)
281     return false;
282 
283   // Require a 12-bit signed offset.
284   if (!isInt<12>(AM.BaseOffs))
285     return false;
286 
287   switch (AM.Scale) {
288   case 0: // "r+i" or just "i", depending on HasBaseReg.
289     break;
290   case 1:
291     if (!AM.HasBaseReg) // allow "r+i".
292       break;
293     return false; // disallow "r+r" or "r+r+i".
294   default:
295     return false;
296   }
297 
298   return true;
299 }
300 
301 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
302   return isInt<12>(Imm);
303 }
304 
305 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
306   return isInt<12>(Imm);
307 }
308 
309 // On RV32, 64-bit integers are split into their high and low parts and held
310 // in two different registers, so the trunc is free since the low register can
311 // just be used.
312 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
313   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
314     return false;
315   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
316   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
317   return (SrcBits == 64 && DestBits == 32);
318 }
319 
320 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
321   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
322       !SrcVT.isInteger() || !DstVT.isInteger())
323     return false;
324   unsigned SrcBits = SrcVT.getSizeInBits();
325   unsigned DestBits = DstVT.getSizeInBits();
326   return (SrcBits == 64 && DestBits == 32);
327 }
328 
329 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
330   // Zexts are free if they can be combined with a load.
331   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
332     EVT MemVT = LD->getMemoryVT();
333     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
334          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
335         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
336          LD->getExtensionType() == ISD::ZEXTLOAD))
337       return true;
338   }
339 
340   return TargetLowering::isZExtFree(Val, VT2);
341 }
342 
343 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
344   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
345 }
346 
347 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
348   return (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
349          (VT == MVT::f64 && Subtarget.hasStdExtD());
350 }
351 
352 // Changes the condition code and swaps operands if necessary, so the SetCC
353 // operation matches one of the comparisons supported directly in the RISC-V
354 // ISA.
355 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
356   switch (CC) {
357   default:
358     break;
359   case ISD::SETGT:
360   case ISD::SETLE:
361   case ISD::SETUGT:
362   case ISD::SETULE:
363     CC = ISD::getSetCCSwappedOperands(CC);
364     std::swap(LHS, RHS);
365     break;
366   }
367 }
368 
369 // Return the RISC-V branch opcode that matches the given DAG integer
370 // condition code. The CondCode must be one of those supported by the RISC-V
371 // ISA (see normaliseSetCC).
372 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
373   switch (CC) {
374   default:
375     llvm_unreachable("Unsupported CondCode");
376   case ISD::SETEQ:
377     return RISCV::BEQ;
378   case ISD::SETNE:
379     return RISCV::BNE;
380   case ISD::SETLT:
381     return RISCV::BLT;
382   case ISD::SETGE:
383     return RISCV::BGE;
384   case ISD::SETULT:
385     return RISCV::BLTU;
386   case ISD::SETUGE:
387     return RISCV::BGEU;
388   }
389 }
390 
391 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
392                                             SelectionDAG &DAG) const {
393   switch (Op.getOpcode()) {
394   default:
395     report_fatal_error("unimplemented operand");
396   case ISD::GlobalAddress:
397     return lowerGlobalAddress(Op, DAG);
398   case ISD::BlockAddress:
399     return lowerBlockAddress(Op, DAG);
400   case ISD::ConstantPool:
401     return lowerConstantPool(Op, DAG);
402   case ISD::GlobalTLSAddress:
403     return lowerGlobalTLSAddress(Op, DAG);
404   case ISD::SELECT:
405     return lowerSELECT(Op, DAG);
406   case ISD::VASTART:
407     return lowerVASTART(Op, DAG);
408   case ISD::FRAMEADDR:
409     return lowerFRAMEADDR(Op, DAG);
410   case ISD::RETURNADDR:
411     return lowerRETURNADDR(Op, DAG);
412   case ISD::SHL_PARTS:
413     return lowerShiftLeftParts(Op, DAG);
414   case ISD::SRA_PARTS:
415     return lowerShiftRightParts(Op, DAG, true);
416   case ISD::SRL_PARTS:
417     return lowerShiftRightParts(Op, DAG, false);
418   case ISD::BITCAST: {
419     assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() &&
420            "Unexpected custom legalisation");
421     SDLoc DL(Op);
422     SDValue Op0 = Op.getOperand(0);
423     if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32)
424       return SDValue();
425     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
426     SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
427     return FPConv;
428   }
429   }
430 }
431 
432 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
433                              SelectionDAG &DAG, unsigned Flags) {
434   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
435 }
436 
437 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
438                              SelectionDAG &DAG, unsigned Flags) {
439   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
440                                    Flags);
441 }
442 
443 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
444                              SelectionDAG &DAG, unsigned Flags) {
445   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
446                                    N->getOffset(), Flags);
447 }
448 
449 template <class NodeTy>
450 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
451                                      bool IsLocal) const {
452   SDLoc DL(N);
453   EVT Ty = getPointerTy(DAG.getDataLayout());
454 
455   if (isPositionIndependent()) {
456     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
457     if (IsLocal)
458       // Use PC-relative addressing to access the symbol. This generates the
459       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
460       // %pcrel_lo(auipc)).
461       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
462 
463     // Use PC-relative addressing to access the GOT for this symbol, then load
464     // the address from the GOT. This generates the pattern (PseudoLA sym),
465     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
466     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
467   }
468 
469   switch (getTargetMachine().getCodeModel()) {
470   default:
471     report_fatal_error("Unsupported code model for lowering");
472   case CodeModel::Small: {
473     // Generate a sequence for accessing addresses within the first 2 GiB of
474     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
475     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
476     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
477     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
478     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
479   }
480   case CodeModel::Medium: {
481     // Generate a sequence for accessing addresses within any 2GiB range within
482     // the address space. This generates the pattern (PseudoLLA sym), which
483     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
484     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
485     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
486   }
487   }
488 }
489 
490 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
491                                                 SelectionDAG &DAG) const {
492   SDLoc DL(Op);
493   EVT Ty = Op.getValueType();
494   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
495   int64_t Offset = N->getOffset();
496   MVT XLenVT = Subtarget.getXLenVT();
497 
498   const GlobalValue *GV = N->getGlobal();
499   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
500   SDValue Addr = getAddr(N, DAG, IsLocal);
501 
502   // In order to maximise the opportunity for common subexpression elimination,
503   // emit a separate ADD node for the global address offset instead of folding
504   // it in the global address node. Later peephole optimisations may choose to
505   // fold it back in when profitable.
506   if (Offset != 0)
507     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
508                        DAG.getConstant(Offset, DL, XLenVT));
509   return Addr;
510 }
511 
512 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
513                                                SelectionDAG &DAG) const {
514   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
515 
516   return getAddr(N, DAG);
517 }
518 
519 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
520                                                SelectionDAG &DAG) const {
521   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
522 
523   return getAddr(N, DAG);
524 }
525 
526 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
527                                               SelectionDAG &DAG,
528                                               bool UseGOT) const {
529   SDLoc DL(N);
530   EVT Ty = getPointerTy(DAG.getDataLayout());
531   const GlobalValue *GV = N->getGlobal();
532   MVT XLenVT = Subtarget.getXLenVT();
533 
534   if (UseGOT) {
535     // Use PC-relative addressing to access the GOT for this TLS symbol, then
536     // load the address from the GOT and add the thread pointer. This generates
537     // the pattern (PseudoLA_TLS_IE sym), which expands to
538     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
539     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
540     SDValue Load =
541         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
542 
543     // Add the thread pointer.
544     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
545     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
546   }
547 
548   // Generate a sequence for accessing the address relative to the thread
549   // pointer, with the appropriate adjustment for the thread pointer offset.
550   // This generates the pattern
551   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
552   SDValue AddrHi =
553       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
554   SDValue AddrAdd =
555       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
556   SDValue AddrLo =
557       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
558 
559   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
560   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
561   SDValue MNAdd = SDValue(
562       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
563       0);
564   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
565 }
566 
567 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
568                                                SelectionDAG &DAG) const {
569   SDLoc DL(N);
570   EVT Ty = getPointerTy(DAG.getDataLayout());
571   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
572   const GlobalValue *GV = N->getGlobal();
573 
574   // Use a PC-relative addressing mode to access the global dynamic GOT address.
575   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
576   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
577   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
578   SDValue Load =
579       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
580 
581   // Prepare argument list to generate call.
582   ArgListTy Args;
583   ArgListEntry Entry;
584   Entry.Node = Load;
585   Entry.Ty = CallTy;
586   Args.push_back(Entry);
587 
588   // Setup call to __tls_get_addr.
589   TargetLowering::CallLoweringInfo CLI(DAG);
590   CLI.setDebugLoc(DL)
591       .setChain(DAG.getEntryNode())
592       .setLibCallee(CallingConv::C, CallTy,
593                     DAG.getExternalSymbol("__tls_get_addr", Ty),
594                     std::move(Args));
595 
596   return LowerCallTo(CLI).first;
597 }
598 
599 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
600                                                    SelectionDAG &DAG) const {
601   SDLoc DL(Op);
602   EVT Ty = Op.getValueType();
603   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
604   int64_t Offset = N->getOffset();
605   MVT XLenVT = Subtarget.getXLenVT();
606 
607   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
608 
609   SDValue Addr;
610   switch (Model) {
611   case TLSModel::LocalExec:
612     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
613     break;
614   case TLSModel::InitialExec:
615     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
616     break;
617   case TLSModel::LocalDynamic:
618   case TLSModel::GeneralDynamic:
619     Addr = getDynamicTLSAddr(N, DAG);
620     break;
621   }
622 
623   // In order to maximise the opportunity for common subexpression elimination,
624   // emit a separate ADD node for the global address offset instead of folding
625   // it in the global address node. Later peephole optimisations may choose to
626   // fold it back in when profitable.
627   if (Offset != 0)
628     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
629                        DAG.getConstant(Offset, DL, XLenVT));
630   return Addr;
631 }
632 
633 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
634   SDValue CondV = Op.getOperand(0);
635   SDValue TrueV = Op.getOperand(1);
636   SDValue FalseV = Op.getOperand(2);
637   SDLoc DL(Op);
638   MVT XLenVT = Subtarget.getXLenVT();
639 
640   // If the result type is XLenVT and CondV is the output of a SETCC node
641   // which also operated on XLenVT inputs, then merge the SETCC node into the
642   // lowered RISCVISD::SELECT_CC to take advantage of the integer
643   // compare+branch instructions. i.e.:
644   // (select (setcc lhs, rhs, cc), truev, falsev)
645   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
646   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
647       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
648     SDValue LHS = CondV.getOperand(0);
649     SDValue RHS = CondV.getOperand(1);
650     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
651     ISD::CondCode CCVal = CC->get();
652 
653     normaliseSetCC(LHS, RHS, CCVal);
654 
655     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
656     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
657     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
658     return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
659   }
660 
661   // Otherwise:
662   // (select condv, truev, falsev)
663   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
664   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
665   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
666 
667   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
668   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
669 
670   return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
671 }
672 
673 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
674   MachineFunction &MF = DAG.getMachineFunction();
675   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
676 
677   SDLoc DL(Op);
678   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
679                                  getPointerTy(MF.getDataLayout()));
680 
681   // vastart just stores the address of the VarArgsFrameIndex slot into the
682   // memory location argument.
