xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVISelLowering.cpp (revision ba3c1f5972d7b90feb6e6da47905ff2757e0fe57)
1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <optional>
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "riscv-lower"
47 
48 STATISTIC(NumTailCalls, "Number of tail calls");
49 
50 static cl::opt<unsigned> ExtensionMaxWebSize(
51     DEBUG_TYPE "-ext-max-web-size", cl::Hidden,
52     cl::desc("Give the maximum size (in number of nodes) of the web of "
53              "instructions that we will consider for VW expansion"),
54     cl::init(18));
55 
56 static cl::opt<bool>
57     AllowSplatInVW_W(DEBUG_TYPE "-form-vw-w-with-splat", cl::Hidden,
58                      cl::desc("Allow the formation of VW_W operations (e.g., "
59                               "VWADD_W) with splat constants"),
60                      cl::init(false));
61 
62 static cl::opt<unsigned> NumRepeatedDivisors(
63     DEBUG_TYPE "-fp-repeated-divisors", cl::Hidden,
64     cl::desc("Set the minimum number of repetitions of a divisor to allow "
65              "transformation to multiplications by the reciprocal"),
66     cl::init(2));
67 
68 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
69                                          const RISCVSubtarget &STI)
70     : TargetLowering(TM), Subtarget(STI) {
71 
72   if (Subtarget.isRV32E())
73     report_fatal_error("Codegen not yet implemented for RV32E");
74 
75   RISCVABI::ABI ABI = Subtarget.getTargetABI();
76   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
77 
78   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
79       !Subtarget.hasStdExtF()) {
80     errs() << "Hard-float 'f' ABI can't be used for a target that "
81                 "doesn't support the F instruction set extension (ignoring "
82                           "target-abi)\n";
83     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
84   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
85              !Subtarget.hasStdExtD()) {
86     errs() << "Hard-float 'd' ABI can't be used for a target that "
87               "doesn't support the D instruction set extension (ignoring "
88               "target-abi)\n";
89     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
90   }
91 
92   switch (ABI) {
93   default:
94     report_fatal_error("Don't know how to lower this ABI");
95   case RISCVABI::ABI_ILP32:
96   case RISCVABI::ABI_ILP32F:
97   case RISCVABI::ABI_ILP32D:
98   case RISCVABI::ABI_LP64:
99   case RISCVABI::ABI_LP64F:
100   case RISCVABI::ABI_LP64D:
101     break;
102   }
103 
104   MVT XLenVT = Subtarget.getXLenVT();
105 
106   // Set up the register classes.
107   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
108 
109   if (Subtarget.hasStdExtZfhOrZfhmin())
110     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
111   if (Subtarget.hasStdExtF())
112     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
113   if (Subtarget.hasStdExtD())
114     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
115 
116   static const MVT::SimpleValueType BoolVecVTs[] = {
117       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
118       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
119   static const MVT::SimpleValueType IntVecVTs[] = {
120       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
121       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
122       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
123       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
124       MVT::nxv4i64, MVT::nxv8i64};
125   static const MVT::SimpleValueType F16VecVTs[] = {
126       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
127       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
128   static const MVT::SimpleValueType F32VecVTs[] = {
129       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
130   static const MVT::SimpleValueType F64VecVTs[] = {
131       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
132 
133   if (Subtarget.hasVInstructions()) {
134     auto addRegClassForRVV = [this](MVT VT) {
135       // Disable the smallest fractional LMUL types if ELEN is less than
136       // RVVBitsPerBlock.
137       unsigned MinElts = RISCV::RVVBitsPerBlock / Subtarget.getELEN();
138       if (VT.getVectorMinNumElements() < MinElts)
139         return;
140 
141       unsigned Size = VT.getSizeInBits().getKnownMinValue();
142       const TargetRegisterClass *RC;
143       if (Size <= RISCV::RVVBitsPerBlock)
144         RC = &RISCV::VRRegClass;
145       else if (Size == 2 * RISCV::RVVBitsPerBlock)
146         RC = &RISCV::VRM2RegClass;
147       else if (Size == 4 * RISCV::RVVBitsPerBlock)
148         RC = &RISCV::VRM4RegClass;
149       else if (Size == 8 * RISCV::RVVBitsPerBlock)
150         RC = &RISCV::VRM8RegClass;
151       else
152         llvm_unreachable("Unexpected size");
153 
154       addRegisterClass(VT, RC);
155     };
156 
157     for (MVT VT : BoolVecVTs)
158       addRegClassForRVV(VT);
159     for (MVT VT : IntVecVTs) {
160       if (VT.getVectorElementType() == MVT::i64 &&
161           !Subtarget.hasVInstructionsI64())
162         continue;
163       addRegClassForRVV(VT);
164     }
165 
166     if (Subtarget.hasVInstructionsF16())
167       for (MVT VT : F16VecVTs)
168         addRegClassForRVV(VT);
169 
170     if (Subtarget.hasVInstructionsF32())
171       for (MVT VT : F32VecVTs)
172         addRegClassForRVV(VT);
173 
174     if (Subtarget.hasVInstructionsF64())
175       for (MVT VT : F64VecVTs)
176         addRegClassForRVV(VT);
177 
178     if (Subtarget.useRVVForFixedLengthVectors()) {
179       auto addRegClassForFixedVectors = [this](MVT VT) {
180         MVT ContainerVT = getContainerForFixedLengthVector(VT);
181         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
182         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
183         addRegisterClass(VT, TRI.getRegClass(RCID));
184       };
185       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
186         if (useRVVForFixedLengthVectorVT(VT))
187           addRegClassForFixedVectors(VT);
188 
189       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
190         if (useRVVForFixedLengthVectorVT(VT))
191           addRegClassForFixedVectors(VT);
192     }
193   }
194 
195   // Compute derived properties from the register classes.
196   computeRegisterProperties(STI.getRegisterInfo());
197 
198   setStackPointerRegisterToSaveRestore(RISCV::X2);
199 
200   setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT,
201                    MVT::i1, Promote);
202   // DAGCombiner can call isLoadExtLegal for types that aren't legal.
203   setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i32,
204                    MVT::i1, Promote);
205 
206   // TODO: add all necessary setOperationAction calls.
207   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
208 
209   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
210   setOperationAction(ISD::BR_CC, XLenVT, Expand);
211   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
212   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
213 
214   setCondCodeAction(ISD::SETLE, XLenVT, Expand);
215   setCondCodeAction(ISD::SETGT, XLenVT, Custom);
216   setCondCodeAction(ISD::SETGE, XLenVT, Expand);
217   setCondCodeAction(ISD::SETULE, XLenVT, Expand);
218   setCondCodeAction(ISD::SETUGT, XLenVT, Custom);
219   setCondCodeAction(ISD::SETUGE, XLenVT, Expand);
220 
221   setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
222 
223   setOperationAction(ISD::VASTART, MVT::Other, Custom);
224   setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
225 
226   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
227 
228   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
229 
230   if (!Subtarget.hasStdExtZbb())
231     setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand);
232 
233   if (Subtarget.is64Bit()) {
234     setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
235 
236     setOperationAction(ISD::LOAD, MVT::i32, Custom);
237 
238     setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL},
239                        MVT::i32, Custom);
240 
241     setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT},
242                        MVT::i32, Custom);
243   } else {
244     setLibcallName(
245         {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128},
246         nullptr);
247     setLibcallName(RTLIB::MULO_I64, nullptr);
248   }
249 
250   if (!Subtarget.hasStdExtM() && !Subtarget.hasStdExtZmmul()) {
251     setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU}, XLenVT, Expand);
252   } else {
253     if (Subtarget.is64Bit()) {
254       setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom);
255     } else {
256       setOperationAction(ISD::MUL, MVT::i64, Custom);
257     }
258   }
259 
260   if (!Subtarget.hasStdExtM()) {
261     setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM},
262                        XLenVT, Expand);
263   } else {
264     if (Subtarget.is64Bit()) {
265       setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM},
266                           {MVT::i8, MVT::i16, MVT::i32}, Custom);
267     }
268   }
269 
270   setOperationAction(
271       {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT,
272       Expand);
273 
274   setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT,
275                      Custom);
276 
277   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) {
278     if (Subtarget.is64Bit())
279       setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
280   } else {
281     setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand);
282   }
283 
284   // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
285   // pattern match it directly in isel.
286   setOperationAction(ISD::BSWAP, XLenVT,
287                      (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
288                          ? Legal
289                          : Expand);
290   // Zbkb can use rev8+brev8 to implement bitreverse.
291   setOperationAction(ISD::BITREVERSE, XLenVT,
292                      Subtarget.hasStdExtZbkb() ? Custom : Expand);
293 
294   if (Subtarget.hasStdExtZbb()) {
295     setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT,
296                        Legal);
297 
298     if (Subtarget.is64Bit())
299       setOperationAction(
300           {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF},
301           MVT::i32, Custom);
302   } else {
303     setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand);
304   }
305 
306   if (Subtarget.is64Bit())
307     setOperationAction(ISD::ABS, MVT::i32, Custom);
308 
309   if (!Subtarget.hasVendorXVentanaCondOps())
310     setOperationAction(ISD::SELECT, XLenVT, Custom);
311 
312   static const unsigned FPLegalNodeTypes[] = {
313       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
314       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
315       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
316       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
317       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
318       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
319 
320   static const ISD::CondCode FPCCToExpand[] = {
321       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
322       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
323       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
324 
325   static const unsigned FPOpToExpand[] = {
326       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
327       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
328 
329   static const unsigned FPRndMode[] = {
330       ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FRINT, ISD::FROUND,
331       ISD::FROUNDEVEN};
332 
333   if (Subtarget.hasStdExtZfhOrZfhmin())
334     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
335 
336   if (Subtarget.hasStdExtZfhOrZfhmin()) {
337     if (Subtarget.hasStdExtZfh()) {
338       setOperationAction(FPLegalNodeTypes, MVT::f16, Legal);
339       setOperationAction(FPRndMode, MVT::f16, Custom);
340       setOperationAction(ISD::SELECT, MVT::f16, Custom);
341     } else {
342       static const unsigned ZfhminPromoteOps[] = {
343           ISD::FMINNUM,      ISD::FMAXNUM,       ISD::FADD,
344           ISD::FSUB,         ISD::FMUL,          ISD::FMA,
345           ISD::FDIV,         ISD::FSQRT,         ISD::FABS,
346           ISD::FNEG,         ISD::STRICT_FMA,    ISD::STRICT_FADD,
347           ISD::STRICT_FSUB,  ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
348           ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS,
349           ISD::SETCC,        ISD::FCEIL,         ISD::FFLOOR,
350           ISD::FTRUNC,       ISD::FRINT,         ISD::FROUND,
351           ISD::FROUNDEVEN,   ISD::SELECT};
352 
353       setOperationAction(ZfhminPromoteOps, MVT::f16, Promote);
354       setOperationAction({ISD::STRICT_LRINT, ISD::STRICT_LLRINT,
355                           ISD::STRICT_LROUND, ISD::STRICT_LLROUND},
356                          MVT::f16, Legal);
357       // FIXME: Need to promote f16 FCOPYSIGN to f32, but the
358       // DAGCombiner::visitFP_ROUND probably needs improvements first.
359       setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
360     }
361 
362     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
363     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
364     setCondCodeAction(FPCCToExpand, MVT::f16, Expand);
365     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
366     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
367 
368     setOperationAction({ISD::FREM, ISD::FNEARBYINT, ISD::FPOW, ISD::FPOWI,
369                         ISD::FCOS, ISD::FSIN, ISD::FSINCOS, ISD::FEXP,
370                         ISD::FEXP2, ISD::FLOG, ISD::FLOG2, ISD::FLOG10},
371                        MVT::f16, Promote);
372 
373     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
374     // complete support for all operations in LegalizeDAG.
375     setOperationAction({ISD::STRICT_FCEIL, ISD::STRICT_FFLOOR,
376                         ISD::STRICT_FNEARBYINT, ISD::STRICT_FRINT,
377                         ISD::STRICT_FROUND, ISD::STRICT_FROUNDEVEN,
378                         ISD::STRICT_FTRUNC},
379                        MVT::f16, Promote);
380 
381     // We need to custom promote this.
382     if (Subtarget.is64Bit())
383       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
384   }
385 
386   if (Subtarget.hasStdExtF()) {
387     setOperationAction(FPLegalNodeTypes, MVT::f32, Legal);
388     setOperationAction(FPRndMode, MVT::f32, Custom);
389     setCondCodeAction(FPCCToExpand, MVT::f32, Expand);
390     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
391     setOperationAction(ISD::SELECT, MVT::f32, Custom);
392     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
393     setOperationAction(FPOpToExpand, MVT::f32, Expand);
394     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
395     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
396   }
397 
398   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
399     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
400 
401   if (Subtarget.hasStdExtD()) {
402     setOperationAction(FPLegalNodeTypes, MVT::f64, Legal);
403     if (Subtarget.is64Bit()) {
404       setOperationAction(FPRndMode, MVT::f64, Custom);
405     }
406     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
407     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
408     setCondCodeAction(FPCCToExpand, MVT::f64, Expand);
409     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
410     setOperationAction(ISD::SELECT, MVT::f64, Custom);
411     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
412     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
413     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
414     setOperationAction(FPOpToExpand, MVT::f64, Expand);
415     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
416     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
417   }
418 
419   if (Subtarget.is64Bit())
420     setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT,
421                         ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT},
422                        MVT::i32, Custom);
423 
424   if (Subtarget.hasStdExtF()) {
425     setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT,
426                        Custom);
427 
428     setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT,
429                         ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP},
430                        XLenVT, Legal);
431 
432     setOperationAction(ISD::GET_ROUNDING, XLenVT, Custom);
433     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
434   }
435 
436   setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
437                       ISD::JumpTable},
438                      XLenVT, Custom);
439 
440   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
441 
442   if (Subtarget.is64Bit())
443     setOperationAction(ISD::Constant, MVT::i64, Custom);
444 
445   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
446   // Unfortunately this can't be determined just from the ISA naming string.
447   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
448                      Subtarget.is64Bit() ? Legal : Custom);
449 
450   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal);
451   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
452   if (Subtarget.is64Bit())
453     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
454 
455   if (Subtarget.hasStdExtA()) {
456     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
457     setMinCmpXchgSizeInBits(32);
458   } else if (Subtarget.hasForcedAtomics()) {
459     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
460   } else {
461     setMaxAtomicSizeInBitsSupported(0);
462   }
463 
464   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
465 
466   setBooleanContents(ZeroOrOneBooleanContent);
467 
468   if (Subtarget.hasVInstructions()) {
469     setBooleanVectorContents(ZeroOrOneBooleanContent);
470 
471     setOperationAction(ISD::VSCALE, XLenVT, Custom);
472 
473     // RVV intrinsics may have illegal operands.
474     // We also need to custom legalize vmv.x.s.
475     setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
476                        {MVT::i8, MVT::i16}, Custom);
477     if (Subtarget.is64Bit())
478       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
479     else
480       setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
481                          MVT::i64, Custom);
482 
483     setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
484                        MVT::Other, Custom);
485 
486     static const unsigned IntegerVPOps[] = {
487         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
488         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
489         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
490         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
491         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
492         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
493         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
494         ISD::VP_MERGE,       ISD::VP_SELECT,      ISD::VP_FP_TO_SINT,
495         ISD::VP_FP_TO_UINT,  ISD::VP_SETCC,       ISD::VP_SIGN_EXTEND,
496         ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE,    ISD::VP_SMIN,
497         ISD::VP_SMAX,        ISD::VP_UMIN,        ISD::VP_UMAX,
498         ISD::VP_ABS};
499 
500     static const unsigned FloatingPointVPOps[] = {
501         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
502         ISD::VP_FDIV,        ISD::VP_FNEG,        ISD::VP_FABS,
503         ISD::VP_FMA,         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
504         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,
505         ISD::VP_SELECT,      ISD::VP_SINT_TO_FP,  ISD::VP_UINT_TO_FP,
506         ISD::VP_SETCC,       ISD::VP_FP_ROUND,    ISD::VP_FP_EXTEND,
507         ISD::VP_SQRT,        ISD::VP_FMINNUM,     ISD::VP_FMAXNUM,
508         ISD::VP_FCEIL,       ISD::VP_FFLOOR,      ISD::VP_FROUND,
509         ISD::VP_FROUNDEVEN,  ISD::VP_FCOPYSIGN,   ISD::VP_FROUNDTOZERO,
510         ISD::VP_FRINT,       ISD::VP_FNEARBYINT};
511 
512     static const unsigned IntegerVecReduceOps[] = {
513         ISD::VECREDUCE_ADD,  ISD::VECREDUCE_AND,  ISD::VECREDUCE_OR,
514         ISD::VECREDUCE_XOR,  ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
515         ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN};
516 
517     static const unsigned FloatingPointVecReduceOps[] = {
518         ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_FMIN,
519         ISD::VECREDUCE_FMAX};
520 
521     if (!Subtarget.is64Bit()) {
522       // We must custom-lower certain vXi64 operations on RV32 due to the vector
523       // element type being illegal.
524       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
525                          MVT::i64, Custom);
526 
527       setOperationAction(IntegerVecReduceOps, MVT::i64, Custom);
528 
529       setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
530                           ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR,
531                           ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN,
532                           ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN},
533                          MVT::i64, Custom);
534     }
535 
536     for (MVT VT : BoolVecVTs) {
537       if (!isTypeLegal(VT))
538         continue;
539 
540       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
541 
542       // Mask VTs are custom-expanded into a series of standard nodes
543       setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS,
544                           ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
545                          VT, Custom);
546 
547       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
548                          Custom);
549 
550       setOperationAction(ISD::SELECT, VT, Custom);
551       setOperationAction(
552           {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT,
553           Expand);
554 
555       setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom);
556 
557       setOperationAction(
558           {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
559           Custom);
560 
561       setOperationAction(
562           {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
563           Custom);
564 
565       // RVV has native int->float & float->int conversions where the
566       // element type sizes are within one power-of-two of each other. Any
567       // wider distances between type sizes have to be lowered as sequences
568       // which progressively narrow the gap in stages.
569       setOperationAction(
570           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
571           VT, Custom);
572       setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT,
573                          Custom);
574 
575       // Expand all extending loads to types larger than this, and truncating
576       // stores from types larger than this.
577       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
578         setTruncStoreAction(OtherVT, VT, Expand);
579         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
580                          VT, Expand);
581       }
582 
583       setOperationAction({ISD::VP_FP_TO_SINT, ISD::VP_FP_TO_UINT,
584                           ISD::VP_TRUNCATE, ISD::VP_SETCC},
585                          VT, Custom);
586       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
587 
588       setOperationPromotedToType(
589           ISD::VECTOR_SPLICE, VT,
590           MVT::getVectorVT(MVT::i8, VT.getVectorElementCount()));
591     }
592 
593     for (MVT VT : IntVecVTs) {
594       if (!isTypeLegal(VT))
595         continue;
596 
597       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
598       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
599 
600       // Vectors implement MULHS/MULHU.
601       setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand);
602 
603       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
604       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV())
605         setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand);
606 
607       setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT,
608                          Legal);
609 
610       setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand);
611 
612       setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, VT, Expand);
613 
614       setOperationAction(ISD::BSWAP, VT, Expand);
615       setOperationAction({ISD::VP_BSWAP, ISD::VP_BITREVERSE}, VT, Expand);
616       setOperationAction({ISD::VP_FSHL, ISD::VP_FSHR}, VT, Expand);
617       setOperationAction({ISD::VP_CTLZ, ISD::VP_CTLZ_ZERO_UNDEF, ISD::VP_CTTZ,
618                           ISD::VP_CTTZ_ZERO_UNDEF, ISD::VP_CTPOP},
619                          VT, Expand);
620 
621       // Custom-lower extensions and truncations from/to mask types.
622       setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND},
623                          VT, Custom);
624 
625       // RVV has native int->float & float->int conversions where the
626       // element type sizes are within one power-of-two of each other. Any
627       // wider distances between type sizes have to be lowered as sequences
628       // which progressively narrow the gap in stages.
629       setOperationAction(
630           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
631           VT, Custom);
632       setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT,
633                          Custom);
634 
635       setOperationAction(
636           {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal);
637 
638       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
639       // nodes which truncate by one power of two at a time.
640       setOperationAction(ISD::TRUNCATE, VT, Custom);
641 
642       // Custom-lower insert/extract operations to simplify patterns.
643       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
644                          Custom);
645 
646       // Custom-lower reduction operations to set up the corresponding custom
647       // nodes' operands.
648       setOperationAction(IntegerVecReduceOps, VT, Custom);
649 
650       setOperationAction(IntegerVPOps, VT, Custom);
651 
652       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
653 
654       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
655                          VT, Custom);
656 
657       setOperationAction(
658           {ISD::VP_LOAD, ISD::VP_STORE, ISD::EXPERIMENTAL_VP_STRIDED_LOAD,
659            ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, ISD::VP_SCATTER},
660           VT, Custom);
661 
662       setOperationAction(
663           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
664           VT, Custom);
665 
666       setOperationAction(ISD::SELECT, VT, Custom);
667       setOperationAction(ISD::SELECT_CC, VT, Expand);
668 
669       setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom);
670 
671       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
672         setTruncStoreAction(VT, OtherVT, Expand);
673         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
674                          VT, Expand);
675       }
676 
677       // Splice
678       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
679 
680       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if element of VT in the range
681       // of f32.
682       EVT FloatVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
683       if (isTypeLegal(FloatVT)) {
684         setOperationAction(
685             {ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
686             Custom);
687       }
688     }
689 
690     // Expand various CCs to best match the RVV ISA, which natively supports UNE
691     // but no other unordered comparisons, and supports all ordered comparisons
692     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
693     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
694     // and we pattern-match those back to the "original", swapping operands once
695     // more. This way we catch both operations and both "vf" and "fv" forms with
696     // fewer patterns.
697     static const ISD::CondCode VFPCCToExpand[] = {
698         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
699         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
700         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
701     };
702 
703     // Sets common operation actions on RVV floating-point vector types.
704     const auto SetCommonVFPActions = [&](MVT VT) {
705       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
706       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
707       // sizes are within one power-of-two of each other. Therefore conversions
708       // between vXf16 and vXf64 must be lowered as sequences which convert via
709       // vXf32.
710       setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
711       // Custom-lower insert/extract operations to simplify patterns.
712       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
713                          Custom);
714       // Expand various condition codes (explained above).
715       setCondCodeAction(VFPCCToExpand, VT, Expand);
716 
717       setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal);
718 
719       setOperationAction(
720           {ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND, ISD::FROUNDEVEN},
721           VT, Custom);
722 
723       setOperationAction(FloatingPointVecReduceOps, VT, Custom);
724 
725       // Expand FP operations that need libcalls.
726       setOperationAction(ISD::FREM, VT, Expand);
727       setOperationAction(ISD::FPOW, VT, Expand);
728       setOperationAction(ISD::FCOS, VT, Expand);
729       setOperationAction(ISD::FSIN, VT, Expand);
730       setOperationAction(ISD::FSINCOS, VT, Expand);
731       setOperationAction(ISD::FEXP, VT, Expand);
732       setOperationAction(ISD::FEXP2, VT, Expand);
733       setOperationAction(ISD::FLOG, VT, Expand);
734       setOperationAction(ISD::FLOG2, VT, Expand);
735       setOperationAction(ISD::FLOG10, VT, Expand);
736       setOperationAction(ISD::FRINT, VT, Expand);
737       setOperationAction(ISD::FNEARBYINT, VT, Expand);
738 
739       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
740 
741       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
742 
743       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
744                          VT, Custom);
745 
746       setOperationAction(
747           {ISD::VP_LOAD, ISD::VP_STORE, ISD::EXPERIMENTAL_VP_STRIDED_LOAD,
748            ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, ISD::VP_SCATTER},
749           VT, Custom);
750 
751       setOperationAction(ISD::SELECT, VT, Custom);
752       setOperationAction(ISD::SELECT_CC, VT, Expand);
753 
754       setOperationAction(
755           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
756           VT, Custom);
757 
758       setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom);
759 
760       setOperationAction(FloatingPointVPOps, VT, Custom);
761     };
762 
763     // Sets common extload/truncstore actions on RVV floating-point vector
764     // types.
765     const auto SetCommonVFPExtLoadTruncStoreActions =
766         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
767           for (auto SmallVT : SmallerVTs) {
768             setTruncStoreAction(VT, SmallVT, Expand);
769             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
770           }
771         };
772 
773     if (Subtarget.hasVInstructionsF16()) {
774       for (MVT VT : F16VecVTs) {
775         if (!isTypeLegal(VT))
776           continue;
777         SetCommonVFPActions(VT);
778       }
779     }
780 
781     if (Subtarget.hasVInstructionsF32()) {
782       for (MVT VT : F32VecVTs) {
783         if (!isTypeLegal(VT))
784           continue;
785         SetCommonVFPActions(VT);
786         SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
787       }
788     }
789 
790     if (Subtarget.hasVInstructionsF64()) {
791       for (MVT VT : F64VecVTs) {
792         if (!isTypeLegal(VT))
793           continue;
794         SetCommonVFPActions(VT);
795         SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
796         SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
797       }
798     }
799 
800     if (Subtarget.useRVVForFixedLengthVectors()) {
801       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
802         if (!useRVVForFixedLengthVectorVT(VT))
803           continue;
804 
805         // By default everything must be expanded.
806         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
807           setOperationAction(Op, VT, Expand);
808         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
809           setTruncStoreAction(VT, OtherVT, Expand);
810           setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD},
811                            OtherVT, VT, Expand);
812         }
813 
814         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
815         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
816                            Custom);
817 
818         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT,
819                            Custom);
820 
821         setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
822                            VT, Custom);
823 
824         setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
825 
826         setOperationAction(ISD::SETCC, VT, Custom);
827 
828         setOperationAction(ISD::SELECT, VT, Custom);
829 
830         setOperationAction(ISD::TRUNCATE, VT, Custom);
831 
832         setOperationAction(ISD::BITCAST, VT, Custom);
833 
834         setOperationAction(
835             {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
836             Custom);
837 
838         setOperationAction(
839             {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
840             Custom);
841 
842         setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
843                             ISD::FP_TO_UINT},
844                            VT, Custom);
845         setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT,
846                            Custom);
847 
848         // Operations below are different for between masks and other vectors.
849         if (VT.getVectorElementType() == MVT::i1) {
850           setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND,
851                               ISD::OR, ISD::XOR},
852                              VT, Custom);
853 
854           setOperationAction({ISD::VP_FP_TO_SINT, ISD::VP_FP_TO_UINT,
855                               ISD::VP_SETCC, ISD::VP_TRUNCATE},
856                              VT, Custom);
857           continue;
858         }
859 
860         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
861         // it before type legalization for i64 vectors on RV32. It will then be
862         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
863         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
864         // improvements first.
865         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
866           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
867           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
868         }
869 
870         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
871 
872         setOperationAction(
873             {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom);
874 
875         setOperationAction({ISD::VP_LOAD, ISD::VP_STORE,
876                             ISD::EXPERIMENTAL_VP_STRIDED_LOAD,
877                             ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER,
878                             ISD::VP_SCATTER},
879                            VT, Custom);
880 
881         setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR,
882                             ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV,
883                             ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL},
884                            VT, Custom);
885 
886         setOperationAction(
887             {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom);
888 
889         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
890         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV())
891           setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom);
892 
893         setOperationAction(
894             {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT,
895             Custom);
896 
897         setOperationAction(ISD::VSELECT, VT, Custom);
898         setOperationAction(ISD::SELECT_CC, VT, Expand);
899 
900         setOperationAction(
901             {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom);
902 
903         // Custom-lower reduction operations to set up the corresponding custom
904         // nodes' operands.
905         setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX,
906                             ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX,
907                             ISD::VECREDUCE_UMIN},
908                            VT, Custom);
909 
910         setOperationAction(IntegerVPOps, VT, Custom);
911 
912         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if element of VT in the
913         // range of f32.
914         EVT FloatVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
915         if (isTypeLegal(FloatVT))
916           setOperationAction(
917               {ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
918               Custom);
919       }
920 
921       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
922         if (!useRVVForFixedLengthVectorVT(VT))
923           continue;
924 
925         // By default everything must be expanded.
926         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
927           setOperationAction(Op, VT, Expand);
928         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
929           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
930           setTruncStoreAction(VT, OtherVT, Expand);
931         }
932 
933         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
934         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
935                            Custom);
936 
937         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS,
938                             ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT,
939                             ISD::EXTRACT_VECTOR_ELT},
940                            VT, Custom);
941 
942         setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE,
943                             ISD::MGATHER, ISD::MSCATTER},
944                            VT, Custom);
945 
946         setOperationAction({ISD::VP_LOAD, ISD::VP_STORE,
947                             ISD::EXPERIMENTAL_VP_STRIDED_LOAD,
948                             ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER,
949                             ISD::VP_SCATTER},
950                            VT, Custom);
951 
952         setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
953                             ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT,
954                             ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM},
955                            VT, Custom);
956 
957         setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
958 
959         setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND,
960                             ISD::FROUNDEVEN},
961                            VT, Custom);
962 
963         setCondCodeAction(VFPCCToExpand, VT, Expand);
964 
965         setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom);
966         setOperationAction(ISD::SELECT_CC, VT, Expand);
967 
968         setOperationAction(ISD::BITCAST, VT, Custom);
969 
970         setOperationAction(FloatingPointVecReduceOps, VT, Custom);
971 
972         setOperationAction(FloatingPointVPOps, VT, Custom);
973       }
974 
975       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
976       setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64},
977                          Custom);
978       if (Subtarget.hasStdExtZfhOrZfhmin())
979         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
980       if (Subtarget.hasStdExtF())
981         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
982       if (Subtarget.hasStdExtD())
983         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
984     }
985   }
986 
987   if (Subtarget.hasForcedAtomics()) {
988     // Set atomic rmw/cas operations to expand to force __sync libcalls.
989     setOperationAction(
990         {ISD::ATOMIC_CMP_SWAP, ISD::ATOMIC_SWAP, ISD::ATOMIC_LOAD_ADD,
991          ISD::ATOMIC_LOAD_SUB, ISD::ATOMIC_LOAD_AND, ISD::ATOMIC_LOAD_OR,
992          ISD::ATOMIC_LOAD_XOR, ISD::ATOMIC_LOAD_NAND, ISD::ATOMIC_LOAD_MIN,
993          ISD::ATOMIC_LOAD_MAX, ISD::ATOMIC_LOAD_UMIN, ISD::ATOMIC_LOAD_UMAX},
994         XLenVT, Expand);
995   }
996 
997   // Function alignments.
998   const Align FunctionAlignment(Subtarget.hasStdExtCOrZca() ? 2 : 4);
999   setMinFunctionAlignment(FunctionAlignment);
1000   setPrefFunctionAlignment(FunctionAlignment);
1001 
1002   setMinimumJumpTableEntries(5);
1003 
1004   // Jumps are expensive, compared to logic
1005   setJumpIsExpensive();
1006 
1007   setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND,
1008                        ISD::OR, ISD::XOR, ISD::SETCC, ISD::SELECT});
1009   if (Subtarget.is64Bit())
1010     setTargetDAGCombine(ISD::SRA);
1011 
1012   if (Subtarget.hasStdExtF())
1013     setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM});
1014 
1015   if (Subtarget.hasStdExtZbb())
1016     setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN});
1017 
1018   if (Subtarget.hasStdExtZbs() && Subtarget.is64Bit())
1019     setTargetDAGCombine(ISD::TRUNCATE);
1020 
1021   if (Subtarget.hasStdExtZbkb())
1022     setTargetDAGCombine(ISD::BITREVERSE);
1023   if (Subtarget.hasStdExtZfhOrZfhmin())
1024     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1025   if (Subtarget.hasStdExtF())
1026     setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
1027                          ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
1028   if (Subtarget.hasVInstructions())
1029     setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
1030                          ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
1031                          ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR});
1032   if (Subtarget.useRVVForFixedLengthVectors())
1033     setTargetDAGCombine(ISD::BITCAST);
1034 
1035   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1036   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1037 }
1038 
1039 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1040                                             LLVMContext &Context,
1041                                             EVT VT) const {
1042   if (!VT.isVector())
1043     return getPointerTy(DL);
1044   if (Subtarget.hasVInstructions() &&
1045       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1046     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1047   return VT.changeVectorElementTypeToInteger();
1048 }
1049 
1050 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1051   return Subtarget.getXLenVT();
1052 }
1053 
1054 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1055                                              const CallInst &I,
1056                                              MachineFunction &MF,
1057                                              unsigned Intrinsic) const {
1058   auto &DL = I.getModule()->getDataLayout();
1059   switch (Intrinsic) {
1060   default:
1061     return false;
1062   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1063   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1064   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1065   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1066   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1067   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1068   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1069   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1070   case Intrinsic::riscv_masked_cmpxchg_i32:
1071     Info.opc = ISD::INTRINSIC_W_CHAIN;
1072     Info.memVT = MVT::i32;
1073     Info.ptrVal = I.getArgOperand(0);
1074     Info.offset = 0;
1075     Info.align = Align(4);
1076     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1077                  MachineMemOperand::MOVolatile;
1078     return true;
1079   case Intrinsic::riscv_masked_strided_load:
1080     Info.opc = ISD::INTRINSIC_W_CHAIN;
1081     Info.ptrVal = I.getArgOperand(1);
1082     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1083     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1084     Info.size = MemoryLocation::UnknownSize;
1085     Info.flags |= MachineMemOperand::MOLoad;
1086     return true;
1087   case Intrinsic::riscv_masked_strided_store:
1088     Info.opc = ISD::INTRINSIC_VOID;
1089     Info.ptrVal = I.getArgOperand(1);
1090     Info.memVT =
1091         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1092     Info.align = Align(
1093         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1094         8);
1095     Info.size = MemoryLocation::UnknownSize;
1096     Info.flags |= MachineMemOperand::MOStore;
1097     return true;
1098   case Intrinsic::riscv_seg2_load:
1099   case Intrinsic::riscv_seg3_load:
1100   case Intrinsic::riscv_seg4_load:
1101   case Intrinsic::riscv_seg5_load:
1102   case Intrinsic::riscv_seg6_load:
1103   case Intrinsic::riscv_seg7_load:
1104   case Intrinsic::riscv_seg8_load:
1105     Info.opc = ISD::INTRINSIC_W_CHAIN;
1106     Info.ptrVal = I.getArgOperand(0);
1107     Info.memVT =
1108         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
1109     Info.align =
1110         Align(DL.getTypeSizeInBits(
1111                   I.getType()->getStructElementType(0)->getScalarType()) /
1112               8);
1113     Info.size = MemoryLocation::UnknownSize;
1114     Info.flags |= MachineMemOperand::MOLoad;
1115     return true;
1116   }
1117 }
1118 
1119 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1120                                                 const AddrMode &AM, Type *Ty,
1121                                                 unsigned AS,
1122                                                 Instruction *I) const {
1123   // No global is ever allowed as a base.
1124   if (AM.BaseGV)
1125     return false;
1126 
1127   // RVV instructions only support register addressing.
1128   if (Subtarget.hasVInstructions() && isa<VectorType>(Ty))
1129     return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs;
1130 
1131   // Require a 12-bit signed offset.
1132   if (!isInt<12>(AM.BaseOffs))
1133     return false;
1134 
1135   switch (AM.Scale) {
1136   case 0: // "r+i" or just "i", depending on HasBaseReg.
1137     break;
1138   case 1:
1139     if (!AM.HasBaseReg) // allow "r+i".
1140       break;
1141     return false; // disallow "r+r" or "r+r+i".
1142   default:
1143     return false;
1144   }
1145 
1146   return true;
1147 }
1148 
1149 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1150   return isInt<12>(Imm);
1151 }
1152 
1153 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1154   return isInt<12>(Imm);
1155 }
1156 
1157 // On RV32, 64-bit integers are split into their high and low parts and held
1158 // in two different registers, so the trunc is free since the low register can
1159 // just be used.
1160 // FIXME: Should we consider i64->i32 free on RV64 to match the EVT version of
1161 // isTruncateFree?
1162 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1163   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1164     return false;
1165   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1166   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1167   return (SrcBits == 64 && DestBits == 32);
1168 }
1169 
1170 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1171   // We consider i64->i32 free on RV64 since we have good selection of W
1172   // instructions that make promoting operations back to i64 free in many cases.
1173   if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
1174       !DstVT.isInteger())
1175     return false;
1176   unsigned SrcBits = SrcVT.getSizeInBits();
1177   unsigned DestBits = DstVT.getSizeInBits();
1178   return (SrcBits == 64 && DestBits == 32);
1179 }
1180 
1181 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1182   // Zexts are free if they can be combined with a load.
1183   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1184   // poorly with type legalization of compares preferring sext.
1185   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1186     EVT MemVT = LD->getMemoryVT();
1187     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1188         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1189          LD->getExtensionType() == ISD::ZEXTLOAD))
1190       return true;
1191   }
1192 
1193   return TargetLowering::isZExtFree(Val, VT2);
1194 }
1195 
1196 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1197   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1198 }
1199 
1200 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const {
1201   return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
1202 }
1203 
1204 bool RISCVTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
1205   return Subtarget.hasStdExtZbb();
1206 }
1207 
1208 bool RISCVTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
1209   return Subtarget.hasStdExtZbb();
1210 }
1211 
1212 bool RISCVTargetLowering::isMaskAndCmp0FoldingBeneficial(
1213     const Instruction &AndI) const {
1214   // We expect to be able to match a bit extraction instruction if the Zbs
1215   // extension is supported and the mask is a power of two. However, we
1216   // conservatively return false if the mask would fit in an ANDI instruction,
1217   // on the basis that it's possible the sinking+duplication of the AND in
1218   // CodeGenPrepare triggered by this hook wouldn't decrease the instruction
1219   // count and would increase code size (e.g. ANDI+BNEZ => BEXTI+BNEZ).
1220   if (!Subtarget.hasStdExtZbs())
1221     return false;
1222   ConstantInt *Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
1223   if (!Mask)
1224     return false;
1225   return !Mask->getValue().isSignedIntN(12) && Mask->getValue().isPowerOf2();
1226 }
1227 
1228 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1229   EVT VT = Y.getValueType();
1230 
1231   // FIXME: Support vectors once we have tests.
1232   if (VT.isVector())
1233     return false;
1234 
1235   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) &&
1236          !isa<ConstantSDNode>(Y);
1237 }
1238 
1239 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1240   // Zbs provides BEXT[_I], which can be used with SEQZ/SNEZ as a bit test.
1241   if (Subtarget.hasStdExtZbs())
1242     return X.getValueType().isScalarInteger();
1243   // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
1244   auto *C = dyn_cast<ConstantSDNode>(Y);
1245   return C && C->getAPIntValue().ule(10);
1246 }
1247 
1248 bool RISCVTargetLowering::shouldFoldSelectWithIdentityConstant(unsigned Opcode,
1249                                                                EVT VT) const {
1250   // Only enable for rvv.
1251   if (!VT.isVector() || !Subtarget.hasVInstructions())
1252     return false;
1253 
1254   if (VT.isFixedLengthVector() && !isTypeLegal(VT))
1255     return false;
1256 
1257   return true;
1258 }
1259 
1260 bool RISCVTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1261                                                             Type *Ty) const {
1262   assert(Ty->isIntegerTy());
1263 
1264   unsigned BitSize = Ty->getIntegerBitWidth();
1265   if (BitSize > Subtarget.getXLen())
1266     return false;
1267 
1268   // Fast path, assume 32-bit immediates are cheap.
1269   int64_t Val = Imm.getSExtValue();
1270   if (isInt<32>(Val))
1271     return true;
1272 
1273   // A constant pool entry may be more aligned thant he load we're trying to
1274   // replace. If we don't support unaligned scalar mem, prefer the constant
1275   // pool.
1276   // TODO: Can the caller pass down the alignment?
1277   if (!Subtarget.enableUnalignedScalarMem())
1278     return true;
1279 
1280   // Prefer to keep the load if it would require many instructions.
1281   // This uses the same threshold we use for constant pools but doesn't
1282   // check useConstantPoolForLargeInts.
1283   // TODO: Should we keep the load only when we're definitely going to emit a
1284   // constant pool?
1285 
1286   RISCVMatInt::InstSeq Seq =
1287       RISCVMatInt::generateInstSeq(Val, Subtarget.getFeatureBits());
1288   return Seq.size() <= Subtarget.getMaxBuildIntsCost();
1289 }
1290 
1291 bool RISCVTargetLowering::
1292     shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
1293         SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
1294         unsigned OldShiftOpcode, unsigned NewShiftOpcode,
1295         SelectionDAG &DAG) const {
1296   // One interesting pattern that we'd want to form is 'bit extract':
1297   //   ((1 >> Y) & 1) ==/!= 0
1298   // But we also need to be careful not to try to reverse that fold.
1299 
1300   // Is this '((1 >> Y) & 1)'?
1301   if (XC && OldShiftOpcode == ISD::SRL && XC->isOne())
1302     return false; // Keep the 'bit extract' pattern.
1303 
1304   // Will this be '((1 >> Y) & 1)' after the transform?
1305   if (NewShiftOpcode == ISD::SRL && CC->isOne())
1306     return true; // Do form the 'bit extract' pattern.
1307 
1308   // If 'X' is a constant, and we transform, then we will immediately
1309   // try to undo the fold, thus causing endless combine loop.
1310   // So only do the transform if X is not a constant. This matches the default
1311   // implementation of this function.
1312   return !XC;
1313 }
1314 
1315 bool RISCVTargetLowering::canSplatOperand(unsigned Opcode, int Operand) const {
1316   switch (Opcode) {
1317   case Instruction::Add:
1318   case Instruction::Sub:
1319   case Instruction::Mul:
1320   case Instruction::And:
1321   case Instruction::Or:
1322   case Instruction::Xor:
1323   case Instruction::FAdd:
1324   case Instruction::FSub:
1325   case Instruction::FMul:
1326   case Instruction::FDiv:
1327   case Instruction::ICmp:
1328   case Instruction::FCmp:
1329     return true;
1330   case Instruction::Shl:
1331   case Instruction::LShr:
1332   case Instruction::AShr:
1333   case Instruction::UDiv:
1334   case Instruction::SDiv:
1335   case Instruction::URem:
1336   case Instruction::SRem:
1337     return Operand == 1;
1338   default:
1339     return false;
1340   }
1341 }
1342 
1343 
1344 bool RISCVTargetLowering::canSplatOperand(Instruction *I, int Operand) const {
1345   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1346     return false;
1347 
1348   if (canSplatOperand(I->getOpcode(), Operand))
1349     return true;
1350 
1351   auto *II = dyn_cast<IntrinsicInst>(I);
1352   if (!II)
1353     return false;
1354 
1355   switch (II->getIntrinsicID()) {
1356   case Intrinsic::fma:
1357   case Intrinsic::vp_fma:
1358     return Operand == 0 || Operand == 1;
1359   case Intrinsic::vp_shl:
1360   case Intrinsic::vp_lshr:
1361   case Intrinsic::vp_ashr:
1362   case Intrinsic::vp_udiv:
1363   case Intrinsic::vp_sdiv:
1364   case Intrinsic::vp_urem:
1365   case Intrinsic::vp_srem:
1366     return Operand == 1;
1367     // These intrinsics are commutative.
1368   case Intrinsic::vp_add:
1369   case Intrinsic::vp_mul:
1370   case Intrinsic::vp_and:
1371   case Intrinsic::vp_or:
1372   case Intrinsic::vp_xor:
1373   case Intrinsic::vp_fadd:
1374   case Intrinsic::vp_fmul:
1375     // These intrinsics have 'vr' versions.
1376   case Intrinsic::vp_sub:
1377   case Intrinsic::vp_fsub:
1378   case Intrinsic::vp_fdiv:
1379     return Operand == 0 || Operand == 1;
1380   default:
1381     return false;
1382   }
1383 }
1384 
1385 /// Check if sinking \p I's operands to I's basic block is profitable, because
1386 /// the operands can be folded into a target instruction, e.g.
1387 /// splats of scalars can fold into vector instructions.
1388 bool RISCVTargetLowering::shouldSinkOperands(
1389     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1390   using namespace llvm::PatternMatch;
1391 
1392   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1393     return false;
1394 
1395   for (auto OpIdx : enumerate(I->operands())) {
1396     if (!canSplatOperand(I, OpIdx.index()))
1397       continue;
1398 
1399     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1400     // Make sure we are not already sinking this operand
1401     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1402       continue;
1403 
1404     // We are looking for a splat that can be sunk.
1405     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1406                              m_Undef(), m_ZeroMask())))
1407       continue;
1408 
1409     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1410     // and vector registers
1411     for (Use &U : Op->uses()) {
1412       Instruction *Insn = cast<Instruction>(U.getUser());
1413       if (!canSplatOperand(Insn, U.getOperandNo()))
1414         return false;
1415     }
1416 
1417     Ops.push_back(&Op->getOperandUse(0));
1418     Ops.push_back(&OpIdx.value());
1419   }
1420   return true;
1421 }
1422 
1423 bool RISCVTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
1424   unsigned Opc = VecOp.getOpcode();
1425 
1426   // Assume target opcodes can't be scalarized.
1427   // TODO - do we have any exceptions?
1428   if (Opc >= ISD::BUILTIN_OP_END)
1429     return false;
1430 
1431   // If the vector op is not supported, try to convert to scalar.
1432   EVT VecVT = VecOp.getValueType();
1433   if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
1434     return true;
1435 
1436   // If the vector op is supported, but the scalar op is not, the transform may
1437   // not be worthwhile.
1438   EVT ScalarVT = VecVT.getScalarType();
1439   return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
1440 }
1441 
1442 bool RISCVTargetLowering::isOffsetFoldingLegal(
1443     const GlobalAddressSDNode *GA) const {
1444   // In order to maximise the opportunity for common subexpression elimination,
1445   // keep a separate ADD node for the global address offset instead of folding
1446   // it in the global address node. Later peephole optimisations may choose to
1447   // fold it back in when profitable.
1448   return false;
1449 }
1450 
1451 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1452                                        bool ForCodeSize) const {
1453   if (VT == MVT::f16 && !Subtarget.hasStdExtZfhOrZfhmin())
1454     return false;
1455   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1456     return false;
1457   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1458     return false;
1459   return Imm.isZero();
1460 }
1461 
1462 // TODO: This is very conservative.
1463 bool RISCVTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
1464                                                   unsigned Index) const {
1465   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
1466     return false;
1467 
1468   // Only support extracting a fixed from a fixed vector for now.
1469   if (ResVT.isScalableVector() || SrcVT.isScalableVector())
1470     return false;
1471 
1472   unsigned ResElts = ResVT.getVectorNumElements();
1473   unsigned SrcElts = SrcVT.getVectorNumElements();
1474 
1475   // Convervatively only handle extracting half of a vector.
1476   // TODO: Relax this.
1477   if ((ResElts * 2) != SrcElts)
1478     return false;
1479 
1480   // The smallest type we can slide is i8.
1481   // TODO: We can extract index 0 from a mask vector without a slide.
1482   if (ResVT.getVectorElementType() == MVT::i1)
1483     return false;
1484 
1485   // Slide can support arbitrary index, but we only treat vslidedown.vi as
1486   // cheap.
