1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 254 Subtarget.hasStdExtZbkb()) { 255 if (Subtarget.is64Bit()) { 256 setOperationAction(ISD::ROTL, MVT::i32, Custom); 257 setOperationAction(ISD::ROTR, MVT::i32, Custom); 258 } 259 } else { 260 setOperationAction(ISD::ROTL, XLenVT, Expand); 261 setOperationAction(ISD::ROTR, XLenVT, Expand); 262 } 263 264 if (Subtarget.hasStdExtZbp()) { 265 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 266 // more combining. 267 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 268 setOperationAction(ISD::BSWAP, XLenVT, Custom); 269 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 270 // BSWAP i8 doesn't exist. 271 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 272 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 273 274 if (Subtarget.is64Bit()) { 275 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 276 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 277 } 278 } else { 279 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 280 // pattern match it directly in isel. 281 setOperationAction(ISD::BSWAP, XLenVT, 282 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 283 ? Legal 284 : Expand); 285 // Zbkb can use rev8+brev8 to implement bitreverse. 286 setOperationAction(ISD::BITREVERSE, XLenVT, 287 Subtarget.hasStdExtZbkb() ? Custom : Expand); 288 } 289 290 if (Subtarget.hasStdExtZbb()) { 291 setOperationAction(ISD::SMIN, XLenVT, Legal); 292 setOperationAction(ISD::SMAX, XLenVT, Legal); 293 setOperationAction(ISD::UMIN, XLenVT, Legal); 294 setOperationAction(ISD::UMAX, XLenVT, Legal); 295 296 if (Subtarget.is64Bit()) { 297 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 298 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 299 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 300 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 301 } 302 } else { 303 setOperationAction(ISD::CTTZ, XLenVT, Expand); 304 setOperationAction(ISD::CTLZ, XLenVT, Expand); 305 setOperationAction(ISD::CTPOP, XLenVT, Expand); 306 } 307 308 if (Subtarget.hasStdExtZbt()) { 309 setOperationAction(ISD::FSHL, XLenVT, Custom); 310 setOperationAction(ISD::FSHR, XLenVT, Custom); 311 setOperationAction(ISD::SELECT, XLenVT, Legal); 312 313 if (Subtarget.is64Bit()) { 314 setOperationAction(ISD::FSHL, MVT::i32, Custom); 315 setOperationAction(ISD::FSHR, MVT::i32, Custom); 316 } 317 } else { 318 setOperationAction(ISD::SELECT, XLenVT, Custom); 319 } 320 321 static const ISD::CondCode FPCCToExpand[] = { 322 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 323 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 324 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 325 326 static const ISD::NodeType FPOpToExpand[] = { 327 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 328 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 329 330 if (Subtarget.hasStdExtZfh()) 331 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 332 333 if (Subtarget.hasStdExtZfh()) { 334 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 335 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 336 setOperationAction(ISD::LRINT, MVT::f16, Legal); 337 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 338 setOperationAction(ISD::LROUND, MVT::f16, Legal); 339 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 340 setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal); 341 setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal); 342 setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal); 343 setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal); 344 setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); 345 setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); 346 setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); 348 setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); 349 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 350 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); 352 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal); 353 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal); 354 for (auto CC : FPCCToExpand) 355 setCondCodeAction(CC, MVT::f16, Expand); 356 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 357 setOperationAction(ISD::SELECT, MVT::f16, Custom); 358 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 359 360 setOperationAction(ISD::FREM, MVT::f16, Promote); 361 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 362 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 363 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 364 setOperationAction(ISD::FRINT, MVT::f16, Promote); 365 setOperationAction(ISD::FROUND, MVT::f16, Promote); 366 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 367 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 368 setOperationAction(ISD::FPOW, MVT::f16, Promote); 369 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 370 setOperationAction(ISD::FCOS, MVT::f16, Promote); 371 setOperationAction(ISD::FSIN, MVT::f16, Promote); 372 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 373 setOperationAction(ISD::FEXP, MVT::f16, Promote); 374 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 375 setOperationAction(ISD::FLOG, MVT::f16, Promote); 376 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 377 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 378 379 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 380 // complete support for all operations in LegalizeDAG. 381 382 // We need to custom promote this. 383 if (Subtarget.is64Bit()) 384 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 385 } 386 387 if (Subtarget.hasStdExtF()) { 388 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 389 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 390 setOperationAction(ISD::LRINT, MVT::f32, Legal); 391 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 392 setOperationAction(ISD::LROUND, MVT::f32, Legal); 393 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 394 setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal); 395 setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal); 396 setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal); 397 setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal); 398 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 399 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 400 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 401 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 402 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 403 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 404 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 405 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 406 for (auto CC : FPCCToExpand) 407 setCondCodeAction(CC, MVT::f32, Expand); 408 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 409 setOperationAction(ISD::SELECT, MVT::f32, Custom); 410 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 411 for (auto Op : FPOpToExpand) 412 setOperationAction(Op, MVT::f32, Expand); 413 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 414 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 415 } 416 417 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 418 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 419 420 if (Subtarget.hasStdExtD()) { 421 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 422 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 423 setOperationAction(ISD::LRINT, MVT::f64, Legal); 424 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 425 setOperationAction(ISD::LROUND, MVT::f64, Legal); 426 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 427 setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal); 428 setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal); 429 setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal); 430 setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal); 431 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 432 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 433 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 434 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 435 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 436 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 437 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 438 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 439 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 440 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 441 for (auto CC : FPCCToExpand) 442 setCondCodeAction(CC, MVT::f64, Expand); 443 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 444 setOperationAction(ISD::SELECT, MVT::f64, Custom); 445 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 446 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 447 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 448 for (auto Op : FPOpToExpand) 449 setOperationAction(Op, MVT::f64, Expand); 450 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 451 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 452 } 453 454 if (Subtarget.is64Bit()) { 455 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 456 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 457 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 458 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 459 } 460 461 if (Subtarget.hasStdExtF()) { 462 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 463 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 464 465 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 466 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 467 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 468 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 469 470 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 471 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 472 } 473 474 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 475 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 476 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 477 setOperationAction(ISD::JumpTable, XLenVT, Custom); 478 479 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 480 481 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 482 // Unfortunately this can't be determined just from the ISA naming string. 483 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 484 Subtarget.is64Bit() ? Legal : Custom); 485 486 setOperationAction(ISD::TRAP, MVT::Other, Legal); 487 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 488 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 489 if (Subtarget.is64Bit()) 490 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 491 492 if (Subtarget.hasStdExtA()) { 493 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 494 setMinCmpXchgSizeInBits(32); 495 } else { 496 setMaxAtomicSizeInBitsSupported(0); 497 } 498 499 setBooleanContents(ZeroOrOneBooleanContent); 500 501 if (Subtarget.hasVInstructions()) { 502 setBooleanVectorContents(ZeroOrOneBooleanContent); 503 504 setOperationAction(ISD::VSCALE, XLenVT, Custom); 505 506 // RVV intrinsics may have illegal operands. 507 // We also need to custom legalize vmv.x.s. 508 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 509 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 510 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 511 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 512 if (Subtarget.is64Bit()) { 513 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 514 } else { 515 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 516 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 517 } 518 519 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 520 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 521 522 static const unsigned IntegerVPOps[] = { 523 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 524 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 525 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 526 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 527 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 528 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 529 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 530 ISD::VP_MERGE, ISD::VP_SELECT}; 531 532 static const unsigned FloatingPointVPOps[] = { 533 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 534 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 535 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, 536 ISD::VP_SELECT}; 537 538 if (!Subtarget.is64Bit()) { 539 // We must custom-lower certain vXi64 operations on RV32 due to the vector 540 // element type being illegal. 541 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 542 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 543 544 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 545 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 546 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 547 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 548 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 549 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 550 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 551 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 552 553 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 554 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 555 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 556 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 557 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 558 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 559 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 560 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 561 } 562 563 for (MVT VT : BoolVecVTs) { 564 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 565 566 // Mask VTs are custom-expanded into a series of standard nodes 567 setOperationAction(ISD::TRUNCATE, VT, Custom); 568 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 569 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 570 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 571 572 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 573 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 574 575 setOperationAction(ISD::SELECT, VT, Custom); 576 setOperationAction(ISD::SELECT_CC, VT, Expand); 577 setOperationAction(ISD::VSELECT, VT, Expand); 578 setOperationAction(ISD::VP_MERGE, VT, Expand); 579 setOperationAction(ISD::VP_SELECT, VT, Expand); 580 581 setOperationAction(ISD::VP_AND, VT, Custom); 582 setOperationAction(ISD::VP_OR, VT, Custom); 583 setOperationAction(ISD::VP_XOR, VT, Custom); 584 585 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 586 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 587 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 588 589 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 590 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 591 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 592 593 // RVV has native int->float & float->int conversions where the 594 // element type sizes are within one power-of-two of each other. Any 595 // wider distances between type sizes have to be lowered as sequences 596 // which progressively narrow the gap in stages. 597 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 598 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 599 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 600 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 601 602 // Expand all extending loads to types larger than this, and truncating 603 // stores from types larger than this. 604 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 605 setTruncStoreAction(OtherVT, VT, Expand); 606 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 607 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 608 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 609 } 610 } 611 612 for (MVT VT : IntVecVTs) { 613 if (VT.getVectorElementType() == MVT::i64 && 614 !Subtarget.hasVInstructionsI64()) 615 continue; 616 617 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 618 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 619 620 // Vectors implement MULHS/MULHU. 621 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 622 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 623 624 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 625 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) { 626 setOperationAction(ISD::MULHU, VT, Expand); 627 setOperationAction(ISD::MULHS, VT, Expand); 628 } 629 630 setOperationAction(ISD::SMIN, VT, Legal); 631 setOperationAction(ISD::SMAX, VT, Legal); 632 setOperationAction(ISD::UMIN, VT, Legal); 633 setOperationAction(ISD::UMAX, VT, Legal); 634 635 setOperationAction(ISD::ROTL, VT, Expand); 636 setOperationAction(ISD::ROTR, VT, Expand); 637 638 setOperationAction(ISD::CTTZ, VT, Expand); 639 setOperationAction(ISD::CTLZ, VT, Expand); 640 setOperationAction(ISD::CTPOP, VT, Expand); 641 642 setOperationAction(ISD::BSWAP, VT, Expand); 643 644 // Custom-lower extensions and truncations from/to mask types. 645 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 646 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 647 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 648 649 // RVV has native int->float & float->int conversions where the 650 // element type sizes are within one power-of-two of each other. Any 651 // wider distances between type sizes have to be lowered as sequences 652 // which progressively narrow the gap in stages. 653 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 654 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 655 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 656 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 657 658 setOperationAction(ISD::SADDSAT, VT, Legal); 659 setOperationAction(ISD::UADDSAT, VT, Legal); 660 setOperationAction(ISD::SSUBSAT, VT, Legal); 661 setOperationAction(ISD::USUBSAT, VT, Legal); 662 663 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 664 // nodes which truncate by one power of two at a time. 665 setOperationAction(ISD::TRUNCATE, VT, Custom); 666 667 // Custom-lower insert/extract operations to simplify patterns. 668 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 669 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 670 671 // Custom-lower reduction operations to set up the corresponding custom 672 // nodes' operands. 673 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 674 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 675 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 676 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 677 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 678 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 679 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 680 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 681 682 for (unsigned VPOpc : IntegerVPOps) 683 setOperationAction(VPOpc, VT, Custom); 684 685 setOperationAction(ISD::LOAD, VT, Custom); 686 setOperationAction(ISD::STORE, VT, Custom); 687 688 setOperationAction(ISD::MLOAD, VT, Custom); 689 setOperationAction(ISD::MSTORE, VT, Custom); 690 setOperationAction(ISD::MGATHER, VT, Custom); 691 setOperationAction(ISD::MSCATTER, VT, Custom); 692 693 setOperationAction(ISD::VP_LOAD, VT, Custom); 694 setOperationAction(ISD::VP_STORE, VT, Custom); 695 setOperationAction(ISD::VP_GATHER, VT, Custom); 696 setOperationAction(ISD::VP_SCATTER, VT, Custom); 697 698 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 699 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 700 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 701 702 setOperationAction(ISD::SELECT, VT, Custom); 703 setOperationAction(ISD::SELECT_CC, VT, Expand); 704 705 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 706 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 707 708 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 709 setTruncStoreAction(VT, OtherVT, Expand); 710 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 711 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 712 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 713 } 714 715 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 716 // type that can represent the value exactly. 717 if (VT.getVectorElementType() != MVT::i64) { 718 MVT FloatEltVT = 719 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 720 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 721 if (isTypeLegal(FloatVT)) { 722 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 723 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 724 } 725 } 726 } 727 728 // Expand various CCs to best match the RVV ISA, which natively supports UNE 729 // but no other unordered comparisons, and supports all ordered comparisons 730 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 731 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 732 // and we pattern-match those back to the "original", swapping operands once 733 // more. This way we catch both operations and both "vf" and "fv" forms with 734 // fewer patterns. 735 static const ISD::CondCode VFPCCToExpand[] = { 736 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 737 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 738 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 739 }; 740 741 // Sets common operation actions on RVV floating-point vector types. 742 const auto SetCommonVFPActions = [&](MVT VT) { 743 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 744 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 745 // sizes are within one power-of-two of each other. Therefore conversions 746 // between vXf16 and vXf64 must be lowered as sequences which convert via 747 // vXf32. 748 setOperationAction(ISD::FP_ROUND, VT, Custom); 749 setOperationAction(ISD::FP_EXTEND, VT, Custom); 750 // Custom-lower insert/extract operations to simplify patterns. 751 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 752 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 753 // Expand various condition codes (explained above). 754 for (auto CC : VFPCCToExpand) 755 setCondCodeAction(CC, VT, Expand); 756 757 setOperationAction(ISD::FMINNUM, VT, Legal); 758 setOperationAction(ISD::FMAXNUM, VT, Legal); 759 760 setOperationAction(ISD::FTRUNC, VT, Custom); 761 setOperationAction(ISD::FCEIL, VT, Custom); 762 setOperationAction(ISD::FFLOOR, VT, Custom); 763 764 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 765 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 766 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 767 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 768 769 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 770 771 setOperationAction(ISD::LOAD, VT, Custom); 772 setOperationAction(ISD::STORE, VT, Custom); 773 774 setOperationAction(ISD::MLOAD, VT, Custom); 775 setOperationAction(ISD::MSTORE, VT, Custom); 776 setOperationAction(ISD::MGATHER, VT, Custom); 777 setOperationAction(ISD::MSCATTER, VT, Custom); 778 779 setOperationAction(ISD::VP_LOAD, VT, Custom); 780 setOperationAction(ISD::VP_STORE, VT, Custom); 781 setOperationAction(ISD::VP_GATHER, VT, Custom); 782 setOperationAction(ISD::VP_SCATTER, VT, Custom); 783 784 setOperationAction(ISD::SELECT, VT, Custom); 785 setOperationAction(ISD::SELECT_CC, VT, Expand); 786 787 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 788 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 789 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 790 791 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 792 793 for (unsigned VPOpc : FloatingPointVPOps) 794 setOperationAction(VPOpc, VT, Custom); 795 }; 796 797 // Sets common extload/truncstore actions on RVV floating-point vector 798 // types. 799 const auto SetCommonVFPExtLoadTruncStoreActions = 800 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 801 for (auto SmallVT : SmallerVTs) { 802 setTruncStoreAction(VT, SmallVT, Expand); 803 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 804 } 805 }; 806 807 if (Subtarget.hasVInstructionsF16()) 808 for (MVT VT : F16VecVTs) 809 SetCommonVFPActions(VT); 810 811 for (MVT VT : F32VecVTs) { 812 if (Subtarget.hasVInstructionsF32()) 813 SetCommonVFPActions(VT); 814 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 815 } 816 817 for (MVT VT : F64VecVTs) { 818 if (Subtarget.hasVInstructionsF64()) 819 SetCommonVFPActions(VT); 820 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 821 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 822 } 823 824 if (Subtarget.useRVVForFixedLengthVectors()) { 825 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 826 if (!useRVVForFixedLengthVectorVT(VT)) 827 continue; 828 829 // By default everything must be expanded. 830 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 831 setOperationAction(Op, VT, Expand); 832 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 833 setTruncStoreAction(VT, OtherVT, Expand); 834 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 835 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 836 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 837 } 838 839 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 840 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 841 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 842 843 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 844 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 845 846 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 847 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 848 849 setOperationAction(ISD::LOAD, VT, Custom); 850 setOperationAction(ISD::STORE, VT, Custom); 851 852 setOperationAction(ISD::SETCC, VT, Custom); 853 854 setOperationAction(ISD::SELECT, VT, Custom); 855 856 setOperationAction(ISD::TRUNCATE, VT, Custom); 857 858 setOperationAction(ISD::BITCAST, VT, Custom); 859 860 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 861 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 862 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 863 864 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 865 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 866 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 867 868 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 869 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 870 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 871 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 872 873 // Operations below are different for between masks and other vectors. 874 if (VT.getVectorElementType() == MVT::i1) { 875 setOperationAction(ISD::VP_AND, VT, Custom); 876 setOperationAction(ISD::VP_OR, VT, Custom); 877 setOperationAction(ISD::VP_XOR, VT, Custom); 878 setOperationAction(ISD::AND, VT, Custom); 879 setOperationAction(ISD::OR, VT, Custom); 880 setOperationAction(ISD::XOR, VT, Custom); 881 continue; 882 } 883 884 // Use SPLAT_VECTOR to prevent type legalization from destroying the 885 // splats when type legalizing i64 scalar on RV32. 886 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 887 // improvements first. 888 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 889 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 890 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 891 } 892 893 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 894 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 895 896 setOperationAction(ISD::MLOAD, VT, Custom); 897 setOperationAction(ISD::MSTORE, VT, Custom); 898 setOperationAction(ISD::MGATHER, VT, Custom); 899 setOperationAction(ISD::MSCATTER, VT, Custom); 900 901 setOperationAction(ISD::VP_LOAD, VT, Custom); 902 setOperationAction(ISD::VP_STORE, VT, Custom); 903 setOperationAction(ISD::VP_GATHER, VT, Custom); 904 setOperationAction(ISD::VP_SCATTER, VT, Custom); 905 906 setOperationAction(ISD::ADD, VT, Custom); 907 setOperationAction(ISD::MUL, VT, Custom); 908 setOperationAction(ISD::SUB, VT, Custom); 909 setOperationAction(ISD::AND, VT, Custom); 910 setOperationAction(ISD::OR, VT, Custom); 911 setOperationAction(ISD::XOR, VT, Custom); 912 setOperationAction(ISD::SDIV, VT, Custom); 913 setOperationAction(ISD::SREM, VT, Custom); 914 setOperationAction(ISD::UDIV, VT, Custom); 915 setOperationAction(ISD::UREM, VT, Custom); 916 setOperationAction(ISD::SHL, VT, Custom); 917 setOperationAction(ISD::SRA, VT, Custom); 918 setOperationAction(ISD::SRL, VT, Custom); 919 920 setOperationAction(ISD::SMIN, VT, Custom); 921 setOperationAction(ISD::SMAX, VT, Custom); 922 setOperationAction(ISD::UMIN, VT, Custom); 923 setOperationAction(ISD::UMAX, VT, Custom); 924 setOperationAction(ISD::ABS, VT, Custom); 925 926 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 927 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) { 928 setOperationAction(ISD::MULHS, VT, Custom); 929 setOperationAction(ISD::MULHU, VT, Custom); 930 } 931 932 setOperationAction(ISD::SADDSAT, VT, Custom); 933 setOperationAction(ISD::UADDSAT, VT, Custom); 934 setOperationAction(ISD::SSUBSAT, VT, Custom); 935 setOperationAction(ISD::USUBSAT, VT, Custom); 936 937 setOperationAction(ISD::VSELECT, VT, Custom); 938 setOperationAction(ISD::SELECT_CC, VT, Expand); 939 940 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 941 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 942 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 943 944 // Custom-lower reduction operations to set up the corresponding custom 945 // nodes' operands. 946 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 947 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 948 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 949 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 950 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 951 952 for (unsigned VPOpc : IntegerVPOps) 953 setOperationAction(VPOpc, VT, Custom); 954 955 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 956 // type that can represent the value exactly. 957 if (VT.getVectorElementType() != MVT::i64) { 958 MVT FloatEltVT = 959 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 960 EVT FloatVT = 961 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 962 if (isTypeLegal(FloatVT)) { 963 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 964 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 965 } 966 } 967 } 968 969 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 970 if (!useRVVForFixedLengthVectorVT(VT)) 971 continue; 972 973 // By default everything must be expanded. 974 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 975 setOperationAction(Op, VT, Expand); 976 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 977 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 978 setTruncStoreAction(VT, OtherVT, Expand); 979 } 980 981 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 982 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 983 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 984 985 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 986 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 987 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 988 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 989 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 990 991 setOperationAction(ISD::LOAD, VT, Custom); 992 setOperationAction(ISD::STORE, VT, Custom); 993 setOperationAction(ISD::MLOAD, VT, Custom); 994 setOperationAction(ISD::MSTORE, VT, Custom); 995 setOperationAction(ISD::MGATHER, VT, Custom); 996 setOperationAction(ISD::MSCATTER, VT, Custom); 997 998 setOperationAction(ISD::VP_LOAD, VT, Custom); 999 setOperationAction(ISD::VP_STORE, VT, Custom); 1000 setOperationAction(ISD::VP_GATHER, VT, Custom); 1001 setOperationAction(ISD::VP_SCATTER, VT, Custom); 1002 1003 setOperationAction(ISD::FADD, VT, Custom); 1004 setOperationAction(ISD::FSUB, VT, Custom); 1005 setOperationAction(ISD::FMUL, VT, Custom); 1006 setOperationAction(ISD::FDIV, VT, Custom); 1007 setOperationAction(ISD::FNEG, VT, Custom); 1008 setOperationAction(ISD::FABS, VT, Custom); 1009 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 1010 setOperationAction(ISD::FSQRT, VT, Custom); 1011 setOperationAction(ISD::FMA, VT, Custom); 1012 setOperationAction(ISD::FMINNUM, VT, Custom); 1013 setOperationAction(ISD::FMAXNUM, VT, Custom); 1014 1015 setOperationAction(ISD::FP_ROUND, VT, Custom); 1016 setOperationAction(ISD::FP_EXTEND, VT, Custom); 1017 1018 setOperationAction(ISD::FTRUNC, VT, Custom); 1019 setOperationAction(ISD::FCEIL, VT, Custom); 1020 setOperationAction(ISD::FFLOOR, VT, Custom); 1021 1022 for (auto CC : VFPCCToExpand) 1023 setCondCodeAction(CC, VT, Expand); 1024 1025 setOperationAction(ISD::VSELECT, VT, Custom); 1026 setOperationAction(ISD::SELECT, VT, Custom); 1027 setOperationAction(ISD::SELECT_CC, VT, Expand); 1028 1029 setOperationAction(ISD::BITCAST, VT, Custom); 1030 1031 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1032 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1033 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1034 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1035 1036 for (unsigned VPOpc : FloatingPointVPOps) 1037 setOperationAction(VPOpc, VT, Custom); 1038 } 1039 1040 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1041 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1042 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1043 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1044 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1045 if (Subtarget.hasStdExtZfh()) 1046 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1047 if (Subtarget.hasStdExtF()) 1048 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1049 if (Subtarget.hasStdExtD()) 1050 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1051 } 1052 } 1053 1054 // Function alignments. 1055 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1056 setMinFunctionAlignment(FunctionAlignment); 1057 setPrefFunctionAlignment(FunctionAlignment); 1058 1059 setMinimumJumpTableEntries(5); 1060 1061 // Jumps are expensive, compared to logic 1062 setJumpIsExpensive(); 1063 1064 setTargetDAGCombine(ISD::ADD); 1065 setTargetDAGCombine(ISD::SUB); 1066 setTargetDAGCombine(ISD::AND); 1067 setTargetDAGCombine(ISD::OR); 1068 setTargetDAGCombine(ISD::XOR); 1069 setTargetDAGCombine(ISD::ANY_EXTEND); 1070 if (Subtarget.hasStdExtF()) { 1071 setTargetDAGCombine(ISD::ZERO_EXTEND); 1072 setTargetDAGCombine(ISD::FP_TO_SINT); 1073 setTargetDAGCombine(ISD::FP_TO_UINT); 1074 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 1075 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 1076 } 1077 if (Subtarget.hasVInstructions()) { 1078 setTargetDAGCombine(ISD::FCOPYSIGN); 1079 setTargetDAGCombine(ISD::MGATHER); 1080 setTargetDAGCombine(ISD::MSCATTER); 1081 setTargetDAGCombine(ISD::VP_GATHER); 1082 setTargetDAGCombine(ISD::VP_SCATTER); 1083 setTargetDAGCombine(ISD::SRA); 1084 setTargetDAGCombine(ISD::SRL); 1085 setTargetDAGCombine(ISD::SHL); 1086 setTargetDAGCombine(ISD::STORE); 1087 } 1088 1089 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 1090 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 1091 } 1092 1093 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1094 LLVMContext &Context, 1095 EVT VT) const { 1096 if (!VT.isVector()) 1097 return getPointerTy(DL); 1098 if (Subtarget.hasVInstructions() && 1099 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1100 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1101 return VT.changeVectorElementTypeToInteger(); 1102 } 1103 1104 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1105 return Subtarget.getXLenVT(); 1106 } 1107 1108 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1109 const CallInst &I, 1110 MachineFunction &MF, 1111 unsigned Intrinsic) const { 1112 auto &DL = I.getModule()->getDataLayout(); 1113 switch (Intrinsic) { 1114 default: 1115 return false; 1116 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1117 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1118 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1119 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1120 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1121 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1122 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1123 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1124 case Intrinsic::riscv_masked_cmpxchg_i32: 1125 Info.opc = ISD::INTRINSIC_W_CHAIN; 1126 Info.memVT = MVT::i32; 1127 Info.ptrVal = I.getArgOperand(0); 1128 Info.offset = 0; 1129 Info.align = Align(4); 1130 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1131 MachineMemOperand::MOVolatile; 1132 return true; 1133 case Intrinsic::riscv_masked_strided_load: 1134 Info.opc = ISD::INTRINSIC_W_CHAIN; 1135 Info.ptrVal = I.getArgOperand(1); 1136 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1137 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1138 Info.size = MemoryLocation::UnknownSize; 1139 Info.flags |= MachineMemOperand::MOLoad; 1140 return true; 1141 case Intrinsic::riscv_masked_strided_store: 1142 Info.opc = ISD::INTRINSIC_VOID; 1143 Info.ptrVal = I.getArgOperand(1); 1144 Info.memVT = 1145 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1146 Info.align = Align( 1147 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1148 8); 1149 Info.size = MemoryLocation::UnknownSize; 1150 Info.flags |= MachineMemOperand::MOStore; 1151 return true; 1152 } 1153 } 1154 1155 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1156 const AddrMode &AM, Type *Ty, 1157 unsigned AS, 1158 Instruction *I) const { 1159 // No global is ever allowed as a base. 1160 if (AM.BaseGV) 1161 return false; 1162 1163 // Require a 12-bit signed offset. 1164 if (!isInt<12>(AM.BaseOffs)) 1165 return false; 1166 1167 switch (AM.Scale) { 1168 case 0: // "r+i" or just "i", depending on HasBaseReg. 1169 break; 1170 case 1: 1171 if (!AM.HasBaseReg) // allow "r+i". 1172 break; 1173 return false; // disallow "r+r" or "r+r+i". 1174 default: 1175 return false; 1176 } 1177 1178 return true; 1179 } 1180 1181 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1182 return isInt<12>(Imm); 1183 } 1184 1185 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1186 return isInt<12>(Imm); 1187 } 1188 1189 // On RV32, 64-bit integers are split into their high and low parts and held 1190 // in two different registers, so the trunc is free since the low register can 1191 // just be used. 1192 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1193 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1194 return false; 1195 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1196 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1197 return (SrcBits == 64 && DestBits == 32); 1198 } 1199 1200 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1201 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1202 !SrcVT.isInteger() || !DstVT.isInteger()) 1203 return false; 1204 unsigned SrcBits = SrcVT.getSizeInBits(); 1205 unsigned DestBits = DstVT.getSizeInBits(); 1206 return (SrcBits == 64 && DestBits == 32); 1207 } 1208 1209 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1210 // Zexts are free if they can be combined with a load. 1211 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1212 // poorly with type legalization of compares preferring sext. 1213 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1214 EVT MemVT = LD->getMemoryVT(); 1215 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1216 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1217 LD->getExtensionType() == ISD::ZEXTLOAD)) 1218 return true; 1219 } 1220 1221 return TargetLowering::isZExtFree(Val, VT2); 1222 } 1223 1224 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1225 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1226 } 1227 1228 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1229 return Subtarget.hasStdExtZbb(); 1230 } 1231 1232 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1233 return Subtarget.hasStdExtZbb(); 1234 } 1235 1236 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1237 EVT VT = Y.getValueType(); 1238 1239 // FIXME: Support vectors once we have tests. 1240 if (VT.isVector()) 1241 return false; 1242 1243 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1244 Subtarget.hasStdExtZbkb()) && 1245 !isa<ConstantSDNode>(Y); 1246 } 1247 1248 /// Check if sinking \p I's operands to I's basic block is profitable, because 1249 /// the operands can be folded into a target instruction, e.g. 1250 /// splats of scalars can fold into vector instructions. 1251 bool RISCVTargetLowering::shouldSinkOperands( 1252 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1253 using namespace llvm::PatternMatch; 1254 1255 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1256 return false; 1257 1258 auto IsSinker = [&](Instruction *I, int Operand) { 1259 switch (I->getOpcode()) { 1260 case Instruction::Add: 1261 case Instruction::Sub: 1262 case Instruction::Mul: 1263 case Instruction::And: 1264 case Instruction::Or: 1265 case Instruction::Xor: 1266 case Instruction::FAdd: 1267 case Instruction::FSub: 1268 case Instruction::FMul: 1269 case Instruction::FDiv: 1270 case Instruction::ICmp: 1271 case Instruction::FCmp: 1272 return true; 1273 case Instruction::Shl: 1274 case Instruction::LShr: 1275 case Instruction::AShr: 1276 case Instruction::UDiv: 1277 case Instruction::SDiv: 1278 case Instruction::URem: 1279 case Instruction::SRem: 1280 return Operand == 1; 1281 case Instruction::Call: 1282 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1283 switch (II->getIntrinsicID()) { 1284 case Intrinsic::fma: 1285 return Operand == 0 || Operand == 1; 1286 // FIXME: Our patterns can only match vx/vf instructions when the splat 1287 // it on the RHS, because TableGen doesn't recognize our VP operations 1288 // as commutative. 1289 case Intrinsic::vp_add: 1290 case Intrinsic::vp_mul: 1291 case Intrinsic::vp_and: 1292 case Intrinsic::vp_or: 1293 case Intrinsic::vp_xor: 1294 case Intrinsic::vp_fadd: 1295 case Intrinsic::vp_fmul: 1296 case Intrinsic::vp_shl: 1297 case Intrinsic::vp_lshr: 1298 case Intrinsic::vp_ashr: 1299 case Intrinsic::vp_udiv: 1300 case Intrinsic::vp_sdiv: 1301 case Intrinsic::vp_urem: 1302 case Intrinsic::vp_srem: 1303 return Operand == 1; 1304 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1305 // explicit patterns for both LHS and RHS (as 'vr' versions). 1306 case Intrinsic::vp_sub: 1307 case Intrinsic::vp_fsub: 1308 case Intrinsic::vp_fdiv: 1309 return Operand == 0 || Operand == 1; 1310 default: 1311 return false; 1312 } 1313 } 1314 return false; 1315 default: 1316 return false; 1317 } 1318 }; 1319 1320 for (auto OpIdx : enumerate(I->operands())) { 1321 if (!IsSinker(I, OpIdx.index())) 1322 continue; 1323 1324 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1325 // Make sure we are not already sinking this operand 1326 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1327 continue; 1328 1329 // We are looking for a splat that can be sunk. 1330 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1331 m_Undef(), m_ZeroMask()))) 1332 continue; 1333 1334 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1335 // and vector registers 1336 for (Use &U : Op->uses()) { 1337 Instruction *Insn = cast<Instruction>(U.getUser()); 1338 if (!IsSinker(Insn, U.getOperandNo())) 1339 return false; 1340 } 1341 1342 Ops.push_back(&Op->getOperandUse(0)); 1343 Ops.push_back(&OpIdx.value()); 1344 } 1345 return true; 1346 } 1347 1348 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1349 bool ForCodeSize) const { 1350 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1351 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1352 return false; 1353 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1354 return false; 1355 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1356 return false; 1357 return Imm.isZero(); 1358 } 1359 1360 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1361 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1362 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1363 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1364 } 1365 1366 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1367 CallingConv::ID CC, 1368 EVT VT) const { 1369 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1370 // We might still end up using a GPR but that will be decided based on ABI. 1371 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1372 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1373 return MVT::f32; 1374 1375 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1376 } 1377 1378 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1379 CallingConv::ID CC, 1380 EVT VT) const { 1381 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1382 // We might still end up using a GPR but that will be decided based on ABI. 1383 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1384 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1385 return 1; 1386 1387 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1388 } 1389 1390 // Changes the condition code and swaps operands if necessary, so the SetCC 1391 // operation matches one of the comparisons supported directly by branches 1392 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1393 // with 1/-1. 1394 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1395 ISD::CondCode &CC, SelectionDAG &DAG) { 1396 // Convert X > -1 to X >= 0. 1397 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1398 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1399 CC = ISD::SETGE; 1400 return; 1401 } 1402 // Convert X < 1 to 0 >= X. 1403 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1404 RHS = LHS; 1405 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1406 CC = ISD::SETGE; 1407 return; 1408 } 1409 1410 switch (CC) { 1411 default: 1412 break; 1413 case ISD::SETGT: 1414 case ISD::SETLE: 1415 case ISD::SETUGT: 1416 case ISD::SETULE: 1417 CC = ISD::getSetCCSwappedOperands(CC); 1418 std::swap(LHS, RHS); 1419 break; 1420 } 1421 } 1422 1423 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1424 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1425 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1426 if (VT.getVectorElementType() == MVT::i1) 1427 KnownSize *= 8; 1428 1429 switch (KnownSize) { 1430 default: 1431 llvm_unreachable("Invalid LMUL."); 1432 case 8: 1433 return RISCVII::VLMUL::LMUL_F8; 1434 case 16: 1435 return RISCVII::VLMUL::LMUL_F4; 1436 case 32: 1437 return RISCVII::VLMUL::LMUL_F2; 1438 case 64: 1439 return RISCVII::VLMUL::LMUL_1; 1440 case 128: 1441 return RISCVII::VLMUL::LMUL_2; 1442 case 256: 1443 return RISCVII::VLMUL::LMUL_4; 1444 case 512: 1445 return RISCVII::VLMUL::LMUL_8; 1446 } 1447 } 1448 1449 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1450 switch (LMul) { 1451 default: 1452 llvm_unreachable("Invalid LMUL."); 1453 case RISCVII::VLMUL::LMUL_F8: 1454 case RISCVII::VLMUL::LMUL_F4: 1455 case RISCVII::VLMUL::LMUL_F2: 1456 case RISCVII::VLMUL::LMUL_1: 1457 return RISCV::VRRegClassID; 1458 case RISCVII::VLMUL::LMUL_2: 1459 return RISCV::VRM2RegClassID; 1460 case RISCVII::VLMUL::LMUL_4: 1461 return RISCV::VRM4RegClassID; 1462 case RISCVII::VLMUL::LMUL_8: 1463 return RISCV::VRM8RegClassID; 1464 } 1465 } 1466 1467 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1468 RISCVII::VLMUL LMUL = getLMUL(VT); 1469 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1470 LMUL == RISCVII::VLMUL::LMUL_F4 || 1471 LMUL == RISCVII::VLMUL::LMUL_F2 || 1472 LMUL == RISCVII::VLMUL::LMUL_1) { 1473 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1474 "Unexpected subreg numbering"); 1475 return RISCV::sub_vrm1_0 + Index; 1476 } 1477 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1478 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1479 "Unexpected subreg numbering"); 1480 return RISCV::sub_vrm2_0 + Index; 1481 } 1482 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1483 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1484 "Unexpected subreg numbering"); 1485 return RISCV::sub_vrm4_0 + Index; 1486 } 1487 llvm_unreachable("Invalid vector type."); 1488 } 1489 1490 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1491 if (VT.getVectorElementType() == MVT::i1) 1492 return RISCV::VRRegClassID; 1493 return getRegClassIDForLMUL(getLMUL(VT)); 1494 } 1495 1496 // Attempt to decompose a subvector insert/extract between VecVT and 1497 // SubVecVT via subregister indices. Returns the subregister index that 1498 // can perform the subvector insert/extract with the given element index, as 1499 // well as the index corresponding to any leftover subvectors that must be 1500 // further inserted/extracted within the register class for SubVecVT. 1501 std::pair<unsigned, unsigned> 1502 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1503 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1504 const RISCVRegisterInfo *TRI) { 1505 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1506 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1507 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1508 "Register classes not ordered"); 1509 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1510 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1511 // Try to compose a subregister index that takes us from the incoming 1512 // LMUL>1 register class down to the outgoing one. At each step we half 1513 // the LMUL: 1514 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1515 // Note that this is not guaranteed to find a subregister index, such as 1516 // when we are extracting from one VR type to another. 1517 unsigned SubRegIdx = RISCV::NoSubRegister; 1518 for (const unsigned RCID : 1519 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1520 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1521 VecVT = VecVT.getHalfNumVectorElementsVT(); 1522 bool IsHi = 1523 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1524 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1525 getSubregIndexByMVT(VecVT, IsHi)); 1526 if (IsHi) 1527 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1528 } 1529 return {SubRegIdx, InsertExtractIdx}; 1530 } 1531 1532 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1533 // stores for those types. 1534 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1535 return !Subtarget.useRVVForFixedLengthVectors() || 1536 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1537 } 1538 1539 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1540 if (ScalarTy->isPointerTy()) 1541 return true; 1542 1543 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1544 ScalarTy->isIntegerTy(32)) 1545 return true; 1546 1547 if (ScalarTy->isIntegerTy(64)) 1548 return Subtarget.hasVInstructionsI64(); 1549 1550 if (ScalarTy->isHalfTy()) 1551 return Subtarget.hasVInstructionsF16(); 1552 if (ScalarTy->isFloatTy()) 1553 return Subtarget.hasVInstructionsF32(); 1554 if (ScalarTy->isDoubleTy()) 1555 return Subtarget.hasVInstructionsF64(); 1556 1557 return false; 1558 } 1559 1560 static SDValue getVLOperand(SDValue Op) { 1561 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1562 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1563 "Unexpected opcode"); 1564 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1565 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1566 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1567 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1568 if (!II) 1569 return SDValue(); 1570 return Op.getOperand(II->VLOperand + 1 + HasChain); 1571 } 1572 1573 static bool useRVVForFixedLengthVectorVT(MVT VT, 1574 const RISCVSubtarget &Subtarget) { 1575 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1576 if (!Subtarget.useRVVForFixedLengthVectors()) 1577 return false; 1578 1579 // We only support a set of vector types with a consistent maximum fixed size 1580 // across all supported vector element types to avoid legalization issues. 