683   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
684   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
685                       MachinePointerInfo(SV));
686 }
687 
688 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
689                                             SelectionDAG &DAG) const {
690   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
691   MachineFunction &MF = DAG.getMachineFunction();
692   MachineFrameInfo &MFI = MF.getFrameInfo();
693   MFI.setFrameAddressIsTaken(true);
694   Register FrameReg = RI.getFrameRegister(MF);
695   int XLenInBytes = Subtarget.getXLen() / 8;
696 
697   EVT VT = Op.getValueType();
698   SDLoc DL(Op);
699   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
700   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
701   while (Depth--) {
702     int Offset = -(XLenInBytes * 2);
703     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
704                               DAG.getIntPtrConstant(Offset, DL));
705     FrameAddr =
706         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
707   }
708   return FrameAddr;
709 }
710 
711 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
712                                              SelectionDAG &DAG) const {
713   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
714   MachineFunction &MF = DAG.getMachineFunction();
715   MachineFrameInfo &MFI = MF.getFrameInfo();
716   MFI.setReturnAddressIsTaken(true);
717   MVT XLenVT = Subtarget.getXLenVT();
718   int XLenInBytes = Subtarget.getXLen() / 8;
719 
720   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
721     return SDValue();
722 
723   EVT VT = Op.getValueType();
724   SDLoc DL(Op);
725   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
726   if (Depth) {
727     int Off = -XLenInBytes;
728     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
729     SDValue Offset = DAG.getConstant(Off, DL, VT);
730     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
731                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
732                        MachinePointerInfo());
733   }
734 
735   // Return the value of the return address register, marking it an implicit
736   // live-in.
737   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
738   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
739 }
740 
741 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
742                                                  SelectionDAG &DAG) const {
743   SDLoc DL(Op);
744   SDValue Lo = Op.getOperand(0);
745   SDValue Hi = Op.getOperand(1);
746   SDValue Shamt = Op.getOperand(2);
747   EVT VT = Lo.getValueType();
748 
749   // if Shamt-XLEN < 0: // Shamt < XLEN
750   //   Lo = Lo << Shamt
751   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
752   // else:
753   //   Lo = 0
754   //   Hi = Lo << (Shamt-XLEN)
755 
756   SDValue Zero = DAG.getConstant(0, DL, VT);
757   SDValue One = DAG.getConstant(1, DL, VT);
758   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
759   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
760   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
761   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
762 
763   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
764   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
765   SDValue ShiftRightLo =
766       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
767   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
768   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
769   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
770 
771   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
772 
773   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
774   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
775 
776   SDValue Parts[2] = {Lo, Hi};
777   return DAG.getMergeValues(Parts, DL);
778 }
779 
780 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
781                                                   bool IsSRA) const {
782   SDLoc DL(Op);
783   SDValue Lo = Op.getOperand(0);
784   SDValue Hi = Op.getOperand(1);
785   SDValue Shamt = Op.getOperand(2);
786   EVT VT = Lo.getValueType();
787 
788   // SRA expansion:
789   //   if Shamt-XLEN < 0: // Shamt < XLEN
790   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
791   //     Hi = Hi >>s Shamt
792   //   else:
793   //     Lo = Hi >>s (Shamt-XLEN);
794   //     Hi = Hi >>s (XLEN-1)
795   //
796   // SRL expansion:
797   //   if Shamt-XLEN < 0: // Shamt < XLEN
798   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
799   //     Hi = Hi >>u Shamt
800   //   else:
801   //     Lo = Hi >>u (Shamt-XLEN);
802   //     Hi = 0;
803 
804   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
805 
806   SDValue Zero = DAG.getConstant(0, DL, VT);
807   SDValue One = DAG.getConstant(1, DL, VT);
808   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
809   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
810   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
811   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
812 
813   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
814   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
815   SDValue ShiftLeftHi =
816       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
817   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
818   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
819   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
820   SDValue HiFalse =
821       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
822 
823   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
824 
825   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
826   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
827 
828   SDValue Parts[2] = {Lo, Hi};
829   return DAG.getMergeValues(Parts, DL);
830 }
831 
832 // Returns the opcode of the target-specific SDNode that implements the 32-bit
833 // form of the given Opcode.
834 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
835   switch (Opcode) {
836   default:
837     llvm_unreachable("Unexpected opcode");
838   case ISD::SHL:
839     return RISCVISD::SLLW;
840   case ISD::SRA:
841     return RISCVISD::SRAW;
842   case ISD::SRL:
843     return RISCVISD::SRLW;
844   case ISD::SDIV:
845     return RISCVISD::DIVW;
846   case ISD::UDIV:
847     return RISCVISD::DIVUW;
848   case ISD::UREM:
849     return RISCVISD::REMUW;
850   }
851 }
852 
853 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
854 // Because i32 isn't a legal type for RV64, these operations would otherwise
855 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
856 // later one because the fact the operation was originally of type i32 is
857 // lost.
858 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) {
859   SDLoc DL(N);
860   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
861   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
862   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
863   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
864   // ReplaceNodeResults requires we maintain the same type for the return value.
865   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
866 }
867 
868 // Converts the given 32-bit operation to a i64 operation with signed extension
869 // semantic to reduce the signed extension instructions.
870 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
871   SDLoc DL(N);
872   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
873   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
874   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
875   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
876                                DAG.getValueType(MVT::i32));
877   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
878 }
879 
880 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
881                                              SmallVectorImpl<SDValue> &Results,
882                                              SelectionDAG &DAG) const {
883   SDLoc DL(N);
884   switch (N->getOpcode()) {
885   default:
886     llvm_unreachable("Don't know how to custom type legalize this operation!");
887   case ISD::STRICT_FP_TO_SINT:
888   case ISD::STRICT_FP_TO_UINT:
889   case ISD::FP_TO_SINT:
890   case ISD::FP_TO_UINT: {
891     bool IsStrict = N->isStrictFPOpcode();
892     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
893            "Unexpected custom legalisation");
894     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
895     RTLIB::Libcall LC;
896     if (N->getOpcode() == ISD::FP_TO_SINT ||
897         N->getOpcode() == ISD::STRICT_FP_TO_SINT)
898       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
899     else
900       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
901     MakeLibCallOptions CallOptions;
902     EVT OpVT = Op0.getValueType();
903     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
904     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
905     SDValue Result;
906     std::tie(Result, Chain) =
907         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
908     Results.push_back(Result);
909     if (IsStrict)
910       Results.push_back(Chain);
911     break;
912   }
913   case ISD::READCYCLECOUNTER: {
914     assert(!Subtarget.is64Bit() &&
915            "READCYCLECOUNTER only has custom type legalization on riscv32");
916 
917     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
918     SDValue RCW =
919         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
920 
921     Results.push_back(RCW);
922     Results.push_back(RCW.getValue(1));
923     Results.push_back(RCW.getValue(2));
924     break;
925   }
926   case ISD::ADD:
927   case ISD::SUB:
928   case ISD::MUL:
929     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
930            "Unexpected custom legalisation");
931     if (N->getOperand(1).getOpcode() == ISD::Constant)
932       return;
933     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
934     break;
935   case ISD::SHL:
936   case ISD::SRA:
937   case ISD::SRL:
938     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
939            "Unexpected custom legalisation");
940     if (N->getOperand(1).getOpcode() == ISD::Constant)
941       return;
942     Results.push_back(customLegalizeToWOp(N, DAG));
943     break;
944   case ISD::SDIV:
945   case ISD::UDIV:
946   case ISD::UREM:
947     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
948            Subtarget.hasStdExtM() && "Unexpected custom legalisation");
949     if (N->getOperand(0).getOpcode() == ISD::Constant ||
950         N->getOperand(1).getOpcode() == ISD::Constant)
951       return;
952     Results.push_back(customLegalizeToWOp(N, DAG));
953     break;
954   case ISD::BITCAST: {
955     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
956            Subtarget.hasStdExtF() && "Unexpected custom legalisation");
957     SDLoc DL(N);
958     SDValue Op0 = N->getOperand(0);
959     if (Op0.getValueType() != MVT::f32)
960       return;
961     SDValue FPConv =
962         DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
963     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
964     break;
965   }
966   }
967 }
968 
969 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
970                                                DAGCombinerInfo &DCI) const {
971   SelectionDAG &DAG = DCI.DAG;
972 
973   switch (N->getOpcode()) {
974   default:
975     break;
976   case RISCVISD::SplitF64: {
977     SDValue Op0 = N->getOperand(0);
978     // If the input to SplitF64 is just BuildPairF64 then the operation is
979     // redundant. Instead, use BuildPairF64's operands directly.
980     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
981       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
982 
983     SDLoc DL(N);
984 
985     // It's cheaper to materialise two 32-bit integers than to load a double
986     // from the constant pool and transfer it to integer registers through the
987     // stack.
988     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
989       APInt V = C->getValueAPF().bitcastToAPInt();
990       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
991       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
992       return DCI.CombineTo(N, Lo, Hi);
993     }
994 
995     // This is a target-specific version of a DAGCombine performed in
996     // DAGCombiner::visitBITCAST. It performs the equivalent of:
997     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
998     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
999     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
1000         !Op0.getNode()->hasOneUse())
1001       break;
1002     SDValue NewSplitF64 =
1003         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
1004                     Op0.getOperand(0));
1005     SDValue Lo = NewSplitF64.getValue(0);
1006     SDValue Hi = NewSplitF64.getValue(1);
1007     APInt SignBit = APInt::getSignMask(32);
1008     if (Op0.getOpcode() == ISD::FNEG) {
1009       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
1010                                   DAG.getConstant(SignBit, DL, MVT::i32));
1011       return DCI.CombineTo(N, Lo, NewHi);
1012     }
1013     assert(Op0.getOpcode() == ISD::FABS);
1014     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
1015                                 DAG.getConstant(~SignBit, DL, MVT::i32));
1016     return DCI.CombineTo(N, Lo, NewHi);
1017   }
1018   case RISCVISD::SLLW:
1019   case RISCVISD::SRAW:
1020   case RISCVISD::SRLW: {
1021     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
1022     SDValue LHS = N->getOperand(0);
1023     SDValue RHS = N->getOperand(1);
1024     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
1025     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
1026     if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) ||
1027         (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)))
1028       return SDValue();
1029     break;
1030   }
1031   case RISCVISD::FMV_X_ANYEXTW_RV64: {
1032     SDLoc DL(N);
1033     SDValue Op0 = N->getOperand(0);
1034     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
1035     // conversion is unnecessary and can be replaced with an ANY_EXTEND
1036     // of the FMV_W_X_RV64 operand.