1487   if (Index >= 32)
1488     return false;
1489 
1490   // TODO: We can do arbitrary slidedowns, but for now only support extracting
1491   // the upper half of a vector until we have more test coverage.
1492   return Index == 0 || Index == ResElts;
1493 }
1494 
1495 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1496   return (VT == MVT::f16 && Subtarget.hasStdExtZfhOrZfhmin()) ||
1497          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1498          (VT == MVT::f64 && Subtarget.hasStdExtD());
1499 }
1500 
1501 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1502                                                       CallingConv::ID CC,
1503                                                       EVT VT) const {
1504   // Use f32 to pass f16 if it is legal and Zfh/Zfhmin is not enabled.
1505   // We might still end up using a GPR but that will be decided based on ABI.
1506   if (VT == MVT::f16 && Subtarget.hasStdExtF() &&
1507       !Subtarget.hasStdExtZfhOrZfhmin())
1508     return MVT::f32;
1509 
1510   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1511 }
1512 
1513 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1514                                                            CallingConv::ID CC,
1515                                                            EVT VT) const {
1516   // Use f32 to pass f16 if it is legal and Zfh/Zfhmin is not enabled.
1517   // We might still end up using a GPR but that will be decided based on ABI.
1518   if (VT == MVT::f16 && Subtarget.hasStdExtF() &&
1519       !Subtarget.hasStdExtZfhOrZfhmin())
1520     return 1;
1521 
1522   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1523 }
1524 
1525 // Changes the condition code and swaps operands if necessary, so the SetCC
1526 // operation matches one of the comparisons supported directly by branches
1527 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1528 // with 1/-1.
1529 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1530                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1531   // If this is a single bit test that can't be handled by ANDI, shift the
1532   // bit to be tested to the MSB and perform a signed compare with 0.
1533   if (isIntEqualitySetCC(CC) && isNullConstant(RHS) &&
1534       LHS.getOpcode() == ISD::AND && LHS.hasOneUse() &&
1535       isa<ConstantSDNode>(LHS.getOperand(1))) {
1536     uint64_t Mask = LHS.getConstantOperandVal(1);
1537     if ((isPowerOf2_64(Mask) || isMask_64(Mask)) && !isInt<12>(Mask)) {
1538       unsigned ShAmt = 0;
1539       if (isPowerOf2_64(Mask)) {
1540         CC = CC == ISD::SETEQ ? ISD::SETGE : ISD::SETLT;
1541         ShAmt = LHS.getValueSizeInBits() - 1 - Log2_64(Mask);
1542       } else {
1543         ShAmt = LHS.getValueSizeInBits() - llvm::bit_width(Mask);
1544       }
1545 
1546       LHS = LHS.getOperand(0);
1547       if (ShAmt != 0)
1548         LHS = DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS,
1549                           DAG.getConstant(ShAmt, DL, LHS.getValueType()));
1550       return;
1551     }
1552   }
1553 
1554   if (auto *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1555     int64_t C = RHSC->getSExtValue();
1556     switch (CC) {
1557     default: break;
1558     case ISD::SETGT:
1559       // Convert X > -1 to X >= 0.
1560       if (C == -1) {
1561         RHS = DAG.getConstant(0, DL, RHS.getValueType());
1562         CC = ISD::SETGE;
1563         return;
1564       }
1565       break;
1566     case ISD::SETLT:
1567       // Convert X < 1 to 0 <= X.
1568       if (C == 1) {
1569         RHS = LHS;
1570         LHS = DAG.getConstant(0, DL, RHS.getValueType());
1571         CC = ISD::SETGE;
1572         return;
1573       }
1574       break;
1575     }
1576   }
1577 
1578   switch (CC) {
1579   default:
1580     break;
1581   case ISD::SETGT:
1582   case ISD::SETLE:
1583   case ISD::SETUGT:
1584   case ISD::SETULE:
1585     CC = ISD::getSetCCSwappedOperands(CC);
1586     std::swap(LHS, RHS);
1587     break;
1588   }
1589 }
1590 
1591 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1592   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1593   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1594   if (VT.getVectorElementType() == MVT::i1)
1595     KnownSize *= 8;
1596 
1597   switch (KnownSize) {
1598   default:
1599     llvm_unreachable("Invalid LMUL.");
1600   case 8:
1601     return RISCVII::VLMUL::LMUL_F8;
1602   case 16:
1603     return RISCVII::VLMUL::LMUL_F4;
1604   case 32:
1605     return RISCVII::VLMUL::LMUL_F2;
1606   case 64:
1607     return RISCVII::VLMUL::LMUL_1;
1608   case 128:
1609     return RISCVII::VLMUL::LMUL_2;
1610   case 256:
1611     return RISCVII::VLMUL::LMUL_4;
1612   case 512:
1613     return RISCVII::VLMUL::LMUL_8;
1614   }
1615 }
1616 
1617 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1618   switch (LMul) {
1619   default:
1620     llvm_unreachable("Invalid LMUL.");
1621   case RISCVII::VLMUL::LMUL_F8:
1622   case RISCVII::VLMUL::LMUL_F4:
1623   case RISCVII::VLMUL::LMUL_F2:
1624   case RISCVII::VLMUL::LMUL_1:
1625     return RISCV::VRRegClassID;
1626   case RISCVII::VLMUL::LMUL_2:
1627     return RISCV::VRM2RegClassID;
1628   case RISCVII::VLMUL::LMUL_4:
1629     return RISCV::VRM4RegClassID;
1630   case RISCVII::VLMUL::LMUL_8:
1631     return RISCV::VRM8RegClassID;
1632   }
1633 }
1634 
1635 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1636   RISCVII::VLMUL LMUL = getLMUL(VT);
1637   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1638       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1639       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1640       LMUL == RISCVII::VLMUL::LMUL_1) {
1641     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1642                   "Unexpected subreg numbering");
1643     return RISCV::sub_vrm1_0 + Index;
1644   }
1645   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1646     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1647                   "Unexpected subreg numbering");
1648     return RISCV::sub_vrm2_0 + Index;
1649   }
1650   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1651     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1652                   "Unexpected subreg numbering");
1653     return RISCV::sub_vrm4_0 + Index;
1654   }
1655   llvm_unreachable("Invalid vector type.");
1656 }
1657 
1658 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1659   if (VT.getVectorElementType() == MVT::i1)
1660     return RISCV::VRRegClassID;
1661   return getRegClassIDForLMUL(getLMUL(VT));
1662 }
1663 
1664 // Attempt to decompose a subvector insert/extract between VecVT and
1665 // SubVecVT via subregister indices. Returns the subregister index that
1666 // can perform the subvector insert/extract with the given element index, as
1667 // well as the index corresponding to any leftover subvectors that must be
1668 // further inserted/extracted within the register class for SubVecVT.
1669 std::pair<unsigned, unsigned>
1670 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1671     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1672     const RISCVRegisterInfo *TRI) {
1673   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1674                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1675                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1676                 "Register classes not ordered");
1677   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1678   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1679   // Try to compose a subregister index that takes us from the incoming
1680   // LMUL>1 register class down to the outgoing one. At each step we half
1681   // the LMUL:
1682   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1683   // Note that this is not guaranteed to find a subregister index, such as
1684   // when we are extracting from one VR type to another.
1685   unsigned SubRegIdx = RISCV::NoSubRegister;
1686   for (const unsigned RCID :
1687        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1688     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1689       VecVT = VecVT.getHalfNumVectorElementsVT();
1690       bool IsHi =
1691           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1692       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1693                                             getSubregIndexByMVT(VecVT, IsHi));
1694       if (IsHi)
1695         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1696     }
1697   return {SubRegIdx, InsertExtractIdx};
1698 }
1699 
1700 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1701 // stores for those types.
1702 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1703   return !Subtarget.useRVVForFixedLengthVectors() ||
1704          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1705 }
1706 
1707 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1708   if (ScalarTy->isPointerTy())
1709     return true;
1710 
1711   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1712       ScalarTy->isIntegerTy(32))
1713     return true;
1714 
1715   if (ScalarTy->isIntegerTy(64))
1716     return Subtarget.hasVInstructionsI64();
1717 
1718   if (ScalarTy->isHalfTy())
1719     return Subtarget.hasVInstructionsF16();
1720   if (ScalarTy->isFloatTy())
1721     return Subtarget.hasVInstructionsF32();
1722   if (ScalarTy->isDoubleTy())
1723     return Subtarget.hasVInstructionsF64();
1724 
1725   return false;
1726 }
1727 
1728 unsigned RISCVTargetLowering::combineRepeatedFPDivisors() const {
1729   return NumRepeatedDivisors;
1730 }
1731 
1732 static SDValue getVLOperand(SDValue Op) {
1733   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1734           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1735          "Unexpected opcode");
1736   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1737   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1738   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1739       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1740   if (!II)
1741     return SDValue();
1742   return Op.getOperand(II->VLOperand + 1 + HasChain);
1743 }
1744 
1745 static bool useRVVForFixedLengthVectorVT(MVT VT,
1746                                          const RISCVSubtarget &Subtarget) {
1747   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1748   if (!Subtarget.useRVVForFixedLengthVectors())
1749     return false;
1750 
1751   // We only support a set of vector types with a consistent maximum fixed size
1752   // across all supported vector element types to avoid legalization issues.
1753   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1754   // fixed-length vector type we support is 1024 bytes.
1755   if (VT.getFixedSizeInBits() > 1024 * 8)
1756     return false;
1757 
1758   unsigned MinVLen = Subtarget.getRealMinVLen();
1759 
1760   MVT EltVT = VT.getVectorElementType();
1761 
1762   // Don't use RVV for vectors we cannot scalarize if required.
1763   switch (EltVT.SimpleTy) {
1764   // i1 is supported but has different rules.
1765   default:
1766     return false;
1767   case MVT::i1:
1768     // Masks can only use a single register.
1769     if (VT.getVectorNumElements() > MinVLen)
1770       return false;
1771     MinVLen /= 8;
1772     break;
1773   case MVT::i8:
1774   case MVT::i16:
1775   case MVT::i32:
1776     break;
1777   case MVT::i64:
1778     if (!Subtarget.hasVInstructionsI64())
1779       return false;
1780     break;
1781   case MVT::f16:
1782     if (!Subtarget.hasVInstructionsF16())
1783       return false;
1784     break;
1785   case MVT::f32:
1786     if (!Subtarget.hasVInstructionsF32())
1787       return false;
1788     break;
1789   case MVT::f64:
1790     if (!Subtarget.hasVInstructionsF64())
1791       return false;
1792     break;
1793   }
1794 
1795   // Reject elements larger than ELEN.
1796   if (EltVT.getSizeInBits() > Subtarget.getELEN())
1797     return false;
1798 
1799   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1800   // Don't use RVV for types that don't fit.
1801   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1802     return false;
1803 
1804   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1805   // the base fixed length RVV support in place.
1806   if (!VT.isPow2VectorType())
1807     return false;
1808 
1809   return true;
1810 }
1811 
1812 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1813   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1814 }
1815 
1816 // Return the largest legal scalable vector type that matches VT's element type.
1817 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1818                                             const RISCVSubtarget &Subtarget) {
1819   // This may be called before legal types are setup.
1820   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1821           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1822          "Expected legal fixed length vector!");
1823 
1824   unsigned MinVLen = Subtarget.getRealMinVLen();
1825   unsigned MaxELen = Subtarget.getELEN();
1826 
1827   MVT EltVT = VT.getVectorElementType();
1828   switch (EltVT.SimpleTy) {
1829   default:
1830     llvm_unreachable("unexpected element type for RVV container");
1831   case MVT::i1:
1832   case MVT::i8:
1833   case MVT::i16:
1834   case MVT::i32:
1835   case MVT::i64:
1836   case MVT::f16:
1837   case MVT::f32:
1838   case MVT::f64: {
1839     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1840     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1841     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1842     unsigned NumElts =
1843         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1844     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1845     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1846     return MVT::getScalableVectorVT(EltVT, NumElts);
1847   }
1848   }
1849 }
1850 
1851 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1852                                             const RISCVSubtarget &Subtarget) {
1853   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1854                                           Subtarget);
1855 }
1856 
1857 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1858   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1859 }
1860 
1861 // Grow V to consume an entire RVV register.
1862 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1863                                        const RISCVSubtarget &Subtarget) {
1864   assert(VT.isScalableVector() &&
1865          "Expected to convert into a scalable vector!");
1866   assert(V.getValueType().isFixedLengthVector() &&
1867          "Expected a fixed length vector operand!");
1868   SDLoc DL(V);
1869   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1870   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1871 }
1872 
1873 // Shrink V so it's just big enough to maintain a VT's worth of data.
1874 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1875                                          const RISCVSubtarget &Subtarget) {
1876   assert(VT.isFixedLengthVector() &&
1877          "Expected to convert into a fixed length vector!");
1878   assert(V.getValueType().isScalableVector() &&
1879          "Expected a scalable vector operand!");
1880   SDLoc DL(V);
1881   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1882   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1883 }
1884 
1885 /// Return the type of the mask type suitable for masking the provided
1886 /// vector type.  This is simply an i1 element type vector of the same
1887 /// (possibly scalable) length.
1888 static MVT getMaskTypeFor(MVT VecVT) {
1889   assert(VecVT.isVector());
1890   ElementCount EC = VecVT.getVectorElementCount();
1891   return MVT::getVectorVT(MVT::i1, EC);
1892 }
1893 
1894 /// Creates an all ones mask suitable for masking a vector of type VecTy with
1895 /// vector length VL.  .
1896 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL,
1897                               SelectionDAG &DAG) {
1898   MVT MaskVT = getMaskTypeFor(VecVT);
1899   return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1900 }
1901 
1902 static SDValue getVLOp(uint64_t NumElts, SDLoc DL, SelectionDAG &DAG,
1903                        const RISCVSubtarget &Subtarget) {
1904   return DAG.getConstant(NumElts, DL, Subtarget.getXLenVT());
1905 }
1906 
1907 static std::pair<SDValue, SDValue>
1908 getDefaultVLOps(uint64_t NumElts, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1909                 const RISCVSubtarget &Subtarget) {
1910   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1911   SDValue VL = getVLOp(NumElts, DL, DAG, Subtarget);
1912   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
1913   return {Mask, VL};
1914 }
1915 
1916 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1917 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1918 // the vector type that the fixed-length vector is contained in. Otherwise if
1919 // VecVT is scalable, then ContainerVT should be the same as VecVT.
1920 static std::pair<SDValue, SDValue>
1921 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1922                 const RISCVSubtarget &Subtarget) {
1923   if (VecVT.isFixedLengthVector())
1924     return getDefaultVLOps(VecVT.getVectorNumElements(), ContainerVT, DL, DAG,
1925                            Subtarget);
1926   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1927   MVT XLenVT = Subtarget.getXLenVT();
1928   SDValue VL = DAG.getRegister(RISCV::X0, XLenVT);
1929   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
1930   return {Mask, VL};
1931 }
1932 
1933 // As above but assuming the given type is a scalable vector type.
1934 static std::pair<SDValue, SDValue>
1935 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1936                         const RISCVSubtarget &Subtarget) {
1937   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1938   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1939 }
1940 
1941 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1942 // of either is (currently) supported. This can get us into an infinite loop
1943 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1944 // as a ..., etc.
1945 // Until either (or both) of these can reliably lower any node, reporting that
1946 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1947 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1948 // which is not desirable.
1949 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1950     EVT VT, unsigned DefinedValues) const {
1951   return false;
1952 }
1953 
1954 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1955                                   const RISCVSubtarget &Subtarget) {
1956   // RISCV FP-to-int conversions saturate to the destination register size, but
1957   // don't produce 0 for nan. We can use a conversion instruction and fix the
1958   // nan case with a compare and a select.
1959   SDValue Src = Op.getOperand(0);
1960 
1961   MVT DstVT = Op.getSimpleValueType();
1962   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1963 
1964   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1965 
1966   if (!DstVT.isVector()) {
1967     // In absense of Zfh, promote f16 to f32, then saturate the result.
1968     if (Src.getSimpleValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) {
1969       Src = DAG.getNode(ISD::FP_EXTEND, SDLoc(Op), MVT::f32, Src);
1970     }
1971 
1972     unsigned Opc;
1973     if (SatVT == DstVT)
1974       Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1975     else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1976       Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1977     else
1978       return SDValue();
1979     // FIXME: Support other SatVTs by clamping before or after the conversion.
1980 
1981     SDLoc DL(Op);
1982     SDValue FpToInt = DAG.getNode(
1983         Opc, DL, DstVT, Src,
1984         DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1985 
1986     if (Opc == RISCVISD::FCVT_WU_RV64)
1987       FpToInt = DAG.getZeroExtendInReg(FpToInt, DL, MVT::i32);
1988 
1989     SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1990     return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt,
1991                            ISD::CondCode::SETUO);
1992   }
1993 
1994   // Vectors.
1995 
1996   MVT DstEltVT = DstVT.getVectorElementType();
1997   MVT SrcVT = Src.getSimpleValueType();
1998   MVT SrcEltVT = SrcVT.getVectorElementType();
1999   unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2000   unsigned DstEltSize = DstEltVT.getSizeInBits();
2001 
2002   // Only handle saturating to the destination type.
2003   if (SatVT != DstEltVT)
2004     return SDValue();
2005 
2006   // FIXME: Don't support narrowing by more than 1 steps for now.
2007   if (SrcEltSize > (2 * DstEltSize))
2008     return SDValue();
2009 
2010   MVT DstContainerVT = DstVT;
2011   MVT SrcContainerVT = SrcVT;
2012   if (DstVT.isFixedLengthVector()) {
2013     DstContainerVT = getContainerForFixedLengthVector(DAG, DstVT, Subtarget);
2014     SrcContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget);
2015     assert(DstContainerVT.getVectorElementCount() ==
2016                SrcContainerVT.getVectorElementCount() &&
2017            "Expected same element count");
2018     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2019   }
2020 
2021   SDLoc DL(Op);
2022 
2023   auto [Mask, VL] = getDefaultVLOps(DstVT, DstContainerVT, DL, DAG, Subtarget);
2024 
2025   SDValue IsNan = DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(),
2026                               {Src, Src, DAG.getCondCode(ISD::SETNE),
2027                                DAG.getUNDEF(Mask.getValueType()), Mask, VL});
2028 
2029   // Need to widen by more than 1 step, promote the FP type, then do a widening
2030   // convert.
2031   if (DstEltSize > (2 * SrcEltSize)) {
2032     assert(SrcContainerVT.getVectorElementType() == MVT::f16 && "Unexpected VT!");
2033     MVT InterVT = SrcContainerVT.changeVectorElementType(MVT::f32);
2034     Src = DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterVT, Src, Mask, VL);
2035   }
2036 
2037   unsigned RVVOpc =
2038       IsSigned ? RISCVISD::VFCVT_RTZ_X_F_VL : RISCVISD::VFCVT_RTZ_XU_F_VL;
2039   SDValue Res = DAG.getNode(RVVOpc, DL, DstContainerVT, Src, Mask, VL);
2040 
2041   SDValue SplatZero = DAG.getNode(
2042       RISCVISD::VMV_V_X_VL, DL, DstContainerVT, DAG.getUNDEF(DstContainerVT),
2043       DAG.getConstant(0, DL, Subtarget.getXLenVT()), VL);
2044   Res = DAG.getNode(RISCVISD::VSELECT_VL, DL, DstContainerVT, IsNan, SplatZero,
2045                     Res, VL);
2046 
2047   if (DstVT.isFixedLengthVector())
2048     Res = convertFromScalableVector(DstVT, Res, DAG, Subtarget);
2049 
2050   return Res;
2051 }
2052 
2053 static RISCVFPRndMode::RoundingMode matchRoundingOp(unsigned Opc) {
2054   switch (Opc) {
2055   case ISD::FROUNDEVEN:
2056   case ISD::VP_FROUNDEVEN:
2057     return RISCVFPRndMode::RNE;
2058   case ISD::FTRUNC:
2059   case ISD::VP_FROUNDTOZERO:
2060     return RISCVFPRndMode::RTZ;
2061   case ISD::FFLOOR:
2062   case ISD::VP_FFLOOR:
2063     return RISCVFPRndMode::RDN;
2064   case ISD::FCEIL:
2065   case ISD::VP_FCEIL:
2066     return RISCVFPRndMode::RUP;
2067   case ISD::FROUND:
2068   case ISD::VP_FROUND:
2069     return RISCVFPRndMode::RMM;
2070   case ISD::FRINT:
2071     return RISCVFPRndMode::DYN;
2072   }
2073 
2074   return RISCVFPRndMode::Invalid;
2075 }
2076 
2077 // Expand vector FTRUNC, FCEIL, FFLOOR, FROUND, VP_FCEIL, VP_FFLOOR, VP_FROUND
2078 // VP_FROUNDEVEN, VP_FROUNDTOZERO, VP_FRINT and VP_FNEARBYINT by converting to
2079 // the integer domain and back. Taking care to avoid converting values that are
2080 // nan or already correct.
2081 static SDValue
2082 lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG,
2083                                       const RISCVSubtarget &Subtarget) {
2084   MVT VT = Op.getSimpleValueType();
2085   assert(VT.isVector() && "Unexpected type");
2086 
2087   SDLoc DL(Op);
2088 
2089   SDValue Src = Op.getOperand(0);
2090 
2091   MVT ContainerVT = VT;
2092   if (VT.isFixedLengthVector()) {
2093     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2094     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2095   }
2096 
2097   SDValue Mask, VL;
2098   if (Op->isVPOpcode()) {
2099     Mask = Op.getOperand(1);
2100     VL = Op.getOperand(2);
2101   } else {
2102     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2103   }
2104 
2105   // Freeze the source since we are increasing the number of uses.
2106   Src = DAG.getFreeze(Src);
2107 
2108   // We do the conversion on the absolute value and fix the sign at the end.
2109   SDValue Abs = DAG.getNode(RISCVISD::FABS_VL, DL, ContainerVT, Src, Mask, VL);
2110 
2111   // Determine the largest integer that can be represented exactly. This and
2112   // values larger than it don't have any fractional bits so don't need to
2113   // be converted.
2114   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(ContainerVT);
2115   unsigned Precision = APFloat::semanticsPrecision(FltSem);
2116   APFloat MaxVal = APFloat(FltSem);
2117   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
2118                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
2119   SDValue MaxValNode =
2120       DAG.getConstantFP(MaxVal, DL, ContainerVT.getVectorElementType());
2121   SDValue MaxValSplat = DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, ContainerVT,
2122                                     DAG.getUNDEF(ContainerVT), MaxValNode, VL);
2123 
2124   // If abs(Src) was larger than MaxVal or nan, keep it.
2125   MVT SetccVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
2126   Mask =
2127       DAG.getNode(RISCVISD::SETCC_VL, DL, SetccVT,
2128                   {Abs, MaxValSplat, DAG.getCondCode(ISD::SETOLT),
2129                    Mask, Mask, VL});
2130 
2131   // Truncate to integer and convert back to FP.
2132   MVT IntVT = ContainerVT.changeVectorElementTypeToInteger();
2133   MVT XLenVT = Subtarget.getXLenVT();
2134   SDValue Truncated;
2135 
2136   switch (Op.getOpcode()) {
2137   default:
2138     llvm_unreachable("Unexpected opcode");
2139   case ISD::FCEIL:
2140   case ISD::VP_FCEIL:
2141   case ISD::FFLOOR:
2142   case ISD::VP_FFLOOR:
2143   case ISD::FROUND:
2144   case ISD::FROUNDEVEN:
2145   case ISD::VP_FROUND:
2146   case ISD::VP_FROUNDEVEN:
2147   case ISD::VP_FROUNDTOZERO: {
2148     RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode());
2149     assert(FRM != RISCVFPRndMode::Invalid);
2150     Truncated = DAG.getNode(RISCVISD::VFCVT_RM_X_F_VL, DL, IntVT, Src, Mask,
2151                             DAG.getTargetConstant(FRM, DL, XLenVT), VL);
2152     break;
2153   }
2154   case ISD::FTRUNC:
2155     Truncated = DAG.getNode(RISCVISD::VFCVT_RTZ_X_F_VL, DL, IntVT, Src,
2156                             Mask, VL);
2157     break;
2158   case ISD::VP_FRINT:
2159     Truncated = DAG.getNode(RISCVISD::VFCVT_X_F_VL, DL, IntVT, Src, Mask, VL);
2160     break;
2161   case ISD::VP_FNEARBYINT:
2162     Truncated = DAG.getNode(RISCVISD::VFROUND_NOEXCEPT_VL, DL, ContainerVT, Src,
2163                             Mask, VL);
2164     break;
2165   }
2166 
2167   // VFROUND_NOEXCEPT_VL includes SINT_TO_FP_VL.
2168   if (Op.getOpcode() != ISD::VP_FNEARBYINT)
2169     Truncated = DAG.getNode(RISCVISD::SINT_TO_FP_VL, DL, ContainerVT, Truncated,
2170                             Mask, VL);
2171 
2172   // Restore the original sign so that -0.0 is preserved.
2173   Truncated = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Truncated,
2174                           Src, Src, Mask, VL);
2175 
2176   if (!VT.isFixedLengthVector())
2177     return Truncated;
2178 
2179   return convertFromScalableVector(VT, Truncated, DAG, Subtarget);
2180 }
2181 
2182 static SDValue
2183 lowerFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG,
2184                                 const RISCVSubtarget &Subtarget) {
2185   MVT VT = Op.getSimpleValueType();
2186   if (VT.isVector())
2187     return lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget);
2188 
2189   if (DAG.shouldOptForSize())
2190     return SDValue();
2191 
2192   SDLoc DL(Op);
2193   SDValue Src = Op.getOperand(0);
2194 
2195   // Create an integer the size of the mantissa with the MSB set. This and all
2196   // values larger than it don't have any fractional bits so don't need to be
2197   // converted.
2198   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
2199   unsigned Precision = APFloat::semanticsPrecision(FltSem);
2200   APFloat MaxVal = APFloat(FltSem);
2201   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
2202                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
2203   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
2204 
2205   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode());
2206   return DAG.getNode(RISCVISD::FROUND, DL, VT, Src, MaxValNode,
2207                      DAG.getTargetConstant(FRM, DL, Subtarget.getXLenVT()));
2208 }
2209 
2210 struct VIDSequence {
2211   int64_t StepNumerator;
2212   unsigned StepDenominator;
2213   int64_t Addend;
2214 };
2215 
2216 static std::optional<uint64_t> getExactInteger(const APFloat &APF,
2217                                                uint32_t BitWidth) {
2218   APSInt ValInt(BitWidth, !APF.isNegative());
2219   // We use an arbitrary rounding mode here. If a floating-point is an exact
2220   // integer (e.g., 1.0), the rounding mode does not affect the output value. If
2221   // the rounding mode changes the output value, then it is not an exact
2222   // integer.
2223   RoundingMode ArbitraryRM = RoundingMode::TowardZero;
2224   bool IsExact;
2225   // If it is out of signed integer range, it will return an invalid operation.
2226   // If it is not an exact integer, IsExact is false.
2227   if ((APF.convertToInteger(ValInt, ArbitraryRM, &IsExact) ==
2228        APFloatBase::opInvalidOp) ||
2229       !IsExact)
2230     return std::nullopt;
2231   return ValInt.extractBitsAsZExtValue(BitWidth, 0);
2232 }
2233 
2234 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
2235 // to the (non-zero) step S and start value X. This can be then lowered as the
2236 // RVV sequence (VID * S) + X, for example.
2237 // The step S is represented as an integer numerator divided by a positive
2238 // denominator. Note that the implementation currently only identifies
2239 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
2240 // cannot detect 2/3, for example.
2241 // Note that this method will also match potentially unappealing index
2242 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
2243 // determine whether this is worth generating code for.
2244 static std::optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
2245   unsigned NumElts = Op.getNumOperands();
2246   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
2247   bool IsInteger = Op.getValueType().isInteger();
2248 
2249   std::optional<unsigned> SeqStepDenom;
2250   std::optional<int64_t> SeqStepNum, SeqAddend;
2251   std::optional<std::pair<uint64_t, unsigned>> PrevElt;
2252   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
2253   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
2254     // Assume undef elements match the sequence; we just have to be careful
2255     // when interpolating across them.
2256     if (Op.getOperand(Idx).isUndef())
2257       continue;
2258 
2259     uint64_t Val;
2260     if (IsInteger) {
2261       // The BUILD_VECTOR must be all constants.
2262       if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
2263         return std::nullopt;
2264       Val = Op.getConstantOperandVal(Idx) &
2265             maskTrailingOnes<uint64_t>(EltSizeInBits);
2266     } else {
2267       // The BUILD_VECTOR must be all constants.
2268       if (!isa<ConstantFPSDNode>(Op.getOperand(Idx)))
2269         return std::nullopt;
2270       if (auto ExactInteger = getExactInteger(
2271               cast<ConstantFPSDNode>(Op.getOperand(Idx))->getValueAPF(),
2272               EltSizeInBits))
2273         Val = *ExactInteger;
2274       else
2275         return std::nullopt;
2276     }
2277 
2278     if (PrevElt) {
2279       // Calculate the step since the last non-undef element, and ensure
2280       // it's consistent across the entire sequence.
2281       unsigned IdxDiff = Idx - PrevElt->second;
2282       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
2283 
2284       // A zero-value value difference means that we're somewhere in the middle
2285       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
2286       // step change before evaluating the sequence.
2287       if (ValDiff == 0)
2288         continue;
2289 
2290       int64_t Remainder = ValDiff % IdxDiff;
2291       // Normalize the step if it's greater than 1.
2292       if (Remainder != ValDiff) {
2293         // The difference must cleanly divide the element span.
2294         if (Remainder != 0)
2295           return std::nullopt;
2296         ValDiff /= IdxDiff;
2297         IdxDiff = 1;
2298       }
2299 
2300       if (!SeqStepNum)
2301         SeqStepNum = ValDiff;
2302       else if (ValDiff != SeqStepNum)
2303         return std::nullopt;
2304 
2305       if (!SeqStepDenom)
2306         SeqStepDenom = IdxDiff;
2307       else if (IdxDiff != *SeqStepDenom)
2308         return std::nullopt;
2309     }
2310 
2311     // Record this non-undef element for later.
2312     if (!PrevElt || PrevElt->first != Val)
2313       PrevElt = std::make_pair(Val, Idx);
2314   }
2315 
2316   // We need to have logged a step for this to count as a legal index sequence.
2317   if (!SeqStepNum || !SeqStepDenom)
2318     return std::nullopt;
2319 
2320   // Loop back through the sequence and validate elements we might have skipped
2321   // while waiting for a valid step. While doing this, log any sequence addend.
2322   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
2323     if (Op.getOperand(Idx).isUndef())
2324       continue;
2325     uint64_t Val;
2326     if (IsInteger) {
2327       Val = Op.getConstantOperandVal(Idx) &
2328             maskTrailingOnes<uint64_t>(EltSizeInBits);
2329     } else {
2330       Val = *getExactInteger(
2331           cast<ConstantFPSDNode>(Op.getOperand(Idx))->getValueAPF(),
2332           EltSizeInBits);
2333     }
2334     uint64_t ExpectedVal =
2335         (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
2336     int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
2337     if (!SeqAddend)
2338       SeqAddend = Addend;
2339     else if (Addend != SeqAddend)
2340       return std::nullopt;
2341   }
2342 
2343   assert(SeqAddend && "Must have an addend if we have a step");
2344 
2345   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
2346 }
2347 
2348 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
2349 // and lower it as a VRGATHER_VX_VL from the source vector.
2350 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
2351                                   SelectionDAG &DAG,
2352                                   const RISCVSubtarget &Subtarget) {
2353   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2354     return SDValue();
2355   SDValue Vec = SplatVal.getOperand(0);
2356   // Only perform this optimization on vectors of the same size for simplicity.
2357   // Don't perform this optimization for i1 vectors.
2358   // FIXME: Support i1 vectors, maybe by promoting to i8?
2359   if (Vec.getValueType() != VT || VT.getVectorElementType() == MVT::i1)
2360     return SDValue();
2361   SDValue Idx = SplatVal.getOperand(1);
2362   // The index must be a legal type.
2363   if (Idx.getValueType() != Subtarget.getXLenVT())
2364     return SDValue();
2365 
2366   MVT ContainerVT = VT;
2367   if (VT.isFixedLengthVector()) {
2368     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2369     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2370   }
2371 
2372   auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2373 
2374   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
2375                                Idx, DAG.getUNDEF(ContainerVT), Mask, VL);
2376 
2377   if (!VT.isFixedLengthVector())
2378     return Gather;
2379 
2380   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2381 }
2382 
2383 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2384                                  const RISCVSubtarget &Subtarget) {
2385   MVT VT = Op.getSimpleValueType();
2386   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2387 
2388   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2389 
2390   SDLoc DL(Op);
2391   auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2392 
2393   MVT XLenVT = Subtarget.getXLenVT();
2394   unsigned NumElts = Op.getNumOperands();
2395 
2396   if (VT.getVectorElementType() == MVT::i1) {
2397     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2398       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2399       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2400     }
2401 
2402     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2403       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2404       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2405     }
2406 
2407     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2408     // scalar integer chunks whose bit-width depends on the number of mask
2409     // bits and XLEN.
2410     // First, determine the most appropriate scalar integer type to use. This
2411     // is at most XLenVT, but may be shrunk to a smaller vector element type
2412     // according to the size of the final vector - use i8 chunks rather than
2413     // XLenVT if we're producing a v8i1. This results in more consistent
2414     // codegen across RV32 and RV64.
2415     unsigned NumViaIntegerBits =
2416         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2417     NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN());
2418     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2419       // If we have to use more than one INSERT_VECTOR_ELT then this
2420       // optimization is likely to increase code size; avoid peforming it in
2421       // such a case. We can use a load from a constant pool in this case.
2422       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2423         return SDValue();
2424       // Now we can create our integer vector type. Note that it may be larger
2425       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2426       MVT IntegerViaVecVT =
2427           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2428                            divideCeil(NumElts, NumViaIntegerBits));
2429 
2430       uint64_t Bits = 0;
2431       unsigned BitPos = 0, IntegerEltIdx = 0;
2432       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2433 
2434       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2435         // Once we accumulate enough bits to fill our scalar type, insert into
2436         // our vector and clear our accumulated data.
2437         if (I != 0 && I % NumViaIntegerBits == 0) {
2438           if (NumViaIntegerBits <= 32)
2439             Bits = SignExtend64<32>(Bits);
2440           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2441           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2442                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2443           Bits = 0;
2444           BitPos = 0;
2445           IntegerEltIdx++;
2446         }
2447         SDValue V = Op.getOperand(I);
2448         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2449         Bits |= ((uint64_t)BitValue << BitPos);
2450       }
2451 
2452       // Insert the (remaining) scalar value into position in our integer
2453       // vector type.
2454       if (NumViaIntegerBits <= 32)
2455         Bits = SignExtend64<32>(Bits);
2456       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2457       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2458                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2459 
2460       if (NumElts < NumViaIntegerBits) {
2461         // If we're producing a smaller vector than our minimum legal integer
2462         // type, bitcast to the equivalent (known-legal) mask type, and extract
2463         // our final mask.
2464         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2465         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2466         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2467                           DAG.getConstant(0, DL, XLenVT));
2468       } else {
2469         // Else we must have produced an integer type with the same size as the
2470         // mask type; bitcast for the final result.
2471         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2472         Vec = DAG.getBitcast(VT, Vec);
2473       }
2474 
2475       return Vec;
2476     }
2477 
2478     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2479     // vector type, we have a legal equivalently-sized i8 type, so we can use
2480     // that.
2481     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2482     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2483 
2484     SDValue WideVec;
2485     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2486       // For a splat, perform a scalar truncate before creating the wider
2487       // vector.
2488       assert(Splat.getValueType() == XLenVT &&
2489              "Unexpected type for i1 splat value");
2490       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2491                           DAG.getConstant(1, DL, XLenVT));
2492       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2493     } else {
2494       SmallVector<SDValue, 8> Ops(Op->op_values());
2495       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2496       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2497       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2498     }
2499 
2500     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2501   }
2502 
2503   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2504     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2505       return Gather;
2506     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2507                                         : RISCVISD::VMV_V_X_VL;
2508     Splat =
2509         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2510     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2511   }
2512 
2513   // Try and match index sequences, which we can lower to the vid instruction
2514   // with optional modifications. An all-undef vector is matched by
2515   // getSplatValue, above.
2516   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2517     int64_t StepNumerator = SimpleVID->StepNumerator;
2518     unsigned StepDenominator = SimpleVID->StepDenominator;
2519     int64_t Addend = SimpleVID->Addend;
2520 
2521     assert(StepNumerator != 0 && "Invalid step");
2522     bool Negate = false;
2523     int64_t SplatStepVal = StepNumerator;
2524     unsigned StepOpcode = ISD::MUL;
2525     if (StepNumerator != 1) {
2526       if (isPowerOf2_64(std::abs(StepNumerator))) {
2527         Negate = StepNumerator < 0;
2528         StepOpcode = ISD::SHL;
2529         SplatStepVal = Log2_64(std::abs(StepNumerator));
2530       }
2531     }
2532 
2533     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2534     // threshold since it's the immediate value many RVV instructions accept.
2535     // There is no vmul.vi instruction so ensure multiply constant can fit in
2536     // a single addi instruction.
2537     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2538          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2539         isPowerOf2_32(StepDenominator) &&
2540         (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) {
2541       MVT VIDVT =
2542           VT.isFloatingPoint() ? VT.changeVectorElementTypeToInteger() : VT;
2543       MVT VIDContainerVT =
2544           getContainerForFixedLengthVector(DAG, VIDVT, Subtarget);
2545       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VIDContainerVT, Mask, VL);
2546       // Convert right out of the scalable type so we can use standard ISD
2547       // nodes for the rest of the computation. If we used scalable types with
2548       // these, we'd lose the fixed-length vector info and generate worse
2549       // vsetvli code.
2550       VID = convertFromScalableVector(VIDVT, VID, DAG, Subtarget);
2551       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2552           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2553         SDValue SplatStep = DAG.getSplatBuildVector(
2554             VIDVT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2555         VID = DAG.getNode(StepOpcode, DL, VIDVT, VID, SplatStep);
2556       }
2557       if (StepDenominator != 1) {
2558         SDValue SplatStep = DAG.getSplatBuildVector(
2559             VIDVT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2560         VID = DAG.getNode(ISD::SRL, DL, VIDVT, VID, SplatStep);
2561       }
2562       if (Addend != 0 || Negate) {
2563         SDValue SplatAddend = DAG.getSplatBuildVector(
2564             VIDVT, DL, DAG.getConstant(Addend, DL, XLenVT));
2565         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VIDVT, SplatAddend,
2566                           VID);
2567       }
2568       if (VT.isFloatingPoint()) {
2569         // TODO: Use vfwcvt to reduce register pressure.
2570         VID = DAG.getNode(ISD::SINT_TO_FP, DL, VT, VID);
2571       }
2572       return VID;
2573     }
2574   }
2575 
2576   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2577   // when re-interpreted as a vector with a larger element type. For example,
2578   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2579   // could be instead splat as
2580   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2581   // TODO: This optimization could also work on non-constant splats, but it
2582   // would require bit-manipulation instructions to construct the splat value.
2583   SmallVector<SDValue> Sequence;
2584   unsigned EltBitSize = VT.getScalarSizeInBits();
2585   const auto *BV = cast<BuildVectorSDNode>(Op);
2586   if (VT.isInteger() && EltBitSize < 64 &&
2587       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2588       BV->getRepeatedSequence(Sequence) &&
2589       (Sequence.size() * EltBitSize) <= 64) {
2590     unsigned SeqLen = Sequence.size();
2591     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2592     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2593     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2594             ViaIntVT == MVT::i64) &&
2595            "Unexpected sequence type");
2596 
2597     unsigned EltIdx = 0;
2598     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2599     uint64_t SplatValue = 0;
2600     // Construct the amalgamated value which can be splatted as this larger
2601     // vector type.
2602     for (const auto &SeqV : Sequence) {
2603       if (!SeqV.isUndef())
2604         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2605                        << (EltIdx * EltBitSize));
2606       EltIdx++;
2607     }
2608 
2609     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2610     // achieve better constant materializion.
2611     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2612       SplatValue = SignExtend64<32>(SplatValue);
2613 
2614     // Since we can't introduce illegal i64 types at this stage, we can only
2615     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2616     // way we can use RVV instructions to splat.
2617     assert((ViaIntVT.bitsLE(XLenVT) ||
2618             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2619            "Unexpected bitcast sequence");
2620     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2621       SDValue ViaVL =
2622           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2623       MVT ViaContainerVT =
2624           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2625       SDValue Splat =
2626           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2627                       DAG.getUNDEF(ViaContainerVT),
2628                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2629       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2630       return DAG.getBitcast(VT, Splat);
2631     }
2632   }
2633 
2634   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2635   // which constitute a large proportion of the elements. In such cases we can
2636   // splat a vector with the dominant element and make up the shortfall with
2637   // INSERT_VECTOR_ELTs.
2638   // Note that this includes vectors of 2 elements by association. The
2639   // upper-most element is the "dominant" one, allowing us to use a splat to
2640   // "insert" the upper element, and an insert of the lower element at position
2641   // 0, which improves codegen.
2642   SDValue DominantValue;
2643   unsigned MostCommonCount = 0;
2644   DenseMap<SDValue, unsigned> ValueCounts;
2645   unsigned NumUndefElts =
2646       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2647 
2648   // Track the number of scalar loads we know we'd be inserting, estimated as
2649   // any non-zero floating-point constant. Other kinds of element are either
2650   // already in registers or are materialized on demand. The threshold at which
2651   // a vector load is more desirable than several scalar materializion and
2652   // vector-insertion instructions is not known.
2653   unsigned NumScalarLoads = 0;
2654 
2655   for (SDValue V : Op->op_values()) {
2656     if (V.isUndef())
2657       continue;
2658 
2659     ValueCounts.insert(std::make_pair(V, 0));
2660     unsigned &Count = ValueCounts[V];
2661 
2662     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2663       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2664 
2665     // Is this value dominant? In case of a tie, prefer the highest element as
2666     // it's cheaper to insert near the beginning of a vector than it is at the
2667     // end.
2668     if (++Count >= MostCommonCount) {
2669       DominantValue = V;
2670       MostCommonCount = Count;
2671     }
2672   }
2673 
2674   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2675   unsigned NumDefElts = NumElts - NumUndefElts;
2676   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2677 
2678   // Don't perform this optimization when optimizing for size, since
2679   // materializing elements and inserting them tends to cause code bloat.
2680   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2681       ((MostCommonCount > DominantValueCountThreshold) ||
2682        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2683     // Start by splatting the most common element.
2684     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2685 
2686     DenseSet<SDValue> Processed{DominantValue};
2687     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2688     for (const auto &OpIdx : enumerate(Op->ops())) {
2689       const SDValue &V = OpIdx.value();
2690       if (V.isUndef() || !Processed.insert(V).second)
2691         continue;
2692       if (ValueCounts[V] == 1) {
2693         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2694                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2695       } else {
2696         // Blend in all instances of this value using a VSELECT, using a
2697         // mask where each bit signals whether that element is the one
2698         // we're after.
2699         SmallVector<SDValue> Ops;
2700         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2701           return DAG.getConstant(V == V1, DL, XLenVT);
2702         });
2703         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2704                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2705                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2706       }
2707     }
2708 
2709     return Vec;
2710   }
2711 
2712   return SDValue();
2713 }
2714 
2715 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2716                                    SDValue Lo, SDValue Hi, SDValue VL,
2717                                    SelectionDAG &DAG) {
2718   if (!Passthru)
2719     Passthru = DAG.getUNDEF(VT);
2720   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2721     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2722     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2723     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2724     // node in order to try and match RVV vector/scalar instructions.
2725     if ((LoC >> 31) == HiC)
2726       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2727 
2728     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2729     // vmv.v.x whose EEW = 32 to lower it.
2730     auto *Const = dyn_cast<ConstantSDNode>(VL);
2731     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2732       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2733       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2734       // access the subtarget here now.
2735       auto InterVec = DAG.getNode(
2736           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2737                                   DAG.getRegister(RISCV::X0, MVT::i32));
2738       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2739     }
2740   }
2741 
2742   // Fall back to a stack store and stride x0 vector load.
2743   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2744                      Hi, VL);
2745 }
2746 
2747 // Called by type legalization to handle splat of i64 on RV32.
2748 // FIXME: We can optimize this when the type has sign or zero bits in one
2749 // of the halves.
2750 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2751                                    SDValue Scalar, SDValue VL,
2752                                    SelectionDAG &DAG) {
2753   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2754   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2755                            DAG.getConstant(0, DL, MVT::i32));
2756   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2757                            DAG.getConstant(1, DL, MVT::i32));
2758   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2759 }
2760 
2761 // This function lowers a splat of a scalar operand Splat with the vector
2762 // length VL. It ensures the final sequence is type legal, which is useful when
2763 // lowering a splat after type legalization.
2764 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2765                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2766                                 const RISCVSubtarget &Subtarget) {
2767   bool HasPassthru = Passthru && !Passthru.isUndef();
2768   if (!HasPassthru && !Passthru)
2769     Passthru = DAG.getUNDEF(VT);
2770   if (VT.isFloatingPoint()) {
2771     // If VL is 1, we could use vfmv.s.f.
2772     if (isOneConstant(VL))
2773       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2774     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2775   }
2776 
2777   MVT XLenVT = Subtarget.getXLenVT();
2778 
2779   // Simplest case is that the operand needs to be promoted to XLenVT.
2780   if (Scalar.getValueType().bitsLE(XLenVT)) {
2781     // If the operand is a constant, sign extend to increase our chances
2782     // of being able to use a .vi instruction. ANY_EXTEND would become a
2783     // a zero extend and the simm5 check in isel would fail.
2784     // FIXME: Should we ignore the upper bits in isel instead?
2785     unsigned ExtOpc =
2786         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2787     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2788     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2789     // If VL is 1 and the scalar value won't benefit from immediate, we could
2790     // use vmv.s.x.
2791     if (isOneConstant(VL) &&
2792         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2793       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2794     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2795   }
2796 
2797   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2798          "Unexpected scalar for splat lowering!");
2799 
2800   if (isOneConstant(VL) && isNullConstant(Scalar))
2801     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2802                        DAG.getConstant(0, DL, XLenVT), VL);
2803 
2804   // Otherwise use the more complicated splatting algorithm.
2805   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2806 }
2807 
2808 static MVT getLMUL1VT(MVT VT) {
2809   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
2810          "Unexpected vector MVT");
2811   return MVT::getScalableVectorVT(
2812       VT.getVectorElementType(),
2813       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
2814 }
2815 
2816 // This function lowers an insert of a scalar operand Scalar into lane
2817 // 0 of the vector regardless of the value of VL.  The contents of the
2818 // remaining lanes of the result vector are unspecified.  VL is assumed
2819 // to be non-zero.