1581 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1582 // fixed-length vector type we support is 1024 bytes. 1583 if (VT.getFixedSizeInBits() > 1024 * 8) 1584 return false; 1585 1586 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1587 1588 MVT EltVT = VT.getVectorElementType(); 1589 1590 // Don't use RVV for vectors we cannot scalarize if required. 1591 switch (EltVT.SimpleTy) { 1592 // i1 is supported but has different rules. 1593 default: 1594 return false; 1595 case MVT::i1: 1596 // Masks can only use a single register. 1597 if (VT.getVectorNumElements() > MinVLen) 1598 return false; 1599 MinVLen /= 8; 1600 break; 1601 case MVT::i8: 1602 case MVT::i16: 1603 case MVT::i32: 1604 break; 1605 case MVT::i64: 1606 if (!Subtarget.hasVInstructionsI64()) 1607 return false; 1608 break; 1609 case MVT::f16: 1610 if (!Subtarget.hasVInstructionsF16()) 1611 return false; 1612 break; 1613 case MVT::f32: 1614 if (!Subtarget.hasVInstructionsF32()) 1615 return false; 1616 break; 1617 case MVT::f64: 1618 if (!Subtarget.hasVInstructionsF64()) 1619 return false; 1620 break; 1621 } 1622 1623 // Reject elements larger than ELEN. 1624 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1625 return false; 1626 1627 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1628 // Don't use RVV for types that don't fit. 1629 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1630 return false; 1631 1632 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1633 // the base fixed length RVV support in place. 1634 if (!VT.isPow2VectorType()) 1635 return false; 1636 1637 return true; 1638 } 1639 1640 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1641 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1642 } 1643 1644 // Return the largest legal scalable vector type that matches VT's element type. 1645 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1646 const RISCVSubtarget &Subtarget) { 1647 // This may be called before legal types are setup. 1648 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1649 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1650 "Expected legal fixed length vector!"); 1651 1652 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1653 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1654 1655 MVT EltVT = VT.getVectorElementType(); 1656 switch (EltVT.SimpleTy) { 1657 default: 1658 llvm_unreachable("unexpected element type for RVV container"); 1659 case MVT::i1: 1660 case MVT::i8: 1661 case MVT::i16: 1662 case MVT::i32: 1663 case MVT::i64: 1664 case MVT::f16: 1665 case MVT::f32: 1666 case MVT::f64: { 1667 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1668 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1669 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1670 unsigned NumElts = 1671 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1672 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1673 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1674 return MVT::getScalableVectorVT(EltVT, NumElts); 1675 } 1676 } 1677 } 1678 1679 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1680 const RISCVSubtarget &Subtarget) { 1681 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1682 Subtarget); 1683 } 1684 1685 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1686 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1687 } 1688 1689 // Grow V to consume an entire RVV register. 1690 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1691 const RISCVSubtarget &Subtarget) { 1692 assert(VT.isScalableVector() && 1693 "Expected to convert into a scalable vector!"); 1694 assert(V.getValueType().isFixedLengthVector() && 1695 "Expected a fixed length vector operand!"); 1696 SDLoc DL(V); 1697 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1698 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1699 } 1700 1701 // Shrink V so it's just big enough to maintain a VT's worth of data. 1702 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1703 const RISCVSubtarget &Subtarget) { 1704 assert(VT.isFixedLengthVector() && 1705 "Expected to convert into a fixed length vector!"); 1706 assert(V.getValueType().isScalableVector() && 1707 "Expected a scalable vector operand!"); 1708 SDLoc DL(V); 1709 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1710 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1711 } 1712 1713 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1714 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1715 // the vector type that it is contained in. 1716 static std::pair<SDValue, SDValue> 1717 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1718 const RISCVSubtarget &Subtarget) { 1719 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1720 MVT XLenVT = Subtarget.getXLenVT(); 1721 SDValue VL = VecVT.isFixedLengthVector() 1722 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1723 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1724 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1725 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1726 return {Mask, VL}; 1727 } 1728 1729 // As above but assuming the given type is a scalable vector type. 1730 static std::pair<SDValue, SDValue> 1731 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1732 const RISCVSubtarget &Subtarget) { 1733 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1734 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1735 } 1736 1737 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1738 // of either is (currently) supported. This can get us into an infinite loop 1739 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1740 // as a ..., etc. 1741 // Until either (or both) of these can reliably lower any node, reporting that 1742 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1743 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1744 // which is not desirable. 1745 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1746 EVT VT, unsigned DefinedValues) const { 1747 return false; 1748 } 1749 1750 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1751 // Only splats are currently supported. 1752 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1753 return true; 1754 1755 return false; 1756 } 1757 1758 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1759 const RISCVSubtarget &Subtarget) { 1760 // RISCV FP-to-int conversions saturate to the destination register size, but 1761 // don't produce 0 for nan. We can use a conversion instruction and fix the 1762 // nan case with a compare and a select. 1763 SDValue Src = Op.getOperand(0); 1764 1765 EVT DstVT = Op.getValueType(); 1766 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1767 1768 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1769 unsigned Opc; 1770 if (SatVT == DstVT) 1771 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1772 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1773 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1774 else 1775 return SDValue(); 1776 // FIXME: Support other SatVTs by clamping before or after the conversion. 1777 1778 SDLoc DL(Op); 1779 SDValue FpToInt = DAG.getNode( 1780 Opc, DL, DstVT, Src, 1781 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1782 1783 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1784 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1785 } 1786 1787 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1788 // and back. Taking care to avoid converting values that are nan or already 1789 // correct. 1790 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1791 // have FRM dependencies modeled yet. 1792 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1793 MVT VT = Op.getSimpleValueType(); 1794 assert(VT.isVector() && "Unexpected type"); 1795 1796 SDLoc DL(Op); 1797 1798 // Freeze the source since we are increasing the number of uses. 1799 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1800 1801 // Truncate to integer and convert back to FP. 1802 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1803 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1804 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1805 1806 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1807 1808 if (Op.getOpcode() == ISD::FCEIL) { 1809 // If the truncated value is the greater than or equal to the original 1810 // value, we've computed the ceil. Otherwise, we went the wrong way and 1811 // need to increase by 1. 1812 // FIXME: This should use a masked operation. Handle here or in isel? 1813 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1814 DAG.getConstantFP(1.0, DL, VT)); 1815 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1816 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1817 } else if (Op.getOpcode() == ISD::FFLOOR) { 1818 // If the truncated value is the less than or equal to the original value, 1819 // we've computed the floor. Otherwise, we went the wrong way and need to 1820 // decrease by 1. 1821 // FIXME: This should use a masked operation. Handle here or in isel? 1822 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1823 DAG.getConstantFP(1.0, DL, VT)); 1824 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1825 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1826 } 1827 1828 // Restore the original sign so that -0.0 is preserved. 1829 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1830 1831 // Determine the largest integer that can be represented exactly. This and 1832 // values larger than it don't have any fractional bits so don't need to 1833 // be converted. 1834 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1835 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1836 APFloat MaxVal = APFloat(FltSem); 1837 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1838 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1839 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1840 1841 // If abs(Src) was larger than MaxVal or nan, keep it. 1842 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1843 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1844 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1845 } 1846 1847 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1848 const RISCVSubtarget &Subtarget) { 1849 MVT VT = Op.getSimpleValueType(); 1850 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1851 1852 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1853 1854 SDLoc DL(Op); 1855 SDValue Mask, VL; 1856 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1857 1858 unsigned Opc = 1859 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1860 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1861 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1862 } 1863 1864 struct VIDSequence { 1865 int64_t StepNumerator; 1866 unsigned StepDenominator; 1867 int64_t Addend; 1868 }; 1869 1870 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1871 // to the (non-zero) step S and start value X. This can be then lowered as the 1872 // RVV sequence (VID * S) + X, for example. 1873 // The step S is represented as an integer numerator divided by a positive 1874 // denominator. Note that the implementation currently only identifies 1875 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1876 // cannot detect 2/3, for example. 1877 // Note that this method will also match potentially unappealing index 1878 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1879 // determine whether this is worth generating code for. 1880 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1881 unsigned NumElts = Op.getNumOperands(); 1882 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1883 if (!Op.getValueType().isInteger()) 1884 return None; 1885 1886 Optional<unsigned> SeqStepDenom; 1887 Optional<int64_t> SeqStepNum, SeqAddend; 1888 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1889 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1890 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1891 // Assume undef elements match the sequence; we just have to be careful 1892 // when interpolating across them. 1893 if (Op.getOperand(Idx).isUndef()) 1894 continue; 1895 // The BUILD_VECTOR must be all constants. 1896 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1897 return None; 1898 1899 uint64_t Val = Op.getConstantOperandVal(Idx) & 1900 maskTrailingOnes<uint64_t>(EltSizeInBits); 1901 1902 if (PrevElt) { 1903 // Calculate the step since the last non-undef element, and ensure 1904 // it's consistent across the entire sequence. 1905 unsigned IdxDiff = Idx - PrevElt->second; 1906 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1907 1908 // A zero-value value difference means that we're somewhere in the middle 1909 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1910 // step change before evaluating the sequence. 1911 if (ValDiff != 0) { 1912 int64_t Remainder = ValDiff % IdxDiff; 1913 // Normalize the step if it's greater than 1. 1914 if (Remainder != ValDiff) { 1915 // The difference must cleanly divide the element span. 1916 if (Remainder != 0) 1917 return None; 1918 ValDiff /= IdxDiff; 1919 IdxDiff = 1; 1920 } 1921 1922 if (!SeqStepNum) 1923 SeqStepNum = ValDiff; 1924 else if (ValDiff != SeqStepNum) 1925 return None; 1926 1927 if (!SeqStepDenom) 1928 SeqStepDenom = IdxDiff; 1929 else if (IdxDiff != *SeqStepDenom) 1930 return None; 1931 } 1932 } 1933 1934 // Record and/or check any addend. 1935 if (SeqStepNum && SeqStepDenom) { 1936 uint64_t ExpectedVal = 1937 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1938 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1939 if (!SeqAddend) 1940 SeqAddend = Addend; 1941 else if (SeqAddend != Addend) 1942 return None; 1943 } 1944 1945 // Record this non-undef element for later. 1946 if (!PrevElt || PrevElt->first != Val) 1947 PrevElt = std::make_pair(Val, Idx); 1948 } 1949 // We need to have logged both a step and an addend for this to count as 1950 // a legal index sequence. 1951 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1952 return None; 1953 1954 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1955 } 1956 1957 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1958 const RISCVSubtarget &Subtarget) { 1959 MVT VT = Op.getSimpleValueType(); 1960 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1961 1962 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1963 1964 SDLoc DL(Op); 1965 SDValue Mask, VL; 1966 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1967 1968 MVT XLenVT = Subtarget.getXLenVT(); 1969 unsigned NumElts = Op.getNumOperands(); 1970 1971 if (VT.getVectorElementType() == MVT::i1) { 1972 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1973 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1974 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1975 } 1976 1977 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1978 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1979 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1980 } 1981 1982 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1983 // scalar integer chunks whose bit-width depends on the number of mask 1984 // bits and XLEN. 1985 // First, determine the most appropriate scalar integer type to use. This 1986 // is at most XLenVT, but may be shrunk to a smaller vector element type 1987 // according to the size of the final vector - use i8 chunks rather than 1988 // XLenVT if we're producing a v8i1. This results in more consistent 1989 // codegen across RV32 and RV64. 1990 unsigned NumViaIntegerBits = 1991 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1992 NumViaIntegerBits = std::min(NumViaIntegerBits, 1993 Subtarget.getMaxELENForFixedLengthVectors()); 1994 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1995 // If we have to use more than one INSERT_VECTOR_ELT then this 1996 // optimization is likely to increase code size; avoid peforming it in 1997 // such a case. We can use a load from a constant pool in this case. 1998 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1999 return SDValue(); 2000 // Now we can create our integer vector type. Note that it may be larger 2001 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2002 MVT IntegerViaVecVT = 2003 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2004 divideCeil(NumElts, NumViaIntegerBits)); 2005 2006 uint64_t Bits = 0; 2007 unsigned BitPos = 0, IntegerEltIdx = 0; 2008 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2009 2010 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2011 // Once we accumulate enough bits to fill our scalar type, insert into 2012 // our vector and clear our accumulated data. 2013 if (I != 0 && I % NumViaIntegerBits == 0) { 2014 if (NumViaIntegerBits <= 32) 2015 Bits = SignExtend64(Bits, 32); 2016 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2017 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2018 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2019 Bits = 0; 2020 BitPos = 0; 2021 IntegerEltIdx++; 2022 } 2023 SDValue V = Op.getOperand(I); 2024 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2025 Bits |= ((uint64_t)BitValue << BitPos); 2026 } 2027 2028 // Insert the (remaining) scalar value into position in our integer 2029 // vector type. 2030 if (NumViaIntegerBits <= 32) 2031 Bits = SignExtend64(Bits, 32); 2032 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2033 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2034 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2035 2036 if (NumElts < NumViaIntegerBits) { 2037 // If we're producing a smaller vector than our minimum legal integer 2038 // type, bitcast to the equivalent (known-legal) mask type, and extract 2039 // our final mask. 2040 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2041 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2042 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2043 DAG.getConstant(0, DL, XLenVT)); 2044 } else { 2045 // Else we must have produced an integer type with the same size as the 2046 // mask type; bitcast for the final result. 2047 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2048 Vec = DAG.getBitcast(VT, Vec); 2049 } 2050 2051 return Vec; 2052 } 2053 2054 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2055 // vector type, we have a legal equivalently-sized i8 type, so we can use 2056 // that. 2057 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2058 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2059 2060 SDValue WideVec; 2061 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2062 // For a splat, perform a scalar truncate before creating the wider 2063 // vector. 2064 assert(Splat.getValueType() == XLenVT && 2065 "Unexpected type for i1 splat value"); 2066 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2067 DAG.getConstant(1, DL, XLenVT)); 2068 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2069 } else { 2070 SmallVector<SDValue, 8> Ops(Op->op_values()); 2071 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2072 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2073 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2074 } 2075 2076 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2077 } 2078 2079 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2080 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2081 : RISCVISD::VMV_V_X_VL; 2082 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 2083 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2084 } 2085 2086 // Try and match index sequences, which we can lower to the vid instruction 2087 // with optional modifications. An all-undef vector is matched by 2088 // getSplatValue, above. 2089 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2090 int64_t StepNumerator = SimpleVID->StepNumerator; 2091 unsigned StepDenominator = SimpleVID->StepDenominator; 2092 int64_t Addend = SimpleVID->Addend; 2093 2094 assert(StepNumerator != 0 && "Invalid step"); 2095 bool Negate = false; 2096 int64_t SplatStepVal = StepNumerator; 2097 unsigned StepOpcode = ISD::MUL; 2098 if (StepNumerator != 1) { 2099 if (isPowerOf2_64(std::abs(StepNumerator))) { 2100 Negate = StepNumerator < 0; 2101 StepOpcode = ISD::SHL; 2102 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2103 } 2104 } 2105 2106 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2107 // threshold since it's the immediate value many RVV instructions accept. 2108 // There is no vmul.vi instruction so ensure multiply constant can fit in 2109 // a single addi instruction. 2110 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2111 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2112 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2113 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2114 // Convert right out of the scalable type so we can use standard ISD 2115 // nodes for the rest of the computation. If we used scalable types with 2116 // these, we'd lose the fixed-length vector info and generate worse 2117 // vsetvli code. 2118 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2119 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2120 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2121 SDValue SplatStep = DAG.getSplatVector( 2122 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2123 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2124 } 2125 if (StepDenominator != 1) { 2126 SDValue SplatStep = DAG.getSplatVector( 2127 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2128 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2129 } 2130 if (Addend != 0 || Negate) { 2131 SDValue SplatAddend = 2132 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2133 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2134 } 2135 return VID; 2136 } 2137 } 2138 2139 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2140 // when re-interpreted as a vector with a larger element type. For example, 2141 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2142 // could be instead splat as 2143 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2144 // TODO: This optimization could also work on non-constant splats, but it 2145 // would require bit-manipulation instructions to construct the splat value. 2146 SmallVector<SDValue> Sequence; 2147 unsigned EltBitSize = VT.getScalarSizeInBits(); 2148 const auto *BV = cast<BuildVectorSDNode>(Op); 2149 if (VT.isInteger() && EltBitSize < 64 && 2150 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2151 BV->getRepeatedSequence(Sequence) && 2152 (Sequence.size() * EltBitSize) <= 64) { 2153 unsigned SeqLen = Sequence.size(); 2154 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2155 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2156 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2157 ViaIntVT == MVT::i64) && 2158 "Unexpected sequence type"); 2159 2160 unsigned EltIdx = 0; 2161 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2162 uint64_t SplatValue = 0; 2163 // Construct the amalgamated value which can be splatted as this larger 2164 // vector type. 2165 for (const auto &SeqV : Sequence) { 2166 if (!SeqV.isUndef()) 2167 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2168 << (EltIdx * EltBitSize)); 2169 EltIdx++; 2170 } 2171 2172 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2173 // achieve better constant materializion. 2174 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2175 SplatValue = SignExtend64(SplatValue, 32); 2176 2177 // Since we can't introduce illegal i64 types at this stage, we can only 2178 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2179 // way we can use RVV instructions to splat. 2180 assert((ViaIntVT.bitsLE(XLenVT) || 2181 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2182 "Unexpected bitcast sequence"); 2183 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2184 SDValue ViaVL = 2185 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2186 MVT ViaContainerVT = 2187 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2188 SDValue Splat = 2189 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2190 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2191 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2192 return DAG.getBitcast(VT, Splat); 2193 } 2194 } 2195 2196 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2197 // which constitute a large proportion of the elements. In such cases we can 2198 // splat a vector with the dominant element and make up the shortfall with 2199 // INSERT_VECTOR_ELTs. 2200 // Note that this includes vectors of 2 elements by association. The 2201 // upper-most element is the "dominant" one, allowing us to use a splat to 2202 // "insert" the upper element, and an insert of the lower element at position 2203 // 0, which improves codegen. 2204 SDValue DominantValue; 2205 unsigned MostCommonCount = 0; 2206 DenseMap<SDValue, unsigned> ValueCounts; 2207 unsigned NumUndefElts = 2208 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2209 2210 // Track the number of scalar loads we know we'd be inserting, estimated as 2211 // any non-zero floating-point constant. Other kinds of element are either 2212 // already in registers or are materialized on demand. The threshold at which 2213 // a vector load is more desirable than several scalar materializion and 2214 // vector-insertion instructions is not known. 2215 unsigned NumScalarLoads = 0; 2216 2217 for (SDValue V : Op->op_values()) { 2218 if (V.isUndef()) 2219 continue; 2220 2221 ValueCounts.insert(std::make_pair(V, 0)); 2222 unsigned &Count = ValueCounts[V]; 2223 2224 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2225 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2226 2227 // Is this value dominant? In case of a tie, prefer the highest element as 2228 // it's cheaper to insert near the beginning of a vector than it is at the 2229 // end. 2230 if (++Count >= MostCommonCount) { 2231 DominantValue = V; 2232 MostCommonCount = Count; 2233 } 2234 } 2235 2236 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2237 unsigned NumDefElts = NumElts - NumUndefElts; 2238 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2239 2240 // Don't perform this optimization when optimizing for size, since 2241 // materializing elements and inserting them tends to cause code bloat. 2242 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2243 ((MostCommonCount > DominantValueCountThreshold) || 2244 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2245 // Start by splatting the most common element. 2246 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2247 2248 DenseSet<SDValue> Processed{DominantValue}; 2249 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2250 for (const auto &OpIdx : enumerate(Op->ops())) { 2251 const SDValue &V = OpIdx.value(); 2252 if (V.isUndef() || !Processed.insert(V).second) 2253 continue; 2254 if (ValueCounts[V] == 1) { 2255 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2256 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2257 } else { 2258 // Blend in all instances of this value using a VSELECT, using a 2259 // mask where each bit signals whether that element is the one 2260 // we're after. 2261 SmallVector<SDValue> Ops; 2262 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2263 return DAG.getConstant(V == V1, DL, XLenVT); 2264 }); 2265 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2266 DAG.getBuildVector(SelMaskTy, DL, Ops), 2267 DAG.getSplatBuildVector(VT, DL, V), Vec); 2268 } 2269 } 2270 2271 return Vec; 2272 } 2273 2274 return SDValue(); 2275 } 2276 2277 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2278 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2279 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2280 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2281 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2282 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2283 // node in order to try and match RVV vector/scalar instructions. 2284 if ((LoC >> 31) == HiC) 2285 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2286 2287 // If vl is equal to VLMax and Hi constant is equal to Lo, we could use 2288 // vmv.v.x whose EEW = 32 to lower it. 2289 auto *Const = dyn_cast<ConstantSDNode>(VL); 2290 if (LoC == HiC && Const && Const->getSExtValue() == RISCV::VLMaxSentinel) { 2291 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2292 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2293 // access the subtarget here now. 2294 auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT, Lo, VL); 2295 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2296 } 2297 } 2298 2299 // Fall back to a stack store and stride x0 vector load. 2300 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2301 } 2302 2303 // Called by type legalization to handle splat of i64 on RV32. 2304 // FIXME: We can optimize this when the type has sign or zero bits in one 2305 // of the halves. 2306 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2307 SDValue VL, SelectionDAG &DAG) { 2308 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2309 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2310 DAG.getConstant(0, DL, MVT::i32)); 2311 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2312 DAG.getConstant(1, DL, MVT::i32)); 2313 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2314 } 2315 2316 // This function lowers a splat of a scalar operand Splat with the vector 2317 // length VL. It ensures the final sequence is type legal, which is useful when 2318 // lowering a splat after type legalization. 2319 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2320 SelectionDAG &DAG, 2321 const RISCVSubtarget &Subtarget) { 2322 if (VT.isFloatingPoint()) { 2323 // If VL is 1, we could use vfmv.s.f. 2324 if (isOneConstant(VL)) 2325 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT), 2326 Scalar, VL); 2327 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2328 } 2329 2330 MVT XLenVT = Subtarget.getXLenVT(); 2331 2332 // Simplest case is that the operand needs to be promoted to XLenVT. 2333 if (Scalar.getValueType().bitsLE(XLenVT)) { 2334 // If the operand is a constant, sign extend to increase our chances 2335 // of being able to use a .vi instruction. ANY_EXTEND would become a 2336 // a zero extend and the simm5 check in isel would fail. 2337 // FIXME: Should we ignore the upper bits in isel instead? 2338 unsigned ExtOpc = 2339 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2340 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2341 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2342 // If VL is 1 and the scalar value won't benefit from immediate, we could 2343 // use vmv.s.x. 2344 if (isOneConstant(VL) && 2345 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2346 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar, 2347 VL); 2348 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2349 } 2350 2351 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2352 "Unexpected scalar for splat lowering!"); 2353 2354 if (isOneConstant(VL) && isNullConstant(Scalar)) 2355 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), 2356 DAG.getConstant(0, DL, XLenVT), VL); 2357 2358 // Otherwise use the more complicated splatting algorithm. 2359 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2360 } 2361 2362 // Is the mask a slidedown that shifts in undefs. 2363 static int matchShuffleAsSlideDown(ArrayRef<int> Mask) { 2364 int Size = Mask.size(); 2365 2366 // Elements shifted in should be undef. 2367 auto CheckUndefs = [&](int Shift) { 2368 for (int i = Size - Shift; i != Size; ++i) 2369 if (Mask[i] >= 0) 2370 return false; 2371 return true; 2372 }; 2373 2374 // Elements should be shifted or undef. 2375 auto MatchShift = [&](int Shift) { 2376 for (int i = 0; i != Size - Shift; ++i) 2377 if (Mask[i] >= 0 && Mask[i] != Shift + i) 2378 return false; 2379 return true; 2380 }; 2381 2382 // Try all possible shifts. 2383 for (int Shift = 1; Shift != Size; ++Shift) 2384 if (CheckUndefs(Shift) && MatchShift(Shift)) 2385 return Shift; 2386 2387 // No match. 2388 return -1; 2389 } 2390 2391 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2392 const RISCVSubtarget &Subtarget) { 2393 // We need to be able to widen elements to the next larger integer type. 2394 if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors()) 2395 return false; 2396 2397 int Size = Mask.size(); 2398 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2399 2400 int Srcs[] = {-1, -1}; 2401 for (int i = 0; i != Size; ++i) { 2402 // Ignore undef elements. 2403 if (Mask[i] < 0) 2404 continue; 2405 2406 // Is this an even or odd element. 2407 int Pol = i % 2; 2408 2409 // Ensure we consistently use the same source for this element polarity. 2410 int Src = Mask[i] / Size; 2411 if (Srcs[Pol] < 0) 2412 Srcs[Pol] = Src; 2413 if (Srcs[Pol] != Src) 2414 return false; 2415 2416 // Make sure the element within the source is appropriate for this element 2417 // in the destination. 2418 int Elt = Mask[i] % Size; 2419 if (Elt != i / 2) 2420 return false; 2421 } 2422 2423 // We need to find a source for each polarity and they can't be the same. 2424 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2425 return false; 2426 2427 // Swap the sources if the second source was in the even polarity. 2428 SwapSources = Srcs[0] > Srcs[1]; 2429 2430 return true; 2431 } 2432 2433 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2434 const RISCVSubtarget &Subtarget) { 2435 SDValue V1 = Op.getOperand(0); 2436 SDValue V2 = Op.getOperand(1); 2437 SDLoc DL(Op); 2438 MVT XLenVT = Subtarget.getXLenVT(); 2439 MVT VT = Op.getSimpleValueType(); 2440 unsigned NumElts = VT.getVectorNumElements(); 2441 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2442 2443 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2444 2445 SDValue TrueMask, VL; 2446 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2447 2448 if (SVN->isSplat()) { 2449 const int Lane = SVN->getSplatIndex(); 2450 if (Lane >= 0) { 2451 MVT SVT = VT.getVectorElementType(); 2452 2453 // Turn splatted vector load into a strided load with an X0 stride. 2454 SDValue V = V1; 2455 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2456 // with undef. 2457 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2458 int Offset = Lane; 2459 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2460 int OpElements = 2461 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2462 V = V.getOperand(Offset / OpElements); 2463 Offset %= OpElements; 2464 } 2465 2466 // We need to ensure the load isn't atomic or volatile. 2467 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2468 auto *Ld = cast<LoadSDNode>(V); 2469 Offset *= SVT.getStoreSize(); 2470 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2471 TypeSize::Fixed(Offset), DL); 2472 2473 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2474 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2475 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2476 SDValue IntID = 2477 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2478 SDValue Ops[] = {Ld->getChain(), 2479 IntID, 2480 DAG.getUNDEF(ContainerVT), 2481 NewAddr, 2482 DAG.getRegister(RISCV::X0, XLenVT), 2483 VL}; 2484 SDValue NewLoad = DAG.getMemIntrinsicNode( 2485 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2486 DAG.getMachineFunction().getMachineMemOperand( 2487 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2488 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2489 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2490 } 2491 2492 // Otherwise use a scalar load and splat. This will give the best 2493 // opportunity to fold a splat into the operation. ISel can turn it into 2494 // the x0 strided load if we aren't able to fold away the select. 2495 if (SVT.isFloatingPoint()) 2496 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2497 Ld->getPointerInfo().getWithOffset(Offset), 2498 Ld->getOriginalAlign(), 2499 Ld->getMemOperand()->getFlags()); 2500 else 2501 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2502 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2503 Ld->getOriginalAlign(), 2504 Ld->getMemOperand()->getFlags()); 2505 DAG.makeEquivalentMemoryOrdering(Ld, V); 2506 2507 unsigned Opc = 2508 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2509 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2510 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2511 } 2512 2513 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2514 assert(Lane < (int)NumElts && "Unexpected lane!"); 2515 SDValue Gather = 2516 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2517 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2518 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2519 } 2520 } 2521 2522 ArrayRef<int> Mask = SVN->getMask(); 2523 2524 // Try to match as a slidedown. 2525 int SlideAmt = matchShuffleAsSlideDown(Mask); 2526 if (SlideAmt >= 0) { 2527 // TODO: Should we reduce the VL to account for the upper undef elements? 2528 // Requires additional vsetvlis, but might be faster to execute. 2529 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2530 SDValue SlideDown = 2531 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2532 DAG.getUNDEF(ContainerVT), V1, 2533 DAG.getConstant(SlideAmt, DL, XLenVT), 2534 TrueMask, VL); 2535 return convertFromScalableVector(VT, SlideDown, DAG, Subtarget); 2536 } 2537 2538 // Detect an interleave shuffle and lower to 2539 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2540 bool SwapSources; 2541 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2542 // Swap sources if needed. 2543 if (SwapSources) 2544 std::swap(V1, V2); 2545 2546 // Extract the lower half of the vectors. 2547 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2548 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2549 DAG.getConstant(0, DL, XLenVT)); 2550 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2551 DAG.getConstant(0, DL, XLenVT)); 2552 2553 // Double the element width and halve the number of elements in an int type. 2554 unsigned EltBits = VT.getScalarSizeInBits(); 2555 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2556 MVT WideIntVT = 2557 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2558 // Convert this to a scalable vector. We need to base this on the 2559 // destination size to ensure there's always a type with a smaller LMUL. 2560 MVT WideIntContainerVT = 2561 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2562 2563 // Convert sources to scalable vectors with the same element count as the 2564 // larger type. 2565 MVT HalfContainerVT = MVT::getVectorVT( 2566 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2567 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2568 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2569 2570 // Cast sources to integer. 2571 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2572 MVT IntHalfVT = 2573 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2574 V1 = DAG.getBitcast(IntHalfVT, V1); 2575 V2 = DAG.getBitcast(IntHalfVT, V2); 2576 2577 // Freeze V2 since we use it twice and we need to be sure that the add and 2578 // multiply see the same value. 2579 V2 = DAG.getNode(ISD::FREEZE, DL, IntHalfVT, V2); 2580 2581 // Recreate TrueMask using the widened type's element count. 2582 MVT MaskVT = 2583 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2584 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2585 2586 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2587 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2588 V2, TrueMask, VL); 2589 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2590 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2591 DAG.getAllOnesConstant(DL, XLenVT)); 2592 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2593 V2, Multiplier, TrueMask, VL); 2594 // Add the new copies to our previous addition giving us 2^eltbits copies of 2595 // V2. This is equivalent to shifting V2 left by eltbits. This should 2596 // combine with the vwmulu.vv above to form vwmaccu.vv. 2597 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2598 TrueMask, VL); 2599 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2600 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2601 // vector VT. 2602 ContainerVT = 2603 MVT::getVectorVT(VT.getVectorElementType(), 2604 WideIntContainerVT.getVectorElementCount() * 2); 2605 Add = DAG.getBitcast(ContainerVT, Add); 2606 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2607 } 2608 2609 // Detect shuffles which can be re-expressed as vector selects; these are 2610 // shuffles in which each element in the destination is taken from an element 2611 // at the corresponding index in either source vectors. 2612 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2613 int MaskIndex = MaskIdx.value(); 2614 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2615 }); 2616 2617 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2618 2619 SmallVector<SDValue> MaskVals; 2620 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2621 // merged with a second vrgather. 2622 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2623 2624 // By default we preserve the original operand order, and use a mask to 2625 // select LHS as true and RHS as false. However, since RVV vector selects may 2626 // feature splats but only on the LHS, we may choose to invert our mask and 2627 // instead select between RHS and LHS. 2628 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2629 bool InvertMask = IsSelect == SwapOps; 2630 2631 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2632 // half. 2633 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2634 2635 // Now construct the mask that will be used by the vselect or blended 2636 // vrgather operation. For vrgathers, construct the appropriate indices into 2637 // each vector. 2638 for (int MaskIndex : Mask) { 2639 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2640 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2641 if (!IsSelect) { 2642 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2643 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2644 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2645 : DAG.getUNDEF(XLenVT)); 2646 GatherIndicesRHS.push_back( 2647 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2648 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2649 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2650 ++LHSIndexCounts[MaskIndex]; 2651 if (!IsLHSOrUndefIndex) 2652 ++RHSIndexCounts[MaskIndex - NumElts]; 2653 } 2654 } 2655 2656 if (SwapOps) { 2657 std::swap(V1, V2); 2658 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2659 } 2660 2661 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2662 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2663 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2664 2665 if (IsSelect) 2666 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2667 2668 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2669 // On such a large vector we're unable to use i8 as the index type. 2670 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2671 // may involve vector splitting if we're already at LMUL=8, or our 2672 // user-supplied maximum fixed-length LMUL. 2673 return SDValue(); 2674 } 2675 2676 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2677 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2678 MVT IndexVT = VT.changeTypeToInteger(); 2679 // Since we can't introduce illegal index types at this stage, use i16 and 2680 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2681 // than XLenVT. 2682 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2683 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2684 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2685 } 2686 2687 MVT IndexContainerVT = 2688 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2689 2690 SDValue Gather; 2691 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2692 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2693 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2694 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2695 } else { 2696 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2697 // If only one index is used, we can use a "splat" vrgather. 2698 // TODO: We can splat the most-common index and fix-up any stragglers, if 2699 // that's beneficial. 2700 if (LHSIndexCounts.size() == 1) { 2701 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2702 Gather = 2703 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2704 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2705 } else { 2706 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2707 LHSIndices = 2708 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2709 2710 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2711 TrueMask, VL); 2712 } 2713 } 2714 2715 // If a second vector operand is used by this shuffle, blend it in with an 2716 // additional vrgather. 2717 if (!V2.isUndef()) { 2718 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2719 // If only one index is used, we can use a "splat" vrgather. 2720 // TODO: We can splat the most-common index and fix-up any stragglers, if 2721 // that's beneficial. 2722 if (RHSIndexCounts.size() == 1) { 2723 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2724 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2725 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2726 } else { 2727 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2728 RHSIndices = 2729 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2730 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2731 VL); 2732 } 2733 2734 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2735 SelectMask = 2736 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2737 2738 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2739 Gather, VL); 2740 } 2741 2742 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2743 } 2744 2745 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2746 SDLoc DL, SelectionDAG &DAG, 2747 const RISCVSubtarget &Subtarget) { 2748 if (VT.isScalableVector()) 2749 return DAG.getFPExtendOrRound(Op, DL, VT); 2750 assert(VT.isFixedLengthVector() && 2751 "Unexpected value type for RVV FP extend/round lowering"); 2752 SDValue Mask, VL; 2753 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2754 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2755 ? RISCVISD::FP_EXTEND_VL 2756 : RISCVISD::FP_ROUND_VL; 2757 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2758 } 2759 2760 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2761 // the exponent. 2762 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2763 MVT VT = Op.getSimpleValueType(); 2764 unsigned EltSize = VT.getScalarSizeInBits(); 2765 SDValue Src = Op.getOperand(0); 2766 SDLoc DL(Op); 2767 2768 // We need a FP type that can represent the value. 2769 // TODO: Use f16 for i8 when possible? 2770 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2771 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2772 2773 // Legal types should have been checked in the RISCVTargetLowering 2774 // constructor. 2775 // TODO: Splitting may make sense in some cases. 2776 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2777 "Expected legal float type!"); 2778 2779 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2780 // The trailing zero count is equal to log2 of this single bit value. 2781 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2782 SDValue Neg = 2783 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2784 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2785 } 2786 2787 // We have a legal FP type, convert to it. 2788 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2789 // Bitcast to integer and shift the exponent to the LSB. 2790 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2791 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2792 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2793 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2794 DAG.getConstant(ShiftAmt, DL, IntVT)); 2795 // Truncate back to original type to allow vnsrl. 2796 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2797 // The exponent contains log2 of the value in biased form. 2798 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2799 2800 // For trailing zeros, we just need to subtract the bias. 2801 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2802 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2803 DAG.getConstant(ExponentBias, DL, VT)); 2804 2805 // For leading zeros, we need to remove the bias and convert from log2 to 2806 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2807 unsigned Adjust = ExponentBias + (EltSize - 1); 2808 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2809 } 2810 2811 // While RVV has alignment restrictions, we should always be able to load as a 2812 // legal equivalently-sized byte-typed vector instead. This method is 2813 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2814 // the load is already correctly-aligned, it returns SDValue(). 2815 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2816 SelectionDAG &DAG) const { 2817 auto *Load = cast<LoadSDNode>(Op); 2818 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2819 2820 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2821 Load->getMemoryVT(), 2822 *Load->getMemOperand())) 2823 return SDValue(); 2824 2825 SDLoc DL(Op); 2826 MVT VT = Op.getSimpleValueType(); 2827 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2828 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2829 "Unexpected unaligned RVV load type"); 2830 MVT NewVT = 2831 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2832 assert(NewVT.isValid() && 2833 "Expecting equally-sized RVV vector types to be legal"); 2834 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2835 Load->getPointerInfo(), Load->getOriginalAlign(), 2836 Load->getMemOperand()->getFlags()); 2837 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2838 } 2839 2840 // While RVV has alignment restrictions, we should always be able to store as a 2841 // legal equivalently-sized byte-typed vector instead. This method is 2842 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2843 // returns SDValue() if the store is already correctly aligned. 