1037     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
1038       SDValue AExtOp =
1039           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0));
1040       return DCI.CombineTo(N, AExtOp);
1041     }
1042 
1043     // This is a target-specific version of a DAGCombine performed in
1044     // DAGCombiner::visitBITCAST. It performs the equivalent of:
1045     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
1046     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
1047     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
1048         !Op0.getNode()->hasOneUse())
1049       break;
1050     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
1051                                  Op0.getOperand(0));
1052     APInt SignBit = APInt::getSignMask(32).sext(64);
1053     if (Op0.getOpcode() == ISD::FNEG) {
1054       return DCI.CombineTo(N,
1055                            DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
1056                                        DAG.getConstant(SignBit, DL, MVT::i64)));
1057     }
1058     assert(Op0.getOpcode() == ISD::FABS);
1059     return DCI.CombineTo(N,
1060                          DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
1061                                      DAG.getConstant(~SignBit, DL, MVT::i64)));
1062   }
1063   }
1064 
1065   return SDValue();
1066 }
1067 
1068 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
1069     const SDNode *N, CombineLevel Level) const {
1070   // The following folds are only desirable if `(OP _, c1 << c2)` can be
1071   // materialised in fewer instructions than `(OP _, c1)`:
1072   //
1073   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
1074   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
1075   SDValue N0 = N->getOperand(0);
1076   EVT Ty = N0.getValueType();
1077   if (Ty.isScalarInteger() &&
1078       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
1079     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
1080     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
1081     if (C1 && C2) {
1082       APInt C1Int = C1->getAPIntValue();
1083       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
1084 
1085       // We can materialise `c1 << c2` into an add immediate, so it's "free",
1086       // and the combine should happen, to potentially allow further combines
1087       // later.
1088       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
1089           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
1090         return true;
1091 
1092       // We can materialise `c1` in an add immediate, so it's "free", and the
1093       // combine should be prevented.
1094       if (C1Int.getMinSignedBits() <= 64 &&
1095           isLegalAddImmediate(C1Int.getSExtValue()))
1096         return false;
1097 
1098       // Neither constant will fit into an immediate, so find materialisation
1099       // costs.
1100       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
1101                                               Subtarget.is64Bit());
1102       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
1103           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
1104 
1105       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
1106       // combine should be prevented.
1107       if (C1Cost < ShiftedC1Cost)
1108         return false;
1109     }
1110   }
1111   return true;
1112 }
1113 
1114 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
1115     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
1116     unsigned Depth) const {
1117   switch (Op.getOpcode()) {
1118   default:
1119     break;
1120   case RISCVISD::SLLW:
1121   case RISCVISD::SRAW:
1122   case RISCVISD::SRLW:
1123   case RISCVISD::DIVW:
1124   case RISCVISD::DIVUW:
1125   case RISCVISD::REMUW:
1126     // TODO: As the result is sign-extended, this is conservatively correct. A
1127     // more precise answer could be calculated for SRAW depending on known
1128     // bits in the shift amount.
1129     return 33;
1130   }
1131 
1132   return 1;
1133 }
1134 
1135 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
1136                                                   MachineBasicBlock *BB) {
1137   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
1138 
1139   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
1140   // Should the count have wrapped while it was being read, we need to try
1141   // again.
1142   // ...
1143   // read:
1144   // rdcycleh x3 # load high word of cycle
1145   // rdcycle  x2 # load low word of cycle
1146   // rdcycleh x4 # load high word of cycle
1147   // bne x3, x4, read # check if high word reads match, otherwise try again
1148   // ...
1149 
1150   MachineFunction &MF = *BB->getParent();
1151   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1152   MachineFunction::iterator It = ++BB->getIterator();
1153 
1154   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1155   MF.insert(It, LoopMBB);
1156 
1157   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1158   MF.insert(It, DoneMBB);
1159 
1160   // Transfer the remainder of BB and its successor edges to DoneMBB.
1161   DoneMBB->splice(DoneMBB->begin(), BB,
1162                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1163   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
1164 
1165   BB->addSuccessor(LoopMBB);
1166 
1167   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1168   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1169   Register LoReg = MI.getOperand(0).getReg();
1170   Register HiReg = MI.getOperand(1).getReg();
1171   DebugLoc DL = MI.getDebugLoc();
1172 
1173   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1174   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
1175       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1176       .addReg(RISCV::X0);
1177   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
1178       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
1179       .addReg(RISCV::X0);
1180   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
1181       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1182       .addReg(RISCV::X0);
1183 
1184   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
1185       .addReg(HiReg)
1186       .addReg(ReadAgainReg)
1187       .addMBB(LoopMBB);
1188 
1189   LoopMBB->addSuccessor(LoopMBB);
1190   LoopMBB->addSuccessor(DoneMBB);
1191 
1192   MI.eraseFromParent();
1193 
1194   return DoneMBB;
1195 }
1196 
1197 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
1198                                              MachineBasicBlock *BB) {
1199   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
1200 
1201   MachineFunction &MF = *BB->getParent();
1202   DebugLoc DL = MI.getDebugLoc();
1203   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1204   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1205   Register LoReg = MI.getOperand(0).getReg();
1206   Register HiReg = MI.getOperand(1).getReg();
1207   Register SrcReg = MI.getOperand(2).getReg();
1208   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
1209   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
1210 
1211   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
1212                           RI);
1213   MachineMemOperand *MMO =
1214       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1215                               MachineMemOperand::MOLoad, 8, 8);
1216   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
1217       .addFrameIndex(FI)
1218       .addImm(0)
1219       .addMemOperand(MMO);
1220   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
1221       .addFrameIndex(FI)
1222       .addImm(4)
1223       .addMemOperand(MMO);
1224   MI.eraseFromParent(); // The pseudo instruction is gone now.
1225   return BB;
1226 }
1227 
1228 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
1229                                                  MachineBasicBlock *BB) {
1230   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
1231          "Unexpected instruction");
1232 
1233   MachineFunction &MF = *BB->getParent();
1234   DebugLoc DL = MI.getDebugLoc();
1235   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1236   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1237   Register DstReg = MI.getOperand(0).getReg();
1238   Register LoReg = MI.getOperand(1).getReg();
1239   Register HiReg = MI.getOperand(2).getReg();
1240   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
1241   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
1242 
1243   MachineMemOperand *MMO =
1244       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1245                               MachineMemOperand::MOStore, 8, 8);
1246   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1247       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
1248       .addFrameIndex(FI)
1249       .addImm(0)
1250       .addMemOperand(MMO);
1251   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1252       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
1253       .addFrameIndex(FI)
1254       .addImm(4)
1255       .addMemOperand(MMO);
1256   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
1257   MI.eraseFromParent(); // The pseudo instruction is gone now.
1258   return BB;
1259 }
1260 
1261 static bool isSelectPseudo(MachineInstr &MI) {
1262   switch (MI.getOpcode()) {
1263   default:
1264     return false;
1265   case RISCV::Select_GPR_Using_CC_GPR:
1266   case RISCV::Select_FPR32_Using_CC_GPR:
1267   case RISCV::Select_FPR64_Using_CC_GPR:
1268     return true;
1269   }
1270 }
1271 
1272 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
1273                                            MachineBasicBlock *BB) {
1274   // To "insert" Select_* instructions, we actually have to insert the triangle
1275   // control-flow pattern.  The incoming instructions know the destination vreg
1276   // to set, the condition code register to branch on, the true/false values to
1277   // select between, and the condcode to use to select the appropriate branch.
1278   //
1279   // We produce the following control flow:
1280   //     HeadMBB
1281   //     |  \
1282   //     |  IfFalseMBB
1283   //     | /
1284   //    TailMBB
1285   //
1286   // When we find a sequence of selects we attempt to optimize their emission
1287   // by sharing the control flow. Currently we only handle cases where we have
1288   // multiple selects with the exact same condition (same LHS, RHS and CC).
1289   // The selects may be interleaved with other instructions if the other
1290   // instructions meet some requirements we deem safe:
1291   // - They are debug instructions. Otherwise,
1292   // - They do not have side-effects, do not access memory and their inputs do
1293   //   not depend on the results of the select pseudo-instructions.
1294   // The TrueV/FalseV operands of the selects cannot depend on the result of
1295   // previous selects in the sequence.
1296   // These conditions could be further relaxed. See the X86 target for a
1297   // related approach and more information.
1298   Register LHS = MI.getOperand(1).getReg();
1299   Register RHS = MI.getOperand(2).getReg();
1300   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
1301 
1302   SmallVector<MachineInstr *, 4> SelectDebugValues;
1303   SmallSet<Register, 4> SelectDests;
1304   SelectDests.insert(MI.getOperand(0).getReg());
1305 
1306   MachineInstr *LastSelectPseudo = &MI;
1307 
1308   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
1309        SequenceMBBI != E; ++SequenceMBBI) {
1310     if (SequenceMBBI->isDebugInstr())
1311       continue;
1312     else if (isSelectPseudo(*SequenceMBBI)) {
1313       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
1314           SequenceMBBI->getOperand(2).getReg() != RHS ||
1315           SequenceMBBI->getOperand(3).getImm() != CC ||
1316           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
1317           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
1318         break;
1319       LastSelectPseudo = &*SequenceMBBI;
1320       SequenceMBBI->collectDebugValues(SelectDebugValues);
1321       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
1322     } else {
1323       if (SequenceMBBI->hasUnmodeledSideEffects() ||
1324           SequenceMBBI->mayLoadOrStore())
1325         break;
1326       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
1327             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
1328           }))
1329         break;
1330     }
1331   }
1332 
1333   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1334   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1335   DebugLoc DL = MI.getDebugLoc();
1336   MachineFunction::iterator I = ++BB->getIterator();
1337 
1338   MachineBasicBlock *HeadMBB = BB;
1339   MachineFunction *F = BB->getParent();
1340   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
1341   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
1342 
1343   F->insert(I, IfFalseMBB);
1344   F->insert(I, TailMBB);
1345 
1346   // Transfer debug instructions associated with the selects to TailMBB.
1347   for (MachineInstr *DebugInstr : SelectDebugValues) {
1348     TailMBB->push_back(DebugInstr->removeFromParent());
1349   }
1350 
1351   // Move all instructions after the sequence to TailMBB.
1352   TailMBB->splice(TailMBB->end(), HeadMBB,
1353                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
1354   // Update machine-CFG edges by transferring all successors of the current
1355   // block to the new block which will contain the Phi nodes for the selects.
1356   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
1357   // Set the successors for HeadMBB.
1358   HeadMBB->addSuccessor(IfFalseMBB);
1359   HeadMBB->addSuccessor(TailMBB);
1360 
1361   // Insert appropriate branch.
1362   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
1363 
1364   BuildMI(HeadMBB, DL, TII.get(Opcode))
1365     .addReg(LHS)
1366     .addReg(RHS)
1367     .addMBB(TailMBB);
1368 
1369   // IfFalseMBB just falls through to TailMBB.