2820 static SDValue lowerScalarInsert(SDValue Scalar, SDValue VL,
2821                                  MVT VT, SDLoc DL, SelectionDAG &DAG,
2822                                  const RISCVSubtarget &Subtarget) {
2823   const MVT XLenVT = Subtarget.getXLenVT();
2824 
2825   SDValue Passthru = DAG.getUNDEF(VT);
2826   if (VT.isFloatingPoint()) {
2827     // TODO: Use vmv.v.i for appropriate constants
2828     // Use M1 or smaller to avoid over constraining register allocation
2829     const MVT M1VT = getLMUL1VT(VT);
2830     auto InnerVT = VT.bitsLE(M1VT) ? VT : M1VT;
2831     SDValue Result = DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, InnerVT,
2832                                  DAG.getUNDEF(InnerVT), Scalar, VL);
2833     if (VT != InnerVT)
2834       Result = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2835                            DAG.getUNDEF(VT),
2836                            Result, DAG.getConstant(0, DL, XLenVT));
2837     return Result;
2838   }
2839 
2840 
2841   // Avoid the tricky legalization cases by falling back to using the
2842   // splat code which already handles it gracefully.
2843   if (!Scalar.getValueType().bitsLE(XLenVT))
2844     return lowerScalarSplat(DAG.getUNDEF(VT), Scalar,
2845                             DAG.getConstant(1, DL, XLenVT),
2846                             VT, DL, DAG, Subtarget);
2847 
2848   // If the operand is a constant, sign extend to increase our chances
2849   // of being able to use a .vi instruction. ANY_EXTEND would become a
2850   // a zero extend and the simm5 check in isel would fail.
2851   // FIXME: Should we ignore the upper bits in isel instead?
2852   unsigned ExtOpc =
2853     isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2854   Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2855   // We use a vmv.v.i if possible.  We limit this to LMUL1.  LMUL2 or
2856   // higher would involve overly constraining the register allocator for
2857   // no purpose.
2858   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar)) {
2859     if (!isNullConstant(Scalar) && isInt<5>(Const->getSExtValue()) &&
2860         VT.bitsLE(getLMUL1VT(VT)))
2861       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2862   }
2863   // Use M1 or smaller to avoid over constraining register allocation
2864   const MVT M1VT = getLMUL1VT(VT);
2865   auto InnerVT = VT.bitsLE(M1VT) ? VT : M1VT;
2866   SDValue Result = DAG.getNode(RISCVISD::VMV_S_X_VL, DL, InnerVT,
2867                                DAG.getUNDEF(InnerVT), Scalar, VL);
2868   if (VT != InnerVT)
2869     Result = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2870                          DAG.getUNDEF(VT),
2871                          Result, DAG.getConstant(0, DL, XLenVT));
2872   return Result;
2873 
2874 }
2875 
2876 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2877                                 const RISCVSubtarget &Subtarget) {
2878   // We need to be able to widen elements to the next larger integer type.
2879   if (VT.getScalarSizeInBits() >= Subtarget.getELEN())
2880     return false;
2881 
2882   int Size = Mask.size();
2883   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2884 
2885   int Srcs[] = {-1, -1};
2886   for (int i = 0; i != Size; ++i) {
2887     // Ignore undef elements.
2888     if (Mask[i] < 0)
2889       continue;
2890 
2891     // Is this an even or odd element.
2892     int Pol = i % 2;
2893 
2894     // Ensure we consistently use the same source for this element polarity.
2895     int Src = Mask[i] / Size;
2896     if (Srcs[Pol] < 0)
2897       Srcs[Pol] = Src;
2898     if (Srcs[Pol] != Src)
2899       return false;
2900 
2901     // Make sure the element within the source is appropriate for this element
2902     // in the destination.
2903     int Elt = Mask[i] % Size;
2904     if (Elt != i / 2)
2905       return false;
2906   }
2907 
2908   // We need to find a source for each polarity and they can't be the same.
2909   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2910     return false;
2911 
2912   // Swap the sources if the second source was in the even polarity.
2913   SwapSources = Srcs[0] > Srcs[1];
2914 
2915   return true;
2916 }
2917 
2918 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2919 /// and then extract the original number of elements from the rotated result.
2920 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2921 /// returned rotation amount is for a rotate right, where elements move from
2922 /// higher elements to lower elements. \p LoSrc indicates the first source
2923 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2924 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2925 /// 0 or 1 if a rotation is found.
2926 ///
2927 /// NOTE: We talk about rotate to the right which matches how bit shift and
2928 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2929 /// and the table below write vectors with the lowest elements on the left.
2930 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2931   int Size = Mask.size();
2932 
2933   // We need to detect various ways of spelling a rotation:
2934   //   [11, 12, 13, 14, 15,  0,  1,  2]
2935   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2936   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2937   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2938   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2939   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2940   int Rotation = 0;
2941   LoSrc = -1;
2942   HiSrc = -1;
2943   for (int i = 0; i != Size; ++i) {
2944     int M = Mask[i];
2945     if (M < 0)
2946       continue;
2947 
2948     // Determine where a rotate vector would have started.
2949     int StartIdx = i - (M % Size);
2950     // The identity rotation isn't interesting, stop.
2951     if (StartIdx == 0)
2952       return -1;
2953 
2954     // If we found the tail of a vector the rotation must be the missing
2955     // front. If we found the head of a vector, it must be how much of the
2956     // head.
2957     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2958 
2959     if (Rotation == 0)
2960       Rotation = CandidateRotation;
2961     else if (Rotation != CandidateRotation)
2962       // The rotations don't match, so we can't match this mask.
2963       return -1;
2964 
2965     // Compute which value this mask is pointing at.
2966     int MaskSrc = M < Size ? 0 : 1;
2967 
2968     // Compute which of the two target values this index should be assigned to.
2969     // This reflects whether the high elements are remaining or the low elemnts
2970     // are remaining.
2971     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2972 
2973     // Either set up this value if we've not encountered it before, or check
2974     // that it remains consistent.
2975     if (TargetSrc < 0)
2976       TargetSrc = MaskSrc;
2977     else if (TargetSrc != MaskSrc)
2978       // This may be a rotation, but it pulls from the inputs in some
2979       // unsupported interleaving.
2980       return -1;
2981   }
2982 
2983   // Check that we successfully analyzed the mask, and normalize the results.
2984   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2985   assert((LoSrc >= 0 || HiSrc >= 0) &&
2986          "Failed to find a rotated input vector!");
2987 
2988   return Rotation;
2989 }
2990 
2991 // Lower the following shuffles to vnsrl.
2992 // t34: v8i8 = extract_subvector t11, Constant:i64<0>
2993 // t33: v8i8 = extract_subvector t11, Constant:i64<8>
2994 // a) t35: v8i8 = vector_shuffle<0,2,4,6,8,10,12,14> t34, t33
2995 // b) t35: v8i8 = vector_shuffle<1,3,5,7,9,11,13,15> t34, t33
2996 static SDValue lowerVECTOR_SHUFFLEAsVNSRL(const SDLoc &DL, MVT VT,
2997                                           MVT ContainerVT, SDValue V1,
2998                                           SDValue V2, SDValue TrueMask,
2999                                           SDValue VL, ArrayRef<int> Mask,
3000                                           const RISCVSubtarget &Subtarget,
3001                                           SelectionDAG &DAG) {
3002   // Need to be able to widen the vector.
3003   if (VT.getScalarSizeInBits() >= Subtarget.getELEN())
3004     return SDValue();
3005 
3006   // Both input must be extracts.
3007   if (V1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
3008       V2.getOpcode() != ISD::EXTRACT_SUBVECTOR)
3009     return SDValue();
3010 
3011   // Extracting from the same source.
3012   SDValue Src = V1.getOperand(0);
3013   if (Src != V2.getOperand(0))
3014     return SDValue();
3015 
3016   // Src needs to have twice the number of elements.
3017   if (Src.getValueType().getVectorNumElements() != (Mask.size() * 2))
3018     return SDValue();
3019 
3020   // The extracts must extract the two halves of the source.
3021   if (V1.getConstantOperandVal(1) != 0 ||
3022       V2.getConstantOperandVal(1) != Mask.size())
3023     return SDValue();
3024 
3025   // First index must be the first even or odd element from V1.
3026   if (Mask[0] != 0 && Mask[0] != 1)
3027     return SDValue();
3028 
3029   // The others must increase by 2 each time.
3030   // TODO: Support undef elements?
3031   for (unsigned i = 1; i != Mask.size(); ++i)
3032     if (Mask[i] != Mask[i - 1] + 2)
3033       return SDValue();
3034 
3035   // Convert the source using a container type with twice the elements. Since
3036   // source VT is legal and twice this VT, we know VT isn't LMUL=8 so it is
3037   // safe to double.
3038   MVT DoubleContainerVT =
3039       MVT::getVectorVT(ContainerVT.getVectorElementType(),
3040                        ContainerVT.getVectorElementCount() * 2);
3041   Src = convertToScalableVector(DoubleContainerVT, Src, DAG, Subtarget);
3042 
3043   // Convert the vector to a wider integer type with the original element
3044   // count. This also converts FP to int.
3045   unsigned EltBits = ContainerVT.getScalarSizeInBits();
3046   MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
3047   MVT WideIntContainerVT =
3048       MVT::getVectorVT(WideIntEltVT, ContainerVT.getVectorElementCount());
3049   Src = DAG.getBitcast(WideIntContainerVT, Src);
3050 
3051   // Convert to the integer version of the container type.
3052   MVT IntEltVT = MVT::getIntegerVT(EltBits);
3053   MVT IntContainerVT =
3054       MVT::getVectorVT(IntEltVT, ContainerVT.getVectorElementCount());
3055 
3056   // If we want even elements, then the shift amount is 0. Otherwise, shift by
3057   // the original element size.
3058   unsigned Shift = Mask[0] == 0 ? 0 : EltBits;
3059   SDValue SplatShift = DAG.getNode(
3060       RISCVISD::VMV_V_X_VL, DL, IntContainerVT, DAG.getUNDEF(ContainerVT),
3061       DAG.getConstant(Shift, DL, Subtarget.getXLenVT()), VL);
3062   SDValue Res =
3063       DAG.getNode(RISCVISD::VNSRL_VL, DL, IntContainerVT, Src, SplatShift,
3064                   DAG.getUNDEF(IntContainerVT), TrueMask, VL);
3065   // Cast back to FP if needed.
3066   Res = DAG.getBitcast(ContainerVT, Res);
3067 
3068   return convertFromScalableVector(VT, Res, DAG, Subtarget);
3069 }
3070 
3071 static SDValue
3072 getVSlidedown(SelectionDAG &DAG, const RISCVSubtarget &Subtarget, SDLoc DL,
3073               EVT VT, SDValue Merge, SDValue Op, SDValue Offset, SDValue Mask,
3074               SDValue VL,
3075               unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED) {
3076   if (Merge.isUndef())
3077     Policy = RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC;
3078   SDValue PolicyOp = DAG.getTargetConstant(Policy, DL, Subtarget.getXLenVT());
3079   SDValue Ops[] = {Merge, Op, Offset, Mask, VL, PolicyOp};
3080   return DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VT, Ops);
3081 }
3082 
3083 static SDValue
3084 getVSlideup(SelectionDAG &DAG, const RISCVSubtarget &Subtarget, SDLoc DL,
3085             EVT VT, SDValue Merge, SDValue Op, SDValue Offset, SDValue Mask,
3086             SDValue VL,
3087             unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED) {
3088   if (Merge.isUndef())
3089     Policy = RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC;
3090   SDValue PolicyOp = DAG.getTargetConstant(Policy, DL, Subtarget.getXLenVT());
3091   SDValue Ops[] = {Merge, Op, Offset, Mask, VL, PolicyOp};
3092   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VT, Ops);
3093 }
3094 
3095 // Lower the following shuffle to vslidedown.
3096 // a)
3097 // t49: v8i8 = extract_subvector t13, Constant:i64<0>
3098 // t109: v8i8 = extract_subvector t13, Constant:i64<8>
3099 // t108: v8i8 = vector_shuffle<1,2,3,4,5,6,7,8> t49, t106
3100 // b)
3101 // t69: v16i16 = extract_subvector t68, Constant:i64<0>
3102 // t23: v8i16 = extract_subvector t69, Constant:i64<0>
3103 // t29: v4i16 = extract_subvector t23, Constant:i64<4>
3104 // t26: v8i16 = extract_subvector t69, Constant:i64<8>
3105 // t30: v4i16 = extract_subvector t26, Constant:i64<0>
3106 // t54: v4i16 = vector_shuffle<1,2,3,4> t29, t30
3107 static SDValue lowerVECTOR_SHUFFLEAsVSlidedown(const SDLoc &DL, MVT VT,
3108                                                SDValue V1, SDValue V2,
3109                                                ArrayRef<int> Mask,
3110                                                const RISCVSubtarget &Subtarget,
3111                                                SelectionDAG &DAG) {
3112   auto findNonEXTRACT_SUBVECTORParent =
3113       [](SDValue Parent) -> std::pair<SDValue, uint64_t> {
3114     uint64_t Offset = 0;
3115     while (Parent.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
3116            // EXTRACT_SUBVECTOR can be used to extract a fixed-width vector from
3117            // a scalable vector. But we don't want to match the case.
3118            Parent.getOperand(0).getSimpleValueType().isFixedLengthVector()) {
3119       Offset += Parent.getConstantOperandVal(1);
3120       Parent = Parent.getOperand(0);
3121     }
3122     return std::make_pair(Parent, Offset);
3123   };
3124 
3125   auto [V1Src, V1IndexOffset] = findNonEXTRACT_SUBVECTORParent(V1);
3126   auto [V2Src, V2IndexOffset] = findNonEXTRACT_SUBVECTORParent(V2);
3127 
3128   // Extracting from the same source.
3129   SDValue Src = V1Src;
3130   if (Src != V2Src)
3131     return SDValue();
3132 
3133   // Rebuild mask because Src may be from multiple EXTRACT_SUBVECTORs.
3134   SmallVector<int, 16> NewMask(Mask);
3135   for (size_t i = 0; i != NewMask.size(); ++i) {
3136     if (NewMask[i] == -1)
3137       continue;
3138 
3139     if (static_cast<size_t>(NewMask[i]) < NewMask.size()) {
3140       NewMask[i] = NewMask[i] + V1IndexOffset;
3141     } else {
3142       // Minus NewMask.size() is needed. Otherwise, the b case would be
3143       // <5,6,7,12> instead of <5,6,7,8>.
3144       NewMask[i] = NewMask[i] - NewMask.size() + V2IndexOffset;
3145     }
3146   }
3147 
3148   // First index must be known and non-zero. It will be used as the slidedown
3149   // amount.
3150   if (NewMask[0] <= 0)
3151     return SDValue();
3152 
3153   // NewMask is also continuous.
3154   for (unsigned i = 1; i != NewMask.size(); ++i)
3155     if (NewMask[i - 1] + 1 != NewMask[i])
3156       return SDValue();
3157 
3158   MVT XLenVT = Subtarget.getXLenVT();
3159   MVT SrcVT = Src.getSimpleValueType();
3160   MVT ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget);
3161   auto [TrueMask, VL] = getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
3162   SDValue Slidedown =
3163       getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
3164                     convertToScalableVector(ContainerVT, Src, DAG, Subtarget),
3165                     DAG.getConstant(NewMask[0], DL, XLenVT), TrueMask, VL);
3166   return DAG.getNode(
3167       ISD::EXTRACT_SUBVECTOR, DL, VT,
3168       convertFromScalableVector(SrcVT, Slidedown, DAG, Subtarget),
3169       DAG.getConstant(0, DL, XLenVT));
3170 }
3171 
3172 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
3173                                    const RISCVSubtarget &Subtarget) {
3174   SDValue V1 = Op.getOperand(0);
3175   SDValue V2 = Op.getOperand(1);
3176   SDLoc DL(Op);
3177   MVT XLenVT = Subtarget.getXLenVT();
3178   MVT VT = Op.getSimpleValueType();
3179   unsigned NumElts = VT.getVectorNumElements();
3180   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
3181 
3182   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
3183 
3184   auto [TrueMask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3185 
3186   if (SVN->isSplat()) {
3187     const int Lane = SVN->getSplatIndex();
3188     if (Lane >= 0) {
3189       MVT SVT = VT.getVectorElementType();
3190 
3191       // Turn splatted vector load into a strided load with an X0 stride.
3192       SDValue V = V1;
3193       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
3194       // with undef.
3195       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
3196       int Offset = Lane;
3197       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
3198         int OpElements =
3199             V.getOperand(0).getSimpleValueType().getVectorNumElements();
3200         V = V.getOperand(Offset / OpElements);
3201         Offset %= OpElements;
3202       }
3203 
3204       // We need to ensure the load isn't atomic or volatile.
3205       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
3206         auto *Ld = cast<LoadSDNode>(V);
3207         Offset *= SVT.getStoreSize();
3208         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
3209                                                    TypeSize::Fixed(Offset), DL);
3210 
3211         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
3212         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
3213           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
3214           SDValue IntID =
3215               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
3216           SDValue Ops[] = {Ld->getChain(),
3217                            IntID,
3218                            DAG.getUNDEF(ContainerVT),
3219                            NewAddr,
3220                            DAG.getRegister(RISCV::X0, XLenVT),
3221                            VL};
3222           SDValue NewLoad = DAG.getMemIntrinsicNode(
3223               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
3224               DAG.getMachineFunction().getMachineMemOperand(
3225                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
3226           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
3227           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
3228         }
3229 
3230         // Otherwise use a scalar load and splat. This will give the best
3231         // opportunity to fold a splat into the operation. ISel can turn it into
3232         // the x0 strided load if we aren't able to fold away the select.
3233         if (SVT.isFloatingPoint())
3234           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
3235                           Ld->getPointerInfo().getWithOffset(Offset),
3236                           Ld->getOriginalAlign(),
3237                           Ld->getMemOperand()->getFlags());
3238         else
3239           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
3240                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
3241                              Ld->getOriginalAlign(),
3242                              Ld->getMemOperand()->getFlags());
3243         DAG.makeEquivalentMemoryOrdering(Ld, V);
3244 
3245         unsigned Opc =
3246             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
3247         SDValue Splat =
3248             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
3249         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
3250       }
3251 
3252       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
3253       assert(Lane < (int)NumElts && "Unexpected lane!");
3254       SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT,
3255                                    V1, DAG.getConstant(Lane, DL, XLenVT),
3256                                    DAG.getUNDEF(ContainerVT), TrueMask, VL);
3257       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
3258     }
3259   }
3260 
3261   ArrayRef<int> Mask = SVN->getMask();
3262 
3263   if (SDValue V =
3264           lowerVECTOR_SHUFFLEAsVSlidedown(DL, VT, V1, V2, Mask, Subtarget, DAG))
3265     return V;
3266 
3267   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
3268   // be undef which can be handled with a single SLIDEDOWN/UP.
3269   int LoSrc, HiSrc;
3270   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
3271   if (Rotation > 0) {
3272     SDValue LoV, HiV;
3273     if (LoSrc >= 0) {
3274       LoV = LoSrc == 0 ? V1 : V2;
3275       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
3276     }
3277     if (HiSrc >= 0) {
3278       HiV = HiSrc == 0 ? V1 : V2;
3279       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
3280     }
3281 
3282     // We found a rotation. We need to slide HiV down by Rotation. Then we need
3283     // to slide LoV up by (NumElts - Rotation).
3284     unsigned InvRotate = NumElts - Rotation;
3285 
3286     SDValue Res = DAG.getUNDEF(ContainerVT);
3287     if (HiV) {
3288       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
3289       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
3290       // causes multiple vsetvlis in some test cases such as lowering
3291       // reduce.mul
3292       SDValue DownVL = VL;
3293       if (LoV)
3294         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
3295       Res = getVSlidedown(DAG, Subtarget, DL, ContainerVT, Res, HiV,
3296                           DAG.getConstant(Rotation, DL, XLenVT), TrueMask,
3297                           DownVL);
3298     }
3299     if (LoV)
3300       Res = getVSlideup(DAG, Subtarget, DL, ContainerVT, Res, LoV,
3301                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL,
3302                         RISCVII::TAIL_AGNOSTIC);
3303 
3304     return convertFromScalableVector(VT, Res, DAG, Subtarget);
3305   }
3306 
3307   if (SDValue V = lowerVECTOR_SHUFFLEAsVNSRL(
3308           DL, VT, ContainerVT, V1, V2, TrueMask, VL, Mask, Subtarget, DAG))
3309     return V;
3310 
3311   // Detect an interleave shuffle and lower to
3312   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
3313   bool SwapSources;
3314   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
3315     // Swap sources if needed.
3316     if (SwapSources)
3317       std::swap(V1, V2);
3318 
3319     // Extract the lower half of the vectors.
3320     MVT HalfVT = VT.getHalfNumVectorElementsVT();
3321     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
3322                      DAG.getConstant(0, DL, XLenVT));
3323     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
3324                      DAG.getConstant(0, DL, XLenVT));
3325 
3326     // Double the element width and halve the number of elements in an int type.
3327     unsigned EltBits = VT.getScalarSizeInBits();
3328     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
3329     MVT WideIntVT =
3330         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
3331     // Convert this to a scalable vector. We need to base this on the
3332     // destination size to ensure there's always a type with a smaller LMUL.
3333     MVT WideIntContainerVT =
3334         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
3335 
3336     // Convert sources to scalable vectors with the same element count as the
3337     // larger type.
3338     MVT HalfContainerVT = MVT::getVectorVT(
3339         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
3340     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
3341     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
3342 
3343     // Cast sources to integer.
3344     MVT IntEltVT = MVT::getIntegerVT(EltBits);
3345     MVT IntHalfVT =
3346         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
3347     V1 = DAG.getBitcast(IntHalfVT, V1);
3348     V2 = DAG.getBitcast(IntHalfVT, V2);
3349 
3350     // Freeze V2 since we use it twice and we need to be sure that the add and
3351     // multiply see the same value.
3352     V2 = DAG.getFreeze(V2);
3353 
3354     // Recreate TrueMask using the widened type's element count.
3355     TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG);
3356 
3357     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
3358     SDValue Add =
3359         DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, V2,
3360                     DAG.getUNDEF(WideIntContainerVT), TrueMask, VL);
3361     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
3362     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
3363                                      DAG.getUNDEF(IntHalfVT),
3364                                      DAG.getAllOnesConstant(DL, XLenVT), VL);
3365     SDValue WidenMul =
3366         DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, V2, Multiplier,
3367                     DAG.getUNDEF(WideIntContainerVT), TrueMask, VL);
3368     // Add the new copies to our previous addition giving us 2^eltbits copies of
3369     // V2. This is equivalent to shifting V2 left by eltbits. This should
3370     // combine with the vwmulu.vv above to form vwmaccu.vv.
3371     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
3372                       DAG.getUNDEF(WideIntContainerVT), TrueMask, VL);
3373     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
3374     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
3375     // vector VT.
3376     ContainerVT =
3377         MVT::getVectorVT(VT.getVectorElementType(),
3378                          WideIntContainerVT.getVectorElementCount() * 2);
3379     Add = DAG.getBitcast(ContainerVT, Add);
3380     return convertFromScalableVector(VT, Add, DAG, Subtarget);
3381   }
3382 
3383   // Detect shuffles which can be re-expressed as vector selects; these are
3384   // shuffles in which each element in the destination is taken from an element
3385   // at the corresponding index in either source vectors.
3386   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
3387     int MaskIndex = MaskIdx.value();
3388     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
3389   });
3390 
3391   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
3392 
3393   SmallVector<SDValue> MaskVals;
3394   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
3395   // merged with a second vrgather.
3396   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
3397 
3398   // By default we preserve the original operand order, and use a mask to
3399   // select LHS as true and RHS as false. However, since RVV vector selects may
3400   // feature splats but only on the LHS, we may choose to invert our mask and
3401   // instead select between RHS and LHS.
3402   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
3403   bool InvertMask = IsSelect == SwapOps;
3404 
3405   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
3406   // half.
3407   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
3408 
3409   // Now construct the mask that will be used by the vselect or blended
3410   // vrgather operation. For vrgathers, construct the appropriate indices into
3411   // each vector.
3412   for (int MaskIndex : Mask) {
3413     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
3414     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
3415     if (!IsSelect) {
3416       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
3417       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
3418                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
3419                                      : DAG.getUNDEF(XLenVT));
3420       GatherIndicesRHS.push_back(
3421           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
3422                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
3423       if (IsLHSOrUndefIndex && MaskIndex >= 0)
3424         ++LHSIndexCounts[MaskIndex];
3425       if (!IsLHSOrUndefIndex)
3426         ++RHSIndexCounts[MaskIndex - NumElts];
3427     }
3428   }
3429 
3430   if (SwapOps) {
3431     std::swap(V1, V2);
3432     std::swap(GatherIndicesLHS, GatherIndicesRHS);
3433   }
3434 
3435   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
3436   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
3437   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
3438 
3439   if (IsSelect)
3440     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
3441 
3442   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
3443     // On such a large vector we're unable to use i8 as the index type.
3444     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
3445     // may involve vector splitting if we're already at LMUL=8, or our
3446     // user-supplied maximum fixed-length LMUL.
3447     return SDValue();
3448   }
3449 
3450   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
3451   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
3452   MVT IndexVT = VT.changeTypeToInteger();
3453   // Since we can't introduce illegal index types at this stage, use i16 and
3454   // vrgatherei16 if the corresponding index type for plain vrgather is greater
3455   // than XLenVT.
3456   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
3457     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
3458     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
3459   }
3460 
3461   MVT IndexContainerVT =
3462       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
3463 
3464   SDValue Gather;
3465   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
3466   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
3467   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
3468     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
3469                               Subtarget);
3470   } else {
3471     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
3472     // If only one index is used, we can use a "splat" vrgather.
3473     // TODO: We can splat the most-common index and fix-up any stragglers, if
3474     // that's beneficial.
3475     if (LHSIndexCounts.size() == 1) {
3476       int SplatIndex = LHSIndexCounts.begin()->getFirst();
3477       Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
3478                            DAG.getConstant(SplatIndex, DL, XLenVT),
3479                            DAG.getUNDEF(ContainerVT), TrueMask, VL);
3480     } else {
3481       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
3482       LHSIndices =
3483           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
3484 
3485       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
3486                            DAG.getUNDEF(ContainerVT), TrueMask, VL);
3487     }
3488   }
3489 
3490   // If a second vector operand is used by this shuffle, blend it in with an
3491   // additional vrgather.
3492   if (!V2.isUndef()) {
3493     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
3494 
3495     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3496     SelectMask =
3497         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
3498 
3499     // If only one index is used, we can use a "splat" vrgather.
3500     // TODO: We can splat the most-common index and fix-up any stragglers, if
3501     // that's beneficial.
3502     if (RHSIndexCounts.size() == 1) {
3503       int SplatIndex = RHSIndexCounts.begin()->getFirst();
3504       Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
3505                            DAG.getConstant(SplatIndex, DL, XLenVT), Gather,
3506                            SelectMask, VL);
3507     } else {
3508       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
3509       RHSIndices =
3510           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
3511       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, Gather,
3512                            SelectMask, VL);
3513     }
3514   }
3515 
3516   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
3517 }
3518 
3519 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
3520   // Support splats for any type. These should type legalize well.
3521   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
3522     return true;
3523 
3524   // Only support legal VTs for other shuffles for now.
3525   if (!isTypeLegal(VT))
3526     return false;
3527 
3528   MVT SVT = VT.getSimpleVT();
3529 
3530   bool SwapSources;
3531   int LoSrc, HiSrc;
3532   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
3533          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
3534 }
3535 
3536 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
3537 // the exponent.
3538 SDValue
3539 RISCVTargetLowering::lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op,
3540                                                SelectionDAG &DAG) const {
3541   MVT VT = Op.getSimpleValueType();
3542   unsigned EltSize = VT.getScalarSizeInBits();
3543   SDValue Src = Op.getOperand(0);
3544   SDLoc DL(Op);
3545 
3546   // We choose FP type that can represent the value if possible. Otherwise, we
3547   // use rounding to zero conversion for correct exponent of the result.
3548   // TODO: Use f16 for i8 when possible?
3549   MVT FloatEltVT = (EltSize >= 32) ? MVT::f64 : MVT::f32;
3550   if (!isTypeLegal(MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount())))
3551     FloatEltVT = MVT::f32;
3552   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
3553 
3554   // Legal types should have been checked in the RISCVTargetLowering
3555   // constructor.
3556   // TODO: Splitting may make sense in some cases.
3557   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
3558          "Expected legal float type!");
3559 
3560   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
3561   // The trailing zero count is equal to log2 of this single bit value.
3562   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
3563     SDValue Neg = DAG.getNegative(Src, DL, VT);
3564     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
3565   }
3566 
3567   // We have a legal FP type, convert to it.
3568   SDValue FloatVal;
3569   if (FloatVT.bitsGT(VT)) {
3570     FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
3571   } else {
3572     // Use RTZ to avoid rounding influencing exponent of FloatVal.
3573     MVT ContainerVT = VT;
3574     if (VT.isFixedLengthVector()) {
3575       ContainerVT = getContainerForFixedLengthVector(VT);
3576       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3577     }
3578 
3579     auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3580     SDValue RTZRM =
3581         DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT());
3582     MVT ContainerFloatVT =
3583         MVT::getVectorVT(FloatEltVT, ContainerVT.getVectorElementCount());
3584     FloatVal = DAG.getNode(RISCVISD::VFCVT_RM_F_XU_VL, DL, ContainerFloatVT,
3585                            Src, Mask, RTZRM, VL);
3586     if (VT.isFixedLengthVector())
3587       FloatVal = convertFromScalableVector(FloatVT, FloatVal, DAG, Subtarget);
3588   }
3589   // Bitcast to integer and shift the exponent to the LSB.
3590   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
3591   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
3592   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
3593   SDValue Exp = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
3594                             DAG.getConstant(ShiftAmt, DL, IntVT));
3595   // Restore back to original type. Truncation after SRL is to generate vnsrl.
3596   if (IntVT.bitsLT(VT))
3597     Exp = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Exp);
3598   else if (IntVT.bitsGT(VT))
3599     Exp = DAG.getNode(ISD::TRUNCATE, DL, VT, Exp);
3600   // The exponent contains log2 of the value in biased form.
3601   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
3602 
3603   // For trailing zeros, we just need to subtract the bias.
3604   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
3605     return DAG.getNode(ISD::SUB, DL, VT, Exp,
3606                        DAG.getConstant(ExponentBias, DL, VT));
3607 
3608   // For leading zeros, we need to remove the bias and convert from log2 to
3609   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
3610   unsigned Adjust = ExponentBias + (EltSize - 1);
3611   SDValue Res =
3612       DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Exp);
3613   // The above result with zero input equals to Adjust which is greater than
3614   // EltSize. Hence, we can do min(Res, EltSize) for CTLZ.
3615   if (Op.getOpcode() == ISD::CTLZ)
3616     Res = DAG.getNode(ISD::UMIN, DL, VT, Res, DAG.getConstant(EltSize, DL, VT));
3617   return Res;
3618 }
3619 
3620 // While RVV has alignment restrictions, we should always be able to load as a
3621 // legal equivalently-sized byte-typed vector instead. This method is
3622 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
3623 // the load is already correctly-aligned, it returns SDValue().
3624 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
3625                                                     SelectionDAG &DAG) const {
3626   auto *Load = cast<LoadSDNode>(Op);
3627   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
3628 
3629   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3630                                      Load->getMemoryVT(),
3631                                      *Load->getMemOperand()))
3632     return SDValue();
3633 
3634   SDLoc DL(Op);
3635   MVT VT = Op.getSimpleValueType();
3636   unsigned EltSizeBits = VT.getScalarSizeInBits();
3637   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3638          "Unexpected unaligned RVV load type");
3639   MVT NewVT =
3640       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3641   assert(NewVT.isValid() &&
3642          "Expecting equally-sized RVV vector types to be legal");
3643   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
3644                           Load->getPointerInfo(), Load->getOriginalAlign(),
3645                           Load->getMemOperand()->getFlags());
3646   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
3647 }
3648 
3649 // While RVV has alignment restrictions, we should always be able to store as a
3650 // legal equivalently-sized byte-typed vector instead. This method is
3651 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
3652 // returns SDValue() if the store is already correctly aligned.
3653 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
3654                                                      SelectionDAG &DAG) const {
3655   auto *Store = cast<StoreSDNode>(Op);
3656   assert(Store && Store->getValue().getValueType().isVector() &&
3657          "Expected vector store");
3658 
3659   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3660                                      Store->getMemoryVT(),
3661                                      *Store->getMemOperand()))
3662     return SDValue();
3663 
3664   SDLoc DL(Op);
3665   SDValue StoredVal = Store->getValue();
3666   MVT VT = StoredVal.getSimpleValueType();
3667   unsigned EltSizeBits = VT.getScalarSizeInBits();
3668   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3669          "Unexpected unaligned RVV store type");
3670   MVT NewVT =
3671       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3672   assert(NewVT.isValid() &&
3673          "Expecting equally-sized RVV vector types to be legal");
3674   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3675   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3676                       Store->getPointerInfo(), Store->getOriginalAlign(),
3677                       Store->getMemOperand()->getFlags());
3678 }
3679 
3680 static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG,
3681                              const RISCVSubtarget &Subtarget) {
3682   assert(Op.getValueType() == MVT::i64 && "Unexpected VT");
3683 
3684   int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue();
3685 
3686   // All simm32 constants should be handled by isel.
3687   // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making
3688   // this check redundant, but small immediates are common so this check
3689   // should have better compile time.
3690   if (isInt<32>(Imm))
3691     return Op;
3692 
3693   // We only need to cost the immediate, if constant pool lowering is enabled.
3694   if (!Subtarget.useConstantPoolForLargeInts())
3695     return Op;
3696 
3697   RISCVMatInt::InstSeq Seq =
3698       RISCVMatInt::generateInstSeq(Imm, Subtarget.getFeatureBits());
3699   if (Seq.size() <= Subtarget.getMaxBuildIntsCost())
3700     return Op;
3701 
3702   // Expand to a constant pool using the default expansion code.
3703   return SDValue();
3704 }
3705 
3706 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) {
3707   SDLoc dl(Op);
3708   SyncScope::ID FenceSSID =
3709       static_cast<SyncScope::ID>(Op.getConstantOperandVal(2));
3710 
3711   // singlethread fences only synchronize with signal handlers on the same
3712   // thread and thus only need to preserve instruction order, not actually
3713   // enforce memory ordering.
3714   if (FenceSSID == SyncScope::SingleThread)
3715     // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3716     return DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
3717 
3718   return Op;
3719 }
3720 
3721 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3722                                             SelectionDAG &DAG) const {
3723   switch (Op.getOpcode()) {
3724   default:
3725     report_fatal_error("unimplemented operand");
3726   case ISD::ATOMIC_FENCE:
3727     return LowerATOMIC_FENCE(Op, DAG);
3728   case ISD::GlobalAddress:
3729     return lowerGlobalAddress(Op, DAG);
3730   case ISD::BlockAddress:
3731     return lowerBlockAddress(Op, DAG);
3732   case ISD::ConstantPool:
3733     return lowerConstantPool(Op, DAG);
3734   case ISD::JumpTable:
3735     return lowerJumpTable(Op, DAG);
3736   case ISD::GlobalTLSAddress:
3737     return lowerGlobalTLSAddress(Op, DAG);
3738   case ISD::Constant:
3739     return lowerConstant(Op, DAG, Subtarget);
3740   case ISD::SELECT:
3741     return lowerSELECT(Op, DAG);
3742   case ISD::BRCOND:
3743     return lowerBRCOND(Op, DAG);
3744   case ISD::VASTART:
3745     return lowerVASTART(Op, DAG);
3746   case ISD::FRAMEADDR:
3747     return lowerFRAMEADDR(Op, DAG);
3748   case ISD::RETURNADDR:
3749     return lowerRETURNADDR(Op, DAG);
3750   case ISD::SHL_PARTS:
3751     return lowerShiftLeftParts(Op, DAG);
3752   case ISD::SRA_PARTS:
3753     return lowerShiftRightParts(Op, DAG, true);
3754   case ISD::SRL_PARTS:
3755     return lowerShiftRightParts(Op, DAG, false);
3756   case ISD::BITCAST: {
3757     SDLoc DL(Op);
3758     EVT VT = Op.getValueType();
3759     SDValue Op0 = Op.getOperand(0);
3760     EVT Op0VT = Op0.getValueType();
3761     MVT XLenVT = Subtarget.getXLenVT();
3762     if (VT == MVT::f16 && Op0VT == MVT::i16 &&
3763         Subtarget.hasStdExtZfhOrZfhmin()) {
3764       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3765       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3766       return FPConv;
3767     }
3768     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3769         Subtarget.hasStdExtF()) {
3770       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3771       SDValue FPConv =
3772           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3773       return FPConv;
3774     }
3775 
3776     // Consider other scalar<->scalar casts as legal if the types are legal.
3777     // Otherwise expand them.
3778     if (!VT.isVector() && !Op0VT.isVector()) {
3779       if (isTypeLegal(VT) && isTypeLegal(Op0VT))
3780         return Op;
3781       return SDValue();
3782     }
3783 
3784     assert(!VT.isScalableVector() && !Op0VT.isScalableVector() &&
3785            "Unexpected types");
3786 
3787     if (VT.isFixedLengthVector()) {
3788       // We can handle fixed length vector bitcasts with a simple replacement
3789       // in isel.
3790       if (Op0VT.isFixedLengthVector())
3791         return Op;
3792       // When bitcasting from scalar to fixed-length vector, insert the scalar
3793       // into a one-element vector of the result type, and perform a vector
3794       // bitcast.
3795       if (!Op0VT.isVector()) {
3796         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3797         if (!isTypeLegal(BVT))
3798           return SDValue();
3799         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3800                                               DAG.getUNDEF(BVT), Op0,
3801                                               DAG.getConstant(0, DL, XLenVT)));
3802       }
3803       return SDValue();
3804     }
3805     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3806     // thus: bitcast the vector to a one-element vector type whose element type
3807     // is the same as the result type, and extract the first element.
3808     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3809       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3810       if (!isTypeLegal(BVT))
3811         return SDValue();
3812       SDValue BVec = DAG.getBitcast(BVT, Op0);
3813       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3814                          DAG.getConstant(0, DL, XLenVT));
3815     }
3816     return SDValue();
3817   }
3818   case ISD::INTRINSIC_WO_CHAIN:
3819     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3820   case ISD::INTRINSIC_W_CHAIN:
3821     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3822   case ISD::INTRINSIC_VOID:
3823     return LowerINTRINSIC_VOID(Op, DAG);
3824   case ISD::BITREVERSE: {
3825     MVT VT = Op.getSimpleValueType();
3826     SDLoc DL(Op);
3827     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3828     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3829     // Expand bitreverse to a bswap(rev8) followed by brev8.
3830     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3831     return DAG.getNode(RISCVISD::BREV8, DL, VT, BSwap);
3832   }
3833   case ISD::TRUNCATE:
3834     // Only custom-lower vector truncates
3835     if (!Op.getSimpleValueType().isVector())
3836       return Op;
3837     return lowerVectorTruncLike(Op, DAG);
3838   case ISD::ANY_EXTEND:
3839   case ISD::ZERO_EXTEND:
3840     if (Op.getOperand(0).getValueType().isVector() &&
3841         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3842       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3843     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3844   case ISD::SIGN_EXTEND:
3845     if (Op.getOperand(0).getValueType().isVector() &&
3846         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3847       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3848     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3849   case ISD::SPLAT_VECTOR_PARTS:
3850     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3851   case ISD::INSERT_VECTOR_ELT:
3852     return lowerINSERT_VECTOR_ELT(Op, DAG);
3853   case ISD::EXTRACT_VECTOR_ELT:
3854     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3855   case ISD::VSCALE: {
3856     MVT VT = Op.getSimpleValueType();
3857     SDLoc DL(Op);
3858     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3859     // We define our scalable vector types for lmul=1 to use a 64 bit known
3860     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3861     // vscale as VLENB / 8.
3862     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3863     if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock)
3864       report_fatal_error("Support for VLEN==32 is incomplete.");
3865     // We assume VLENB is a multiple of 8. We manually choose the best shift
3866     // here because SimplifyDemandedBits isn't always able to simplify it.
3867     uint64_t Val = Op.getConstantOperandVal(0);
3868     if (isPowerOf2_64(Val)) {
3869       uint64_t Log2 = Log2_64(Val);
3870       if (Log2 < 3)
3871         return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3872                            DAG.getConstant(3 - Log2, DL, VT));
3873       if (Log2 > 3)
3874         return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3875                            DAG.getConstant(Log2 - 3, DL, VT));
3876       return VLENB;
3877     }
3878     // If the multiplier is a multiple of 8, scale it down to avoid needing
3879     // to shift the VLENB value.
3880     if ((Val % 8) == 0)
3881       return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3882                          DAG.getConstant(Val / 8, DL, VT));
3883 
3884     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3885                                  DAG.getConstant(3, DL, VT));
3886     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3887   }
3888   case ISD::FPOWI: {
3889     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3890     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3891     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3892         Op.getOperand(1).getValueType() == MVT::i32) {
3893       SDLoc DL(Op);
3894       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3895       SDValue Powi =
3896           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3897       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3898                          DAG.getIntPtrConstant(0, DL, /*isTarget=*/true));
3899     }
3900     return SDValue();
3901   }
3902   case ISD::FP_EXTEND:
3903   case ISD::FP_ROUND:
3904     if (!Op.getValueType().isVector())
3905       return Op;
3906     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3907   case ISD::FP_TO_SINT:
3908   case ISD::FP_TO_UINT:
3909   case ISD::SINT_TO_FP:
3910   case ISD::UINT_TO_FP: {
3911     // RVV can only do fp<->int conversions to types half/double the size as
3912     // the source. We custom-lower any conversions that do two hops into
3913     // sequences.
3914     MVT VT = Op.getSimpleValueType();
3915     if (!VT.isVector())
3916       return Op;
3917     SDLoc DL(Op);
3918     SDValue Src = Op.getOperand(0);
3919     MVT EltVT = VT.getVectorElementType();
3920     MVT SrcVT = Src.getSimpleValueType();
3921     MVT SrcEltVT = SrcVT.getVectorElementType();
3922     unsigned EltSize = EltVT.getSizeInBits();
3923     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3924     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3925            "Unexpected vector element types");
3926 
3927     bool IsInt2FP = SrcEltVT.isInteger();
3928     // Widening conversions
3929     if (EltSize > (2 * SrcEltSize)) {
3930       if (IsInt2FP) {
3931         // Do a regular integer sign/zero extension then convert to float.
3932         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize / 2),
3933                                       VT.getVectorElementCount());
3934         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3935                                  ? ISD::ZERO_EXTEND
3936                                  : ISD::SIGN_EXTEND;
3937         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3938         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3939       }
3940       // FP2Int
3941       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3942       // Do one doubling fp_extend then complete the operation by converting
3943       // to int.
3944       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3945       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3946       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3947     }
3948 
3949     // Narrowing conversions
3950     if (SrcEltSize > (2 * EltSize)) {
3951       if (IsInt2FP) {
3952         // One narrowing int_to_fp, then an fp_round.
3953         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3954         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3955         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3956         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3957       }
3958       // FP2Int
3959       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3960       // representable by the integer, the result is poison.
3961       MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
3962                                     VT.getVectorElementCount());
3963       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3964       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3965     }
3966 
3967     // Scalable vectors can exit here. Patterns will handle equally-sized
3968     // conversions halving/doubling ones.
3969     if (!VT.isFixedLengthVector())
3970       return Op;
3971 
3972     // For fixed-length vectors we lower to a custom "VL" node.
3973     unsigned RVVOpc = 0;
3974     switch (Op.getOpcode()) {
3975     default:
3976       llvm_unreachable("Impossible opcode");
3977     case ISD::FP_TO_SINT:
3978       RVVOpc = RISCVISD::VFCVT_RTZ_X_F_VL;
3979       break;
3980     case ISD::FP_TO_UINT:
3981       RVVOpc = RISCVISD::VFCVT_RTZ_XU_F_VL;
3982       break;
3983     case ISD::SINT_TO_FP:
3984       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3985       break;
3986     case ISD::UINT_TO_FP:
3987       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3988       break;
3989     }
3990 
3991     MVT ContainerVT = getContainerForFixedLengthVector(VT);
3992     MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3993     assert(ContainerVT.getVectorElementCount() == SrcContainerVT.getVectorElementCount() &&
3994            "Expected same element count");
3995 
3996     auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3997 
3998     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3999     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
4000     return convertFromScalableVector(VT, Src, DAG, Subtarget);
4001   }
4002   case ISD::FP_TO_SINT_SAT:
4003   case ISD::FP_TO_UINT_SAT:
4004     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
4005   case ISD::FTRUNC:
4006   case ISD::FCEIL:
4007   case ISD::FFLOOR:
4008   case ISD::FRINT:
4009   case ISD::FROUND:
4010   case ISD::FROUNDEVEN:
4011     return lowerFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget);
4012   case ISD::VECREDUCE_ADD:
4013   case ISD::VECREDUCE_UMAX:
4014   case ISD::VECREDUCE_SMAX:
4015   case ISD::VECREDUCE_UMIN:
4016   case ISD::VECREDUCE_SMIN:
4017     return lowerVECREDUCE(Op, DAG);
4018   case ISD::VECREDUCE_AND:
4019   case ISD::VECREDUCE_OR:
4020   case ISD::VECREDUCE_XOR:
4021     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
4022       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
4023     return lowerVECREDUCE(Op, DAG);
4024   case ISD::VECREDUCE_FADD:
4025   case ISD::VECREDUCE_SEQ_FADD:
4026   case ISD::VECREDUCE_FMIN:
4027   case ISD::VECREDUCE_FMAX:
4028     return lowerFPVECREDUCE(Op, DAG);
4029   case ISD::VP_REDUCE_ADD:
4030   case ISD::VP_REDUCE_UMAX:
4031   case ISD::VP_REDUCE_SMAX:
4032   case ISD::VP_REDUCE_UMIN:
4033   case ISD::VP_REDUCE_SMIN:
4034   case ISD::VP_REDUCE_FADD:
4035   case ISD::VP_REDUCE_SEQ_FADD:
4036   case ISD::VP_REDUCE_FMIN:
4037   case ISD::VP_REDUCE_FMAX:
4038     return lowerVPREDUCE(Op, DAG);
4039   case ISD::VP_REDUCE_AND:
4040   case ISD::VP_REDUCE_OR:
4041   case ISD::VP_REDUCE_XOR:
4042     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
4043       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
4044     return lowerVPREDUCE(Op, DAG);
4045   case ISD::INSERT_SUBVECTOR:
4046     return lowerINSERT_SUBVECTOR(Op, DAG);
4047   case ISD::EXTRACT_SUBVECTOR:
4048     return lowerEXTRACT_SUBVECTOR(Op, DAG);
4049   case ISD::STEP_VECTOR:
4050     return lowerSTEP_VECTOR(Op, DAG);
4051   case ISD::VECTOR_REVERSE:
4052     return lowerVECTOR_REVERSE(Op, DAG);
4053   case ISD::VECTOR_SPLICE:
4054     return lowerVECTOR_SPLICE(Op, DAG);
4055   case ISD::BUILD_VECTOR:
4056     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
4057   case ISD::SPLAT_VECTOR:
4058     if (Op.getValueType().getVectorElementType() == MVT::i1)
4059       return lowerVectorMaskSplat(Op, DAG);
4060     return SDValue();
4061   case ISD::VECTOR_SHUFFLE:
4062     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
4063   case ISD::CONCAT_VECTORS: {
4064     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
4065     // better than going through the stack, as the default expansion does.