2844 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2845 SelectionDAG &DAG) const { 2846 auto *Store = cast<StoreSDNode>(Op); 2847 assert(Store && Store->getValue().getValueType().isVector() && 2848 "Expected vector store"); 2849 2850 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2851 Store->getMemoryVT(), 2852 *Store->getMemOperand())) 2853 return SDValue(); 2854 2855 SDLoc DL(Op); 2856 SDValue StoredVal = Store->getValue(); 2857 MVT VT = StoredVal.getSimpleValueType(); 2858 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2859 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2860 "Unexpected unaligned RVV store type"); 2861 MVT NewVT = 2862 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2863 assert(NewVT.isValid() && 2864 "Expecting equally-sized RVV vector types to be legal"); 2865 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2866 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2867 Store->getPointerInfo(), Store->getOriginalAlign(), 2868 Store->getMemOperand()->getFlags()); 2869 } 2870 2871 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2872 SelectionDAG &DAG) const { 2873 switch (Op.getOpcode()) { 2874 default: 2875 report_fatal_error("unimplemented operand"); 2876 case ISD::GlobalAddress: 2877 return lowerGlobalAddress(Op, DAG); 2878 case ISD::BlockAddress: 2879 return lowerBlockAddress(Op, DAG); 2880 case ISD::ConstantPool: 2881 return lowerConstantPool(Op, DAG); 2882 case ISD::JumpTable: 2883 return lowerJumpTable(Op, DAG); 2884 case ISD::GlobalTLSAddress: 2885 return lowerGlobalTLSAddress(Op, DAG); 2886 case ISD::SELECT: 2887 return lowerSELECT(Op, DAG); 2888 case ISD::BRCOND: 2889 return lowerBRCOND(Op, DAG); 2890 case ISD::VASTART: 2891 return lowerVASTART(Op, DAG); 2892 case ISD::FRAMEADDR: 2893 return lowerFRAMEADDR(Op, DAG); 2894 case ISD::RETURNADDR: 2895 return lowerRETURNADDR(Op, DAG); 2896 case ISD::SHL_PARTS: 2897 return lowerShiftLeftParts(Op, DAG); 2898 case ISD::SRA_PARTS: 2899 return lowerShiftRightParts(Op, DAG, true); 2900 case ISD::SRL_PARTS: 2901 return lowerShiftRightParts(Op, DAG, false); 2902 case ISD::BITCAST: { 2903 SDLoc DL(Op); 2904 EVT VT = Op.getValueType(); 2905 SDValue Op0 = Op.getOperand(0); 2906 EVT Op0VT = Op0.getValueType(); 2907 MVT XLenVT = Subtarget.getXLenVT(); 2908 if (VT.isFixedLengthVector()) { 2909 // We can handle fixed length vector bitcasts with a simple replacement 2910 // in isel. 2911 if (Op0VT.isFixedLengthVector()) 2912 return Op; 2913 // When bitcasting from scalar to fixed-length vector, insert the scalar 2914 // into a one-element vector of the result type, and perform a vector 2915 // bitcast. 2916 if (!Op0VT.isVector()) { 2917 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2918 if (!isTypeLegal(BVT)) 2919 return SDValue(); 2920 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2921 DAG.getUNDEF(BVT), Op0, 2922 DAG.getConstant(0, DL, XLenVT))); 2923 } 2924 return SDValue(); 2925 } 2926 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2927 // thus: bitcast the vector to a one-element vector type whose element type 2928 // is the same as the result type, and extract the first element. 2929 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2930 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2931 if (!isTypeLegal(BVT)) 2932 return SDValue(); 2933 SDValue BVec = DAG.getBitcast(BVT, Op0); 2934 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2935 DAG.getConstant(0, DL, XLenVT)); 2936 } 2937 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2938 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2939 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2940 return FPConv; 2941 } 2942 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2943 Subtarget.hasStdExtF()) { 2944 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2945 SDValue FPConv = 2946 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2947 return FPConv; 2948 } 2949 return SDValue(); 2950 } 2951 case ISD::INTRINSIC_WO_CHAIN: 2952 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2953 case ISD::INTRINSIC_W_CHAIN: 2954 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2955 case ISD::INTRINSIC_VOID: 2956 return LowerINTRINSIC_VOID(Op, DAG); 2957 case ISD::BSWAP: 2958 case ISD::BITREVERSE: { 2959 MVT VT = Op.getSimpleValueType(); 2960 SDLoc DL(Op); 2961 if (Subtarget.hasStdExtZbp()) { 2962 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2963 // Start with the maximum immediate value which is the bitwidth - 1. 2964 unsigned Imm = VT.getSizeInBits() - 1; 2965 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2966 if (Op.getOpcode() == ISD::BSWAP) 2967 Imm &= ~0x7U; 2968 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2969 DAG.getConstant(Imm, DL, VT)); 2970 } 2971 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 2972 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 2973 // Expand bitreverse to a bswap(rev8) followed by brev8. 2974 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 2975 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 2976 // as brev8 by an isel pattern. 2977 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 2978 DAG.getConstant(7, DL, VT)); 2979 } 2980 case ISD::FSHL: 2981 case ISD::FSHR: { 2982 MVT VT = Op.getSimpleValueType(); 2983 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2984 SDLoc DL(Op); 2985 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2986 // use log(XLen) bits. Mask the shift amount accordingly to prevent 2987 // accidentally setting the extra bit. 2988 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2989 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2990 DAG.getConstant(ShAmtWidth, DL, VT)); 2991 // fshl and fshr concatenate their operands in the same order. fsr and fsl 2992 // instruction use different orders. fshl will return its first operand for 2993 // shift of zero, fshr will return its second operand. fsl and fsr both 2994 // return rs1 so the ISD nodes need to have different operand orders. 2995 // Shift amount is in rs2. 2996 SDValue Op0 = Op.getOperand(0); 2997 SDValue Op1 = Op.getOperand(1); 2998 unsigned Opc = RISCVISD::FSL; 2999 if (Op.getOpcode() == ISD::FSHR) { 3000 std::swap(Op0, Op1); 3001 Opc = RISCVISD::FSR; 3002 } 3003 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3004 } 3005 case ISD::TRUNCATE: { 3006 SDLoc DL(Op); 3007 MVT VT = Op.getSimpleValueType(); 3008 // Only custom-lower vector truncates 3009 if (!VT.isVector()) 3010 return Op; 3011 3012 // Truncates to mask types are handled differently 3013 if (VT.getVectorElementType() == MVT::i1) 3014 return lowerVectorMaskTrunc(Op, DAG); 3015 3016 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 3017 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 3018 // truncate by one power of two at a time. 3019 MVT DstEltVT = VT.getVectorElementType(); 3020 3021 SDValue Src = Op.getOperand(0); 3022 MVT SrcVT = Src.getSimpleValueType(); 3023 MVT SrcEltVT = SrcVT.getVectorElementType(); 3024 3025 assert(DstEltVT.bitsLT(SrcEltVT) && 3026 isPowerOf2_64(DstEltVT.getSizeInBits()) && 3027 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 3028 "Unexpected vector truncate lowering"); 3029 3030 MVT ContainerVT = SrcVT; 3031 if (SrcVT.isFixedLengthVector()) { 3032 ContainerVT = getContainerForFixedLengthVector(SrcVT); 3033 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3034 } 3035 3036 SDValue Result = Src; 3037 SDValue Mask, VL; 3038 std::tie(Mask, VL) = 3039 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 3040 LLVMContext &Context = *DAG.getContext(); 3041 const ElementCount Count = ContainerVT.getVectorElementCount(); 3042 do { 3043 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 3044 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 3045 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 3046 Mask, VL); 3047 } while (SrcEltVT != DstEltVT); 3048 3049 if (SrcVT.isFixedLengthVector()) 3050 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3051 3052 return Result; 3053 } 3054 case ISD::ANY_EXTEND: 3055 case ISD::ZERO_EXTEND: 3056 if (Op.getOperand(0).getValueType().isVector() && 3057 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3058 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3059 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3060 case ISD::SIGN_EXTEND: 3061 if (Op.getOperand(0).getValueType().isVector() && 3062 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3063 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3064 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3065 case ISD::SPLAT_VECTOR_PARTS: 3066 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3067 case ISD::INSERT_VECTOR_ELT: 3068 return lowerINSERT_VECTOR_ELT(Op, DAG); 3069 case ISD::EXTRACT_VECTOR_ELT: 3070 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3071 case ISD::VSCALE: { 3072 MVT VT = Op.getSimpleValueType(); 3073 SDLoc DL(Op); 3074 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3075 // We define our scalable vector types for lmul=1 to use a 64 bit known 3076 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3077 // vscale as VLENB / 8. 3078 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3079 if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock) 3080 report_fatal_error("Support for VLEN==32 is incomplete."); 3081 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3082 // We assume VLENB is a multiple of 8. We manually choose the best shift 3083 // here because SimplifyDemandedBits isn't always able to simplify it. 3084 uint64_t Val = Op.getConstantOperandVal(0); 3085 if (isPowerOf2_64(Val)) { 3086 uint64_t Log2 = Log2_64(Val); 3087 if (Log2 < 3) 3088 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3089 DAG.getConstant(3 - Log2, DL, VT)); 3090 if (Log2 > 3) 3091 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3092 DAG.getConstant(Log2 - 3, DL, VT)); 3093 return VLENB; 3094 } 3095 // If the multiplier is a multiple of 8, scale it down to avoid needing 3096 // to shift the VLENB value. 3097 if ((Val % 8) == 0) 3098 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3099 DAG.getConstant(Val / 8, DL, VT)); 3100 } 3101 3102 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3103 DAG.getConstant(3, DL, VT)); 3104 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3105 } 3106 case ISD::FPOWI: { 3107 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3108 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3109 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3110 Op.getOperand(1).getValueType() == MVT::i32) { 3111 SDLoc DL(Op); 3112 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3113 SDValue Powi = 3114 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3115 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3116 DAG.getIntPtrConstant(0, DL)); 3117 } 3118 return SDValue(); 3119 } 3120 case ISD::FP_EXTEND: { 3121 // RVV can only do fp_extend to types double the size as the source. We 3122 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3123 // via f32. 3124 SDLoc DL(Op); 3125 MVT VT = Op.getSimpleValueType(); 3126 SDValue Src = Op.getOperand(0); 3127 MVT SrcVT = Src.getSimpleValueType(); 3128 3129 // Prepare any fixed-length vector operands. 3130 MVT ContainerVT = VT; 3131 if (SrcVT.isFixedLengthVector()) { 3132 ContainerVT = getContainerForFixedLengthVector(VT); 3133 MVT SrcContainerVT = 3134 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3135 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3136 } 3137 3138 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3139 SrcVT.getVectorElementType() != MVT::f16) { 3140 // For scalable vectors, we only need to close the gap between 3141 // vXf16->vXf64. 3142 if (!VT.isFixedLengthVector()) 3143 return Op; 3144 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3145 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3146 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3147 } 3148 3149 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3150 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3151 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3152 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3153 3154 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3155 DL, DAG, Subtarget); 3156 if (VT.isFixedLengthVector()) 3157 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3158 return Extend; 3159 } 3160 case ISD::FP_ROUND: { 3161 // RVV can only do fp_round to types half the size as the source. We 3162 // custom-lower f64->f16 rounds via RVV's round-to-odd float 3163 // conversion instruction. 3164 SDLoc DL(Op); 3165 MVT VT = Op.getSimpleValueType(); 3166 SDValue Src = Op.getOperand(0); 3167 MVT SrcVT = Src.getSimpleValueType(); 3168 3169 // Prepare any fixed-length vector operands. 3170 MVT ContainerVT = VT; 3171 if (VT.isFixedLengthVector()) { 3172 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3173 ContainerVT = 3174 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3175 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3176 } 3177 3178 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 3179 SrcVT.getVectorElementType() != MVT::f64) { 3180 // For scalable vectors, we only need to close the gap between 3181 // vXf64<->vXf16. 3182 if (!VT.isFixedLengthVector()) 3183 return Op; 3184 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 3185 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3186 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3187 } 3188 3189 SDValue Mask, VL; 3190 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3191 3192 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3193 SDValue IntermediateRound = 3194 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3195 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3196 DL, DAG, Subtarget); 3197 3198 if (VT.isFixedLengthVector()) 3199 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3200 return Round; 3201 } 3202 case ISD::FP_TO_SINT: 3203 case ISD::FP_TO_UINT: 3204 case ISD::SINT_TO_FP: 3205 case ISD::UINT_TO_FP: { 3206 // RVV can only do fp<->int conversions to types half/double the size as 3207 // the source. We custom-lower any conversions that do two hops into 3208 // sequences. 3209 MVT VT = Op.getSimpleValueType(); 3210 if (!VT.isVector()) 3211 return Op; 3212 SDLoc DL(Op); 3213 SDValue Src = Op.getOperand(0); 3214 MVT EltVT = VT.getVectorElementType(); 3215 MVT SrcVT = Src.getSimpleValueType(); 3216 MVT SrcEltVT = SrcVT.getVectorElementType(); 3217 unsigned EltSize = EltVT.getSizeInBits(); 3218 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3219 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3220 "Unexpected vector element types"); 3221 3222 bool IsInt2FP = SrcEltVT.isInteger(); 3223 // Widening conversions 3224 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 3225 if (IsInt2FP) { 3226 // Do a regular integer sign/zero extension then convert to float. 3227 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 3228 VT.getVectorElementCount()); 3229 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3230 ? ISD::ZERO_EXTEND 3231 : ISD::SIGN_EXTEND; 3232 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3233 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3234 } 3235 // FP2Int 3236 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3237 // Do one doubling fp_extend then complete the operation by converting 3238 // to int. 3239 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3240 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3241 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3242 } 3243 3244 // Narrowing conversions 3245 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 3246 if (IsInt2FP) { 3247 // One narrowing int_to_fp, then an fp_round. 3248 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3249 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3250 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3251 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3252 } 3253 // FP2Int 3254 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3255 // representable by the integer, the result is poison. 3256 MVT IVecVT = 3257 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 3258 VT.getVectorElementCount()); 3259 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3260 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3261 } 3262 3263 // Scalable vectors can exit here. Patterns will handle equally-sized 3264 // conversions halving/doubling ones. 3265 if (!VT.isFixedLengthVector()) 3266 return Op; 3267 3268 // For fixed-length vectors we lower to a custom "VL" node. 3269 unsigned RVVOpc = 0; 3270 switch (Op.getOpcode()) { 3271 default: 3272 llvm_unreachable("Impossible opcode"); 3273 case ISD::FP_TO_SINT: 3274 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3275 break; 3276 case ISD::FP_TO_UINT: 3277 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3278 break; 3279 case ISD::SINT_TO_FP: 3280 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3281 break; 3282 case ISD::UINT_TO_FP: 3283 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3284 break; 3285 } 3286 3287 MVT ContainerVT, SrcContainerVT; 3288 // Derive the reference container type from the larger vector type. 3289 if (SrcEltSize > EltSize) { 3290 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3291 ContainerVT = 3292 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3293 } else { 3294 ContainerVT = getContainerForFixedLengthVector(VT); 3295 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3296 } 3297 3298 SDValue Mask, VL; 3299 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3300 3301 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3302 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3303 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3304 } 3305 case ISD::FP_TO_SINT_SAT: 3306 case ISD::FP_TO_UINT_SAT: 3307 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3308 case ISD::FTRUNC: 3309 case ISD::FCEIL: 3310 case ISD::FFLOOR: 3311 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3312 case ISD::VECREDUCE_ADD: 3313 case ISD::VECREDUCE_UMAX: 3314 case ISD::VECREDUCE_SMAX: 3315 case ISD::VECREDUCE_UMIN: 3316 case ISD::VECREDUCE_SMIN: 3317 return lowerVECREDUCE(Op, DAG); 3318 case ISD::VECREDUCE_AND: 3319 case ISD::VECREDUCE_OR: 3320 case ISD::VECREDUCE_XOR: 3321 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3322 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3323 return lowerVECREDUCE(Op, DAG); 3324 case ISD::VECREDUCE_FADD: 3325 case ISD::VECREDUCE_SEQ_FADD: 3326 case ISD::VECREDUCE_FMIN: 3327 case ISD::VECREDUCE_FMAX: 3328 return lowerFPVECREDUCE(Op, DAG); 3329 case ISD::VP_REDUCE_ADD: 3330 case ISD::VP_REDUCE_UMAX: 3331 case ISD::VP_REDUCE_SMAX: 3332 case ISD::VP_REDUCE_UMIN: 3333 case ISD::VP_REDUCE_SMIN: 3334 case ISD::VP_REDUCE_FADD: 3335 case ISD::VP_REDUCE_SEQ_FADD: 3336 case ISD::VP_REDUCE_FMIN: 3337 case ISD::VP_REDUCE_FMAX: 3338 return lowerVPREDUCE(Op, DAG); 3339 case ISD::VP_REDUCE_AND: 3340 case ISD::VP_REDUCE_OR: 3341 case ISD::VP_REDUCE_XOR: 3342 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3343 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3344 return lowerVPREDUCE(Op, DAG); 3345 case ISD::INSERT_SUBVECTOR: 3346 return lowerINSERT_SUBVECTOR(Op, DAG); 3347 case ISD::EXTRACT_SUBVECTOR: 3348 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3349 case ISD::STEP_VECTOR: 3350 return lowerSTEP_VECTOR(Op, DAG); 3351 case ISD::VECTOR_REVERSE: 3352 return lowerVECTOR_REVERSE(Op, DAG); 3353 case ISD::BUILD_VECTOR: 3354 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3355 case ISD::SPLAT_VECTOR: 3356 if (Op.getValueType().getVectorElementType() == MVT::i1) 3357 return lowerVectorMaskSplat(Op, DAG); 3358 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3359 case ISD::VECTOR_SHUFFLE: 3360 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3361 case ISD::CONCAT_VECTORS: { 3362 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3363 // better than going through the stack, as the default expansion does. 3364 SDLoc DL(Op); 3365 MVT VT = Op.getSimpleValueType(); 3366 unsigned NumOpElts = 3367 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3368 SDValue Vec = DAG.getUNDEF(VT); 3369 for (const auto &OpIdx : enumerate(Op->ops())) { 3370 SDValue SubVec = OpIdx.value(); 3371 // Don't insert undef subvectors. 3372 if (SubVec.isUndef()) 3373 continue; 3374 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3375 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3376 } 3377 return Vec; 3378 } 3379 case ISD::LOAD: 3380 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3381 return V; 3382 if (Op.getValueType().isFixedLengthVector()) 3383 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3384 return Op; 3385 case ISD::STORE: 3386 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3387 return V; 3388 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3389 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3390 return Op; 3391 case ISD::MLOAD: 3392 case ISD::VP_LOAD: 3393 return lowerMaskedLoad(Op, DAG); 3394 case ISD::MSTORE: 3395 case ISD::VP_STORE: 3396 return lowerMaskedStore(Op, DAG); 3397 case ISD::SETCC: 3398 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3399 case ISD::ADD: 3400 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3401 case ISD::SUB: 3402 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3403 case ISD::MUL: 3404 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3405 case ISD::MULHS: 3406 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3407 case ISD::MULHU: 3408 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3409 case ISD::AND: 3410 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3411 RISCVISD::AND_VL); 3412 case ISD::OR: 3413 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3414 RISCVISD::OR_VL); 3415 case ISD::XOR: 3416 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3417 RISCVISD::XOR_VL); 3418 case ISD::SDIV: 3419 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3420 case ISD::SREM: 3421 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3422 case ISD::UDIV: 3423 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3424 case ISD::UREM: 3425 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3426 case ISD::SHL: 3427 case ISD::SRA: 3428 case ISD::SRL: 3429 if (Op.getSimpleValueType().isFixedLengthVector()) 3430 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3431 // This can be called for an i32 shift amount that needs to be promoted. 3432 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3433 "Unexpected custom legalisation"); 3434 return SDValue(); 3435 case ISD::SADDSAT: 3436 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3437 case ISD::UADDSAT: 3438 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3439 case ISD::SSUBSAT: 3440 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3441 case ISD::USUBSAT: 3442 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3443 case ISD::FADD: 3444 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3445 case ISD::FSUB: 3446 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3447 case ISD::FMUL: 3448 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3449 case ISD::FDIV: 3450 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3451 case ISD::FNEG: 3452 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3453 case ISD::FABS: 3454 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3455 case ISD::FSQRT: 3456 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3457 case ISD::FMA: 3458 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3459 case ISD::SMIN: 3460 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3461 case ISD::SMAX: 3462 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3463 case ISD::UMIN: 3464 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3465 case ISD::UMAX: 3466 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3467 case ISD::FMINNUM: 3468 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3469 case ISD::FMAXNUM: 3470 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3471 case ISD::ABS: 3472 return lowerABS(Op, DAG); 3473 case ISD::CTLZ_ZERO_UNDEF: 3474 case ISD::CTTZ_ZERO_UNDEF: 3475 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3476 case ISD::VSELECT: 3477 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3478 case ISD::FCOPYSIGN: 3479 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3480 case ISD::MGATHER: 3481 case ISD::VP_GATHER: 3482 return lowerMaskedGather(Op, DAG); 3483 case ISD::MSCATTER: 3484 case ISD::VP_SCATTER: 3485 return lowerMaskedScatter(Op, DAG); 3486 case ISD::FLT_ROUNDS_: 3487 return lowerGET_ROUNDING(Op, DAG); 3488 case ISD::SET_ROUNDING: 3489 return lowerSET_ROUNDING(Op, DAG); 3490 case ISD::VP_SELECT: 3491 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3492 case ISD::VP_MERGE: 3493 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3494 case ISD::VP_ADD: 3495 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3496 case ISD::VP_SUB: 3497 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3498 case ISD::VP_MUL: 3499 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3500 case ISD::VP_SDIV: 3501 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3502 case ISD::VP_UDIV: 3503 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3504 case ISD::VP_SREM: 3505 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3506 case ISD::VP_UREM: 3507 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3508 case ISD::VP_AND: 3509 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3510 case ISD::VP_OR: 3511 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3512 case ISD::VP_XOR: 3513 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3514 case ISD::VP_ASHR: 3515 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3516 case ISD::VP_LSHR: 3517 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3518 case ISD::VP_SHL: 3519 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3520 case ISD::VP_FADD: 3521 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3522 case ISD::VP_FSUB: 3523 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3524 case ISD::VP_FMUL: 3525 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3526 case ISD::VP_FDIV: 3527 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3528 } 3529 } 3530 3531 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3532 SelectionDAG &DAG, unsigned Flags) { 3533 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3534 } 3535 3536 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3537 SelectionDAG &DAG, unsigned Flags) { 3538 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3539 Flags); 3540 } 3541 3542 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3543 SelectionDAG &DAG, unsigned Flags) { 3544 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3545 N->getOffset(), Flags); 3546 } 3547 3548 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3549 SelectionDAG &DAG, unsigned Flags) { 3550 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3551 } 3552 3553 template <class NodeTy> 3554 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3555 bool IsLocal) const { 3556 SDLoc DL(N); 3557 EVT Ty = getPointerTy(DAG.getDataLayout()); 3558 3559 if (isPositionIndependent()) { 3560 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3561 if (IsLocal) 3562 // Use PC-relative addressing to access the symbol. This generates the 3563 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3564 // %pcrel_lo(auipc)). 3565 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3566 3567 // Use PC-relative addressing to access the GOT for this symbol, then load 3568 // the address from the GOT. This generates the pattern (PseudoLA sym), 3569 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3570 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3571 } 3572 3573 switch (getTargetMachine().getCodeModel()) { 3574 default: 3575 report_fatal_error("Unsupported code model for lowering"); 3576 case CodeModel::Small: { 3577 // Generate a sequence for accessing addresses within the first 2 GiB of 3578 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3579 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3580 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3581 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3582 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3583 } 3584 case CodeModel::Medium: { 3585 // Generate a sequence for accessing addresses within any 2GiB range within 3586 // the address space. This generates the pattern (PseudoLLA sym), which 3587 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3588 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3589 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3590 } 3591 } 3592 } 3593 3594 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3595 SelectionDAG &DAG) const { 3596 SDLoc DL(Op); 3597 EVT Ty = Op.getValueType(); 3598 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3599 int64_t Offset = N->getOffset(); 3600 MVT XLenVT = Subtarget.getXLenVT(); 3601 3602 const GlobalValue *GV = N->getGlobal(); 3603 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3604 SDValue Addr = getAddr(N, DAG, IsLocal); 3605 3606 // In order to maximise the opportunity for common subexpression elimination, 3607 // emit a separate ADD node for the global address offset instead of folding 3608 // it in the global address node. Later peephole optimisations may choose to 3609 // fold it back in when profitable. 3610 if (Offset != 0) 3611 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3612 DAG.getConstant(Offset, DL, XLenVT)); 3613 return Addr; 3614 } 3615 3616 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3617 SelectionDAG &DAG) const { 3618 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3619 3620 return getAddr(N, DAG); 3621 } 3622 3623 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3624 SelectionDAG &DAG) const { 3625 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3626 3627 return getAddr(N, DAG); 3628 } 3629 3630 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3631 SelectionDAG &DAG) const { 3632 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3633 3634 return getAddr(N, DAG); 3635 } 3636 3637 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3638 SelectionDAG &DAG, 3639 bool UseGOT) const { 3640 SDLoc DL(N); 3641 EVT Ty = getPointerTy(DAG.getDataLayout()); 3642 const GlobalValue *GV = N->getGlobal(); 3643 MVT XLenVT = Subtarget.getXLenVT(); 3644 3645 if (UseGOT) { 3646 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3647 // load the address from the GOT and add the thread pointer. This generates 3648 // the pattern (PseudoLA_TLS_IE sym), which expands to 3649 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3650 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3651 SDValue Load = 3652 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3653 3654 // Add the thread pointer. 3655 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3656 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3657 } 3658 3659 // Generate a sequence for accessing the address relative to the thread 3660 // pointer, with the appropriate adjustment for the thread pointer offset. 3661 // This generates the pattern 3662 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3663 SDValue AddrHi = 3664 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3665 SDValue AddrAdd = 3666 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3667 SDValue AddrLo = 3668 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3669 3670 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3671 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3672 SDValue MNAdd = SDValue( 3673 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3674 0); 3675 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3676 } 3677 3678 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3679 SelectionDAG &DAG) const { 3680 SDLoc DL(N); 3681 EVT Ty = getPointerTy(DAG.getDataLayout()); 3682 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3683 const GlobalValue *GV = N->getGlobal(); 3684 3685 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3686 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3687 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3688 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3689 SDValue Load = 3690 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3691 3692 // Prepare argument list to generate call. 3693 ArgListTy Args; 3694 ArgListEntry Entry; 3695 Entry.Node = Load; 3696 Entry.Ty = CallTy; 3697 Args.push_back(Entry); 3698 3699 // Setup call to __tls_get_addr. 3700 TargetLowering::CallLoweringInfo CLI(DAG); 3701 CLI.setDebugLoc(DL) 3702 .setChain(DAG.getEntryNode()) 3703 .setLibCallee(CallingConv::C, CallTy, 3704 DAG.getExternalSymbol("__tls_get_addr", Ty), 3705 std::move(Args)); 3706 3707 return LowerCallTo(CLI).first; 3708 } 3709 3710 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3711 SelectionDAG &DAG) const { 3712 SDLoc DL(Op); 3713 EVT Ty = Op.getValueType(); 3714 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3715 int64_t Offset = N->getOffset(); 3716 MVT XLenVT = Subtarget.getXLenVT(); 3717 3718 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3719 3720 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3721 CallingConv::GHC) 3722 report_fatal_error("In GHC calling convention TLS is not supported"); 3723 3724 SDValue Addr; 3725 switch (Model) { 3726 case TLSModel::LocalExec: 3727 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3728 break; 3729 case TLSModel::InitialExec: 3730 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3731 break; 3732 case TLSModel::LocalDynamic: 3733 case TLSModel::GeneralDynamic: 3734 Addr = getDynamicTLSAddr(N, DAG); 3735 break; 3736 } 3737 3738 // In order to maximise the opportunity for common subexpression elimination, 3739 // emit a separate ADD node for the global address offset instead of folding 3740 // it in the global address node. Later peephole optimisations may choose to 3741 // fold it back in when profitable. 3742 if (Offset != 0) 3743 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3744 DAG.getConstant(Offset, DL, XLenVT)); 3745 return Addr; 3746 } 3747 3748 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3749 SDValue CondV = Op.getOperand(0); 3750 SDValue TrueV = Op.getOperand(1); 3751 SDValue FalseV = Op.getOperand(2); 3752 SDLoc DL(Op); 3753 MVT VT = Op.getSimpleValueType(); 3754 MVT XLenVT = Subtarget.getXLenVT(); 3755 3756 // Lower vector SELECTs to VSELECTs by splatting the condition. 3757 if (VT.isVector()) { 3758 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3759 SDValue CondSplat = VT.isScalableVector() 3760 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3761 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3762 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3763 } 3764 3765 // If the result type is XLenVT and CondV is the output of a SETCC node 3766 // which also operated on XLenVT inputs, then merge the SETCC node into the 3767 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3768 // compare+branch instructions. i.e.: 3769 // (select (setcc lhs, rhs, cc), truev, falsev) 3770 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3771 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3772 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3773 SDValue LHS = CondV.getOperand(0); 3774 SDValue RHS = CondV.getOperand(1); 3775 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3776 ISD::CondCode CCVal = CC->get(); 3777 3778 // Special case for a select of 2 constants that have a diffence of 1. 3779 // Normally this is done by DAGCombine, but if the select is introduced by 3780 // type legalization or op legalization, we miss it. Restricting to SETLT 3781 // case for now because that is what signed saturating add/sub need. 3782 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3783 // but we would probably want to swap the true/false values if the condition 3784 // is SETGE/SETLE to avoid an XORI. 3785 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3786 CCVal == ISD::SETLT) { 3787 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3788 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3789 if (TrueVal - 1 == FalseVal) 3790 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3791 if (TrueVal + 1 == FalseVal) 3792 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3793 } 3794 3795 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3796 3797 SDValue TargetCC = DAG.getCondCode(CCVal); 3798 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3799 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3800 } 3801 3802 // Otherwise: 3803 // (select condv, truev, falsev) 3804 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3805 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3806 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3807 3808 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3809 3810 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3811 } 3812 3813 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3814 SDValue CondV = Op.getOperand(1); 3815 SDLoc DL(Op); 3816 MVT XLenVT = Subtarget.getXLenVT(); 3817 3818 if (CondV.getOpcode() == ISD::SETCC && 3819 CondV.getOperand(0).getValueType() == XLenVT) { 3820 SDValue LHS = CondV.getOperand(0); 3821 SDValue RHS = CondV.getOperand(1); 3822 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3823 3824 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3825 3826 SDValue TargetCC = DAG.getCondCode(CCVal); 3827 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3828 LHS, RHS, TargetCC, Op.getOperand(2)); 3829 } 3830 3831 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3832 CondV, DAG.getConstant(0, DL, XLenVT), 3833 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3834 } 3835 3836 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3837 MachineFunction &MF = DAG.getMachineFunction(); 3838 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3839 3840 SDLoc DL(Op); 3841 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3842 getPointerTy(MF.getDataLayout())); 3843 3844 // vastart just stores the address of the VarArgsFrameIndex slot into the 3845 // memory location argument. 3846 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3847 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3848 MachinePointerInfo(SV)); 3849 } 3850 3851 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3852 SelectionDAG &DAG) const { 3853 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3854 MachineFunction &MF = DAG.getMachineFunction(); 3855 MachineFrameInfo &MFI = MF.getFrameInfo(); 3856 MFI.setFrameAddressIsTaken(true); 3857 Register FrameReg = RI.getFrameRegister(MF); 3858 int XLenInBytes = Subtarget.getXLen() / 8; 3859 3860 EVT VT = Op.getValueType(); 3861 SDLoc DL(Op); 3862 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3863 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3864 while (Depth--) { 3865 int Offset = -(XLenInBytes * 2); 3866 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3867 DAG.getIntPtrConstant(Offset, DL)); 3868 FrameAddr = 3869 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3870 } 3871 return FrameAddr; 3872 } 3873 3874 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3875 SelectionDAG &DAG) const { 3876 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3877 MachineFunction &MF = DAG.getMachineFunction(); 3878 MachineFrameInfo &MFI = MF.getFrameInfo(); 3879 MFI.setReturnAddressIsTaken(true); 3880 MVT XLenVT = Subtarget.getXLenVT(); 3881 int XLenInBytes = Subtarget.getXLen() / 8; 3882 3883 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3884 return SDValue(); 3885 3886 EVT VT = Op.getValueType(); 3887 SDLoc DL(Op); 3888 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3889 if (Depth) { 3890 int Off = -XLenInBytes; 3891 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3892 SDValue Offset = DAG.getConstant(Off, DL, VT); 3893 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3894 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3895 MachinePointerInfo()); 3896 } 3897 3898 // Return the value of the return address register, marking it an implicit 3899 // live-in. 3900 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3901 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3902 } 3903 3904 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3905 SelectionDAG &DAG) const { 3906 SDLoc DL(Op); 3907 SDValue Lo = Op.getOperand(0); 3908 SDValue Hi = Op.getOperand(1); 3909 SDValue Shamt = Op.getOperand(2); 3910 EVT VT = Lo.getValueType(); 3911 3912 // if Shamt-XLEN < 0: // Shamt < XLEN 3913 // Lo = Lo << Shamt 3914 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3915 // else: 3916 // Lo = 0 3917 // Hi = Lo << (Shamt-XLEN) 3918 3919 SDValue Zero = DAG.getConstant(0, DL, VT); 3920 SDValue One = DAG.getConstant(1, DL, VT); 3921 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3922 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3923 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3924 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3925 3926 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3927 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3928 SDValue ShiftRightLo = 3929 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3930 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3931 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3932 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3933 3934 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3935 3936 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3937 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3938 3939 SDValue Parts[2] = {Lo, Hi}; 3940 return DAG.getMergeValues(Parts, DL); 3941 } 3942 3943 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3944 bool IsSRA) const { 3945 SDLoc DL(Op); 3946 SDValue Lo = Op.getOperand(0); 3947 SDValue Hi = Op.getOperand(1); 3948 SDValue Shamt = Op.getOperand(2); 3949 EVT VT = Lo.getValueType(); 3950 3951 // SRA expansion: 3952 // if Shamt-XLEN < 0: // Shamt < XLEN 3953 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3954 // Hi = Hi >>s Shamt 3955 // else: 3956 // Lo = Hi >>s (Shamt-XLEN); 3957 // Hi = Hi >>s (XLEN-1) 3958 // 3959 // SRL expansion: 3960 // if Shamt-XLEN < 0: // Shamt < XLEN 3961 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3962 // Hi = Hi >>u Shamt 3963 // else: 3964 // Lo = Hi >>u (Shamt-XLEN); 3965 // Hi = 0; 3966 3967 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3968 3969 SDValue Zero = DAG.getConstant(0, DL, VT); 3970 SDValue One = DAG.getConstant(1, DL, VT); 3971 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3972 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3973 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3974 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3975 3976 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3977 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3978 SDValue ShiftLeftHi = 3979 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3980 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3981 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3982 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3983 SDValue HiFalse = 3984 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3985 3986 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3987 3988 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3989 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3990 3991 SDValue Parts[2] = {Lo, Hi}; 3992 return DAG.getMergeValues(Parts, DL); 3993 } 3994 3995 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3996 // legal equivalently-sized i8 type, so we can use that as a go-between. 3997 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3998 SelectionDAG &DAG) const { 3999 SDLoc DL(Op); 4000 MVT VT = Op.getSimpleValueType(); 4001 SDValue SplatVal = Op.getOperand(0); 4002 // All-zeros or all-ones splats are handled specially. 4003 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4004 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4005 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4006 } 4007 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4008 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4009 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4010 } 4011 MVT XLenVT = Subtarget.getXLenVT(); 4012 assert(SplatVal.getValueType() == XLenVT && 4013 "Unexpected type for i1 splat value"); 4014 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4015 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4016 DAG.getConstant(1, DL, XLenVT)); 4017 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4018 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4019 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4020 } 4021 4022 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4023 // illegal (currently only vXi64 RV32). 4024 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4025 // them to SPLAT_VECTOR_I64 4026 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4027 SelectionDAG &DAG) const { 4028 SDLoc DL(Op); 4029 MVT VecVT = Op.getSimpleValueType(); 4030 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4031 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4032 4033 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4034 SDValue Lo = Op.getOperand(0); 4035 SDValue Hi = Op.getOperand(1); 4036 4037 if (VecVT.isFixedLengthVector()) { 4038 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4039 SDLoc DL(Op); 4040 SDValue Mask, VL; 4041 std::tie(Mask, VL) = 4042 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4043 4044 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 4045 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4046 } 4047 4048 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4049 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4050 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4051 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4052 // node in order to try and match RVV vector/scalar instructions. 4053 if ((LoC >> 31) == HiC) 4054 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 4055 } 4056 4057 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4058 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4059 isa<ConstantSDNode>(Hi.getOperand(1)) && 4060 Hi.getConstantOperandVal(1) == 31) 4061 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 4062 4063 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4064 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 4065 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 4066 } 4067 4068 // Custom-lower extensions from mask vectors by using a vselect either with 1 4069 // for zero/any-extension or -1 for sign-extension: 4070 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4071 // Note that any-extension is lowered identically to zero-extension. 4072 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4073 int64_t ExtTrueVal) const { 4074 SDLoc DL(Op); 4075 MVT VecVT = Op.getSimpleValueType(); 4076 SDValue Src = Op.getOperand(0); 4077 // Only custom-lower extensions from mask types 4078 assert(Src.getValueType().isVector() && 4079 Src.getValueType().getVectorElementType() == MVT::i1); 4080 4081 MVT XLenVT = Subtarget.getXLenVT(); 4082 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4083 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4084 4085 if (VecVT.isScalableVector()) { 4086 // Be careful not to introduce illegal scalar types at this stage, and be 4087 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 4088 // illegal and must be expanded. Since we know that the constants are 4089 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 4090 bool IsRV32E64 = 4091 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 4092 4093 if (!IsRV32E64) { 4094 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 4095 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 4096 } else { 4097 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 4098 SplatTrueVal = 4099 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 4100 } 4101 4102 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4103 } 4104 4105 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4106 MVT I1ContainerVT = 4107 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4108 4109 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4110 4111 SDValue Mask, VL; 4112 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4113 4114 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 4115 SplatTrueVal = 4116 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 4117 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4118 SplatTrueVal, SplatZero, VL); 4119 4120 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4121 } 4122 4123 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4124 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4125 MVT ExtVT = Op.getSimpleValueType(); 4126 // Only custom-lower extensions from fixed-length vector types. 4127 if (!ExtVT.isFixedLengthVector()) 4128 return Op; 4129 MVT VT = Op.getOperand(0).getSimpleValueType(); 4130 // Grab the canonical container type for the extended type. Infer the smaller 4131 // type from that to ensure the same number of vector elements, as we know 4132 // the LMUL will be sufficient to hold the smaller type. 4133 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4134 // Get the extended container type manually to ensure the same number of 4135 // vector elements between source and dest. 4136 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4137 ContainerExtVT.getVectorElementCount()); 4138 4139 SDValue Op1 = 4140 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4141 4142 SDLoc DL(Op); 4143 SDValue Mask, VL; 4144 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4145 4146 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4147 4148 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4149 } 4150 4151 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4152 // setcc operation: 4153 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4154 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 4155 SelectionDAG &DAG) const { 4156 SDLoc DL(Op); 4157 EVT MaskVT = Op.getValueType(); 4158 // Only expect to custom-lower truncations to mask types 4159 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4160 "Unexpected type for vector mask lowering"); 4161 SDValue Src = Op.getOperand(0); 4162 MVT VecVT = Src.getSimpleValueType(); 4163 4164 // If this is a fixed vector, we need to convert it to a scalable vector. 4165 MVT ContainerVT = VecVT; 4166 if (VecVT.isFixedLengthVector()) { 4167 ContainerVT = getContainerForFixedLengthVector(VecVT); 4168 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4169 } 4170 4171 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4172 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4173 4174 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 4175 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 4176 4177 if (VecVT.isScalableVector()) { 4178 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 4179 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 4180 } 4181 4182 SDValue Mask, VL; 4183 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4184 4185 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4186 SDValue Trunc = 4187 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4188 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4189 DAG.getCondCode(ISD::SETNE), Mask, VL); 4190 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4191 } 4192 4193 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4194 // first position of a vector, and that vector is slid up to the insert index. 