1370   IfFalseMBB->addSuccessor(TailMBB);
1371 
1372   // Create PHIs for all of the select pseudo-instructions.
1373   auto SelectMBBI = MI.getIterator();
1374   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
1375   auto InsertionPoint = TailMBB->begin();
1376   while (SelectMBBI != SelectEnd) {
1377     auto Next = std::next(SelectMBBI);
1378     if (isSelectPseudo(*SelectMBBI)) {
1379       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
1380       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
1381               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
1382           .addReg(SelectMBBI->getOperand(4).getReg())
1383           .addMBB(HeadMBB)
1384           .addReg(SelectMBBI->getOperand(5).getReg())
1385           .addMBB(IfFalseMBB);
1386       SelectMBBI->eraseFromParent();
1387     }
1388     SelectMBBI = Next;
1389   }
1390 
1391   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
1392   return TailMBB;
1393 }
1394 
1395 MachineBasicBlock *
1396 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1397                                                  MachineBasicBlock *BB) const {
1398   switch (MI.getOpcode()) {
1399   default:
1400     llvm_unreachable("Unexpected instr type to insert");
1401   case RISCV::ReadCycleWide:
1402     assert(!Subtarget.is64Bit() &&
1403            "ReadCycleWrite is only to be used on riscv32");
1404     return emitReadCycleWidePseudo(MI, BB);
1405   case RISCV::Select_GPR_Using_CC_GPR:
1406   case RISCV::Select_FPR32_Using_CC_GPR:
1407   case RISCV::Select_FPR64_Using_CC_GPR:
1408     return emitSelectPseudo(MI, BB);
1409   case RISCV::BuildPairF64Pseudo:
1410     return emitBuildPairF64Pseudo(MI, BB);
1411   case RISCV::SplitF64Pseudo:
1412     return emitSplitF64Pseudo(MI, BB);
1413   }
1414 }
1415 
1416 // Calling Convention Implementation.
1417 // The expectations for frontend ABI lowering vary from target to target.
1418 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
1419 // details, but this is a longer term goal. For now, we simply try to keep the
1420 // role of the frontend as simple and well-defined as possible. The rules can
1421 // be summarised as:
1422 // * Never split up large scalar arguments. We handle them here.
1423 // * If a hardfloat calling convention is being used, and the struct may be
1424 // passed in a pair of registers (fp+fp, int+fp), and both registers are
1425 // available, then pass as two separate arguments. If either the GPRs or FPRs
1426 // are exhausted, then pass according to the rule below.
1427 // * If a struct could never be passed in registers or directly in a stack
1428 // slot (as it is larger than 2*XLEN and the floating point rules don't
1429 // apply), then pass it using a pointer with the byval attribute.
1430 // * If a struct is less than 2*XLEN, then coerce to either a two-element
1431 // word-sized array or a 2*XLEN scalar (depending on alignment).
1432 // * The frontend can determine whether a struct is returned by reference or
1433 // not based on its size and fields. If it will be returned by reference, the
1434 // frontend must modify the prototype so a pointer with the sret annotation is
1435 // passed as the first argument. This is not necessary for large scalar
1436 // returns.
1437 // * Struct return values and varargs should be coerced to structs containing
1438 // register-size fields in the same situations they would be for fixed
1439 // arguments.
1440 
1441 static const MCPhysReg ArgGPRs[] = {
1442   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
1443   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
1444 };
1445 static const MCPhysReg ArgFPR32s[] = {
1446   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
1447   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
1448 };
1449 static const MCPhysReg ArgFPR64s[] = {
1450   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
1451   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
1452 };
1453 
1454 // Pass a 2*XLEN argument that has been split into two XLEN values through
1455 // registers or the stack as necessary.
1456 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
1457                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
1458                                 MVT ValVT2, MVT LocVT2,
1459                                 ISD::ArgFlagsTy ArgFlags2) {
1460   unsigned XLenInBytes = XLen / 8;
1461   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1462     // At least one half can be passed via register.
1463     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
1464                                      VA1.getLocVT(), CCValAssign::Full));
1465   } else {
1466     // Both halves must be passed on the stack, with proper alignment.
1467     unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign());
1468     State.addLoc(
1469         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
1470                             State.AllocateStack(XLenInBytes, StackAlign),
1471                             VA1.getLocVT(), CCValAssign::Full));
1472     State.addLoc(CCValAssign::getMem(
1473         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
1474         CCValAssign::Full));
1475     return false;
1476   }
1477 
1478   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1479     // The second half can also be passed via register.
1480     State.addLoc(
1481         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
1482   } else {
1483     // The second half is passed via the stack, without additional alignment.
1484     State.addLoc(CCValAssign::getMem(
1485         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
1486         CCValAssign::Full));
1487   }
1488 
1489   return false;
1490 }
1491 
1492 // Implements the RISC-V calling convention. Returns true upon failure.
1493 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
1494                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
1495                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
1496                      bool IsRet, Type *OrigTy) {
1497   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
1498   assert(XLen == 32 || XLen == 64);
1499   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
1500 
1501   // Any return value split in to more than two values can't be returned
1502   // directly.
1503   if (IsRet && ValNo > 1)
1504     return true;
1505 
1506   // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a
1507   // variadic argument, or if no F32 argument registers are available.
1508   bool UseGPRForF32 = true;
1509   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
1510   // variadic argument, or if no F64 argument registers are available.
1511   bool UseGPRForF64 = true;
1512 
1513   switch (ABI) {
1514   default:
1515     llvm_unreachable("Unexpected ABI");
1516   case RISCVABI::ABI_ILP32:
1517   case RISCVABI::ABI_LP64:
1518     break;
1519   case RISCVABI::ABI_ILP32F:
1520   case RISCVABI::ABI_LP64F:
1521     UseGPRForF32 = !IsFixed;
1522     break;
1523   case RISCVABI::ABI_ILP32D:
1524   case RISCVABI::ABI_LP64D:
1525     UseGPRForF32 = !IsFixed;
1526     UseGPRForF64 = !IsFixed;
1527     break;
1528   }
1529 
1530   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s))
1531     UseGPRForF32 = true;
1532   if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s))
1533     UseGPRForF64 = true;
1534 
1535   // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local
1536   // variables rather than directly checking against the target ABI.
1537 
1538   if (UseGPRForF32 && ValVT == MVT::f32) {
1539     LocVT = XLenVT;
1540     LocInfo = CCValAssign::BCvt;
1541   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
1542     LocVT = MVT::i64;
1543     LocInfo = CCValAssign::BCvt;
1544   }
1545 
1546   // If this is a variadic argument, the RISC-V calling convention requires
1547   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
1548   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
1549   // be used regardless of whether the original argument was split during
1550   // legalisation or not. The argument will not be passed by registers if the
1551   // original type is larger than 2*XLEN, so the register alignment rule does
1552   // not apply.
1553   unsigned TwoXLenInBytes = (2 * XLen) / 8;
1554   if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes &&
1555       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
1556     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
1557     // Skip 'odd' register if necessary.
1558     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
1559       State.AllocateReg(ArgGPRs);
1560   }
1561 
1562   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
1563   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
1564       State.getPendingArgFlags();
1565 
1566   assert(PendingLocs.size() == PendingArgFlags.size() &&
1567          "PendingLocs and PendingArgFlags out of sync");
1568 
1569   // Handle passing f64 on RV32D with a soft float ABI or when floating point
1570   // registers are exhausted.
1571   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
1572     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
1573            "Can't lower f64 if it is split");
1574     // Depending on available argument GPRS, f64 may be passed in a pair of
1575     // GPRs, split between a GPR and the stack, or passed completely on the
1576     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
1577     // cases.
1578     Register Reg = State.AllocateReg(ArgGPRs);
1579     LocVT = MVT::i32;
1580     if (!Reg) {
1581       unsigned StackOffset = State.AllocateStack(8, 8);
1582       State.addLoc(
1583           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1584       return false;
1585     }
1586     if (!State.AllocateReg(ArgGPRs))
1587       State.AllocateStack(4, 4);
1588     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1589     return false;
1590   }
1591 
1592   // Split arguments might be passed indirectly, so keep track of the pending
1593   // values.
1594   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
1595     LocVT = XLenVT;
1596     LocInfo = CCValAssign::Indirect;
1597     PendingLocs.push_back(
1598         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
1599     PendingArgFlags.push_back(ArgFlags);
1600     if (!ArgFlags.isSplitEnd()) {
1601       return false;
1602     }
1603   }
1604 
1605   // If the split argument only had two elements, it should be passed directly
1606   // in registers or on the stack.
1607   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
1608     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
1609     // Apply the normal calling convention rules to the first half of the
1610     // split argument.
1611     CCValAssign VA = PendingLocs[0];
1612     ISD::ArgFlagsTy AF = PendingArgFlags[0];
1613     PendingLocs.clear();
1614     PendingArgFlags.clear();
1615     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
1616                                ArgFlags);
1617   }
1618 
1619   // Allocate to a register if possible, or else a stack slot.
1620   Register Reg;
1621   if (ValVT == MVT::f32 && !UseGPRForF32)
1622     Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s);
1623   else if (ValVT == MVT::f64 && !UseGPRForF64)
1624     Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s);
1625   else
1626     Reg = State.AllocateReg(ArgGPRs);
1627   unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8);
1628 
1629   // If we reach this point and PendingLocs is non-empty, we must be at the
1630   // end of a split argument that must be passed indirectly.
1631   if (!PendingLocs.empty()) {
1632     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
1633     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
1634 
1635     for (auto &It : PendingLocs) {
1636       if (Reg)
1637         It.convertToReg(Reg);
1638       else
1639         It.convertToMem(StackOffset);
1640       State.addLoc(It);
1641     }
1642     PendingLocs.clear();
1643     PendingArgFlags.clear();
1644     return false;
1645   }
1646 
1647   assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) &&
1648          "Expected an XLenVT at this stage");
1649 
1650   if (Reg) {
1651     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1652     return false;
1653   }
1654 
1655   // When an f32 or f64 is passed on the stack, no bit-conversion is needed.
1656   if (ValVT == MVT::f32 || ValVT == MVT::f64) {
1657     LocVT = ValVT;
1658     LocInfo = CCValAssign::Full;
1659   }
1660   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1661   return false;
1662 }
1663 
1664 void RISCVTargetLowering::analyzeInputArgs(
1665     MachineFunction &MF, CCState &CCInfo,
1666     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
1667   unsigned NumArgs = Ins.size();
1668   FunctionType *FType = MF.getFunction().getFunctionType();
1669 
1670   for (unsigned i = 0; i != NumArgs; ++i) {
1671     MVT ArgVT = Ins[i].VT;
1672     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
1673 
1674     Type *ArgTy = nullptr;
1675     if (IsRet)
1676       ArgTy = FType->getReturnType();
1677     else if (Ins[i].isOrigArg())
1678       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
1679 
1680     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1681     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1682                  ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) {
1683       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
1684                         << EVT(ArgVT).getEVTString() << '\n');
1685       llvm_unreachable(nullptr);
1686     }
1687   }
1688 }
1689 
1690 void RISCVTargetLowering::analyzeOutputArgs(
1691     MachineFunction &MF, CCState &CCInfo,
1692     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
1693     CallLoweringInfo *CLI) const {
1694   unsigned NumArgs = Outs.size();
1695 
1696   for (unsigned i = 0; i != NumArgs; i++) {
1697     MVT ArgVT = Outs[i].VT;
1698     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
1699     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
1700 
1701     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1702     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1703                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
1704       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
1705                         << EVT(ArgVT).getEVTString() << "\n");
1706       llvm_unreachable(nullptr);
1707     }
1708   }
1709 }
1710 
1711 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
1712 // values.