4066     SDLoc DL(Op);
4067     MVT VT = Op.getSimpleValueType();
4068     unsigned NumOpElts =
4069         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
4070     SDValue Vec = DAG.getUNDEF(VT);
4071     for (const auto &OpIdx : enumerate(Op->ops())) {
4072       SDValue SubVec = OpIdx.value();
4073       // Don't insert undef subvectors.
4074       if (SubVec.isUndef())
4075         continue;
4076       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
4077                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
4078     }
4079     return Vec;
4080   }
4081   case ISD::LOAD:
4082     if (auto V = expandUnalignedRVVLoad(Op, DAG))
4083       return V;
4084     if (Op.getValueType().isFixedLengthVector())
4085       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
4086     return Op;
4087   case ISD::STORE:
4088     if (auto V = expandUnalignedRVVStore(Op, DAG))
4089       return V;
4090     if (Op.getOperand(1).getValueType().isFixedLengthVector())
4091       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
4092     return Op;
4093   case ISD::MLOAD:
4094   case ISD::VP_LOAD:
4095     return lowerMaskedLoad(Op, DAG);
4096   case ISD::MSTORE:
4097   case ISD::VP_STORE:
4098     return lowerMaskedStore(Op, DAG);
4099   case ISD::SELECT_CC: {
4100     // This occurs because we custom legalize SETGT and SETUGT for setcc. That
4101     // causes LegalizeDAG to think we need to custom legalize select_cc. Expand
4102     // into separate SETCC+SELECT_CC just like LegalizeDAG.
4103     SDValue Tmp1 = Op.getOperand(0);
4104     SDValue Tmp2 = Op.getOperand(1);
4105     SDValue True = Op.getOperand(2);
4106     SDValue False = Op.getOperand(3);
4107     EVT VT = Op.getValueType();
4108     SDValue CC = Op.getOperand(4);
4109     EVT CmpVT = Tmp1.getValueType();
4110     EVT CCVT =
4111         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT);
4112     SDLoc DL(Op);
4113     SDValue Cond =
4114         DAG.getNode(ISD::SETCC, DL, CCVT, Tmp1, Tmp2, CC, Op->getFlags());
4115     return DAG.getSelect(DL, VT, Cond, True, False);
4116   }
4117   case ISD::SETCC: {
4118     MVT OpVT = Op.getOperand(0).getSimpleValueType();
4119     if (OpVT.isScalarInteger()) {
4120       MVT VT = Op.getSimpleValueType();
4121       SDValue LHS = Op.getOperand(0);
4122       SDValue RHS = Op.getOperand(1);
4123       ISD::CondCode CCVal = cast<CondCodeSDNode>(Op.getOperand(2))->get();
4124       assert((CCVal == ISD::SETGT || CCVal == ISD::SETUGT) &&
4125              "Unexpected CondCode");
4126 
4127       SDLoc DL(Op);
4128 
4129       // If the RHS is a constant in the range [-2049, 0) or (0, 2046], we can
4130       // convert this to the equivalent of (set(u)ge X, C+1) by using
4131       // (xori (slti(u) X, C+1), 1). This avoids materializing a small constant
4132       // in a register.
4133       if (isa<ConstantSDNode>(RHS)) {
4134         int64_t Imm = cast<ConstantSDNode>(RHS)->getSExtValue();
4135         if (Imm != 0 && isInt<12>((uint64_t)Imm + 1)) {
4136           // X > -1 should have been replaced with false.
4137           assert((CCVal != ISD::SETUGT || Imm != -1) &&
4138                  "Missing canonicalization");
4139           // Using getSetCCSwappedOperands will convert SET(U)GT->SET(U)LT.
4140           CCVal = ISD::getSetCCSwappedOperands(CCVal);
4141           SDValue SetCC = DAG.getSetCC(
4142               DL, VT, LHS, DAG.getConstant(Imm + 1, DL, OpVT), CCVal);
4143           return DAG.getLogicalNOT(DL, SetCC, VT);
4144         }
4145       }
4146 
4147       // Not a constant we could handle, swap the operands and condition code to
4148       // SETLT/SETULT.
4149       CCVal = ISD::getSetCCSwappedOperands(CCVal);
4150       return DAG.getSetCC(DL, VT, RHS, LHS, CCVal);
4151     }
4152 
4153     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
4154   }
4155   case ISD::ADD:
4156     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL, /*HasMergeOp*/ true);
4157   case ISD::SUB:
4158     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL, /*HasMergeOp*/ true);
4159   case ISD::MUL:
4160     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL, /*HasMergeOp*/ true);
4161   case ISD::MULHS:
4162     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL, /*HasMergeOp*/ true);
4163   case ISD::MULHU:
4164     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL, /*HasMergeOp*/ true);
4165   case ISD::AND:
4166     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
4167                                               RISCVISD::AND_VL);
4168   case ISD::OR:
4169     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
4170                                               RISCVISD::OR_VL);
4171   case ISD::XOR:
4172     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
4173                                               RISCVISD::XOR_VL);
4174   case ISD::SDIV:
4175     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL, /*HasMergeOp*/ true);
4176   case ISD::SREM:
4177     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL, /*HasMergeOp*/ true);
4178   case ISD::UDIV:
4179     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL, /*HasMergeOp*/ true);
4180   case ISD::UREM:
4181     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL, /*HasMergeOp*/ true);
4182   case ISD::SHL:
4183   case ISD::SRA:
4184   case ISD::SRL:
4185     if (Op.getSimpleValueType().isFixedLengthVector())
4186       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
4187     // This can be called for an i32 shift amount that needs to be promoted.
4188     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
4189            "Unexpected custom legalisation");
4190     return SDValue();
4191   case ISD::SADDSAT:
4192     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL,
4193                              /*HasMergeOp*/ true);
4194   case ISD::UADDSAT:
4195     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL,
4196                              /*HasMergeOp*/ true);
4197   case ISD::SSUBSAT:
4198     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL,
4199                              /*HasMergeOp*/ true);
4200   case ISD::USUBSAT:
4201     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL,
4202                              /*HasMergeOp*/ true);
4203   case ISD::FADD:
4204     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL, /*HasMergeOp*/ true);
4205   case ISD::FSUB:
4206     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL, /*HasMergeOp*/ true);
4207   case ISD::FMUL:
4208     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL, /*HasMergeOp*/ true);
4209   case ISD::FDIV:
4210     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL, /*HasMergeOp*/ true);
4211   case ISD::FNEG:
4212     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
4213   case ISD::FABS:
4214     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
4215   case ISD::FSQRT:
4216     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
4217   case ISD::FMA:
4218     return lowerToScalableOp(Op, DAG, RISCVISD::VFMADD_VL);
4219   case ISD::SMIN:
4220     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL, /*HasMergeOp*/ true);
4221   case ISD::SMAX:
4222     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL, /*HasMergeOp*/ true);
4223   case ISD::UMIN:
4224     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL, /*HasMergeOp*/ true);
4225   case ISD::UMAX:
4226     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL, /*HasMergeOp*/ true);
4227   case ISD::FMINNUM:
4228     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL,
4229                              /*HasMergeOp*/ true);
4230   case ISD::FMAXNUM:
4231     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL,
4232                              /*HasMergeOp*/ true);
4233   case ISD::ABS:
4234   case ISD::VP_ABS:
4235     return lowerABS(Op, DAG);
4236   case ISD::CTLZ:
4237   case ISD::CTLZ_ZERO_UNDEF:
4238   case ISD::CTTZ_ZERO_UNDEF:
4239     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
4240   case ISD::VSELECT:
4241     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
4242   case ISD::FCOPYSIGN:
4243     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
4244   case ISD::MGATHER:
4245   case ISD::VP_GATHER:
4246     return lowerMaskedGather(Op, DAG);
4247   case ISD::MSCATTER:
4248   case ISD::VP_SCATTER:
4249     return lowerMaskedScatter(Op, DAG);
4250   case ISD::GET_ROUNDING:
4251     return lowerGET_ROUNDING(Op, DAG);
4252   case ISD::SET_ROUNDING:
4253     return lowerSET_ROUNDING(Op, DAG);
4254   case ISD::EH_DWARF_CFA:
4255     return lowerEH_DWARF_CFA(Op, DAG);
4256   case ISD::VP_SELECT:
4257     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
4258   case ISD::VP_MERGE:
4259     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
4260   case ISD::VP_ADD:
4261     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL, /*HasMergeOp*/ true);
4262   case ISD::VP_SUB:
4263     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL, /*HasMergeOp*/ true);
4264   case ISD::VP_MUL:
4265     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL, /*HasMergeOp*/ true);
4266   case ISD::VP_SDIV:
4267     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL, /*HasMergeOp*/ true);
4268   case ISD::VP_UDIV:
4269     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL, /*HasMergeOp*/ true);
4270   case ISD::VP_SREM:
4271     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL, /*HasMergeOp*/ true);
4272   case ISD::VP_UREM:
4273     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL, /*HasMergeOp*/ true);
4274   case ISD::VP_AND:
4275     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
4276   case ISD::VP_OR:
4277     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
4278   case ISD::VP_XOR:
4279     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
4280   case ISD::VP_ASHR:
4281     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL, /*HasMergeOp*/ true);
4282   case ISD::VP_LSHR:
4283     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL, /*HasMergeOp*/ true);
4284   case ISD::VP_SHL:
4285     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL, /*HasMergeOp*/ true);
4286   case ISD::VP_FADD:
4287     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL, /*HasMergeOp*/ true);
4288   case ISD::VP_FSUB:
4289     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL, /*HasMergeOp*/ true);
4290   case ISD::VP_FMUL:
4291     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL, /*HasMergeOp*/ true);
4292   case ISD::VP_FDIV:
4293     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL, /*HasMergeOp*/ true);
4294   case ISD::VP_FNEG:
4295     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
4296   case ISD::VP_FABS:
4297     return lowerVPOp(Op, DAG, RISCVISD::FABS_VL);
4298   case ISD::VP_SQRT:
4299     return lowerVPOp(Op, DAG, RISCVISD::FSQRT_VL);
4300   case ISD::VP_FMA:
4301     return lowerVPOp(Op, DAG, RISCVISD::VFMADD_VL);
4302   case ISD::VP_FMINNUM:
4303     return lowerVPOp(Op, DAG, RISCVISD::FMINNUM_VL, /*HasMergeOp*/ true);
4304   case ISD::VP_FMAXNUM:
4305     return lowerVPOp(Op, DAG, RISCVISD::FMAXNUM_VL, /*HasMergeOp*/ true);
4306   case ISD::VP_FCOPYSIGN:
4307     return lowerVPOp(Op, DAG, RISCVISD::FCOPYSIGN_VL, /*HasMergeOp*/ true);
4308   case ISD::VP_SIGN_EXTEND:
4309   case ISD::VP_ZERO_EXTEND:
4310     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
4311       return lowerVPExtMaskOp(Op, DAG);
4312     return lowerVPOp(Op, DAG,
4313                      Op.getOpcode() == ISD::VP_SIGN_EXTEND
4314                          ? RISCVISD::VSEXT_VL
4315                          : RISCVISD::VZEXT_VL);
4316   case ISD::VP_TRUNCATE:
4317     return lowerVectorTruncLike(Op, DAG);
4318   case ISD::VP_FP_EXTEND:
4319   case ISD::VP_FP_ROUND:
4320     return lowerVectorFPExtendOrRoundLike(Op, DAG);
4321   case ISD::VP_FP_TO_SINT:
4322     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::VFCVT_RTZ_X_F_VL);
4323   case ISD::VP_FP_TO_UINT:
4324     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::VFCVT_RTZ_XU_F_VL);
4325   case ISD::VP_SINT_TO_FP:
4326     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL);
4327   case ISD::VP_UINT_TO_FP:
4328     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL);
4329   case ISD::VP_SETCC:
4330     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
4331       return lowerVPSetCCMaskOp(Op, DAG);
4332     return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL, /*HasMergeOp*/ true);
4333   case ISD::VP_SMIN:
4334     return lowerVPOp(Op, DAG, RISCVISD::SMIN_VL, /*HasMergeOp*/ true);
4335   case ISD::VP_SMAX:
4336     return lowerVPOp(Op, DAG, RISCVISD::SMAX_VL, /*HasMergeOp*/ true);
4337   case ISD::VP_UMIN:
4338     return lowerVPOp(Op, DAG, RISCVISD::UMIN_VL, /*HasMergeOp*/ true);
4339   case ISD::VP_UMAX:
4340     return lowerVPOp(Op, DAG, RISCVISD::UMAX_VL, /*HasMergeOp*/ true);
4341   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
4342     return lowerVPStridedLoad(Op, DAG);
4343   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
4344     return lowerVPStridedStore(Op, DAG);
4345   case ISD::VP_FCEIL:
4346   case ISD::VP_FFLOOR:
4347   case ISD::VP_FRINT:
4348   case ISD::VP_FNEARBYINT:
4349   case ISD::VP_FROUND:
4350   case ISD::VP_FROUNDEVEN:
4351   case ISD::VP_FROUNDTOZERO:
4352     return lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget);
4353   }
4354 }
4355 
4356 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
4357                              SelectionDAG &DAG, unsigned Flags) {
4358   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
4359 }
4360 
4361 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
4362                              SelectionDAG &DAG, unsigned Flags) {
4363   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
4364                                    Flags);
4365 }
4366 
4367 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
4368                              SelectionDAG &DAG, unsigned Flags) {
4369   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
4370                                    N->getOffset(), Flags);
4371 }
4372 
4373 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
4374                              SelectionDAG &DAG, unsigned Flags) {
4375   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
4376 }
4377 
4378 template <class NodeTy>
4379 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
4380                                      bool IsLocal) const {
4381   SDLoc DL(N);
4382   EVT Ty = getPointerTy(DAG.getDataLayout());
4383 
4384   // When HWASAN is used and tagging of global variables is enabled
4385   // they should be accessed via the GOT, since the tagged address of a global
4386   // is incompatible with existing code models. This also applies to non-pic
4387   // mode.
4388   if (isPositionIndependent() || Subtarget.allowTaggedGlobals()) {
4389     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
4390     if (IsLocal && !Subtarget.allowTaggedGlobals())
4391       // Use PC-relative addressing to access the symbol. This generates the
4392       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
4393       // %pcrel_lo(auipc)).
4394       return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
4395 
4396     // Use PC-relative addressing to access the GOT for this symbol, then load
4397     // the address from the GOT. This generates the pattern (PseudoLA sym),
4398     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
4399     MachineFunction &MF = DAG.getMachineFunction();
4400     MachineMemOperand *MemOp = MF.getMachineMemOperand(
4401         MachinePointerInfo::getGOT(MF),
4402         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
4403             MachineMemOperand::MOInvariant,
4404         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
4405     SDValue Load =
4406         DAG.getMemIntrinsicNode(RISCVISD::LA, DL, DAG.getVTList(Ty, MVT::Other),
4407                                 {DAG.getEntryNode(), Addr}, Ty, MemOp);
4408     return Load;
4409   }
4410 
4411   switch (getTargetMachine().getCodeModel()) {
4412   default:
4413     report_fatal_error("Unsupported code model for lowering");
4414   case CodeModel::Small: {
4415     // Generate a sequence for accessing addresses within the first 2 GiB of
4416     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
4417     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
4418     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
4419     SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
4420     return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNHi, AddrLo);
4421   }
4422   case CodeModel::Medium: {
4423     // Generate a sequence for accessing addresses within any 2GiB range within
4424     // the address space. This generates the pattern (PseudoLLA sym), which
4425     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
4426     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
4427     return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
4428   }
4429   }
4430 }
4431 
4432 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
4433                                                 SelectionDAG &DAG) const {
4434   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
4435   assert(N->getOffset() == 0 && "unexpected offset in global node");
4436   return getAddr(N, DAG, N->getGlobal()->isDSOLocal());
4437 }
4438 
4439 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
4440                                                SelectionDAG &DAG) const {
4441   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
4442 
4443   return getAddr(N, DAG);
4444 }
4445 
4446 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
4447                                                SelectionDAG &DAG) const {
4448   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
4449 
4450   return getAddr(N, DAG);
4451 }
4452 
4453 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
4454                                             SelectionDAG &DAG) const {
4455   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
4456 
4457   return getAddr(N, DAG);
4458 }
4459 
4460 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
4461                                               SelectionDAG &DAG,
4462                                               bool UseGOT) const {
4463   SDLoc DL(N);
4464   EVT Ty = getPointerTy(DAG.getDataLayout());
4465   const GlobalValue *GV = N->getGlobal();
4466   MVT XLenVT = Subtarget.getXLenVT();
4467 
4468   if (UseGOT) {
4469     // Use PC-relative addressing to access the GOT for this TLS symbol, then
4470     // load the address from the GOT and add the thread pointer. This generates
4471     // the pattern (PseudoLA_TLS_IE sym), which expands to
4472     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
4473     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
4474     MachineFunction &MF = DAG.getMachineFunction();
4475     MachineMemOperand *MemOp = MF.getMachineMemOperand(
4476         MachinePointerInfo::getGOT(MF),
4477         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
4478             MachineMemOperand::MOInvariant,
4479         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
4480     SDValue Load = DAG.getMemIntrinsicNode(
4481         RISCVISD::LA_TLS_IE, DL, DAG.getVTList(Ty, MVT::Other),
4482         {DAG.getEntryNode(), Addr}, Ty, MemOp);
4483 
4484     // Add the thread pointer.
4485     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
4486     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
4487   }
4488 
4489   // Generate a sequence for accessing the address relative to the thread
4490   // pointer, with the appropriate adjustment for the thread pointer offset.
4491   // This generates the pattern
4492   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
4493   SDValue AddrHi =
4494       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
4495   SDValue AddrAdd =
4496       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
4497   SDValue AddrLo =
4498       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
4499 
4500   SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
4501   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
4502   SDValue MNAdd =
4503       DAG.getNode(RISCVISD::ADD_TPREL, DL, Ty, MNHi, TPReg, AddrAdd);
4504   return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNAdd, AddrLo);
4505 }
4506 
4507 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
4508                                                SelectionDAG &DAG) const {
4509   SDLoc DL(N);
4510   EVT Ty = getPointerTy(DAG.getDataLayout());
4511   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
4512   const GlobalValue *GV = N->getGlobal();
4513 
4514   // Use a PC-relative addressing mode to access the global dynamic GOT address.
4515   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
4516   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
4517   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
4518   SDValue Load = DAG.getNode(RISCVISD::LA_TLS_GD, DL, Ty, Addr);
4519 
4520   // Prepare argument list to generate call.
4521   ArgListTy Args;
4522   ArgListEntry Entry;
4523   Entry.Node = Load;
4524   Entry.Ty = CallTy;
4525   Args.push_back(Entry);
4526 
4527   // Setup call to __tls_get_addr.
4528   TargetLowering::CallLoweringInfo CLI(DAG);
4529   CLI.setDebugLoc(DL)
4530       .setChain(DAG.getEntryNode())
4531       .setLibCallee(CallingConv::C, CallTy,
4532                     DAG.getExternalSymbol("__tls_get_addr", Ty),
4533                     std::move(Args));
4534 
4535   return LowerCallTo(CLI).first;
4536 }
4537 
4538 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
4539                                                    SelectionDAG &DAG) const {
4540   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
4541   assert(N->getOffset() == 0 && "unexpected offset in global node");
4542 
4543   if (DAG.getTarget().useEmulatedTLS())
4544     return LowerToTLSEmulatedModel(N, DAG);
4545 
4546   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
4547 
4548   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
4549       CallingConv::GHC)
4550     report_fatal_error("In GHC calling convention TLS is not supported");
4551 
4552   SDValue Addr;
4553   switch (Model) {
4554   case TLSModel::LocalExec:
4555     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
4556     break;
4557   case TLSModel::InitialExec:
4558     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
4559     break;
4560   case TLSModel::LocalDynamic:
4561   case TLSModel::GeneralDynamic:
4562     Addr = getDynamicTLSAddr(N, DAG);
4563     break;
4564   }
4565 
4566   return Addr;
4567 }
4568 
4569 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
4570   SDValue CondV = Op.getOperand(0);
4571   SDValue TrueV = Op.getOperand(1);
4572   SDValue FalseV = Op.getOperand(2);
4573   SDLoc DL(Op);
4574   MVT VT = Op.getSimpleValueType();
4575   MVT XLenVT = Subtarget.getXLenVT();
4576 
4577   // Lower vector SELECTs to VSELECTs by splatting the condition.
4578   if (VT.isVector()) {
4579     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
4580     SDValue CondSplat = DAG.getSplat(SplatCondVT, DL, CondV);
4581     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
4582   }
4583 
4584   if (!Subtarget.hasShortForwardBranchOpt()) {
4585     // (select c, -1, y) -> -c | y
4586     if (isAllOnesConstant(TrueV)) {
4587       SDValue Neg = DAG.getNegative(CondV, DL, VT);
4588       return DAG.getNode(ISD::OR, DL, VT, Neg, FalseV);
4589     }
4590     // (select c, y, -1) -> (c-1) | y
4591     if (isAllOnesConstant(FalseV)) {
4592       SDValue Neg = DAG.getNode(ISD::ADD, DL, VT, CondV,
4593                                 DAG.getAllOnesConstant(DL, VT));
4594       return DAG.getNode(ISD::OR, DL, VT, Neg, TrueV);
4595     }
4596 
4597     // (select c, 0, y) -> (c-1) & y
4598     if (isNullConstant(TrueV)) {
4599       SDValue Neg = DAG.getNode(ISD::ADD, DL, VT, CondV,
4600                                 DAG.getAllOnesConstant(DL, VT));
4601       return DAG.getNode(ISD::AND, DL, VT, Neg, FalseV);
4602     }
4603     // (select c, y, 0) -> -c & y
4604     if (isNullConstant(FalseV)) {
4605       SDValue Neg = DAG.getNegative(CondV, DL, VT);
4606       return DAG.getNode(ISD::AND, DL, VT, Neg, TrueV);
4607     }
4608   }
4609 
4610   // If the condition is not an integer SETCC which operates on XLenVT, we need
4611   // to emit a RISCVISD::SELECT_CC comparing the condition to zero. i.e.:
4612   // (select condv, truev, falsev)
4613   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
4614   if (CondV.getOpcode() != ISD::SETCC ||
4615       CondV.getOperand(0).getSimpleValueType() != XLenVT) {
4616     SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4617     SDValue SetNE = DAG.getCondCode(ISD::SETNE);
4618 
4619     SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
4620 
4621     return DAG.getNode(RISCVISD::SELECT_CC, DL, VT, Ops);
4622   }
4623 
4624   // If the CondV is the output of a SETCC node which operates on XLenVT inputs,
4625   // then merge the SETCC node into the lowered RISCVISD::SELECT_CC to take
4626   // advantage of the integer compare+branch instructions. i.e.:
4627   // (select (setcc lhs, rhs, cc), truev, falsev)
4628   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
4629   SDValue LHS = CondV.getOperand(0);
4630   SDValue RHS = CondV.getOperand(1);
4631   ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
4632 
4633   // Special case for a select of 2 constants that have a diffence of 1.
4634   // Normally this is done by DAGCombine, but if the select is introduced by
4635   // type legalization or op legalization, we miss it. Restricting to SETLT
4636   // case for now because that is what signed saturating add/sub need.
4637   // FIXME: We don't need the condition to be SETLT or even a SETCC,
4638   // but we would probably want to swap the true/false values if the condition
4639   // is SETGE/SETLE to avoid an XORI.
4640   if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
4641       CCVal == ISD::SETLT) {
4642     const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
4643     const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
4644     if (TrueVal - 1 == FalseVal)
4645       return DAG.getNode(ISD::ADD, DL, VT, CondV, FalseV);
4646     if (TrueVal + 1 == FalseVal)
4647       return DAG.getNode(ISD::SUB, DL, VT, FalseV, CondV);
4648   }
4649 
4650   translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
4651   // 1 < x ? x : 1 -> 0 < x ? x : 1
4652   if (isOneConstant(LHS) && (CCVal == ISD::SETLT || CCVal == ISD::SETULT) &&
4653       RHS == TrueV && LHS == FalseV) {
4654     LHS = DAG.getConstant(0, DL, VT);
4655     // 0 <u x is the same as x != 0.
4656     if (CCVal == ISD::SETULT) {
4657       std::swap(LHS, RHS);
4658       CCVal = ISD::SETNE;
4659     }
4660   }
4661 
4662   // x <s -1 ? x : -1 -> x <s 0 ? x : -1
4663   if (isAllOnesConstant(RHS) && CCVal == ISD::SETLT && LHS == TrueV &&
4664       RHS == FalseV) {
4665     RHS = DAG.getConstant(0, DL, VT);
4666   }
4667 
4668   SDValue TargetCC = DAG.getCondCode(CCVal);
4669 
4670   if (isa<ConstantSDNode>(TrueV) && !isa<ConstantSDNode>(FalseV)) {
4671     // (select (setcc lhs, rhs, CC), constant, falsev)
4672     // -> (select (setcc lhs, rhs, InverseCC), falsev, constant)
4673     std::swap(TrueV, FalseV);
4674     TargetCC = DAG.getCondCode(ISD::getSetCCInverse(CCVal, LHS.getValueType()));
4675   }
4676 
4677   SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
4678   return DAG.getNode(RISCVISD::SELECT_CC, DL, VT, Ops);
4679 }
4680 
4681 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
4682   SDValue CondV = Op.getOperand(1);
4683   SDLoc DL(Op);
4684   MVT XLenVT = Subtarget.getXLenVT();
4685 
4686   if (CondV.getOpcode() == ISD::SETCC &&
4687       CondV.getOperand(0).getValueType() == XLenVT) {
4688     SDValue LHS = CondV.getOperand(0);
4689     SDValue RHS = CondV.getOperand(1);
4690     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
4691 
4692     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
4693 
4694     SDValue TargetCC = DAG.getCondCode(CCVal);
4695     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
4696                        LHS, RHS, TargetCC, Op.getOperand(2));
4697   }
4698 
4699   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
4700                      CondV, DAG.getConstant(0, DL, XLenVT),
4701                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
4702 }
4703 
4704 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
4705   MachineFunction &MF = DAG.getMachineFunction();
4706   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
4707 
4708   SDLoc DL(Op);
4709   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
4710                                  getPointerTy(MF.getDataLayout()));
4711 
4712   // vastart just stores the address of the VarArgsFrameIndex slot into the
4713   // memory location argument.
4714   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4715   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
4716                       MachinePointerInfo(SV));
4717 }
4718 
4719 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
4720                                             SelectionDAG &DAG) const {
4721   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4722   MachineFunction &MF = DAG.getMachineFunction();
4723   MachineFrameInfo &MFI = MF.getFrameInfo();
4724   MFI.setFrameAddressIsTaken(true);
4725   Register FrameReg = RI.getFrameRegister(MF);
4726   int XLenInBytes = Subtarget.getXLen() / 8;
4727 
4728   EVT VT = Op.getValueType();
4729   SDLoc DL(Op);
4730   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
4731   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4732   while (Depth--) {
4733     int Offset = -(XLenInBytes * 2);
4734     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
4735                               DAG.getIntPtrConstant(Offset, DL));
4736     FrameAddr =
4737         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
4738   }
4739   return FrameAddr;
4740 }
4741 
4742 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
4743                                              SelectionDAG &DAG) const {
4744   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4745   MachineFunction &MF = DAG.getMachineFunction();
4746   MachineFrameInfo &MFI = MF.getFrameInfo();
4747   MFI.setReturnAddressIsTaken(true);
4748   MVT XLenVT = Subtarget.getXLenVT();
4749   int XLenInBytes = Subtarget.getXLen() / 8;
4750 
4751   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4752     return SDValue();
4753 
4754   EVT VT = Op.getValueType();
4755   SDLoc DL(Op);
4756   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4757   if (Depth) {
4758     int Off = -XLenInBytes;
4759     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
4760     SDValue Offset = DAG.getConstant(Off, DL, VT);
4761     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4762                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4763                        MachinePointerInfo());
4764   }
4765 
4766   // Return the value of the return address register, marking it an implicit
4767   // live-in.
4768   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
4769   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
4770 }
4771 
4772 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
4773                                                  SelectionDAG &DAG) const {
4774   SDLoc DL(Op);
4775   SDValue Lo = Op.getOperand(0);
4776   SDValue Hi = Op.getOperand(1);
4777   SDValue Shamt = Op.getOperand(2);
4778   EVT VT = Lo.getValueType();
4779 
4780   // if Shamt-XLEN < 0: // Shamt < XLEN
4781   //   Lo = Lo << Shamt
4782   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4783   // else:
4784   //   Lo = 0
4785   //   Hi = Lo << (Shamt-XLEN)
4786 
4787   SDValue Zero = DAG.getConstant(0, DL, VT);
4788   SDValue One = DAG.getConstant(1, DL, VT);
4789   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4790   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4791   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4792   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
4793 
4794   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4795   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4796   SDValue ShiftRightLo =
4797       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4798   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4799   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4800   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4801 
4802   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4803 
4804   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4805   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4806 
4807   SDValue Parts[2] = {Lo, Hi};
4808   return DAG.getMergeValues(Parts, DL);
4809 }
4810 
4811 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4812                                                   bool IsSRA) const {
4813   SDLoc DL(Op);
4814   SDValue Lo = Op.getOperand(0);
4815   SDValue Hi = Op.getOperand(1);
4816   SDValue Shamt = Op.getOperand(2);
4817   EVT VT = Lo.getValueType();
4818 
4819   // SRA expansion:
4820   //   if Shamt-XLEN < 0: // Shamt < XLEN
4821   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4822   //     Hi = Hi >>s Shamt
4823   //   else:
4824   //     Lo = Hi >>s (Shamt-XLEN);
4825   //     Hi = Hi >>s (XLEN-1)
4826   //
4827   // SRL expansion:
4828   //   if Shamt-XLEN < 0: // Shamt < XLEN
4829   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4830   //     Hi = Hi >>u Shamt
4831   //   else:
4832   //     Lo = Hi >>u (Shamt-XLEN);
4833   //     Hi = 0;
4834 
4835   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4836 
4837   SDValue Zero = DAG.getConstant(0, DL, VT);
4838   SDValue One = DAG.getConstant(1, DL, VT);
4839   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4840   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4841   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4842   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
4843 
4844   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4845   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4846   SDValue ShiftLeftHi =
4847       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4848   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4849   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4850   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4851   SDValue HiFalse =
4852       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4853 
4854   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4855 
4856   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4857   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4858 
4859   SDValue Parts[2] = {Lo, Hi};
4860   return DAG.getMergeValues(Parts, DL);
4861 }
4862 
4863 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4864 // legal equivalently-sized i8 type, so we can use that as a go-between.
4865 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4866                                                   SelectionDAG &DAG) const {
4867   SDLoc DL(Op);
4868   MVT VT = Op.getSimpleValueType();
4869   SDValue SplatVal = Op.getOperand(0);
4870   // All-zeros or all-ones splats are handled specially.
4871   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4872     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4873     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4874   }
4875   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4876     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4877     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4878   }
4879   MVT XLenVT = Subtarget.getXLenVT();
4880   assert(SplatVal.getValueType() == XLenVT &&
4881          "Unexpected type for i1 splat value");
4882   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4883   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4884                          DAG.getConstant(1, DL, XLenVT));
4885   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4886   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4887   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4888 }
4889 
4890 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4891 // illegal (currently only vXi64 RV32).
4892 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4893 // them to VMV_V_X_VL.
4894 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4895                                                      SelectionDAG &DAG) const {
4896   SDLoc DL(Op);
4897   MVT VecVT = Op.getSimpleValueType();
4898   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4899          "Unexpected SPLAT_VECTOR_PARTS lowering");
4900 
4901   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4902   SDValue Lo = Op.getOperand(0);
4903   SDValue Hi = Op.getOperand(1);
4904 
4905   if (VecVT.isFixedLengthVector()) {
4906     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4907     SDLoc DL(Op);
4908     auto VL = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).second;
4909 
4910     SDValue Res =
4911         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4912     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4913   }
4914 
4915   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4916     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4917     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4918     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4919     // node in order to try and match RVV vector/scalar instructions.
4920     if ((LoC >> 31) == HiC)
4921       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4922                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4923   }
4924 
4925   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4926   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4927       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4928       Hi.getConstantOperandVal(1) == 31)
4929     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4930                        DAG.getRegister(RISCV::X0, MVT::i32));
4931 
4932   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4933   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4934                      DAG.getUNDEF(VecVT), Lo, Hi,
4935                      DAG.getRegister(RISCV::X0, MVT::i32));
4936 }
4937 
4938 // Custom-lower extensions from mask vectors by using a vselect either with 1
4939 // for zero/any-extension or -1 for sign-extension:
4940 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4941 // Note that any-extension is lowered identically to zero-extension.
4942 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4943                                                 int64_t ExtTrueVal) const {
4944   SDLoc DL(Op);
4945   MVT VecVT = Op.getSimpleValueType();
4946   SDValue Src = Op.getOperand(0);
4947   // Only custom-lower extensions from mask types
4948   assert(Src.getValueType().isVector() &&
4949          Src.getValueType().getVectorElementType() == MVT::i1);
4950 
4951   if (VecVT.isScalableVector()) {
4952     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4953     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4954     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4955   }
4956 
4957   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4958   MVT I1ContainerVT =
4959       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4960 
4961   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4962 
4963   SDValue VL = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).second;
4964 
4965   MVT XLenVT = Subtarget.getXLenVT();
4966   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4967   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4968 
4969   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4970                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4971   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4972                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4973   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4974                                SplatTrueVal, SplatZero, VL);
4975 
4976   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4977 }
4978 
4979 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4980     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4981   MVT ExtVT = Op.getSimpleValueType();
4982   // Only custom-lower extensions from fixed-length vector types.
4983   if (!ExtVT.isFixedLengthVector())
4984     return Op;
4985   MVT VT = Op.getOperand(0).getSimpleValueType();
4986   // Grab the canonical container type for the extended type. Infer the smaller
4987   // type from that to ensure the same number of vector elements, as we know
4988   // the LMUL will be sufficient to hold the smaller type.
4989   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4990   // Get the extended container type manually to ensure the same number of
4991   // vector elements between source and dest.
4992   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4993                                      ContainerExtVT.getVectorElementCount());
4994 
4995   SDValue Op1 =
4996       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4997 
4998   SDLoc DL(Op);
4999   auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5000 
5001   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
5002 
5003   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
5004 }
5005 
5006 // Custom-lower truncations from vectors to mask vectors by using a mask and a
5007 // setcc operation:
5008 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
5009 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op,
5010                                                       SelectionDAG &DAG) const {
5011   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
5012   SDLoc DL(Op);
5013   EVT MaskVT = Op.getValueType();
5014   // Only expect to custom-lower truncations to mask types
5015   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
5016          "Unexpected type for vector mask lowering");
5017   SDValue Src = Op.getOperand(0);
5018   MVT VecVT = Src.getSimpleValueType();
5019   SDValue Mask, VL;
5020   if (IsVPTrunc) {
5021     Mask = Op.getOperand(1);
5022     VL = Op.getOperand(2);
5023   }
5024   // If this is a fixed vector, we need to convert it to a scalable vector.
5025   MVT ContainerVT = VecVT;
5026 
5027   if (VecVT.isFixedLengthVector()) {
5028     ContainerVT = getContainerForFixedLengthVector(VecVT);
5029     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
5030     if (IsVPTrunc) {
5031       MVT MaskContainerVT =
5032           getContainerForFixedLengthVector(Mask.getSimpleValueType());
5033       Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
5034     }
5035   }
5036 
5037   if (!IsVPTrunc) {
5038     std::tie(Mask, VL) =
5039         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5040   }
5041 
5042   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
5043   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
5044 
5045   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5046                          DAG.getUNDEF(ContainerVT), SplatOne, VL);
5047   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5048                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
5049 
5050   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
5051   SDValue Trunc = DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne,
5052                               DAG.getUNDEF(ContainerVT), Mask, VL);
5053   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT,
5054                       {Trunc, SplatZero, DAG.getCondCode(ISD::SETNE),
5055                        DAG.getUNDEF(MaskContainerVT), Mask, VL});
5056   if (MaskVT.isFixedLengthVector())
5057     Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
5058   return Trunc;
5059 }
5060 
5061 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op,
5062                                                   SelectionDAG &DAG) const {
5063   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
5064   SDLoc DL(Op);
5065 
5066   MVT VT = Op.getSimpleValueType();
5067   // Only custom-lower vector truncates
5068   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
5069 
5070   // Truncates to mask types are handled differently
5071   if (VT.getVectorElementType() == MVT::i1)
5072     return lowerVectorMaskTruncLike(Op, DAG);
5073 
5074   // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
5075   // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
5076   // truncate by one power of two at a time.
5077   MVT DstEltVT = VT.getVectorElementType();
5078 
5079   SDValue Src = Op.getOperand(0);
5080   MVT SrcVT = Src.getSimpleValueType();
5081   MVT SrcEltVT = SrcVT.getVectorElementType();
5082 
5083   assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) &&
5084          isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
5085          "Unexpected vector truncate lowering");
5086 
5087   MVT ContainerVT = SrcVT;
5088   SDValue Mask, VL;
5089   if (IsVPTrunc) {
5090     Mask = Op.getOperand(1);
5091     VL = Op.getOperand(2);
5092   }
5093   if (SrcVT.isFixedLengthVector()) {
5094     ContainerVT = getContainerForFixedLengthVector(SrcVT);
5095     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
5096     if (IsVPTrunc) {
5097       MVT MaskVT = getMaskTypeFor(ContainerVT);
5098       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5099     }
5100   }
5101 
5102   SDValue Result = Src;
5103   if (!IsVPTrunc) {
5104     std::tie(Mask, VL) =
5105         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
5106   }
5107 
5108   LLVMContext &Context = *DAG.getContext();
5109   const ElementCount Count = ContainerVT.getVectorElementCount();
5110   do {
5111     SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
5112     EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
5113     Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
5114                          Mask, VL);
5115   } while (SrcEltVT != DstEltVT);
5116 
5117   if (SrcVT.isFixedLengthVector())
5118     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5119 
5120   return Result;
5121 }
5122 
5123 SDValue
5124 RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op,
5125                                                     SelectionDAG &DAG) const {
5126   bool IsVP =
5127       Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND;
5128   bool IsExtend =
5129       Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND;
5130   // RVV can only do truncate fp to types half the size as the source. We
5131   // custom-lower f64->f16 rounds via RVV's round-to-odd float
5132   // conversion instruction.
5133   SDLoc DL(Op);
5134   MVT VT = Op.getSimpleValueType();
5135 
5136   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
5137 
5138   SDValue Src = Op.getOperand(0);
5139   MVT SrcVT = Src.getSimpleValueType();
5140 
5141   bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 ||
5142                                      SrcVT.getVectorElementType() != MVT::f16);
5143   bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 ||
5144                                      SrcVT.getVectorElementType() != MVT::f64);
5145 
5146   bool IsDirectConv = IsDirectExtend || IsDirectTrunc;
5147 
5148   // Prepare any fixed-length vector operands.
5149   MVT ContainerVT = VT;
5150   SDValue Mask, VL;
5151   if (IsVP) {
5152     Mask = Op.getOperand(1);
5153     VL = Op.getOperand(2);
5154   }
5155   if (VT.isFixedLengthVector()) {
5156     MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
5157     ContainerVT =
5158         SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
5159     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
5160     if (IsVP) {
5161       MVT MaskVT = getMaskTypeFor(ContainerVT);
5162       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5163     }
5164   }
5165 
5166   if (!IsVP)
5167     std::tie(Mask, VL) =
5168         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
5169 
5170   unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL;
5171 
5172   if (IsDirectConv) {
5173     Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL);
5174     if (VT.isFixedLengthVector())
5175       Src = convertFromScalableVector(VT, Src, DAG, Subtarget);
5176     return Src;
5177   }
5178 
5179   unsigned InterConvOpc =
5180       IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL;
5181 
5182   MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
5183   SDValue IntermediateConv =
5184       DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL);
5185   SDValue Result =
5186       DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL);
5187   if (VT.isFixedLengthVector())
5188     return convertFromScalableVector(VT, Result, DAG, Subtarget);
5189   return Result;
5190 }
5191 
5192 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
5193 // first position of a vector, and that vector is slid up to the insert index.
5194 // By limiting the active vector length to index+1 and merging with the
5195 // original vector (with an undisturbed tail policy for elements >= VL), we
5196 // achieve the desired result of leaving all elements untouched except the one
5197 // at VL-1, which is replaced with the desired value.
5198 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5199                                                     SelectionDAG &DAG) const {
5200   SDLoc DL(Op);
5201   MVT VecVT = Op.getSimpleValueType();
5202   SDValue Vec = Op.getOperand(0);
5203   SDValue Val = Op.getOperand(1);
5204   SDValue Idx = Op.getOperand(2);
5205 
5206   if (VecVT.getVectorElementType() == MVT::i1) {
5207     // FIXME: For now we just promote to an i8 vector and insert into that,
5208     // but this is probably not optimal.
5209     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
5210     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
5211     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
5212     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
5213   }
5214 
5215   MVT ContainerVT = VecVT;
5216   // If the operand is a fixed-length vector, convert to a scalable one.
5217   if (VecVT.isFixedLengthVector()) {
5218     ContainerVT = getContainerForFixedLengthVector(VecVT);
5219     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5220   }
5221 
5222   MVT XLenVT = Subtarget.getXLenVT();
5223 
5224   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5225   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
5226   // Even i64-element vectors on RV32 can be lowered without scalar
5227   // legalization if the most-significant 32 bits of the value are not affected
5228   // by the sign-extension of the lower 32 bits.
5229   // TODO: We could also catch sign extensions of a 32-bit value.
5230   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
5231     const auto *CVal = cast<ConstantSDNode>(Val);
5232     if (isInt<32>(CVal->getSExtValue())) {
5233       IsLegalInsert = true;
5234       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
5235     }
5236   }
5237 
5238   auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5239 
5240   SDValue ValInVec;
5241 
5242   if (IsLegalInsert) {
5243     unsigned Opc =
5244         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
5245     if (isNullConstant(Idx)) {
5246       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
5247       if (!VecVT.isFixedLengthVector())
5248         return Vec;
5249       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
5250     }
5251     ValInVec = lowerScalarInsert(Val, VL, ContainerVT, DL, DAG, Subtarget);
5252   } else {
5253     // On RV32, i64-element vectors must be specially handled to place the
5254     // value at element 0, by using two vslide1down instructions in sequence on
5255     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
5256     // this.
5257     SDValue One = DAG.getConstant(1, DL, XLenVT);
5258     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
5259     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
5260     MVT I32ContainerVT =
5261         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
5262     SDValue I32Mask =
5263         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
5264     // Limit the active VL to two.
5265     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
5266     // If the Idx is 0 we can insert directly into the vector.
5267     if (isNullConstant(Idx)) {
5268       // First slide in the lo value, then the hi in above it. We use slide1down
5269       // to avoid the register group overlap constraint of vslide1up.
5270       ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT,
5271                              Vec, Vec, ValLo, I32Mask, InsertI64VL);
5272       // If the source vector is undef don't pass along the tail elements from
5273       // the previous slide1down.
5274       SDValue Tail = Vec.isUndef() ? Vec : ValInVec;
5275       ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT,
5276                              Tail, ValInVec, ValHi, I32Mask, InsertI64VL);
5277       // Bitcast back to the right container type.
5278       ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
5279 
5280       if (!VecVT.isFixedLengthVector())
5281         return ValInVec;
5282       return convertFromScalableVector(VecVT, ValInVec, DAG, Subtarget);
5283     }
5284 
5285     // First slide in the lo value, then the hi in above it. We use slide1down
5286     // to avoid the register group overlap constraint of vslide1up.
5287     ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT,
5288                            DAG.getUNDEF(I32ContainerVT),
5289                            DAG.getUNDEF(I32ContainerVT), ValLo,
5290                            I32Mask, InsertI64VL);
5291     ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT,
5292                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
5293                            I32Mask, InsertI64VL);
5294     // Bitcast back to the right container type.
5295     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
5296   }
5297 
5298   // Now that the value is in a vector, slide it into position.
5299   SDValue InsertVL =
5300       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
5301 
5302   // Use tail agnostic policy if Idx is the last index of Vec.
5303   unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED;
5304   if (VecVT.isFixedLengthVector() && isa<ConstantSDNode>(Idx) &&
5305       cast<ConstantSDNode>(Idx)->getZExtValue() + 1 ==
5306           VecVT.getVectorNumElements())
5307     Policy = RISCVII::TAIL_AGNOSTIC;
5308   SDValue Slideup = getVSlideup(DAG, Subtarget, DL, ContainerVT, Vec, ValInVec,
5309                                 Idx, Mask, InsertVL, Policy);
5310   if (!VecVT.isFixedLengthVector())
5311     return Slideup;
5312   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5313 }
5314 
5315 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
5316 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
5317 // types this is done using VMV_X_S to allow us to glean information about the
5318 // sign bits of the result.
5319 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5320                                                      SelectionDAG &DAG) const {
5321   SDLoc DL(Op);
5322   SDValue Idx = Op.getOperand(1);
5323   SDValue Vec = Op.getOperand(0);
5324   EVT EltVT = Op.getValueType();
5325   MVT VecVT = Vec.getSimpleValueType();
5326   MVT XLenVT = Subtarget.getXLenVT();
5327 
5328   if (VecVT.getVectorElementType() == MVT::i1) {
5329     // Use vfirst.m to extract the first bit.
5330     if (isNullConstant(Idx)) {
5331       MVT ContainerVT = VecVT;
5332       if (VecVT.isFixedLengthVector()) {
5333         ContainerVT = getContainerForFixedLengthVector(VecVT);
5334         Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5335       }
5336       auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5337       SDValue Vfirst =
5338           DAG.getNode(RISCVISD::VFIRST_VL, DL, XLenVT, Vec, Mask, VL);
5339       return DAG.getSetCC(DL, XLenVT, Vfirst, DAG.getConstant(0, DL, XLenVT),
5340                           ISD::SETEQ);
5341     }
5342     if (VecVT.isFixedLengthVector()) {
5343       unsigned NumElts = VecVT.getVectorNumElements();
5344       if (NumElts >= 8) {
5345         MVT WideEltVT;
5346         unsigned WidenVecLen;
5347         SDValue ExtractElementIdx;
5348         SDValue ExtractBitIdx;
5349         unsigned MaxEEW = Subtarget.getELEN();
5350         MVT LargestEltVT = MVT::getIntegerVT(
5351             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
5352         if (NumElts <= LargestEltVT.getSizeInBits()) {
5353           assert(isPowerOf2_32(NumElts) &&
5354                  "the number of elements should be power of 2");
5355           WideEltVT = MVT::getIntegerVT(NumElts);
5356           WidenVecLen = 1;
5357           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
5358           ExtractBitIdx = Idx;
5359         } else {
5360           WideEltVT = LargestEltVT;
5361           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
5362           // extract element index = index / element width
5363           ExtractElementIdx = DAG.getNode(
5364               ISD::SRL, DL, XLenVT, Idx,
5365               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
5366           // mask bit index = index % element width
5367           ExtractBitIdx = DAG.getNode(
5368               ISD::AND, DL, XLenVT, Idx,
5369               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
5370         }
5371         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
5372         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
5373         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
5374                                          Vec, ExtractElementIdx);
5375         // Extract the bit from GPR.