4195 // By limiting the active vector length to index+1 and merging with the 4196 // original vector (with an undisturbed tail policy for elements >= VL), we 4197 // achieve the desired result of leaving all elements untouched except the one 4198 // at VL-1, which is replaced with the desired value. 4199 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4200 SelectionDAG &DAG) const { 4201 SDLoc DL(Op); 4202 MVT VecVT = Op.getSimpleValueType(); 4203 SDValue Vec = Op.getOperand(0); 4204 SDValue Val = Op.getOperand(1); 4205 SDValue Idx = Op.getOperand(2); 4206 4207 if (VecVT.getVectorElementType() == MVT::i1) { 4208 // FIXME: For now we just promote to an i8 vector and insert into that, 4209 // but this is probably not optimal. 4210 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4211 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4212 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4213 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4214 } 4215 4216 MVT ContainerVT = VecVT; 4217 // If the operand is a fixed-length vector, convert to a scalable one. 4218 if (VecVT.isFixedLengthVector()) { 4219 ContainerVT = getContainerForFixedLengthVector(VecVT); 4220 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4221 } 4222 4223 MVT XLenVT = Subtarget.getXLenVT(); 4224 4225 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4226 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4227 // Even i64-element vectors on RV32 can be lowered without scalar 4228 // legalization if the most-significant 32 bits of the value are not affected 4229 // by the sign-extension of the lower 32 bits. 4230 // TODO: We could also catch sign extensions of a 32-bit value. 4231 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4232 const auto *CVal = cast<ConstantSDNode>(Val); 4233 if (isInt<32>(CVal->getSExtValue())) { 4234 IsLegalInsert = true; 4235 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4236 } 4237 } 4238 4239 SDValue Mask, VL; 4240 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4241 4242 SDValue ValInVec; 4243 4244 if (IsLegalInsert) { 4245 unsigned Opc = 4246 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4247 if (isNullConstant(Idx)) { 4248 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4249 if (!VecVT.isFixedLengthVector()) 4250 return Vec; 4251 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4252 } 4253 ValInVec = 4254 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4255 } else { 4256 // On RV32, i64-element vectors must be specially handled to place the 4257 // value at element 0, by using two vslide1up instructions in sequence on 4258 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4259 // this. 4260 SDValue One = DAG.getConstant(1, DL, XLenVT); 4261 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4262 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4263 MVT I32ContainerVT = 4264 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4265 SDValue I32Mask = 4266 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4267 // Limit the active VL to two. 4268 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4269 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4270 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4271 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 4272 InsertI64VL); 4273 // First slide in the hi value, then the lo in underneath it. 4274 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4275 ValHi, I32Mask, InsertI64VL); 4276 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4277 ValLo, I32Mask, InsertI64VL); 4278 // Bitcast back to the right container type. 4279 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4280 } 4281 4282 // Now that the value is in a vector, slide it into position. 4283 SDValue InsertVL = 4284 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4285 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4286 ValInVec, Idx, Mask, InsertVL); 4287 if (!VecVT.isFixedLengthVector()) 4288 return Slideup; 4289 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4290 } 4291 4292 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4293 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4294 // types this is done using VMV_X_S to allow us to glean information about the 4295 // sign bits of the result. 4296 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4297 SelectionDAG &DAG) const { 4298 SDLoc DL(Op); 4299 SDValue Idx = Op.getOperand(1); 4300 SDValue Vec = Op.getOperand(0); 4301 EVT EltVT = Op.getValueType(); 4302 MVT VecVT = Vec.getSimpleValueType(); 4303 MVT XLenVT = Subtarget.getXLenVT(); 4304 4305 if (VecVT.getVectorElementType() == MVT::i1) { 4306 if (VecVT.isFixedLengthVector()) { 4307 unsigned NumElts = VecVT.getVectorNumElements(); 4308 if (NumElts >= 8) { 4309 MVT WideEltVT; 4310 unsigned WidenVecLen; 4311 SDValue ExtractElementIdx; 4312 SDValue ExtractBitIdx; 4313 unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors(); 4314 MVT LargestEltVT = MVT::getIntegerVT( 4315 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4316 if (NumElts <= LargestEltVT.getSizeInBits()) { 4317 assert(isPowerOf2_32(NumElts) && 4318 "the number of elements should be power of 2"); 4319 WideEltVT = MVT::getIntegerVT(NumElts); 4320 WidenVecLen = 1; 4321 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4322 ExtractBitIdx = Idx; 4323 } else { 4324 WideEltVT = LargestEltVT; 4325 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4326 // extract element index = index / element width 4327 ExtractElementIdx = DAG.getNode( 4328 ISD::SRL, DL, XLenVT, Idx, 4329 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4330 // mask bit index = index % element width 4331 ExtractBitIdx = DAG.getNode( 4332 ISD::AND, DL, XLenVT, Idx, 4333 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4334 } 4335 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4336 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4337 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4338 Vec, ExtractElementIdx); 4339 // Extract the bit from GPR. 4340 SDValue ShiftRight = 4341 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4342 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4343 DAG.getConstant(1, DL, XLenVT)); 4344 } 4345 } 4346 // Otherwise, promote to an i8 vector and extract from that. 4347 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4348 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4349 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4350 } 4351 4352 // If this is a fixed vector, we need to convert it to a scalable vector. 4353 MVT ContainerVT = VecVT; 4354 if (VecVT.isFixedLengthVector()) { 4355 ContainerVT = getContainerForFixedLengthVector(VecVT); 4356 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4357 } 4358 4359 // If the index is 0, the vector is already in the right position. 4360 if (!isNullConstant(Idx)) { 4361 // Use a VL of 1 to avoid processing more elements than we need. 4362 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4363 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4364 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4365 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4366 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4367 } 4368 4369 if (!EltVT.isInteger()) { 4370 // Floating-point extracts are handled in TableGen. 4371 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4372 DAG.getConstant(0, DL, XLenVT)); 4373 } 4374 4375 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4376 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4377 } 4378 4379 // Some RVV intrinsics may claim that they want an integer operand to be 4380 // promoted or expanded. 4381 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 4382 const RISCVSubtarget &Subtarget) { 4383 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4384 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4385 "Unexpected opcode"); 4386 4387 if (!Subtarget.hasVInstructions()) 4388 return SDValue(); 4389 4390 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4391 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4392 SDLoc DL(Op); 4393 4394 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4395 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4396 if (!II || !II->hasSplatOperand()) 4397 return SDValue(); 4398 4399 unsigned SplatOp = II->SplatOperand + 1 + HasChain; 4400 assert(SplatOp < Op.getNumOperands()); 4401 4402 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4403 SDValue &ScalarOp = Operands[SplatOp]; 4404 MVT OpVT = ScalarOp.getSimpleValueType(); 4405 MVT XLenVT = Subtarget.getXLenVT(); 4406 4407 // If this isn't a scalar, or its type is XLenVT we're done. 4408 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4409 return SDValue(); 4410 4411 // Simplest case is that the operand needs to be promoted to XLenVT. 4412 if (OpVT.bitsLT(XLenVT)) { 4413 // If the operand is a constant, sign extend to increase our chances 4414 // of being able to use a .vi instruction. ANY_EXTEND would become a 4415 // a zero extend and the simm5 check in isel would fail. 4416 // FIXME: Should we ignore the upper bits in isel instead? 4417 unsigned ExtOpc = 4418 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4419 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4420 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4421 } 4422 4423 // Use the previous operand to get the vXi64 VT. The result might be a mask 4424 // VT for compares. Using the previous operand assumes that the previous 4425 // operand will never have a smaller element size than a scalar operand and 4426 // that a widening operation never uses SEW=64. 4427 // NOTE: If this fails the below assert, we can probably just find the 4428 // element count from any operand or result and use it to construct the VT. 4429 assert(II->SplatOperand > 0 && "Unexpected splat operand!"); 4430 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4431 4432 // The more complex case is when the scalar is larger than XLenVT. 4433 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4434 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4435 4436 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4437 // on the instruction to sign-extend since SEW>XLEN. 4438 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4439 if (isInt<32>(CVal->getSExtValue())) { 4440 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4441 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4442 } 4443 } 4444 4445 // We need to convert the scalar to a splat vector. 4446 // FIXME: Can we implicitly truncate the scalar if it is known to 4447 // be sign extended? 4448 SDValue VL = getVLOperand(Op); 4449 assert(VL.getValueType() == XLenVT); 4450 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4451 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4452 } 4453 4454 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4455 SelectionDAG &DAG) const { 4456 unsigned IntNo = Op.getConstantOperandVal(0); 4457 SDLoc DL(Op); 4458 MVT XLenVT = Subtarget.getXLenVT(); 4459 4460 switch (IntNo) { 4461 default: 4462 break; // Don't custom lower most intrinsics. 4463 case Intrinsic::thread_pointer: { 4464 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4465 return DAG.getRegister(RISCV::X4, PtrVT); 4466 } 4467 case Intrinsic::riscv_orc_b: 4468 case Intrinsic::riscv_brev8: { 4469 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4470 unsigned Opc = 4471 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4472 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4473 DAG.getConstant(7, DL, XLenVT)); 4474 } 4475 case Intrinsic::riscv_grev: 4476 case Intrinsic::riscv_gorc: { 4477 unsigned Opc = 4478 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4479 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4480 } 4481 case Intrinsic::riscv_zip: 4482 case Intrinsic::riscv_unzip: { 4483 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4484 // For i32 the immdiate is 15. For i64 the immediate is 31. 4485 unsigned Opc = 4486 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4487 unsigned BitWidth = Op.getValueSizeInBits(); 4488 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4489 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4490 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4491 } 4492 case Intrinsic::riscv_shfl: 4493 case Intrinsic::riscv_unshfl: { 4494 unsigned Opc = 4495 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4496 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4497 } 4498 case Intrinsic::riscv_bcompress: 4499 case Intrinsic::riscv_bdecompress: { 4500 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4501 : RISCVISD::BDECOMPRESS; 4502 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4503 } 4504 case Intrinsic::riscv_bfp: 4505 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4506 Op.getOperand(2)); 4507 case Intrinsic::riscv_fsl: 4508 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4509 Op.getOperand(2), Op.getOperand(3)); 4510 case Intrinsic::riscv_fsr: 4511 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4512 Op.getOperand(2), Op.getOperand(3)); 4513 case Intrinsic::riscv_vmv_x_s: 4514 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4515 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4516 Op.getOperand(1)); 4517 case Intrinsic::riscv_vmv_v_x: 4518 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4519 Op.getSimpleValueType(), DL, DAG, Subtarget); 4520 case Intrinsic::riscv_vfmv_v_f: 4521 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4522 Op.getOperand(1), Op.getOperand(2)); 4523 case Intrinsic::riscv_vmv_s_x: { 4524 SDValue Scalar = Op.getOperand(2); 4525 4526 if (Scalar.getValueType().bitsLE(XLenVT)) { 4527 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4528 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4529 Op.getOperand(1), Scalar, Op.getOperand(3)); 4530 } 4531 4532 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4533 4534 // This is an i64 value that lives in two scalar registers. We have to 4535 // insert this in a convoluted way. First we build vXi64 splat containing 4536 // the/ two values that we assemble using some bit math. Next we'll use 4537 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4538 // to merge element 0 from our splat into the source vector. 4539 // FIXME: This is probably not the best way to do this, but it is 4540 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4541 // point. 4542 // sw lo, (a0) 4543 // sw hi, 4(a0) 4544 // vlse vX, (a0) 4545 // 4546 // vid.v vVid 4547 // vmseq.vx mMask, vVid, 0 4548 // vmerge.vvm vDest, vSrc, vVal, mMask 4549 MVT VT = Op.getSimpleValueType(); 4550 SDValue Vec = Op.getOperand(1); 4551 SDValue VL = getVLOperand(Op); 4552 4553 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4554 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4555 DAG.getConstant(0, DL, MVT::i32), VL); 4556 4557 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4558 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4559 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4560 SDValue SelectCond = 4561 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4562 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4563 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4564 Vec, VL); 4565 } 4566 case Intrinsic::riscv_vslide1up: 4567 case Intrinsic::riscv_vslide1down: 4568 case Intrinsic::riscv_vslide1up_mask: 4569 case Intrinsic::riscv_vslide1down_mask: { 4570 // We need to special case these when the scalar is larger than XLen. 4571 unsigned NumOps = Op.getNumOperands(); 4572 bool IsMasked = NumOps == 7; 4573 unsigned OpOffset = IsMasked ? 1 : 0; 4574 SDValue Scalar = Op.getOperand(2 + OpOffset); 4575 if (Scalar.getValueType().bitsLE(XLenVT)) 4576 break; 4577 4578 // Splatting a sign extended constant is fine. 4579 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4580 if (isInt<32>(CVal->getSExtValue())) 4581 break; 4582 4583 MVT VT = Op.getSimpleValueType(); 4584 assert(VT.getVectorElementType() == MVT::i64 && 4585 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4586 4587 // Convert the vector source to the equivalent nxvXi32 vector. 4588 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4589 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4590 4591 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4592 DAG.getConstant(0, DL, XLenVT)); 4593 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4594 DAG.getConstant(1, DL, XLenVT)); 4595 4596 // Double the VL since we halved SEW. 4597 SDValue VL = getVLOperand(Op); 4598 SDValue I32VL = 4599 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4600 4601 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4602 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4603 4604 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4605 // instructions. 4606 if (IntNo == Intrinsic::riscv_vslide1up || 4607 IntNo == Intrinsic::riscv_vslide1up_mask) { 4608 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4609 I32Mask, I32VL); 4610 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4611 I32Mask, I32VL); 4612 } else { 4613 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4614 I32Mask, I32VL); 4615 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4616 I32Mask, I32VL); 4617 } 4618 4619 // Convert back to nxvXi64. 4620 Vec = DAG.getBitcast(VT, Vec); 4621 4622 if (!IsMasked) 4623 return Vec; 4624 4625 // Apply mask after the operation. 4626 SDValue Mask = Op.getOperand(NumOps - 3); 4627 SDValue MaskedOff = Op.getOperand(1); 4628 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4629 } 4630 } 4631 4632 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4633 } 4634 4635 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4636 SelectionDAG &DAG) const { 4637 unsigned IntNo = Op.getConstantOperandVal(1); 4638 switch (IntNo) { 4639 default: 4640 break; 4641 case Intrinsic::riscv_masked_strided_load: { 4642 SDLoc DL(Op); 4643 MVT XLenVT = Subtarget.getXLenVT(); 4644 4645 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4646 // the selection of the masked intrinsics doesn't do this for us. 4647 SDValue Mask = Op.getOperand(5); 4648 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4649 4650 MVT VT = Op->getSimpleValueType(0); 4651 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4652 4653 SDValue PassThru = Op.getOperand(2); 4654 if (!IsUnmasked) { 4655 MVT MaskVT = 4656 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4657 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4658 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4659 } 4660 4661 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4662 4663 SDValue IntID = DAG.getTargetConstant( 4664 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4665 XLenVT); 4666 4667 auto *Load = cast<MemIntrinsicSDNode>(Op); 4668 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4669 if (IsUnmasked) 4670 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4671 else 4672 Ops.push_back(PassThru); 4673 Ops.push_back(Op.getOperand(3)); // Ptr 4674 Ops.push_back(Op.getOperand(4)); // Stride 4675 if (!IsUnmasked) 4676 Ops.push_back(Mask); 4677 Ops.push_back(VL); 4678 if (!IsUnmasked) { 4679 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4680 Ops.push_back(Policy); 4681 } 4682 4683 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4684 SDValue Result = 4685 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4686 Load->getMemoryVT(), Load->getMemOperand()); 4687 SDValue Chain = Result.getValue(1); 4688 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4689 return DAG.getMergeValues({Result, Chain}, DL); 4690 } 4691 } 4692 4693 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4694 } 4695 4696 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4697 SelectionDAG &DAG) const { 4698 unsigned IntNo = Op.getConstantOperandVal(1); 4699 switch (IntNo) { 4700 default: 4701 break; 4702 case Intrinsic::riscv_masked_strided_store: { 4703 SDLoc DL(Op); 4704 MVT XLenVT = Subtarget.getXLenVT(); 4705 4706 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4707 // the selection of the masked intrinsics doesn't do this for us. 4708 SDValue Mask = Op.getOperand(5); 4709 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4710 4711 SDValue Val = Op.getOperand(2); 4712 MVT VT = Val.getSimpleValueType(); 4713 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4714 4715 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4716 if (!IsUnmasked) { 4717 MVT MaskVT = 4718 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4719 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4720 } 4721 4722 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4723 4724 SDValue IntID = DAG.getTargetConstant( 4725 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4726 XLenVT); 4727 4728 auto *Store = cast<MemIntrinsicSDNode>(Op); 4729 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4730 Ops.push_back(Val); 4731 Ops.push_back(Op.getOperand(3)); // Ptr 4732 Ops.push_back(Op.getOperand(4)); // Stride 4733 if (!IsUnmasked) 4734 Ops.push_back(Mask); 4735 Ops.push_back(VL); 4736 4737 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4738 Ops, Store->getMemoryVT(), 4739 Store->getMemOperand()); 4740 } 4741 } 4742 4743 return SDValue(); 4744 } 4745 4746 static MVT getLMUL1VT(MVT VT) { 4747 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4748 "Unexpected vector MVT"); 4749 return MVT::getScalableVectorVT( 4750 VT.getVectorElementType(), 4751 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4752 } 4753 4754 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4755 switch (ISDOpcode) { 4756 default: 4757 llvm_unreachable("Unhandled reduction"); 4758 case ISD::VECREDUCE_ADD: 4759 return RISCVISD::VECREDUCE_ADD_VL; 4760 case ISD::VECREDUCE_UMAX: 4761 return RISCVISD::VECREDUCE_UMAX_VL; 4762 case ISD::VECREDUCE_SMAX: 4763 return RISCVISD::VECREDUCE_SMAX_VL; 4764 case ISD::VECREDUCE_UMIN: 4765 return RISCVISD::VECREDUCE_UMIN_VL; 4766 case ISD::VECREDUCE_SMIN: 4767 return RISCVISD::VECREDUCE_SMIN_VL; 4768 case ISD::VECREDUCE_AND: 4769 return RISCVISD::VECREDUCE_AND_VL; 4770 case ISD::VECREDUCE_OR: 4771 return RISCVISD::VECREDUCE_OR_VL; 4772 case ISD::VECREDUCE_XOR: 4773 return RISCVISD::VECREDUCE_XOR_VL; 4774 } 4775 } 4776 4777 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4778 SelectionDAG &DAG, 4779 bool IsVP) const { 4780 SDLoc DL(Op); 4781 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4782 MVT VecVT = Vec.getSimpleValueType(); 4783 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4784 Op.getOpcode() == ISD::VECREDUCE_OR || 4785 Op.getOpcode() == ISD::VECREDUCE_XOR || 4786 Op.getOpcode() == ISD::VP_REDUCE_AND || 4787 Op.getOpcode() == ISD::VP_REDUCE_OR || 4788 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4789 "Unexpected reduction lowering"); 4790 4791 MVT XLenVT = Subtarget.getXLenVT(); 4792 assert(Op.getValueType() == XLenVT && 4793 "Expected reduction output to be legalized to XLenVT"); 4794 4795 MVT ContainerVT = VecVT; 4796 if (VecVT.isFixedLengthVector()) { 4797 ContainerVT = getContainerForFixedLengthVector(VecVT); 4798 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4799 } 4800 4801 SDValue Mask, VL; 4802 if (IsVP) { 4803 Mask = Op.getOperand(2); 4804 VL = Op.getOperand(3); 4805 } else { 4806 std::tie(Mask, VL) = 4807 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4808 } 4809 4810 unsigned BaseOpc; 4811 ISD::CondCode CC; 4812 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4813 4814 switch (Op.getOpcode()) { 4815 default: 4816 llvm_unreachable("Unhandled reduction"); 4817 case ISD::VECREDUCE_AND: 4818 case ISD::VP_REDUCE_AND: { 4819 // vcpop ~x == 0 4820 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4821 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4822 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4823 CC = ISD::SETEQ; 4824 BaseOpc = ISD::AND; 4825 break; 4826 } 4827 case ISD::VECREDUCE_OR: 4828 case ISD::VP_REDUCE_OR: 4829 // vcpop x != 0 4830 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4831 CC = ISD::SETNE; 4832 BaseOpc = ISD::OR; 4833 break; 4834 case ISD::VECREDUCE_XOR: 4835 case ISD::VP_REDUCE_XOR: { 4836 // ((vcpop x) & 1) != 0 4837 SDValue One = DAG.getConstant(1, DL, XLenVT); 4838 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4839 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4840 CC = ISD::SETNE; 4841 BaseOpc = ISD::XOR; 4842 break; 4843 } 4844 } 4845 4846 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4847 4848 if (!IsVP) 4849 return SetCC; 4850 4851 // Now include the start value in the operation. 4852 // Note that we must return the start value when no elements are operated 4853 // upon. The vcpop instructions we've emitted in each case above will return 4854 // 0 for an inactive vector, and so we've already received the neutral value: 4855 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4856 // can simply include the start value. 4857 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4858 } 4859 4860 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4861 SelectionDAG &DAG) const { 4862 SDLoc DL(Op); 4863 SDValue Vec = Op.getOperand(0); 4864 EVT VecEVT = Vec.getValueType(); 4865 4866 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4867 4868 // Due to ordering in legalize types we may have a vector type that needs to 4869 // be split. Do that manually so we can get down to a legal type. 4870 while (getTypeAction(*DAG.getContext(), VecEVT) == 4871 TargetLowering::TypeSplitVector) { 4872 SDValue Lo, Hi; 4873 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4874 VecEVT = Lo.getValueType(); 4875 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4876 } 4877 4878 // TODO: The type may need to be widened rather than split. Or widened before 4879 // it can be split. 4880 if (!isTypeLegal(VecEVT)) 4881 return SDValue(); 4882 4883 MVT VecVT = VecEVT.getSimpleVT(); 4884 MVT VecEltVT = VecVT.getVectorElementType(); 4885 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4886 4887 MVT ContainerVT = VecVT; 4888 if (VecVT.isFixedLengthVector()) { 4889 ContainerVT = getContainerForFixedLengthVector(VecVT); 4890 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4891 } 4892 4893 MVT M1VT = getLMUL1VT(ContainerVT); 4894 MVT XLenVT = Subtarget.getXLenVT(); 4895 4896 SDValue Mask, VL; 4897 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4898 4899 SDValue NeutralElem = 4900 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4901 SDValue IdentitySplat = lowerScalarSplat( 4902 NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4903 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4904 IdentitySplat, Mask, VL); 4905 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4906 DAG.getConstant(0, DL, XLenVT)); 4907 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4908 } 4909 4910 // Given a reduction op, this function returns the matching reduction opcode, 4911 // the vector SDValue and the scalar SDValue required to lower this to a 4912 // RISCVISD node. 4913 static std::tuple<unsigned, SDValue, SDValue> 4914 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4915 SDLoc DL(Op); 4916 auto Flags = Op->getFlags(); 4917 unsigned Opcode = Op.getOpcode(); 4918 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4919 switch (Opcode) { 4920 default: 4921 llvm_unreachable("Unhandled reduction"); 4922 case ISD::VECREDUCE_FADD: { 4923 // Use positive zero if we can. It is cheaper to materialize. 4924 SDValue Zero = 4925 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 4926 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 4927 } 4928 case ISD::VECREDUCE_SEQ_FADD: 4929 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4930 Op.getOperand(0)); 4931 case ISD::VECREDUCE_FMIN: 4932 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4933 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4934 case ISD::VECREDUCE_FMAX: 4935 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4936 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4937 } 4938 } 4939 4940 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4941 SelectionDAG &DAG) const { 4942 SDLoc DL(Op); 4943 MVT VecEltVT = Op.getSimpleValueType(); 4944 4945 unsigned RVVOpcode; 4946 SDValue VectorVal, ScalarVal; 4947 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4948 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4949 MVT VecVT = VectorVal.getSimpleValueType(); 4950 4951 MVT ContainerVT = VecVT; 4952 if (VecVT.isFixedLengthVector()) { 4953 ContainerVT = getContainerForFixedLengthVector(VecVT); 4954 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4955 } 4956 4957 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4958 MVT XLenVT = Subtarget.getXLenVT(); 4959 4960 SDValue Mask, VL; 4961 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4962 4963 SDValue ScalarSplat = lowerScalarSplat( 4964 ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4965 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4966 VectorVal, ScalarSplat, Mask, VL); 4967 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4968 DAG.getConstant(0, DL, XLenVT)); 4969 } 4970 4971 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4972 switch (ISDOpcode) { 4973 default: 4974 llvm_unreachable("Unhandled reduction"); 4975 case ISD::VP_REDUCE_ADD: 4976 return RISCVISD::VECREDUCE_ADD_VL; 4977 case ISD::VP_REDUCE_UMAX: 4978 return RISCVISD::VECREDUCE_UMAX_VL; 4979 case ISD::VP_REDUCE_SMAX: 4980 return RISCVISD::VECREDUCE_SMAX_VL; 4981 case ISD::VP_REDUCE_UMIN: 4982 return RISCVISD::VECREDUCE_UMIN_VL; 4983 case ISD::VP_REDUCE_SMIN: 4984 return RISCVISD::VECREDUCE_SMIN_VL; 4985 case ISD::VP_REDUCE_AND: 4986 return RISCVISD::VECREDUCE_AND_VL; 4987 case ISD::VP_REDUCE_OR: 4988 return RISCVISD::VECREDUCE_OR_VL; 4989 case ISD::VP_REDUCE_XOR: 4990 return RISCVISD::VECREDUCE_XOR_VL; 4991 case ISD::VP_REDUCE_FADD: 4992 return RISCVISD::VECREDUCE_FADD_VL; 4993 case ISD::VP_REDUCE_SEQ_FADD: 4994 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4995 case ISD::VP_REDUCE_FMAX: 4996 return RISCVISD::VECREDUCE_FMAX_VL; 4997 case ISD::VP_REDUCE_FMIN: 4998 return RISCVISD::VECREDUCE_FMIN_VL; 4999 } 5000 } 5001 5002 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5003 SelectionDAG &DAG) const { 5004 SDLoc DL(Op); 5005 SDValue Vec = Op.getOperand(1); 5006 EVT VecEVT = Vec.getValueType(); 5007 5008 // TODO: The type may need to be widened rather than split. Or widened before 5009 // it can be split. 5010 if (!isTypeLegal(VecEVT)) 5011 return SDValue(); 5012 5013 MVT VecVT = VecEVT.getSimpleVT(); 5014 MVT VecEltVT = VecVT.getVectorElementType(); 5015 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5016 5017 MVT ContainerVT = VecVT; 5018 if (VecVT.isFixedLengthVector()) { 5019 ContainerVT = getContainerForFixedLengthVector(VecVT); 5020 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5021 } 5022 5023 SDValue VL = Op.getOperand(3); 5024 SDValue Mask = Op.getOperand(2); 5025 5026 MVT M1VT = getLMUL1VT(ContainerVT); 5027 MVT XLenVT = Subtarget.getXLenVT(); 5028 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5029 5030 SDValue StartSplat = 5031 lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, 5032 DL, DAG, Subtarget); 5033 SDValue Reduction = 5034 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5035 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5036 DAG.getConstant(0, DL, XLenVT)); 5037 if (!VecVT.isInteger()) 5038 return Elt0; 5039 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5040 } 5041 5042 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5043 SelectionDAG &DAG) const { 5044 SDValue Vec = Op.getOperand(0); 5045 SDValue SubVec = Op.getOperand(1); 5046 MVT VecVT = Vec.getSimpleValueType(); 5047 MVT SubVecVT = SubVec.getSimpleValueType(); 5048 5049 SDLoc DL(Op); 5050 MVT XLenVT = Subtarget.getXLenVT(); 5051 unsigned OrigIdx = Op.getConstantOperandVal(2); 5052 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5053 5054 // We don't have the ability to slide mask vectors up indexed by their i1 5055 // elements; the smallest we can do is i8. Often we are able to bitcast to 5056 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5057 // into a scalable one, we might not necessarily have enough scalable 5058 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5059 if (SubVecVT.getVectorElementType() == MVT::i1 && 5060 (OrigIdx != 0 || !Vec.isUndef())) { 5061 if (VecVT.getVectorMinNumElements() >= 8 && 5062 SubVecVT.getVectorMinNumElements() >= 8) { 5063 assert(OrigIdx % 8 == 0 && "Invalid index"); 5064 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5065 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5066 "Unexpected mask vector lowering"); 5067 OrigIdx /= 8; 5068 SubVecVT = 5069 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5070 SubVecVT.isScalableVector()); 5071 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5072 VecVT.isScalableVector()); 5073 Vec = DAG.getBitcast(VecVT, Vec); 5074 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5075 } else { 5076 // We can't slide this mask vector up indexed by its i1 elements. 5077 // This poses a problem when we wish to insert a scalable vector which 5078 // can't be re-expressed as a larger type. Just choose the slow path and 5079 // extend to a larger type, then truncate back down. 5080 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5081 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5082 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5083 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5084 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5085 Op.getOperand(2)); 5086 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5087 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5088 } 5089 } 5090 5091 // If the subvector vector is a fixed-length type, we cannot use subregister 5092 // manipulation to simplify the codegen; we don't know which register of a 5093 // LMUL group contains the specific subvector as we only know the minimum 5094 // register size. Therefore we must slide the vector group up the full 5095 // amount. 5096 if (SubVecVT.isFixedLengthVector()) { 5097 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5098 return Op; 5099 MVT ContainerVT = VecVT; 5100 if (VecVT.isFixedLengthVector()) { 5101 ContainerVT = getContainerForFixedLengthVector(VecVT); 5102 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5103 } 5104 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5105 DAG.getUNDEF(ContainerVT), SubVec, 5106 DAG.getConstant(0, DL, XLenVT)); 5107 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5108 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5109 return DAG.getBitcast(Op.getValueType(), SubVec); 5110 } 5111 SDValue Mask = 5112 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5113 // Set the vector length to only the number of elements we care about. Note 5114 // that for slideup this includes the offset. 5115 SDValue VL = 5116 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5117 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5118 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5119 SubVec, SlideupAmt, Mask, VL); 5120 if (VecVT.isFixedLengthVector()) 5121 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5122 return DAG.getBitcast(Op.getValueType(), Slideup); 5123 } 5124 5125 unsigned SubRegIdx, RemIdx; 5126 std::tie(SubRegIdx, RemIdx) = 5127 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5128 VecVT, SubVecVT, OrigIdx, TRI); 5129 5130 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5131 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5132 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5133 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5134 5135 // 1. If the Idx has been completely eliminated and this subvector's size is 5136 // a vector register or a multiple thereof, or the surrounding elements are 5137 // undef, then this is a subvector insert which naturally aligns to a vector 5138 // register. These can easily be handled using subregister manipulation. 5139 // 2. If the subvector is smaller than a vector register, then the insertion 5140 // must preserve the undisturbed elements of the register. We do this by 5141 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5142 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5143 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5144 // LMUL=1 type back into the larger vector (resolving to another subregister 5145 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5146 // to avoid allocating a large register group to hold our subvector. 5147 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5148 return Op; 5149 5150 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5151 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5152 // (in our case undisturbed). This means we can set up a subvector insertion 5153 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5154 // size of the subvector. 5155 MVT InterSubVT = VecVT; 5156 SDValue AlignedExtract = Vec; 5157 unsigned AlignedIdx = OrigIdx - RemIdx; 5158 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5159 InterSubVT = getLMUL1VT(VecVT); 5160 // Extract a subvector equal to the nearest full vector register type. This 5161 // should resolve to a EXTRACT_SUBREG instruction. 5162 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5163 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5164 } 5165 5166 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5167 // For scalable vectors this must be further multiplied by vscale. 5168 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5169 5170 SDValue Mask, VL; 5171 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5172 5173 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5174 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5175 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5176 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5177 5178 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5179 DAG.getUNDEF(InterSubVT), SubVec, 5180 DAG.getConstant(0, DL, XLenVT)); 5181 5182 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5183 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5184 5185 // If required, insert this subvector back into the correct vector register. 5186 // This should resolve to an INSERT_SUBREG instruction. 5187 if (VecVT.bitsGT(InterSubVT)) 5188 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5189 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5190 5191 // We might have bitcast from a mask type: cast back to the original type if 5192 // required. 5193 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5194 } 5195 5196 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5197 SelectionDAG &DAG) const { 5198 SDValue Vec = Op.getOperand(0); 5199 MVT SubVecVT = Op.getSimpleValueType(); 5200 MVT VecVT = Vec.getSimpleValueType(); 5201 5202 SDLoc DL(Op); 5203 MVT XLenVT = Subtarget.getXLenVT(); 5204 unsigned OrigIdx = Op.getConstantOperandVal(1); 5205 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5206 5207 // We don't have the ability to slide mask vectors down indexed by their i1 5208 // elements; the smallest we can do is i8. Often we are able to bitcast to 5209 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5210 // from a scalable one, we might not necessarily have enough scalable 5211 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5212 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5213 if (VecVT.getVectorMinNumElements() >= 8 && 5214 SubVecVT.getVectorMinNumElements() >= 8) { 5215 assert(OrigIdx % 8 == 0 && "Invalid index"); 5216 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5217 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5218 "Unexpected mask vector lowering"); 5219 OrigIdx /= 8; 5220 SubVecVT = 5221 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5222 SubVecVT.isScalableVector()); 5223 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5224 VecVT.isScalableVector()); 5225 Vec = DAG.getBitcast(VecVT, Vec); 5226 } else { 5227 // We can't slide this mask vector down, indexed by its i1 elements. 5228 // This poses a problem when we wish to extract a scalable vector which 5229 // can't be re-expressed as a larger type. Just choose the slow path and 5230 // extend to a larger type, then truncate back down. 5231 // TODO: We could probably improve this when extracting certain fixed 5232 // from fixed, where we can extract as i8 and shift the correct element 5233 // right to reach the desired subvector? 5234 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5235 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5236 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5237 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5238 Op.getOperand(1)); 5239 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5240 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5241 } 5242 } 5243 5244 // If the subvector vector is a fixed-length type, we cannot use subregister 5245 // manipulation to simplify the codegen; we don't know which register of a 5246 // LMUL group contains the specific subvector as we only know the minimum 5247 // register size. Therefore we must slide the vector group down the full 5248 // amount. 5249 if (SubVecVT.isFixedLengthVector()) { 5250 // With an index of 0 this is a cast-like subvector, which can be performed 5251 // with subregister operations. 5252 if (OrigIdx == 0) 5253 return Op; 5254 MVT ContainerVT = VecVT; 5255 if (VecVT.isFixedLengthVector()) { 5256 ContainerVT = getContainerForFixedLengthVector(VecVT); 5257 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5258 } 5259 SDValue Mask = 5260 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5261 // Set the vector length to only the number of elements we care about. This 5262 // avoids sliding down elements we're going to discard straight away. 5263 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5264 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5265 SDValue Slidedown = 5266 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5267 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5268 // Now we can use a cast-like subvector extract to get the result. 5269 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5270 DAG.getConstant(0, DL, XLenVT)); 5271 return DAG.getBitcast(Op.getValueType(), Slidedown); 5272 } 5273 5274 unsigned SubRegIdx, RemIdx; 5275 std::tie(SubRegIdx, RemIdx) = 5276 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5277 VecVT, SubVecVT, OrigIdx, TRI); 5278 5279 // If the Idx has been completely eliminated then this is a subvector extract 5280 // which naturally aligns to a vector register. These can easily be handled 5281 // using subregister manipulation. 5282 if (RemIdx == 0) 5283 return Op; 5284 5285 // Else we must shift our vector register directly to extract the subvector. 5286 // Do this using VSLIDEDOWN. 5287 5288 // If the vector type is an LMUL-group type, extract a subvector equal to the 5289 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5290 // instruction. 5291 MVT InterSubVT = VecVT; 5292 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5293 InterSubVT = getLMUL1VT(VecVT); 5294 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5295 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5296 } 5297 5298 // Slide this vector register down by the desired number of elements in order 5299 // to place the desired subvector starting at element 0. 5300 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5301 // For scalable vectors this must be further multiplied by vscale. 5302 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5303 5304 SDValue Mask, VL; 5305 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5306 SDValue Slidedown = 5307 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5308 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5309 5310 // Now the vector is in the right position, extract our final subvector. This 5311 // should resolve to a COPY. 5312 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5313 DAG.getConstant(0, DL, XLenVT)); 5314 5315 // We might have bitcast from a mask type: cast back to the original type if 5316 // required. 5317 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5318 } 5319 5320 // Lower step_vector to the vid instruction. Any non-identity step value must 5321 // be accounted for my manual expansion. 5322 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5323 SelectionDAG &DAG) const { 5324 SDLoc DL(Op); 5325 MVT VT = Op.getSimpleValueType(); 5326 MVT XLenVT = Subtarget.getXLenVT(); 5327 SDValue Mask, VL; 5328 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5329 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5330 uint64_t StepValImm = Op.getConstantOperandVal(0); 5331 if (StepValImm != 1) { 5332 if (isPowerOf2_64(StepValImm)) { 5333 SDValue StepVal = 5334 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 5335 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5336 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5337 } else { 5338 SDValue StepVal = lowerScalarSplat( 5339 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 5340 DL, DAG, Subtarget); 5341 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5342 } 5343 } 5344 return StepVec; 5345 } 5346 5347 // Implement vector_reverse using vrgather.vv with indices determined by 5348 // subtracting the id of each element from (VLMAX-1). This will convert 5349 // the indices like so: 5350 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5351 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5352 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5353 SelectionDAG &DAG) const { 5354 SDLoc DL(Op); 5355 MVT VecVT = Op.getSimpleValueType(); 5356 unsigned EltSize = VecVT.getScalarSizeInBits(); 5357 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5358 5359 unsigned MaxVLMAX = 0; 5360 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5361 if (VectorBitsMax != 0) 5362 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 5363 5364 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5365 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5366 5367 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5368 // to use vrgatherei16.vv. 5369 // TODO: It's also possible to use vrgatherei16.vv for other types to 5370 // decrease register width for the index calculation. 5371 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5372 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5373 // Reverse each half, then reassemble them in reverse order. 5374 // NOTE: It's also possible that after splitting that VLMAX no longer 5375 // requires vrgatherei16.vv. 5376 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5377 SDValue Lo, Hi; 5378 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5379 EVT LoVT, HiVT; 5380 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5381 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5382 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5383 // Reassemble the low and high pieces reversed. 5384 // FIXME: This is a CONCAT_VECTORS. 