1713 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
1714                                    const CCValAssign &VA, const SDLoc &DL) {
1715   switch (VA.getLocInfo()) {
1716   default:
1717     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1718   case CCValAssign::Full:
1719     break;
1720   case CCValAssign::BCvt:
1721     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1722       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
1723       break;
1724     }
1725     Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
1726     break;
1727   }
1728   return Val;
1729 }
1730 
1731 // The caller is responsible for loading the full value if the argument is
1732 // passed with CCValAssign::Indirect.
1733 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
1734                                 const CCValAssign &VA, const SDLoc &DL) {
1735   MachineFunction &MF = DAG.getMachineFunction();
1736   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1737   EVT LocVT = VA.getLocVT();
1738   SDValue Val;
1739   const TargetRegisterClass *RC;
1740 
1741   switch (LocVT.getSimpleVT().SimpleTy) {
1742   default:
1743     llvm_unreachable("Unexpected register type");
1744   case MVT::i32:
1745   case MVT::i64:
1746     RC = &RISCV::GPRRegClass;
1747     break;
1748   case MVT::f32:
1749     RC = &RISCV::FPR32RegClass;
1750     break;
1751   case MVT::f64:
1752     RC = &RISCV::FPR64RegClass;
1753     break;
1754   }
1755 
1756   Register VReg = RegInfo.createVirtualRegister(RC);
1757   RegInfo.addLiveIn(VA.getLocReg(), VReg);
1758   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1759 
1760   if (VA.getLocInfo() == CCValAssign::Indirect)
1761     return Val;
1762 
1763   return convertLocVTToValVT(DAG, Val, VA, DL);
1764 }
1765 
1766 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
1767                                    const CCValAssign &VA, const SDLoc &DL) {
1768   EVT LocVT = VA.getLocVT();
1769 
1770   switch (VA.getLocInfo()) {
1771   default:
1772     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1773   case CCValAssign::Full:
1774     break;
1775   case CCValAssign::BCvt:
1776     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1777       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
1778       break;
1779     }
1780     Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
1781     break;
1782   }
1783   return Val;
1784 }
1785 
1786 // The caller is responsible for loading the full value if the argument is
1787 // passed with CCValAssign::Indirect.
1788 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
1789                                 const CCValAssign &VA, const SDLoc &DL) {
1790   MachineFunction &MF = DAG.getMachineFunction();
1791   MachineFrameInfo &MFI = MF.getFrameInfo();
1792   EVT LocVT = VA.getLocVT();
1793   EVT ValVT = VA.getValVT();
1794   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
1795   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
1796                                  VA.getLocMemOffset(), /*Immutable=*/true);
1797   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1798   SDValue Val;
1799 
1800   ISD::LoadExtType ExtType;
1801   switch (VA.getLocInfo()) {
1802   default:
1803     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1804   case CCValAssign::Full:
1805   case CCValAssign::Indirect:
1806   case CCValAssign::BCvt:
1807     ExtType = ISD::NON_EXTLOAD;
1808     break;
1809   }
1810   Val = DAG.getExtLoad(
1811       ExtType, DL, LocVT, Chain, FIN,
1812       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
1813   return Val;
1814 }
1815 
1816 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
1817                                        const CCValAssign &VA, const SDLoc &DL) {
1818   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
1819          "Unexpected VA");
1820   MachineFunction &MF = DAG.getMachineFunction();
1821   MachineFrameInfo &MFI = MF.getFrameInfo();
1822   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1823 
1824   if (VA.isMemLoc()) {
1825     // f64 is passed on the stack.
1826     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
1827     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1828     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
1829                        MachinePointerInfo::getFixedStack(MF, FI));
1830   }
1831 
1832   assert(VA.isRegLoc() && "Expected register VA assignment");
1833 
1834   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1835   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
1836   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
1837   SDValue Hi;
1838   if (VA.getLocReg() == RISCV::X17) {
1839     // Second half of f64 is passed on the stack.
1840     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
1841     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1842     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
1843                      MachinePointerInfo::getFixedStack(MF, FI));
1844   } else {
1845     // Second half of f64 is passed in another GPR.
1846     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1847     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
1848     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
1849   }
1850   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1851 }
1852 
1853 // FastCC has less than 1% performance improvement for some particular
1854 // benchmark. But theoretically, it may has benenfit for some cases.
1855 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
1856                             CCValAssign::LocInfo LocInfo,
1857                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
1858 
1859   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
1860     // X5 and X6 might be used for save-restore libcall.
1861     static const MCPhysReg GPRList[] = {
1862         RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
1863         RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
1864         RISCV::X29, RISCV::X30, RISCV::X31};
1865     if (unsigned Reg = State.AllocateReg(GPRList)) {
1866       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1867       return false;
1868     }
1869   }
1870 
1871   if (LocVT == MVT::f32) {
1872     static const MCPhysReg FPR32List[] = {
1873         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
1874         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
1875         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
1876         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
1877     if (unsigned Reg = State.AllocateReg(FPR32List)) {
1878       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1879       return false;
1880     }
1881   }
1882 
1883   if (LocVT == MVT::f64) {
1884     static const MCPhysReg FPR64List[] = {
1885         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
1886         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
1887         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
1888         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
1889     if (unsigned Reg = State.AllocateReg(FPR64List)) {
1890       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1891       return false;
1892     }
1893   }
1894 
1895   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
1896     unsigned Offset4 = State.AllocateStack(4, 4);
1897     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
1898     return false;
1899   }
1900 
1901   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
1902     unsigned Offset5 = State.AllocateStack(8, 8);
1903     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
1904     return false;
1905   }
1906 
1907   return true; // CC didn't match.
1908 }
1909 
1910 // Transform physical registers into virtual registers.
1911 SDValue RISCVTargetLowering::LowerFormalArguments(
1912     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1913     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1914     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1915 
1916   switch (CallConv) {
1917   default:
1918     report_fatal_error("Unsupported calling convention");
1919   case CallingConv::C:
1920   case CallingConv::Fast:
1921     break;
1922   }
1923 
1924   MachineFunction &MF = DAG.getMachineFunction();
1925 
1926   const Function &Func = MF.getFunction();
1927   if (Func.hasFnAttribute("interrupt")) {
1928     if (!Func.arg_empty())
1929       report_fatal_error(
1930         "Functions with the interrupt attribute cannot have arguments!");
1931 
1932     StringRef Kind =
1933       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
1934 
1935     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
1936       report_fatal_error(
1937         "Function interrupt attribute argument not supported!");
1938   }
1939 
1940   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1941   MVT XLenVT = Subtarget.getXLenVT();
1942   unsigned XLenInBytes = Subtarget.getXLen() / 8;
1943   // Used with vargs to acumulate store chains.
1944   std::vector<SDValue> OutChains;
1945 
1946   // Assign locations to all of the incoming arguments.
1947   SmallVector<CCValAssign, 16> ArgLocs;
1948   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1949 
1950   if (CallConv == CallingConv::Fast)
1951     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
1952   else
1953     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
1954 
1955   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1956     CCValAssign &VA = ArgLocs[i];
1957     SDValue ArgValue;
1958     // Passing f64 on RV32D with a soft float ABI must be handled as a special
1959     // case.
1960     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
1961       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
1962     else if (VA.isRegLoc())
1963       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
1964     else
1965       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
1966 
1967     if (VA.getLocInfo() == CCValAssign::Indirect) {
1968       // If the original argument was split and passed by reference (e.g. i128
1969       // on RV32), we need to load all parts of it here (using the same
1970       // address).
1971       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1972                                    MachinePointerInfo()));
1973       unsigned ArgIndex = Ins[i].OrigArgIndex;
1974       assert(Ins[i].PartOffset == 0);
1975       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
1976         CCValAssign &PartVA = ArgLocs[i + 1];
1977         unsigned PartOffset = Ins[i + 1].PartOffset;
1978         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1979                                       DAG.getIntPtrConstant(PartOffset, DL));
1980         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1981                                      MachinePointerInfo()));
1982         ++i;
1983       }
1984       continue;
1985     }
1986     InVals.push_back(ArgValue);
1987   }
1988 
1989   if (IsVarArg) {
1990     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
1991     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
1992     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
1993     MachineFrameInfo &MFI = MF.getFrameInfo();
1994     MachineRegisterInfo &RegInfo = MF.getRegInfo();
1995     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
1996 
1997     // Offset of the first variable argument from stack pointer, and size of
1998     // the vararg save area. For now, the varargs save area is either zero or
1999     // large enough to hold a0-a7.
2000     int VaArgOffset, VarArgsSaveSize;
2001 
2002     // If all registers are allocated, then all varargs must be passed on the
2003     // stack and we don't need to save any argregs.
2004     if (ArgRegs.size() == Idx) {
2005       VaArgOffset = CCInfo.getNextStackOffset();
2006       VarArgsSaveSize = 0;
2007     } else {
2008       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
2009       VaArgOffset = -VarArgsSaveSize;
2010     }
2011 
2012     // Record the frame index of the first variable argument
2013     // which is a value necessary to VASTART.
2014     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
2015     RVFI->setVarArgsFrameIndex(FI);
2016 
2017     // If saving an odd number of registers then create an extra stack slot to
2018     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
2019     // offsets to even-numbered registered remain 2*XLEN-aligned.
2020     if (Idx % 2) {
2021       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
2022       VarArgsSaveSize += XLenInBytes;
2023     }
2024 
2025     // Copy the integer registers that may have been used for passing varargs
2026     // to the vararg save area.
2027     for (unsigned I = Idx; I < ArgRegs.size();
2028          ++I, VaArgOffset += XLenInBytes) {
2029       const Register Reg = RegInfo.createVirtualRegister(RC);
2030       RegInfo.addLiveIn(ArgRegs[I], Reg);
2031       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
2032       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
2033       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2034       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
2035                                    MachinePointerInfo::getFixedStack(MF, FI));
2036       cast<StoreSDNode>(Store.getNode())
2037           ->getMemOperand()
2038           ->setValue((Value *)nullptr);
2039       OutChains.push_back(Store);
2040     }
2041     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
2042   }
2043 
2044   // All stores are grouped in one node to allow the matching between
2045   // the size of Ins and InVals. This only happens for vararg functions.