5376         SDValue ShiftRight =
5377             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
5378         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
5379                            DAG.getConstant(1, DL, XLenVT));
5380       }
5381     }
5382     // Otherwise, promote to an i8 vector and extract from that.
5383     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
5384     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
5385     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
5386   }
5387 
5388   // If this is a fixed vector, we need to convert it to a scalable vector.
5389   MVT ContainerVT = VecVT;
5390   if (VecVT.isFixedLengthVector()) {
5391     ContainerVT = getContainerForFixedLengthVector(VecVT);
5392     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5393   }
5394 
5395   // If the index is 0, the vector is already in the right position.
5396   if (!isNullConstant(Idx)) {
5397     // Use a VL of 1 to avoid processing more elements than we need.
5398     auto [Mask, VL] = getDefaultVLOps(1, ContainerVT, DL, DAG, Subtarget);
5399     Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT,
5400                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
5401   }
5402 
5403   if (!EltVT.isInteger()) {
5404     // Floating-point extracts are handled in TableGen.
5405     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
5406                        DAG.getConstant(0, DL, XLenVT));
5407   }
5408 
5409   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5410   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
5411 }
5412 
5413 // Some RVV intrinsics may claim that they want an integer operand to be
5414 // promoted or expanded.
5415 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
5416                                            const RISCVSubtarget &Subtarget) {
5417   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
5418           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
5419          "Unexpected opcode");
5420 
5421   if (!Subtarget.hasVInstructions())
5422     return SDValue();
5423 
5424   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
5425   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
5426   SDLoc DL(Op);
5427 
5428   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
5429       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
5430   if (!II || !II->hasScalarOperand())
5431     return SDValue();
5432 
5433   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
5434   assert(SplatOp < Op.getNumOperands());
5435 
5436   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
5437   SDValue &ScalarOp = Operands[SplatOp];
5438   MVT OpVT = ScalarOp.getSimpleValueType();
5439   MVT XLenVT = Subtarget.getXLenVT();
5440 
5441   // If this isn't a scalar, or its type is XLenVT we're done.
5442   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
5443     return SDValue();
5444 
5445   // Simplest case is that the operand needs to be promoted to XLenVT.
5446   if (OpVT.bitsLT(XLenVT)) {
5447     // If the operand is a constant, sign extend to increase our chances
5448     // of being able to use a .vi instruction. ANY_EXTEND would become a
5449     // a zero extend and the simm5 check in isel would fail.
5450     // FIXME: Should we ignore the upper bits in isel instead?
5451     unsigned ExtOpc =
5452         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
5453     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
5454     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
5455   }
5456 
5457   // Use the previous operand to get the vXi64 VT. The result might be a mask
5458   // VT for compares. Using the previous operand assumes that the previous
5459   // operand will never have a smaller element size than a scalar operand and
5460   // that a widening operation never uses SEW=64.
5461   // NOTE: If this fails the below assert, we can probably just find the
5462   // element count from any operand or result and use it to construct the VT.
5463   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
5464   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
5465 
5466   // The more complex case is when the scalar is larger than XLenVT.
5467   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
5468          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
5469 
5470   // If this is a sign-extended 32-bit value, we can truncate it and rely on the
5471   // instruction to sign-extend since SEW>XLEN.
5472   if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
5473     ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
5474     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
5475   }
5476 
5477   switch (IntNo) {
5478   case Intrinsic::riscv_vslide1up:
5479   case Intrinsic::riscv_vslide1down:
5480   case Intrinsic::riscv_vslide1up_mask:
5481   case Intrinsic::riscv_vslide1down_mask: {
5482     // We need to special case these when the scalar is larger than XLen.
5483     unsigned NumOps = Op.getNumOperands();
5484     bool IsMasked = NumOps == 7;
5485 
5486     // Convert the vector source to the equivalent nxvXi32 vector.
5487     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
5488     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
5489 
5490     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
5491                                    DAG.getConstant(0, DL, XLenVT));
5492     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
5493                                    DAG.getConstant(1, DL, XLenVT));
5494 
5495     // Double the VL since we halved SEW.
5496     SDValue AVL = getVLOperand(Op);
5497     SDValue I32VL;
5498 
5499     // Optimize for constant AVL
5500     if (isa<ConstantSDNode>(AVL)) {
5501       unsigned EltSize = VT.getScalarSizeInBits();
5502       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
5503 
5504       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
5505       unsigned MaxVLMAX =
5506           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5507 
5508       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
5509       unsigned MinVLMAX =
5510           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
5511 
5512       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
5513       if (AVLInt <= MinVLMAX) {
5514         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
5515       } else if (AVLInt >= 2 * MaxVLMAX) {
5516         // Just set vl to VLMAX in this situation
5517         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
5518         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
5519         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
5520         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
5521         SDValue SETVLMAX = DAG.getTargetConstant(
5522             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
5523         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
5524                             LMUL);
5525       } else {
5526         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
5527         // is related to the hardware implementation.
5528         // So let the following code handle
5529       }
5530     }
5531     if (!I32VL) {
5532       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
5533       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
5534       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
5535       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
5536       SDValue SETVL =
5537           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
5538       // Using vsetvli instruction to get actually used length which related to
5539       // the hardware implementation
5540       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
5541                                SEW, LMUL);
5542       I32VL =
5543           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
5544     }
5545 
5546     SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG);
5547 
5548     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
5549     // instructions.
5550     SDValue Passthru;
5551     if (IsMasked)
5552       Passthru = DAG.getUNDEF(I32VT);
5553     else
5554       Passthru = DAG.getBitcast(I32VT, Operands[1]);
5555 
5556     if (IntNo == Intrinsic::riscv_vslide1up ||
5557         IntNo == Intrinsic::riscv_vslide1up_mask) {
5558       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
5559                         ScalarHi, I32Mask, I32VL);
5560       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
5561                         ScalarLo, I32Mask, I32VL);
5562     } else {
5563       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
5564                         ScalarLo, I32Mask, I32VL);
5565       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
5566                         ScalarHi, I32Mask, I32VL);
5567     }
5568 
5569     // Convert back to nxvXi64.
5570     Vec = DAG.getBitcast(VT, Vec);
5571 
5572     if (!IsMasked)
5573       return Vec;
5574     // Apply mask after the operation.
5575     SDValue Mask = Operands[NumOps - 3];
5576     SDValue MaskedOff = Operands[1];
5577     // Assume Policy operand is the last operand.
5578     uint64_t Policy =
5579         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
5580     // We don't need to select maskedoff if it's undef.
5581     if (MaskedOff.isUndef())
5582       return Vec;
5583     // TAMU
5584     if (Policy == RISCVII::TAIL_AGNOSTIC)
5585       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
5586                          AVL);
5587     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
5588     // It's fine because vmerge does not care mask policy.
5589     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
5590                        AVL);
5591   }
5592   }
5593 
5594   // We need to convert the scalar to a splat vector.
5595   SDValue VL = getVLOperand(Op);
5596   assert(VL.getValueType() == XLenVT);
5597   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
5598   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
5599 }
5600 
5601 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5602                                                      SelectionDAG &DAG) const {
5603   unsigned IntNo = Op.getConstantOperandVal(0);
5604   SDLoc DL(Op);
5605   MVT XLenVT = Subtarget.getXLenVT();
5606 
5607   switch (IntNo) {
5608   default:
5609     break; // Don't custom lower most intrinsics.
5610   case Intrinsic::thread_pointer: {
5611     EVT PtrVT = getPointerTy(DAG.getDataLayout());
5612     return DAG.getRegister(RISCV::X4, PtrVT);
5613   }
5614   case Intrinsic::riscv_orc_b:
5615   case Intrinsic::riscv_brev8: {
5616     unsigned Opc =
5617         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::BREV8 : RISCVISD::ORC_B;
5618     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1));
5619   }
5620   case Intrinsic::riscv_zip:
5621   case Intrinsic::riscv_unzip: {
5622     unsigned Opc =
5623         IntNo == Intrinsic::riscv_zip ? RISCVISD::ZIP : RISCVISD::UNZIP;
5624     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1));
5625   }
5626   case Intrinsic::riscv_vmv_x_s:
5627     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
5628     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
5629                        Op.getOperand(1));
5630   case Intrinsic::riscv_vfmv_f_s:
5631     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
5632                        Op.getOperand(1), DAG.getConstant(0, DL, XLenVT));
5633   case Intrinsic::riscv_vmv_v_x:
5634     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
5635                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
5636                             Subtarget);
5637   case Intrinsic::riscv_vfmv_v_f:
5638     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
5639                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5640   case Intrinsic::riscv_vmv_s_x: {
5641     SDValue Scalar = Op.getOperand(2);
5642 
5643     if (Scalar.getValueType().bitsLE(XLenVT)) {
5644       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
5645       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
5646                          Op.getOperand(1), Scalar, Op.getOperand(3));
5647     }
5648 
5649     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
5650 
5651     // This is an i64 value that lives in two scalar registers. We have to
5652     // insert this in a convoluted way. First we build vXi64 splat containing
5653     // the two values that we assemble using some bit math. Next we'll use
5654     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
5655     // to merge element 0 from our splat into the source vector.
5656     // FIXME: This is probably not the best way to do this, but it is
5657     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
5658     // point.
5659     //   sw lo, (a0)
5660     //   sw hi, 4(a0)
5661     //   vlse vX, (a0)
5662     //
5663     //   vid.v      vVid
5664     //   vmseq.vx   mMask, vVid, 0
5665     //   vmerge.vvm vDest, vSrc, vVal, mMask
5666     MVT VT = Op.getSimpleValueType();
5667     SDValue Vec = Op.getOperand(1);
5668     SDValue VL = getVLOperand(Op);
5669 
5670     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
5671     if (Op.getOperand(1).isUndef())
5672       return SplattedVal;
5673     SDValue SplattedIdx =
5674         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5675                     DAG.getConstant(0, DL, MVT::i32), VL);
5676 
5677     MVT MaskVT = getMaskTypeFor(VT);
5678     SDValue Mask = getAllOnesMask(VT, VL, DL, DAG);
5679     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5680     SDValue SelectCond =
5681         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT,
5682                     {VID, SplattedIdx, DAG.getCondCode(ISD::SETEQ),
5683                      DAG.getUNDEF(MaskVT), Mask, VL});
5684     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
5685                        Vec, VL);
5686   }
5687   }
5688 
5689   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
5690 }
5691 
5692 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
5693                                                     SelectionDAG &DAG) const {
5694   unsigned IntNo = Op.getConstantOperandVal(1);
5695   switch (IntNo) {
5696   default:
5697     break;
5698   case Intrinsic::riscv_masked_strided_load: {
5699     SDLoc DL(Op);
5700     MVT XLenVT = Subtarget.getXLenVT();
5701 
5702     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5703     // the selection of the masked intrinsics doesn't do this for us.
5704     SDValue Mask = Op.getOperand(5);
5705     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5706 
5707     MVT VT = Op->getSimpleValueType(0);
5708     MVT ContainerVT = VT;
5709     if (VT.isFixedLengthVector())
5710       ContainerVT = getContainerForFixedLengthVector(VT);
5711 
5712     SDValue PassThru = Op.getOperand(2);
5713     if (!IsUnmasked) {
5714       MVT MaskVT = getMaskTypeFor(ContainerVT);
5715       if (VT.isFixedLengthVector()) {
5716         Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5717         PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5718       }
5719     }
5720 
5721     auto *Load = cast<MemIntrinsicSDNode>(Op);
5722     SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5723     SDValue Ptr = Op.getOperand(3);
5724     SDValue Stride = Op.getOperand(4);
5725     SDValue Result, Chain;
5726 
5727     // TODO: We restrict this to unmasked loads currently in consideration of
5728     // the complexity of hanlding all falses masks.
5729     if (IsUnmasked && isNullConstant(Stride)) {
5730       MVT ScalarVT = ContainerVT.getVectorElementType();
5731       SDValue ScalarLoad =
5732           DAG.getExtLoad(ISD::ZEXTLOAD, DL, XLenVT, Load->getChain(), Ptr,
5733                          ScalarVT, Load->getMemOperand());
5734       Chain = ScalarLoad.getValue(1);
5735       Result = lowerScalarSplat(SDValue(), ScalarLoad, VL, ContainerVT, DL, DAG,
5736                                 Subtarget);
5737     } else {
5738       SDValue IntID = DAG.getTargetConstant(
5739           IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
5740           XLenVT);
5741 
5742       SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
5743       if (IsUnmasked)
5744         Ops.push_back(DAG.getUNDEF(ContainerVT));
5745       else
5746         Ops.push_back(PassThru);
5747       Ops.push_back(Ptr);
5748       Ops.push_back(Stride);
5749       if (!IsUnmasked)
5750         Ops.push_back(Mask);
5751       Ops.push_back(VL);
5752       if (!IsUnmasked) {
5753         SDValue Policy =
5754             DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
5755         Ops.push_back(Policy);
5756       }
5757 
5758       SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5759       Result =
5760           DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5761                                   Load->getMemoryVT(), Load->getMemOperand());
5762       Chain = Result.getValue(1);
5763     }
5764     if (VT.isFixedLengthVector())
5765       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5766     return DAG.getMergeValues({Result, Chain}, DL);
5767   }
5768   case Intrinsic::riscv_seg2_load:
5769   case Intrinsic::riscv_seg3_load:
5770   case Intrinsic::riscv_seg4_load:
5771   case Intrinsic::riscv_seg5_load:
5772   case Intrinsic::riscv_seg6_load:
5773   case Intrinsic::riscv_seg7_load:
5774   case Intrinsic::riscv_seg8_load: {
5775     SDLoc DL(Op);
5776     static const Intrinsic::ID VlsegInts[7] = {
5777         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
5778         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
5779         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
5780         Intrinsic::riscv_vlseg8};
5781     unsigned NF = Op->getNumValues() - 1;
5782     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
5783     MVT XLenVT = Subtarget.getXLenVT();
5784     MVT VT = Op->getSimpleValueType(0);
5785     MVT ContainerVT = getContainerForFixedLengthVector(VT);
5786 
5787     SDValue VL = getVLOp(VT.getVectorNumElements(), DL, DAG, Subtarget);
5788     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
5789     auto *Load = cast<MemIntrinsicSDNode>(Op);
5790     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
5791     ContainerVTs.push_back(MVT::Other);
5792     SDVTList VTs = DAG.getVTList(ContainerVTs);
5793     SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID};
5794     Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT));
5795     Ops.push_back(Op.getOperand(2));
5796     Ops.push_back(VL);
5797     SDValue Result =
5798         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5799                                 Load->getMemoryVT(), Load->getMemOperand());
5800     SmallVector<SDValue, 9> Results;
5801     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
5802       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
5803                                                   DAG, Subtarget));
5804     Results.push_back(Result.getValue(NF));
5805     return DAG.getMergeValues(Results, DL);
5806   }
5807   }
5808 
5809   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
5810 }
5811 
5812 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
5813                                                  SelectionDAG &DAG) const {
5814   unsigned IntNo = Op.getConstantOperandVal(1);
5815   switch (IntNo) {
5816   default:
5817     break;
5818   case Intrinsic::riscv_masked_strided_store: {
5819     SDLoc DL(Op);
5820     MVT XLenVT = Subtarget.getXLenVT();
5821 
5822     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5823     // the selection of the masked intrinsics doesn't do this for us.
5824     SDValue Mask = Op.getOperand(5);
5825     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5826 
5827     SDValue Val = Op.getOperand(2);
5828     MVT VT = Val.getSimpleValueType();
5829     MVT ContainerVT = VT;
5830     if (VT.isFixedLengthVector()) {
5831       ContainerVT = getContainerForFixedLengthVector(VT);
5832       Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5833     }
5834     if (!IsUnmasked) {
5835       MVT MaskVT = getMaskTypeFor(ContainerVT);
5836       if (VT.isFixedLengthVector())
5837         Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5838     }
5839 
5840     SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5841 
5842     SDValue IntID = DAG.getTargetConstant(
5843         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
5844         XLenVT);
5845 
5846     auto *Store = cast<MemIntrinsicSDNode>(Op);
5847     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
5848     Ops.push_back(Val);
5849     Ops.push_back(Op.getOperand(3)); // Ptr
5850     Ops.push_back(Op.getOperand(4)); // Stride
5851     if (!IsUnmasked)
5852       Ops.push_back(Mask);
5853     Ops.push_back(VL);
5854 
5855     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
5856                                    Ops, Store->getMemoryVT(),
5857                                    Store->getMemOperand());
5858   }
5859   }
5860 
5861   return SDValue();
5862 }
5863 
5864 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
5865   switch (ISDOpcode) {
5866   default:
5867     llvm_unreachable("Unhandled reduction");
5868   case ISD::VECREDUCE_ADD:
5869     return RISCVISD::VECREDUCE_ADD_VL;
5870   case ISD::VECREDUCE_UMAX:
5871     return RISCVISD::VECREDUCE_UMAX_VL;
5872   case ISD::VECREDUCE_SMAX:
5873     return RISCVISD::VECREDUCE_SMAX_VL;
5874   case ISD::VECREDUCE_UMIN:
5875     return RISCVISD::VECREDUCE_UMIN_VL;
5876   case ISD::VECREDUCE_SMIN:
5877     return RISCVISD::VECREDUCE_SMIN_VL;
5878   case ISD::VECREDUCE_AND:
5879     return RISCVISD::VECREDUCE_AND_VL;
5880   case ISD::VECREDUCE_OR:
5881     return RISCVISD::VECREDUCE_OR_VL;
5882   case ISD::VECREDUCE_XOR:
5883     return RISCVISD::VECREDUCE_XOR_VL;
5884   }
5885 }
5886 
5887 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5888                                                          SelectionDAG &DAG,
5889                                                          bool IsVP) const {
5890   SDLoc DL(Op);
5891   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5892   MVT VecVT = Vec.getSimpleValueType();
5893   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5894           Op.getOpcode() == ISD::VECREDUCE_OR ||
5895           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5896           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5897           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5898           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5899          "Unexpected reduction lowering");
5900 
5901   MVT XLenVT = Subtarget.getXLenVT();
5902   assert(Op.getValueType() == XLenVT &&
5903          "Expected reduction output to be legalized to XLenVT");
5904 
5905   MVT ContainerVT = VecVT;
5906   if (VecVT.isFixedLengthVector()) {
5907     ContainerVT = getContainerForFixedLengthVector(VecVT);
5908     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5909   }
5910 
5911   SDValue Mask, VL;
5912   if (IsVP) {
5913     Mask = Op.getOperand(2);
5914     VL = Op.getOperand(3);
5915   } else {
5916     std::tie(Mask, VL) =
5917         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5918   }
5919 
5920   unsigned BaseOpc;
5921   ISD::CondCode CC;
5922   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5923 
5924   switch (Op.getOpcode()) {
5925   default:
5926     llvm_unreachable("Unhandled reduction");
5927   case ISD::VECREDUCE_AND:
5928   case ISD::VP_REDUCE_AND: {
5929     // vcpop ~x == 0
5930     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5931     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5932     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5933     CC = ISD::SETEQ;
5934     BaseOpc = ISD::AND;
5935     break;
5936   }
5937   case ISD::VECREDUCE_OR:
5938   case ISD::VP_REDUCE_OR:
5939     // vcpop x != 0
5940     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5941     CC = ISD::SETNE;
5942     BaseOpc = ISD::OR;
5943     break;
5944   case ISD::VECREDUCE_XOR:
5945   case ISD::VP_REDUCE_XOR: {
5946     // ((vcpop x) & 1) != 0
5947     SDValue One = DAG.getConstant(1, DL, XLenVT);
5948     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5949     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5950     CC = ISD::SETNE;
5951     BaseOpc = ISD::XOR;
5952     break;
5953   }
5954   }
5955 
5956   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5957 
5958   if (!IsVP)
5959     return SetCC;
5960 
5961   // Now include the start value in the operation.
5962   // Note that we must return the start value when no elements are operated
5963   // upon. The vcpop instructions we've emitted in each case above will return
5964   // 0 for an inactive vector, and so we've already received the neutral value:
5965   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5966   // can simply include the start value.
5967   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5968 }
5969 
5970 static bool hasNonZeroAVL(SDValue AVL) {
5971   auto *RegisterAVL = dyn_cast<RegisterSDNode>(AVL);
5972   auto *ImmAVL = dyn_cast<ConstantSDNode>(AVL);
5973   return (RegisterAVL && RegisterAVL->getReg() == RISCV::X0) ||
5974          (ImmAVL && ImmAVL->getZExtValue() >= 1);
5975 }
5976 
5977 /// Helper to lower a reduction sequence of the form:
5978 /// scalar = reduce_op vec, scalar_start
5979 static SDValue lowerReductionSeq(unsigned RVVOpcode, MVT ResVT,
5980                                  SDValue StartValue, SDValue Vec, SDValue Mask,
5981                                  SDValue VL, SDLoc DL, SelectionDAG &DAG,
5982                                  const RISCVSubtarget &Subtarget) {
5983   const MVT VecVT = Vec.getSimpleValueType();
5984   const MVT M1VT = getLMUL1VT(VecVT);
5985   const MVT XLenVT = Subtarget.getXLenVT();
5986   const bool NonZeroAVL = hasNonZeroAVL(VL);
5987 
5988   // The reduction needs an LMUL1 input; do the splat at either LMUL1
5989   // or the original VT if fractional.
5990   auto InnerVT = VecVT.bitsLE(M1VT) ? VecVT : M1VT;
5991   // We reuse the VL of the reduction to reduce vsetvli toggles if we can
5992   // prove it is non-zero.  For the AVL=0 case, we need the scalar to
5993   // be the result of the reduction operation.
5994   auto InnerVL = NonZeroAVL ? VL : DAG.getConstant(1, DL, XLenVT);
5995   SDValue InitialValue = lowerScalarInsert(StartValue, InnerVL, InnerVT, DL,
5996                                            DAG, Subtarget);
5997   if (M1VT != InnerVT)
5998     InitialValue = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, M1VT,
5999                                DAG.getUNDEF(M1VT),
6000                                InitialValue, DAG.getConstant(0, DL, XLenVT));
6001   SDValue PassThru = NonZeroAVL ? DAG.getUNDEF(M1VT) : InitialValue;
6002   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, PassThru, Vec,
6003                                   InitialValue, Mask, VL);
6004   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
6005                      DAG.getConstant(0, DL, XLenVT));
6006 }
6007 
6008 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
6009                                             SelectionDAG &DAG) const {
6010   SDLoc DL(Op);
6011   SDValue Vec = Op.getOperand(0);
6012   EVT VecEVT = Vec.getValueType();
6013 
6014   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
6015 
6016   // Due to ordering in legalize types we may have a vector type that needs to
6017   // be split. Do that manually so we can get down to a legal type.
6018   while (getTypeAction(*DAG.getContext(), VecEVT) ==
6019          TargetLowering::TypeSplitVector) {
6020     auto [Lo, Hi] = DAG.SplitVector(Vec, DL);
6021     VecEVT = Lo.getValueType();
6022     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
6023   }
6024 
6025   // TODO: The type may need to be widened rather than split. Or widened before
6026   // it can be split.
6027   if (!isTypeLegal(VecEVT))
6028     return SDValue();
6029 
6030   MVT VecVT = VecEVT.getSimpleVT();
6031   MVT VecEltVT = VecVT.getVectorElementType();
6032   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
6033 
6034   MVT ContainerVT = VecVT;
6035   if (VecVT.isFixedLengthVector()) {
6036     ContainerVT = getContainerForFixedLengthVector(VecVT);
6037     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6038   }
6039 
6040   auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
6041 
6042   SDValue NeutralElem =
6043       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
6044   return lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), NeutralElem, Vec,
6045                            Mask, VL, DL, DAG, Subtarget);
6046 }
6047 
6048 // Given a reduction op, this function returns the matching reduction opcode,
6049 // the vector SDValue and the scalar SDValue required to lower this to a
6050 // RISCVISD node.
6051 static std::tuple<unsigned, SDValue, SDValue>
6052 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
6053   SDLoc DL(Op);
6054   auto Flags = Op->getFlags();
6055   unsigned Opcode = Op.getOpcode();
6056   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
6057   switch (Opcode) {
6058   default:
6059     llvm_unreachable("Unhandled reduction");
6060   case ISD::VECREDUCE_FADD: {
6061     // Use positive zero if we can. It is cheaper to materialize.
6062     SDValue Zero =
6063         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
6064     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
6065   }
6066   case ISD::VECREDUCE_SEQ_FADD:
6067     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
6068                            Op.getOperand(0));
6069   case ISD::VECREDUCE_FMIN:
6070     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
6071                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
6072   case ISD::VECREDUCE_FMAX:
6073     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
6074                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
6075   }
6076 }
6077 
6078 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
6079                                               SelectionDAG &DAG) const {
6080   SDLoc DL(Op);
6081   MVT VecEltVT = Op.getSimpleValueType();
6082 
6083   unsigned RVVOpcode;
6084   SDValue VectorVal, ScalarVal;
6085   std::tie(RVVOpcode, VectorVal, ScalarVal) =
6086       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
6087   MVT VecVT = VectorVal.getSimpleValueType();
6088 
6089   MVT ContainerVT = VecVT;
6090   if (VecVT.isFixedLengthVector()) {
6091     ContainerVT = getContainerForFixedLengthVector(VecVT);
6092     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
6093   }
6094 
6095   auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
6096   return lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), ScalarVal,
6097                            VectorVal, Mask, VL, DL, DAG, Subtarget);
6098 }
6099 
6100 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
6101   switch (ISDOpcode) {
6102   default:
6103     llvm_unreachable("Unhandled reduction");
6104   case ISD::VP_REDUCE_ADD:
6105     return RISCVISD::VECREDUCE_ADD_VL;
6106   case ISD::VP_REDUCE_UMAX:
6107     return RISCVISD::VECREDUCE_UMAX_VL;
6108   case ISD::VP_REDUCE_SMAX:
6109     return RISCVISD::VECREDUCE_SMAX_VL;
6110   case ISD::VP_REDUCE_UMIN:
6111     return RISCVISD::VECREDUCE_UMIN_VL;
6112   case ISD::VP_REDUCE_SMIN:
6113     return RISCVISD::VECREDUCE_SMIN_VL;
6114   case ISD::VP_REDUCE_AND:
6115     return RISCVISD::VECREDUCE_AND_VL;
6116   case ISD::VP_REDUCE_OR:
6117     return RISCVISD::VECREDUCE_OR_VL;
6118   case ISD::VP_REDUCE_XOR:
6119     return RISCVISD::VECREDUCE_XOR_VL;
6120   case ISD::VP_REDUCE_FADD:
6121     return RISCVISD::VECREDUCE_FADD_VL;
6122   case ISD::VP_REDUCE_SEQ_FADD:
6123     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
6124   case ISD::VP_REDUCE_FMAX:
6125     return RISCVISD::VECREDUCE_FMAX_VL;
6126   case ISD::VP_REDUCE_FMIN:
6127     return RISCVISD::VECREDUCE_FMIN_VL;
6128   }
6129 }
6130 
6131 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
6132                                            SelectionDAG &DAG) const {
6133   SDLoc DL(Op);
6134   SDValue Vec = Op.getOperand(1);
6135   EVT VecEVT = Vec.getValueType();
6136 
6137   // TODO: The type may need to be widened rather than split. Or widened before
6138   // it can be split.
6139   if (!isTypeLegal(VecEVT))
6140     return SDValue();
6141 
6142   MVT VecVT = VecEVT.getSimpleVT();
6143   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
6144 
6145   if (VecVT.isFixedLengthVector()) {
6146     auto ContainerVT = getContainerForFixedLengthVector(VecVT);
6147     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6148   }
6149 
6150   SDValue VL = Op.getOperand(3);
6151   SDValue Mask = Op.getOperand(2);
6152   return lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), Op.getOperand(0),
6153                            Vec, Mask, VL, DL, DAG, Subtarget);
6154 }
6155 
6156 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
6157                                                    SelectionDAG &DAG) const {
6158   SDValue Vec = Op.getOperand(0);
6159   SDValue SubVec = Op.getOperand(1);
6160   MVT VecVT = Vec.getSimpleValueType();
6161   MVT SubVecVT = SubVec.getSimpleValueType();
6162 
6163   SDLoc DL(Op);
6164   MVT XLenVT = Subtarget.getXLenVT();
6165   unsigned OrigIdx = Op.getConstantOperandVal(2);
6166   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
6167 
6168   // We don't have the ability to slide mask vectors up indexed by their i1
6169   // elements; the smallest we can do is i8. Often we are able to bitcast to
6170   // equivalent i8 vectors. Note that when inserting a fixed-length vector
6171   // into a scalable one, we might not necessarily have enough scalable
6172   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
6173   if (SubVecVT.getVectorElementType() == MVT::i1 &&
6174       (OrigIdx != 0 || !Vec.isUndef())) {
6175     if (VecVT.getVectorMinNumElements() >= 8 &&
6176         SubVecVT.getVectorMinNumElements() >= 8) {
6177       assert(OrigIdx % 8 == 0 && "Invalid index");
6178       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
6179              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
6180              "Unexpected mask vector lowering");
6181       OrigIdx /= 8;
6182       SubVecVT =
6183           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
6184                            SubVecVT.isScalableVector());
6185       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
6186                                VecVT.isScalableVector());
6187       Vec = DAG.getBitcast(VecVT, Vec);
6188       SubVec = DAG.getBitcast(SubVecVT, SubVec);
6189     } else {
6190       // We can't slide this mask vector up indexed by its i1 elements.
6191       // This poses a problem when we wish to insert a scalable vector which
6192       // can't be re-expressed as a larger type. Just choose the slow path and
6193       // extend to a larger type, then truncate back down.
6194       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
6195       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
6196       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
6197       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
6198       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
6199                         Op.getOperand(2));
6200       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
6201       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
6202     }
6203   }
6204 
6205   // If the subvector vector is a fixed-length type, we cannot use subregister
6206   // manipulation to simplify the codegen; we don't know which register of a
6207   // LMUL group contains the specific subvector as we only know the minimum
6208   // register size. Therefore we must slide the vector group up the full
6209   // amount.
6210   if (SubVecVT.isFixedLengthVector()) {
6211     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
6212       return Op;
6213     MVT ContainerVT = VecVT;
6214     if (VecVT.isFixedLengthVector()) {
6215       ContainerVT = getContainerForFixedLengthVector(VecVT);
6216       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6217     }
6218     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
6219                          DAG.getUNDEF(ContainerVT), SubVec,
6220                          DAG.getConstant(0, DL, XLenVT));
6221     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
6222       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
6223       return DAG.getBitcast(Op.getValueType(), SubVec);
6224     }
6225     SDValue Mask =
6226         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
6227     // Set the vector length to only the number of elements we care about. Note
6228     // that for slideup this includes the offset.
6229     SDValue VL =
6230         getVLOp(OrigIdx + SubVecVT.getVectorNumElements(), DL, DAG, Subtarget);
6231     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
6232 
6233     // Use tail agnostic policy if OrigIdx is the last index of Vec.
6234     unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED;
6235     if (VecVT.isFixedLengthVector() &&
6236         OrigIdx + 1 == VecVT.getVectorNumElements())
6237       Policy = RISCVII::TAIL_AGNOSTIC;
6238     SDValue Slideup = getVSlideup(DAG, Subtarget, DL, ContainerVT, Vec, SubVec,
6239                                   SlideupAmt, Mask, VL, Policy);
6240     if (VecVT.isFixedLengthVector())
6241       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
6242     return DAG.getBitcast(Op.getValueType(), Slideup);
6243   }
6244 
6245   unsigned SubRegIdx, RemIdx;
6246   std::tie(SubRegIdx, RemIdx) =
6247       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
6248           VecVT, SubVecVT, OrigIdx, TRI);
6249 
6250   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
6251   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
6252                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
6253                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
6254 
6255   // 1. If the Idx has been completely eliminated and this subvector's size is
6256   // a vector register or a multiple thereof, or the surrounding elements are
6257   // undef, then this is a subvector insert which naturally aligns to a vector
6258   // register. These can easily be handled using subregister manipulation.
6259   // 2. If the subvector is smaller than a vector register, then the insertion
6260   // must preserve the undisturbed elements of the register. We do this by
6261   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
6262   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
6263   // subvector within the vector register, and an INSERT_SUBVECTOR of that
6264   // LMUL=1 type back into the larger vector (resolving to another subregister
6265   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
6266   // to avoid allocating a large register group to hold our subvector.
6267   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
6268     return Op;
6269 
6270   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
6271   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
6272   // (in our case undisturbed). This means we can set up a subvector insertion
6273   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
6274   // size of the subvector.
6275   MVT InterSubVT = VecVT;
6276   SDValue AlignedExtract = Vec;
6277   unsigned AlignedIdx = OrigIdx - RemIdx;
6278   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
6279     InterSubVT = getLMUL1VT(VecVT);
6280     // Extract a subvector equal to the nearest full vector register type. This
6281     // should resolve to a EXTRACT_SUBREG instruction.
6282     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
6283                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
6284   }
6285 
6286   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
6287   // For scalable vectors this must be further multiplied by vscale.
6288   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
6289 
6290   auto [Mask, VL] = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
6291 
6292   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
6293   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
6294   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
6295   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
6296 
6297   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
6298                        DAG.getUNDEF(InterSubVT), SubVec,
6299                        DAG.getConstant(0, DL, XLenVT));
6300 
6301   SDValue Slideup = getVSlideup(DAG, Subtarget, DL, InterSubVT, AlignedExtract,
6302                                 SubVec, SlideupAmt, Mask, VL);
6303 
6304   // If required, insert this subvector back into the correct vector register.
6305   // This should resolve to an INSERT_SUBREG instruction.
6306   if (VecVT.bitsGT(InterSubVT))
6307     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
6308                           DAG.getConstant(AlignedIdx, DL, XLenVT));
6309 
6310   // We might have bitcast from a mask type: cast back to the original type if
6311   // required.
6312   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
6313 }
6314 
6315 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
6316                                                     SelectionDAG &DAG) const {
6317   SDValue Vec = Op.getOperand(0);
6318   MVT SubVecVT = Op.getSimpleValueType();
6319   MVT VecVT = Vec.getSimpleValueType();
6320 
6321   SDLoc DL(Op);
6322   MVT XLenVT = Subtarget.getXLenVT();
6323   unsigned OrigIdx = Op.getConstantOperandVal(1);
6324   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
6325 
6326   // We don't have the ability to slide mask vectors down indexed by their i1
6327   // elements; the smallest we can do is i8. Often we are able to bitcast to
6328   // equivalent i8 vectors. Note that when extracting a fixed-length vector
6329   // from a scalable one, we might not necessarily have enough scalable
6330   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
6331   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
6332     if (VecVT.getVectorMinNumElements() >= 8 &&
6333         SubVecVT.getVectorMinNumElements() >= 8) {
6334       assert(OrigIdx % 8 == 0 && "Invalid index");
6335       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
6336              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
6337              "Unexpected mask vector lowering");
6338       OrigIdx /= 8;
6339       SubVecVT =
6340           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
6341                            SubVecVT.isScalableVector());
6342       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
6343                                VecVT.isScalableVector());
6344       Vec = DAG.getBitcast(VecVT, Vec);
6345     } else {
6346       // We can't slide this mask vector down, indexed by its i1 elements.
6347       // This poses a problem when we wish to extract a scalable vector which
6348       // can't be re-expressed as a larger type. Just choose the slow path and
6349       // extend to a larger type, then truncate back down.
6350       // TODO: We could probably improve this when extracting certain fixed
6351       // from fixed, where we can extract as i8 and shift the correct element
6352       // right to reach the desired subvector?
6353       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
6354       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
6355       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
6356       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
6357                         Op.getOperand(1));
6358       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
6359       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
6360     }
6361   }
6362 
6363   // If the subvector vector is a fixed-length type, we cannot use subregister
6364   // manipulation to simplify the codegen; we don't know which register of a
6365   // LMUL group contains the specific subvector as we only know the minimum
6366   // register size. Therefore we must slide the vector group down the full
6367   // amount.
6368   if (SubVecVT.isFixedLengthVector()) {
6369     // With an index of 0 this is a cast-like subvector, which can be performed
6370     // with subregister operations.
6371     if (OrigIdx == 0)
6372       return Op;
6373     MVT ContainerVT = VecVT;
6374     if (VecVT.isFixedLengthVector()) {
6375       ContainerVT = getContainerForFixedLengthVector(VecVT);
6376       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6377     }
6378     SDValue Mask =
6379         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
6380     // Set the vector length to only the number of elements we care about. This
6381     // avoids sliding down elements we're going to discard straight away.
6382     SDValue VL = getVLOp(SubVecVT.getVectorNumElements(), DL, DAG, Subtarget);
6383     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
6384     SDValue Slidedown =
6385         getVSlidedown(DAG, Subtarget, DL, ContainerVT,
6386                       DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
6387     // Now we can use a cast-like subvector extract to get the result.
6388     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
6389                             DAG.getConstant(0, DL, XLenVT));
6390     return DAG.getBitcast(Op.getValueType(), Slidedown);
6391   }
6392 
6393   unsigned SubRegIdx, RemIdx;
6394   std::tie(SubRegIdx, RemIdx) =
6395       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
6396           VecVT, SubVecVT, OrigIdx, TRI);
6397 
6398   // If the Idx has been completely eliminated then this is a subvector extract
6399   // which naturally aligns to a vector register. These can easily be handled
6400   // using subregister manipulation.
6401   if (RemIdx == 0)
6402     return Op;
6403 
6404   // Else we must shift our vector register directly to extract the subvector.
6405   // Do this using VSLIDEDOWN.
6406 
6407   // If the vector type is an LMUL-group type, extract a subvector equal to the
6408   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
6409   // instruction.
6410   MVT InterSubVT = VecVT;
6411   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
6412     InterSubVT = getLMUL1VT(VecVT);
6413     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
6414                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
6415   }
6416 
6417   // Slide this vector register down by the desired number of elements in order
6418   // to place the desired subvector starting at element 0.
6419   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
6420   // For scalable vectors this must be further multiplied by vscale.
6421   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
6422 
6423   auto [Mask, VL] = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
6424   SDValue Slidedown =
6425       getVSlidedown(DAG, Subtarget, DL, InterSubVT, DAG.getUNDEF(InterSubVT),
6426                     Vec, SlidedownAmt, Mask, VL);
6427 
6428   // Now the vector is in the right position, extract our final subvector. This
6429   // should resolve to a COPY.
6430   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
6431                           DAG.getConstant(0, DL, XLenVT));
6432 
6433   // We might have bitcast from a mask type: cast back to the original type if
6434   // required.
6435   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
6436 }
6437 
6438 // Lower step_vector to the vid instruction. Any non-identity step value must
6439 // be accounted for my manual expansion.
6440 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
6441                                               SelectionDAG &DAG) const {
6442   SDLoc DL(Op);
6443   MVT VT = Op.getSimpleValueType();
6444   assert(VT.isScalableVector() && "Expected scalable vector");
6445   MVT XLenVT = Subtarget.getXLenVT();
6446   auto [Mask, VL] = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
6447   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
6448   uint64_t StepValImm = Op.getConstantOperandVal(0);
6449   if (StepValImm != 1) {
6450     if (isPowerOf2_64(StepValImm)) {
6451       SDValue StepVal =
6452           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
6453                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT), VL);
6454       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
6455     } else {
6456       SDValue StepVal = lowerScalarSplat(
6457           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
6458           VL, VT, DL, DAG, Subtarget);
6459       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
6460     }
6461   }
6462   return StepVec;
6463 }
6464 
6465 // Implement vector_reverse using vrgather.vv with indices determined by
6466 // subtracting the id of each element from (VLMAX-1). This will convert
6467 // the indices like so:
6468 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
6469 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
6470 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
6471                                                  SelectionDAG &DAG) const {
6472   SDLoc DL(Op);
6473   MVT VecVT = Op.getSimpleValueType();
6474   if (VecVT.getVectorElementType() == MVT::i1) {
6475     MVT WidenVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
6476     SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, Op.getOperand(0));
6477     SDValue Op2 = DAG.getNode(ISD::VECTOR_REVERSE, DL, WidenVT, Op1);
6478     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Op2);
6479   }
6480   unsigned EltSize = VecVT.getScalarSizeInBits();
6481   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
6482   unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
6483   unsigned MaxVLMAX =
6484     RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
6485 
6486   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
6487   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
6488 
6489   // If this is SEW=8 and VLMAX is potentially more than 256, we need
6490   // to use vrgatherei16.vv.
6491   // TODO: It's also possible to use vrgatherei16.vv for other types to
6492   // decrease register width for the index calculation.
6493   if (MaxVLMAX > 256 && EltSize == 8) {
6494     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
6495     // Reverse each half, then reassemble them in reverse order.
6496     // NOTE: It's also possible that after splitting that VLMAX no longer
6497     // requires vrgatherei16.vv.
6498     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
6499       auto [Lo, Hi] = DAG.SplitVectorOperand(Op.getNode(), 0);
6500       auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VecVT);
6501       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
6502       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
6503       // Reassemble the low and high pieces reversed.
6504       // FIXME: This is a CONCAT_VECTORS.
6505       SDValue Res =
6506           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
6507                       DAG.getIntPtrConstant(0, DL));
6508       return DAG.getNode(
6509           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
6510           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
6511     }
6512 
6513     // Just promote the int type to i16 which will double the LMUL.
6514     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
6515     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
6516   }
6517 
6518   MVT XLenVT = Subtarget.getXLenVT();
6519   auto [Mask, VL] = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
6520 
6521   // Calculate VLMAX-1 for the desired SEW.
6522   unsigned MinElts = VecVT.getVectorMinNumElements();
6523   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
6524                               getVLOp(MinElts, DL, DAG, Subtarget));
6525   SDValue VLMinus1 =
6526       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
6527 
6528   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
6529   bool IsRV32E64 =
6530       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
6531   SDValue SplatVL;
6532   if (!IsRV32E64)
6533     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
6534   else
6535     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
6536                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
6537 
6538   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
6539   SDValue Indices = DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID,
6540                                 DAG.getUNDEF(IntVT), Mask, VL);
6541 
6542   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices,
6543                      DAG.getUNDEF(VecVT), Mask, VL);
6544 }
6545 
6546 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
6547                                                 SelectionDAG &DAG) const {
6548   SDLoc DL(Op);
6549   SDValue V1 = Op.getOperand(0);
6550   SDValue V2 = Op.getOperand(1);
6551   MVT XLenVT = Subtarget.getXLenVT();
6552   MVT VecVT = Op.getSimpleValueType();
6553 
6554   unsigned MinElts = VecVT.getVectorMinNumElements();
6555   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
6556                               getVLOp(MinElts, DL, DAG, Subtarget));
6557 
6558   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
6559   SDValue DownOffset, UpOffset;
6560   if (ImmValue >= 0) {
6561     // The operand is a TargetConstant, we need to rebuild it as a regular
6562     // constant.
6563     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
6564     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
6565   } else {
6566     // The operand is a TargetConstant, we need to rebuild it as a regular
6567     // constant rather than negating the original operand.
6568     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
6569     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
6570   }
6571 
6572   SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG);
6573 
6574   SDValue SlideDown =
6575       getVSlidedown(DAG, Subtarget, DL, VecVT, DAG.getUNDEF(VecVT), V1,
6576                     DownOffset, TrueMask, UpOffset);
6577   return getVSlideup(DAG, Subtarget, DL, VecVT, SlideDown, V2, UpOffset,
6578                      TrueMask, DAG.getRegister(RISCV::X0, XLenVT),
6579                      RISCVII::TAIL_AGNOSTIC);
6580 }
6581 
6582 SDValue
6583 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
6584                                                      SelectionDAG &DAG) const {
6585   SDLoc DL(Op);
6586   auto *Load = cast<LoadSDNode>(Op);
6587 
6588   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
6589                                         Load->getMemoryVT(),
6590                                         *Load->getMemOperand()) &&
6591          "Expecting a correctly-aligned load");
6592 
6593   MVT VT = Op.getSimpleValueType();
6594   MVT XLenVT = Subtarget.getXLenVT();
6595   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6596 
6597   SDValue VL = getVLOp(VT.getVectorNumElements(), DL, DAG, Subtarget);
6598 
6599   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
6600   SDValue IntID = DAG.getTargetConstant(
6601       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
6602   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
6603   if (!IsMaskOp)
6604     Ops.push_back(DAG.getUNDEF(ContainerVT));
6605   Ops.push_back(Load->getBasePtr());
6606   Ops.push_back(VL);
6607   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6608   SDValue NewLoad =
6609       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
6610                               Load->getMemoryVT(), Load->getMemOperand());
6611 
6612   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
6613   return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL);
6614 }
6615 
6616 SDValue
6617 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
6618                                                       SelectionDAG &DAG) const {
6619   SDLoc DL(Op);
6620   auto *Store = cast<StoreSDNode>(Op);
6621 
6622   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
6623                                         Store->getMemoryVT(),
6624                                         *Store->getMemOperand()) &&
6625          "Expecting a correctly-aligned store");
6626 
6627   SDValue StoreVal = Store->getValue();
6628   MVT VT = StoreVal.getSimpleValueType();
6629   MVT XLenVT = Subtarget.getXLenVT();
6630 
6631   // If the size less than a byte, we need to pad with zeros to make a byte.