5385 SDValue Res = 5386 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5387 DAG.getIntPtrConstant(0, DL)); 5388 return DAG.getNode( 5389 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5390 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5391 } 5392 5393 // Just promote the int type to i16 which will double the LMUL. 5394 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5395 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5396 } 5397 5398 MVT XLenVT = Subtarget.getXLenVT(); 5399 SDValue Mask, VL; 5400 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5401 5402 // Calculate VLMAX-1 for the desired SEW. 5403 unsigned MinElts = VecVT.getVectorMinNumElements(); 5404 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5405 DAG.getConstant(MinElts, DL, XLenVT)); 5406 SDValue VLMinus1 = 5407 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5408 5409 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5410 bool IsRV32E64 = 5411 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5412 SDValue SplatVL; 5413 if (!IsRV32E64) 5414 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5415 else 5416 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 5417 5418 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5419 SDValue Indices = 5420 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5421 5422 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5423 } 5424 5425 SDValue 5426 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5427 SelectionDAG &DAG) const { 5428 SDLoc DL(Op); 5429 auto *Load = cast<LoadSDNode>(Op); 5430 5431 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5432 Load->getMemoryVT(), 5433 *Load->getMemOperand()) && 5434 "Expecting a correctly-aligned load"); 5435 5436 MVT VT = Op.getSimpleValueType(); 5437 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5438 5439 SDValue VL = 5440 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5441 5442 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5443 SDValue NewLoad = DAG.getMemIntrinsicNode( 5444 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5445 Load->getMemoryVT(), Load->getMemOperand()); 5446 5447 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5448 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5449 } 5450 5451 SDValue 5452 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5453 SelectionDAG &DAG) const { 5454 SDLoc DL(Op); 5455 auto *Store = cast<StoreSDNode>(Op); 5456 5457 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5458 Store->getMemoryVT(), 5459 *Store->getMemOperand()) && 5460 "Expecting a correctly-aligned store"); 5461 5462 SDValue StoreVal = Store->getValue(); 5463 MVT VT = StoreVal.getSimpleValueType(); 5464 5465 // If the size less than a byte, we need to pad with zeros to make a byte. 5466 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5467 VT = MVT::v8i1; 5468 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5469 DAG.getConstant(0, DL, VT), StoreVal, 5470 DAG.getIntPtrConstant(0, DL)); 5471 } 5472 5473 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5474 5475 SDValue VL = 5476 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5477 5478 SDValue NewValue = 5479 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5480 return DAG.getMemIntrinsicNode( 5481 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5482 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5483 Store->getMemoryVT(), Store->getMemOperand()); 5484 } 5485 5486 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5487 SelectionDAG &DAG) const { 5488 SDLoc DL(Op); 5489 MVT VT = Op.getSimpleValueType(); 5490 5491 const auto *MemSD = cast<MemSDNode>(Op); 5492 EVT MemVT = MemSD->getMemoryVT(); 5493 MachineMemOperand *MMO = MemSD->getMemOperand(); 5494 SDValue Chain = MemSD->getChain(); 5495 SDValue BasePtr = MemSD->getBasePtr(); 5496 5497 SDValue Mask, PassThru, VL; 5498 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5499 Mask = VPLoad->getMask(); 5500 PassThru = DAG.getUNDEF(VT); 5501 VL = VPLoad->getVectorLength(); 5502 } else { 5503 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5504 Mask = MLoad->getMask(); 5505 PassThru = MLoad->getPassThru(); 5506 } 5507 5508 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5509 5510 MVT XLenVT = Subtarget.getXLenVT(); 5511 5512 MVT ContainerVT = VT; 5513 if (VT.isFixedLengthVector()) { 5514 ContainerVT = getContainerForFixedLengthVector(VT); 5515 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5516 if (!IsUnmasked) { 5517 MVT MaskVT = 5518 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5519 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5520 } 5521 } 5522 5523 if (!VL) 5524 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5525 5526 unsigned IntID = 5527 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5528 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5529 if (IsUnmasked) 5530 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5531 else 5532 Ops.push_back(PassThru); 5533 Ops.push_back(BasePtr); 5534 if (!IsUnmasked) 5535 Ops.push_back(Mask); 5536 Ops.push_back(VL); 5537 if (!IsUnmasked) 5538 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5539 5540 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5541 5542 SDValue Result = 5543 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5544 Chain = Result.getValue(1); 5545 5546 if (VT.isFixedLengthVector()) 5547 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5548 5549 return DAG.getMergeValues({Result, Chain}, DL); 5550 } 5551 5552 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5553 SelectionDAG &DAG) const { 5554 SDLoc DL(Op); 5555 5556 const auto *MemSD = cast<MemSDNode>(Op); 5557 EVT MemVT = MemSD->getMemoryVT(); 5558 MachineMemOperand *MMO = MemSD->getMemOperand(); 5559 SDValue Chain = MemSD->getChain(); 5560 SDValue BasePtr = MemSD->getBasePtr(); 5561 SDValue Val, Mask, VL; 5562 5563 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5564 Val = VPStore->getValue(); 5565 Mask = VPStore->getMask(); 5566 VL = VPStore->getVectorLength(); 5567 } else { 5568 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5569 Val = MStore->getValue(); 5570 Mask = MStore->getMask(); 5571 } 5572 5573 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5574 5575 MVT VT = Val.getSimpleValueType(); 5576 MVT XLenVT = Subtarget.getXLenVT(); 5577 5578 MVT ContainerVT = VT; 5579 if (VT.isFixedLengthVector()) { 5580 ContainerVT = getContainerForFixedLengthVector(VT); 5581 5582 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5583 if (!IsUnmasked) { 5584 MVT MaskVT = 5585 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5586 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5587 } 5588 } 5589 5590 if (!VL) 5591 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5592 5593 unsigned IntID = 5594 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5595 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5596 Ops.push_back(Val); 5597 Ops.push_back(BasePtr); 5598 if (!IsUnmasked) 5599 Ops.push_back(Mask); 5600 Ops.push_back(VL); 5601 5602 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5603 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5604 } 5605 5606 SDValue 5607 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5608 SelectionDAG &DAG) const { 5609 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5610 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5611 5612 MVT VT = Op.getSimpleValueType(); 5613 5614 SDValue Op1 = 5615 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5616 SDValue Op2 = 5617 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5618 5619 SDLoc DL(Op); 5620 SDValue VL = 5621 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5622 5623 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5624 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5625 5626 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5627 Op.getOperand(2), Mask, VL); 5628 5629 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5630 } 5631 5632 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5633 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5634 MVT VT = Op.getSimpleValueType(); 5635 5636 if (VT.getVectorElementType() == MVT::i1) 5637 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5638 5639 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5640 } 5641 5642 SDValue 5643 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5644 SelectionDAG &DAG) const { 5645 unsigned Opc; 5646 switch (Op.getOpcode()) { 5647 default: llvm_unreachable("Unexpected opcode!"); 5648 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5649 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5650 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5651 } 5652 5653 return lowerToScalableOp(Op, DAG, Opc); 5654 } 5655 5656 // Lower vector ABS to smax(X, sub(0, X)). 5657 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5658 SDLoc DL(Op); 5659 MVT VT = Op.getSimpleValueType(); 5660 SDValue X = Op.getOperand(0); 5661 5662 assert(VT.isFixedLengthVector() && "Unexpected type"); 5663 5664 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5665 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5666 5667 SDValue Mask, VL; 5668 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5669 5670 SDValue SplatZero = 5671 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5672 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5673 SDValue NegX = 5674 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5675 SDValue Max = 5676 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5677 5678 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5679 } 5680 5681 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5682 SDValue Op, SelectionDAG &DAG) const { 5683 SDLoc DL(Op); 5684 MVT VT = Op.getSimpleValueType(); 5685 SDValue Mag = Op.getOperand(0); 5686 SDValue Sign = Op.getOperand(1); 5687 assert(Mag.getValueType() == Sign.getValueType() && 5688 "Can only handle COPYSIGN with matching types."); 5689 5690 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5691 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5692 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5693 5694 SDValue Mask, VL; 5695 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5696 5697 SDValue CopySign = 5698 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5699 5700 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5701 } 5702 5703 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5704 SDValue Op, SelectionDAG &DAG) const { 5705 MVT VT = Op.getSimpleValueType(); 5706 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5707 5708 MVT I1ContainerVT = 5709 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5710 5711 SDValue CC = 5712 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5713 SDValue Op1 = 5714 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5715 SDValue Op2 = 5716 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5717 5718 SDLoc DL(Op); 5719 SDValue Mask, VL; 5720 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5721 5722 SDValue Select = 5723 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5724 5725 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5726 } 5727 5728 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5729 unsigned NewOpc, 5730 bool HasMask) const { 5731 MVT VT = Op.getSimpleValueType(); 5732 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5733 5734 // Create list of operands by converting existing ones to scalable types. 5735 SmallVector<SDValue, 6> Ops; 5736 for (const SDValue &V : Op->op_values()) { 5737 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5738 5739 // Pass through non-vector operands. 5740 if (!V.getValueType().isVector()) { 5741 Ops.push_back(V); 5742 continue; 5743 } 5744 5745 // "cast" fixed length vector to a scalable vector. 5746 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5747 "Only fixed length vectors are supported!"); 5748 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5749 } 5750 5751 SDLoc DL(Op); 5752 SDValue Mask, VL; 5753 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5754 if (HasMask) 5755 Ops.push_back(Mask); 5756 Ops.push_back(VL); 5757 5758 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5759 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5760 } 5761 5762 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5763 // * Operands of each node are assumed to be in the same order. 5764 // * The EVL operand is promoted from i32 to i64 on RV64. 5765 // * Fixed-length vectors are converted to their scalable-vector container 5766 // types. 5767 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5768 unsigned RISCVISDOpc) const { 5769 SDLoc DL(Op); 5770 MVT VT = Op.getSimpleValueType(); 5771 SmallVector<SDValue, 4> Ops; 5772 5773 for (const auto &OpIdx : enumerate(Op->ops())) { 5774 SDValue V = OpIdx.value(); 5775 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5776 // Pass through operands which aren't fixed-length vectors. 5777 if (!V.getValueType().isFixedLengthVector()) { 5778 Ops.push_back(V); 5779 continue; 5780 } 5781 // "cast" fixed length vector to a scalable vector. 5782 MVT OpVT = V.getSimpleValueType(); 5783 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5784 assert(useRVVForFixedLengthVectorVT(OpVT) && 5785 "Only fixed length vectors are supported!"); 5786 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5787 } 5788 5789 if (!VT.isFixedLengthVector()) 5790 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5791 5792 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5793 5794 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5795 5796 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5797 } 5798 5799 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 5800 unsigned MaskOpc, 5801 unsigned VecOpc) const { 5802 MVT VT = Op.getSimpleValueType(); 5803 if (VT.getVectorElementType() != MVT::i1) 5804 return lowerVPOp(Op, DAG, VecOpc); 5805 5806 // It is safe to drop mask parameter as masked-off elements are undef. 5807 SDValue Op1 = Op->getOperand(0); 5808 SDValue Op2 = Op->getOperand(1); 5809 SDValue VL = Op->getOperand(3); 5810 5811 MVT ContainerVT = VT; 5812 const bool IsFixed = VT.isFixedLengthVector(); 5813 if (IsFixed) { 5814 ContainerVT = getContainerForFixedLengthVector(VT); 5815 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 5816 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 5817 } 5818 5819 SDLoc DL(Op); 5820 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 5821 if (!IsFixed) 5822 return Val; 5823 return convertFromScalableVector(VT, Val, DAG, Subtarget); 5824 } 5825 5826 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5827 // matched to a RVV indexed load. The RVV indexed load instructions only 5828 // support the "unsigned unscaled" addressing mode; indices are implicitly 5829 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5830 // signed or scaled indexing is extended to the XLEN value type and scaled 5831 // accordingly. 5832 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5833 SelectionDAG &DAG) const { 5834 SDLoc DL(Op); 5835 MVT VT = Op.getSimpleValueType(); 5836 5837 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5838 EVT MemVT = MemSD->getMemoryVT(); 5839 MachineMemOperand *MMO = MemSD->getMemOperand(); 5840 SDValue Chain = MemSD->getChain(); 5841 SDValue BasePtr = MemSD->getBasePtr(); 5842 5843 ISD::LoadExtType LoadExtType; 5844 SDValue Index, Mask, PassThru, VL; 5845 5846 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5847 Index = VPGN->getIndex(); 5848 Mask = VPGN->getMask(); 5849 PassThru = DAG.getUNDEF(VT); 5850 VL = VPGN->getVectorLength(); 5851 // VP doesn't support extending loads. 5852 LoadExtType = ISD::NON_EXTLOAD; 5853 } else { 5854 // Else it must be a MGATHER. 5855 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5856 Index = MGN->getIndex(); 5857 Mask = MGN->getMask(); 5858 PassThru = MGN->getPassThru(); 5859 LoadExtType = MGN->getExtensionType(); 5860 } 5861 5862 MVT IndexVT = Index.getSimpleValueType(); 5863 MVT XLenVT = Subtarget.getXLenVT(); 5864 5865 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5866 "Unexpected VTs!"); 5867 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5868 // Targets have to explicitly opt-in for extending vector loads. 5869 assert(LoadExtType == ISD::NON_EXTLOAD && 5870 "Unexpected extending MGATHER/VP_GATHER"); 5871 (void)LoadExtType; 5872 5873 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5874 // the selection of the masked intrinsics doesn't do this for us. 5875 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5876 5877 MVT ContainerVT = VT; 5878 if (VT.isFixedLengthVector()) { 5879 // We need to use the larger of the result and index type to determine the 5880 // scalable type to use so we don't increase LMUL for any operand/result. 5881 if (VT.bitsGE(IndexVT)) { 5882 ContainerVT = getContainerForFixedLengthVector(VT); 5883 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5884 ContainerVT.getVectorElementCount()); 5885 } else { 5886 IndexVT = getContainerForFixedLengthVector(IndexVT); 5887 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5888 IndexVT.getVectorElementCount()); 5889 } 5890 5891 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5892 5893 if (!IsUnmasked) { 5894 MVT MaskVT = 5895 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5896 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5897 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5898 } 5899 } 5900 5901 if (!VL) 5902 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5903 5904 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5905 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5906 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 5907 VL); 5908 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 5909 TrueMask, VL); 5910 } 5911 5912 unsigned IntID = 5913 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5914 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5915 if (IsUnmasked) 5916 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5917 else 5918 Ops.push_back(PassThru); 5919 Ops.push_back(BasePtr); 5920 Ops.push_back(Index); 5921 if (!IsUnmasked) 5922 Ops.push_back(Mask); 5923 Ops.push_back(VL); 5924 if (!IsUnmasked) 5925 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5926 5927 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5928 SDValue Result = 5929 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5930 Chain = Result.getValue(1); 5931 5932 if (VT.isFixedLengthVector()) 5933 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5934 5935 return DAG.getMergeValues({Result, Chain}, DL); 5936 } 5937 5938 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5939 // matched to a RVV indexed store. The RVV indexed store instructions only 5940 // support the "unsigned unscaled" addressing mode; indices are implicitly 5941 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5942 // signed or scaled indexing is extended to the XLEN value type and scaled 5943 // accordingly. 5944 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5945 SelectionDAG &DAG) const { 5946 SDLoc DL(Op); 5947 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5948 EVT MemVT = MemSD->getMemoryVT(); 5949 MachineMemOperand *MMO = MemSD->getMemOperand(); 5950 SDValue Chain = MemSD->getChain(); 5951 SDValue BasePtr = MemSD->getBasePtr(); 5952 5953 bool IsTruncatingStore = false; 5954 SDValue Index, Mask, Val, VL; 5955 5956 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5957 Index = VPSN->getIndex(); 5958 Mask = VPSN->getMask(); 5959 Val = VPSN->getValue(); 5960 VL = VPSN->getVectorLength(); 5961 // VP doesn't support truncating stores. 5962 IsTruncatingStore = false; 5963 } else { 5964 // Else it must be a MSCATTER. 5965 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5966 Index = MSN->getIndex(); 5967 Mask = MSN->getMask(); 5968 Val = MSN->getValue(); 5969 IsTruncatingStore = MSN->isTruncatingStore(); 5970 } 5971 5972 MVT VT = Val.getSimpleValueType(); 5973 MVT IndexVT = Index.getSimpleValueType(); 5974 MVT XLenVT = Subtarget.getXLenVT(); 5975 5976 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5977 "Unexpected VTs!"); 5978 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5979 // Targets have to explicitly opt-in for extending vector loads and 5980 // truncating vector stores. 5981 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5982 (void)IsTruncatingStore; 5983 5984 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5985 // the selection of the masked intrinsics doesn't do this for us. 5986 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5987 5988 MVT ContainerVT = VT; 5989 if (VT.isFixedLengthVector()) { 5990 // We need to use the larger of the value and index type to determine the 5991 // scalable type to use so we don't increase LMUL for any operand/result. 5992 if (VT.bitsGE(IndexVT)) { 5993 ContainerVT = getContainerForFixedLengthVector(VT); 5994 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5995 ContainerVT.getVectorElementCount()); 5996 } else { 5997 IndexVT = getContainerForFixedLengthVector(IndexVT); 5998 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5999 IndexVT.getVectorElementCount()); 6000 } 6001 6002 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6003 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6004 6005 if (!IsUnmasked) { 6006 MVT MaskVT = 6007 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6008 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6009 } 6010 } 6011 6012 if (!VL) 6013 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6014 6015 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6016 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6017 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6018 VL); 6019 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6020 TrueMask, VL); 6021 } 6022 6023 unsigned IntID = 6024 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6025 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6026 Ops.push_back(Val); 6027 Ops.push_back(BasePtr); 6028 Ops.push_back(Index); 6029 if (!IsUnmasked) 6030 Ops.push_back(Mask); 6031 Ops.push_back(VL); 6032 6033 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6034 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6035 } 6036 6037 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6038 SelectionDAG &DAG) const { 6039 const MVT XLenVT = Subtarget.getXLenVT(); 6040 SDLoc DL(Op); 6041 SDValue Chain = Op->getOperand(0); 6042 SDValue SysRegNo = DAG.getTargetConstant( 6043 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6044 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6045 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6046 6047 // Encoding used for rounding mode in RISCV differs from that used in 6048 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6049 // table, which consists of a sequence of 4-bit fields, each representing 6050 // corresponding FLT_ROUNDS mode. 6051 static const int Table = 6052 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6053 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6054 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6055 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6056 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6057 6058 SDValue Shift = 6059 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6060 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6061 DAG.getConstant(Table, DL, XLenVT), Shift); 6062 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6063 DAG.getConstant(7, DL, XLenVT)); 6064 6065 return DAG.getMergeValues({Masked, Chain}, DL); 6066 } 6067 6068 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6069 SelectionDAG &DAG) const { 6070 const MVT XLenVT = Subtarget.getXLenVT(); 6071 SDLoc DL(Op); 6072 SDValue Chain = Op->getOperand(0); 6073 SDValue RMValue = Op->getOperand(1); 6074 SDValue SysRegNo = DAG.getTargetConstant( 6075 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6076 6077 // Encoding used for rounding mode in RISCV differs from that used in 6078 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6079 // a table, which consists of a sequence of 4-bit fields, each representing 6080 // corresponding RISCV mode. 6081 static const unsigned Table = 6082 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6083 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6084 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6085 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6086 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6087 6088 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6089 DAG.getConstant(2, DL, XLenVT)); 6090 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6091 DAG.getConstant(Table, DL, XLenVT), Shift); 6092 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6093 DAG.getConstant(0x7, DL, XLenVT)); 6094 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6095 RMValue); 6096 } 6097 6098 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6099 switch (IntNo) { 6100 default: 6101 llvm_unreachable("Unexpected Intrinsic"); 6102 case Intrinsic::riscv_grev: 6103 return RISCVISD::GREVW; 6104 case Intrinsic::riscv_gorc: 6105 return RISCVISD::GORCW; 6106 case Intrinsic::riscv_bcompress: 6107 return RISCVISD::BCOMPRESSW; 6108 case Intrinsic::riscv_bdecompress: 6109 return RISCVISD::BDECOMPRESSW; 6110 case Intrinsic::riscv_bfp: 6111 return RISCVISD::BFPW; 6112 case Intrinsic::riscv_fsl: 6113 return RISCVISD::FSLW; 6114 case Intrinsic::riscv_fsr: 6115 return RISCVISD::FSRW; 6116 } 6117 } 6118 6119 // Converts the given intrinsic to a i64 operation with any extension. 6120 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6121 unsigned IntNo) { 6122 SDLoc DL(N); 6123 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6124 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6125 SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6126 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); 6127 // ReplaceNodeResults requires we maintain the same type for the return value. 6128 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6129 } 6130 6131 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6132 // form of the given Opcode. 6133 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6134 switch (Opcode) { 6135 default: 6136 llvm_unreachable("Unexpected opcode"); 6137 case ISD::SHL: 6138 return RISCVISD::SLLW; 6139 case ISD::SRA: 6140 return RISCVISD::SRAW; 6141 case ISD::SRL: 6142 return RISCVISD::SRLW; 6143 case ISD::SDIV: 6144 return RISCVISD::DIVW; 6145 case ISD::UDIV: 6146 return RISCVISD::DIVUW; 6147 case ISD::UREM: 6148 return RISCVISD::REMUW; 6149 case ISD::ROTL: 6150 return RISCVISD::ROLW; 6151 case ISD::ROTR: 6152 return RISCVISD::RORW; 6153 case RISCVISD::GREV: 6154 return RISCVISD::GREVW; 6155 case RISCVISD::GORC: 6156 return RISCVISD::GORCW; 6157 } 6158 } 6159 6160 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6161 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6162 // otherwise be promoted to i64, making it difficult to select the 6163 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6164 // type i8/i16/i32 is lost. 6165 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6166 unsigned ExtOpc = ISD::ANY_EXTEND) { 6167 SDLoc DL(N); 6168 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6169 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6170 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6171 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6172 // ReplaceNodeResults requires we maintain the same type for the return value. 6173 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6174 } 6175 6176 // Converts the given 32-bit operation to a i64 operation with signed extension 6177 // semantic to reduce the signed extension instructions. 6178 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6179 SDLoc DL(N); 6180 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6181 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6182 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6183 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6184 DAG.getValueType(MVT::i32)); 6185 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6186 } 6187 6188 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6189 SmallVectorImpl<SDValue> &Results, 6190 SelectionDAG &DAG) const { 6191 SDLoc DL(N); 6192 switch (N->getOpcode()) { 6193 default: 6194 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6195 case ISD::STRICT_FP_TO_SINT: 6196 case ISD::STRICT_FP_TO_UINT: 6197 case ISD::FP_TO_SINT: 6198 case ISD::FP_TO_UINT: { 6199 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6200 "Unexpected custom legalisation"); 6201 bool IsStrict = N->isStrictFPOpcode(); 6202 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6203 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6204 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6205 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6206 TargetLowering::TypeSoftenFloat) { 6207 if (!isTypeLegal(Op0.getValueType())) 6208 return; 6209 if (IsStrict) { 6210 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6211 : RISCVISD::STRICT_FCVT_WU_RV64; 6212 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6213 SDValue Res = DAG.getNode( 6214 Opc, DL, VTs, N->getOperand(0), Op0, 6215 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6216 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6217 Results.push_back(Res.getValue(1)); 6218 return; 6219 } 6220 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6221 SDValue Res = 6222 DAG.getNode(Opc, DL, MVT::i64, Op0, 6223 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6224 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6225 return; 6226 } 6227 // If the FP type needs to be softened, emit a library call using the 'si' 6228 // version. If we left it to default legalization we'd end up with 'di'. If 6229 // the FP type doesn't need to be softened just let generic type 6230 // legalization promote the result type. 6231 RTLIB::Libcall LC; 6232 if (IsSigned) 6233 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6234 else 6235 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6236 MakeLibCallOptions CallOptions; 6237 EVT OpVT = Op0.getValueType(); 6238 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6239 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6240 SDValue Result; 6241 std::tie(Result, Chain) = 6242 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6243 Results.push_back(Result); 6244 if (IsStrict) 6245 Results.push_back(Chain); 6246 break; 6247 } 6248 case ISD::READCYCLECOUNTER: { 6249 assert(!Subtarget.is64Bit() && 6250 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6251 6252 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6253 SDValue RCW = 6254 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6255 6256 Results.push_back( 6257 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6258 Results.push_back(RCW.getValue(2)); 6259 break; 6260 } 6261 case ISD::MUL: { 6262 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6263 unsigned XLen = Subtarget.getXLen(); 6264 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6265 if (Size > XLen) { 6266 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6267 SDValue LHS = N->getOperand(0); 6268 SDValue RHS = N->getOperand(1); 6269 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6270 6271 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6272 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6273 // We need exactly one side to be unsigned. 6274 if (LHSIsU == RHSIsU) 6275 return; 6276 6277 auto MakeMULPair = [&](SDValue S, SDValue U) { 6278 MVT XLenVT = Subtarget.getXLenVT(); 6279 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6280 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6281 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6282 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6283 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6284 }; 6285 6286 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6287 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6288 6289 // The other operand should be signed, but still prefer MULH when 6290 // possible. 6291 if (RHSIsU && LHSIsS && !RHSIsS) 6292 Results.push_back(MakeMULPair(LHS, RHS)); 6293 else if (LHSIsU && RHSIsS && !LHSIsS) 6294 Results.push_back(MakeMULPair(RHS, LHS)); 6295 6296 return; 6297 } 6298 LLVM_FALLTHROUGH; 6299 } 6300 case ISD::ADD: 6301 case ISD::SUB: 6302 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6303 "Unexpected custom legalisation"); 6304 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6305 break; 6306 case ISD::SHL: 6307 case ISD::SRA: 6308 case ISD::SRL: 6309 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6310 "Unexpected custom legalisation"); 6311 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6312 Results.push_back(customLegalizeToWOp(N, DAG)); 6313 break; 6314 } 6315 6316 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6317 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6318 // shift amount. 6319 if (N->getOpcode() == ISD::SHL) { 6320 SDLoc DL(N); 6321 SDValue NewOp0 = 6322 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6323 SDValue NewOp1 = 6324 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6325 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6326 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6327 DAG.getValueType(MVT::i32)); 6328 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6329 } 6330 6331 break; 6332 case ISD::ROTL: 6333 case ISD::ROTR: 6334 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6335 "Unexpected custom legalisation"); 6336 Results.push_back(customLegalizeToWOp(N, DAG)); 6337 break; 6338 case ISD::CTTZ: 6339 case ISD::CTTZ_ZERO_UNDEF: 6340 case ISD::CTLZ: 6341 case ISD::CTLZ_ZERO_UNDEF: { 6342 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6343 "Unexpected custom legalisation"); 6344 6345 SDValue NewOp0 = 6346 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6347 bool IsCTZ = 6348 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6349 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6350 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6351 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6352 return; 6353 } 6354 case ISD::SDIV: 6355 case ISD::UDIV: 6356 case ISD::UREM: { 6357 MVT VT = N->getSimpleValueType(0); 6358 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6359 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6360 "Unexpected custom legalisation"); 6361 // Don't promote division/remainder by constant since we should expand those 6362 // to multiply by magic constant. 6363 // FIXME: What if the expansion is disabled for minsize. 6364 if (N->getOperand(1).getOpcode() == ISD::Constant) 6365 return; 6366 6367 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6368 // the upper 32 bits. For other types we need to sign or zero extend 6369 // based on the opcode. 6370 unsigned ExtOpc = ISD::ANY_EXTEND; 6371 if (VT != MVT::i32) 6372 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6373 : ISD::ZERO_EXTEND; 6374 6375 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6376 break; 6377 } 6378 case ISD::UADDO: 6379 case ISD::USUBO: { 6380 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6381 "Unexpected custom legalisation"); 6382 bool IsAdd = N->getOpcode() == ISD::UADDO; 6383 // Create an ADDW or SUBW. 6384 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6385 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6386 SDValue Res = 6387 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6388 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6389 DAG.getValueType(MVT::i32)); 6390 6391 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6392 // Since the inputs are sign extended from i32, this is equivalent to 6393 // comparing the lower 32 bits. 6394 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6395 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6396 IsAdd ? ISD::SETULT : ISD::SETUGT); 6397 6398 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6399 Results.push_back(Overflow); 6400 return; 6401 } 6402 case ISD::UADDSAT: 6403 case ISD::USUBSAT: { 6404 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6405 "Unexpected custom legalisation"); 6406 if (Subtarget.hasStdExtZbb()) { 6407 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6408 // sign extend allows overflow of the lower 32 bits to be detected on 6409 // the promoted size. 6410 SDValue LHS = 6411 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6412 SDValue RHS = 6413 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6414 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6415 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6416 return; 6417 } 6418 6419 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6420 // promotion for UADDO/USUBO. 6421 Results.push_back(expandAddSubSat(N, DAG)); 6422 return; 6423 } 6424 case ISD::BITCAST: { 6425 EVT VT = N->getValueType(0); 6426 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6427 SDValue Op0 = N->getOperand(0); 6428 EVT Op0VT = Op0.getValueType(); 6429 MVT XLenVT = Subtarget.getXLenVT(); 6430 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6431 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6432 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6433 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6434 Subtarget.hasStdExtF()) { 6435 SDValue FPConv = 6436 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6437 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6438 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6439 isTypeLegal(Op0VT)) { 6440 // Custom-legalize bitcasts from fixed-length vector types to illegal 6441 // scalar types in order to improve codegen. Bitcast the vector to a 6442 // one-element vector type whose element type is the same as the result 6443 // type, and extract the first element. 6444 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6445 if (isTypeLegal(BVT)) { 6446 SDValue BVec = DAG.getBitcast(BVT, Op0); 6447 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6448 DAG.getConstant(0, DL, XLenVT))); 6449 } 6450 } 6451 break; 6452 } 6453 case RISCVISD::GREV: 6454 case RISCVISD::GORC: { 6455 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6456 "Unexpected custom legalisation"); 6457 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6458 // This is similar to customLegalizeToWOp, except that we pass the second 6459 // operand (a TargetConstant) straight through: it is already of type 6460 // XLenVT. 6461 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6462 SDValue NewOp0 = 6463 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6464 SDValue NewOp1 = 6465 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6466 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6467 // ReplaceNodeResults requires we maintain the same type for the return 6468 // value. 6469 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6470 break; 6471 } 6472 case RISCVISD::SHFL: { 6473 // There is no SHFLIW instruction, but we can just promote the operation. 6474 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6475 "Unexpected custom legalisation"); 6476 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6477 SDValue NewOp0 = 6478 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6479 SDValue NewOp1 = 6480 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6481 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 6482 // ReplaceNodeResults requires we maintain the same type for the return 6483 // value. 6484 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6485 break; 6486 } 6487 case ISD::BSWAP: 6488 case ISD::BITREVERSE: { 6489 MVT VT = N->getSimpleValueType(0); 6490 MVT XLenVT = Subtarget.getXLenVT(); 6491 assert((VT == MVT::i8 || VT == MVT::i16 || 6492 (VT == MVT::i32 && Subtarget.is64Bit())) && 6493 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6494 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6495 unsigned Imm = VT.getSizeInBits() - 1; 6496 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6497 if (N->getOpcode() == ISD::BSWAP) 6498 Imm &= ~0x7U; 6499 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 6500 SDValue GREVI = 6501 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 6502 // ReplaceNodeResults requires we maintain the same type for the return 6503 // value. 6504 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6505 break; 6506 } 6507 case ISD::FSHL: 6508 case ISD::FSHR: { 6509 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6510 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6511 SDValue NewOp0 = 6512 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6513 SDValue NewOp1 = 6514 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6515 SDValue NewShAmt = 6516 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6517 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6518 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 6519 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 6520 DAG.getConstant(0x1f, DL, MVT::i64)); 6521 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 6522 // instruction use different orders. fshl will return its first operand for 6523 // shift of zero, fshr will return its second operand. fsl and fsr both 6524 // return rs1 so the ISD nodes need to have different operand orders. 6525 // Shift amount is in rs2. 6526 unsigned Opc = RISCVISD::FSLW; 6527 if (N->getOpcode() == ISD::FSHR) { 6528 std::swap(NewOp0, NewOp1); 6529 Opc = RISCVISD::FSRW; 6530 } 6531 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 6532 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6533 break; 6534 } 6535 case ISD::EXTRACT_VECTOR_ELT: { 6536 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6537 // type is illegal (currently only vXi64 RV32). 6538 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6539 // transferred to the destination register. We issue two of these from the 6540 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6541 // first element. 6542 SDValue Vec = N->getOperand(0); 6543 SDValue Idx = N->getOperand(1); 6544 6545 // The vector type hasn't been legalized yet so we can't issue target 6546 // specific nodes if it needs legalization. 6547 // FIXME: We would manually legalize if it's important. 6548 if (!isTypeLegal(Vec.getValueType())) 6549 return; 6550 6551 MVT VecVT = Vec.getSimpleValueType(); 6552 6553 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6554 VecVT.getVectorElementType() == MVT::i64 && 6555 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6556 6557 // If this is a fixed vector, we need to convert it to a scalable vector. 6558 MVT ContainerVT = VecVT; 6559 if (VecVT.isFixedLengthVector()) { 6560 ContainerVT = getContainerForFixedLengthVector(VecVT); 6561 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6562 } 6563 6564 MVT XLenVT = Subtarget.getXLenVT(); 6565 6566 // Use a VL of 1 to avoid processing more elements than we need. 6567 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6568 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6569 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6570 6571 // Unless the index is known to be 0, we must slide the vector down to get 6572 // the desired element into index 0. 6573 if (!isNullConstant(Idx)) { 6574 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6575 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6576 } 6577 6578 // Extract the lower XLEN bits of the correct vector element. 6579 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6580 6581 // To extract the upper XLEN bits of the vector element, shift the first 6582 // element right by 32 bits and re-extract the lower XLEN bits. 6583 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6584 DAG.getConstant(32, DL, XLenVT), VL); 6585 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6586 ThirtyTwoV, Mask, VL); 6587 6588 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6589 6590 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6591 break; 6592 } 6593 case ISD::INTRINSIC_WO_CHAIN: { 6594 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6595 switch (IntNo) { 6596 default: 6597 llvm_unreachable( 6598 "Don't know how to custom type legalize this intrinsic!"); 6599 case Intrinsic::riscv_grev: 6600 case Intrinsic::riscv_gorc: 6601 case Intrinsic::riscv_bcompress: 6602 case Intrinsic::riscv_bdecompress: 6603 case Intrinsic::riscv_bfp: { 6604 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6605 "Unexpected custom legalisation"); 6606 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 6607 break; 6608 } 6609 case Intrinsic::riscv_fsl: 6610 case Intrinsic::riscv_fsr: { 6611 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6612 "Unexpected custom legalisation"); 6613 SDValue NewOp1 = 6614 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6615 SDValue NewOp2 = 6616 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6617 SDValue NewOp3 = 6618 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)); 6619 unsigned Opc = getRISCVWOpcodeByIntr(IntNo); 6620 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3); 6621 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6622 break; 6623 } 6624 case Intrinsic::riscv_orc_b: { 6625 // Lower to the GORCI encoding for orc.b with the operand extended. 6626 SDValue NewOp = 6627 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6628 // If Zbp is enabled, use GORCIW which will sign extend the result. 6629 unsigned Opc = 6630 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6631 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6632 DAG.getConstant(7, DL, MVT::i64)); 6633 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6634 return; 6635 } 6636 case Intrinsic::riscv_shfl: 6637 case Intrinsic::riscv_unshfl: { 6638 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6639 "Unexpected custom legalisation"); 6640 SDValue NewOp1 = 6641 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6642 SDValue NewOp2 = 6643 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6644 unsigned Opc = 6645 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6646 // There is no (UN)SHFLIW. If the control word is a constant, we can use 6647 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 6648 // will be shuffled the same way as the lower 32 bit half, but the two 6649 // halves won't cross. 6650 if (isa<ConstantSDNode>(NewOp2)) { 6651 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6652 DAG.getConstant(0xf, DL, MVT::i64)); 6653 Opc = 6654 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6655 } 6656 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6657 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6658 break; 6659 } 6660 case Intrinsic::riscv_vmv_x_s: { 6661 EVT VT = N->getValueType(0); 6662 MVT XLenVT = Subtarget.getXLenVT(); 6663 if (VT.bitsLT(XLenVT)) { 6664 // Simple case just extract using vmv.x.s and truncate. 6665 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6666 Subtarget.getXLenVT(), N->getOperand(1)); 6667 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6668 return; 6669 } 6670 6671 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6672 "Unexpected custom legalization"); 6673 6674 // We need to do the move in two steps. 6675 SDValue Vec = N->getOperand(1); 6676 MVT VecVT = Vec.getSimpleValueType(); 6677 6678 // First extract the lower XLEN bits of the element. 6679 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6680 6681 // To extract the upper XLEN bits of the vector element, shift the first 6682 // element right by 32 bits and re-extract the lower XLEN bits. 6683 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6684 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6685 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6686 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6687 DAG.getConstant(32, DL, XLenVT), VL); 6688 SDValue LShr32 = 6689 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6690 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6691 6692 Results.push_back( 6693 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6694 break; 6695 } 6696 } 6697 break; 6698 } 6699 case ISD::VECREDUCE_ADD: 6700 case ISD::VECREDUCE_AND: 6701 case ISD::VECREDUCE_OR: 6702 case ISD::VECREDUCE_XOR: 6703 case ISD::VECREDUCE_SMAX: 6704 case ISD::VECREDUCE_UMAX: 6705 case ISD::VECREDUCE_SMIN: 6706 case ISD::VECREDUCE_UMIN: 6707 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6708 Results.push_back(V); 6709 break; 6710 case ISD::VP_REDUCE_ADD: 6711 case ISD::VP_REDUCE_AND: 6712 case ISD::VP_REDUCE_OR: 6713 case ISD::VP_REDUCE_XOR: 6714 case ISD::VP_REDUCE_SMAX: 6715 case ISD::VP_REDUCE_UMAX: 6716 case ISD::VP_REDUCE_SMIN: 6717 case ISD::VP_REDUCE_UMIN: 6718 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6719 Results.push_back(V); 6720 break; 6721 case ISD::FLT_ROUNDS_: { 6722 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6723 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6724 Results.push_back(Res.getValue(0)); 6725 Results.push_back(Res.getValue(1)); 6726 break; 6727 } 6728 } 6729 } 6730 6731 // A structure to hold one of the bit-manipulation patterns below. Together, a 6732 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6733 // (or (and (shl x, 1), 0xAAAAAAAA), 6734 // (and (srl x, 1), 0x55555555)) 6735 struct RISCVBitmanipPat { 6736 SDValue Op; 6737 unsigned ShAmt; 6738 bool IsSHL; 6739 6740 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6741 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6742 } 6743 }; 6744 6745 // Matches patterns of the form 6746 // (and (shl x, C2), (C1 << C2)) 6747 // (and (srl x, C2), C1) 6748 // (shl (and x, C1), C2) 6749 // (srl (and x, (C1 << C2)), C2) 6750 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6751 // The expected masks for each shift amount are specified in BitmanipMasks where 6752 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6753 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6754 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6755 // XLen is 64. 6756 static Optional<RISCVBitmanipPat> 6757 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6758 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6759 "Unexpected number of masks"); 6760 Optional<uint64_t> Mask; 6761 // Optionally consume a mask around the shift operation. 6762 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6763 Mask = Op.getConstantOperandVal(1); 6764 Op = Op.getOperand(0); 6765 } 6766 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6767 return None; 6768 bool IsSHL = Op.getOpcode() == ISD::SHL; 6769 6770 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6771 return None; 6772 uint64_t ShAmt = Op.getConstantOperandVal(1); 6773 6774 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6775 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6776 return None; 6777 // If we don't have enough masks for 64 bit, then we must be trying to 6778 // match SHFL so we're only allowed to shift 1/4 of the width. 6779 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6780 return None; 6781 6782 SDValue Src = Op.getOperand(0); 6783 6784 // The expected mask is shifted left when the AND is found around SHL 6785 // patterns. 6786 // ((x >> 1) & 0x55555555) 6787 // ((x << 1) & 0xAAAAAAAA) 6788 bool SHLExpMask = IsSHL; 6789 6790 if (!Mask) { 6791 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6792 // the mask is all ones: consume that now. 6793 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6794 Mask = Src.getConstantOperandVal(1); 6795 Src = Src.getOperand(0); 6796 // The expected mask is now in fact shifted left for SRL, so reverse the 6797 // decision. 6798 // ((x & 0xAAAAAAAA) >> 1) 6799 // ((x & 0x55555555) << 1) 6800 SHLExpMask = !SHLExpMask; 6801 } else { 6802 // Use a default shifted mask of all-ones if there's no AND, truncated 6803 // down to the expected width. This simplifies the logic later on. 6804 Mask = maskTrailingOnes<uint64_t>(Width); 6805 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6806 } 6807 } 6808 6809 unsigned MaskIdx = Log2_32(ShAmt); 6810 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6811 6812 if (SHLExpMask) 6813 ExpMask <<= ShAmt; 6814 6815 if (Mask != ExpMask) 6816 return None; 6817 6818 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6819 } 6820 6821 // Matches any of the following bit-manipulation patterns: 6822 // (and (shl x, 1), (0x55555555 << 1)) 6823 // (and (srl x, 1), 0x55555555) 6824 // (shl (and x, 0x55555555), 1) 6825 // (srl (and x, (0x55555555 << 1)), 1) 6826 // where the shift amount and mask may vary thus: 6827 // [1] = 0x55555555 / 0xAAAAAAAA 6828 // [2] = 0x33333333 / 0xCCCCCCCC 6829 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6830 // [8] = 0x00FF00FF / 0xFF00FF00 6831 // [16] = 0x0000FFFF / 0xFFFFFFFF 6832 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6833 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6834 // These are the unshifted masks which we use to match bit-manipulation 6835 // patterns. They may be shifted left in certain circumstances. 6836 static const uint64_t BitmanipMasks[] = { 6837 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6838 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6839 6840 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6841 } 6842 6843 // Match the following pattern as a GREVI(W) operation 6844 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6845 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6846 const RISCVSubtarget &Subtarget) { 6847 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6848 EVT VT = Op.getValueType(); 6849 6850 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6851 auto LHS = matchGREVIPat(Op.getOperand(0)); 6852 auto RHS = matchGREVIPat(Op.getOperand(1)); 6853 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6854 SDLoc DL(Op); 6855 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6856 DAG.getConstant(LHS->ShAmt, DL, VT)); 6857 } 6858 } 6859 return SDValue(); 6860 } 6861 6862 // Matches any the following pattern as a GORCI(W) operation 6863 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6864 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6865 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6866 // Note that with the variant of 3., 6867 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6868 // the inner pattern will first be matched as GREVI and then the outer 6869 // pattern will be matched to GORC via the first rule above. 