2046   if (!OutChains.empty()) {
2047     OutChains.push_back(Chain);
2048     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
2049   }
2050 
2051   return Chain;
2052 }
2053 
2054 /// isEligibleForTailCallOptimization - Check whether the call is eligible
2055 /// for tail call optimization.
2056 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
2057 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
2058     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
2059     const SmallVector<CCValAssign, 16> &ArgLocs) const {
2060 
2061   auto &Callee = CLI.Callee;
2062   auto CalleeCC = CLI.CallConv;
2063   auto &Outs = CLI.Outs;
2064   auto &Caller = MF.getFunction();
2065   auto CallerCC = Caller.getCallingConv();
2066 
2067   // Exception-handling functions need a special set of instructions to
2068   // indicate a return to the hardware. Tail-calling another function would
2069   // probably break this.
2070   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
2071   // should be expanded as new function attributes are introduced.
2072   if (Caller.hasFnAttribute("interrupt"))
2073     return false;
2074 
2075   // Do not tail call opt if the stack is used to pass parameters.
2076   if (CCInfo.getNextStackOffset() != 0)
2077     return false;
2078 
2079   // Do not tail call opt if any parameters need to be passed indirectly.
2080   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
2081   // passed indirectly. So the address of the value will be passed in a
2082   // register, or if not available, then the address is put on the stack. In
2083   // order to pass indirectly, space on the stack often needs to be allocated
2084   // in order to store the value. In this case the CCInfo.getNextStackOffset()
2085   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
2086   // are passed CCValAssign::Indirect.
2087   for (auto &VA : ArgLocs)
2088     if (VA.getLocInfo() == CCValAssign::Indirect)
2089       return false;
2090 
2091   // Do not tail call opt if either caller or callee uses struct return
2092   // semantics.
2093   auto IsCallerStructRet = Caller.hasStructRetAttr();
2094   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
2095   if (IsCallerStructRet || IsCalleeStructRet)
2096     return false;
2097 
2098   // Externally-defined functions with weak linkage should not be
2099   // tail-called. The behaviour of branch instructions in this situation (as
2100   // used for tail calls) is implementation-defined, so we cannot rely on the
2101   // linker replacing the tail call with a return.
2102   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2103     const GlobalValue *GV = G->getGlobal();
2104     if (GV->hasExternalWeakLinkage())
2105       return false;
2106   }
2107 
2108   // The callee has to preserve all registers the caller needs to preserve.
2109   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
2110   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2111   if (CalleeCC != CallerCC) {
2112     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2113     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2114       return false;
2115   }
2116 
2117   // Byval parameters hand the function a pointer directly into the stack area
2118   // we want to reuse during a tail call. Working around this *is* possible
2119   // but less efficient and uglier in LowerCall.
2120   for (auto &Arg : Outs)
2121     if (Arg.Flags.isByVal())
2122       return false;
2123 
2124   return true;
2125 }
2126 
2127 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
2128 // and output parameter nodes.
2129 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
2130                                        SmallVectorImpl<SDValue> &InVals) const {
2131   SelectionDAG &DAG = CLI.DAG;
2132   SDLoc &DL = CLI.DL;
2133   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2134   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2135   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2136   SDValue Chain = CLI.Chain;
2137   SDValue Callee = CLI.Callee;
2138   bool &IsTailCall = CLI.IsTailCall;
2139   CallingConv::ID CallConv = CLI.CallConv;
2140   bool IsVarArg = CLI.IsVarArg;
2141   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2142   MVT XLenVT = Subtarget.getXLenVT();
2143 
2144   MachineFunction &MF = DAG.getMachineFunction();
2145 
2146   // Analyze the operands of the call, assigning locations to each operand.
2147   SmallVector<CCValAssign, 16> ArgLocs;
2148   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2149 
2150   if (CallConv == CallingConv::Fast)
2151     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
2152   else
2153     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
2154 
2155   // Check if it's really possible to do a tail call.
2156   if (IsTailCall)
2157     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
2158 
2159   if (IsTailCall)
2160     ++NumTailCalls;
2161   else if (CLI.CS && CLI.CS.isMustTailCall())
2162     report_fatal_error("failed to perform tail call elimination on a call "
2163                        "site marked musttail");
2164 
2165   // Get a count of how many bytes are to be pushed on the stack.
2166   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
2167 
2168   // Create local copies for byval args
2169   SmallVector<SDValue, 8> ByValArgs;
2170   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2171     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2172     if (!Flags.isByVal())
2173       continue;
2174 
2175     SDValue Arg = OutVals[i];
2176     unsigned Size = Flags.getByValSize();
2177     unsigned Align = Flags.getByValAlign();
2178 
2179     int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false);
2180     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2181     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
2182 
2183     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
2184                           /*IsVolatile=*/false,
2185                           /*AlwaysInline=*/false,
2186                           IsTailCall, MachinePointerInfo(),
2187                           MachinePointerInfo());
2188     ByValArgs.push_back(FIPtr);
2189   }
2190 
2191   if (!IsTailCall)
2192     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
2193 
2194   // Copy argument values to their designated locations.
2195   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
2196   SmallVector<SDValue, 8> MemOpChains;
2197   SDValue StackPtr;
2198   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
2199     CCValAssign &VA = ArgLocs[i];
2200     SDValue ArgValue = OutVals[i];
2201     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2202 
2203     // Handle passing f64 on RV32D with a soft float ABI as a special case.
2204     bool IsF64OnRV32DSoftABI =
2205         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
2206     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
2207       SDValue SplitF64 = DAG.getNode(
2208           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
2209       SDValue Lo = SplitF64.getValue(0);
2210       SDValue Hi = SplitF64.getValue(1);
2211 
2212       Register RegLo = VA.getLocReg();
2213       RegsToPass.push_back(std::make_pair(RegLo, Lo));
2214 
2215       if (RegLo == RISCV::X17) {
2216         // Second half of f64 is passed on the stack.
2217         // Work out the address of the stack slot.
2218         if (!StackPtr.getNode())
2219           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2220         // Emit the store.
2221         MemOpChains.push_back(
2222             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
2223       } else {
2224         // Second half of f64 is passed in another GPR.
2225         assert(RegLo < RISCV::X31 && "Invalid register pair");
2226         Register RegHigh = RegLo + 1;
2227         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
2228       }
2229       continue;
2230     }
2231 
2232     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
2233     // as any other MemLoc.
2234 
2235     // Promote the value if needed.
2236     // For now, only handle fully promoted and indirect arguments.
2237     if (VA.getLocInfo() == CCValAssign::Indirect) {
2238       // Store the argument in a stack slot and pass its address.
2239       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
2240       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2241       MemOpChains.push_back(
2242           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
2243                        MachinePointerInfo::getFixedStack(MF, FI)));
2244       // If the original argument was split (e.g. i128), we need
2245       // to store all parts of it here (and pass just one address).
2246       unsigned ArgIndex = Outs[i].OrigArgIndex;
2247       assert(Outs[i].PartOffset == 0);
2248       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
2249         SDValue PartValue = OutVals[i + 1];
2250         unsigned PartOffset = Outs[i + 1].PartOffset;
2251         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
2252                                       DAG.getIntPtrConstant(PartOffset, DL));
2253         MemOpChains.push_back(
2254             DAG.getStore(Chain, DL, PartValue, Address,
2255                          MachinePointerInfo::getFixedStack(MF, FI)));
2256         ++i;
2257       }
2258       ArgValue = SpillSlot;
2259     } else {
2260       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
2261     }
2262 
2263     // Use local copy if it is a byval arg.
2264     if (Flags.isByVal())
2265       ArgValue = ByValArgs[j++];
2266 
2267     if (VA.isRegLoc()) {
2268       // Queue up the argument copies and emit them at the end.
2269       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
2270     } else {
2271       assert(VA.isMemLoc() && "Argument not register or memory");
2272       assert(!IsTailCall && "Tail call not allowed if stack is used "
2273                             "for passing parameters");
2274 
2275       // Work out the address of the stack slot.
2276       if (!StackPtr.getNode())
2277         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2278       SDValue Address =
2279           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
2280                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
2281 
2282       // Emit the store.
2283       MemOpChains.push_back(
2284           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
2285     }
2286   }
2287 
2288   // Join the stores, which are independent of one another.
2289   if (!MemOpChains.empty())
2290     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2291 
2292   SDValue Glue;
2293 
2294   // Build a sequence of copy-to-reg nodes, chained and glued together.
2295   for (auto &Reg : RegsToPass) {
2296     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
2297     Glue = Chain.getValue(1);
2298   }
2299 
2300   // Validate that none of the argument registers have been marked as
2301   // reserved, if so report an error. Do the same for the return address if this
2302   // is not a tailcall.
2303   validateCCReservedRegs(RegsToPass, MF);
2304   if (!IsTailCall &&
2305       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
2306     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2307         MF.getFunction(),
2308         "Return address register required, but has been reserved."});
2309 
2310   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
2311   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
2312   // split it and then direct call can be matched by PseudoCALL.
2313   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
2314     const GlobalValue *GV = S->getGlobal();
2315 
2316     unsigned OpFlags = RISCVII::MO_CALL;
2317     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
2318       OpFlags = RISCVII::MO_PLT;
2319 
2320     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2321   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2322     unsigned OpFlags = RISCVII::MO_CALL;
2323 
2324     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
2325                                                  nullptr))
2326       OpFlags = RISCVII::MO_PLT;
2327 
2328     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
2329   }
2330 
2331   // The first call operand is the chain and the second is the target address.
2332   SmallVector<SDValue, 8> Ops;
2333   Ops.push_back(Chain);
2334   Ops.push_back(Callee);
2335 
2336   // Add argument registers to the end of the list so that they are
2337   // known live into the call.
2338   for (auto &Reg : RegsToPass)
2339     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
2340 
2341   if (!IsTailCall) {
2342     // Add a register mask operand representing the call-preserved registers.
2343     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2344     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2345     assert(Mask && "Missing call preserved mask for calling convention");
2346     Ops.push_back(DAG.getRegisterMask(Mask));
2347   }
2348 
2349   // Glue the call to the argument copies, if any.
2350   if (Glue.getNode())
2351     Ops.push_back(Glue);
2352 
2353   // Emit the call.
2354   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2355 
2356   if (IsTailCall) {
2357     MF.getFrameInfo().setHasTailCall();
2358     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
2359   }
2360 
2361   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
2362   Glue = Chain.getValue(1);
2363 
2364   // Mark the end of the call, which is glued to the call itself.
2365   Chain = DAG.getCALLSEQ_END(Chain,
2366                              DAG.getConstant(NumBytes, DL, PtrVT, true),
2367                              DAG.getConstant(0, DL, PtrVT, true),
2368                              Glue, DL);
2369   Glue = Chain.getValue(1);
2370 
2371   // Assign locations to each value returned by this call.
2372   SmallVector<CCValAssign, 16> RVLocs;
2373   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
2374   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
2375 
2376   // Copy all of the result registers out of their specified physreg.