6632   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
6633     VT = MVT::v8i1;
6634     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
6635                            DAG.getConstant(0, DL, VT), StoreVal,
6636                            DAG.getIntPtrConstant(0, DL));
6637   }
6638 
6639   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6640 
6641   SDValue VL = getVLOp(VT.getVectorNumElements(), DL, DAG, Subtarget);
6642 
6643   SDValue NewValue =
6644       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
6645 
6646   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
6647   SDValue IntID = DAG.getTargetConstant(
6648       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
6649   return DAG.getMemIntrinsicNode(
6650       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
6651       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
6652       Store->getMemoryVT(), Store->getMemOperand());
6653 }
6654 
6655 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
6656                                              SelectionDAG &DAG) const {
6657   SDLoc DL(Op);
6658   MVT VT = Op.getSimpleValueType();
6659 
6660   const auto *MemSD = cast<MemSDNode>(Op);
6661   EVT MemVT = MemSD->getMemoryVT();
6662   MachineMemOperand *MMO = MemSD->getMemOperand();
6663   SDValue Chain = MemSD->getChain();
6664   SDValue BasePtr = MemSD->getBasePtr();
6665 
6666   SDValue Mask, PassThru, VL;
6667   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
6668     Mask = VPLoad->getMask();
6669     PassThru = DAG.getUNDEF(VT);
6670     VL = VPLoad->getVectorLength();
6671   } else {
6672     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
6673     Mask = MLoad->getMask();
6674     PassThru = MLoad->getPassThru();
6675   }
6676 
6677   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6678 
6679   MVT XLenVT = Subtarget.getXLenVT();
6680 
6681   MVT ContainerVT = VT;
6682   if (VT.isFixedLengthVector()) {
6683     ContainerVT = getContainerForFixedLengthVector(VT);
6684     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6685     if (!IsUnmasked) {
6686       MVT MaskVT = getMaskTypeFor(ContainerVT);
6687       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6688     }
6689   }
6690 
6691   if (!VL)
6692     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6693 
6694   unsigned IntID =
6695       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
6696   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6697   if (IsUnmasked)
6698     Ops.push_back(DAG.getUNDEF(ContainerVT));
6699   else
6700     Ops.push_back(PassThru);
6701   Ops.push_back(BasePtr);
6702   if (!IsUnmasked)
6703     Ops.push_back(Mask);
6704   Ops.push_back(VL);
6705   if (!IsUnmasked)
6706     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6707 
6708   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6709 
6710   SDValue Result =
6711       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6712   Chain = Result.getValue(1);
6713 
6714   if (VT.isFixedLengthVector())
6715     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6716 
6717   return DAG.getMergeValues({Result, Chain}, DL);
6718 }
6719 
6720 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
6721                                               SelectionDAG &DAG) const {
6722   SDLoc DL(Op);
6723 
6724   const auto *MemSD = cast<MemSDNode>(Op);
6725   EVT MemVT = MemSD->getMemoryVT();
6726   MachineMemOperand *MMO = MemSD->getMemOperand();
6727   SDValue Chain = MemSD->getChain();
6728   SDValue BasePtr = MemSD->getBasePtr();
6729   SDValue Val, Mask, VL;
6730 
6731   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
6732     Val = VPStore->getValue();
6733     Mask = VPStore->getMask();
6734     VL = VPStore->getVectorLength();
6735   } else {
6736     const auto *MStore = cast<MaskedStoreSDNode>(Op);
6737     Val = MStore->getValue();
6738     Mask = MStore->getMask();
6739   }
6740 
6741   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6742 
6743   MVT VT = Val.getSimpleValueType();
6744   MVT XLenVT = Subtarget.getXLenVT();
6745 
6746   MVT ContainerVT = VT;
6747   if (VT.isFixedLengthVector()) {
6748     ContainerVT = getContainerForFixedLengthVector(VT);
6749 
6750     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6751     if (!IsUnmasked) {
6752       MVT MaskVT = getMaskTypeFor(ContainerVT);
6753       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6754     }
6755   }
6756 
6757   if (!VL)
6758     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6759 
6760   unsigned IntID =
6761       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
6762   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6763   Ops.push_back(Val);
6764   Ops.push_back(BasePtr);
6765   if (!IsUnmasked)
6766     Ops.push_back(Mask);
6767   Ops.push_back(VL);
6768 
6769   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6770                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6771 }
6772 
6773 SDValue
6774 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
6775                                                       SelectionDAG &DAG) const {
6776   MVT InVT = Op.getOperand(0).getSimpleValueType();
6777   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
6778 
6779   MVT VT = Op.getSimpleValueType();
6780 
6781   SDValue Op1 =
6782       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
6783   SDValue Op2 =
6784       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6785 
6786   SDLoc DL(Op);
6787   auto [Mask, VL] = getDefaultVLOps(VT.getVectorNumElements(), ContainerVT, DL,
6788                                     DAG, Subtarget);
6789   MVT MaskVT = getMaskTypeFor(ContainerVT);
6790 
6791   SDValue Cmp =
6792       DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT,
6793                   {Op1, Op2, Op.getOperand(2), DAG.getUNDEF(MaskVT), Mask, VL});
6794 
6795   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
6796 }
6797 
6798 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
6799     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
6800   MVT VT = Op.getSimpleValueType();
6801 
6802   if (VT.getVectorElementType() == MVT::i1)
6803     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMergeOp*/ false,
6804                              /*HasMask*/ false);
6805 
6806   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMergeOp*/ true);
6807 }
6808 
6809 SDValue
6810 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
6811                                                       SelectionDAG &DAG) const {
6812   unsigned Opc;
6813   switch (Op.getOpcode()) {
6814   default: llvm_unreachable("Unexpected opcode!");
6815   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
6816   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
6817   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
6818   }
6819 
6820   return lowerToScalableOp(Op, DAG, Opc, /*HasMergeOp*/ true);
6821 }
6822 
6823 // Lower vector ABS to smax(X, sub(0, X)).
6824 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
6825   SDLoc DL(Op);
6826   MVT VT = Op.getSimpleValueType();
6827   SDValue X = Op.getOperand(0);
6828 
6829   assert((Op.getOpcode() == ISD::VP_ABS || VT.isFixedLengthVector()) &&
6830          "Unexpected type for ISD::ABS");
6831 
6832   MVT ContainerVT = VT;
6833   if (VT.isFixedLengthVector()) {
6834     ContainerVT = getContainerForFixedLengthVector(VT);
6835     X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
6836   }
6837 
6838   SDValue Mask, VL;
6839   if (Op->getOpcode() == ISD::VP_ABS) {
6840     Mask = Op->getOperand(1);
6841     VL = Op->getOperand(2);
6842   } else
6843     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6844 
6845   SDValue SplatZero = DAG.getNode(
6846       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
6847       DAG.getConstant(0, DL, Subtarget.getXLenVT()), VL);
6848   SDValue NegX = DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X,
6849                              DAG.getUNDEF(ContainerVT), Mask, VL);
6850   SDValue Max = DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX,
6851                             DAG.getUNDEF(ContainerVT), Mask, VL);
6852 
6853   if (VT.isFixedLengthVector())
6854     Max = convertFromScalableVector(VT, Max, DAG, Subtarget);
6855   return Max;
6856 }
6857 
6858 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
6859     SDValue Op, SelectionDAG &DAG) const {
6860   SDLoc DL(Op);
6861   MVT VT = Op.getSimpleValueType();
6862   SDValue Mag = Op.getOperand(0);
6863   SDValue Sign = Op.getOperand(1);
6864   assert(Mag.getValueType() == Sign.getValueType() &&
6865          "Can only handle COPYSIGN with matching types.");
6866 
6867   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6868   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
6869   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
6870 
6871   auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6872 
6873   SDValue CopySign = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag,
6874                                  Sign, DAG.getUNDEF(ContainerVT), Mask, VL);
6875 
6876   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
6877 }
6878 
6879 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
6880     SDValue Op, SelectionDAG &DAG) const {
6881   MVT VT = Op.getSimpleValueType();
6882   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6883 
6884   MVT I1ContainerVT =
6885       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6886 
6887   SDValue CC =
6888       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
6889   SDValue Op1 =
6890       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6891   SDValue Op2 =
6892       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
6893 
6894   SDLoc DL(Op);
6895   SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6896 
6897   SDValue Select =
6898       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6899 
6900   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6901 }
6902 
6903 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6904                                                unsigned NewOpc, bool HasMergeOp,
6905                                                bool HasMask) const {
6906   MVT VT = Op.getSimpleValueType();
6907   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6908 
6909   // Create list of operands by converting existing ones to scalable types.
6910   SmallVector<SDValue, 6> Ops;
6911   for (const SDValue &V : Op->op_values()) {
6912     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6913 
6914     // Pass through non-vector operands.
6915     if (!V.getValueType().isVector()) {
6916       Ops.push_back(V);
6917       continue;
6918     }
6919 
6920     // "cast" fixed length vector to a scalable vector.
6921     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6922            "Only fixed length vectors are supported!");
6923     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6924   }
6925 
6926   SDLoc DL(Op);
6927   auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6928   if (HasMergeOp)
6929     Ops.push_back(DAG.getUNDEF(ContainerVT));
6930   if (HasMask)
6931     Ops.push_back(Mask);
6932   Ops.push_back(VL);
6933 
6934   SDValue ScalableRes =
6935       DAG.getNode(NewOpc, DL, ContainerVT, Ops, Op->getFlags());
6936   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6937 }
6938 
6939 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6940 // * Operands of each node are assumed to be in the same order.
6941 // * The EVL operand is promoted from i32 to i64 on RV64.
6942 // * Fixed-length vectors are converted to their scalable-vector container
6943 //   types.
6944 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6945                                        unsigned RISCVISDOpc,
6946                                        bool HasMergeOp) const {
6947   SDLoc DL(Op);
6948   MVT VT = Op.getSimpleValueType();
6949   SmallVector<SDValue, 4> Ops;
6950 
6951   MVT ContainerVT = VT;
6952   if (VT.isFixedLengthVector())
6953     ContainerVT = getContainerForFixedLengthVector(VT);
6954 
6955   for (const auto &OpIdx : enumerate(Op->ops())) {
6956     SDValue V = OpIdx.value();
6957     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6958     // Add dummy merge value before the mask.
6959     if (HasMergeOp && *ISD::getVPMaskIdx(Op.getOpcode()) == OpIdx.index())
6960       Ops.push_back(DAG.getUNDEF(ContainerVT));
6961     // Pass through operands which aren't fixed-length vectors.
6962     if (!V.getValueType().isFixedLengthVector()) {
6963       Ops.push_back(V);
6964       continue;
6965     }
6966     // "cast" fixed length vector to a scalable vector.
6967     MVT OpVT = V.getSimpleValueType();
6968     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6969     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6970            "Only fixed length vectors are supported!");
6971     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6972   }
6973 
6974   if (!VT.isFixedLengthVector())
6975     return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags());
6976 
6977   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags());
6978 
6979   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6980 }
6981 
6982 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op,
6983                                               SelectionDAG &DAG) const {
6984   SDLoc DL(Op);
6985   MVT VT = Op.getSimpleValueType();
6986 
6987   SDValue Src = Op.getOperand(0);
6988   // NOTE: Mask is dropped.
6989   SDValue VL = Op.getOperand(2);
6990 
6991   MVT ContainerVT = VT;
6992   if (VT.isFixedLengthVector()) {
6993     ContainerVT = getContainerForFixedLengthVector(VT);
6994     MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6995     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6996   }
6997 
6998   MVT XLenVT = Subtarget.getXLenVT();
6999   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
7000   SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
7001                                   DAG.getUNDEF(ContainerVT), Zero, VL);
7002 
7003   SDValue SplatValue = DAG.getConstant(
7004       Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT);
7005   SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
7006                               DAG.getUNDEF(ContainerVT), SplatValue, VL);
7007 
7008   SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src,
7009                                Splat, ZeroSplat, VL);
7010   if (!VT.isFixedLengthVector())
7011     return Result;
7012   return convertFromScalableVector(VT, Result, DAG, Subtarget);
7013 }
7014 
7015 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op,
7016                                                 SelectionDAG &DAG) const {
7017   SDLoc DL(Op);
7018   MVT VT = Op.getSimpleValueType();
7019 
7020   SDValue Op1 = Op.getOperand(0);
7021   SDValue Op2 = Op.getOperand(1);
7022   ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7023   // NOTE: Mask is dropped.
7024   SDValue VL = Op.getOperand(4);
7025 
7026   MVT ContainerVT = VT;
7027   if (VT.isFixedLengthVector()) {
7028     ContainerVT = getContainerForFixedLengthVector(VT);
7029     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
7030     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
7031   }
7032 
7033   SDValue Result;
7034   SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
7035 
7036   switch (Condition) {
7037   default:
7038     break;
7039   // X != Y  --> (X^Y)
7040   case ISD::SETNE:
7041     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
7042     break;
7043   // X == Y  --> ~(X^Y)
7044   case ISD::SETEQ: {
7045     SDValue Temp =
7046         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
7047     Result =
7048         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL);
7049     break;
7050   }
7051   // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
7052   // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
7053   case ISD::SETGT:
7054   case ISD::SETULT: {
7055     SDValue Temp =
7056         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
7057     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL);
7058     break;
7059   }
7060   // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
7061   // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
7062   case ISD::SETLT:
7063   case ISD::SETUGT: {
7064     SDValue Temp =
7065         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
7066     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL);
7067     break;
7068   }
7069   // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
7070   // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
7071   case ISD::SETGE:
7072   case ISD::SETULE: {
7073     SDValue Temp =
7074         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
7075     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL);
7076     break;
7077   }
7078   // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
7079   // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
7080   case ISD::SETLE:
7081   case ISD::SETUGE: {
7082     SDValue Temp =
7083         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
7084     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL);
7085     break;
7086   }
7087   }
7088 
7089   if (!VT.isFixedLengthVector())
7090     return Result;
7091   return convertFromScalableVector(VT, Result, DAG, Subtarget);
7092 }
7093 
7094 // Lower Floating-Point/Integer Type-Convert VP SDNodes
7095 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG,
7096                                                 unsigned RISCVISDOpc) const {
7097   SDLoc DL(Op);
7098 
7099   SDValue Src = Op.getOperand(0);
7100   SDValue Mask = Op.getOperand(1);
7101   SDValue VL = Op.getOperand(2);
7102 
7103   MVT DstVT = Op.getSimpleValueType();
7104   MVT SrcVT = Src.getSimpleValueType();
7105   if (DstVT.isFixedLengthVector()) {
7106     DstVT = getContainerForFixedLengthVector(DstVT);
7107     SrcVT = getContainerForFixedLengthVector(SrcVT);
7108     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
7109     MVT MaskVT = getMaskTypeFor(DstVT);
7110     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
7111   }
7112 
7113   unsigned DstEltSize = DstVT.getScalarSizeInBits();
7114   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
7115 
7116   SDValue Result;
7117   if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
7118     if (SrcVT.isInteger()) {
7119       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
7120 
7121       unsigned RISCVISDExtOpc = RISCVISDOpc == RISCVISD::SINT_TO_FP_VL
7122                                     ? RISCVISD::VSEXT_VL
7123                                     : RISCVISD::VZEXT_VL;
7124 
7125       // Do we need to do any pre-widening before converting?
7126       if (SrcEltSize == 1) {
7127         MVT IntVT = DstVT.changeVectorElementTypeToInteger();
7128         MVT XLenVT = Subtarget.getXLenVT();
7129         SDValue Zero = DAG.getConstant(0, DL, XLenVT);
7130         SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
7131                                         DAG.getUNDEF(IntVT), Zero, VL);
7132         SDValue One = DAG.getConstant(
7133             RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
7134         SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
7135                                        DAG.getUNDEF(IntVT), One, VL);
7136         Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat,
7137                           ZeroSplat, VL);
7138       } else if (DstEltSize > (2 * SrcEltSize)) {
7139         // Widen before converting.
7140         MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
7141                                      DstVT.getVectorElementCount());
7142         Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
7143       }
7144 
7145       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
7146     } else {
7147       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
7148              "Wrong input/output vector types");
7149 
7150       // Convert f16 to f32 then convert f32 to i64.
7151       if (DstEltSize > (2 * SrcEltSize)) {
7152         assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
7153         MVT InterimFVT =
7154             MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
7155         Src =
7156             DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
7157       }
7158 
7159       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
7160     }
7161   } else { // Narrowing + Conversion
7162     if (SrcVT.isInteger()) {
7163       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
7164       // First do a narrowing convert to an FP type half the size, then round
7165       // the FP type to a small FP type if needed.
7166 
7167       MVT InterimFVT = DstVT;
7168       if (SrcEltSize > (2 * DstEltSize)) {
7169         assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
7170         assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
7171         InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
7172       }
7173 
7174       Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
7175 
7176       if (InterimFVT != DstVT) {
7177         Src = Result;
7178         Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
7179       }
7180     } else {
7181       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
7182              "Wrong input/output vector types");
7183       // First do a narrowing conversion to an integer half the size, then
7184       // truncate if needed.
7185 
7186       if (DstEltSize == 1) {
7187         // First convert to the same size integer, then convert to mask using
7188         // setcc.
7189         assert(SrcEltSize >= 16 && "Unexpected FP type!");
7190         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
7191                                           DstVT.getVectorElementCount());
7192         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
7193 
7194         // Compare the integer result to 0. The integer should be 0 or 1/-1,
7195         // otherwise the conversion was undefined.
7196         MVT XLenVT = Subtarget.getXLenVT();
7197         SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
7198         SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
7199                                 DAG.getUNDEF(InterimIVT), SplatZero, VL);
7200         Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT,
7201                              {Result, SplatZero, DAG.getCondCode(ISD::SETNE),
7202                               DAG.getUNDEF(DstVT), Mask, VL});
7203       } else {
7204         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
7205                                           DstVT.getVectorElementCount());
7206 
7207         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
7208 
7209         while (InterimIVT != DstVT) {
7210           SrcEltSize /= 2;
7211           Src = Result;
7212           InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
7213                                         DstVT.getVectorElementCount());
7214           Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
7215                                Src, Mask, VL);
7216         }
7217       }
7218     }
7219   }
7220 
7221   MVT VT = Op.getSimpleValueType();
7222   if (!VT.isFixedLengthVector())
7223     return Result;
7224   return convertFromScalableVector(VT, Result, DAG, Subtarget);
7225 }
7226 
7227 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
7228                                             unsigned MaskOpc,
7229                                             unsigned VecOpc) const {
7230   MVT VT = Op.getSimpleValueType();
7231   if (VT.getVectorElementType() != MVT::i1)
7232     return lowerVPOp(Op, DAG, VecOpc, true);
7233 
7234   // It is safe to drop mask parameter as masked-off elements are undef.
7235   SDValue Op1 = Op->getOperand(0);
7236   SDValue Op2 = Op->getOperand(1);
7237   SDValue VL = Op->getOperand(3);
7238 
7239   MVT ContainerVT = VT;
7240   const bool IsFixed = VT.isFixedLengthVector();
7241   if (IsFixed) {
7242     ContainerVT = getContainerForFixedLengthVector(VT);
7243     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
7244     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
7245   }
7246 
7247   SDLoc DL(Op);
7248   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
7249   if (!IsFixed)
7250     return Val;
7251   return convertFromScalableVector(VT, Val, DAG, Subtarget);
7252 }
7253 
7254 SDValue RISCVTargetLowering::lowerVPStridedLoad(SDValue Op,
7255                                                 SelectionDAG &DAG) const {
7256   SDLoc DL(Op);
7257   MVT XLenVT = Subtarget.getXLenVT();
7258   MVT VT = Op.getSimpleValueType();
7259   MVT ContainerVT = VT;
7260   if (VT.isFixedLengthVector())
7261     ContainerVT = getContainerForFixedLengthVector(VT);
7262 
7263   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
7264 
7265   auto *VPNode = cast<VPStridedLoadSDNode>(Op);
7266   // Check if the mask is known to be all ones
7267   SDValue Mask = VPNode->getMask();
7268   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
7269 
7270   SDValue IntID = DAG.getTargetConstant(IsUnmasked ? Intrinsic::riscv_vlse
7271                                                    : Intrinsic::riscv_vlse_mask,
7272                                         DL, XLenVT);
7273   SmallVector<SDValue, 8> Ops{VPNode->getChain(), IntID,
7274                               DAG.getUNDEF(ContainerVT), VPNode->getBasePtr(),
7275                               VPNode->getStride()};
7276   if (!IsUnmasked) {
7277     if (VT.isFixedLengthVector()) {
7278       MVT MaskVT = ContainerVT.changeVectorElementType(MVT::i1);
7279       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
7280     }
7281     Ops.push_back(Mask);
7282   }
7283   Ops.push_back(VPNode->getVectorLength());
7284   if (!IsUnmasked) {
7285     SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
7286     Ops.push_back(Policy);
7287   }
7288 
7289   SDValue Result =
7290       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
7291                               VPNode->getMemoryVT(), VPNode->getMemOperand());
7292   SDValue Chain = Result.getValue(1);
7293 
7294   if (VT.isFixedLengthVector())
7295     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
7296 
7297   return DAG.getMergeValues({Result, Chain}, DL);
7298 }
7299 
7300 SDValue RISCVTargetLowering::lowerVPStridedStore(SDValue Op,
7301                                                  SelectionDAG &DAG) const {
7302   SDLoc DL(Op);
7303   MVT XLenVT = Subtarget.getXLenVT();
7304 
7305   auto *VPNode = cast<VPStridedStoreSDNode>(Op);
7306   SDValue StoreVal = VPNode->getValue();
7307   MVT VT = StoreVal.getSimpleValueType();
7308   MVT ContainerVT = VT;
7309   if (VT.isFixedLengthVector()) {
7310     ContainerVT = getContainerForFixedLengthVector(VT);
7311     StoreVal = convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
7312   }
7313 
7314   // Check if the mask is known to be all ones
7315   SDValue Mask = VPNode->getMask();
7316   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
7317 
7318   SDValue IntID = DAG.getTargetConstant(IsUnmasked ? Intrinsic::riscv_vsse
7319                                                    : Intrinsic::riscv_vsse_mask,
7320                                         DL, XLenVT);
7321   SmallVector<SDValue, 8> Ops{VPNode->getChain(), IntID, StoreVal,
7322                               VPNode->getBasePtr(), VPNode->getStride()};
7323   if (!IsUnmasked) {
7324     if (VT.isFixedLengthVector()) {
7325       MVT MaskVT = ContainerVT.changeVectorElementType(MVT::i1);
7326       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
7327     }
7328     Ops.push_back(Mask);
7329   }
7330   Ops.push_back(VPNode->getVectorLength());
7331 
7332   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, VPNode->getVTList(),
7333                                  Ops, VPNode->getMemoryVT(),
7334                                  VPNode->getMemOperand());
7335 }
7336 
7337 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
7338 // matched to a RVV indexed load. The RVV indexed load instructions only
7339 // support the "unsigned unscaled" addressing mode; indices are implicitly
7340 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
7341 // signed or scaled indexing is extended to the XLEN value type and scaled
7342 // accordingly.
7343 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
7344                                                SelectionDAG &DAG) const {
7345   SDLoc DL(Op);
7346   MVT VT = Op.getSimpleValueType();
7347 
7348   const auto *MemSD = cast<MemSDNode>(Op.getNode());
7349   EVT MemVT = MemSD->getMemoryVT();
7350   MachineMemOperand *MMO = MemSD->getMemOperand();
7351   SDValue Chain = MemSD->getChain();
7352   SDValue BasePtr = MemSD->getBasePtr();
7353 
7354   ISD::LoadExtType LoadExtType;
7355   SDValue Index, Mask, PassThru, VL;
7356 
7357   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
7358     Index = VPGN->getIndex();
7359     Mask = VPGN->getMask();
7360     PassThru = DAG.getUNDEF(VT);
7361     VL = VPGN->getVectorLength();
7362     // VP doesn't support extending loads.
7363     LoadExtType = ISD::NON_EXTLOAD;
7364   } else {
7365     // Else it must be a MGATHER.
7366     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
7367     Index = MGN->getIndex();
7368     Mask = MGN->getMask();
7369     PassThru = MGN->getPassThru();
7370     LoadExtType = MGN->getExtensionType();
7371   }
7372 
7373   MVT IndexVT = Index.getSimpleValueType();
7374   MVT XLenVT = Subtarget.getXLenVT();
7375 
7376   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
7377          "Unexpected VTs!");
7378   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
7379   // Targets have to explicitly opt-in for extending vector loads.
7380   assert(LoadExtType == ISD::NON_EXTLOAD &&
7381          "Unexpected extending MGATHER/VP_GATHER");
7382   (void)LoadExtType;
7383 
7384   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
7385   // the selection of the masked intrinsics doesn't do this for us.
7386   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
7387 
7388   MVT ContainerVT = VT;
7389   if (VT.isFixedLengthVector()) {
7390     ContainerVT = getContainerForFixedLengthVector(VT);
7391     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
7392                                ContainerVT.getVectorElementCount());
7393 
7394     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
7395 
7396     if (!IsUnmasked) {
7397       MVT MaskVT = getMaskTypeFor(ContainerVT);
7398       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
7399       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
7400     }
7401   }
7402 
7403   if (!VL)
7404     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
7405 
7406   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
7407     IndexVT = IndexVT.changeVectorElementType(XLenVT);
7408     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
7409                                    VL);
7410     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
7411                         TrueMask, VL);
7412   }
7413 
7414   unsigned IntID =
7415       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
7416   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
7417   if (IsUnmasked)
7418     Ops.push_back(DAG.getUNDEF(ContainerVT));
7419   else
7420     Ops.push_back(PassThru);
7421   Ops.push_back(BasePtr);
7422   Ops.push_back(Index);
7423   if (!IsUnmasked)
7424     Ops.push_back(Mask);
7425   Ops.push_back(VL);
7426   if (!IsUnmasked)
7427     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
7428 
7429   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
7430   SDValue Result =
7431       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
7432   Chain = Result.getValue(1);
7433 
7434   if (VT.isFixedLengthVector())
7435     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
7436 
7437   return DAG.getMergeValues({Result, Chain}, DL);
7438 }
7439 
7440 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
7441 // matched to a RVV indexed store. The RVV indexed store instructions only
7442 // support the "unsigned unscaled" addressing mode; indices are implicitly
7443 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
7444 // signed or scaled indexing is extended to the XLEN value type and scaled
7445 // accordingly.
7446 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
7447                                                 SelectionDAG &DAG) const {
7448   SDLoc DL(Op);
7449   const auto *MemSD = cast<MemSDNode>(Op.getNode());
7450   EVT MemVT = MemSD->getMemoryVT();
7451   MachineMemOperand *MMO = MemSD->getMemOperand();
7452   SDValue Chain = MemSD->getChain();
7453   SDValue BasePtr = MemSD->getBasePtr();
7454 
7455   bool IsTruncatingStore = false;
7456   SDValue Index, Mask, Val, VL;
7457 
7458   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
7459     Index = VPSN->getIndex();
7460     Mask = VPSN->getMask();
7461     Val = VPSN->getValue();
7462     VL = VPSN->getVectorLength();
7463     // VP doesn't support truncating stores.
7464     IsTruncatingStore = false;
7465   } else {
7466     // Else it must be a MSCATTER.
7467     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
7468     Index = MSN->getIndex();
7469     Mask = MSN->getMask();
7470     Val = MSN->getValue();
7471     IsTruncatingStore = MSN->isTruncatingStore();
7472   }
7473 
7474   MVT VT = Val.getSimpleValueType();
7475   MVT IndexVT = Index.getSimpleValueType();
7476   MVT XLenVT = Subtarget.getXLenVT();
7477 
7478   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
7479          "Unexpected VTs!");
7480   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
7481   // Targets have to explicitly opt-in for extending vector loads and
7482   // truncating vector stores.
7483   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
7484   (void)IsTruncatingStore;
7485 
7486   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
7487   // the selection of the masked intrinsics doesn't do this for us.
7488   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
7489 
7490   MVT ContainerVT = VT;
7491   if (VT.isFixedLengthVector()) {
7492     ContainerVT = getContainerForFixedLengthVector(VT);
7493     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
7494                                ContainerVT.getVectorElementCount());
7495 
7496     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
7497     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
7498 
7499     if (!IsUnmasked) {
7500       MVT MaskVT = getMaskTypeFor(ContainerVT);
7501       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
7502     }
7503   }
7504 
7505   if (!VL)
7506     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
7507 
7508   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
7509     IndexVT = IndexVT.changeVectorElementType(XLenVT);
7510     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
7511                                    VL);
7512     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
7513                         TrueMask, VL);
7514   }
7515 
7516   unsigned IntID =
7517       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
7518   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
7519   Ops.push_back(Val);
7520   Ops.push_back(BasePtr);
7521   Ops.push_back(Index);
7522   if (!IsUnmasked)
7523     Ops.push_back(Mask);
7524   Ops.push_back(VL);
7525 
7526   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
7527                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
7528 }
7529 
7530 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
7531                                                SelectionDAG &DAG) const {
7532   const MVT XLenVT = Subtarget.getXLenVT();
7533   SDLoc DL(Op);
7534   SDValue Chain = Op->getOperand(0);
7535   SDValue SysRegNo = DAG.getTargetConstant(
7536       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
7537   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
7538   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
7539 
7540   // Encoding used for rounding mode in RISCV differs from that used in
7541   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
7542   // table, which consists of a sequence of 4-bit fields, each representing
7543   // corresponding FLT_ROUNDS mode.
7544   static const int Table =
7545       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
7546       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
7547       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
7548       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
7549       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
7550 
7551   SDValue Shift =
7552       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
7553   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
7554                                 DAG.getConstant(Table, DL, XLenVT), Shift);
7555   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
7556                                DAG.getConstant(7, DL, XLenVT));
7557 
7558   return DAG.getMergeValues({Masked, Chain}, DL);
7559 }
7560 
7561 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
7562                                                SelectionDAG &DAG) const {
7563   const MVT XLenVT = Subtarget.getXLenVT();
7564   SDLoc DL(Op);
7565   SDValue Chain = Op->getOperand(0);
7566   SDValue RMValue = Op->getOperand(1);
7567   SDValue SysRegNo = DAG.getTargetConstant(
7568       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
7569 
7570   // Encoding used for rounding mode in RISCV differs from that used in
7571   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
7572   // a table, which consists of a sequence of 4-bit fields, each representing
7573   // corresponding RISCV mode.
7574   static const unsigned Table =
7575       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
7576       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
7577       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
7578       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
7579       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
7580 
7581   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
7582                               DAG.getConstant(2, DL, XLenVT));
7583   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
7584                                 DAG.getConstant(Table, DL, XLenVT), Shift);
7585   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
7586                         DAG.getConstant(0x7, DL, XLenVT));
7587   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
7588                      RMValue);
7589 }
7590 
7591 SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
7592                                                SelectionDAG &DAG) const {
7593   MachineFunction &MF = DAG.getMachineFunction();
7594 
7595   bool isRISCV64 = Subtarget.is64Bit();
7596   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7597 
7598   int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false);
7599   return DAG.getFrameIndex(FI, PtrVT);
7600 }
7601 
7602 // Returns the opcode of the target-specific SDNode that implements the 32-bit
7603 // form of the given Opcode.
7604 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
7605   switch (Opcode) {
7606   default:
7607     llvm_unreachable("Unexpected opcode");
7608   case ISD::SHL:
7609     return RISCVISD::SLLW;
7610   case ISD::SRA:
7611     return RISCVISD::SRAW;
7612   case ISD::SRL:
7613     return RISCVISD::SRLW;
7614   case ISD::SDIV:
7615     return RISCVISD::DIVW;
7616   case ISD::UDIV:
7617     return RISCVISD::DIVUW;
7618   case ISD::UREM:
7619     return RISCVISD::REMUW;
7620   case ISD::ROTL:
7621     return RISCVISD::ROLW;
7622   case ISD::ROTR:
7623     return RISCVISD::RORW;
7624   }
7625 }
7626 
7627 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
7628 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
7629 // otherwise be promoted to i64, making it difficult to select the
7630 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
7631 // type i8/i16/i32 is lost.
7632 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
7633                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
7634   SDLoc DL(N);
7635   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
7636   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
7637   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
7638   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
7639   // ReplaceNodeResults requires we maintain the same type for the return value.
7640   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
7641 }
7642 
7643 // Converts the given 32-bit operation to a i64 operation with signed extension
7644 // semantic to reduce the signed extension instructions.
7645 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
7646   SDLoc DL(N);
7647   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7648   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7649   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
7650   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
7651                                DAG.getValueType(MVT::i32));
7652   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
7653 }
7654 
7655 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
7656                                              SmallVectorImpl<SDValue> &Results,
7657                                              SelectionDAG &DAG) const {
7658   SDLoc DL(N);
7659   switch (N->getOpcode()) {
7660   default:
7661     llvm_unreachable("Don't know how to custom type legalize this operation!");
7662   case ISD::STRICT_FP_TO_SINT:
7663   case ISD::STRICT_FP_TO_UINT:
7664   case ISD::FP_TO_SINT:
7665   case ISD::FP_TO_UINT: {
7666     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7667            "Unexpected custom legalisation");
7668     bool IsStrict = N->isStrictFPOpcode();
7669     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
7670                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
7671     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
7672     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
7673         TargetLowering::TypeSoftenFloat) {
7674       if (!isTypeLegal(Op0.getValueType()))
7675         return;
7676       if (IsStrict) {
7677         SDValue Chain = N->getOperand(0);
7678         // In absense of Zfh, promote f16 to f32, then convert.
7679         if (Op0.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) {
7680           Op0 = DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {MVT::f32, MVT::Other},
7681                             {Chain, Op0});
7682           Chain = Op0.getValue(1);
7683         }
7684         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
7685                                 : RISCVISD::STRICT_FCVT_WU_RV64;
7686         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
7687         SDValue Res = DAG.getNode(
7688             Opc, DL, VTs, Chain, Op0,
7689             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
7690         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7691         Results.push_back(Res.getValue(1));
7692         return;
7693       }
7694       // In absense of Zfh, promote f16 to f32, then convert.
7695       if (Op0.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
7696         Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op0);
7697 
7698       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
7699       SDValue Res =
7700           DAG.getNode(Opc, DL, MVT::i64, Op0,
7701                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
7702       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7703       return;
7704     }
7705     // If the FP type needs to be softened, emit a library call using the 'si'
7706     // version. If we left it to default legalization we'd end up with 'di'. If
7707     // the FP type doesn't need to be softened just let generic type
7708     // legalization promote the result type.
7709     RTLIB::Libcall LC;
7710     if (IsSigned)
7711       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
7712     else
7713       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
7714     MakeLibCallOptions CallOptions;
7715     EVT OpVT = Op0.getValueType();
7716     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
7717     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
7718     SDValue Result;
7719     std::tie(Result, Chain) =
7720         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
7721     Results.push_back(Result);
7722     if (IsStrict)
7723       Results.push_back(Chain);
7724     break;
7725   }
7726   case ISD::READCYCLECOUNTER: {
7727     assert(!Subtarget.is64Bit() &&
7728            "READCYCLECOUNTER only has custom type legalization on riscv32");
7729 
7730     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7731     SDValue RCW =
7732         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
7733 
7734     Results.push_back(
7735         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
7736     Results.push_back(RCW.getValue(2));
7737     break;
7738   }
7739   case ISD::LOAD: {
7740     if (!ISD::isNON_EXTLoad(N))
7741       return;
7742 
7743     // Use a SEXTLOAD instead of the default EXTLOAD. Similar to the
7744     // sext_inreg we emit for ADD/SUB/MUL/SLLI.
7745     LoadSDNode *Ld = cast<LoadSDNode>(N);
7746 
7747     SDLoc dl(N);
7748     SDValue Res = DAG.getExtLoad(ISD::SEXTLOAD, dl, MVT::i64, Ld->getChain(),
7749                                  Ld->getBasePtr(), Ld->getMemoryVT(),
7750                                  Ld->getMemOperand());
7751     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Res));
7752     Results.push_back(Res.getValue(1));
7753     return;
7754   }
7755   case ISD::MUL: {
7756     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
7757     unsigned XLen = Subtarget.getXLen();
7758     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
7759     if (Size > XLen) {
7760       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
7761       SDValue LHS = N->getOperand(0);
7762       SDValue RHS = N->getOperand(1);
7763       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
7764 
7765       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
7766       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
7767       // We need exactly one side to be unsigned.
7768       if (LHSIsU == RHSIsU)
7769         return;
7770 
7771       auto MakeMULPair = [&](SDValue S, SDValue U) {
7772         MVT XLenVT = Subtarget.getXLenVT();
7773         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
7774         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
7775         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
7776         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
7777         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
7778       };
7779 
7780       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
7781       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
7782 
7783       // The other operand should be signed, but still prefer MULH when
7784       // possible.
7785       if (RHSIsU && LHSIsS && !RHSIsS)
7786         Results.push_back(MakeMULPair(LHS, RHS));
7787       else if (LHSIsU && RHSIsS && !LHSIsS)
7788         Results.push_back(MakeMULPair(RHS, LHS));
7789 
7790       return;
7791     }
7792     [[fallthrough]];
7793   }
7794   case ISD::ADD:
7795   case ISD::SUB:
7796     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7797            "Unexpected custom legalisation");
7798     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
7799     break;
7800   case ISD::SHL:
7801   case ISD::SRA:
7802   case ISD::SRL:
7803     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7804            "Unexpected custom legalisation");
7805     if (N->getOperand(1).getOpcode() != ISD::Constant) {
7806       // If we can use a BSET instruction, allow default promotion to apply.
7807       if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() &&
7808           isOneConstant(N->getOperand(0)))
7809         break;
7810       Results.push_back(customLegalizeToWOp(N, DAG));
7811       break;
7812     }
7813 
7814     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
7815     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
7816     // shift amount.
7817     if (N->getOpcode() == ISD::SHL) {
7818       SDLoc DL(N);
7819       SDValue NewOp0 =
7820           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7821       SDValue NewOp1 =
7822           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
7823       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
7824       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
7825                                    DAG.getValueType(MVT::i32));
7826       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
7827     }
7828 
7829     break;
7830   case ISD::ROTL:
7831   case ISD::ROTR:
7832     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7833            "Unexpected custom legalisation");
7834     Results.push_back(customLegalizeToWOp(N, DAG));
7835     break;
7836   case ISD::CTTZ:
7837   case ISD::CTTZ_ZERO_UNDEF:
7838   case ISD::CTLZ:
7839   case ISD::CTLZ_ZERO_UNDEF: {
7840     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7841            "Unexpected custom legalisation");
7842 
7843     SDValue NewOp0 =
7844         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7845     bool IsCTZ =
7846         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
7847     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
7848     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
7849     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7850     return;
7851   }
7852   case ISD::SDIV:
7853   case ISD::UDIV:
7854   case ISD::UREM: {
7855     MVT VT = N->getSimpleValueType(0);
7856     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
7857            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
7858            "Unexpected custom legalisation");
7859     // Don't promote division/remainder by constant since we should expand those
7860     // to multiply by magic constant.
7861     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
7862     if (N->getOperand(1).getOpcode() == ISD::Constant &&
7863         !isIntDivCheap(N->getValueType(0), Attr))
7864       return;
7865 
7866     // If the input is i32, use ANY_EXTEND since the W instructions don't read
7867     // the upper 32 bits. For other types we need to sign or zero extend
7868     // based on the opcode.
7869     unsigned ExtOpc = ISD::ANY_EXTEND;
7870     if (VT != MVT::i32)
7871       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
7872                                            : ISD::ZERO_EXTEND;
7873 
7874     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
7875     break;
7876   }
7877   case ISD::UADDO:
7878   case ISD::USUBO: {
7879     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7880            "Unexpected custom legalisation");
7881     bool IsAdd = N->getOpcode() == ISD::UADDO;
7882     // Create an ADDW or SUBW.
7883     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7884     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7885     SDValue Res =
7886         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
7887     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
7888                       DAG.getValueType(MVT::i32));
7889 
7890     SDValue Overflow;
7891     if (IsAdd && isOneConstant(RHS)) {
7892       // Special case uaddo X, 1 overflowed if the addition result is 0.
7893       // The general case (X + C) < C is not necessarily beneficial. Although we
7894       // reduce the live range of X, we may introduce the materialization of
7895       // constant C, especially when the setcc result is used by branch. We have
7896       // no compare with constant and branch instructions.
7897       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
7898                               DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
7899     } else {
7900       // Sign extend the LHS and perform an unsigned compare with the ADDW
7901       // result. Since the inputs are sign extended from i32, this is equivalent
7902       // to comparing the lower 32 bits.
7903       LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
7904       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
7905                               IsAdd ? ISD::SETULT : ISD::SETUGT);
7906     }
7907 
7908     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7909     Results.push_back(Overflow);
7910     return;
7911   }
7912   case ISD::UADDSAT:
7913   case ISD::USUBSAT: {
7914     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7915            "Unexpected custom legalisation");
7916     if (Subtarget.hasStdExtZbb()) {
7917       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
7918       // sign extend allows overflow of the lower 32 bits to be detected on
7919       // the promoted size.
7920       SDValue LHS =
7921           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
7922       SDValue RHS =
7923           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
7924       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
7925       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7926       return;
7927     }
7928 
7929     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
7930     // promotion for UADDO/USUBO.
7931     Results.push_back(expandAddSubSat(N, DAG));
7932     return;
7933   }
7934   case ISD::ABS: {
7935     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7936            "Unexpected custom legalisation");
7937 
7938     if (Subtarget.hasStdExtZbb()) {
7939       // Emit a special ABSW node that will be expanded to NEGW+MAX at isel.
7940       // This allows us to remember that the result is sign extended. Expanding
7941       // to NEGW+MAX here requires a Freeze which breaks ComputeNumSignBits.
7942       SDValue Src = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64,
7943                                 N->getOperand(0));
7944       SDValue Abs = DAG.getNode(RISCVISD::ABSW, DL, MVT::i64, Src);
7945       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Abs));
7946       return;
7947     }
7948 
7949     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
7950     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7951 
7952     // Freeze the source so we can increase it's use count.
7953     Src = DAG.getFreeze(Src);
7954 
7955     // Copy sign bit to all bits using the sraiw pattern.
7956     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
7957                                    DAG.getValueType(MVT::i32));
7958     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
7959                            DAG.getConstant(31, DL, MVT::i64));
7960 
7961     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
7962     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
7963 
7964     // NOTE: The result is only required to be anyextended, but sext is
7965     // consistent with type legalization of sub.
7966     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
7967                          DAG.getValueType(MVT::i32));
7968     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
7969     return;
7970   }
7971   case ISD::BITCAST: {
7972     EVT VT = N->getValueType(0);
7973     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
7974     SDValue Op0 = N->getOperand(0);
7975     EVT Op0VT = Op0.getValueType();
7976     MVT XLenVT = Subtarget.getXLenVT();
7977     if (VT == MVT::i16 && Op0VT == MVT::f16 &&
7978         Subtarget.hasStdExtZfhOrZfhmin()) {
7979       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
7980       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
7981     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
7982                Subtarget.hasStdExtF()) {
7983       SDValue FPConv =
7984           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
7985       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
7986     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
7987                isTypeLegal(Op0VT)) {
7988       // Custom-legalize bitcasts from fixed-length vector types to illegal
7989       // scalar types in order to improve codegen. Bitcast the vector to a
7990       // one-element vector type whose element type is the same as the result
7991       // type, and extract the first element.
7992       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
7993       if (isTypeLegal(BVT)) {
7994         SDValue BVec = DAG.getBitcast(BVT, Op0);
7995         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
7996                                       DAG.getConstant(0, DL, XLenVT)));
7997       }
7998     }
7999     break;
8000   }
8001   case RISCVISD::BREV8: {
8002     MVT VT = N->getSimpleValueType(0);
8003     MVT XLenVT = Subtarget.getXLenVT();
8004     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
8005            "Unexpected custom legalisation");
8006     assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8007     SDValue NewOp = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
8008     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp);
8009     // ReplaceNodeResults requires we maintain the same type for the return
8010     // value.
8011     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
8012     break;
8013   }
8014   case ISD::EXTRACT_VECTOR_ELT: {
8015     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
8016     // type is illegal (currently only vXi64 RV32).
8017     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
8018     // transferred to the destination register. We issue two of these from the
8019     // upper- and lower- halves of the SEW-bit vector element, slid down to the
8020     // first element.
8021     SDValue Vec = N->getOperand(0);
8022     SDValue Idx = N->getOperand(1);
8023 
8024     // The vector type hasn't been legalized yet so we can't issue target
8025     // specific nodes if it needs legalization.
8026     // FIXME: We would manually legalize if it's important.
8027     if (!isTypeLegal(Vec.getValueType()))
8028       return;
8029 
8030     MVT VecVT = Vec.getSimpleValueType();
8031 
8032     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
8033            VecVT.getVectorElementType() == MVT::i64 &&
8034            "Unexpected EXTRACT_VECTOR_ELT legalization");
8035 
8036     // If this is a fixed vector, we need to convert it to a scalable vector.
8037     MVT ContainerVT = VecVT;
8038     if (VecVT.isFixedLengthVector()) {
8039       ContainerVT = getContainerForFixedLengthVector(VecVT);
8040       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
8041     }
8042 
8043     MVT XLenVT = Subtarget.getXLenVT();
8044 
8045     // Use a VL of 1 to avoid processing more elements than we need.
8046     auto [Mask, VL] = getDefaultVLOps(1, ContainerVT, DL, DAG, Subtarget);
8047 
8048     // Unless the index is known to be 0, we must slide the vector down to get
8049     // the desired element into index 0.
8050     if (!isNullConstant(Idx)) {
8051       Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT,
8052                           DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
8053     }
8054 
8055     // Extract the lower XLEN bits of the correct vector element.
8056     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
8057 
8058     // To extract the upper XLEN bits of the vector element, shift the first
8059     // element right by 32 bits and re-extract the lower XLEN bits.
8060     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
8061                                      DAG.getUNDEF(ContainerVT),
8062                                      DAG.getConstant(32, DL, XLenVT), VL);
8063     SDValue LShr32 =
8064         DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, ThirtyTwoV,
8065                     DAG.getUNDEF(ContainerVT), Mask, VL);
8066 
8067     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
8068 
8069     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
8070     break;
8071   }
8072   case ISD::INTRINSIC_WO_CHAIN: {
8073     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8074     switch (IntNo) {
8075     default:
8076       llvm_unreachable(
8077           "Don't know how to custom type legalize this intrinsic!");
8078     case Intrinsic::riscv_orc_b: {
8079       SDValue NewOp =
8080           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
8081       SDValue Res = DAG.getNode(RISCVISD::ORC_B, DL, MVT::i64, NewOp);
8082       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
8083       return;
8084     }
8085     case Intrinsic::riscv_vmv_x_s: {
8086       EVT VT = N->getValueType(0);
8087       MVT XLenVT = Subtarget.getXLenVT();
8088       if (VT.bitsLT(XLenVT)) {
8089         // Simple case just extract using vmv.x.s and truncate.
8090         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
8091                                       Subtarget.getXLenVT(), N->getOperand(1));
8092         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
8093         return;
8094       }
8095 
8096       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
8097              "Unexpected custom legalization");
8098 
8099       // We need to do the move in two steps.
8100       SDValue Vec = N->getOperand(1);
8101       MVT VecVT = Vec.getSimpleValueType();
8102 
8103       // First extract the lower XLEN bits of the element.
8104       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
8105 
8106       // To extract the upper XLEN bits of the vector element, shift the first
8107       // element right by 32 bits and re-extract the lower XLEN bits.