6870 // 4. (or (rotl/rotr x, bitwidth/2), x) 6871 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6872 const RISCVSubtarget &Subtarget) { 6873 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6874 EVT VT = Op.getValueType(); 6875 6876 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6877 SDLoc DL(Op); 6878 SDValue Op0 = Op.getOperand(0); 6879 SDValue Op1 = Op.getOperand(1); 6880 6881 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6882 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6883 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6884 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6885 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6886 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6887 if ((Reverse.getOpcode() == ISD::ROTL || 6888 Reverse.getOpcode() == ISD::ROTR) && 6889 Reverse.getOperand(0) == X && 6890 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6891 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6892 if (RotAmt == (VT.getSizeInBits() / 2)) 6893 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6894 DAG.getConstant(RotAmt, DL, VT)); 6895 } 6896 return SDValue(); 6897 }; 6898 6899 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6900 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6901 return V; 6902 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6903 return V; 6904 6905 // OR is commutable so canonicalize its OR operand to the left 6906 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6907 std::swap(Op0, Op1); 6908 if (Op0.getOpcode() != ISD::OR) 6909 return SDValue(); 6910 SDValue OrOp0 = Op0.getOperand(0); 6911 SDValue OrOp1 = Op0.getOperand(1); 6912 auto LHS = matchGREVIPat(OrOp0); 6913 // OR is commutable so swap the operands and try again: x might have been 6914 // on the left 6915 if (!LHS) { 6916 std::swap(OrOp0, OrOp1); 6917 LHS = matchGREVIPat(OrOp0); 6918 } 6919 auto RHS = matchGREVIPat(Op1); 6920 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6921 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6922 DAG.getConstant(LHS->ShAmt, DL, VT)); 6923 } 6924 } 6925 return SDValue(); 6926 } 6927 6928 // Matches any of the following bit-manipulation patterns: 6929 // (and (shl x, 1), (0x22222222 << 1)) 6930 // (and (srl x, 1), 0x22222222) 6931 // (shl (and x, 0x22222222), 1) 6932 // (srl (and x, (0x22222222 << 1)), 1) 6933 // where the shift amount and mask may vary thus: 6934 // [1] = 0x22222222 / 0x44444444 6935 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6936 // [4] = 0x00F000F0 / 0x0F000F00 6937 // [8] = 0x0000FF00 / 0x00FF0000 6938 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6939 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6940 // These are the unshifted masks which we use to match bit-manipulation 6941 // patterns. They may be shifted left in certain circumstances. 6942 static const uint64_t BitmanipMasks[] = { 6943 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6944 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6945 6946 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6947 } 6948 6949 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6950 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6951 const RISCVSubtarget &Subtarget) { 6952 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6953 EVT VT = Op.getValueType(); 6954 6955 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6956 return SDValue(); 6957 6958 SDValue Op0 = Op.getOperand(0); 6959 SDValue Op1 = Op.getOperand(1); 6960 6961 // Or is commutable so canonicalize the second OR to the LHS. 6962 if (Op0.getOpcode() != ISD::OR) 6963 std::swap(Op0, Op1); 6964 if (Op0.getOpcode() != ISD::OR) 6965 return SDValue(); 6966 6967 // We found an inner OR, so our operands are the operands of the inner OR 6968 // and the other operand of the outer OR. 6969 SDValue A = Op0.getOperand(0); 6970 SDValue B = Op0.getOperand(1); 6971 SDValue C = Op1; 6972 6973 auto Match1 = matchSHFLPat(A); 6974 auto Match2 = matchSHFLPat(B); 6975 6976 // If neither matched, we failed. 6977 if (!Match1 && !Match2) 6978 return SDValue(); 6979 6980 // We had at least one match. if one failed, try the remaining C operand. 6981 if (!Match1) { 6982 std::swap(A, C); 6983 Match1 = matchSHFLPat(A); 6984 if (!Match1) 6985 return SDValue(); 6986 } else if (!Match2) { 6987 std::swap(B, C); 6988 Match2 = matchSHFLPat(B); 6989 if (!Match2) 6990 return SDValue(); 6991 } 6992 assert(Match1 && Match2); 6993 6994 // Make sure our matches pair up. 6995 if (!Match1->formsPairWith(*Match2)) 6996 return SDValue(); 6997 6998 // All the remains is to make sure C is an AND with the same input, that masks 6999 // out the bits that are being shuffled. 7000 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7001 C.getOperand(0) != Match1->Op) 7002 return SDValue(); 7003 7004 uint64_t Mask = C.getConstantOperandVal(1); 7005 7006 static const uint64_t BitmanipMasks[] = { 7007 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7008 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7009 }; 7010 7011 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7012 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7013 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7014 7015 if (Mask != ExpMask) 7016 return SDValue(); 7017 7018 SDLoc DL(Op); 7019 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7020 DAG.getConstant(Match1->ShAmt, DL, VT)); 7021 } 7022 7023 // Optimize (add (shl x, c0), (shl y, c1)) -> 7024 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7025 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7026 const RISCVSubtarget &Subtarget) { 7027 // Perform this optimization only in the zba extension. 7028 if (!Subtarget.hasStdExtZba()) 7029 return SDValue(); 7030 7031 // Skip for vector types and larger types. 7032 EVT VT = N->getValueType(0); 7033 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7034 return SDValue(); 7035 7036 // The two operand nodes must be SHL and have no other use. 7037 SDValue N0 = N->getOperand(0); 7038 SDValue N1 = N->getOperand(1); 7039 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7040 !N0->hasOneUse() || !N1->hasOneUse()) 7041 return SDValue(); 7042 7043 // Check c0 and c1. 7044 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7045 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7046 if (!N0C || !N1C) 7047 return SDValue(); 7048 int64_t C0 = N0C->getSExtValue(); 7049 int64_t C1 = N1C->getSExtValue(); 7050 if (C0 <= 0 || C1 <= 0) 7051 return SDValue(); 7052 7053 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7054 int64_t Bits = std::min(C0, C1); 7055 int64_t Diff = std::abs(C0 - C1); 7056 if (Diff != 1 && Diff != 2 && Diff != 3) 7057 return SDValue(); 7058 7059 // Build nodes. 7060 SDLoc DL(N); 7061 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7062 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7063 SDValue NA0 = 7064 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7065 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7066 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7067 } 7068 7069 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7070 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7071 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7072 // not undo itself, but they are redundant. 7073 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7074 SDValue Src = N->getOperand(0); 7075 7076 if (Src.getOpcode() != N->getOpcode()) 7077 return SDValue(); 7078 7079 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7080 !isa<ConstantSDNode>(Src.getOperand(1))) 7081 return SDValue(); 7082 7083 unsigned ShAmt1 = N->getConstantOperandVal(1); 7084 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7085 Src = Src.getOperand(0); 7086 7087 unsigned CombinedShAmt; 7088 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 7089 CombinedShAmt = ShAmt1 | ShAmt2; 7090 else 7091 CombinedShAmt = ShAmt1 ^ ShAmt2; 7092 7093 if (CombinedShAmt == 0) 7094 return Src; 7095 7096 SDLoc DL(N); 7097 return DAG.getNode( 7098 N->getOpcode(), DL, N->getValueType(0), Src, 7099 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7100 } 7101 7102 // Combine a constant select operand into its use: 7103 // 7104 // (and (select cond, -1, c), x) 7105 // -> (select cond, x, (and x, c)) [AllOnes=1] 7106 // (or (select cond, 0, c), x) 7107 // -> (select cond, x, (or x, c)) [AllOnes=0] 7108 // (xor (select cond, 0, c), x) 7109 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7110 // (add (select cond, 0, c), x) 7111 // -> (select cond, x, (add x, c)) [AllOnes=0] 7112 // (sub x, (select cond, 0, c)) 7113 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7114 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7115 SelectionDAG &DAG, bool AllOnes) { 7116 EVT VT = N->getValueType(0); 7117 7118 // Skip vectors. 7119 if (VT.isVector()) 7120 return SDValue(); 7121 7122 if ((Slct.getOpcode() != ISD::SELECT && 7123 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7124 !Slct.hasOneUse()) 7125 return SDValue(); 7126 7127 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7128 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7129 }; 7130 7131 bool SwapSelectOps; 7132 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7133 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7134 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7135 SDValue NonConstantVal; 7136 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7137 SwapSelectOps = false; 7138 NonConstantVal = FalseVal; 7139 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7140 SwapSelectOps = true; 7141 NonConstantVal = TrueVal; 7142 } else 7143 return SDValue(); 7144 7145 // Slct is now know to be the desired identity constant when CC is true. 7146 TrueVal = OtherOp; 7147 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7148 // Unless SwapSelectOps says the condition should be false. 7149 if (SwapSelectOps) 7150 std::swap(TrueVal, FalseVal); 7151 7152 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7153 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7154 {Slct.getOperand(0), Slct.getOperand(1), 7155 Slct.getOperand(2), TrueVal, FalseVal}); 7156 7157 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7158 {Slct.getOperand(0), TrueVal, FalseVal}); 7159 } 7160 7161 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7162 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7163 bool AllOnes) { 7164 SDValue N0 = N->getOperand(0); 7165 SDValue N1 = N->getOperand(1); 7166 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7167 return Result; 7168 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7169 return Result; 7170 return SDValue(); 7171 } 7172 7173 // Transform (add (mul x, c0), c1) -> 7174 // (add (mul (add x, c1/c0), c0), c1%c0). 7175 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7176 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7177 // to an infinite loop in DAGCombine if transformed. 7178 // Or transform (add (mul x, c0), c1) -> 7179 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7180 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7181 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7182 // lead to an infinite loop in DAGCombine if transformed. 7183 // Or transform (add (mul x, c0), c1) -> 7184 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7185 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7186 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7187 // lead to an infinite loop in DAGCombine if transformed. 7188 // Or transform (add (mul x, c0), c1) -> 7189 // (mul (add x, c1/c0), c0). 7190 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7191 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7192 const RISCVSubtarget &Subtarget) { 7193 // Skip for vector types and larger types. 7194 EVT VT = N->getValueType(0); 7195 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7196 return SDValue(); 7197 // The first operand node must be a MUL and has no other use. 7198 SDValue N0 = N->getOperand(0); 7199 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7200 return SDValue(); 7201 // Check if c0 and c1 match above conditions. 7202 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7203 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7204 if (!N0C || !N1C) 7205 return SDValue(); 7206 int64_t C0 = N0C->getSExtValue(); 7207 int64_t C1 = N1C->getSExtValue(); 7208 int64_t CA, CB; 7209 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7210 return SDValue(); 7211 // Search for proper CA (non-zero) and CB that both are simm12. 7212 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7213 !isInt<12>(C0 * (C1 / C0))) { 7214 CA = C1 / C0; 7215 CB = C1 % C0; 7216 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7217 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7218 CA = C1 / C0 + 1; 7219 CB = C1 % C0 - C0; 7220 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7221 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7222 CA = C1 / C0 - 1; 7223 CB = C1 % C0 + C0; 7224 } else 7225 return SDValue(); 7226 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7227 SDLoc DL(N); 7228 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7229 DAG.getConstant(CA, DL, VT)); 7230 SDValue New1 = 7231 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7232 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7233 } 7234 7235 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7236 const RISCVSubtarget &Subtarget) { 7237 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7238 return V; 7239 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7240 return V; 7241 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7242 // (select lhs, rhs, cc, x, (add x, y)) 7243 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7244 } 7245 7246 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7247 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7248 // (select lhs, rhs, cc, x, (sub x, y)) 7249 SDValue N0 = N->getOperand(0); 7250 SDValue N1 = N->getOperand(1); 7251 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7252 } 7253 7254 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7255 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7256 // (select lhs, rhs, cc, x, (and x, y)) 7257 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7258 } 7259 7260 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7261 const RISCVSubtarget &Subtarget) { 7262 if (Subtarget.hasStdExtZbp()) { 7263 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7264 return GREV; 7265 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7266 return GORC; 7267 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7268 return SHFL; 7269 } 7270 7271 // fold (or (select cond, 0, y), x) -> 7272 // (select cond, x, (or x, y)) 7273 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7274 } 7275 7276 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7277 // fold (xor (select cond, 0, y), x) -> 7278 // (select cond, x, (xor x, y)) 7279 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7280 } 7281 7282 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 7283 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 7284 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 7285 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 7286 // ADDW/SUBW/MULW. 7287 static SDValue performANY_EXTENDCombine(SDNode *N, 7288 TargetLowering::DAGCombinerInfo &DCI, 7289 const RISCVSubtarget &Subtarget) { 7290 if (!Subtarget.is64Bit()) 7291 return SDValue(); 7292 7293 SelectionDAG &DAG = DCI.DAG; 7294 7295 SDValue Src = N->getOperand(0); 7296 EVT VT = N->getValueType(0); 7297 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 7298 return SDValue(); 7299 7300 // The opcode must be one that can implicitly sign_extend. 7301 // FIXME: Additional opcodes. 7302 switch (Src.getOpcode()) { 7303 default: 7304 return SDValue(); 7305 case ISD::MUL: 7306 if (!Subtarget.hasStdExtM()) 7307 return SDValue(); 7308 LLVM_FALLTHROUGH; 7309 case ISD::ADD: 7310 case ISD::SUB: 7311 break; 7312 } 7313 7314 // Only handle cases where the result is used by a CopyToReg. That likely 7315 // means the value is a liveout of the basic block. This helps prevent 7316 // infinite combine loops like PR51206. 7317 if (none_of(N->uses(), 7318 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 7319 return SDValue(); 7320 7321 SmallVector<SDNode *, 4> SetCCs; 7322 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 7323 UE = Src.getNode()->use_end(); 7324 UI != UE; ++UI) { 7325 SDNode *User = *UI; 7326 if (User == N) 7327 continue; 7328 if (UI.getUse().getResNo() != Src.getResNo()) 7329 continue; 7330 // All i32 setccs are legalized by sign extending operands. 7331 if (User->getOpcode() == ISD::SETCC) { 7332 SetCCs.push_back(User); 7333 continue; 7334 } 7335 // We don't know if we can extend this user. 7336 break; 7337 } 7338 7339 // If we don't have any SetCCs, this isn't worthwhile. 7340 if (SetCCs.empty()) 7341 return SDValue(); 7342 7343 SDLoc DL(N); 7344 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 7345 DCI.CombineTo(N, SExt); 7346 7347 // Promote all the setccs. 7348 for (SDNode *SetCC : SetCCs) { 7349 SmallVector<SDValue, 4> Ops; 7350 7351 for (unsigned j = 0; j != 2; ++j) { 7352 SDValue SOp = SetCC->getOperand(j); 7353 if (SOp == Src) 7354 Ops.push_back(SExt); 7355 else 7356 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 7357 } 7358 7359 Ops.push_back(SetCC->getOperand(2)); 7360 DCI.CombineTo(SetCC, 7361 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 7362 } 7363 return SDValue(N, 0); 7364 } 7365 7366 // Try to form VWMUL, VWMULU or VWMULSU. 7367 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 7368 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 7369 bool Commute) { 7370 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7371 SDValue Op0 = N->getOperand(0); 7372 SDValue Op1 = N->getOperand(1); 7373 if (Commute) 7374 std::swap(Op0, Op1); 7375 7376 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7377 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7378 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 7379 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7380 return SDValue(); 7381 7382 SDValue Mask = N->getOperand(2); 7383 SDValue VL = N->getOperand(3); 7384 7385 // Make sure the mask and VL match. 7386 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 7387 return SDValue(); 7388 7389 MVT VT = N->getSimpleValueType(0); 7390 7391 // Determine the narrow size for a widening multiply. 7392 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7393 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7394 VT.getVectorElementCount()); 7395 7396 SDLoc DL(N); 7397 7398 // See if the other operand is the same opcode. 7399 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 7400 if (!Op1.hasOneUse()) 7401 return SDValue(); 7402 7403 // Make sure the mask and VL match. 7404 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 7405 return SDValue(); 7406 7407 Op1 = Op1.getOperand(0); 7408 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 7409 // The operand is a splat of a scalar. 7410 7411 // The VL must be the same. 7412 if (Op1.getOperand(1) != VL) 7413 return SDValue(); 7414 7415 // Get the scalar value. 7416 Op1 = Op1.getOperand(0); 7417 7418 // See if have enough sign bits or zero bits in the scalar to use a 7419 // widening multiply by splatting to smaller element size. 7420 unsigned EltBits = VT.getScalarSizeInBits(); 7421 unsigned ScalarBits = Op1.getValueSizeInBits(); 7422 // Make sure we're getting all element bits from the scalar register. 7423 // FIXME: Support implicit sign extension of vmv.v.x? 7424 if (ScalarBits < EltBits) 7425 return SDValue(); 7426 7427 if (IsSignExt) { 7428 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 7429 return SDValue(); 7430 } else { 7431 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7432 if (!DAG.MaskedValueIsZero(Op1, Mask)) 7433 return SDValue(); 7434 } 7435 7436 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 7437 } else 7438 return SDValue(); 7439 7440 Op0 = Op0.getOperand(0); 7441 7442 // Re-introduce narrower extends if needed. 7443 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7444 if (Op0.getValueType() != NarrowVT) 7445 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7446 if (Op1.getValueType() != NarrowVT) 7447 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7448 7449 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 7450 if (!IsVWMULSU) 7451 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7452 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7453 } 7454 7455 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 7456 switch (Op.getOpcode()) { 7457 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 7458 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 7459 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 7460 case ISD::FCEIL: return RISCVFPRndMode::RUP; 7461 case ISD::FROUND: return RISCVFPRndMode::RMM; 7462 } 7463 7464 return RISCVFPRndMode::Invalid; 7465 } 7466 7467 // Fold 7468 // (fp_to_int (froundeven X)) -> fcvt X, rne 7469 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 7470 // (fp_to_int (ffloor X)) -> fcvt X, rdn 7471 // (fp_to_int (fceil X)) -> fcvt X, rup 7472 // (fp_to_int (fround X)) -> fcvt X, rmm 7473 static SDValue performFP_TO_INTCombine(SDNode *N, 7474 TargetLowering::DAGCombinerInfo &DCI, 7475 const RISCVSubtarget &Subtarget) { 7476 SelectionDAG &DAG = DCI.DAG; 7477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7478 MVT XLenVT = Subtarget.getXLenVT(); 7479 7480 // Only handle XLen or i32 types. Other types narrower than XLen will 7481 // eventually be legalized to XLenVT. 7482 EVT VT = N->getValueType(0); 7483 if (VT != MVT::i32 && VT != XLenVT) 7484 return SDValue(); 7485 7486 SDValue Src = N->getOperand(0); 7487 7488 // Ensure the FP type is also legal. 7489 if (!TLI.isTypeLegal(Src.getValueType())) 7490 return SDValue(); 7491 7492 // Don't do this for f16 with Zfhmin and not Zfh. 7493 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7494 return SDValue(); 7495 7496 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7497 if (FRM == RISCVFPRndMode::Invalid) 7498 return SDValue(); 7499 7500 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 7501 7502 unsigned Opc; 7503 if (VT == XLenVT) 7504 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7505 else 7506 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7507 7508 SDLoc DL(N); 7509 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 7510 DAG.getTargetConstant(FRM, DL, XLenVT)); 7511 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 7512 } 7513 7514 // Fold 7515 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 7516 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 7517 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 7518 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 7519 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 7520 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 7521 TargetLowering::DAGCombinerInfo &DCI, 7522 const RISCVSubtarget &Subtarget) { 7523 SelectionDAG &DAG = DCI.DAG; 7524 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7525 MVT XLenVT = Subtarget.getXLenVT(); 7526 7527 // Only handle XLen types. Other types narrower than XLen will eventually be 7528 // legalized to XLenVT. 7529 EVT DstVT = N->getValueType(0); 7530 if (DstVT != XLenVT) 7531 return SDValue(); 7532 7533 SDValue Src = N->getOperand(0); 7534 7535 // Ensure the FP type is also legal. 7536 if (!TLI.isTypeLegal(Src.getValueType())) 7537 return SDValue(); 7538 7539 // Don't do this for f16 with Zfhmin and not Zfh. 7540 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7541 return SDValue(); 7542 7543 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 7544 7545 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7546 if (FRM == RISCVFPRndMode::Invalid) 7547 return SDValue(); 7548 7549 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 7550 7551 unsigned Opc; 7552 if (SatVT == DstVT) 7553 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7554 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 7555 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7556 else 7557 return SDValue(); 7558 // FIXME: Support other SatVTs by clamping before or after the conversion. 7559 7560 Src = Src.getOperand(0); 7561 7562 SDLoc DL(N); 7563 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 7564 DAG.getTargetConstant(FRM, DL, XLenVT)); 7565 7566 // RISCV FP-to-int conversions saturate to the destination register size, but 7567 // don't produce 0 for nan. 7568 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 7569 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 7570 } 7571 7572 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 7573 DAGCombinerInfo &DCI) const { 7574 SelectionDAG &DAG = DCI.DAG; 7575 7576 // Helper to call SimplifyDemandedBits on an operand of N where only some low 7577 // bits are demanded. N will be added to the Worklist if it was not deleted. 7578 // Caller should return SDValue(N, 0) if this returns true. 7579 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 7580 SDValue Op = N->getOperand(OpNo); 7581 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 7582 if (!SimplifyDemandedBits(Op, Mask, DCI)) 7583 return false; 7584 7585 if (N->getOpcode() != ISD::DELETED_NODE) 7586 DCI.AddToWorklist(N); 7587 return true; 7588 }; 7589 7590 switch (N->getOpcode()) { 7591 default: 7592 break; 7593 case RISCVISD::SplitF64: { 7594 SDValue Op0 = N->getOperand(0); 7595 // If the input to SplitF64 is just BuildPairF64 then the operation is 7596 // redundant. Instead, use BuildPairF64's operands directly. 7597 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 7598 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 7599 7600 SDLoc DL(N); 7601 7602 // It's cheaper to materialise two 32-bit integers than to load a double 7603 // from the constant pool and transfer it to integer registers through the 7604 // stack. 7605 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 7606 APInt V = C->getValueAPF().bitcastToAPInt(); 7607 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 7608 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 7609 return DCI.CombineTo(N, Lo, Hi); 7610 } 7611 7612 // This is a target-specific version of a DAGCombine performed in 7613 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7614 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7615 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7616 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7617 !Op0.getNode()->hasOneUse()) 7618 break; 7619 SDValue NewSplitF64 = 7620 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 7621 Op0.getOperand(0)); 7622 SDValue Lo = NewSplitF64.getValue(0); 7623 SDValue Hi = NewSplitF64.getValue(1); 7624 APInt SignBit = APInt::getSignMask(32); 7625 if (Op0.getOpcode() == ISD::FNEG) { 7626 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 7627 DAG.getConstant(SignBit, DL, MVT::i32)); 7628 return DCI.CombineTo(N, Lo, NewHi); 7629 } 7630 assert(Op0.getOpcode() == ISD::FABS); 7631 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 7632 DAG.getConstant(~SignBit, DL, MVT::i32)); 7633 return DCI.CombineTo(N, Lo, NewHi); 7634 } 7635 case RISCVISD::SLLW: 7636 case RISCVISD::SRAW: 7637 case RISCVISD::SRLW: 7638 case RISCVISD::ROLW: 7639 case RISCVISD::RORW: { 7640 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7641 if (SimplifyDemandedLowBitsHelper(0, 32) || 7642 SimplifyDemandedLowBitsHelper(1, 5)) 7643 return SDValue(N, 0); 7644 break; 7645 } 7646 case RISCVISD::CLZW: 7647 case RISCVISD::CTZW: { 7648 // Only the lower 32 bits of the first operand are read 7649 if (SimplifyDemandedLowBitsHelper(0, 32)) 7650 return SDValue(N, 0); 7651 break; 7652 } 7653 case RISCVISD::GREV: 7654 case RISCVISD::GORC: { 7655 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 7656 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7657 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7658 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 7659 return SDValue(N, 0); 7660 7661 return combineGREVI_GORCI(N, DAG); 7662 } 7663 case RISCVISD::GREVW: 7664 case RISCVISD::GORCW: { 7665 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7666 if (SimplifyDemandedLowBitsHelper(0, 32) || 7667 SimplifyDemandedLowBitsHelper(1, 5)) 7668 return SDValue(N, 0); 7669 7670 return combineGREVI_GORCI(N, DAG); 7671 } 7672 case RISCVISD::SHFL: 7673 case RISCVISD::UNSHFL: { 7674 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 7675 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7676 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7677 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 7678 return SDValue(N, 0); 7679 7680 break; 7681 } 7682 case RISCVISD::SHFLW: 7683 case RISCVISD::UNSHFLW: { 7684 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 7685 SDValue LHS = N->getOperand(0); 7686 SDValue RHS = N->getOperand(1); 7687 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 7688 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 7689 if (SimplifyDemandedLowBitsHelper(0, 32) || 7690 SimplifyDemandedLowBitsHelper(1, 4)) 7691 return SDValue(N, 0); 7692 7693 break; 7694 } 7695 case RISCVISD::BCOMPRESSW: 7696 case RISCVISD::BDECOMPRESSW: { 7697 // Only the lower 32 bits of LHS and RHS are read. 7698 if (SimplifyDemandedLowBitsHelper(0, 32) || 7699 SimplifyDemandedLowBitsHelper(1, 32)) 7700 return SDValue(N, 0); 7701 7702 break; 7703 } 7704 case RISCVISD::FMV_X_ANYEXTH: 7705 case RISCVISD::FMV_X_ANYEXTW_RV64: { 7706 SDLoc DL(N); 7707 SDValue Op0 = N->getOperand(0); 7708 MVT VT = N->getSimpleValueType(0); 7709 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 7710 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 7711 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 7712 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 7713 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 7714 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7715 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 7716 assert(Op0.getOperand(0).getValueType() == VT && 7717 "Unexpected value type!"); 7718 return Op0.getOperand(0); 7719 } 7720 7721 // This is a target-specific version of a DAGCombine performed in 7722 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7723 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7724 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7725 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7726 !Op0.getNode()->hasOneUse()) 7727 break; 7728 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 7729 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 7730 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 7731 if (Op0.getOpcode() == ISD::FNEG) 7732 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 7733 DAG.getConstant(SignBit, DL, VT)); 7734 7735 assert(Op0.getOpcode() == ISD::FABS); 7736 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 7737 DAG.getConstant(~SignBit, DL, VT)); 7738 } 7739 case ISD::ADD: 7740 return performADDCombine(N, DAG, Subtarget); 7741 case ISD::SUB: 7742 return performSUBCombine(N, DAG); 7743 case ISD::AND: 7744 return performANDCombine(N, DAG); 7745 case ISD::OR: 7746 return performORCombine(N, DAG, Subtarget); 7747 case ISD::XOR: 7748 return performXORCombine(N, DAG); 7749 case ISD::ANY_EXTEND: 7750 return performANY_EXTENDCombine(N, DCI, Subtarget); 7751 case ISD::ZERO_EXTEND: 7752 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 7753 // type legalization. This is safe because fp_to_uint produces poison if 7754 // it overflows. 7755 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 7756 SDValue Src = N->getOperand(0); 7757 if (Src.getOpcode() == ISD::FP_TO_UINT && 7758 isTypeLegal(Src.getOperand(0).getValueType())) 7759 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 7760 Src.getOperand(0)); 7761 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 7762 isTypeLegal(Src.getOperand(1).getValueType())) { 7763 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 7764 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 7765 Src.getOperand(0), Src.getOperand(1)); 7766 DCI.CombineTo(N, Res); 7767 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 7768 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 7769 return SDValue(N, 0); // Return N so it doesn't get rechecked. 7770 } 7771 } 7772 return SDValue(); 7773 case RISCVISD::SELECT_CC: { 7774 // Transform 7775 SDValue LHS = N->getOperand(0); 7776 SDValue RHS = N->getOperand(1); 7777 SDValue TrueV = N->getOperand(3); 7778 SDValue FalseV = N->getOperand(4); 7779 7780 // If the True and False values are the same, we don't need a select_cc. 7781 if (TrueV == FalseV) 7782 return TrueV; 7783 7784 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 7785 if (!ISD::isIntEqualitySetCC(CCVal)) 7786 break; 7787 7788 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 7789 // (select_cc X, Y, lt, trueV, falseV) 7790 // Sometimes the setcc is introduced after select_cc has been formed. 7791 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7792 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7793 // If we're looking for eq 0 instead of ne 0, we need to invert the 7794 // condition. 7795 bool Invert = CCVal == ISD::SETEQ; 7796 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7797 if (Invert) 7798 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7799 7800 SDLoc DL(N); 7801 RHS = LHS.getOperand(1); 7802 LHS = LHS.getOperand(0); 7803 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7804 7805 SDValue TargetCC = DAG.getCondCode(CCVal); 7806 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7807 {LHS, RHS, TargetCC, TrueV, FalseV}); 7808 } 7809 7810 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 7811 // (select_cc X, Y, eq/ne, trueV, falseV) 7812 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7813 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 7814 {LHS.getOperand(0), LHS.getOperand(1), 7815 N->getOperand(2), TrueV, FalseV}); 7816 // (select_cc X, 1, setne, trueV, falseV) -> 7817 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 7818 // This can occur when legalizing some floating point comparisons. 7819 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7820 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7821 SDLoc DL(N); 7822 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7823 SDValue TargetCC = DAG.getCondCode(CCVal); 7824 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7825 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7826 {LHS, RHS, TargetCC, TrueV, FalseV}); 7827 } 7828 7829 break; 7830 } 7831 case RISCVISD::BR_CC: { 7832 SDValue LHS = N->getOperand(1); 7833 SDValue RHS = N->getOperand(2); 7834 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 7835 if (!ISD::isIntEqualitySetCC(CCVal)) 7836 break; 7837 7838 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 7839 // (br_cc X, Y, lt, dest) 7840 // Sometimes the setcc is introduced after br_cc has been formed. 7841 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7842 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7843 // If we're looking for eq 0 instead of ne 0, we need to invert the 7844 // condition. 7845 bool Invert = CCVal == ISD::SETEQ; 7846 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7847 if (Invert) 7848 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7849 7850 SDLoc DL(N); 7851 RHS = LHS.getOperand(1); 7852 LHS = LHS.getOperand(0); 7853 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7854 7855 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7856 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7857 N->getOperand(4)); 7858 } 7859 7860 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7861 // (br_cc X, Y, eq/ne, trueV, falseV) 7862 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7863 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7864 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7865 N->getOperand(3), N->getOperand(4)); 7866 7867 // (br_cc X, 1, setne, br_cc) -> 7868 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7869 // This can occur when legalizing some floating point comparisons. 7870 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7871 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7872 SDLoc DL(N); 7873 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7874 SDValue TargetCC = DAG.getCondCode(CCVal); 7875 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7876 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7877 N->getOperand(0), LHS, RHS, TargetCC, 7878 N->getOperand(4)); 7879 } 7880 break; 7881 } 7882 case ISD::FP_TO_SINT: 7883 case ISD::FP_TO_UINT: 7884 return performFP_TO_INTCombine(N, DCI, Subtarget); 7885 case ISD::FP_TO_SINT_SAT: 7886 case ISD::FP_TO_UINT_SAT: 7887 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 7888 case ISD::FCOPYSIGN: { 7889 EVT VT = N->getValueType(0); 7890 if (!VT.isVector()) 7891 break; 7892 // There is a form of VFSGNJ which injects the negated sign of its second 7893 // operand. Try and bubble any FNEG up after the extend/round to produce 7894 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7895 // TRUNC=1. 7896 SDValue In2 = N->getOperand(1); 7897 // Avoid cases where the extend/round has multiple uses, as duplicating 7898 // those is typically more expensive than removing a fneg. 7899 if (!In2.hasOneUse()) 7900 break; 7901 if (In2.getOpcode() != ISD::FP_EXTEND && 7902 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7903 break; 7904 In2 = In2.getOperand(0); 7905 if (In2.getOpcode() != ISD::FNEG) 7906 break; 7907 SDLoc DL(N); 7908 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7909 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7910 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7911 } 7912 case ISD::MGATHER: 7913 case ISD::MSCATTER: 7914 case ISD::VP_GATHER: 7915 case ISD::VP_SCATTER: { 7916 if (!DCI.isBeforeLegalize()) 7917 break; 7918 SDValue Index, ScaleOp; 7919 bool IsIndexScaled = false; 7920 bool IsIndexSigned = false; 7921 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7922 Index = VPGSN->getIndex(); 7923 ScaleOp = VPGSN->getScale(); 7924 IsIndexScaled = VPGSN->isIndexScaled(); 7925 IsIndexSigned = VPGSN->isIndexSigned(); 7926 } else { 7927 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7928 Index = MGSN->getIndex(); 7929 ScaleOp = MGSN->getScale(); 7930 IsIndexScaled = MGSN->isIndexScaled(); 7931 IsIndexSigned = MGSN->isIndexSigned(); 7932 } 7933 EVT IndexVT = Index.getValueType(); 7934 MVT XLenVT = Subtarget.getXLenVT(); 7935 // RISCV indexed loads only support the "unsigned unscaled" addressing 7936 // mode, so anything else must be manually legalized. 7937 bool NeedsIdxLegalization = 7938 IsIndexScaled || 7939 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7940 if (!NeedsIdxLegalization) 7941 break; 7942 7943 SDLoc DL(N); 7944 7945 // Any index legalization should first promote to XLenVT, so we don't lose 7946 // bits when scaling. This may create an illegal index type so we let 7947 // LLVM's legalization take care of the splitting. 7948 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7949 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7950 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7951 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7952 DL, IndexVT, Index); 7953 } 7954 7955 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7956 if (IsIndexScaled && Scale != 1) { 7957 // Manually scale the indices by the element size. 7958 // TODO: Sanitize the scale operand here? 7959 // TODO: For VP nodes, should we use VP_SHL here? 7960 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7961 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7962 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7963 } 7964 7965 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7966 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7967 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7968 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7969 VPGN->getScale(), VPGN->getMask(), 7970 VPGN->getVectorLength()}, 7971 VPGN->getMemOperand(), NewIndexTy); 7972 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7973 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7974 {VPSN->getChain(), VPSN->getValue(), 7975 VPSN->getBasePtr(), Index, VPSN->getScale(), 7976 VPSN->getMask(), VPSN->getVectorLength()}, 7977 VPSN->getMemOperand(), NewIndexTy); 7978 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7979 return DAG.getMaskedGather( 7980 N->getVTList(), MGN->getMemoryVT(), DL, 7981 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7982 MGN->getBasePtr(), Index, MGN->getScale()}, 7983 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7984 const auto *MSN = cast<MaskedScatterSDNode>(N); 7985 return DAG.getMaskedScatter( 7986 N->getVTList(), MSN->getMemoryVT(), DL, 7987 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7988 Index, MSN->getScale()}, 7989 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7990 } 7991 case RISCVISD::SRA_VL: 7992 case RISCVISD::SRL_VL: 7993 case RISCVISD::SHL_VL: { 7994 SDValue ShAmt = N->getOperand(1); 7995 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7996 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7997 SDLoc DL(N); 7998 SDValue VL = N->getOperand(3); 7999 EVT VT = N->getValueType(0); 8000 ShAmt = 8001 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 8002 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 8003 N->getOperand(2), N->getOperand(3)); 8004 } 8005 break; 8006 } 8007 case ISD::SRA: 8008 case ISD::SRL: 8009 case ISD::SHL: { 8010 SDValue ShAmt = N->getOperand(1); 8011 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8012 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8013 SDLoc DL(N); 8014 EVT VT = N->getValueType(0); 8015 ShAmt = 8016 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 8017 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 8018 } 8019 break; 8020 } 8021 case RISCVISD::MUL_VL: 8022 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 8023 return V; 8024 // Mul is commutative. 8025 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 8026 case ISD::STORE: { 8027 auto *Store = cast<StoreSDNode>(N); 8028 SDValue Val = Store->getValue(); 8029 // Combine store of vmv.x.s to vse with VL of 1. 8030 // FIXME: Support FP. 8031 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 8032 SDValue Src = Val.getOperand(0); 8033 EVT VecVT = Src.getValueType(); 8034 EVT MemVT = Store->getMemoryVT(); 8035 // The memory VT and the element type must match. 8036 if (VecVT.getVectorElementType() == MemVT) { 8037 SDLoc DL(N); 8038 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 8039 return DAG.getStoreVP( 8040 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 8041 DAG.getConstant(1, DL, MaskVT), 8042 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 8043 Store->getMemOperand(), Store->getAddressingMode(), 8044 Store->isTruncatingStore(), /*IsCompress*/ false); 8045 } 8046 } 8047 8048 break; 8049 } 8050 } 8051 8052 return SDValue(); 8053 } 8054 8055 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 8056 const SDNode *N, CombineLevel Level) const { 8057 // The following folds are only desirable if `(OP _, c1 << c2)` can be 8058 // materialised in fewer instructions than `(OP _, c1)`: 8059 // 8060 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8061 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8062 SDValue N0 = N->getOperand(0); 8063 EVT Ty = N0.getValueType(); 8064 if (Ty.isScalarInteger() && 8065 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 8066 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 8067 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8068 if (C1 && C2) { 8069 const APInt &C1Int = C1->getAPIntValue(); 8070 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 8071 8072 // We can materialise `c1 << c2` into an add immediate, so it's "free", 8073 // and the combine should happen, to potentially allow further combines 8074 // later. 8075 if (ShiftedC1Int.getMinSignedBits() <= 64 && 8076 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 8077 return true; 8078 8079 // We can materialise `c1` in an add immediate, so it's "free", and the 8080 // combine should be prevented. 8081 if (C1Int.getMinSignedBits() <= 64 && 8082 isLegalAddImmediate(C1Int.getSExtValue())) 8083 return false; 8084 8085 // Neither constant will fit into an immediate, so find materialisation 8086 // costs. 8087 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 8088 Subtarget.getFeatureBits(), 8089 /*CompressionCost*/true); 8090 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 8091 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 8092 /*CompressionCost*/true); 8093 8094 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 8095 // combine should be prevented. 8096 if (C1Cost < ShiftedC1Cost) 8097 return false; 8098 } 8099 } 8100 return true; 8101 } 8102 8103 bool RISCVTargetLowering::targetShrinkDemandedConstant( 8104 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 8105 TargetLoweringOpt &TLO) const { 8106 // Delay this optimization as late as possible. 8107 if (!TLO.LegalOps) 8108 return false; 8109 8110 EVT VT = Op.getValueType(); 8111 if (VT.isVector()) 8112 return false; 8113 8114 // Only handle AND for now. 8115 if (Op.getOpcode() != ISD::AND) 8116 return false; 8117 8118 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8119 if (!C) 8120 return false; 8121 8122 const APInt &Mask = C->getAPIntValue(); 8123 8124 // Clear all non-demanded bits initially. 8125 APInt ShrunkMask = Mask & DemandedBits; 8126 8127 // Try to make a smaller immediate by setting undemanded bits. 8128 8129 APInt ExpandedMask = Mask | ~DemandedBits; 8130 8131 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 8132 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 8133 }; 8134 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 8135 if (NewMask == Mask) 8136 return true; 8137 SDLoc DL(Op); 8138 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 8139 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 8140 return TLO.CombineTo(Op, NewOp); 8141 }; 8142 8143 // If the shrunk mask fits in sign extended 12 bits, let the target 8144 // independent code apply it. 8145 if (ShrunkMask.isSignedIntN(12)) 8146 return false; 8147 8148 // Preserve (and X, 0xffff) when zext.h is supported. 8149 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 8150 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 8151 if (IsLegalMask(NewMask)) 8152 return UseMask(NewMask); 8153 } 8154 8155 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 8156 if (VT == MVT::i64) { 8157 APInt NewMask = APInt(64, 0xffffffff); 8158 if (IsLegalMask(NewMask)) 8159 return UseMask(NewMask); 8160 } 8161 8162 // For the remaining optimizations, we need to be able to make a negative 8163 // number through a combination of mask and undemanded bits. 8164 if (!ExpandedMask.isNegative()) 8165 return false; 8166 8167 // What is the fewest number of bits we need to represent the negative number. 8168 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 8169 8170 // Try to make a 12 bit negative immediate. If that fails try to make a 32 8171 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 8172 APInt NewMask = ShrunkMask; 8173 if (MinSignedBits <= 12) 8174 NewMask.setBitsFrom(11); 8175 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 8176 NewMask.setBitsFrom(31); 8177 else 8178 return false; 8179 8180 // Check that our new mask is a subset of the demanded mask. 8181 assert(IsLegalMask(NewMask)); 8182 return UseMask(NewMask); 8183 } 8184 8185 static void computeGREV(APInt &Src, unsigned ShAmt) { 8186 ShAmt &= Src.getBitWidth() - 1; 8187 uint64_t x = Src.getZExtValue(); 8188 if (ShAmt & 1) 8189 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 8190 if (ShAmt & 2) 8191 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 8192 if (ShAmt & 4) 8193 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 8194 if (ShAmt & 8) 8195 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 8196 if (ShAmt & 16) 8197 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 8198 if (ShAmt & 32) 8199 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 8200 Src = x; 8201 } 8202 8203 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 8204 KnownBits &Known, 8205 const APInt &DemandedElts, 8206 const SelectionDAG &DAG, 8207 unsigned Depth) const { 8208 unsigned BitWidth = Known.getBitWidth(); 8209 unsigned Opc = Op.getOpcode(); 8210 assert((Opc >= ISD::BUILTIN_OP_END || 8211 Opc == ISD::INTRINSIC_WO_CHAIN || 8212 Opc == ISD::INTRINSIC_W_CHAIN || 8213 Opc == ISD::INTRINSIC_VOID) && 8214 "Should use MaskedValueIsZero if you don't know whether Op" 8215 " is a target node!"); 8216 8217 Known.resetAll(); 8218 switch (Opc) { 8219 default: break; 8220 case RISCVISD::SELECT_CC: { 8221 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 8222 // If we don't know any bits, early out. 8223 if (Known.isUnknown()) 8224 break; 8225 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 8226 8227 // Only known if known in both the LHS and RHS. 8228 Known = KnownBits::commonBits(Known, Known2); 8229 break; 8230 } 8231 case RISCVISD::REMUW: { 8232 KnownBits Known2; 8233 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8234 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8235 // We only care about the lower 32 bits. 8236 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 8237 // Restore the original width by sign extending. 8238 Known = Known.sext(BitWidth); 8239 break; 8240 } 8241 case RISCVISD::DIVUW: { 8242 KnownBits Known2; 8243 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8244 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8245 // We only care about the lower 32 bits. 8246 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 8247 // Restore the original width by sign extending. 8248 Known = Known.sext(BitWidth); 8249 break; 8250 } 8251 case RISCVISD::CTZW: { 8252 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8253 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 8254 unsigned LowBits = Log2_32(PossibleTZ) + 1; 8255 Known.Zero.setBitsFrom(LowBits); 8256 break; 8257 } 8258 case RISCVISD::CLZW: { 8259 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8260 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 8261 unsigned LowBits = Log2_32(PossibleLZ) + 1; 8262 Known.Zero.setBitsFrom(LowBits); 8263 break; 8264 } 8265 case RISCVISD::GREV: 8266 case RISCVISD::GREVW: { 8267 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8268 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8269 if (Opc == RISCVISD::GREVW) 8270 Known = Known.trunc(32); 8271 unsigned ShAmt = C->getZExtValue(); 8272 computeGREV(Known.Zero, ShAmt); 8273 computeGREV(Known.One, ShAmt); 8274 if (Opc == RISCVISD::GREVW) 8275 Known = Known.sext(BitWidth); 8276 } 8277 break; 8278 } 8279 case RISCVISD::READ_VLENB: { 8280 // If we know the minimum VLen from Zvl extensions, we can use that to 8281 // determine the trailing zeros of VLENB. 8282 // FIXME: Limit to 128 bit vectors until we have more testing. 8283 unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8; 8284 if (MinVLenB > 0) 8285 Known.Zero.setLowBits(Log2_32(MinVLenB)); 8286 // We assume VLENB is no more than 65536 / 8 bytes. 8287 Known.Zero.setBitsFrom(14); 8288 break; 8289 } 8290 case ISD::INTRINSIC_W_CHAIN: 8291 case ISD::INTRINSIC_WO_CHAIN: { 8292 unsigned IntNo = 8293 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 8294 switch (IntNo) { 8295 default: 8296 // We can't do anything for most intrinsics. 8297 break; 8298 case Intrinsic::riscv_vsetvli: 8299 case Intrinsic::riscv_vsetvlimax: 8300 case Intrinsic::riscv_vsetvli_opt: 8301 case Intrinsic::riscv_vsetvlimax_opt: 8302 // Assume that VL output is positive and would fit in an int32_t. 8303 // TODO: VLEN might be capped at 16 bits in a future V spec update. 