2377   for (auto &VA : RVLocs) {
2378     // Copy the value out
2379     SDValue RetValue =
2380         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
2381     // Glue the RetValue to the end of the call sequence
2382     Chain = RetValue.getValue(1);
2383     Glue = RetValue.getValue(2);
2384 
2385     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2386       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
2387       SDValue RetValue2 =
2388           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
2389       Chain = RetValue2.getValue(1);
2390       Glue = RetValue2.getValue(2);
2391       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
2392                              RetValue2);
2393     }
2394 
2395     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
2396 
2397     InVals.push_back(RetValue);
2398   }
2399 
2400   return Chain;
2401 }
2402 
2403 bool RISCVTargetLowering::CanLowerReturn(
2404     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
2405     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2406   SmallVector<CCValAssign, 16> RVLocs;
2407   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2408   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2409     MVT VT = Outs[i].VT;
2410     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2411     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
2412     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
2413                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
2414       return false;
2415   }
2416   return true;
2417 }
2418 
2419 SDValue
2420 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2421                                  bool IsVarArg,
2422                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2423                                  const SmallVectorImpl<SDValue> &OutVals,
2424                                  const SDLoc &DL, SelectionDAG &DAG) const {
2425   const MachineFunction &MF = DAG.getMachineFunction();
2426   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2427 
2428   // Stores the assignment of the return value to a location.
2429   SmallVector<CCValAssign, 16> RVLocs;
2430 
2431   // Info about the registers and stack slot.
2432   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2433                  *DAG.getContext());
2434 
2435   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
2436                     nullptr);
2437 
2438   SDValue Glue;
2439   SmallVector<SDValue, 4> RetOps(1, Chain);
2440 
2441   // Copy the result values into the output registers.
2442   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
2443     SDValue Val = OutVals[i];
2444     CCValAssign &VA = RVLocs[i];
2445     assert(VA.isRegLoc() && "Can only return in registers!");
2446 
2447     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2448       // Handle returning f64 on RV32D with a soft float ABI.
2449       assert(VA.isRegLoc() && "Expected return via registers");
2450       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
2451                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
2452       SDValue Lo = SplitF64.getValue(0);
2453       SDValue Hi = SplitF64.getValue(1);
2454       Register RegLo = VA.getLocReg();
2455       assert(RegLo < RISCV::X31 && "Invalid register pair");
2456       Register RegHi = RegLo + 1;
2457 
2458       if (STI.isRegisterReservedByUser(RegLo) ||
2459           STI.isRegisterReservedByUser(RegHi))
2460         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2461             MF.getFunction(),
2462             "Return value register required, but has been reserved."});
2463 
2464       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
2465       Glue = Chain.getValue(1);
2466       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
2467       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
2468       Glue = Chain.getValue(1);
2469       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
2470     } else {
2471       // Handle a 'normal' return.
2472       Val = convertValVTToLocVT(DAG, Val, VA, DL);
2473       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
2474 
2475       if (STI.isRegisterReservedByUser(VA.getLocReg()))
2476         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2477             MF.getFunction(),
2478             "Return value register required, but has been reserved."});
2479 
2480       // Guarantee that all emitted copies are stuck together.
2481       Glue = Chain.getValue(1);
2482       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2483     }
2484   }
2485 
2486   RetOps[0] = Chain; // Update chain.
2487 
2488   // Add the glue node if we have it.
2489   if (Glue.getNode()) {
2490     RetOps.push_back(Glue);
2491   }
2492 
2493   // Interrupt service routines use different return instructions.
2494   const Function &Func = DAG.getMachineFunction().getFunction();
2495   if (Func.hasFnAttribute("interrupt")) {
2496     if (!Func.getReturnType()->isVoidTy())
2497       report_fatal_error(
2498           "Functions with the interrupt attribute must have void return type!");
2499 
2500     MachineFunction &MF = DAG.getMachineFunction();
2501     StringRef Kind =
2502       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
2503 
2504     unsigned RetOpc;
2505     if (Kind == "user")
2506       RetOpc = RISCVISD::URET_FLAG;
2507     else if (Kind == "supervisor")
2508       RetOpc = RISCVISD::SRET_FLAG;
2509     else
2510       RetOpc = RISCVISD::MRET_FLAG;
2511 
2512     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
2513   }
2514 
2515   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
2516 }
2517 
2518 void RISCVTargetLowering::validateCCReservedRegs(
2519     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
2520     MachineFunction &MF) const {
2521   const Function &F = MF.getFunction();
2522   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2523 
2524   if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) {
2525         return STI.isRegisterReservedByUser(Reg.first);
2526       }))
2527     F.getContext().diagnose(DiagnosticInfoUnsupported{
2528         F, "Argument register required, but has been reserved."});
2529 }
2530 
2531 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
2532   switch ((RISCVISD::NodeType)Opcode) {
2533   case RISCVISD::FIRST_NUMBER:
2534     break;
2535   case RISCVISD::RET_FLAG:
2536     return "RISCVISD::RET_FLAG";
2537   case RISCVISD::URET_FLAG:
2538     return "RISCVISD::URET_FLAG";
2539   case RISCVISD::SRET_FLAG:
2540     return "RISCVISD::SRET_FLAG";
2541   case RISCVISD::MRET_FLAG:
2542     return "RISCVISD::MRET_FLAG";
2543   case RISCVISD::CALL:
2544     return "RISCVISD::CALL";
2545   case RISCVISD::SELECT_CC:
2546     return "RISCVISD::SELECT_CC";
2547   case RISCVISD::BuildPairF64:
2548     return "RISCVISD::BuildPairF64";
2549   case RISCVISD::SplitF64:
2550     return "RISCVISD::SplitF64";
2551   case RISCVISD::TAIL:
2552     return "RISCVISD::TAIL";
2553   case RISCVISD::SLLW:
2554     return "RISCVISD::SLLW";
2555   case RISCVISD::SRAW:
2556     return "RISCVISD::SRAW";
2557   case RISCVISD::SRLW:
2558     return "RISCVISD::SRLW";
2559   case RISCVISD::DIVW:
2560     return "RISCVISD::DIVW";
2561   case RISCVISD::DIVUW:
2562     return "RISCVISD::DIVUW";
2563   case RISCVISD::REMUW:
2564     return "RISCVISD::REMUW";
2565   case RISCVISD::FMV_W_X_RV64:
2566     return "RISCVISD::FMV_W_X_RV64";
2567   case RISCVISD::FMV_X_ANYEXTW_RV64:
2568     return "RISCVISD::FMV_X_ANYEXTW_RV64";
2569   case RISCVISD::READ_CYCLE_WIDE:
2570     return "RISCVISD::READ_CYCLE_WIDE";
2571   }
2572   return nullptr;
2573 }
2574 
2575 /// getConstraintType - Given a constraint letter, return the type of
2576 /// constraint it is for this target.
2577 RISCVTargetLowering::ConstraintType
2578 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
2579   if (Constraint.size() == 1) {
2580     switch (Constraint[0]) {
2581     default:
2582       break;
2583     case 'f':
2584       return C_RegisterClass;
2585     case 'I':
2586     case 'J':
2587     case 'K':
2588       return C_Immediate;
2589     case 'A':
2590       return C_Memory;
2591     }
2592   }
2593   return TargetLowering::getConstraintType(Constraint);
2594 }
2595 
2596 std::pair<unsigned, const TargetRegisterClass *>
2597 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2598                                                   StringRef Constraint,
2599                                                   MVT VT) const {
2600   // First, see if this is a constraint that directly corresponds to a
2601   // RISCV register class.
2602   if (Constraint.size() == 1) {
2603     switch (Constraint[0]) {
2604     case 'r':
2605       return std::make_pair(0U, &RISCV::GPRRegClass);
2606     case 'f':
2607       if (Subtarget.hasStdExtF() && VT == MVT::f32)
2608         return std::make_pair(0U, &RISCV::FPR32RegClass);
2609       if (Subtarget.hasStdExtD() && VT == MVT::f64)
2610         return std::make_pair(0U, &RISCV::FPR64RegClass);
2611       break;
2612     default:
2613       break;
2614     }
2615   }
2616 
2617   // Clang will correctly decode the usage of register name aliases into their
2618   // official names. However, other frontends like `rustc` do not. This allows
2619   // users of these frontends to use the ABI names for registers in LLVM-style
2620   // register constraints.
2621   Register XRegFromAlias = StringSwitch<Register>(Constraint.lower())
2622                                .Case("{zero}", RISCV::X0)
2623                                .Case("{ra}", RISCV::X1)
2624                                .Case("{sp}", RISCV::X2)
2625                                .Case("{gp}", RISCV::X3)
2626                                .Case("{tp}", RISCV::X4)
2627                                .Case("{t0}", RISCV::X5)
2628                                .Case("{t1}", RISCV::X6)
2629                                .Case("{t2}", RISCV::X7)
2630                                .Cases("{s0}", "{fp}", RISCV::X8)
2631                                .Case("{s1}", RISCV::X9)
2632                                .Case("{a0}", RISCV::X10)
2633                                .Case("{a1}", RISCV::X11)
2634                                .Case("{a2}", RISCV::X12)
2635                                .Case("{a3}", RISCV::X13)
2636                                .Case("{a4}", RISCV::X14)
2637                                .Case("{a5}", RISCV::X15)
2638                                .Case("{a6}", RISCV::X16)
2639                                .Case("{a7}", RISCV::X17)
2640                                .Case("{s2}", RISCV::X18)
2641                                .Case("{s3}", RISCV::X19)
2642                                .Case("{s4}", RISCV::X20)
2643                                .Case("{s5}", RISCV::X21)
2644                                .Case("{s6}", RISCV::X22)
2645                                .Case("{s7}", RISCV::X23)
2646                                .Case("{s8}", RISCV::X24)
2647                                .Case("{s9}", RISCV::X25)
2648                                .Case("{s10}", RISCV::X26)
2649                                .Case("{s11}", RISCV::X27)
2650                                .Case("{t3}", RISCV::X28)
2651                                .Case("{t4}", RISCV::X29)
2652                                .Case("{t5}", RISCV::X30)
2653                                .Case("{t6}", RISCV::X31)
2654                                .Default(RISCV::NoRegister);
2655   if (XRegFromAlias != RISCV::NoRegister)
2656     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
2657 
2658   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
2659   // TableGen record rather than the AsmName to choose registers for InlineAsm
2660   // constraints, plus we want to match those names to the widest floating point
2661   // register type available, manually select floating point registers here.
2662   //
2663   // The second case is the ABI name of the register, so that frontends can also
2664   // use the ABI names in register constraint lists.