8108       auto [Mask, VL] = getDefaultVLOps(1, VecVT, DL, DAG, Subtarget);
8109 
8110       SDValue ThirtyTwoV =
8111           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
8112                       DAG.getConstant(32, DL, XLenVT), VL);
8113       SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV,
8114                                    DAG.getUNDEF(VecVT), Mask, VL);
8115       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
8116 
8117       Results.push_back(
8118           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
8119       break;
8120     }
8121     }
8122     break;
8123   }
8124   case ISD::VECREDUCE_ADD:
8125   case ISD::VECREDUCE_AND:
8126   case ISD::VECREDUCE_OR:
8127   case ISD::VECREDUCE_XOR:
8128   case ISD::VECREDUCE_SMAX:
8129   case ISD::VECREDUCE_UMAX:
8130   case ISD::VECREDUCE_SMIN:
8131   case ISD::VECREDUCE_UMIN:
8132     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
8133       Results.push_back(V);
8134     break;
8135   case ISD::VP_REDUCE_ADD:
8136   case ISD::VP_REDUCE_AND:
8137   case ISD::VP_REDUCE_OR:
8138   case ISD::VP_REDUCE_XOR:
8139   case ISD::VP_REDUCE_SMAX:
8140   case ISD::VP_REDUCE_UMAX:
8141   case ISD::VP_REDUCE_SMIN:
8142   case ISD::VP_REDUCE_UMIN:
8143     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
8144       Results.push_back(V);
8145     break;
8146   case ISD::GET_ROUNDING: {
8147     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
8148     SDValue Res = DAG.getNode(ISD::GET_ROUNDING, DL, VTs, N->getOperand(0));
8149     Results.push_back(Res.getValue(0));
8150     Results.push_back(Res.getValue(1));
8151     break;
8152   }
8153   }
8154 }
8155 
8156 // Try to fold (<bop> x, (reduction.<bop> vec, start))
8157 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG,
8158                                     const RISCVSubtarget &Subtarget) {
8159   auto BinOpToRVVReduce = [](unsigned Opc) {
8160     switch (Opc) {
8161     default:
8162       llvm_unreachable("Unhandled binary to transfrom reduction");
8163     case ISD::ADD:
8164       return RISCVISD::VECREDUCE_ADD_VL;
8165     case ISD::UMAX:
8166       return RISCVISD::VECREDUCE_UMAX_VL;
8167     case ISD::SMAX:
8168       return RISCVISD::VECREDUCE_SMAX_VL;
8169     case ISD::UMIN:
8170       return RISCVISD::VECREDUCE_UMIN_VL;
8171     case ISD::SMIN:
8172       return RISCVISD::VECREDUCE_SMIN_VL;
8173     case ISD::AND:
8174       return RISCVISD::VECREDUCE_AND_VL;
8175     case ISD::OR:
8176       return RISCVISD::VECREDUCE_OR_VL;
8177     case ISD::XOR:
8178       return RISCVISD::VECREDUCE_XOR_VL;
8179     case ISD::FADD:
8180       return RISCVISD::VECREDUCE_FADD_VL;
8181     case ISD::FMAXNUM:
8182       return RISCVISD::VECREDUCE_FMAX_VL;
8183     case ISD::FMINNUM:
8184       return RISCVISD::VECREDUCE_FMIN_VL;
8185     }
8186   };
8187 
8188   auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) {
8189     return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
8190            isNullConstant(V.getOperand(1)) &&
8191            V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc);
8192   };
8193 
8194   unsigned Opc = N->getOpcode();
8195   unsigned ReduceIdx;
8196   if (IsReduction(N->getOperand(0), Opc))
8197     ReduceIdx = 0;
8198   else if (IsReduction(N->getOperand(1), Opc))
8199     ReduceIdx = 1;
8200   else
8201     return SDValue();
8202 
8203   // Skip if FADD disallows reassociation but the combiner needs.
8204   if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation())
8205     return SDValue();
8206 
8207   SDValue Extract = N->getOperand(ReduceIdx);
8208   SDValue Reduce = Extract.getOperand(0);
8209   if (!Reduce.hasOneUse())
8210     return SDValue();
8211 
8212   SDValue ScalarV = Reduce.getOperand(2);
8213   EVT ScalarVT = ScalarV.getValueType();
8214   if (ScalarV.getOpcode() == ISD::INSERT_SUBVECTOR &&
8215       ScalarV.getOperand(0)->isUndef())
8216     ScalarV = ScalarV.getOperand(1);
8217 
8218   // Make sure that ScalarV is a splat with VL=1.
8219   if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL &&
8220       ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL &&
8221       ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL)
8222     return SDValue();
8223 
8224   if (!hasNonZeroAVL(ScalarV.getOperand(2)))
8225     return SDValue();
8226 
8227   // Check the scalar of ScalarV is neutral element
8228   // TODO: Deal with value other than neutral element.
8229   if (!isNeutralConstant(N->getOpcode(), N->getFlags(), ScalarV.getOperand(1),
8230                          0))
8231     return SDValue();
8232 
8233   if (!ScalarV.hasOneUse())
8234     return SDValue();
8235 
8236   SDValue NewStart = N->getOperand(1 - ReduceIdx);
8237 
8238   SDLoc DL(N);
8239   SDValue NewScalarV =
8240       lowerScalarInsert(NewStart, ScalarV.getOperand(2),
8241                         ScalarV.getSimpleValueType(), DL, DAG, Subtarget);
8242 
8243   // If we looked through an INSERT_SUBVECTOR we need to restore it.
8244   if (ScalarVT != ScalarV.getValueType())
8245     NewScalarV =
8246         DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ScalarVT, DAG.getUNDEF(ScalarVT),
8247                     NewScalarV, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
8248 
8249   SDValue NewReduce =
8250       DAG.getNode(Reduce.getOpcode(), DL, Reduce.getValueType(),
8251                   Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV,
8252                   Reduce.getOperand(3), Reduce.getOperand(4));
8253   return DAG.getNode(Extract.getOpcode(), DL, Extract.getValueType(), NewReduce,
8254                      Extract.getOperand(1));
8255 }
8256 
8257 // Optimize (add (shl x, c0), (shl y, c1)) ->
8258 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
8259 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
8260                                   const RISCVSubtarget &Subtarget) {
8261   // Perform this optimization only in the zba extension.
8262   if (!Subtarget.hasStdExtZba())
8263     return SDValue();
8264 
8265   // Skip for vector types and larger types.
8266   EVT VT = N->getValueType(0);
8267   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
8268     return SDValue();
8269 
8270   // The two operand nodes must be SHL and have no other use.
8271   SDValue N0 = N->getOperand(0);
8272   SDValue N1 = N->getOperand(1);
8273   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
8274       !N0->hasOneUse() || !N1->hasOneUse())
8275     return SDValue();
8276 
8277   // Check c0 and c1.
8278   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8279   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
8280   if (!N0C || !N1C)
8281     return SDValue();
8282   int64_t C0 = N0C->getSExtValue();
8283   int64_t C1 = N1C->getSExtValue();
8284   if (C0 <= 0 || C1 <= 0)
8285     return SDValue();
8286 
8287   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
8288   int64_t Bits = std::min(C0, C1);
8289   int64_t Diff = std::abs(C0 - C1);
8290   if (Diff != 1 && Diff != 2 && Diff != 3)
8291     return SDValue();
8292 
8293   // Build nodes.
8294   SDLoc DL(N);
8295   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
8296   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
8297   SDValue NA0 =
8298       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
8299   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
8300   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
8301 }
8302 
8303 // Combine a constant select operand into its use:
8304 //
8305 // (and (select cond, -1, c), x)
8306 //   -> (select cond, x, (and x, c))  [AllOnes=1]
8307 // (or  (select cond, 0, c), x)
8308 //   -> (select cond, x, (or x, c))  [AllOnes=0]
8309 // (xor (select cond, 0, c), x)
8310 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
8311 // (add (select cond, 0, c), x)
8312 //   -> (select cond, x, (add x, c))  [AllOnes=0]
8313 // (sub x, (select cond, 0, c))
8314 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
8315 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
8316                                    SelectionDAG &DAG, bool AllOnes,
8317                                    const RISCVSubtarget &Subtarget) {
8318   EVT VT = N->getValueType(0);
8319 
8320   // Skip vectors.
8321   if (VT.isVector())
8322     return SDValue();
8323 
8324   if (!Subtarget.hasShortForwardBranchOpt() ||
8325       (Slct.getOpcode() != ISD::SELECT &&
8326        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
8327       !Slct.hasOneUse())
8328     return SDValue();
8329 
8330   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
8331     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
8332   };
8333 
8334   bool SwapSelectOps;
8335   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
8336   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
8337   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
8338   SDValue NonConstantVal;
8339   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
8340     SwapSelectOps = false;
8341     NonConstantVal = FalseVal;
8342   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
8343     SwapSelectOps = true;
8344     NonConstantVal = TrueVal;
8345   } else
8346     return SDValue();
8347 
8348   // Slct is now know to be the desired identity constant when CC is true.
8349   TrueVal = OtherOp;
8350   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
8351   // Unless SwapSelectOps says the condition should be false.
8352   if (SwapSelectOps)
8353     std::swap(TrueVal, FalseVal);
8354 
8355   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
8356     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
8357                        {Slct.getOperand(0), Slct.getOperand(1),
8358                         Slct.getOperand(2), TrueVal, FalseVal});
8359 
8360   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
8361                      {Slct.getOperand(0), TrueVal, FalseVal});
8362 }
8363 
8364 // Attempt combineSelectAndUse on each operand of a commutative operator N.
8365 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
8366                                               bool AllOnes,
8367                                               const RISCVSubtarget &Subtarget) {
8368   SDValue N0 = N->getOperand(0);
8369   SDValue N1 = N->getOperand(1);
8370   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes, Subtarget))
8371     return Result;
8372   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes, Subtarget))
8373     return Result;
8374   return SDValue();
8375 }
8376 
8377 // Transform (add (mul x, c0), c1) ->
8378 //           (add (mul (add x, c1/c0), c0), c1%c0).
8379 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
8380 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
8381 // to an infinite loop in DAGCombine if transformed.
8382 // Or transform (add (mul x, c0), c1) ->
8383 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
8384 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
8385 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
8386 // lead to an infinite loop in DAGCombine if transformed.
8387 // Or transform (add (mul x, c0), c1) ->
8388 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
8389 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
8390 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
8391 // lead to an infinite loop in DAGCombine if transformed.
8392 // Or transform (add (mul x, c0), c1) ->
8393 //              (mul (add x, c1/c0), c0).
8394 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
8395 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
8396                                      const RISCVSubtarget &Subtarget) {
8397   // Skip for vector types and larger types.
8398   EVT VT = N->getValueType(0);
8399   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
8400     return SDValue();
8401   // The first operand node must be a MUL and has no other use.
8402   SDValue N0 = N->getOperand(0);
8403   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
8404     return SDValue();
8405   // Check if c0 and c1 match above conditions.
8406   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8407   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8408   if (!N0C || !N1C)
8409     return SDValue();
8410   // If N0C has multiple uses it's possible one of the cases in
8411   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
8412   // in an infinite loop.
8413   if (!N0C->hasOneUse())
8414     return SDValue();
8415   int64_t C0 = N0C->getSExtValue();
8416   int64_t C1 = N1C->getSExtValue();
8417   int64_t CA, CB;
8418   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
8419     return SDValue();
8420   // Search for proper CA (non-zero) and CB that both are simm12.
8421   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
8422       !isInt<12>(C0 * (C1 / C0))) {
8423     CA = C1 / C0;
8424     CB = C1 % C0;
8425   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
8426              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
8427     CA = C1 / C0 + 1;
8428     CB = C1 % C0 - C0;
8429   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
8430              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
8431     CA = C1 / C0 - 1;
8432     CB = C1 % C0 + C0;
8433   } else
8434     return SDValue();
8435   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
8436   SDLoc DL(N);
8437   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
8438                              DAG.getConstant(CA, DL, VT));
8439   SDValue New1 =
8440       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
8441   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
8442 }
8443 
8444 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
8445                                  const RISCVSubtarget &Subtarget) {
8446   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
8447     return V;
8448   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
8449     return V;
8450   if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
8451     return V;
8452   // fold (add (select lhs, rhs, cc, 0, y), x) ->
8453   //      (select lhs, rhs, cc, x, (add x, y))
8454   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget);
8455 }
8456 
8457 // Try to turn a sub boolean RHS and constant LHS into an addi.
8458 static SDValue combineSubOfBoolean(SDNode *N, SelectionDAG &DAG) {
8459   SDValue N0 = N->getOperand(0);
8460   SDValue N1 = N->getOperand(1);
8461   EVT VT = N->getValueType(0);
8462   SDLoc DL(N);
8463 
8464   // Require a constant LHS.
8465   auto *N0C = dyn_cast<ConstantSDNode>(N0);
8466   if (!N0C)
8467     return SDValue();
8468 
8469   // All our optimizations involve subtracting 1 from the immediate and forming
8470   // an ADDI. Make sure the new immediate is valid for an ADDI.
8471   APInt ImmValMinus1 = N0C->getAPIntValue() - 1;
8472   if (!ImmValMinus1.isSignedIntN(12))
8473     return SDValue();
8474 
8475   SDValue NewLHS;
8476   if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse()) {
8477     // (sub constant, (setcc x, y, eq/neq)) ->
8478     // (add (setcc x, y, neq/eq), constant - 1)
8479     ISD::CondCode CCVal = cast<CondCodeSDNode>(N1.getOperand(2))->get();
8480     EVT SetCCOpVT = N1.getOperand(0).getValueType();
8481     if (!isIntEqualitySetCC(CCVal) || !SetCCOpVT.isInteger())
8482       return SDValue();
8483     CCVal = ISD::getSetCCInverse(CCVal, SetCCOpVT);
8484     NewLHS =
8485         DAG.getSetCC(SDLoc(N1), VT, N1.getOperand(0), N1.getOperand(1), CCVal);
8486   } else if (N1.getOpcode() == ISD::XOR && isOneConstant(N1.getOperand(1)) &&
8487              N1.getOperand(0).getOpcode() == ISD::SETCC) {
8488     // (sub C, (xor (setcc), 1)) -> (add (setcc), C-1).
8489     // Since setcc returns a bool the xor is equivalent to 1-setcc.
8490     NewLHS = N1.getOperand(0);
8491   } else
8492     return SDValue();
8493 
8494   SDValue NewRHS = DAG.getConstant(ImmValMinus1, DL, VT);
8495   return DAG.getNode(ISD::ADD, DL, VT, NewLHS, NewRHS);
8496 }
8497 
8498 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
8499                                  const RISCVSubtarget &Subtarget) {
8500   if (SDValue V = combineSubOfBoolean(N, DAG))
8501     return V;
8502 
8503   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
8504   //      (select lhs, rhs, cc, x, (sub x, y))
8505   SDValue N0 = N->getOperand(0);
8506   SDValue N1 = N->getOperand(1);
8507   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false, Subtarget);
8508 }
8509 
8510 // Apply DeMorgan's law to (and/or (xor X, 1), (xor Y, 1)) if X and Y are 0/1.
8511 // Legalizing setcc can introduce xors like this. Doing this transform reduces
8512 // the number of xors and may allow the xor to fold into a branch condition.
8513 static SDValue combineDeMorganOfBoolean(SDNode *N, SelectionDAG &DAG) {
8514   SDValue N0 = N->getOperand(0);
8515   SDValue N1 = N->getOperand(1);
8516   bool IsAnd = N->getOpcode() == ISD::AND;
8517 
8518   if (N0.getOpcode() != ISD::XOR || N1.getOpcode() != ISD::XOR)
8519     return SDValue();
8520 
8521   if (!N0.hasOneUse() || !N1.hasOneUse())
8522     return SDValue();
8523 
8524   SDValue N01 = N0.getOperand(1);
8525   SDValue N11 = N1.getOperand(1);
8526 
8527   // For AND, SimplifyDemandedBits may have turned one of the (xor X, 1) into
8528   // (xor X, -1) based on the upper bits of the other operand being 0. If the
8529   // operation is And, allow one of the Xors to use -1.
8530   if (isOneConstant(N01)) {
8531     if (!isOneConstant(N11) && !(IsAnd && isAllOnesConstant(N11)))
8532       return SDValue();
8533   } else if (isOneConstant(N11)) {
8534     // N01 and N11 being 1 was already handled. Handle N11==1 and N01==-1.
8535     if (!(IsAnd && isAllOnesConstant(N01)))
8536       return SDValue();
8537   } else
8538     return SDValue();
8539 
8540   EVT VT = N->getValueType(0);
8541 
8542   SDValue N00 = N0.getOperand(0);
8543   SDValue N10 = N1.getOperand(0);
8544 
8545   // The LHS of the xors needs to be 0/1.
8546   APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1);
8547   if (!DAG.MaskedValueIsZero(N00, Mask) || !DAG.MaskedValueIsZero(N10, Mask))
8548     return SDValue();
8549 
8550   // Invert the opcode and insert a new xor.
8551   SDLoc DL(N);
8552   unsigned Opc = IsAnd ? ISD::OR : ISD::AND;
8553   SDValue Logic = DAG.getNode(Opc, DL, VT, N00, N10);
8554   return DAG.getNode(ISD::XOR, DL, VT, Logic, DAG.getConstant(1, DL, VT));
8555 }
8556 
8557 static SDValue performTRUNCATECombine(SDNode *N, SelectionDAG &DAG,
8558                                       const RISCVSubtarget &Subtarget) {
8559   SDValue N0 = N->getOperand(0);
8560   EVT VT = N->getValueType(0);
8561 
8562   // Pre-promote (i1 (truncate (srl X, Y))) on RV64 with Zbs without zero
8563   // extending X. This is safe since we only need the LSB after the shift and
8564   // shift amounts larger than 31 would produce poison. If we wait until
8565   // type legalization, we'll create RISCVISD::SRLW and we can't recover it
8566   // to use a BEXT instruction.
8567   if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() && VT == MVT::i1 &&
8568       N0.getValueType() == MVT::i32 && N0.getOpcode() == ISD::SRL &&
8569       !isa<ConstantSDNode>(N0.getOperand(1)) && N0.hasOneUse()) {
8570     SDLoc DL(N0);
8571     SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
8572     SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
8573     SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
8574     return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Srl);
8575   }
8576 
8577   return SDValue();
8578 }
8579 
8580 namespace {
8581 // Helper class contains information about comparison operation.
8582 // The first two operands of this operation are compared values and the
8583 // last one is the operation.
8584 // Compared values are stored in Ops.
8585 // Comparison operation is stored in CCode.
8586 class CmpOpInfo {
8587   static unsigned constexpr Size = 2u;
8588 
8589   // Type for storing operands of compare operation.
8590   using OpsArray = std::array<SDValue, Size>;
8591   OpsArray Ops;
8592 
8593   using const_iterator = OpsArray::const_iterator;
8594   const_iterator begin() const { return Ops.begin(); }
8595   const_iterator end() const { return Ops.end(); }
8596 
8597   ISD::CondCode CCode;
8598 
8599   unsigned CommonPos{Size};
8600   unsigned DifferPos{Size};
8601 
8602   // Sets CommonPos and DifferPos based on incoming position
8603   // of common operand CPos.
8604   void setPositions(const_iterator CPos) {
8605     assert(CPos != Ops.end() && "Common operand has to be in OpsArray.\n");
8606     CommonPos = CPos == Ops.begin() ? 0 : 1;
8607     DifferPos = 1 - CommonPos;
8608     assert((DifferPos == 0 || DifferPos == 1) &&
8609            "Positions can be only 0 or 1.");
8610   }
8611 
8612   // Private constructor of comparison info based on comparison operator.
8613   // It is private because CmpOpInfo only reasonable relative to other
8614   // comparison operator. Therefore, infos about comparison operation
8615   // have to be collected simultaneously via CmpOpInfo::getInfoAbout().
8616   CmpOpInfo(const SDValue &CmpOp)
8617       : Ops{CmpOp.getOperand(0), CmpOp.getOperand(1)},
8618         CCode{cast<CondCodeSDNode>(CmpOp.getOperand(2))->get()} {}
8619 
8620   // Finds common operand of Op1 and Op2 and finishes filling CmpOpInfos.
8621   // Returns true if common operand is found. Otherwise - false.
8622   static bool establishCorrespondence(CmpOpInfo &Op1, CmpOpInfo &Op2) {
8623     const auto CommonOpIt1 =
8624         std::find_first_of(Op1.begin(), Op1.end(), Op2.begin(), Op2.end());
8625     if (CommonOpIt1 == Op1.end())
8626       return false;
8627 
8628     const auto CommonOpIt2 = std::find(Op2.begin(), Op2.end(), *CommonOpIt1);
8629     assert(CommonOpIt2 != Op2.end() &&
8630            "Cannot find common operand in the second comparison operation.");
8631 
8632     Op1.setPositions(CommonOpIt1);
8633     Op2.setPositions(CommonOpIt2);
8634 
8635     return true;
8636   }
8637 
8638 public:
8639   CmpOpInfo(const CmpOpInfo &) = default;
8640   CmpOpInfo(CmpOpInfo &&) = default;
8641 
8642   SDValue const &operator[](unsigned Pos) const {
8643     assert(Pos < Size && "Out of range\n");
8644     return Ops[Pos];
8645   }
8646 
8647   // Creates infos about comparison operations CmpOp0 and CmpOp1.
8648   // If there is no common operand returns None. Otherwise, returns
8649   // correspondence info about comparison operations.
8650   static std::optional<std::pair<CmpOpInfo, CmpOpInfo>>
8651   getInfoAbout(SDValue const &CmpOp0, SDValue const &CmpOp1) {
8652     CmpOpInfo Op0{CmpOp0};
8653     CmpOpInfo Op1{CmpOp1};
8654     if (!establishCorrespondence(Op0, Op1))
8655       return std::nullopt;
8656     return std::make_pair(Op0, Op1);
8657   }
8658 
8659   // Returns position of common operand.
8660   unsigned getCPos() const { return CommonPos; }
8661 
8662   // Returns position of differ operand.
8663   unsigned getDPos() const { return DifferPos; }
8664 
8665   // Returns common operand.
8666   SDValue const &getCOp() const { return operator[](CommonPos); }
8667 
8668   // Returns differ operand.
8669   SDValue const &getDOp() const { return operator[](DifferPos); }
8670 
8671   // Returns consition code of comparison operation.
8672   ISD::CondCode getCondCode() const { return CCode; }
8673 };
8674 } // namespace
8675 
8676 // Verifies conditions to apply an optimization.
8677 // Returns Reference comparison code and three operands A, B, C.
8678 // Conditions for optimization:
8679 //   One operand of the compasions has to be common.
8680 //   This operand is written to C.
8681 //   Two others operands are differend. They are written to A and B.
8682 //   Comparisons has to be similar with respect to common operand C.
8683 //     e.g. A < C; C > B are similar
8684 //      but A < C; B > C are not.
8685 //   Reference comparison code is the comparison code if
8686 //   common operand is right placed.
8687 //     e.g. C > A will be swapped to A < C.
8688 static std::optional<std::tuple<ISD::CondCode, SDValue, SDValue, SDValue>>
8689 verifyCompareConds(SDNode *N, SelectionDAG &DAG) {
8690   LLVM_DEBUG(
8691       dbgs() << "Checking conditions for comparison operation combining.\n";);
8692 
8693   SDValue V0 = N->getOperand(0);
8694   SDValue V1 = N->getOperand(1);
8695   assert(V0.getValueType() == V1.getValueType() &&
8696          "Operations must have the same value type.");
8697 
8698   // Condition 1. Operations have to be used only in logic operation.
8699   if (!V0.hasOneUse() || !V1.hasOneUse())
8700     return std::nullopt;
8701 
8702   // Condition 2. Operands have to be comparison operations.
8703   if (V0.getOpcode() != ISD::SETCC || V1.getOpcode() != ISD::SETCC)
8704     return std::nullopt;
8705 
8706   // Condition 3.1. Operations only with integers.
8707   if (!V0.getOperand(0).getValueType().isInteger())
8708     return std::nullopt;
8709 
8710   const auto ComparisonInfo = CmpOpInfo::getInfoAbout(V0, V1);
8711   // Condition 3.2. Common operand has to be in comparison.
8712   if (!ComparisonInfo)
8713     return std::nullopt;
8714 
8715   const auto [Op0, Op1] = ComparisonInfo.value();
8716 
8717   LLVM_DEBUG(dbgs() << "Shared operands are on positions: " << Op0.getCPos()
8718                     << " and " << Op1.getCPos() << '\n';);
8719   // If common operand at the first position then swap operation to convert to
8720   // strict pattern. Common operand has to be right hand side.
8721   ISD::CondCode RefCond = Op0.getCondCode();
8722   ISD::CondCode AssistCode = Op1.getCondCode();
8723   if (!Op0.getCPos())
8724     RefCond = ISD::getSetCCSwappedOperands(RefCond);
8725   if (!Op1.getCPos())
8726     AssistCode = ISD::getSetCCSwappedOperands(AssistCode);
8727   LLVM_DEBUG(dbgs() << "Reference condition is: " << RefCond << '\n';);
8728   // If there are different comparison operations then do not perform an
8729   // optimization. a < c; c < b -> will be changed to b > c.
8730   if (RefCond != AssistCode)
8731     return std::nullopt;
8732 
8733   // Conditions can be only similar to Less or Greater. (>, >=, <, <=)
8734   // Applying this mask to the operation will determine Less and Greater
8735   // operations.
8736   const unsigned CmpMask = 0b110;
8737   const unsigned MaskedOpcode = CmpMask & RefCond;
8738   // If masking gave 0b110, then this is an operation NE, O or TRUE.
8739   if (MaskedOpcode == CmpMask)
8740     return std::nullopt;
8741   // If masking gave 00000, then this is an operation E, O or FALSE.
8742   if (MaskedOpcode == 0)
8743     return std::nullopt;
8744   // Everything else is similar to Less or Greater.
8745 
8746   SDValue A = Op0.getDOp();
8747   SDValue B = Op1.getDOp();
8748   SDValue C = Op0.getCOp();
8749 
8750   LLVM_DEBUG(
8751       dbgs() << "The conditions for combining comparisons are satisfied.\n";);
8752   return std::make_tuple(RefCond, A, B, C);
8753 }
8754 
8755 static ISD::NodeType getSelectionCode(bool IsUnsigned, bool IsAnd,
8756                                       bool IsGreaterOp) {
8757   // Codes of selection operation. The first index selects signed or unsigned,
8758   // the second index selects MIN/MAX.
8759   static constexpr ISD::NodeType SelectionCodes[2][2] = {
8760       {ISD::SMIN, ISD::SMAX}, {ISD::UMIN, ISD::UMAX}};
8761   const bool ChooseSelCode = IsAnd ^ IsGreaterOp;
8762   return SelectionCodes[IsUnsigned][ChooseSelCode];
8763 }
8764 
8765 // Combines two comparison operation and logic operation to one selection
8766 // operation(min, max) and logic operation. Returns new constructed Node if
8767 // conditions for optimization are satisfied.
8768 static SDValue combineCmpOp(SDNode *N, SelectionDAG &DAG,
8769                             const RISCVSubtarget &Subtarget) {
8770   if (!Subtarget.hasStdExtZbb())
8771     return SDValue();
8772 
8773   const unsigned BitOpcode = N->getOpcode();
8774   assert((BitOpcode == ISD::AND || BitOpcode == ISD::OR) &&
8775          "This optimization can be used only with AND/OR operations");
8776 
8777   const auto Props = verifyCompareConds(N, DAG);
8778   // If conditions are invalidated then do not perform an optimization.
8779   if (!Props)
8780     return SDValue();
8781 
8782   const auto [RefOpcode, A, B, C] = Props.value();
8783   const EVT CmpOpVT = A.getValueType();
8784 
8785   const bool IsGreaterOp = RefOpcode & 0b10;
8786   const bool IsUnsigned = ISD::isUnsignedIntSetCC(RefOpcode);
8787   assert((IsUnsigned || ISD::isSignedIntSetCC(RefOpcode)) &&
8788          "Operation neither with signed or unsigned integers.");
8789 
8790   const bool IsAnd = BitOpcode == ISD::AND;
8791   const ISD::NodeType PickCode =
8792       getSelectionCode(IsUnsigned, IsAnd, IsGreaterOp);
8793 
8794   SDLoc DL(N);
8795   SDValue Pick = DAG.getNode(PickCode, DL, CmpOpVT, A, B);
8796   SDValue Cmp =
8797       DAG.getSetCC(DL, N->getOperand(0).getValueType(), Pick, C, RefOpcode);
8798 
8799   return Cmp;
8800 }
8801 
8802 static SDValue performANDCombine(SDNode *N,
8803                                  TargetLowering::DAGCombinerInfo &DCI,
8804                                  const RISCVSubtarget &Subtarget) {
8805   SelectionDAG &DAG = DCI.DAG;
8806 
8807   SDValue N0 = N->getOperand(0);
8808   // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero
8809   // extending X. This is safe since we only need the LSB after the shift and
8810   // shift amounts larger than 31 would produce poison. If we wait until
8811   // type legalization, we'll create RISCVISD::SRLW and we can't recover it
8812   // to use a BEXT instruction.
8813   if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() &&
8814       N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) &&
8815       N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) &&
8816       N0.hasOneUse()) {
8817     SDLoc DL(N);
8818     SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
8819     SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
8820     SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
8821     SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl,
8822                               DAG.getConstant(1, DL, MVT::i64));
8823     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And);
8824   }
8825 
8826   if (SDValue V = combineCmpOp(N, DAG, Subtarget))
8827     return V;
8828 
8829   if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
8830     return V;
8831 
8832   if (DCI.isAfterLegalizeDAG())
8833     if (SDValue V = combineDeMorganOfBoolean(N, DAG))
8834       return V;
8835 
8836   // fold (and (select lhs, rhs, cc, -1, y), x) ->
8837   //      (select lhs, rhs, cc, x, (and x, y))
8838   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true, Subtarget);
8839 }
8840 
8841 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
8842                                 const RISCVSubtarget &Subtarget) {
8843   SelectionDAG &DAG = DCI.DAG;
8844 
8845   if (SDValue V = combineCmpOp(N, DAG, Subtarget))
8846     return V;
8847 
8848   if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
8849     return V;
8850 
8851   if (DCI.isAfterLegalizeDAG())
8852     if (SDValue V = combineDeMorganOfBoolean(N, DAG))
8853       return V;
8854 
8855   // fold (or (select cond, 0, y), x) ->
8856   //      (select cond, x, (or x, y))
8857   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget);
8858 }
8859 
8860 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
8861                                  const RISCVSubtarget &Subtarget) {
8862   SDValue N0 = N->getOperand(0);
8863   SDValue N1 = N->getOperand(1);
8864 
8865   // fold (xor (sllw 1, x), -1) -> (rolw ~1, x)
8866   // NOTE: Assumes ROL being legal means ROLW is legal.
8867   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8868   if (N0.getOpcode() == RISCVISD::SLLW &&
8869       isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) &&
8870       TLI.isOperationLegal(ISD::ROTL, MVT::i64)) {
8871     SDLoc DL(N);
8872     return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64,
8873                        DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1));
8874   }
8875 
8876   if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
8877     return V;
8878   // fold (xor (select cond, 0, y), x) ->
8879   //      (select cond, x, (xor x, y))
8880   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget);
8881 }
8882 
8883 // Replace (seteq (i64 (and X, 0xffffffff)), C1) with
8884 // (seteq (i64 (sext_inreg (X, i32)), C1')) where C1' is C1 sign extended from
8885 // bit 31. Same for setne. C1' may be cheaper to materialize and the sext_inreg
8886 // can become a sext.w instead of a shift pair.
8887 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG,
8888                                    const RISCVSubtarget &Subtarget) {
8889   SDValue N0 = N->getOperand(0);
8890   SDValue N1 = N->getOperand(1);
8891   EVT VT = N->getValueType(0);
8892   EVT OpVT = N0.getValueType();
8893 
8894   if (OpVT != MVT::i64 || !Subtarget.is64Bit())
8895     return SDValue();
8896 
8897   // RHS needs to be a constant.
8898   auto *N1C = dyn_cast<ConstantSDNode>(N1);
8899   if (!N1C)
8900     return SDValue();
8901 
8902   // LHS needs to be (and X, 0xffffffff).
8903   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse() ||
8904       !isa<ConstantSDNode>(N0.getOperand(1)) ||
8905       N0.getConstantOperandVal(1) != UINT64_C(0xffffffff))
8906     return SDValue();
8907 
8908   // Looking for an equality compare.
8909   ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
8910   if (!isIntEqualitySetCC(Cond))
8911     return SDValue();
8912 
8913   // Don't do this if the sign bit is provably zero, it will be turned back into
8914   // an AND.
8915   APInt SignMask = APInt::getOneBitSet(64, 31);
8916   if (DAG.MaskedValueIsZero(N0.getOperand(0), SignMask))
8917     return SDValue();
8918 
8919   const APInt &C1 = N1C->getAPIntValue();
8920 
8921   SDLoc dl(N);
8922   // If the constant is larger than 2^32 - 1 it is impossible for both sides
8923   // to be equal.
8924   if (C1.getActiveBits() > 32)
8925     return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
8926 
8927   SDValue SExtOp = DAG.getNode(ISD::SIGN_EXTEND_INREG, N, OpVT,
8928                                N0.getOperand(0), DAG.getValueType(MVT::i32));
8929   return DAG.getSetCC(dl, VT, SExtOp, DAG.getConstant(C1.trunc(32).sext(64),
8930                                                       dl, OpVT), Cond);
8931 }
8932 
8933 static SDValue
8934 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
8935                                 const RISCVSubtarget &Subtarget) {
8936   SDValue Src = N->getOperand(0);
8937   EVT VT = N->getValueType(0);
8938 
8939   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
8940   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8941       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
8942     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
8943                        Src.getOperand(0));
8944 
8945   return SDValue();
8946 }
8947 
8948 namespace {
8949 // Forward declaration of the structure holding the necessary information to
8950 // apply a combine.
8951 struct CombineResult;
8952 
8953 /// Helper class for folding sign/zero extensions.
8954 /// In particular, this class is used for the following combines:
8955 /// add_vl -> vwadd(u) | vwadd(u)_w
8956 /// sub_vl -> vwsub(u) | vwsub(u)_w
8957 /// mul_vl -> vwmul(u) | vwmul_su
8958 ///
8959 /// An object of this class represents an operand of the operation we want to
8960 /// combine.
8961 /// E.g., when trying to combine `mul_vl a, b`, we will have one instance of
8962 /// NodeExtensionHelper for `a` and one for `b`.
8963 ///
8964 /// This class abstracts away how the extension is materialized and
8965 /// how its Mask, VL, number of users affect the combines.
8966 ///
8967 /// In particular:
8968 /// - VWADD_W is conceptually == add(op0, sext(op1))
8969 /// - VWADDU_W == add(op0, zext(op1))
8970 /// - VWSUB_W == sub(op0, sext(op1))
8971 /// - VWSUBU_W == sub(op0, zext(op1))
8972 ///
8973 /// And VMV_V_X_VL, depending on the value, is conceptually equivalent to
8974 /// zext|sext(smaller_value).
8975 struct NodeExtensionHelper {
8976   /// Records if this operand is like being zero extended.
8977   bool SupportsZExt;
8978   /// Records if this operand is like being sign extended.
8979   /// Note: SupportsZExt and SupportsSExt are not mutually exclusive. For
8980   /// instance, a splat constant (e.g., 3), would support being both sign and
8981   /// zero extended.
8982   bool SupportsSExt;
8983   /// This boolean captures whether we care if this operand would still be
8984   /// around after the folding happens.
8985   bool EnforceOneUse;
8986   /// Records if this operand's mask needs to match the mask of the operation
8987   /// that it will fold into.
8988   bool CheckMask;
8989   /// Value of the Mask for this operand.
8990   /// It may be SDValue().
8991   SDValue Mask;
8992   /// Value of the vector length operand.
8993   /// It may be SDValue().
8994   SDValue VL;
8995   /// Original value that this NodeExtensionHelper represents.
8996   SDValue OrigOperand;
8997 
8998   /// Get the value feeding the extension or the value itself.
8999   /// E.g., for zext(a), this would return a.
9000   SDValue getSource() const {
9001     switch (OrigOperand.getOpcode()) {
9002     case RISCVISD::VSEXT_VL:
9003     case RISCVISD::VZEXT_VL:
9004       return OrigOperand.getOperand(0);
9005     default:
9006       return OrigOperand;
9007     }
9008   }
9009 
9010   /// Check if this instance represents a splat.
9011   bool isSplat() const {
9012     return OrigOperand.getOpcode() == RISCVISD::VMV_V_X_VL;
9013   }
9014 
9015   /// Get or create a value that can feed \p Root with the given extension \p
9016   /// SExt. If \p SExt is None, this returns the source of this operand.
9017   /// \see ::getSource().
9018   SDValue getOrCreateExtendedOp(const SDNode *Root, SelectionDAG &DAG,
9019                                 std::optional<bool> SExt) const {
9020     if (!SExt.has_value())
9021       return OrigOperand;
9022 
9023     MVT NarrowVT = getNarrowType(Root);
9024 
9025     SDValue Source = getSource();
9026     if (Source.getValueType() == NarrowVT)
9027       return Source;
9028 
9029     unsigned ExtOpc = *SExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
9030 
9031     // If we need an extension, we should be changing the type.
9032     SDLoc DL(Root);
9033     auto [Mask, VL] = getMaskAndVL(Root);
9034     switch (OrigOperand.getOpcode()) {
9035     case RISCVISD::VSEXT_VL:
9036     case RISCVISD::VZEXT_VL:
9037       return DAG.getNode(ExtOpc, DL, NarrowVT, Source, Mask, VL);
9038     case RISCVISD::VMV_V_X_VL:
9039       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
9040                          DAG.getUNDEF(NarrowVT), Source.getOperand(1), VL);
9041     default:
9042       // Other opcodes can only come from the original LHS of VW(ADD|SUB)_W_VL
9043       // and that operand should already have the right NarrowVT so no
9044       // extension should be required at this point.
9045       llvm_unreachable("Unsupported opcode");
9046     }
9047   }
9048 
9049   /// Helper function to get the narrow type for \p Root.
9050   /// The narrow type is the type of \p Root where we divided the size of each
9051   /// element by 2. E.g., if Root's type <2xi16> -> narrow type <2xi8>.
9052   /// \pre The size of the type of the elements of Root must be a multiple of 2
9053   /// and be greater than 16.
9054   static MVT getNarrowType(const SDNode *Root) {
9055     MVT VT = Root->getSimpleValueType(0);
9056 
9057     // Determine the narrow size.
9058     unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
9059     assert(NarrowSize >= 8 && "Trying to extend something we can't represent");
9060     MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
9061                                     VT.getVectorElementCount());
9062     return NarrowVT;
9063   }
9064 
9065   /// Return the opcode required to materialize the folding of the sign
9066   /// extensions (\p IsSExt == true) or zero extensions (IsSExt == false) for
9067   /// both operands for \p Opcode.
9068   /// Put differently, get the opcode to materialize:
9069   /// - ISExt == true: \p Opcode(sext(a), sext(b)) -> newOpcode(a, b)
9070   /// - ISExt == false: \p Opcode(zext(a), zext(b)) -> newOpcode(a, b)
9071   /// \pre \p Opcode represents a supported root (\see ::isSupportedRoot()).
9072   static unsigned getSameExtensionOpcode(unsigned Opcode, bool IsSExt) {
9073     switch (Opcode) {
9074     case RISCVISD::ADD_VL:
9075     case RISCVISD::VWADD_W_VL:
9076     case RISCVISD::VWADDU_W_VL:
9077       return IsSExt ? RISCVISD::VWADD_VL : RISCVISD::VWADDU_VL;
9078     case RISCVISD::MUL_VL:
9079       return IsSExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
9080     case RISCVISD::SUB_VL:
9081     case RISCVISD::VWSUB_W_VL:
9082     case RISCVISD::VWSUBU_W_VL:
9083       return IsSExt ? RISCVISD::VWSUB_VL : RISCVISD::VWSUBU_VL;
9084     default:
9085       llvm_unreachable("Unexpected opcode");
9086     }
9087   }
9088 
9089   /// Get the opcode to materialize \p Opcode(sext(a), zext(b)) ->
9090   /// newOpcode(a, b).
9091   static unsigned getSUOpcode(unsigned Opcode) {
9092     assert(Opcode == RISCVISD::MUL_VL && "SU is only supported for MUL");
9093     return RISCVISD::VWMULSU_VL;
9094   }
9095 
9096   /// Get the opcode to materialize \p Opcode(a, s|zext(b)) ->
9097   /// newOpcode(a, b).
9098   static unsigned getWOpcode(unsigned Opcode, bool IsSExt) {
9099     switch (Opcode) {
9100     case RISCVISD::ADD_VL:
9101       return IsSExt ? RISCVISD::VWADD_W_VL : RISCVISD::VWADDU_W_VL;
9102     case RISCVISD::SUB_VL:
9103       return IsSExt ? RISCVISD::VWSUB_W_VL : RISCVISD::VWSUBU_W_VL;
9104     default:
9105       llvm_unreachable("Unexpected opcode");
9106     }
9107   }
9108 
9109   using CombineToTry = std::function<std::optional<CombineResult>(
9110       SDNode * /*Root*/, const NodeExtensionHelper & /*LHS*/,
9111       const NodeExtensionHelper & /*RHS*/)>;
9112 
9113   /// Check if this node needs to be fully folded or extended for all users.
9114   bool needToPromoteOtherUsers() const { return EnforceOneUse; }
9115 
9116   /// Helper method to set the various fields of this struct based on the
9117   /// type of \p Root.
9118   void fillUpExtensionSupport(SDNode *Root, SelectionDAG &DAG) {
9119     SupportsZExt = false;
9120     SupportsSExt = false;
9121     EnforceOneUse = true;
9122     CheckMask = true;
9123     switch (OrigOperand.getOpcode()) {
9124     case RISCVISD::VZEXT_VL:
9125       SupportsZExt = true;
9126       Mask = OrigOperand.getOperand(1);
9127       VL = OrigOperand.getOperand(2);
9128       break;
9129     case RISCVISD::VSEXT_VL:
9130       SupportsSExt = true;
9131       Mask = OrigOperand.getOperand(1);
9132       VL = OrigOperand.getOperand(2);
9133       break;
9134     case RISCVISD::VMV_V_X_VL: {
9135       // Historically, we didn't care about splat values not disappearing during
9136       // combines.
9137       EnforceOneUse = false;
9138       CheckMask = false;
9139       VL = OrigOperand.getOperand(2);
9140 
9141       // The operand is a splat of a scalar.
9142 
9143       // The pasthru must be undef for tail agnostic.
9144       if (!OrigOperand.getOperand(0).isUndef())
9145         break;
9146 
9147       // Get the scalar value.
9148       SDValue Op = OrigOperand.getOperand(1);
9149 
9150       // See if we have enough sign bits or zero bits in the scalar to use a
9151       // widening opcode by splatting to smaller element size.
9152       MVT VT = Root->getSimpleValueType(0);
9153       unsigned EltBits = VT.getScalarSizeInBits();
9154       unsigned ScalarBits = Op.getValueSizeInBits();
9155       // Make sure we're getting all element bits from the scalar register.
9156       // FIXME: Support implicit sign extension of vmv.v.x?
9157       if (ScalarBits < EltBits)
9158         break;
9159 
9160       unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
9161       // If the narrow type cannot be expressed with a legal VMV,
9162       // this is not a valid candidate.
9163       if (NarrowSize < 8)
9164         break;
9165 
9166       if (DAG.ComputeMaxSignificantBits(Op) <= NarrowSize)
9167         SupportsSExt = true;
9168       if (DAG.MaskedValueIsZero(Op,
9169                                 APInt::getBitsSetFrom(ScalarBits, NarrowSize)))
9170         SupportsZExt = true;
9171       break;
9172     }
9173     default:
9174       break;
9175     }
9176   }
9177 
9178   /// Check if \p Root supports any extension folding combines.
9179   static bool isSupportedRoot(const SDNode *Root) {
9180     switch (Root->getOpcode()) {
9181     case RISCVISD::ADD_VL:
9182     case RISCVISD::MUL_VL:
9183     case RISCVISD::VWADD_W_VL:
9184     case RISCVISD::VWADDU_W_VL:
9185     case RISCVISD::SUB_VL:
9186     case RISCVISD::VWSUB_W_VL:
9187     case RISCVISD::VWSUBU_W_VL:
9188       return true;
9189     default:
9190       return false;
9191     }
9192   }
9193 
9194   /// Build a NodeExtensionHelper for \p Root.getOperand(\p OperandIdx).
9195   NodeExtensionHelper(SDNode *Root, unsigned OperandIdx, SelectionDAG &DAG) {
9196     assert(isSupportedRoot(Root) && "Trying to build an helper with an "
9197                                     "unsupported root");
9198     assert(OperandIdx < 2 && "Requesting something else than LHS or RHS");
9199     OrigOperand = Root->getOperand(OperandIdx);
9200 
9201     unsigned Opc = Root->getOpcode();
9202     switch (Opc) {
9203     // We consider VW<ADD|SUB>(U)_W(LHS, RHS) as if they were
9204     // <ADD|SUB>(LHS, S|ZEXT(RHS))
9205     case RISCVISD::VWADD_W_VL:
9206     case RISCVISD::VWADDU_W_VL:
9207     case RISCVISD::VWSUB_W_VL:
9208     case RISCVISD::VWSUBU_W_VL:
9209       if (OperandIdx == 1) {
9210         SupportsZExt =
9211             Opc == RISCVISD::VWADDU_W_VL || Opc == RISCVISD::VWSUBU_W_VL;
9212         SupportsSExt = !SupportsZExt;
9213         std::tie(Mask, VL) = getMaskAndVL(Root);
9214         CheckMask = true;
9215         // There's no existing extension here, so we don't have to worry about
9216         // making sure it gets removed.
9217         EnforceOneUse = false;
9218         break;
9219       }
9220       [[fallthrough]];
9221     default:
9222       fillUpExtensionSupport(Root, DAG);
9223       break;
9224     }
9225   }
9226 
9227   /// Check if this operand is compatible with the given vector length \p VL.
9228   bool isVLCompatible(SDValue VL) const {
9229     return this->VL != SDValue() && this->VL == VL;
9230   }
9231 
9232   /// Check if this operand is compatible with the given \p Mask.
9233   bool isMaskCompatible(SDValue Mask) const {
9234     return !CheckMask || (this->Mask != SDValue() && this->Mask == Mask);
9235   }
9236 
9237   /// Helper function to get the Mask and VL from \p Root.
9238   static std::pair<SDValue, SDValue> getMaskAndVL(const SDNode *Root) {
9239     assert(isSupportedRoot(Root) && "Unexpected root");
9240     return std::make_pair(Root->getOperand(3), Root->getOperand(4));
9241   }
9242 
9243   /// Check if the Mask and VL of this operand are compatible with \p Root.
9244   bool areVLAndMaskCompatible(const SDNode *Root) const {
9245     auto [Mask, VL] = getMaskAndVL(Root);
9246     return isMaskCompatible(Mask) && isVLCompatible(VL);
9247   }
9248 
9249   /// Helper function to check if \p N is commutative with respect to the
9250   /// foldings that are supported by this class.
9251   static bool isCommutative(const SDNode *N) {
9252     switch (N->getOpcode()) {
9253     case RISCVISD::ADD_VL:
9254     case RISCVISD::MUL_VL:
9255     case RISCVISD::VWADD_W_VL:
9256     case RISCVISD::VWADDU_W_VL:
9257       return true;
9258     case RISCVISD::SUB_VL:
9259     case RISCVISD::VWSUB_W_VL:
9260     case RISCVISD::VWSUBU_W_VL:
9261       return false;
9262     default:
9263       llvm_unreachable("Unexpected opcode");
9264     }
9265   }
9266 
9267   /// Get a list of combine to try for folding extensions in \p Root.