8304 if (BitWidth >= 32) 8305 Known.Zero.setBitsFrom(31); 8306 break; 8307 } 8308 break; 8309 } 8310 } 8311 } 8312 8313 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 8314 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 8315 unsigned Depth) const { 8316 switch (Op.getOpcode()) { 8317 default: 8318 break; 8319 case RISCVISD::SELECT_CC: { 8320 unsigned Tmp = 8321 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 8322 if (Tmp == 1) return 1; // Early out. 8323 unsigned Tmp2 = 8324 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 8325 return std::min(Tmp, Tmp2); 8326 } 8327 case RISCVISD::SLLW: 8328 case RISCVISD::SRAW: 8329 case RISCVISD::SRLW: 8330 case RISCVISD::DIVW: 8331 case RISCVISD::DIVUW: 8332 case RISCVISD::REMUW: 8333 case RISCVISD::ROLW: 8334 case RISCVISD::RORW: 8335 case RISCVISD::GREVW: 8336 case RISCVISD::GORCW: 8337 case RISCVISD::FSLW: 8338 case RISCVISD::FSRW: 8339 case RISCVISD::SHFLW: 8340 case RISCVISD::UNSHFLW: 8341 case RISCVISD::BCOMPRESSW: 8342 case RISCVISD::BDECOMPRESSW: 8343 case RISCVISD::BFPW: 8344 case RISCVISD::FCVT_W_RV64: 8345 case RISCVISD::FCVT_WU_RV64: 8346 case RISCVISD::STRICT_FCVT_W_RV64: 8347 case RISCVISD::STRICT_FCVT_WU_RV64: 8348 // TODO: As the result is sign-extended, this is conservatively correct. A 8349 // more precise answer could be calculated for SRAW depending on known 8350 // bits in the shift amount. 8351 return 33; 8352 case RISCVISD::SHFL: 8353 case RISCVISD::UNSHFL: { 8354 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 8355 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 8356 // will stay within the upper 32 bits. If there were more than 32 sign bits 8357 // before there will be at least 33 sign bits after. 8358 if (Op.getValueType() == MVT::i64 && 8359 isa<ConstantSDNode>(Op.getOperand(1)) && 8360 (Op.getConstantOperandVal(1) & 0x10) == 0) { 8361 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 8362 if (Tmp > 32) 8363 return 33; 8364 } 8365 break; 8366 } 8367 case RISCVISD::VMV_X_S: { 8368 // The number of sign bits of the scalar result is computed by obtaining the 8369 // element type of the input vector operand, subtracting its width from the 8370 // XLEN, and then adding one (sign bit within the element type). If the 8371 // element type is wider than XLen, the least-significant XLEN bits are 8372 // taken. 8373 unsigned XLen = Subtarget.getXLen(); 8374 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 8375 if (EltBits <= XLen) 8376 return XLen - EltBits + 1; 8377 break; 8378 } 8379 } 8380 8381 return 1; 8382 } 8383 8384 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 8385 MachineBasicBlock *BB) { 8386 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 8387 8388 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 8389 // Should the count have wrapped while it was being read, we need to try 8390 // again. 8391 // ... 8392 // read: 8393 // rdcycleh x3 # load high word of cycle 8394 // rdcycle x2 # load low word of cycle 8395 // rdcycleh x4 # load high word of cycle 8396 // bne x3, x4, read # check if high word reads match, otherwise try again 8397 // ... 8398 8399 MachineFunction &MF = *BB->getParent(); 8400 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8401 MachineFunction::iterator It = ++BB->getIterator(); 8402 8403 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8404 MF.insert(It, LoopMBB); 8405 8406 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8407 MF.insert(It, DoneMBB); 8408 8409 // Transfer the remainder of BB and its successor edges to DoneMBB. 8410 DoneMBB->splice(DoneMBB->begin(), BB, 8411 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8412 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 8413 8414 BB->addSuccessor(LoopMBB); 8415 8416 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8417 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8418 Register LoReg = MI.getOperand(0).getReg(); 8419 Register HiReg = MI.getOperand(1).getReg(); 8420 DebugLoc DL = MI.getDebugLoc(); 8421 8422 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 8423 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 8424 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8425 .addReg(RISCV::X0); 8426 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 8427 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 8428 .addReg(RISCV::X0); 8429 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 8430 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8431 .addReg(RISCV::X0); 8432 8433 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 8434 .addReg(HiReg) 8435 .addReg(ReadAgainReg) 8436 .addMBB(LoopMBB); 8437 8438 LoopMBB->addSuccessor(LoopMBB); 8439 LoopMBB->addSuccessor(DoneMBB); 8440 8441 MI.eraseFromParent(); 8442 8443 return DoneMBB; 8444 } 8445 8446 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 8447 MachineBasicBlock *BB) { 8448 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 8449 8450 MachineFunction &MF = *BB->getParent(); 8451 DebugLoc DL = MI.getDebugLoc(); 8452 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8453 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8454 Register LoReg = MI.getOperand(0).getReg(); 8455 Register HiReg = MI.getOperand(1).getReg(); 8456 Register SrcReg = MI.getOperand(2).getReg(); 8457 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 8458 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8459 8460 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 8461 RI); 8462 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8463 MachineMemOperand *MMOLo = 8464 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 8465 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8466 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 8467 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 8468 .addFrameIndex(FI) 8469 .addImm(0) 8470 .addMemOperand(MMOLo); 8471 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 8472 .addFrameIndex(FI) 8473 .addImm(4) 8474 .addMemOperand(MMOHi); 8475 MI.eraseFromParent(); // The pseudo instruction is gone now. 8476 return BB; 8477 } 8478 8479 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 8480 MachineBasicBlock *BB) { 8481 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 8482 "Unexpected instruction"); 8483 8484 MachineFunction &MF = *BB->getParent(); 8485 DebugLoc DL = MI.getDebugLoc(); 8486 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8487 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8488 Register DstReg = MI.getOperand(0).getReg(); 8489 Register LoReg = MI.getOperand(1).getReg(); 8490 Register HiReg = MI.getOperand(2).getReg(); 8491 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 8492 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8493 8494 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8495 MachineMemOperand *MMOLo = 8496 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 8497 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8498 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 8499 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8500 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 8501 .addFrameIndex(FI) 8502 .addImm(0) 8503 .addMemOperand(MMOLo); 8504 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8505 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 8506 .addFrameIndex(FI) 8507 .addImm(4) 8508 .addMemOperand(MMOHi); 8509 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 8510 MI.eraseFromParent(); // The pseudo instruction is gone now. 8511 return BB; 8512 } 8513 8514 static bool isSelectPseudo(MachineInstr &MI) { 8515 switch (MI.getOpcode()) { 8516 default: 8517 return false; 8518 case RISCV::Select_GPR_Using_CC_GPR: 8519 case RISCV::Select_FPR16_Using_CC_GPR: 8520 case RISCV::Select_FPR32_Using_CC_GPR: 8521 case RISCV::Select_FPR64_Using_CC_GPR: 8522 return true; 8523 } 8524 } 8525 8526 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 8527 unsigned RelOpcode, unsigned EqOpcode, 8528 const RISCVSubtarget &Subtarget) { 8529 DebugLoc DL = MI.getDebugLoc(); 8530 Register DstReg = MI.getOperand(0).getReg(); 8531 Register Src1Reg = MI.getOperand(1).getReg(); 8532 Register Src2Reg = MI.getOperand(2).getReg(); 8533 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 8534 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 8535 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 8536 8537 // Save the current FFLAGS. 8538 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 8539 8540 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 8541 .addReg(Src1Reg) 8542 .addReg(Src2Reg); 8543 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8544 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 8545 8546 // Restore the FFLAGS. 8547 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 8548 .addReg(SavedFFlags, RegState::Kill); 8549 8550 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 8551 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 8552 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 8553 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 8554 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8555 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 8556 8557 // Erase the pseudoinstruction. 8558 MI.eraseFromParent(); 8559 return BB; 8560 } 8561 8562 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 8563 MachineBasicBlock *BB, 8564 const RISCVSubtarget &Subtarget) { 8565 // To "insert" Select_* instructions, we actually have to insert the triangle 8566 // control-flow pattern. The incoming instructions know the destination vreg 8567 // to set, the condition code register to branch on, the true/false values to 8568 // select between, and the condcode to use to select the appropriate branch. 8569 // 8570 // We produce the following control flow: 8571 // HeadMBB 8572 // | \ 8573 // | IfFalseMBB 8574 // | / 8575 // TailMBB 8576 // 8577 // When we find a sequence of selects we attempt to optimize their emission 8578 // by sharing the control flow. Currently we only handle cases where we have 8579 // multiple selects with the exact same condition (same LHS, RHS and CC). 8580 // The selects may be interleaved with other instructions if the other 8581 // instructions meet some requirements we deem safe: 8582 // - They are debug instructions. Otherwise, 8583 // - They do not have side-effects, do not access memory and their inputs do 8584 // not depend on the results of the select pseudo-instructions. 8585 // The TrueV/FalseV operands of the selects cannot depend on the result of 8586 // previous selects in the sequence. 8587 // These conditions could be further relaxed. See the X86 target for a 8588 // related approach and more information. 8589 Register LHS = MI.getOperand(1).getReg(); 8590 Register RHS = MI.getOperand(2).getReg(); 8591 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 8592 8593 SmallVector<MachineInstr *, 4> SelectDebugValues; 8594 SmallSet<Register, 4> SelectDests; 8595 SelectDests.insert(MI.getOperand(0).getReg()); 8596 8597 MachineInstr *LastSelectPseudo = &MI; 8598 8599 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 8600 SequenceMBBI != E; ++SequenceMBBI) { 8601 if (SequenceMBBI->isDebugInstr()) 8602 continue; 8603 else if (isSelectPseudo(*SequenceMBBI)) { 8604 if (SequenceMBBI->getOperand(1).getReg() != LHS || 8605 SequenceMBBI->getOperand(2).getReg() != RHS || 8606 SequenceMBBI->getOperand(3).getImm() != CC || 8607 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 8608 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 8609 break; 8610 LastSelectPseudo = &*SequenceMBBI; 8611 SequenceMBBI->collectDebugValues(SelectDebugValues); 8612 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 8613 } else { 8614 if (SequenceMBBI->hasUnmodeledSideEffects() || 8615 SequenceMBBI->mayLoadOrStore()) 8616 break; 8617 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 8618 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 8619 })) 8620 break; 8621 } 8622 } 8623 8624 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 8625 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8626 DebugLoc DL = MI.getDebugLoc(); 8627 MachineFunction::iterator I = ++BB->getIterator(); 8628 8629 MachineBasicBlock *HeadMBB = BB; 8630 MachineFunction *F = BB->getParent(); 8631 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 8632 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 8633 8634 F->insert(I, IfFalseMBB); 8635 F->insert(I, TailMBB); 8636 8637 // Transfer debug instructions associated with the selects to TailMBB. 8638 for (MachineInstr *DebugInstr : SelectDebugValues) { 8639 TailMBB->push_back(DebugInstr->removeFromParent()); 8640 } 8641 8642 // Move all instructions after the sequence to TailMBB. 8643 TailMBB->splice(TailMBB->end(), HeadMBB, 8644 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 8645 // Update machine-CFG edges by transferring all successors of the current 8646 // block to the new block which will contain the Phi nodes for the selects. 8647 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 8648 // Set the successors for HeadMBB. 8649 HeadMBB->addSuccessor(IfFalseMBB); 8650 HeadMBB->addSuccessor(TailMBB); 8651 8652 // Insert appropriate branch. 8653 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 8654 .addReg(LHS) 8655 .addReg(RHS) 8656 .addMBB(TailMBB); 8657 8658 // IfFalseMBB just falls through to TailMBB. 8659 IfFalseMBB->addSuccessor(TailMBB); 8660 8661 // Create PHIs for all of the select pseudo-instructions. 8662 auto SelectMBBI = MI.getIterator(); 8663 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 8664 auto InsertionPoint = TailMBB->begin(); 8665 while (SelectMBBI != SelectEnd) { 8666 auto Next = std::next(SelectMBBI); 8667 if (isSelectPseudo(*SelectMBBI)) { 8668 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 8669 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 8670 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 8671 .addReg(SelectMBBI->getOperand(4).getReg()) 8672 .addMBB(HeadMBB) 8673 .addReg(SelectMBBI->getOperand(5).getReg()) 8674 .addMBB(IfFalseMBB); 8675 SelectMBBI->eraseFromParent(); 8676 } 8677 SelectMBBI = Next; 8678 } 8679 8680 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8681 return TailMBB; 8682 } 8683 8684 MachineBasicBlock * 8685 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 8686 MachineBasicBlock *BB) const { 8687 switch (MI.getOpcode()) { 8688 default: 8689 llvm_unreachable("Unexpected instr type to insert"); 8690 case RISCV::ReadCycleWide: 8691 assert(!Subtarget.is64Bit() && 8692 "ReadCycleWrite is only to be used on riscv32"); 8693 return emitReadCycleWidePseudo(MI, BB); 8694 case RISCV::Select_GPR_Using_CC_GPR: 8695 case RISCV::Select_FPR16_Using_CC_GPR: 8696 case RISCV::Select_FPR32_Using_CC_GPR: 8697 case RISCV::Select_FPR64_Using_CC_GPR: 8698 return emitSelectPseudo(MI, BB, Subtarget); 8699 case RISCV::BuildPairF64Pseudo: 8700 return emitBuildPairF64Pseudo(MI, BB); 8701 case RISCV::SplitF64Pseudo: 8702 return emitSplitF64Pseudo(MI, BB); 8703 case RISCV::PseudoQuietFLE_H: 8704 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 8705 case RISCV::PseudoQuietFLT_H: 8706 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 8707 case RISCV::PseudoQuietFLE_S: 8708 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 8709 case RISCV::PseudoQuietFLT_S: 8710 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 8711 case RISCV::PseudoQuietFLE_D: 8712 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 8713 case RISCV::PseudoQuietFLT_D: 8714 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 8715 } 8716 } 8717 8718 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 8719 SDNode *Node) const { 8720 // Add FRM dependency to any instructions with dynamic rounding mode. 8721 unsigned Opc = MI.getOpcode(); 8722 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 8723 if (Idx < 0) 8724 return; 8725 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 8726 return; 8727 // If the instruction already reads FRM, don't add another read. 8728 if (MI.readsRegister(RISCV::FRM)) 8729 return; 8730 MI.addOperand( 8731 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 8732 } 8733 8734 // Calling Convention Implementation. 8735 // The expectations for frontend ABI lowering vary from target to target. 8736 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 8737 // details, but this is a longer term goal. For now, we simply try to keep the 8738 // role of the frontend as simple and well-defined as possible. The rules can 8739 // be summarised as: 8740 // * Never split up large scalar arguments. We handle them here. 8741 // * If a hardfloat calling convention is being used, and the struct may be 8742 // passed in a pair of registers (fp+fp, int+fp), and both registers are 8743 // available, then pass as two separate arguments. If either the GPRs or FPRs 8744 // are exhausted, then pass according to the rule below. 8745 // * If a struct could never be passed in registers or directly in a stack 8746 // slot (as it is larger than 2*XLEN and the floating point rules don't 8747 // apply), then pass it using a pointer with the byval attribute. 8748 // * If a struct is less than 2*XLEN, then coerce to either a two-element 8749 // word-sized array or a 2*XLEN scalar (depending on alignment). 8750 // * The frontend can determine whether a struct is returned by reference or 8751 // not based on its size and fields. If it will be returned by reference, the 8752 // frontend must modify the prototype so a pointer with the sret annotation is 8753 // passed as the first argument. This is not necessary for large scalar 8754 // returns. 8755 // * Struct return values and varargs should be coerced to structs containing 8756 // register-size fields in the same situations they would be for fixed 8757 // arguments. 8758 8759 static const MCPhysReg ArgGPRs[] = { 8760 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 8761 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 8762 }; 8763 static const MCPhysReg ArgFPR16s[] = { 8764 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 8765 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 8766 }; 8767 static const MCPhysReg ArgFPR32s[] = { 8768 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 8769 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 8770 }; 8771 static const MCPhysReg ArgFPR64s[] = { 8772 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 8773 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 8774 }; 8775 // This is an interim calling convention and it may be changed in the future. 8776 static const MCPhysReg ArgVRs[] = { 8777 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 8778 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 8779 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 8780 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 8781 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 8782 RISCV::V20M2, RISCV::V22M2}; 8783 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 8784 RISCV::V20M4}; 8785 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 8786 8787 // Pass a 2*XLEN argument that has been split into two XLEN values through 8788 // registers or the stack as necessary. 8789 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 8790 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 8791 MVT ValVT2, MVT LocVT2, 8792 ISD::ArgFlagsTy ArgFlags2) { 8793 unsigned XLenInBytes = XLen / 8; 8794 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8795 // At least one half can be passed via register. 8796 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 8797 VA1.getLocVT(), CCValAssign::Full)); 8798 } else { 8799 // Both halves must be passed on the stack, with proper alignment. 8800 Align StackAlign = 8801 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 8802 State.addLoc( 8803 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 8804 State.AllocateStack(XLenInBytes, StackAlign), 8805 VA1.getLocVT(), CCValAssign::Full)); 8806 State.addLoc(CCValAssign::getMem( 8807 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8808 LocVT2, CCValAssign::Full)); 8809 return false; 8810 } 8811 8812 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8813 // The second half can also be passed via register. 8814 State.addLoc( 8815 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 8816 } else { 8817 // The second half is passed via the stack, without additional alignment. 8818 State.addLoc(CCValAssign::getMem( 8819 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8820 LocVT2, CCValAssign::Full)); 8821 } 8822 8823 return false; 8824 } 8825 8826 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 8827 Optional<unsigned> FirstMaskArgument, 8828 CCState &State, const RISCVTargetLowering &TLI) { 8829 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 8830 if (RC == &RISCV::VRRegClass) { 8831 // Assign the first mask argument to V0. 8832 // This is an interim calling convention and it may be changed in the 8833 // future. 8834 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 8835 return State.AllocateReg(RISCV::V0); 8836 return State.AllocateReg(ArgVRs); 8837 } 8838 if (RC == &RISCV::VRM2RegClass) 8839 return State.AllocateReg(ArgVRM2s); 8840 if (RC == &RISCV::VRM4RegClass) 8841 return State.AllocateReg(ArgVRM4s); 8842 if (RC == &RISCV::VRM8RegClass) 8843 return State.AllocateReg(ArgVRM8s); 8844 llvm_unreachable("Unhandled register class for ValueType"); 8845 } 8846 8847 // Implements the RISC-V calling convention. Returns true upon failure. 8848 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 8849 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 8850 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 8851 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 8852 Optional<unsigned> FirstMaskArgument) { 8853 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 8854 assert(XLen == 32 || XLen == 64); 8855 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 8856 8857 // Any return value split in to more than two values can't be returned 8858 // directly. Vectors are returned via the available vector registers. 8859 if (!LocVT.isVector() && IsRet && ValNo > 1) 8860 return true; 8861 8862 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 8863 // variadic argument, or if no F16/F32 argument registers are available. 8864 bool UseGPRForF16_F32 = true; 8865 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 8866 // variadic argument, or if no F64 argument registers are available. 8867 bool UseGPRForF64 = true; 8868 8869 switch (ABI) { 8870 default: 8871 llvm_unreachable("Unexpected ABI"); 8872 case RISCVABI::ABI_ILP32: 8873 case RISCVABI::ABI_LP64: 8874 break; 8875 case RISCVABI::ABI_ILP32F: 8876 case RISCVABI::ABI_LP64F: 8877 UseGPRForF16_F32 = !IsFixed; 8878 break; 8879 case RISCVABI::ABI_ILP32D: 8880 case RISCVABI::ABI_LP64D: 8881 UseGPRForF16_F32 = !IsFixed; 8882 UseGPRForF64 = !IsFixed; 8883 break; 8884 } 8885 8886 // FPR16, FPR32, and FPR64 alias each other. 8887 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 8888 UseGPRForF16_F32 = true; 8889 UseGPRForF64 = true; 8890 } 8891 8892 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 8893 // similar local variables rather than directly checking against the target 8894 // ABI. 8895 8896 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 8897 LocVT = XLenVT; 8898 LocInfo = CCValAssign::BCvt; 8899 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 8900 LocVT = MVT::i64; 8901 LocInfo = CCValAssign::BCvt; 8902 } 8903 8904 // If this is a variadic argument, the RISC-V calling convention requires 8905 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 8906 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 8907 // be used regardless of whether the original argument was split during 8908 // legalisation or not. The argument will not be passed by registers if the 8909 // original type is larger than 2*XLEN, so the register alignment rule does 8910 // not apply. 8911 unsigned TwoXLenInBytes = (2 * XLen) / 8; 8912 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 8913 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 8914 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 8915 // Skip 'odd' register if necessary. 8916 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 8917 State.AllocateReg(ArgGPRs); 8918 } 8919 8920 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 8921 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 8922 State.getPendingArgFlags(); 8923 8924 assert(PendingLocs.size() == PendingArgFlags.size() && 8925 "PendingLocs and PendingArgFlags out of sync"); 8926 8927 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8928 // registers are exhausted. 8929 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8930 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8931 "Can't lower f64 if it is split"); 8932 // Depending on available argument GPRS, f64 may be passed in a pair of 8933 // GPRs, split between a GPR and the stack, or passed completely on the 8934 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8935 // cases. 8936 Register Reg = State.AllocateReg(ArgGPRs); 8937 LocVT = MVT::i32; 8938 if (!Reg) { 8939 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8940 State.addLoc( 8941 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8942 return false; 8943 } 8944 if (!State.AllocateReg(ArgGPRs)) 8945 State.AllocateStack(4, Align(4)); 8946 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8947 return false; 8948 } 8949 8950 // Fixed-length vectors are located in the corresponding scalable-vector 8951 // container types. 8952 if (ValVT.isFixedLengthVector()) 8953 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8954 8955 // Split arguments might be passed indirectly, so keep track of the pending 8956 // values. Split vectors are passed via a mix of registers and indirectly, so 8957 // treat them as we would any other argument. 8958 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8959 LocVT = XLenVT; 8960 LocInfo = CCValAssign::Indirect; 8961 PendingLocs.push_back( 8962 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8963 PendingArgFlags.push_back(ArgFlags); 8964 if (!ArgFlags.isSplitEnd()) { 8965 return false; 8966 } 8967 } 8968 8969 // If the split argument only had two elements, it should be passed directly 8970 // in registers or on the stack. 8971 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8972 PendingLocs.size() <= 2) { 8973 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8974 // Apply the normal calling convention rules to the first half of the 8975 // split argument. 8976 CCValAssign VA = PendingLocs[0]; 8977 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8978 PendingLocs.clear(); 8979 PendingArgFlags.clear(); 8980 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8981 ArgFlags); 8982 } 8983 8984 // Allocate to a register if possible, or else a stack slot. 8985 Register Reg; 8986 unsigned StoreSizeBytes = XLen / 8; 8987 Align StackAlign = Align(XLen / 8); 8988 8989 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8990 Reg = State.AllocateReg(ArgFPR16s); 8991 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8992 Reg = State.AllocateReg(ArgFPR32s); 8993 else if (ValVT == MVT::f64 && !UseGPRForF64) 8994 Reg = State.AllocateReg(ArgFPR64s); 8995 else if (ValVT.isVector()) { 8996 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8997 if (!Reg) { 8998 // For return values, the vector must be passed fully via registers or 8999 // via the stack. 9000 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 9001 // but we're using all of them. 9002 if (IsRet) 9003 return true; 9004 // Try using a GPR to pass the address 9005 if ((Reg = State.AllocateReg(ArgGPRs))) { 9006 LocVT = XLenVT; 9007 LocInfo = CCValAssign::Indirect; 9008 } else if (ValVT.isScalableVector()) { 9009 LocVT = XLenVT; 9010 LocInfo = CCValAssign::Indirect; 9011 } else { 9012 // Pass fixed-length vectors on the stack. 9013 LocVT = ValVT; 9014 StoreSizeBytes = ValVT.getStoreSize(); 9015 // Align vectors to their element sizes, being careful for vXi1 9016 // vectors. 9017 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9018 } 9019 } 9020 } else { 9021 Reg = State.AllocateReg(ArgGPRs); 9022 } 9023 9024 unsigned StackOffset = 9025 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 9026 9027 // If we reach this point and PendingLocs is non-empty, we must be at the 9028 // end of a split argument that must be passed indirectly. 9029 if (!PendingLocs.empty()) { 9030 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 9031 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 9032 9033 for (auto &It : PendingLocs) { 9034 if (Reg) 9035 It.convertToReg(Reg); 9036 else 9037 It.convertToMem(StackOffset); 9038 State.addLoc(It); 9039 } 9040 PendingLocs.clear(); 9041 PendingArgFlags.clear(); 9042 return false; 9043 } 9044 9045 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 9046 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 9047 "Expected an XLenVT or vector types at this stage"); 9048 9049 if (Reg) { 9050 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9051 return false; 9052 } 9053 9054 // When a floating-point value is passed on the stack, no bit-conversion is 9055 // needed. 9056 if (ValVT.isFloatingPoint()) { 9057 LocVT = ValVT; 9058 LocInfo = CCValAssign::Full; 9059 } 9060 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9061 return false; 9062 } 9063 9064 template <typename ArgTy> 9065 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 9066 for (const auto &ArgIdx : enumerate(Args)) { 9067 MVT ArgVT = ArgIdx.value().VT; 9068 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 9069 return ArgIdx.index(); 9070 } 9071 return None; 9072 } 9073 9074 void RISCVTargetLowering::analyzeInputArgs( 9075 MachineFunction &MF, CCState &CCInfo, 9076 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 9077 RISCVCCAssignFn Fn) const { 9078 unsigned NumArgs = Ins.size(); 9079 FunctionType *FType = MF.getFunction().getFunctionType(); 9080 9081 Optional<unsigned> FirstMaskArgument; 9082 if (Subtarget.hasVInstructions()) 9083 FirstMaskArgument = preAssignMask(Ins); 9084 9085 for (unsigned i = 0; i != NumArgs; ++i) { 9086 MVT ArgVT = Ins[i].VT; 9087 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 9088 9089 Type *ArgTy = nullptr; 9090 if (IsRet) 9091 ArgTy = FType->getReturnType(); 9092 else if (Ins[i].isOrigArg()) 9093 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 9094 9095 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9096 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9097 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 9098 FirstMaskArgument)) { 9099 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 9100 << EVT(ArgVT).getEVTString() << '\n'); 9101 llvm_unreachable(nullptr); 9102 } 9103 } 9104 } 9105 9106 void RISCVTargetLowering::analyzeOutputArgs( 9107 MachineFunction &MF, CCState &CCInfo, 9108 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 9109 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 9110 unsigned NumArgs = Outs.size(); 9111 9112 Optional<unsigned> FirstMaskArgument; 9113 if (Subtarget.hasVInstructions()) 9114 FirstMaskArgument = preAssignMask(Outs); 9115 9116 for (unsigned i = 0; i != NumArgs; i++) { 9117 MVT ArgVT = Outs[i].VT; 9118 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9119 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 9120 9121 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9122 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9123 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 9124 FirstMaskArgument)) { 9125 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 9126 << EVT(ArgVT).getEVTString() << "\n"); 9127 llvm_unreachable(nullptr); 9128 } 9129 } 9130 } 9131 9132 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 9133 // values. 9134 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 9135 const CCValAssign &VA, const SDLoc &DL, 9136 const RISCVSubtarget &Subtarget) { 9137 switch (VA.getLocInfo()) { 9138 default: 9139 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9140 case CCValAssign::Full: 9141 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 9142 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 9143 break; 9144 case CCValAssign::BCvt: 9145 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9146 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 9147 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9148 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 9149 else 9150 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 9151 break; 9152 } 9153 return Val; 9154 } 9155 9156 // The caller is responsible for loading the full value if the argument is 9157 // passed with CCValAssign::Indirect. 9158 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 9159 const CCValAssign &VA, const SDLoc &DL, 9160 const RISCVTargetLowering &TLI) { 9161 MachineFunction &MF = DAG.getMachineFunction(); 9162 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9163 EVT LocVT = VA.getLocVT(); 9164 SDValue Val; 9165 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 9166 Register VReg = RegInfo.createVirtualRegister(RC); 9167 RegInfo.addLiveIn(VA.getLocReg(), VReg); 9168 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 9169 9170 if (VA.getLocInfo() == CCValAssign::Indirect) 9171 return Val; 9172 9173 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 9174 } 9175 9176 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 9177 const CCValAssign &VA, const SDLoc &DL, 9178 const RISCVSubtarget &Subtarget) { 9179 EVT LocVT = VA.getLocVT(); 9180 9181 switch (VA.getLocInfo()) { 9182 default: 9183 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9184 case CCValAssign::Full: 9185 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 9186 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 9187 break; 9188 case CCValAssign::BCvt: 9189 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9190 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 9191 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9192 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 9193 else 9194 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 9195 break; 9196 } 9197 return Val; 9198 } 9199 9200 // The caller is responsible for loading the full value if the argument is 9201 // passed with CCValAssign::Indirect. 9202 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 9203 const CCValAssign &VA, const SDLoc &DL) { 9204 MachineFunction &MF = DAG.getMachineFunction(); 9205 MachineFrameInfo &MFI = MF.getFrameInfo(); 9206 EVT LocVT = VA.getLocVT(); 9207 EVT ValVT = VA.getValVT(); 9208 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 9209 if (ValVT.isScalableVector()) { 9210 // When the value is a scalable vector, we save the pointer which points to 9211 // the scalable vector value in the stack. The ValVT will be the pointer 9212 // type, instead of the scalable vector type. 9213 ValVT = LocVT; 9214 } 9215 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 9216 /*IsImmutable=*/true); 9217 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 9218 SDValue Val; 9219 9220 ISD::LoadExtType ExtType; 9221 switch (VA.getLocInfo()) { 9222 default: 9223 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9224 case CCValAssign::Full: 9225 case CCValAssign::Indirect: 9226 case CCValAssign::BCvt: 9227 ExtType = ISD::NON_EXTLOAD; 9228 break; 9229 } 9230 Val = DAG.getExtLoad( 9231 ExtType, DL, LocVT, Chain, FIN, 9232 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 9233 return Val; 9234 } 9235 9236 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 9237 const CCValAssign &VA, const SDLoc &DL) { 9238 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 9239 "Unexpected VA"); 9240 MachineFunction &MF = DAG.getMachineFunction(); 9241 MachineFrameInfo &MFI = MF.getFrameInfo(); 9242 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9243 9244 if (VA.isMemLoc()) { 9245 // f64 is passed on the stack. 9246 int FI = 9247 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 9248 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9249 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 9250 MachinePointerInfo::getFixedStack(MF, FI)); 9251 } 9252 9253 assert(VA.isRegLoc() && "Expected register VA assignment"); 9254 9255 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9256 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 9257 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 9258 SDValue Hi; 9259 if (VA.getLocReg() == RISCV::X17) { 9260 // Second half of f64 is passed on the stack. 9261 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 9262 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9263 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 9264 MachinePointerInfo::getFixedStack(MF, FI)); 9265 } else { 9266 // Second half of f64 is passed in another GPR. 9267 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9268 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 9269 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 9270 } 9271 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 9272 } 9273 9274 // FastCC has less than 1% performance improvement for some particular 9275 // benchmark. But theoretically, it may has benenfit for some cases. 9276 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 9277 unsigned ValNo, MVT ValVT, MVT LocVT, 9278 CCValAssign::LocInfo LocInfo, 9279 ISD::ArgFlagsTy ArgFlags, CCState &State, 9280 bool IsFixed, bool IsRet, Type *OrigTy, 9281 const RISCVTargetLowering &TLI, 9282 Optional<unsigned> FirstMaskArgument) { 9283 9284 // X5 and X6 might be used for save-restore libcall. 9285 static const MCPhysReg GPRList[] = { 9286 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 9287 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 9288 RISCV::X29, RISCV::X30, RISCV::X31}; 9289 9290 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9291 if (unsigned Reg = State.AllocateReg(GPRList)) { 9292 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9293 return false; 9294 } 9295 } 9296 9297 if (LocVT == MVT::f16) { 9298 static const MCPhysReg FPR16List[] = { 9299 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 9300 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 9301 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 9302 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 9303 if (unsigned Reg = State.AllocateReg(FPR16List)) { 9304 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9305 return false; 9306 } 9307 } 9308 9309 if (LocVT == MVT::f32) { 9310 static const MCPhysReg FPR32List[] = { 9311 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 9312 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 9313 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 9314 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 9315 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9316 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9317 return false; 9318 } 9319 } 9320 9321 if (LocVT == MVT::f64) { 9322 static const MCPhysReg FPR64List[] = { 9323 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 9324 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 9325 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 9326 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 9327 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9328 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9329 return false; 9330 } 9331 } 9332 9333 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 9334 unsigned Offset4 = State.AllocateStack(4, Align(4)); 9335 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 9336 return false; 9337 } 9338 9339 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 9340 unsigned Offset5 = State.AllocateStack(8, Align(8)); 9341 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 9342 return false; 9343 } 9344 9345 if (LocVT.isVector()) { 9346 if (unsigned Reg = 9347 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 9348 // Fixed-length vectors are located in the corresponding scalable-vector 9349 // container types. 9350 if (ValVT.isFixedLengthVector()) 9351 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9352 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9353 } else { 9354 // Try and pass the address via a "fast" GPR. 9355 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 9356 LocInfo = CCValAssign::Indirect; 9357 LocVT = TLI.getSubtarget().getXLenVT(); 9358 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 9359 } else if (ValVT.isFixedLengthVector()) { 9360 auto StackAlign = 9361 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9362 unsigned StackOffset = 9363 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 9364 State.addLoc( 9365 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9366 } else { 9367 // Can't pass scalable vectors on the stack. 9368 return true; 9369 } 9370 } 9371 9372 return false; 9373 } 9374 9375 return true; // CC didn't match. 9376 } 9377 9378 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 9379 CCValAssign::LocInfo LocInfo, 9380 ISD::ArgFlagsTy ArgFlags, CCState &State) { 9381 9382 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9383 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 9384 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 9385 static const MCPhysReg GPRList[] = { 9386 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 9387 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 9388 if (unsigned Reg = State.AllocateReg(GPRList)) { 9389 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9390 return false; 9391 } 9392 } 9393 9394 if (LocVT == MVT::f32) { 9395 // Pass in STG registers: F1, ..., F6 9396 // fs0 ... fs5 9397 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 9398 RISCV::F18_F, RISCV::F19_F, 9399 RISCV::F20_F, RISCV::F21_F}; 9400 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9401 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9402 return false; 9403 } 9404 } 9405 9406 if (LocVT == MVT::f64) { 9407 // Pass in STG registers: D1, ..., D6 9408 // fs6 ... fs11 9409 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 9410 RISCV::F24_D, RISCV::F25_D, 9411 RISCV::F26_D, RISCV::F27_D}; 9412 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9413 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9414 return false; 9415 } 9416 } 9417 9418 report_fatal_error("No registers left in GHC calling convention"); 9419 return true; 9420 } 9421 9422 // Transform physical registers into virtual registers. 9423 SDValue RISCVTargetLowering::LowerFormalArguments( 9424 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 9425 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 9426 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 9427 9428 MachineFunction &MF = DAG.getMachineFunction(); 9429 9430 switch (CallConv) { 9431 default: 9432 report_fatal_error("Unsupported calling convention"); 9433 case CallingConv::C: 9434 case CallingConv::Fast: 9435 break; 9436 case CallingConv::GHC: 9437 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 9438 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 9439 report_fatal_error( 9440 "GHC calling convention requires the F and D instruction set extensions"); 9441 } 9442 9443 const Function &Func = MF.getFunction(); 9444 if (Func.hasFnAttribute("interrupt")) { 9445 if (!Func.arg_empty()) 9446 report_fatal_error( 9447 "Functions with the interrupt attribute cannot have arguments!"); 9448 9449 StringRef Kind = 9450 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9451 9452 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 9453 report_fatal_error( 9454 "Function interrupt attribute argument not supported!"); 9455 } 9456 9457 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9458 MVT XLenVT = Subtarget.getXLenVT(); 9459 unsigned XLenInBytes = Subtarget.getXLen() / 8; 9460 // Used with vargs to acumulate store chains. 9461 std::vector<SDValue> OutChains; 9462 9463 // Assign locations to all of the incoming arguments. 9464 SmallVector<CCValAssign, 16> ArgLocs; 9465 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9466 9467 if (CallConv == CallingConv::GHC) 9468 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 9469 else 9470 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 9471 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9472 : CC_RISCV); 9473 9474 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 9475 CCValAssign &VA = ArgLocs[i]; 9476 SDValue ArgValue; 9477 // Passing f64 on RV32D with a soft float ABI must be handled as a special 9478 // case. 9479 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 9480 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 9481 else if (VA.isRegLoc()) 9482 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 9483 else 9484 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 9485 9486 if (VA.getLocInfo() == CCValAssign::Indirect) { 9487 // If the original argument was split and passed by reference (e.g. i128 9488 // on RV32), we need to load all parts of it here (using the same 9489 // address). Vectors may be partly split to registers and partly to the 9490 // stack, in which case the base address is partly offset and subsequent 9491 // stores are relative to that. 9492 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 9493 MachinePointerInfo())); 9494 unsigned ArgIndex = Ins[i].OrigArgIndex; 9495 unsigned ArgPartOffset = Ins[i].PartOffset; 9496 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9497 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 9498 CCValAssign &PartVA = ArgLocs[i + 1]; 9499 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 9500 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9501 if (PartVA.getValVT().isScalableVector()) 9502 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9503 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 9504 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 9505 MachinePointerInfo())); 9506 ++i; 9507 } 9508 continue; 9509 } 9510 InVals.push_back(ArgValue); 9511 } 9512 9513 if (IsVarArg) { 9514 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 9515 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 9516 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 9517 MachineFrameInfo &MFI = MF.getFrameInfo(); 9518 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9519 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 9520 9521 // Offset of the first variable argument from stack pointer, and size of 9522 // the vararg save area. For now, the varargs save area is either zero or 9523 // large enough to hold a0-a7. 9524 int VaArgOffset, VarArgsSaveSize; 9525 9526 // If all registers are allocated, then all varargs must be passed on the 9527 // stack and we don't need to save any argregs. 9528 if (ArgRegs.size() == Idx) { 9529 VaArgOffset = CCInfo.getNextStackOffset(); 9530 VarArgsSaveSize = 0; 9531 } else { 9532 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 9533 VaArgOffset = -VarArgsSaveSize; 9534 } 9535 9536 // Record the frame index of the first variable argument 9537 // which is a value necessary to VASTART. 9538 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9539 RVFI->setVarArgsFrameIndex(FI); 9540 9541 // If saving an odd number of registers then create an extra stack slot to 9542 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 9543 // offsets to even-numbered registered remain 2*XLEN-aligned. 9544 if (Idx % 2) { 9545 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 9546 VarArgsSaveSize += XLenInBytes; 9547 } 9548 9549 // Copy the integer registers that may have been used for passing varargs 9550 // to the vararg save area. 9551 for (unsigned I = Idx; I < ArgRegs.size(); 9552 ++I, VaArgOffset += XLenInBytes) { 9553 const Register Reg = RegInfo.createVirtualRegister(RC); 9554 RegInfo.addLiveIn(ArgRegs[I], Reg); 9555 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 9556 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9557 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9558 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 9559 MachinePointerInfo::getFixedStack(MF, FI)); 9560 cast<StoreSDNode>(Store.getNode()) 9561 ->getMemOperand() 9562 ->setValue((Value *)nullptr); 9563 OutChains.push_back(Store); 9564 } 9565 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 9566 } 9567 9568 // All stores are grouped in one node to allow the matching between 9569 // the size of Ins and InVals. This only happens for vararg functions. 9570 if (!OutChains.empty()) { 9571 OutChains.push_back(Chain); 9572 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 9573 } 9574 9575 return Chain; 9576 } 9577 9578 /// isEligibleForTailCallOptimization - Check whether the call is eligible 9579 /// for tail call optimization. 9580 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 9581 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 9582 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 9583 const SmallVector<CCValAssign, 16> &ArgLocs) const { 9584 9585 auto &Callee = CLI.Callee; 9586 auto CalleeCC = CLI.CallConv; 9587 auto &Outs = CLI.Outs; 9588 auto &Caller = MF.getFunction(); 9589 auto CallerCC = Caller.getCallingConv(); 9590 9591 // Exception-handling functions need a special set of instructions to 9592 // indicate a return to the hardware. Tail-calling another function would 9593 // probably break this. 9594 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 9595 // should be expanded as new function attributes are introduced. 9596 if (Caller.hasFnAttribute("interrupt")) 9597 return false; 9598 9599 // Do not tail call opt if the stack is used to pass parameters. 9600 if (CCInfo.getNextStackOffset() != 0) 9601 return false; 9602 9603 // Do not tail call opt if any parameters need to be passed indirectly. 9604 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 9605 // passed indirectly. So the address of the value will be passed in a 9606 // register, or if not available, then the address is put on the stack. In 9607 // order to pass indirectly, space on the stack often needs to be allocated 9608 // in order to store the value. In this case the CCInfo.getNextStackOffset() 9609 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 9610 // are passed CCValAssign::Indirect. 9611 for (auto &VA : ArgLocs) 9612 if (VA.getLocInfo() == CCValAssign::Indirect) 9613 return false; 9614 9615 // Do not tail call opt if either caller or callee uses struct return 9616 // semantics. 9617 auto IsCallerStructRet = Caller.hasStructRetAttr(); 9618 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 9619 if (IsCallerStructRet || IsCalleeStructRet) 9620 return false; 9621 9622 // Externally-defined functions with weak linkage should not be 9623 // tail-called. The behaviour of branch instructions in this situation (as 9624 // used for tail calls) is implementation-defined, so we cannot rely on the 9625 // linker replacing the tail call with a return. 