2665   if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) {
2666     std::pair<Register, Register> FReg =
2667         StringSwitch<std::pair<Register, Register>>(Constraint.lower())
2668             .Cases("{f0}", "{ft0}", {RISCV::F0_F, RISCV::F0_D})
2669             .Cases("{f1}", "{ft1}", {RISCV::F1_F, RISCV::F1_D})
2670             .Cases("{f2}", "{ft2}", {RISCV::F2_F, RISCV::F2_D})
2671             .Cases("{f3}", "{ft3}", {RISCV::F3_F, RISCV::F3_D})
2672             .Cases("{f4}", "{ft4}", {RISCV::F4_F, RISCV::F4_D})
2673             .Cases("{f5}", "{ft5}", {RISCV::F5_F, RISCV::F5_D})
2674             .Cases("{f6}", "{ft6}", {RISCV::F6_F, RISCV::F6_D})
2675             .Cases("{f7}", "{ft7}", {RISCV::F7_F, RISCV::F7_D})
2676             .Cases("{f8}", "{fs0}", {RISCV::F8_F, RISCV::F8_D})
2677             .Cases("{f9}", "{fs1}", {RISCV::F9_F, RISCV::F9_D})
2678             .Cases("{f10}", "{fa0}", {RISCV::F10_F, RISCV::F10_D})
2679             .Cases("{f11}", "{fa1}", {RISCV::F11_F, RISCV::F11_D})
2680             .Cases("{f12}", "{fa2}", {RISCV::F12_F, RISCV::F12_D})
2681             .Cases("{f13}", "{fa3}", {RISCV::F13_F, RISCV::F13_D})
2682             .Cases("{f14}", "{fa4}", {RISCV::F14_F, RISCV::F14_D})
2683             .Cases("{f15}", "{fa5}", {RISCV::F15_F, RISCV::F15_D})
2684             .Cases("{f16}", "{fa6}", {RISCV::F16_F, RISCV::F16_D})
2685             .Cases("{f17}", "{fa7}", {RISCV::F17_F, RISCV::F17_D})
2686             .Cases("{f18}", "{fs2}", {RISCV::F18_F, RISCV::F18_D})
2687             .Cases("{f19}", "{fs3}", {RISCV::F19_F, RISCV::F19_D})
2688             .Cases("{f20}", "{fs4}", {RISCV::F20_F, RISCV::F20_D})
2689             .Cases("{f21}", "{fs5}", {RISCV::F21_F, RISCV::F21_D})
2690             .Cases("{f22}", "{fs6}", {RISCV::F22_F, RISCV::F22_D})
2691             .Cases("{f23}", "{fs7}", {RISCV::F23_F, RISCV::F23_D})
2692             .Cases("{f24}", "{fs8}", {RISCV::F24_F, RISCV::F24_D})
2693             .Cases("{f25}", "{fs9}", {RISCV::F25_F, RISCV::F25_D})
2694             .Cases("{f26}", "{fs10}", {RISCV::F26_F, RISCV::F26_D})
2695             .Cases("{f27}", "{fs11}", {RISCV::F27_F, RISCV::F27_D})
2696             .Cases("{f28}", "{ft8}", {RISCV::F28_F, RISCV::F28_D})
2697             .Cases("{f29}", "{ft9}", {RISCV::F29_F, RISCV::F29_D})
2698             .Cases("{f30}", "{ft10}", {RISCV::F30_F, RISCV::F30_D})
2699             .Cases("{f31}", "{ft11}", {RISCV::F31_F, RISCV::F31_D})
2700             .Default({RISCV::NoRegister, RISCV::NoRegister});
2701     if (FReg.first != RISCV::NoRegister)
2702       return Subtarget.hasStdExtD()
2703                  ? std::make_pair(FReg.second, &RISCV::FPR64RegClass)
2704                  : std::make_pair(FReg.first, &RISCV::FPR32RegClass);
2705   }
2706 
2707   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2708 }
2709 
2710 unsigned
2711 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
2712   // Currently only support length 1 constraints.
2713   if (ConstraintCode.size() == 1) {
2714     switch (ConstraintCode[0]) {
2715     case 'A':
2716       return InlineAsm::Constraint_A;
2717     default:
2718       break;
2719     }
2720   }
2721 
2722   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
2723 }
2724 
2725 void RISCVTargetLowering::LowerAsmOperandForConstraint(
2726     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2727     SelectionDAG &DAG) const {
2728   // Currently only support length 1 constraints.
2729   if (Constraint.length() == 1) {
2730     switch (Constraint[0]) {
2731     case 'I':
2732       // Validate & create a 12-bit signed immediate operand.
2733       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2734         uint64_t CVal = C->getSExtValue();
2735         if (isInt<12>(CVal))
2736           Ops.push_back(
2737               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2738       }
2739       return;
2740     case 'J':
2741       // Validate & create an integer zero operand.
2742       if (auto *C = dyn_cast<ConstantSDNode>(Op))
2743         if (C->getZExtValue() == 0)
2744           Ops.push_back(
2745               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
2746       return;
2747     case 'K':
2748       // Validate & create a 5-bit unsigned immediate operand.
2749       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2750         uint64_t CVal = C->getZExtValue();
2751         if (isUInt<5>(CVal))
2752           Ops.push_back(
2753               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2754       }
2755       return;
2756     default:
2757       break;
2758     }
2759   }
2760   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2761 }
2762 
2763 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
2764                                                    Instruction *Inst,
2765                                                    AtomicOrdering Ord) const {
2766   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
2767     return Builder.CreateFence(Ord);
2768   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
2769     return Builder.CreateFence(AtomicOrdering::Release);
2770   return nullptr;
2771 }
2772 
2773 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
2774                                                     Instruction *Inst,
2775                                                     AtomicOrdering Ord) const {
2776   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
2777     return Builder.CreateFence(AtomicOrdering::Acquire);
2778   return nullptr;
2779 }
2780 
2781 TargetLowering::AtomicExpansionKind
2782 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
2783   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
2784   // point operations can't be used in an lr/sc sequence without breaking the
2785   // forward-progress guarantee.
2786   if (AI->isFloatingPointOperation())
2787     return AtomicExpansionKind::CmpXChg;
2788 
2789   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
2790   if (Size == 8 || Size == 16)
2791     return AtomicExpansionKind::MaskedIntrinsic;
2792   return AtomicExpansionKind::None;
2793 }
2794 
2795 static Intrinsic::ID
2796 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
2797   if (XLen == 32) {
2798     switch (BinOp) {
2799     default:
2800       llvm_unreachable("Unexpected AtomicRMW BinOp");
2801     case AtomicRMWInst::Xchg:
2802       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
2803     case AtomicRMWInst::Add:
2804       return Intrinsic::riscv_masked_atomicrmw_add_i32;
2805     case AtomicRMWInst::Sub:
2806       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
2807     case AtomicRMWInst::Nand:
2808       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
2809     case AtomicRMWInst::Max:
2810       return Intrinsic::riscv_masked_atomicrmw_max_i32;
2811     case AtomicRMWInst::Min:
2812       return Intrinsic::riscv_masked_atomicrmw_min_i32;
2813     case AtomicRMWInst::UMax:
2814       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
2815     case AtomicRMWInst::UMin:
2816       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
2817     }
2818   }
2819 
2820   if (XLen == 64) {
2821     switch (BinOp) {
2822     default:
2823       llvm_unreachable("Unexpected AtomicRMW BinOp");
2824     case AtomicRMWInst::Xchg:
2825       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
2826     case AtomicRMWInst::Add:
2827       return Intrinsic::riscv_masked_atomicrmw_add_i64;
2828     case AtomicRMWInst::Sub:
2829       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
2830     case AtomicRMWInst::Nand:
2831       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
2832     case AtomicRMWInst::Max:
2833       return Intrinsic::riscv_masked_atomicrmw_max_i64;
2834     case AtomicRMWInst::Min:
2835       return Intrinsic::riscv_masked_atomicrmw_min_i64;
2836     case AtomicRMWInst::UMax:
2837       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
2838     case AtomicRMWInst::UMin:
2839       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
2840     }
2841   }
2842 
2843   llvm_unreachable("Unexpected XLen\n");
2844 }
2845 
2846 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
2847     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
2848     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
2849   unsigned XLen = Subtarget.getXLen();
2850   Value *Ordering =
2851       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
2852   Type *Tys[] = {AlignedAddr->getType()};
2853   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
2854       AI->getModule(),
2855       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
2856 
2857   if (XLen == 64) {
2858     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
2859     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2860     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
2861   }
2862 
2863   Value *Result;
2864 
2865   // Must pass the shift amount needed to sign extend the loaded value prior
2866   // to performing a signed comparison for min/max. ShiftAmt is the number of
2867   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
2868   // is the number of bits to left+right shift the value in order to
2869   // sign-extend.
2870   if (AI->getOperation() == AtomicRMWInst::Min ||
2871       AI->getOperation() == AtomicRMWInst::Max) {
2872     const DataLayout &DL = AI->getModule()->getDataLayout();
2873     unsigned ValWidth =
2874         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
2875     Value *SextShamt =
2876         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
2877     Result = Builder.CreateCall(LrwOpScwLoop,
2878                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
2879   } else {
2880     Result =
2881         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
2882   }
2883 
2884   if (XLen == 64)
2885     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2886   return Result;
2887 }
2888 
2889 TargetLowering::AtomicExpansionKind
2890 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
2891     AtomicCmpXchgInst *CI) const {
2892   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
2893   if (Size == 8 || Size == 16)
2894     return AtomicExpansionKind::MaskedIntrinsic;
2895   return AtomicExpansionKind::None;
2896 }
2897 
2898 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
2899     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
2900     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
2901   unsigned XLen = Subtarget.getXLen();
2902   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
2903   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
2904   if (XLen == 64) {
2905     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
2906     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
2907     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2908     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
2909   }
2910   Type *Tys[] = {AlignedAddr->getType()};
2911   Function *MaskedCmpXchg =
2912       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
2913   Value *Result = Builder.CreateCall(
2914       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
2915   if (XLen == 64)
2916     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2917   return Result;
2918 }
2919 
2920 unsigned RISCVTargetLowering::getExceptionPointerRegister(
2921     const Constant *PersonalityFn) const {
2922   return RISCV::X10;
2923 }
2924 
2925 unsigned RISCVTargetLowering::getExceptionSelectorRegister(
2926     const Constant *PersonalityFn) const {
2927   return RISCV::X11;
2928 }
2929 
2930 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
2931   // Return false to suppress the unnecessary extensions if the LibCall
2932   // arguments or return value is f32 type for LP64 ABI.
2933   RISCVABI::ABI ABI = Subtarget.getTargetABI();
2934   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
2935     return false;
2936 
2937   return true;
2938 }
2939 
2940 #define GET_REGISTER_MATCHER
2941 #include "RISCVGenAsmMatcher.inc"
2942 
2943 Register
2944 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
2945                                        const MachineFunction &MF) const {
2946   Register Reg = MatchRegisterAltName(RegName);
2947   if (Reg == RISCV::NoRegister)
2948     Reg = MatchRegisterName(RegName);
2949   if (Reg == RISCV::NoRegister)
2950     report_fatal_error(
2951         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
2952   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
2953   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
2954     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
2955                              StringRef(RegName) + "\"."));
2956   return Reg;
2957 }
2958