9626 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 9627 const GlobalValue *GV = G->getGlobal(); 9628 if (GV->hasExternalWeakLinkage()) 9629 return false; 9630 } 9631 9632 // The callee has to preserve all registers the caller needs to preserve. 9633 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9634 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 9635 if (CalleeCC != CallerCC) { 9636 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 9637 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 9638 return false; 9639 } 9640 9641 // Byval parameters hand the function a pointer directly into the stack area 9642 // we want to reuse during a tail call. Working around this *is* possible 9643 // but less efficient and uglier in LowerCall. 9644 for (auto &Arg : Outs) 9645 if (Arg.Flags.isByVal()) 9646 return false; 9647 9648 return true; 9649 } 9650 9651 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 9652 return DAG.getDataLayout().getPrefTypeAlign( 9653 VT.getTypeForEVT(*DAG.getContext())); 9654 } 9655 9656 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 9657 // and output parameter nodes. 9658 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 9659 SmallVectorImpl<SDValue> &InVals) const { 9660 SelectionDAG &DAG = CLI.DAG; 9661 SDLoc &DL = CLI.DL; 9662 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 9663 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 9664 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 9665 SDValue Chain = CLI.Chain; 9666 SDValue Callee = CLI.Callee; 9667 bool &IsTailCall = CLI.IsTailCall; 9668 CallingConv::ID CallConv = CLI.CallConv; 9669 bool IsVarArg = CLI.IsVarArg; 9670 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9671 MVT XLenVT = Subtarget.getXLenVT(); 9672 9673 MachineFunction &MF = DAG.getMachineFunction(); 9674 9675 // Analyze the operands of the call, assigning locations to each operand. 9676 SmallVector<CCValAssign, 16> ArgLocs; 9677 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9678 9679 if (CallConv == CallingConv::GHC) 9680 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 9681 else 9682 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 9683 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9684 : CC_RISCV); 9685 9686 // Check if it's really possible to do a tail call. 9687 if (IsTailCall) 9688 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 9689 9690 if (IsTailCall) 9691 ++NumTailCalls; 9692 else if (CLI.CB && CLI.CB->isMustTailCall()) 9693 report_fatal_error("failed to perform tail call elimination on a call " 9694 "site marked musttail"); 9695 9696 // Get a count of how many bytes are to be pushed on the stack. 9697 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 9698 9699 // Create local copies for byval args 9700 SmallVector<SDValue, 8> ByValArgs; 9701 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9702 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9703 if (!Flags.isByVal()) 9704 continue; 9705 9706 SDValue Arg = OutVals[i]; 9707 unsigned Size = Flags.getByValSize(); 9708 Align Alignment = Flags.getNonZeroByValAlign(); 9709 9710 int FI = 9711 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 9712 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9713 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 9714 9715 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 9716 /*IsVolatile=*/false, 9717 /*AlwaysInline=*/false, IsTailCall, 9718 MachinePointerInfo(), MachinePointerInfo()); 9719 ByValArgs.push_back(FIPtr); 9720 } 9721 9722 if (!IsTailCall) 9723 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 9724 9725 // Copy argument values to their designated locations. 9726 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 9727 SmallVector<SDValue, 8> MemOpChains; 9728 SDValue StackPtr; 9729 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 9730 CCValAssign &VA = ArgLocs[i]; 9731 SDValue ArgValue = OutVals[i]; 9732 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9733 9734 // Handle passing f64 on RV32D with a soft float ABI as a special case. 9735 bool IsF64OnRV32DSoftABI = 9736 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 9737 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 9738 SDValue SplitF64 = DAG.getNode( 9739 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 9740 SDValue Lo = SplitF64.getValue(0); 9741 SDValue Hi = SplitF64.getValue(1); 9742 9743 Register RegLo = VA.getLocReg(); 9744 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 9745 9746 if (RegLo == RISCV::X17) { 9747 // Second half of f64 is passed on the stack. 9748 // Work out the address of the stack slot. 9749 if (!StackPtr.getNode()) 9750 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9751 // Emit the store. 9752 MemOpChains.push_back( 9753 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 9754 } else { 9755 // Second half of f64 is passed in another GPR. 9756 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9757 Register RegHigh = RegLo + 1; 9758 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 9759 } 9760 continue; 9761 } 9762 9763 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 9764 // as any other MemLoc. 9765 9766 // Promote the value if needed. 9767 // For now, only handle fully promoted and indirect arguments. 9768 if (VA.getLocInfo() == CCValAssign::Indirect) { 9769 // Store the argument in a stack slot and pass its address. 9770 Align StackAlign = 9771 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 9772 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 9773 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 9774 // If the original argument was split (e.g. i128), we need 9775 // to store the required parts of it here (and pass just one address). 9776 // Vectors may be partly split to registers and partly to the stack, in 9777 // which case the base address is partly offset and subsequent stores are 9778 // relative to that. 9779 unsigned ArgIndex = Outs[i].OrigArgIndex; 9780 unsigned ArgPartOffset = Outs[i].PartOffset; 9781 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9782 // Calculate the total size to store. We don't have access to what we're 9783 // actually storing other than performing the loop and collecting the 9784 // info. 9785 SmallVector<std::pair<SDValue, SDValue>> Parts; 9786 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 9787 SDValue PartValue = OutVals[i + 1]; 9788 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 9789 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9790 EVT PartVT = PartValue.getValueType(); 9791 if (PartVT.isScalableVector()) 9792 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9793 StoredSize += PartVT.getStoreSize(); 9794 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 9795 Parts.push_back(std::make_pair(PartValue, Offset)); 9796 ++i; 9797 } 9798 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 9799 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 9800 MemOpChains.push_back( 9801 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 9802 MachinePointerInfo::getFixedStack(MF, FI))); 9803 for (const auto &Part : Parts) { 9804 SDValue PartValue = Part.first; 9805 SDValue PartOffset = Part.second; 9806 SDValue Address = 9807 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 9808 MemOpChains.push_back( 9809 DAG.getStore(Chain, DL, PartValue, Address, 9810 MachinePointerInfo::getFixedStack(MF, FI))); 9811 } 9812 ArgValue = SpillSlot; 9813 } else { 9814 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 9815 } 9816 9817 // Use local copy if it is a byval arg. 9818 if (Flags.isByVal()) 9819 ArgValue = ByValArgs[j++]; 9820 9821 if (VA.isRegLoc()) { 9822 // Queue up the argument copies and emit them at the end. 9823 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 9824 } else { 9825 assert(VA.isMemLoc() && "Argument not register or memory"); 9826 assert(!IsTailCall && "Tail call not allowed if stack is used " 9827 "for passing parameters"); 9828 9829 // Work out the address of the stack slot. 9830 if (!StackPtr.getNode()) 9831 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9832 SDValue Address = 9833 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 9834 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 9835 9836 // Emit the store. 9837 MemOpChains.push_back( 9838 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 9839 } 9840 } 9841 9842 // Join the stores, which are independent of one another. 9843 if (!MemOpChains.empty()) 9844 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 9845 9846 SDValue Glue; 9847 9848 // Build a sequence of copy-to-reg nodes, chained and glued together. 9849 for (auto &Reg : RegsToPass) { 9850 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 9851 Glue = Chain.getValue(1); 9852 } 9853 9854 // Validate that none of the argument registers have been marked as 9855 // reserved, if so report an error. Do the same for the return address if this 9856 // is not a tailcall. 9857 validateCCReservedRegs(RegsToPass, MF); 9858 if (!IsTailCall && 9859 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 9860 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9861 MF.getFunction(), 9862 "Return address register required, but has been reserved."}); 9863 9864 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 9865 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 9866 // split it and then direct call can be matched by PseudoCALL. 9867 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 9868 const GlobalValue *GV = S->getGlobal(); 9869 9870 unsigned OpFlags = RISCVII::MO_CALL; 9871 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 9872 OpFlags = RISCVII::MO_PLT; 9873 9874 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 9875 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 9876 unsigned OpFlags = RISCVII::MO_CALL; 9877 9878 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 9879 nullptr)) 9880 OpFlags = RISCVII::MO_PLT; 9881 9882 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 9883 } 9884 9885 // The first call operand is the chain and the second is the target address. 9886 SmallVector<SDValue, 8> Ops; 9887 Ops.push_back(Chain); 9888 Ops.push_back(Callee); 9889 9890 // Add argument registers to the end of the list so that they are 9891 // known live into the call. 9892 for (auto &Reg : RegsToPass) 9893 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 9894 9895 if (!IsTailCall) { 9896 // Add a register mask operand representing the call-preserved registers. 9897 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9898 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 9899 assert(Mask && "Missing call preserved mask for calling convention"); 9900 Ops.push_back(DAG.getRegisterMask(Mask)); 9901 } 9902 9903 // Glue the call to the argument copies, if any. 9904 if (Glue.getNode()) 9905 Ops.push_back(Glue); 9906 9907 // Emit the call. 9908 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9909 9910 if (IsTailCall) { 9911 MF.getFrameInfo().setHasTailCall(); 9912 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 9913 } 9914 9915 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 9916 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 9917 Glue = Chain.getValue(1); 9918 9919 // Mark the end of the call, which is glued to the call itself. 9920 Chain = DAG.getCALLSEQ_END(Chain, 9921 DAG.getConstant(NumBytes, DL, PtrVT, true), 9922 DAG.getConstant(0, DL, PtrVT, true), 9923 Glue, DL); 9924 Glue = Chain.getValue(1); 9925 9926 // Assign locations to each value returned by this call. 9927 SmallVector<CCValAssign, 16> RVLocs; 9928 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 9929 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 9930 9931 // Copy all of the result registers out of their specified physreg. 9932 for (auto &VA : RVLocs) { 9933 // Copy the value out 9934 SDValue RetValue = 9935 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9936 // Glue the RetValue to the end of the call sequence 9937 Chain = RetValue.getValue(1); 9938 Glue = RetValue.getValue(2); 9939 9940 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9941 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9942 SDValue RetValue2 = 9943 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9944 Chain = RetValue2.getValue(1); 9945 Glue = RetValue2.getValue(2); 9946 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9947 RetValue2); 9948 } 9949 9950 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9951 9952 InVals.push_back(RetValue); 9953 } 9954 9955 return Chain; 9956 } 9957 9958 bool RISCVTargetLowering::CanLowerReturn( 9959 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9960 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9961 SmallVector<CCValAssign, 16> RVLocs; 9962 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9963 9964 Optional<unsigned> FirstMaskArgument; 9965 if (Subtarget.hasVInstructions()) 9966 FirstMaskArgument = preAssignMask(Outs); 9967 9968 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9969 MVT VT = Outs[i].VT; 9970 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9971 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9972 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9973 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9974 *this, FirstMaskArgument)) 9975 return false; 9976 } 9977 return true; 9978 } 9979 9980 SDValue 9981 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9982 bool IsVarArg, 9983 const SmallVectorImpl<ISD::OutputArg> &Outs, 9984 const SmallVectorImpl<SDValue> &OutVals, 9985 const SDLoc &DL, SelectionDAG &DAG) const { 9986 const MachineFunction &MF = DAG.getMachineFunction(); 9987 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9988 9989 // Stores the assignment of the return value to a location. 9990 SmallVector<CCValAssign, 16> RVLocs; 9991 9992 // Info about the registers and stack slot. 9993 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9994 *DAG.getContext()); 9995 9996 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9997 nullptr, CC_RISCV); 9998 9999 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 10000 report_fatal_error("GHC functions return void only"); 10001 10002 SDValue Glue; 10003 SmallVector<SDValue, 4> RetOps(1, Chain); 10004 10005 // Copy the result values into the output registers. 10006 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 10007 SDValue Val = OutVals[i]; 10008 CCValAssign &VA = RVLocs[i]; 10009 assert(VA.isRegLoc() && "Can only return in registers!"); 10010 10011 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10012 // Handle returning f64 on RV32D with a soft float ABI. 10013 assert(VA.isRegLoc() && "Expected return via registers"); 10014 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 10015 DAG.getVTList(MVT::i32, MVT::i32), Val); 10016 SDValue Lo = SplitF64.getValue(0); 10017 SDValue Hi = SplitF64.getValue(1); 10018 Register RegLo = VA.getLocReg(); 10019 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10020 Register RegHi = RegLo + 1; 10021 10022 if (STI.isRegisterReservedByUser(RegLo) || 10023 STI.isRegisterReservedByUser(RegHi)) 10024 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10025 MF.getFunction(), 10026 "Return value register required, but has been reserved."}); 10027 10028 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 10029 Glue = Chain.getValue(1); 10030 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 10031 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 10032 Glue = Chain.getValue(1); 10033 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 10034 } else { 10035 // Handle a 'normal' return. 10036 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 10037 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 10038 10039 if (STI.isRegisterReservedByUser(VA.getLocReg())) 10040 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10041 MF.getFunction(), 10042 "Return value register required, but has been reserved."}); 10043 10044 // Guarantee that all emitted copies are stuck together. 10045 Glue = Chain.getValue(1); 10046 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 10047 } 10048 } 10049 10050 RetOps[0] = Chain; // Update chain. 10051 10052 // Add the glue node if we have it. 10053 if (Glue.getNode()) { 10054 RetOps.push_back(Glue); 10055 } 10056 10057 unsigned RetOpc = RISCVISD::RET_FLAG; 10058 // Interrupt service routines use different return instructions. 10059 const Function &Func = DAG.getMachineFunction().getFunction(); 10060 if (Func.hasFnAttribute("interrupt")) { 10061 if (!Func.getReturnType()->isVoidTy()) 10062 report_fatal_error( 10063 "Functions with the interrupt attribute must have void return type!"); 10064 10065 MachineFunction &MF = DAG.getMachineFunction(); 10066 StringRef Kind = 10067 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10068 10069 if (Kind == "user") 10070 RetOpc = RISCVISD::URET_FLAG; 10071 else if (Kind == "supervisor") 10072 RetOpc = RISCVISD::SRET_FLAG; 10073 else 10074 RetOpc = RISCVISD::MRET_FLAG; 10075 } 10076 10077 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 10078 } 10079 10080 void RISCVTargetLowering::validateCCReservedRegs( 10081 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 10082 MachineFunction &MF) const { 10083 const Function &F = MF.getFunction(); 10084 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10085 10086 if (llvm::any_of(Regs, [&STI](auto Reg) { 10087 return STI.isRegisterReservedByUser(Reg.first); 10088 })) 10089 F.getContext().diagnose(DiagnosticInfoUnsupported{ 10090 F, "Argument register required, but has been reserved."}); 10091 } 10092 10093 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 10094 return CI->isTailCall(); 10095 } 10096 10097 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 10098 #define NODE_NAME_CASE(NODE) \ 10099 case RISCVISD::NODE: \ 10100 return "RISCVISD::" #NODE; 10101 // clang-format off 10102 switch ((RISCVISD::NodeType)Opcode) { 10103 case RISCVISD::FIRST_NUMBER: 10104 break; 10105 NODE_NAME_CASE(RET_FLAG) 10106 NODE_NAME_CASE(URET_FLAG) 10107 NODE_NAME_CASE(SRET_FLAG) 10108 NODE_NAME_CASE(MRET_FLAG) 10109 NODE_NAME_CASE(CALL) 10110 NODE_NAME_CASE(SELECT_CC) 10111 NODE_NAME_CASE(BR_CC) 10112 NODE_NAME_CASE(BuildPairF64) 10113 NODE_NAME_CASE(SplitF64) 10114 NODE_NAME_CASE(TAIL) 10115 NODE_NAME_CASE(MULHSU) 10116 NODE_NAME_CASE(SLLW) 10117 NODE_NAME_CASE(SRAW) 10118 NODE_NAME_CASE(SRLW) 10119 NODE_NAME_CASE(DIVW) 10120 NODE_NAME_CASE(DIVUW) 10121 NODE_NAME_CASE(REMUW) 10122 NODE_NAME_CASE(ROLW) 10123 NODE_NAME_CASE(RORW) 10124 NODE_NAME_CASE(CLZW) 10125 NODE_NAME_CASE(CTZW) 10126 NODE_NAME_CASE(FSLW) 10127 NODE_NAME_CASE(FSRW) 10128 NODE_NAME_CASE(FSL) 10129 NODE_NAME_CASE(FSR) 10130 NODE_NAME_CASE(FMV_H_X) 10131 NODE_NAME_CASE(FMV_X_ANYEXTH) 10132 NODE_NAME_CASE(FMV_W_X_RV64) 10133 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 10134 NODE_NAME_CASE(FCVT_X) 10135 NODE_NAME_CASE(FCVT_XU) 10136 NODE_NAME_CASE(FCVT_W_RV64) 10137 NODE_NAME_CASE(FCVT_WU_RV64) 10138 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 10139 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 10140 NODE_NAME_CASE(READ_CYCLE_WIDE) 10141 NODE_NAME_CASE(GREV) 10142 NODE_NAME_CASE(GREVW) 10143 NODE_NAME_CASE(GORC) 10144 NODE_NAME_CASE(GORCW) 10145 NODE_NAME_CASE(SHFL) 10146 NODE_NAME_CASE(SHFLW) 10147 NODE_NAME_CASE(UNSHFL) 10148 NODE_NAME_CASE(UNSHFLW) 10149 NODE_NAME_CASE(BFP) 10150 NODE_NAME_CASE(BFPW) 10151 NODE_NAME_CASE(BCOMPRESS) 10152 NODE_NAME_CASE(BCOMPRESSW) 10153 NODE_NAME_CASE(BDECOMPRESS) 10154 NODE_NAME_CASE(BDECOMPRESSW) 10155 NODE_NAME_CASE(VMV_V_X_VL) 10156 NODE_NAME_CASE(VFMV_V_F_VL) 10157 NODE_NAME_CASE(VMV_X_S) 10158 NODE_NAME_CASE(VMV_S_X_VL) 10159 NODE_NAME_CASE(VFMV_S_F_VL) 10160 NODE_NAME_CASE(SPLAT_VECTOR_I64) 10161 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 10162 NODE_NAME_CASE(READ_VLENB) 10163 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 10164 NODE_NAME_CASE(VSLIDEUP_VL) 10165 NODE_NAME_CASE(VSLIDE1UP_VL) 10166 NODE_NAME_CASE(VSLIDEDOWN_VL) 10167 NODE_NAME_CASE(VSLIDE1DOWN_VL) 10168 NODE_NAME_CASE(VID_VL) 10169 NODE_NAME_CASE(VFNCVT_ROD_VL) 10170 NODE_NAME_CASE(VECREDUCE_ADD_VL) 10171 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 10172 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 10173 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 10174 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 10175 NODE_NAME_CASE(VECREDUCE_AND_VL) 10176 NODE_NAME_CASE(VECREDUCE_OR_VL) 10177 NODE_NAME_CASE(VECREDUCE_XOR_VL) 10178 NODE_NAME_CASE(VECREDUCE_FADD_VL) 10179 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 10180 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 10181 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 10182 NODE_NAME_CASE(ADD_VL) 10183 NODE_NAME_CASE(AND_VL) 10184 NODE_NAME_CASE(MUL_VL) 10185 NODE_NAME_CASE(OR_VL) 10186 NODE_NAME_CASE(SDIV_VL) 10187 NODE_NAME_CASE(SHL_VL) 10188 NODE_NAME_CASE(SREM_VL) 10189 NODE_NAME_CASE(SRA_VL) 10190 NODE_NAME_CASE(SRL_VL) 10191 NODE_NAME_CASE(SUB_VL) 10192 NODE_NAME_CASE(UDIV_VL) 10193 NODE_NAME_CASE(UREM_VL) 10194 NODE_NAME_CASE(XOR_VL) 10195 NODE_NAME_CASE(SADDSAT_VL) 10196 NODE_NAME_CASE(UADDSAT_VL) 10197 NODE_NAME_CASE(SSUBSAT_VL) 10198 NODE_NAME_CASE(USUBSAT_VL) 10199 NODE_NAME_CASE(FADD_VL) 10200 NODE_NAME_CASE(FSUB_VL) 10201 NODE_NAME_CASE(FMUL_VL) 10202 NODE_NAME_CASE(FDIV_VL) 10203 NODE_NAME_CASE(FNEG_VL) 10204 NODE_NAME_CASE(FABS_VL) 10205 NODE_NAME_CASE(FSQRT_VL) 10206 NODE_NAME_CASE(FMA_VL) 10207 NODE_NAME_CASE(FCOPYSIGN_VL) 10208 NODE_NAME_CASE(SMIN_VL) 10209 NODE_NAME_CASE(SMAX_VL) 10210 NODE_NAME_CASE(UMIN_VL) 10211 NODE_NAME_CASE(UMAX_VL) 10212 NODE_NAME_CASE(FMINNUM_VL) 10213 NODE_NAME_CASE(FMAXNUM_VL) 10214 NODE_NAME_CASE(MULHS_VL) 10215 NODE_NAME_CASE(MULHU_VL) 10216 NODE_NAME_CASE(FP_TO_SINT_VL) 10217 NODE_NAME_CASE(FP_TO_UINT_VL) 10218 NODE_NAME_CASE(SINT_TO_FP_VL) 10219 NODE_NAME_CASE(UINT_TO_FP_VL) 10220 NODE_NAME_CASE(FP_EXTEND_VL) 10221 NODE_NAME_CASE(FP_ROUND_VL) 10222 NODE_NAME_CASE(VWMUL_VL) 10223 NODE_NAME_CASE(VWMULU_VL) 10224 NODE_NAME_CASE(VWMULSU_VL) 10225 NODE_NAME_CASE(VWADDU_VL) 10226 NODE_NAME_CASE(SETCC_VL) 10227 NODE_NAME_CASE(VSELECT_VL) 10228 NODE_NAME_CASE(VP_MERGE_VL) 10229 NODE_NAME_CASE(VMAND_VL) 10230 NODE_NAME_CASE(VMOR_VL) 10231 NODE_NAME_CASE(VMXOR_VL) 10232 NODE_NAME_CASE(VMCLR_VL) 10233 NODE_NAME_CASE(VMSET_VL) 10234 NODE_NAME_CASE(VRGATHER_VX_VL) 10235 NODE_NAME_CASE(VRGATHER_VV_VL) 10236 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 10237 NODE_NAME_CASE(VSEXT_VL) 10238 NODE_NAME_CASE(VZEXT_VL) 10239 NODE_NAME_CASE(VCPOP_VL) 10240 NODE_NAME_CASE(VLE_VL) 10241 NODE_NAME_CASE(VSE_VL) 10242 NODE_NAME_CASE(READ_CSR) 10243 NODE_NAME_CASE(WRITE_CSR) 10244 NODE_NAME_CASE(SWAP_CSR) 10245 } 10246 // clang-format on 10247 return nullptr; 10248 #undef NODE_NAME_CASE 10249 } 10250 10251 /// getConstraintType - Given a constraint letter, return the type of 10252 /// constraint it is for this target. 10253 RISCVTargetLowering::ConstraintType 10254 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 10255 if (Constraint.size() == 1) { 10256 switch (Constraint[0]) { 10257 default: 10258 break; 10259 case 'f': 10260 return C_RegisterClass; 10261 case 'I': 10262 case 'J': 10263 case 'K': 10264 return C_Immediate; 10265 case 'A': 10266 return C_Memory; 10267 case 'S': // A symbolic address 10268 return C_Other; 10269 } 10270 } else { 10271 if (Constraint == "vr" || Constraint == "vm") 10272 return C_RegisterClass; 10273 } 10274 return TargetLowering::getConstraintType(Constraint); 10275 } 10276 10277 std::pair<unsigned, const TargetRegisterClass *> 10278 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10279 StringRef Constraint, 10280 MVT VT) const { 10281 // First, see if this is a constraint that directly corresponds to a 10282 // RISCV register class. 10283 if (Constraint.size() == 1) { 10284 switch (Constraint[0]) { 10285 case 'r': 10286 // TODO: Support fixed vectors up to XLen for P extension? 10287 if (VT.isVector()) 10288 break; 10289 return std::make_pair(0U, &RISCV::GPRRegClass); 10290 case 'f': 10291 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 10292 return std::make_pair(0U, &RISCV::FPR16RegClass); 10293 if (Subtarget.hasStdExtF() && VT == MVT::f32) 10294 return std::make_pair(0U, &RISCV::FPR32RegClass); 10295 if (Subtarget.hasStdExtD() && VT == MVT::f64) 10296 return std::make_pair(0U, &RISCV::FPR64RegClass); 10297 break; 10298 default: 10299 break; 10300 } 10301 } else if (Constraint == "vr") { 10302 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 10303 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10304 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 10305 return std::make_pair(0U, RC); 10306 } 10307 } else if (Constraint == "vm") { 10308 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 10309 return std::make_pair(0U, &RISCV::VMV0RegClass); 10310 } 10311 10312 // Clang will correctly decode the usage of register name aliases into their 10313 // official names. However, other frontends like `rustc` do not. This allows 10314 // users of these frontends to use the ABI names for registers in LLVM-style 10315 // register constraints. 10316 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 10317 .Case("{zero}", RISCV::X0) 10318 .Case("{ra}", RISCV::X1) 10319 .Case("{sp}", RISCV::X2) 10320 .Case("{gp}", RISCV::X3) 10321 .Case("{tp}", RISCV::X4) 10322 .Case("{t0}", RISCV::X5) 10323 .Case("{t1}", RISCV::X6) 10324 .Case("{t2}", RISCV::X7) 10325 .Cases("{s0}", "{fp}", RISCV::X8) 10326 .Case("{s1}", RISCV::X9) 10327 .Case("{a0}", RISCV::X10) 10328 .Case("{a1}", RISCV::X11) 10329 .Case("{a2}", RISCV::X12) 10330 .Case("{a3}", RISCV::X13) 10331 .Case("{a4}", RISCV::X14) 10332 .Case("{a5}", RISCV::X15) 10333 .Case("{a6}", RISCV::X16) 10334 .Case("{a7}", RISCV::X17) 10335 .Case("{s2}", RISCV::X18) 10336 .Case("{s3}", RISCV::X19) 10337 .Case("{s4}", RISCV::X20) 10338 .Case("{s5}", RISCV::X21) 10339 .Case("{s6}", RISCV::X22) 10340 .Case("{s7}", RISCV::X23) 10341 .Case("{s8}", RISCV::X24) 10342 .Case("{s9}", RISCV::X25) 10343 .Case("{s10}", RISCV::X26) 10344 .Case("{s11}", RISCV::X27) 10345 .Case("{t3}", RISCV::X28) 10346 .Case("{t4}", RISCV::X29) 10347 .Case("{t5}", RISCV::X30) 10348 .Case("{t6}", RISCV::X31) 10349 .Default(RISCV::NoRegister); 10350 if (XRegFromAlias != RISCV::NoRegister) 10351 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 10352 10353 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 10354 // TableGen record rather than the AsmName to choose registers for InlineAsm 10355 // constraints, plus we want to match those names to the widest floating point 10356 // register type available, manually select floating point registers here. 10357 // 10358 // The second case is the ABI name of the register, so that frontends can also 10359 // use the ABI names in register constraint lists. 10360 if (Subtarget.hasStdExtF()) { 10361 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 10362 .Cases("{f0}", "{ft0}", RISCV::F0_F) 10363 .Cases("{f1}", "{ft1}", RISCV::F1_F) 10364 .Cases("{f2}", "{ft2}", RISCV::F2_F) 10365 .Cases("{f3}", "{ft3}", RISCV::F3_F) 10366 .Cases("{f4}", "{ft4}", RISCV::F4_F) 10367 .Cases("{f5}", "{ft5}", RISCV::F5_F) 10368 .Cases("{f6}", "{ft6}", RISCV::F6_F) 10369 .Cases("{f7}", "{ft7}", RISCV::F7_F) 10370 .Cases("{f8}", "{fs0}", RISCV::F8_F) 10371 .Cases("{f9}", "{fs1}", RISCV::F9_F) 10372 .Cases("{f10}", "{fa0}", RISCV::F10_F) 10373 .Cases("{f11}", "{fa1}", RISCV::F11_F) 10374 .Cases("{f12}", "{fa2}", RISCV::F12_F) 10375 .Cases("{f13}", "{fa3}", RISCV::F13_F) 10376 .Cases("{f14}", "{fa4}", RISCV::F14_F) 10377 .Cases("{f15}", "{fa5}", RISCV::F15_F) 10378 .Cases("{f16}", "{fa6}", RISCV::F16_F) 10379 .Cases("{f17}", "{fa7}", RISCV::F17_F) 10380 .Cases("{f18}", "{fs2}", RISCV::F18_F) 10381 .Cases("{f19}", "{fs3}", RISCV::F19_F) 10382 .Cases("{f20}", "{fs4}", RISCV::F20_F) 10383 .Cases("{f21}", "{fs5}", RISCV::F21_F) 10384 .Cases("{f22}", "{fs6}", RISCV::F22_F) 10385 .Cases("{f23}", "{fs7}", RISCV::F23_F) 10386 .Cases("{f24}", "{fs8}", RISCV::F24_F) 10387 .Cases("{f25}", "{fs9}", RISCV::F25_F) 10388 .Cases("{f26}", "{fs10}", RISCV::F26_F) 10389 .Cases("{f27}", "{fs11}", RISCV::F27_F) 10390 .Cases("{f28}", "{ft8}", RISCV::F28_F) 10391 .Cases("{f29}", "{ft9}", RISCV::F29_F) 10392 .Cases("{f30}", "{ft10}", RISCV::F30_F) 10393 .Cases("{f31}", "{ft11}", RISCV::F31_F) 10394 .Default(RISCV::NoRegister); 10395 if (FReg != RISCV::NoRegister) { 10396 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 10397 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 10398 unsigned RegNo = FReg - RISCV::F0_F; 10399 unsigned DReg = RISCV::F0_D + RegNo; 10400 return std::make_pair(DReg, &RISCV::FPR64RegClass); 10401 } 10402 if (VT == MVT::f32 || VT == MVT::Other) 10403 return std::make_pair(FReg, &RISCV::FPR32RegClass); 10404 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 10405 unsigned RegNo = FReg - RISCV::F0_F; 10406 unsigned HReg = RISCV::F0_H + RegNo; 10407 return std::make_pair(HReg, &RISCV::FPR16RegClass); 10408 } 10409 } 10410 } 10411 10412 if (Subtarget.hasVInstructions()) { 10413 Register VReg = StringSwitch<Register>(Constraint.lower()) 10414 .Case("{v0}", RISCV::V0) 10415 .Case("{v1}", RISCV::V1) 10416 .Case("{v2}", RISCV::V2) 10417 .Case("{v3}", RISCV::V3) 10418 .Case("{v4}", RISCV::V4) 10419 .Case("{v5}", RISCV::V5) 10420 .Case("{v6}", RISCV::V6) 10421 .Case("{v7}", RISCV::V7) 10422 .Case("{v8}", RISCV::V8) 10423 .Case("{v9}", RISCV::V9) 10424 .Case("{v10}", RISCV::V10) 10425 .Case("{v11}", RISCV::V11) 10426 .Case("{v12}", RISCV::V12) 10427 .Case("{v13}", RISCV::V13) 10428 .Case("{v14}", RISCV::V14) 10429 .Case("{v15}", RISCV::V15) 10430 .Case("{v16}", RISCV::V16) 10431 .Case("{v17}", RISCV::V17) 10432 .Case("{v18}", RISCV::V18) 10433 .Case("{v19}", RISCV::V19) 10434 .Case("{v20}", RISCV::V20) 10435 .Case("{v21}", RISCV::V21) 10436 .Case("{v22}", RISCV::V22) 10437 .Case("{v23}", RISCV::V23) 10438 .Case("{v24}", RISCV::V24) 10439 .Case("{v25}", RISCV::V25) 10440 .Case("{v26}", RISCV::V26) 10441 .Case("{v27}", RISCV::V27) 10442 .Case("{v28}", RISCV::V28) 10443 .Case("{v29}", RISCV::V29) 10444 .Case("{v30}", RISCV::V30) 10445 .Case("{v31}", RISCV::V31) 10446 .Default(RISCV::NoRegister); 10447 if (VReg != RISCV::NoRegister) { 10448 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 10449 return std::make_pair(VReg, &RISCV::VMRegClass); 10450 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 10451 return std::make_pair(VReg, &RISCV::VRRegClass); 10452 for (const auto *RC : 10453 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10454 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 10455 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 10456 return std::make_pair(VReg, RC); 10457 } 10458 } 10459 } 10460 } 10461 10462 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10463 } 10464 10465 unsigned 10466 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 10467 // Currently only support length 1 constraints. 10468 if (ConstraintCode.size() == 1) { 10469 switch (ConstraintCode[0]) { 10470 case 'A': 10471 return InlineAsm::Constraint_A; 10472 default: 10473 break; 10474 } 10475 } 10476 10477 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 10478 } 10479 10480 void RISCVTargetLowering::LowerAsmOperandForConstraint( 10481 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 10482 SelectionDAG &DAG) const { 10483 // Currently only support length 1 constraints. 10484 if (Constraint.length() == 1) { 10485 switch (Constraint[0]) { 10486 case 'I': 10487 // Validate & create a 12-bit signed immediate operand. 10488 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10489 uint64_t CVal = C->getSExtValue(); 10490 if (isInt<12>(CVal)) 10491 Ops.push_back( 10492 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10493 } 10494 return; 10495 case 'J': 10496 // Validate & create an integer zero operand. 10497 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 10498 if (C->getZExtValue() == 0) 10499 Ops.push_back( 10500 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 10501 return; 10502 case 'K': 10503 // Validate & create a 5-bit unsigned immediate operand. 10504 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10505 uint64_t CVal = C->getZExtValue(); 10506 if (isUInt<5>(CVal)) 10507 Ops.push_back( 10508 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10509 } 10510 return; 10511 case 'S': 10512 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 10513 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 10514 GA->getValueType(0))); 10515 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 10516 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 10517 BA->getValueType(0))); 10518 } 10519 return; 10520 default: 10521 break; 10522 } 10523 } 10524 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10525 } 10526 10527 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 10528 Instruction *Inst, 10529 AtomicOrdering Ord) const { 10530 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 10531 return Builder.CreateFence(Ord); 10532 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 10533 return Builder.CreateFence(AtomicOrdering::Release); 10534 return nullptr; 10535 } 10536 10537 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 10538 Instruction *Inst, 10539 AtomicOrdering Ord) const { 10540 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 10541 return Builder.CreateFence(AtomicOrdering::Acquire); 10542 return nullptr; 10543 } 10544 10545 TargetLowering::AtomicExpansionKind 10546 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 10547 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 10548 // point operations can't be used in an lr/sc sequence without breaking the 10549 // forward-progress guarantee. 10550 if (AI->isFloatingPointOperation()) 10551 return AtomicExpansionKind::CmpXChg; 10552 10553 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 10554 if (Size == 8 || Size == 16) 10555 return AtomicExpansionKind::MaskedIntrinsic; 10556 return AtomicExpansionKind::None; 10557 } 10558 10559 static Intrinsic::ID 10560 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 10561 if (XLen == 32) { 10562 switch (BinOp) { 10563 default: 10564 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10565 case AtomicRMWInst::Xchg: 10566 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 10567 case AtomicRMWInst::Add: 10568 return Intrinsic::riscv_masked_atomicrmw_add_i32; 10569 case AtomicRMWInst::Sub: 10570 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 10571 case AtomicRMWInst::Nand: 10572 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 10573 case AtomicRMWInst::Max: 10574 return Intrinsic::riscv_masked_atomicrmw_max_i32; 10575 case AtomicRMWInst::Min: 10576 return Intrinsic::riscv_masked_atomicrmw_min_i32; 10577 case AtomicRMWInst::UMax: 10578 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 10579 case AtomicRMWInst::UMin: 10580 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 10581 } 10582 } 10583 10584 if (XLen == 64) { 10585 switch (BinOp) { 10586 default: 10587 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10588 case AtomicRMWInst::Xchg: 10589 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 10590 case AtomicRMWInst::Add: 10591 return Intrinsic::riscv_masked_atomicrmw_add_i64; 10592 case AtomicRMWInst::Sub: 10593 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 10594 case AtomicRMWInst::Nand: 10595 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 10596 case AtomicRMWInst::Max: 10597 return Intrinsic::riscv_masked_atomicrmw_max_i64; 10598 case AtomicRMWInst::Min: 10599 return Intrinsic::riscv_masked_atomicrmw_min_i64; 10600 case AtomicRMWInst::UMax: 10601 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 10602 case AtomicRMWInst::UMin: 10603 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 10604 } 10605 } 10606 10607 llvm_unreachable("Unexpected XLen\n"); 10608 } 10609 10610 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 10611 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 10612 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 10613 unsigned XLen = Subtarget.getXLen(); 10614 Value *Ordering = 10615 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 10616 Type *Tys[] = {AlignedAddr->getType()}; 10617 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 10618 AI->getModule(), 10619 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 10620 10621 if (XLen == 64) { 10622 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 10623 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10624 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 10625 } 10626 10627 Value *Result; 10628 10629 // Must pass the shift amount needed to sign extend the loaded value prior 10630 // to performing a signed comparison for min/max. ShiftAmt is the number of 10631 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 10632 // is the number of bits to left+right shift the value in order to 10633 // sign-extend. 10634 if (AI->getOperation() == AtomicRMWInst::Min || 10635 AI->getOperation() == AtomicRMWInst::Max) { 10636 const DataLayout &DL = AI->getModule()->getDataLayout(); 10637 unsigned ValWidth = 10638 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 10639 Value *SextShamt = 10640 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 10641 Result = Builder.CreateCall(LrwOpScwLoop, 10642 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 10643 } else { 10644 Result = 10645 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 10646 } 10647 10648 if (XLen == 64) 10649 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10650 return Result; 10651 } 10652 10653 TargetLowering::AtomicExpansionKind 10654 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 10655 AtomicCmpXchgInst *CI) const { 10656 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 10657 if (Size == 8 || Size == 16) 10658 return AtomicExpansionKind::MaskedIntrinsic; 10659 return AtomicExpansionKind::None; 10660 } 10661 10662 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 10663 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 10664 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 10665 unsigned XLen = Subtarget.getXLen(); 10666 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 10667 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 10668 if (XLen == 64) { 10669 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 10670 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 10671 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10672 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 10673 } 10674 Type *Tys[] = {AlignedAddr->getType()}; 10675 Function *MaskedCmpXchg = 10676 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 10677 Value *Result = Builder.CreateCall( 10678 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 10679 if (XLen == 64) 10680 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10681 return Result; 10682 } 10683 10684 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 10685 return false; 10686 } 10687 10688 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 10689 EVT VT) const { 10690 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 10691 return false; 10692 10693 switch (FPVT.getSimpleVT().SimpleTy) { 10694 case MVT::f16: 10695 return Subtarget.hasStdExtZfh(); 10696 case MVT::f32: 10697 return Subtarget.hasStdExtF(); 10698 case MVT::f64: 10699 return Subtarget.hasStdExtD(); 10700 default: 10701 return false; 10702 } 10703 } 10704 10705 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 10706 // If we are using the small code model, we can reduce size of jump table 10707 // entry to 4 bytes. 10708 if (Subtarget.is64Bit() && !isPositionIndependent() && 10709 getTargetMachine().getCodeModel() == CodeModel::Small) { 10710 return MachineJumpTableInfo::EK_Custom32; 10711 } 10712 return TargetLowering::getJumpTableEncoding(); 10713 } 10714 10715 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 10716 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 10717 unsigned uid, MCContext &Ctx) const { 10718 assert(Subtarget.is64Bit() && !isPositionIndependent() && 10719 getTargetMachine().getCodeModel() == CodeModel::Small); 10720 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 10721 } 10722 10723 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 10724 EVT VT) const { 10725 VT = VT.getScalarType(); 10726 10727 if (!VT.isSimple()) 10728 return false; 10729 10730 switch (VT.getSimpleVT().SimpleTy) { 10731 case MVT::f16: 10732 return Subtarget.hasStdExtZfh(); 10733 case MVT::f32: 10734 return Subtarget.hasStdExtF(); 10735 case MVT::f64: 10736 return Subtarget.hasStdExtD(); 10737 default: 10738 break; 10739 } 10740 10741 return false; 10742 } 10743 10744 Register RISCVTargetLowering::getExceptionPointerRegister( 10745 const Constant *PersonalityFn) const { 10746 return RISCV::X10; 10747 } 10748 10749 Register RISCVTargetLowering::getExceptionSelectorRegister( 10750 const Constant *PersonalityFn) const { 10751 return RISCV::X11; 10752 } 10753 10754 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 10755 // Return false to suppress the unnecessary extensions if the LibCall 10756 // arguments or return value is f32 type for LP64 ABI. 10757 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 10758 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 10759 return false; 10760 10761 return true; 10762 } 10763 10764 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 10765 if (Subtarget.is64Bit() && Type == MVT::i32) 10766 return true; 10767 10768 return IsSigned; 10769 } 10770 10771 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 10772 SDValue C) const { 10773 // Check integral scalar types. 10774 if (VT.isScalarInteger()) { 10775 // Omit the optimization if the sub target has the M extension and the data 10776 // size exceeds XLen. 10777 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 10778 return false; 10779 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 10780 // Break the MUL to a SLLI and an ADD/SUB. 10781 const APInt &Imm = ConstNode->getAPIntValue(); 10782 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 10783 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 10784 return true; 10785 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 10786 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 10787 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 10788 (Imm - 8).isPowerOf2())) 10789 return true; 10790 // Omit the following optimization if the sub target has the M extension 10791 // and the data size >= XLen. 10792 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 10793 return false; 10794 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 10795 // a pair of LUI/ADDI. 10796 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 10797 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 10798 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 10799 (1 - ImmS).isPowerOf2()) 10800 return true; 10801 } 10802 } 10803 } 10804 10805 return false; 10806 } 10807 10808 bool RISCVTargetLowering::isMulAddWithConstProfitable( 10809 const SDValue &AddNode, const SDValue &ConstNode) const { 10810 // Let the DAGCombiner decide for vectors. 10811 EVT VT = AddNode.getValueType(); 10812 if (VT.isVector()) 10813 return true; 10814 10815 // Let the DAGCombiner decide for larger types. 10816 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 10817 return true; 10818 10819 // It is worse if c1 is simm12 while c1*c2 is not. 10820 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 10821 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 10822 const APInt &C1 = C1Node->getAPIntValue(); 10823 const APInt &C2 = C2Node->getAPIntValue(); 10824 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 10825 return false; 10826 10827 // Default to true and let the DAGCombiner decide. 10828 return true; 10829 } 10830 10831 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 10832 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 10833 bool *Fast) const { 10834 if (!VT.isVector()) 10835 return false; 10836 10837 EVT ElemVT = VT.getVectorElementType(); 10838 if (Alignment >= ElemVT.getStoreSize()) { 10839 if (Fast) 10840 *Fast = true; 10841 return true; 10842 } 10843 10844 return false; 10845 } 10846 10847 bool RISCVTargetLowering::splitValueIntoRegisterParts( 10848 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 10849 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 10850 bool IsABIRegCopy = CC.hasValue(); 10851 EVT ValueVT = Val.getValueType(); 10852 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10853 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 10854 // and cast to f32. 10855 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 10856 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 10857 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 10858 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 10859 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 10860 Parts[0] = Val; 10861 return true; 10862 } 10863 10864 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10865 LLVMContext &Context = *DAG.getContext(); 10866 EVT ValueEltVT = ValueVT.getVectorElementType(); 10867 EVT PartEltVT = PartVT.getVectorElementType(); 10868 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10869 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10870 if (PartVTBitSize % ValueVTBitSize == 0) { 10871 assert(PartVTBitSize >= ValueVTBitSize); 10872 // If the element types are different, bitcast to the same element type of 10873 // PartVT first. 10874 // Give an example here, we want copy a <vscale x 1 x i8> value to 10875 // <vscale x 4 x i16>. 10876 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 10877 // subvector, then we can bitcast to <vscale x 4 x i16>. 10878 if (ValueEltVT != PartEltVT) { 10879 if (PartVTBitSize > ValueVTBitSize) { 10880 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10881 assert(Count != 0 && "The number of element should not be zero."); 10882 EVT SameEltTypeVT = 10883 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10884 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 10885 DAG.getUNDEF(SameEltTypeVT), Val, 10886 DAG.getVectorIdxConstant(0, DL)); 10887 } 10888 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 10889 } else { 10890 Val = 10891 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 10892 Val, DAG.getVectorIdxConstant(0, DL)); 10893 } 10894 Parts[0] = Val; 10895 return true; 10896 } 10897 } 10898 return false; 10899 } 10900 10901 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 10902 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 10903 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 10904 bool IsABIRegCopy = CC.hasValue(); 10905 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10906 SDValue Val = Parts[0]; 10907 10908 // Cast the f32 to i32, truncate to i16, and cast back to f16. 10909 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 10910 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 10911 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 10912 return Val; 10913 } 10914 10915 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10916 LLVMContext &Context = *DAG.getContext(); 10917 SDValue Val = Parts[0]; 10918 EVT ValueEltVT = ValueVT.getVectorElementType(); 10919 EVT PartEltVT = PartVT.getVectorElementType(); 10920 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10921 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10922 if (PartVTBitSize % ValueVTBitSize == 0) { 10923 assert(PartVTBitSize >= ValueVTBitSize); 10924 EVT SameEltTypeVT = ValueVT; 10925 // If the element types are different, convert it to the same element type 10926 // of PartVT. 10927 // Give an example here, we want copy a <vscale x 1 x i8> value from 10928 // <vscale x 4 x i16>. 10929 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 10930 // then we can extract <vscale x 1 x i8>. 10931 if (ValueEltVT != PartEltVT) { 10932 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10933 assert(Count != 0 && "The number of element should not be zero."); 10934 SameEltTypeVT = 10935 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10936 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 10937 } 10938 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 10939 DAG.getVectorIdxConstant(0, DL)); 10940 return Val; 10941 } 10942 } 10943 return SDValue(); 10944 } 10945 10946 SDValue 10947 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10948 SelectionDAG &DAG, 10949 SmallVectorImpl<SDNode *> &Created) const { 10950 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 10951 if (isIntDivCheap(N->getValueType(0), Attr)) 10952 return SDValue(N, 0); // Lower SDIV as SDIV 10953 10954 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 10955 "Unexpected divisor!"); 10956 10957 // Conditional move is needed, so do the transformation iff Zbt is enabled. 10958 if (!Subtarget.hasStdExtZbt()) 10959 return SDValue(); 10960 10961 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 10962 // Besides, more critical path instructions will be generated when dividing 10963 // by 2. So we keep using the original DAGs for these cases. 10964 unsigned Lg2 = Divisor.countTrailingZeros(); 10965 if (Lg2 == 1 || Lg2 >= 12) 10966 return SDValue(); 10967 10968 // fold (sdiv X, pow2) 10969 EVT VT = N->getValueType(0); 10970 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 10971 return SDValue(); 10972 10973 SDLoc DL(N); 10974 SDValue N0 = N->getOperand(0); 10975 SDValue Zero = DAG.getConstant(0, DL, VT); 10976 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 10977 10978 // Add (N0 < 0) ? Pow2 - 1 : 0; 10979 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 10980 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 10981 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 10982 10983 Created.push_back(Cmp.getNode()); 10984 Created.push_back(Add.getNode()); 10985 Created.push_back(Sel.getNode()); 10986 10987 // Divide by pow2. 10988 SDValue SRA = 10989 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 10990 10991 // If we're dividing by a positive value, we're done. Otherwise, we must 10992 // negate the result. 10993 if (Divisor.isNonNegative()) 10994 return SRA; 10995 10996 Created.push_back(SRA.getNode()); 10997 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 10998 } 10999 11000 #define GET_REGISTER_MATCHER 11001 #include "RISCVGenAsmMatcher.inc" 11002 11003 Register 11004 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 11005 const MachineFunction &MF) const { 11006 Register Reg = MatchRegisterAltName(RegName); 11007 if (Reg == RISCV::NoRegister) 11008 Reg = MatchRegisterName(RegName); 11009 if (Reg == RISCV::NoRegister) 11010 report_fatal_error( 11011 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 11012 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 11013 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 11014 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 11015 StringRef(RegName) + "\".")); 11016 return Reg; 11017 } 11018 11019 namespace llvm { 11020 namespace RISCVVIntrinsicsTable { 11021 11022 #define GET_RISCVVIntrinsicsTable_IMPL 11023 #include "RISCVGenSearchableTables.inc" 11024 11025 } // namespace RISCVVIntrinsicsTable 11026 11027 } // namespace llvm 11028