9268   /// Note that each returned CombineToTry function doesn't actually modify
9269   /// anything. Instead they produce an optional CombineResult that if not None,
9270   /// need to be materialized for the combine to be applied.
9271   /// \see CombineResult::materialize.
9272   /// If the related CombineToTry function returns std::nullopt, that means the
9273   /// combine didn't match.
9274   static SmallVector<CombineToTry> getSupportedFoldings(const SDNode *Root);
9275 };
9276 
9277 /// Helper structure that holds all the necessary information to materialize a
9278 /// combine that does some extension folding.
9279 struct CombineResult {
9280   /// Opcode to be generated when materializing the combine.
9281   unsigned TargetOpcode;
9282   // No value means no extension is needed. If extension is needed, the value
9283   // indicates if it needs to be sign extended.
9284   std::optional<bool> SExtLHS;
9285   std::optional<bool> SExtRHS;
9286   /// Root of the combine.
9287   SDNode *Root;
9288   /// LHS of the TargetOpcode.
9289   NodeExtensionHelper LHS;
9290   /// RHS of the TargetOpcode.
9291   NodeExtensionHelper RHS;
9292 
9293   CombineResult(unsigned TargetOpcode, SDNode *Root,
9294                 const NodeExtensionHelper &LHS, std::optional<bool> SExtLHS,
9295                 const NodeExtensionHelper &RHS, std::optional<bool> SExtRHS)
9296       : TargetOpcode(TargetOpcode), SExtLHS(SExtLHS), SExtRHS(SExtRHS),
9297         Root(Root), LHS(LHS), RHS(RHS) {}
9298 
9299   /// Return a value that uses TargetOpcode and that can be used to replace
9300   /// Root.
9301   /// The actual replacement is *not* done in that method.
9302   SDValue materialize(SelectionDAG &DAG) const {
9303     SDValue Mask, VL, Merge;
9304     std::tie(Mask, VL) = NodeExtensionHelper::getMaskAndVL(Root);
9305     Merge = Root->getOperand(2);
9306     return DAG.getNode(TargetOpcode, SDLoc(Root), Root->getValueType(0),
9307                        LHS.getOrCreateExtendedOp(Root, DAG, SExtLHS),
9308                        RHS.getOrCreateExtendedOp(Root, DAG, SExtRHS), Merge,
9309                        Mask, VL);
9310   }
9311 };
9312 
9313 /// Check if \p Root follows a pattern Root(ext(LHS), ext(RHS))
9314 /// where `ext` is the same for both LHS and RHS (i.e., both are sext or both
9315 /// are zext) and LHS and RHS can be folded into Root.
9316 /// AllowSExt and AllozZExt define which form `ext` can take in this pattern.
9317 ///
9318 /// \note If the pattern can match with both zext and sext, the returned
9319 /// CombineResult will feature the zext result.
9320 ///
9321 /// \returns std::nullopt if the pattern doesn't match or a CombineResult that
9322 /// can be used to apply the pattern.
9323 static std::optional<CombineResult>
9324 canFoldToVWWithSameExtensionImpl(SDNode *Root, const NodeExtensionHelper &LHS,
9325                                  const NodeExtensionHelper &RHS, bool AllowSExt,
9326                                  bool AllowZExt) {
9327   assert((AllowSExt || AllowZExt) && "Forgot to set what you want?");
9328   if (!LHS.areVLAndMaskCompatible(Root) || !RHS.areVLAndMaskCompatible(Root))
9329     return std::nullopt;
9330   if (AllowZExt && LHS.SupportsZExt && RHS.SupportsZExt)
9331     return CombineResult(NodeExtensionHelper::getSameExtensionOpcode(
9332                              Root->getOpcode(), /*IsSExt=*/false),
9333                          Root, LHS, /*SExtLHS=*/false, RHS,
9334                          /*SExtRHS=*/false);
9335   if (AllowSExt && LHS.SupportsSExt && RHS.SupportsSExt)
9336     return CombineResult(NodeExtensionHelper::getSameExtensionOpcode(
9337                              Root->getOpcode(), /*IsSExt=*/true),
9338                          Root, LHS, /*SExtLHS=*/true, RHS,
9339                          /*SExtRHS=*/true);
9340   return std::nullopt;
9341 }
9342 
9343 /// Check if \p Root follows a pattern Root(ext(LHS), ext(RHS))
9344 /// where `ext` is the same for both LHS and RHS (i.e., both are sext or both
9345 /// are zext) and LHS and RHS can be folded into Root.
9346 ///
9347 /// \returns std::nullopt if the pattern doesn't match or a CombineResult that
9348 /// can be used to apply the pattern.
9349 static std::optional<CombineResult>
9350 canFoldToVWWithSameExtension(SDNode *Root, const NodeExtensionHelper &LHS,
9351                              const NodeExtensionHelper &RHS) {
9352   return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, /*AllowSExt=*/true,
9353                                           /*AllowZExt=*/true);
9354 }
9355 
9356 /// Check if \p Root follows a pattern Root(LHS, ext(RHS))
9357 ///
9358 /// \returns std::nullopt if the pattern doesn't match or a CombineResult that
9359 /// can be used to apply the pattern.
9360 static std::optional<CombineResult>
9361 canFoldToVW_W(SDNode *Root, const NodeExtensionHelper &LHS,
9362               const NodeExtensionHelper &RHS) {
9363   if (!RHS.areVLAndMaskCompatible(Root))
9364     return std::nullopt;
9365 
9366   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
9367   // sext/zext?
9368   // Control this behavior behind an option (AllowSplatInVW_W) for testing
9369   // purposes.
9370   if (RHS.SupportsZExt && (!RHS.isSplat() || AllowSplatInVW_W))
9371     return CombineResult(
9372         NodeExtensionHelper::getWOpcode(Root->getOpcode(), /*IsSExt=*/false),
9373         Root, LHS, /*SExtLHS=*/std::nullopt, RHS, /*SExtRHS=*/false);
9374   if (RHS.SupportsSExt && (!RHS.isSplat() || AllowSplatInVW_W))
9375     return CombineResult(
9376         NodeExtensionHelper::getWOpcode(Root->getOpcode(), /*IsSExt=*/true),
9377         Root, LHS, /*SExtLHS=*/std::nullopt, RHS, /*SExtRHS=*/true);
9378   return std::nullopt;
9379 }
9380 
9381 /// Check if \p Root follows a pattern Root(sext(LHS), sext(RHS))
9382 ///
9383 /// \returns std::nullopt if the pattern doesn't match or a CombineResult that
9384 /// can be used to apply the pattern.
9385 static std::optional<CombineResult>
9386 canFoldToVWWithSEXT(SDNode *Root, const NodeExtensionHelper &LHS,
9387                     const NodeExtensionHelper &RHS) {
9388   return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, /*AllowSExt=*/true,
9389                                           /*AllowZExt=*/false);
9390 }
9391 
9392 /// Check if \p Root follows a pattern Root(zext(LHS), zext(RHS))
9393 ///
9394 /// \returns std::nullopt if the pattern doesn't match or a CombineResult that
9395 /// can be used to apply the pattern.
9396 static std::optional<CombineResult>
9397 canFoldToVWWithZEXT(SDNode *Root, const NodeExtensionHelper &LHS,
9398                     const NodeExtensionHelper &RHS) {
9399   return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, /*AllowSExt=*/false,
9400                                           /*AllowZExt=*/true);
9401 }
9402 
9403 /// Check if \p Root follows a pattern Root(sext(LHS), zext(RHS))
9404 ///
9405 /// \returns std::nullopt if the pattern doesn't match or a CombineResult that
9406 /// can be used to apply the pattern.
9407 static std::optional<CombineResult>
9408 canFoldToVW_SU(SDNode *Root, const NodeExtensionHelper &LHS,
9409                const NodeExtensionHelper &RHS) {
9410   if (!LHS.SupportsSExt || !RHS.SupportsZExt)
9411     return std::nullopt;
9412   if (!LHS.areVLAndMaskCompatible(Root) || !RHS.areVLAndMaskCompatible(Root))
9413     return std::nullopt;
9414   return CombineResult(NodeExtensionHelper::getSUOpcode(Root->getOpcode()),
9415                        Root, LHS, /*SExtLHS=*/true, RHS, /*SExtRHS=*/false);
9416 }
9417 
9418 SmallVector<NodeExtensionHelper::CombineToTry>
9419 NodeExtensionHelper::getSupportedFoldings(const SDNode *Root) {
9420   SmallVector<CombineToTry> Strategies;
9421   switch (Root->getOpcode()) {
9422   case RISCVISD::ADD_VL:
9423   case RISCVISD::SUB_VL:
9424     // add|sub -> vwadd(u)|vwsub(u)
9425     Strategies.push_back(canFoldToVWWithSameExtension);
9426     // add|sub -> vwadd(u)_w|vwsub(u)_w
9427     Strategies.push_back(canFoldToVW_W);
9428     break;
9429   case RISCVISD::MUL_VL:
9430     // mul -> vwmul(u)
9431     Strategies.push_back(canFoldToVWWithSameExtension);
9432     // mul -> vwmulsu
9433     Strategies.push_back(canFoldToVW_SU);
9434     break;
9435   case RISCVISD::VWADD_W_VL:
9436   case RISCVISD::VWSUB_W_VL:
9437     // vwadd_w|vwsub_w -> vwadd|vwsub
9438     Strategies.push_back(canFoldToVWWithSEXT);
9439     break;
9440   case RISCVISD::VWADDU_W_VL:
9441   case RISCVISD::VWSUBU_W_VL:
9442     // vwaddu_w|vwsubu_w -> vwaddu|vwsubu
9443     Strategies.push_back(canFoldToVWWithZEXT);
9444     break;
9445   default:
9446     llvm_unreachable("Unexpected opcode");
9447   }
9448   return Strategies;
9449 }
9450 } // End anonymous namespace.
9451 
9452 /// Combine a binary operation to its equivalent VW or VW_W form.
9453 /// The supported combines are:
9454 /// add_vl -> vwadd(u) | vwadd(u)_w
9455 /// sub_vl -> vwsub(u) | vwsub(u)_w
9456 /// mul_vl -> vwmul(u) | vwmul_su
9457 /// vwadd_w(u) -> vwadd(u)
9458 /// vwub_w(u) -> vwadd(u)
9459 static SDValue
9460 combineBinOp_VLToVWBinOp_VL(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
9461   SelectionDAG &DAG = DCI.DAG;
9462 
9463   assert(NodeExtensionHelper::isSupportedRoot(N) &&
9464          "Shouldn't have called this method");
9465   SmallVector<SDNode *> Worklist;
9466   SmallSet<SDNode *, 8> Inserted;
9467   Worklist.push_back(N);
9468   Inserted.insert(N);
9469   SmallVector<CombineResult> CombinesToApply;
9470 
9471   while (!Worklist.empty()) {
9472     SDNode *Root = Worklist.pop_back_val();
9473     if (!NodeExtensionHelper::isSupportedRoot(Root))
9474       return SDValue();
9475 
9476     NodeExtensionHelper LHS(N, 0, DAG);
9477     NodeExtensionHelper RHS(N, 1, DAG);
9478     auto AppendUsersIfNeeded = [&Worklist,
9479                                 &Inserted](const NodeExtensionHelper &Op) {
9480       if (Op.needToPromoteOtherUsers()) {
9481         for (SDNode *TheUse : Op.OrigOperand->uses()) {
9482           if (Inserted.insert(TheUse).second)
9483             Worklist.push_back(TheUse);
9484         }
9485       }
9486     };
9487 
9488     // Control the compile time by limiting the number of node we look at in
9489     // total.
9490     if (Inserted.size() > ExtensionMaxWebSize)
9491       return SDValue();
9492 
9493     SmallVector<NodeExtensionHelper::CombineToTry> FoldingStrategies =
9494         NodeExtensionHelper::getSupportedFoldings(N);
9495 
9496     assert(!FoldingStrategies.empty() && "Nothing to be folded");
9497     bool Matched = false;
9498     for (int Attempt = 0;
9499          (Attempt != 1 + NodeExtensionHelper::isCommutative(N)) && !Matched;
9500          ++Attempt) {
9501 
9502       for (NodeExtensionHelper::CombineToTry FoldingStrategy :
9503            FoldingStrategies) {
9504         std::optional<CombineResult> Res = FoldingStrategy(N, LHS, RHS);
9505         if (Res) {
9506           Matched = true;
9507           CombinesToApply.push_back(*Res);
9508           // All the inputs that are extended need to be folded, otherwise
9509           // we would be leaving the old input (since it is may still be used),
9510           // and the new one.
9511           if (Res->SExtLHS.has_value())
9512             AppendUsersIfNeeded(LHS);
9513           if (Res->SExtRHS.has_value())
9514             AppendUsersIfNeeded(RHS);
9515           break;
9516         }
9517       }
9518       std::swap(LHS, RHS);
9519     }
9520     // Right now we do an all or nothing approach.
9521     if (!Matched)
9522       return SDValue();
9523   }
9524   // Store the value for the replacement of the input node separately.
9525   SDValue InputRootReplacement;
9526   // We do the RAUW after we materialize all the combines, because some replaced
9527   // nodes may be feeding some of the yet-to-be-replaced nodes. Put differently,
9528   // some of these nodes may appear in the NodeExtensionHelpers of some of the
9529   // yet-to-be-visited CombinesToApply roots.
9530   SmallVector<std::pair<SDValue, SDValue>> ValuesToReplace;
9531   ValuesToReplace.reserve(CombinesToApply.size());
9532   for (CombineResult Res : CombinesToApply) {
9533     SDValue NewValue = Res.materialize(DAG);
9534     if (!InputRootReplacement) {
9535       assert(Res.Root == N &&
9536              "First element is expected to be the current node");
9537       InputRootReplacement = NewValue;
9538     } else {
9539       ValuesToReplace.emplace_back(SDValue(Res.Root, 0), NewValue);
9540     }
9541   }
9542   for (std::pair<SDValue, SDValue> OldNewValues : ValuesToReplace) {
9543     DAG.ReplaceAllUsesOfValueWith(OldNewValues.first, OldNewValues.second);
9544     DCI.AddToWorklist(OldNewValues.second.getNode());
9545   }
9546   return InputRootReplacement;
9547 }
9548 
9549 // Fold
9550 //   (fp_to_int (froundeven X)) -> fcvt X, rne
9551 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
9552 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
9553 //   (fp_to_int (fceil X))      -> fcvt X, rup
9554 //   (fp_to_int (fround X))     -> fcvt X, rmm
9555 static SDValue performFP_TO_INTCombine(SDNode *N,
9556                                        TargetLowering::DAGCombinerInfo &DCI,
9557                                        const RISCVSubtarget &Subtarget) {
9558   SelectionDAG &DAG = DCI.DAG;
9559   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9560   MVT XLenVT = Subtarget.getXLenVT();
9561 
9562   SDValue Src = N->getOperand(0);
9563 
9564   // Ensure the FP type is legal.
9565   if (!TLI.isTypeLegal(Src.getValueType()))
9566     return SDValue();
9567 
9568   // Don't do this for f16 with Zfhmin and not Zfh.
9569   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
9570     return SDValue();
9571 
9572   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src.getOpcode());
9573   if (FRM == RISCVFPRndMode::Invalid)
9574     return SDValue();
9575 
9576   SDLoc DL(N);
9577   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
9578   EVT VT = N->getValueType(0);
9579 
9580   if (VT.isVector() && TLI.isTypeLegal(VT)) {
9581     MVT SrcVT = Src.getSimpleValueType();
9582     MVT SrcContainerVT = SrcVT;
9583     MVT ContainerVT = VT.getSimpleVT();
9584     SDValue XVal = Src.getOperand(0);
9585 
9586     // For widening and narrowing conversions we just combine it into a
9587     // VFCVT_..._VL node, as there are no specific VFWCVT/VFNCVT VL nodes. They
9588     // end up getting lowered to their appropriate pseudo instructions based on
9589     // their operand types
9590     if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits() * 2 ||
9591         VT.getScalarSizeInBits() * 2 < SrcVT.getScalarSizeInBits())
9592       return SDValue();
9593 
9594     // Make fixed-length vectors scalable first
9595     if (SrcVT.isFixedLengthVector()) {
9596       SrcContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget);
9597       XVal = convertToScalableVector(SrcContainerVT, XVal, DAG, Subtarget);
9598       ContainerVT =
9599           getContainerForFixedLengthVector(DAG, ContainerVT, Subtarget);
9600     }
9601 
9602     auto [Mask, VL] =
9603         getDefaultVLOps(SrcVT, SrcContainerVT, DL, DAG, Subtarget);
9604 
9605     SDValue FpToInt;
9606     if (FRM == RISCVFPRndMode::RTZ) {
9607       // Use the dedicated trunc static rounding mode if we're truncating so we
9608       // don't need to generate calls to fsrmi/fsrm
9609       unsigned Opc =
9610           IsSigned ? RISCVISD::VFCVT_RTZ_X_F_VL : RISCVISD::VFCVT_RTZ_XU_F_VL;
9611       FpToInt = DAG.getNode(Opc, DL, ContainerVT, XVal, Mask, VL);
9612     } else {
9613       unsigned Opc =
9614           IsSigned ? RISCVISD::VFCVT_RM_X_F_VL : RISCVISD::VFCVT_RM_XU_F_VL;
9615       FpToInt = DAG.getNode(Opc, DL, ContainerVT, XVal, Mask,
9616                             DAG.getTargetConstant(FRM, DL, XLenVT), VL);
9617     }
9618 
9619     // If converted from fixed-length to scalable, convert back
9620     if (VT.isFixedLengthVector())
9621       FpToInt = convertFromScalableVector(VT, FpToInt, DAG, Subtarget);
9622 
9623     return FpToInt;
9624   }
9625 
9626   // Only handle XLen or i32 types. Other types narrower than XLen will
9627   // eventually be legalized to XLenVT.
9628   if (VT != MVT::i32 && VT != XLenVT)
9629     return SDValue();
9630 
9631   unsigned Opc;
9632   if (VT == XLenVT)
9633     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
9634   else
9635     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
9636 
9637   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
9638                                 DAG.getTargetConstant(FRM, DL, XLenVT));
9639   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
9640 }
9641 
9642 // Fold
9643 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
9644 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
9645 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
9646 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
9647 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
9648 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
9649                                        TargetLowering::DAGCombinerInfo &DCI,
9650                                        const RISCVSubtarget &Subtarget) {
9651   SelectionDAG &DAG = DCI.DAG;
9652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9653   MVT XLenVT = Subtarget.getXLenVT();
9654 
9655   // Only handle XLen types. Other types narrower than XLen will eventually be
9656   // legalized to XLenVT.
9657   EVT DstVT = N->getValueType(0);
9658   if (DstVT != XLenVT)
9659     return SDValue();
9660 
9661   SDValue Src = N->getOperand(0);
9662 
9663   // Ensure the FP type is also legal.
9664   if (!TLI.isTypeLegal(Src.getValueType()))
9665     return SDValue();
9666 
9667   // Don't do this for f16 with Zfhmin and not Zfh.
9668   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
9669     return SDValue();
9670 
9671   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
9672 
9673   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src.getOpcode());
9674   if (FRM == RISCVFPRndMode::Invalid)
9675     return SDValue();
9676 
9677   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
9678 
9679   unsigned Opc;
9680   if (SatVT == DstVT)
9681     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
9682   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
9683     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
9684   else
9685     return SDValue();
9686   // FIXME: Support other SatVTs by clamping before or after the conversion.
9687 
9688   Src = Src.getOperand(0);
9689 
9690   SDLoc DL(N);
9691   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
9692                                 DAG.getTargetConstant(FRM, DL, XLenVT));
9693 
9694   // fcvt.wu.* sign extends bit 31 on RV64. FP_TO_UINT_SAT expects to zero
9695   // extend.
9696   if (Opc == RISCVISD::FCVT_WU_RV64)
9697     FpToInt = DAG.getZeroExtendInReg(FpToInt, DL, MVT::i32);
9698 
9699   // RISCV FP-to-int conversions saturate to the destination register size, but
9700   // don't produce 0 for nan.
9701   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
9702   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
9703 }
9704 
9705 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
9706 // smaller than XLenVT.
9707 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
9708                                         const RISCVSubtarget &Subtarget) {
9709   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
9710 
9711   SDValue Src = N->getOperand(0);
9712   if (Src.getOpcode() != ISD::BSWAP)
9713     return SDValue();
9714 
9715   EVT VT = N->getValueType(0);
9716   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
9717       !isPowerOf2_32(VT.getSizeInBits()))
9718     return SDValue();
9719 
9720   SDLoc DL(N);
9721   return DAG.getNode(RISCVISD::BREV8, DL, VT, Src.getOperand(0));
9722 }
9723 
9724 // Convert from one FMA opcode to another based on whether we are negating the
9725 // multiply result and/or the accumulator.
9726 // NOTE: Only supports RVV operations with VL.
9727 static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc) {
9728   assert((NegMul || NegAcc) && "Not negating anything?");
9729 
9730   // Negating the multiply result changes ADD<->SUB and toggles 'N'.
9731   if (NegMul) {
9732     // clang-format off
9733     switch (Opcode) {
9734     default: llvm_unreachable("Unexpected opcode");
9735     case RISCVISD::VFMADD_VL:  Opcode = RISCVISD::VFNMSUB_VL; break;
9736     case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFMADD_VL;  break;
9737     case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFMSUB_VL;  break;
9738     case RISCVISD::VFMSUB_VL:  Opcode = RISCVISD::VFNMADD_VL; break;
9739     }
9740     // clang-format on
9741   }
9742 
9743   // Negating the accumulator changes ADD<->SUB.
9744   if (NegAcc) {
9745     // clang-format off
9746     switch (Opcode) {
9747     default: llvm_unreachable("Unexpected opcode");
9748     case RISCVISD::VFMADD_VL:  Opcode = RISCVISD::VFMSUB_VL;  break;
9749     case RISCVISD::VFMSUB_VL:  Opcode = RISCVISD::VFMADD_VL;  break;
9750     case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break;
9751     case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break;
9752     }
9753     // clang-format on
9754   }
9755 
9756   return Opcode;
9757 }
9758 
9759 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
9760                                  const RISCVSubtarget &Subtarget) {
9761   assert(N->getOpcode() == ISD::SRA && "Unexpected opcode");
9762 
9763   if (N->getValueType(0) != MVT::i64 || !Subtarget.is64Bit())
9764     return SDValue();
9765 
9766   if (!isa<ConstantSDNode>(N->getOperand(1)))
9767     return SDValue();
9768   uint64_t ShAmt = N->getConstantOperandVal(1);
9769   if (ShAmt > 32)
9770     return SDValue();
9771 
9772   SDValue N0 = N->getOperand(0);
9773 
9774   // Combine (sra (sext_inreg (shl X, C1), i32), C2) ->
9775   // (sra (shl X, C1+32), C2+32) so it gets selected as SLLI+SRAI instead of
9776   // SLLIW+SRAIW. SLLI+SRAI have compressed forms.
9777   if (ShAmt < 32 &&
9778       N0.getOpcode() == ISD::SIGN_EXTEND_INREG && N0.hasOneUse() &&
9779       cast<VTSDNode>(N0.getOperand(1))->getVT() == MVT::i32 &&
9780       N0.getOperand(0).getOpcode() == ISD::SHL && N0.getOperand(0).hasOneUse() &&
9781       isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
9782     uint64_t LShAmt = N0.getOperand(0).getConstantOperandVal(1);
9783     if (LShAmt < 32) {
9784       SDLoc ShlDL(N0.getOperand(0));
9785       SDValue Shl = DAG.getNode(ISD::SHL, ShlDL, MVT::i64,
9786                                 N0.getOperand(0).getOperand(0),
9787                                 DAG.getConstant(LShAmt + 32, ShlDL, MVT::i64));
9788       SDLoc DL(N);
9789       return DAG.getNode(ISD::SRA, DL, MVT::i64, Shl,
9790                          DAG.getConstant(ShAmt + 32, DL, MVT::i64));
9791     }
9792   }
9793 
9794   // Combine (sra (shl X, 32), 32 - C) -> (shl (sext_inreg X, i32), C)
9795   // FIXME: Should this be a generic combine? There's a similar combine on X86.
9796   //
9797   // Also try these folds where an add or sub is in the middle.
9798   // (sra (add (shl X, 32), C1), 32 - C) -> (shl (sext_inreg (add X, C1), C)
9799   // (sra (sub C1, (shl X, 32)), 32 - C) -> (shl (sext_inreg (sub C1, X), C)
9800   SDValue Shl;
9801   ConstantSDNode *AddC = nullptr;
9802 
9803   // We might have an ADD or SUB between the SRA and SHL.
9804   bool IsAdd = N0.getOpcode() == ISD::ADD;
9805   if ((IsAdd || N0.getOpcode() == ISD::SUB)) {
9806     // Other operand needs to be a constant we can modify.
9807     AddC = dyn_cast<ConstantSDNode>(N0.getOperand(IsAdd ? 1 : 0));
9808     if (!AddC)
9809       return SDValue();
9810 
9811     // AddC needs to have at least 32 trailing zeros.
9812     if (AddC->getAPIntValue().countTrailingZeros() < 32)
9813       return SDValue();
9814 
9815     // All users should be a shift by constant less than or equal to 32. This
9816     // ensures we'll do this optimization for each of them to produce an
9817     // add/sub+sext_inreg they can all share.
9818     for (SDNode *U : N0->uses()) {
9819       if (U->getOpcode() != ISD::SRA ||
9820           !isa<ConstantSDNode>(U->getOperand(1)) ||
9821           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() > 32)
9822         return SDValue();
9823     }
9824 
9825     Shl = N0.getOperand(IsAdd ? 0 : 1);
9826   } else {
9827     // Not an ADD or SUB.
9828     Shl = N0;
9829   }
9830 
9831   // Look for a shift left by 32.
9832   if (Shl.getOpcode() != ISD::SHL || !isa<ConstantSDNode>(Shl.getOperand(1)) ||
9833       Shl.getConstantOperandVal(1) != 32)
9834     return SDValue();
9835 
9836   // We if we didn't look through an add/sub, then the shl should have one use.
9837   // If we did look through an add/sub, the sext_inreg we create is free so
9838   // we're only creating 2 new instructions. It's enough to only remove the
9839   // original sra+add/sub.
9840   if (!AddC && !Shl.hasOneUse())
9841     return SDValue();
9842 
9843   SDLoc DL(N);
9844   SDValue In = Shl.getOperand(0);
9845 
9846   // If we looked through an ADD or SUB, we need to rebuild it with the shifted
9847   // constant.
9848   if (AddC) {
9849     SDValue ShiftedAddC =
9850         DAG.getConstant(AddC->getAPIntValue().lshr(32), DL, MVT::i64);
9851     if (IsAdd)
9852       In = DAG.getNode(ISD::ADD, DL, MVT::i64, In, ShiftedAddC);
9853     else
9854       In = DAG.getNode(ISD::SUB, DL, MVT::i64, ShiftedAddC, In);
9855   }
9856 
9857   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, In,
9858                              DAG.getValueType(MVT::i32));
9859   if (ShAmt == 32)
9860     return SExt;
9861 
9862   return DAG.getNode(
9863       ISD::SHL, DL, MVT::i64, SExt,
9864       DAG.getConstant(32 - ShAmt, DL, MVT::i64));
9865 }
9866 
9867 // Invert (and/or (set cc X, Y), (xor Z, 1)) to (or/and (set !cc X, Y)), Z) if
9868 // the result is used as the conditon of a br_cc or select_cc we can invert,
9869 // inverting the setcc is free, and Z is 0/1. Caller will invert the
9870 // br_cc/select_cc.
9871 static SDValue tryDemorganOfBooleanCondition(SDValue Cond, SelectionDAG &DAG) {
9872   bool IsAnd = Cond.getOpcode() == ISD::AND;
9873   if (!IsAnd && Cond.getOpcode() != ISD::OR)
9874     return SDValue();
9875 
9876   if (!Cond.hasOneUse())
9877     return SDValue();
9878 
9879   SDValue Setcc = Cond.getOperand(0);
9880   SDValue Xor = Cond.getOperand(1);
9881   // Canonicalize setcc to LHS.
9882   if (Setcc.getOpcode() != ISD::SETCC)
9883     std::swap(Setcc, Xor);
9884   // LHS should be a setcc and RHS should be an xor.
9885   if (Setcc.getOpcode() != ISD::SETCC || !Setcc.hasOneUse() ||
9886       Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
9887     return SDValue();
9888 
9889   // If the condition is an And, SimplifyDemandedBits may have changed
9890   // (xor Z, 1) to (not Z).
9891   SDValue Xor1 = Xor.getOperand(1);
9892   if (!isOneConstant(Xor1) && !(IsAnd && isAllOnesConstant(Xor1)))
9893     return SDValue();
9894 
9895   EVT VT = Cond.getValueType();
9896   SDValue Xor0 = Xor.getOperand(0);
9897 
9898   // The LHS of the xor needs to be 0/1.
9899   APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1);
9900   if (!DAG.MaskedValueIsZero(Xor0, Mask))
9901     return SDValue();
9902 
9903   // We can only invert integer setccs.
9904   EVT SetCCOpVT = Setcc.getOperand(0).getValueType();
9905   if (!SetCCOpVT.isScalarInteger())
9906     return SDValue();
9907 
9908   ISD::CondCode CCVal = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
9909   if (ISD::isIntEqualitySetCC(CCVal)) {
9910     CCVal = ISD::getSetCCInverse(CCVal, SetCCOpVT);
9911     Setcc = DAG.getSetCC(SDLoc(Setcc), VT, Setcc.getOperand(0),
9912                          Setcc.getOperand(1), CCVal);
9913   } else if (CCVal == ISD::SETLT && isNullConstant(Setcc.getOperand(0))) {
9914     // Invert (setlt 0, X) by converting to (setlt X, 1).
9915     Setcc = DAG.getSetCC(SDLoc(Setcc), VT, Setcc.getOperand(1),
9916                          DAG.getConstant(1, SDLoc(Setcc), VT), CCVal);
9917   } else if (CCVal == ISD::SETLT && isOneConstant(Setcc.getOperand(1))) {
9918     // (setlt X, 1) by converting to (setlt 0, X).
9919     Setcc = DAG.getSetCC(SDLoc(Setcc), VT,
9920                          DAG.getConstant(0, SDLoc(Setcc), VT),
9921                          Setcc.getOperand(0), CCVal);
9922   } else
9923     return SDValue();
9924 
9925   unsigned Opc = IsAnd ? ISD::OR : ISD::AND;
9926   return DAG.getNode(Opc, SDLoc(Cond), VT, Setcc, Xor.getOperand(0));
9927 }
9928 
9929 // Perform common combines for BR_CC and SELECT_CC condtions.
9930 static bool combine_CC(SDValue &LHS, SDValue &RHS, SDValue &CC, const SDLoc &DL,
9931                        SelectionDAG &DAG, const RISCVSubtarget &Subtarget) {
9932   ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get();
9933 
9934   // As far as arithmetic right shift always saves the sign,
9935   // shift can be omitted.
9936   // Fold setlt (sra X, N), 0 -> setlt X, 0 and
9937   // setge (sra X, N), 0 -> setge X, 0
9938   if (auto *RHSConst = dyn_cast<ConstantSDNode>(RHS.getNode())) {
9939     if ((CCVal == ISD::SETGE || CCVal == ISD::SETLT) &&
9940         LHS.getOpcode() == ISD::SRA && RHSConst->isZero()) {
9941       LHS = LHS.getOperand(0);
9942       return true;
9943     }
9944   }
9945 
9946   if (!ISD::isIntEqualitySetCC(CCVal))
9947     return false;
9948 
9949   // Fold ((setlt X, Y), 0, ne) -> (X, Y, lt)
9950   // Sometimes the setcc is introduced after br_cc/select_cc has been formed.
9951   if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
9952       LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
9953     // If we're looking for eq 0 instead of ne 0, we need to invert the
9954     // condition.
9955     bool Invert = CCVal == ISD::SETEQ;
9956     CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9957     if (Invert)
9958       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
9959 
9960     RHS = LHS.getOperand(1);
9961     LHS = LHS.getOperand(0);
9962     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
9963 
9964     CC = DAG.getCondCode(CCVal);
9965     return true;
9966   }
9967 
9968   // Fold ((xor X, Y), 0, eq/ne) -> (X, Y, eq/ne)
9969   if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) {
9970     RHS = LHS.getOperand(1);
9971     LHS = LHS.getOperand(0);
9972     return true;
9973   }
9974 
9975   // Fold ((srl (and X, 1<<C), C), 0, eq/ne) -> ((shl X, XLen-1-C), 0, ge/lt)
9976   if (isNullConstant(RHS) && LHS.getOpcode() == ISD::SRL && LHS.hasOneUse() &&
9977       LHS.getOperand(1).getOpcode() == ISD::Constant) {
9978     SDValue LHS0 = LHS.getOperand(0);
9979     if (LHS0.getOpcode() == ISD::AND &&
9980         LHS0.getOperand(1).getOpcode() == ISD::Constant) {
9981       uint64_t Mask = LHS0.getConstantOperandVal(1);
9982       uint64_t ShAmt = LHS.getConstantOperandVal(1);
9983       if (isPowerOf2_64(Mask) && Log2_64(Mask) == ShAmt) {
9984         CCVal = CCVal == ISD::SETEQ ? ISD::SETGE : ISD::SETLT;
9985         CC = DAG.getCondCode(CCVal);
9986 
9987         ShAmt = LHS.getValueSizeInBits() - 1 - ShAmt;
9988         LHS = LHS0.getOperand(0);
9989         if (ShAmt != 0)
9990           LHS =
9991               DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS0.getOperand(0),
9992                           DAG.getConstant(ShAmt, DL, LHS.getValueType()));
9993         return true;
9994       }
9995     }
9996   }
9997 
9998   // (X, 1, setne) -> // (X, 0, seteq) if we can prove X is 0/1.
9999   // This can occur when legalizing some floating point comparisons.
10000   APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
10001   if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
10002     CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
10003     CC = DAG.getCondCode(CCVal);
10004     RHS = DAG.getConstant(0, DL, LHS.getValueType());
10005     return true;
10006   }
10007 
10008   if (isNullConstant(RHS)) {
10009     if (SDValue NewCond = tryDemorganOfBooleanCondition(LHS, DAG)) {
10010       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
10011       CC = DAG.getCondCode(CCVal);
10012       LHS = NewCond;
10013       return true;
10014     }
10015   }
10016 
10017   return false;
10018 }
10019 
10020 // Fold
10021 // (select C, (add Y, X), Y) -> (add Y, (select C, X, 0)).
10022 // (select C, (sub Y, X), Y) -> (sub Y, (select C, X, 0)).
10023 // (select C, (or Y, X), Y)  -> (or Y, (select C, X, 0)).
10024 // (select C, (xor Y, X), Y) -> (xor Y, (select C, X, 0)).
10025 static SDValue tryFoldSelectIntoOp(SDNode *N, SelectionDAG &DAG,
10026                                    SDValue TrueVal, SDValue FalseVal,
10027                                    bool Swapped) {
10028   bool Commutative = true;
10029   switch (TrueVal.getOpcode()) {
10030   default:
10031     return SDValue();
10032   case ISD::SUB:
10033     Commutative = false;
10034     break;
10035   case ISD::ADD:
10036   case ISD::OR:
10037   case ISD::XOR:
10038     break;
10039   }
10040 
10041   if (!TrueVal.hasOneUse() || isa<ConstantSDNode>(FalseVal))
10042     return SDValue();
10043 
10044   unsigned OpToFold;
10045   if (FalseVal == TrueVal.getOperand(0))
10046     OpToFold = 0;
10047   else if (Commutative && FalseVal == TrueVal.getOperand(1))
10048     OpToFold = 1;
10049   else
10050     return SDValue();
10051 
10052   EVT VT = N->getValueType(0);
10053   SDLoc DL(N);
10054   SDValue Zero = DAG.getConstant(0, DL, VT);
10055   SDValue OtherOp = TrueVal.getOperand(1 - OpToFold);
10056 
10057   if (Swapped)
10058     std::swap(OtherOp, Zero);
10059   SDValue NewSel = DAG.getSelect(DL, VT, N->getOperand(0), OtherOp, Zero);
10060   return DAG.getNode(TrueVal.getOpcode(), DL, VT, FalseVal, NewSel);
10061 }
10062 
10063 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
10064                                     const RISCVSubtarget &Subtarget) {
10065   if (Subtarget.hasShortForwardBranchOpt())
10066     return SDValue();
10067 
10068   // Only support XLenVT.
10069   if (N->getValueType(0) != Subtarget.getXLenVT())
10070     return SDValue();
10071 
10072   SDValue TrueVal = N->getOperand(1);
10073   SDValue FalseVal = N->getOperand(2);
10074   if (SDValue V = tryFoldSelectIntoOp(N, DAG, TrueVal, FalseVal, /*Swapped*/false))
10075     return V;
10076   return tryFoldSelectIntoOp(N, DAG, FalseVal, TrueVal, /*Swapped*/true);
10077 }
10078 
10079 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
10080                                                DAGCombinerInfo &DCI) const {
10081   SelectionDAG &DAG = DCI.DAG;
10082 
10083   // Helper to call SimplifyDemandedBits on an operand of N where only some low
10084   // bits are demanded. N will be added to the Worklist if it was not deleted.
10085   // Caller should return SDValue(N, 0) if this returns true.
10086   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
10087     SDValue Op = N->getOperand(OpNo);
10088     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
10089     if (!SimplifyDemandedBits(Op, Mask, DCI))
10090       return false;
10091 
10092     if (N->getOpcode() != ISD::DELETED_NODE)
10093       DCI.AddToWorklist(N);
10094     return true;
10095   };
10096 
10097   switch (N->getOpcode()) {
10098   default:
10099     break;
10100   case RISCVISD::SplitF64: {
10101     SDValue Op0 = N->getOperand(0);
10102     // If the input to SplitF64 is just BuildPairF64 then the operation is
10103     // redundant. Instead, use BuildPairF64's operands directly.
10104     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
10105       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
10106 
10107     if (Op0->isUndef()) {
10108       SDValue Lo = DAG.getUNDEF(MVT::i32);
10109       SDValue Hi = DAG.getUNDEF(MVT::i32);
10110       return DCI.CombineTo(N, Lo, Hi);
10111     }
10112 
10113     SDLoc DL(N);
10114 
10115     // It's cheaper to materialise two 32-bit integers than to load a double
10116     // from the constant pool and transfer it to integer registers through the
10117     // stack.
10118     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
10119       APInt V = C->getValueAPF().bitcastToAPInt();
10120       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
10121       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
10122       return DCI.CombineTo(N, Lo, Hi);
10123     }
10124 
10125     // This is a target-specific version of a DAGCombine performed in
10126     // DAGCombiner::visitBITCAST. It performs the equivalent of:
10127     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
10128     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
10129     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
10130         !Op0.getNode()->hasOneUse())
10131       break;
10132     SDValue NewSplitF64 =
10133         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
10134                     Op0.getOperand(0));
10135     SDValue Lo = NewSplitF64.getValue(0);
10136     SDValue Hi = NewSplitF64.getValue(1);
10137     APInt SignBit = APInt::getSignMask(32);
10138     if (Op0.getOpcode() == ISD::FNEG) {
10139       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
10140                                   DAG.getConstant(SignBit, DL, MVT::i32));
10141       return DCI.CombineTo(N, Lo, NewHi);
10142     }
10143     assert(Op0.getOpcode() == ISD::FABS);
10144     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
10145                                 DAG.getConstant(~SignBit, DL, MVT::i32));
10146     return DCI.CombineTo(N, Lo, NewHi);
10147   }
10148   case RISCVISD::SLLW:
10149   case RISCVISD::SRAW:
10150   case RISCVISD::SRLW:
10151   case RISCVISD::RORW:
10152   case RISCVISD::ROLW: {
10153     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
10154     if (SimplifyDemandedLowBitsHelper(0, 32) ||
10155         SimplifyDemandedLowBitsHelper(1, 5))
10156       return SDValue(N, 0);
10157 
10158     break;
10159   }
10160   case RISCVISD::CLZW:
10161   case RISCVISD::CTZW: {
10162     // Only the lower 32 bits of the first operand are read
10163     if (SimplifyDemandedLowBitsHelper(0, 32))
10164       return SDValue(N, 0);
10165     break;
10166   }
10167   case RISCVISD::FMV_X_ANYEXTH:
10168   case RISCVISD::FMV_X_ANYEXTW_RV64: {
10169     SDLoc DL(N);
10170     SDValue Op0 = N->getOperand(0);
10171     MVT VT = N->getSimpleValueType(0);
10172     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
10173     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
10174     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
10175     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
10176          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
10177         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
10178          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
10179       assert(Op0.getOperand(0).getValueType() == VT &&
10180              "Unexpected value type!");
10181       return Op0.getOperand(0);
10182     }
10183 
10184     // This is a target-specific version of a DAGCombine performed in
10185     // DAGCombiner::visitBITCAST. It performs the equivalent of:
10186     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
10187     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
10188     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
10189         !Op0.getNode()->hasOneUse())
10190       break;
10191     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
10192     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
10193     APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits());
10194     if (Op0.getOpcode() == ISD::FNEG)
10195       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
10196                          DAG.getConstant(SignBit, DL, VT));
10197 
10198     assert(Op0.getOpcode() == ISD::FABS);
10199     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
10200                        DAG.getConstant(~SignBit, DL, VT));
10201   }
10202   case ISD::ADD:
10203     return performADDCombine(N, DAG, Subtarget);
10204   case ISD::SUB:
10205     return performSUBCombine(N, DAG, Subtarget);
10206   case ISD::AND:
10207     return performANDCombine(N, DCI, Subtarget);
10208   case ISD::OR:
10209     return performORCombine(N, DCI, Subtarget);
10210   case ISD::XOR:
10211     return performXORCombine(N, DAG, Subtarget);
10212   case ISD::FADD:
10213   case ISD::UMAX:
10214   case ISD::UMIN:
10215   case ISD::SMAX:
10216   case ISD::SMIN:
10217   case ISD::FMAXNUM:
10218   case ISD::FMINNUM:
10219     return combineBinOpToReduce(N, DAG, Subtarget);
10220   case ISD::SETCC:
10221     return performSETCCCombine(N, DAG, Subtarget);
10222   case ISD::SIGN_EXTEND_INREG:
10223     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
10224   case ISD::ZERO_EXTEND:
10225     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
10226     // type legalization. This is safe because fp_to_uint produces poison if
10227     // it overflows.
10228     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
10229       SDValue Src = N->getOperand(0);
10230       if (Src.getOpcode() == ISD::FP_TO_UINT &&
10231           isTypeLegal(Src.getOperand(0).getValueType()))
10232         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
10233                            Src.getOperand(0));
10234       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
10235           isTypeLegal(Src.getOperand(1).getValueType())) {
10236         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
10237         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
10238                                   Src.getOperand(0), Src.getOperand(1));
10239         DCI.CombineTo(N, Res);
10240         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
10241         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
10242         return SDValue(N, 0); // Return N so it doesn't get rechecked.
10243       }
10244     }
10245     return SDValue();
10246   case ISD::TRUNCATE:
10247     return performTRUNCATECombine(N, DAG, Subtarget);
10248   case ISD::SELECT:
10249     return performSELECTCombine(N, DAG, Subtarget);
10250   case RISCVISD::SELECT_CC: {
10251     // Transform
10252     SDValue LHS = N->getOperand(0);
10253     SDValue RHS = N->getOperand(1);
10254     SDValue CC = N->getOperand(2);
10255     ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get();
10256     SDValue TrueV = N->getOperand(3);
10257     SDValue FalseV = N->getOperand(4);
10258     SDLoc DL(N);
10259     EVT VT = N->getValueType(0);
10260 
10261     // If the True and False values are the same, we don't need a select_cc.
10262     if (TrueV == FalseV)
10263       return TrueV;
10264 
10265     // (select (x < 0), y, z)  -> x >> (XLEN - 1) & (y - z) + z
10266     // (select (x >= 0), y, z) -> x >> (XLEN - 1) & (z - y) + y
10267     if (!Subtarget.hasShortForwardBranchOpt() && isa<ConstantSDNode>(TrueV) &&
10268         isa<ConstantSDNode>(FalseV) && isNullConstant(RHS) &&
10269         (CCVal == ISD::CondCode::SETLT || CCVal == ISD::CondCode::SETGE)) {
10270       if (CCVal == ISD::CondCode::SETGE)
10271         std::swap(TrueV, FalseV);
10272 
10273       int64_t TrueSImm = cast<ConstantSDNode>(TrueV)->getSExtValue();
10274       int64_t FalseSImm = cast<ConstantSDNode>(FalseV)->getSExtValue();
10275       // Only handle simm12, if it is not in this range, it can be considered as
10276       // register.
10277       if (isInt<12>(TrueSImm) && isInt<12>(FalseSImm) &&
10278           isInt<12>(TrueSImm - FalseSImm)) {
10279         SDValue SRA =
10280             DAG.getNode(ISD::SRA, DL, VT, LHS,
10281                         DAG.getConstant(Subtarget.getXLen() - 1, DL, VT));
10282         SDValue AND =
10283             DAG.getNode(ISD::AND, DL, VT, SRA,
10284                         DAG.getConstant(TrueSImm - FalseSImm, DL, VT));
10285         return DAG.getNode(ISD::ADD, DL, VT, AND, FalseV);
10286       }
10287 
10288       if (CCVal == ISD::CondCode::SETGE)
10289         std::swap(TrueV, FalseV);
10290     }
10291 
10292     if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget))
10293       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
10294                          {LHS, RHS, CC, TrueV, FalseV});
10295 
10296     if (!Subtarget.hasShortForwardBranchOpt()) {
10297       // (select c, -1, y) -> -c | y
10298       if (isAllOnesConstant(TrueV)) {
10299         SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, CCVal);
10300         SDValue Neg = DAG.getNegative(C, DL, VT);
10301         return DAG.getNode(ISD::OR, DL, VT, Neg, FalseV);
10302       }
10303       // (select c, y, -1) -> -!c | y
10304       if (isAllOnesConstant(FalseV)) {
10305         SDValue C =
10306             DAG.getSetCC(DL, VT, LHS, RHS, ISD::getSetCCInverse(CCVal, VT));
10307         SDValue Neg = DAG.getNegative(C, DL, VT);
10308         return DAG.getNode(ISD::OR, DL, VT, Neg, TrueV);
10309       }
10310 
10311       // (select c, 0, y) -> -!c & y
10312       if (isNullConstant(TrueV)) {
10313         SDValue C =
10314             DAG.getSetCC(DL, VT, LHS, RHS, ISD::getSetCCInverse(CCVal, VT));
10315         SDValue Neg = DAG.getNegative(C, DL, VT);
10316         return DAG.getNode(ISD::AND, DL, VT, Neg, FalseV);
10317       }
10318       // (select c, y, 0) -> -c & y
10319       if (isNullConstant(FalseV)) {
10320         SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, CCVal);
10321         SDValue Neg = DAG.getNegative(C, DL, VT);
10322         return DAG.getNode(ISD::AND, DL, VT, Neg, TrueV);
10323       }
10324     }
10325 
10326     return SDValue();
10327   }
10328   case RISCVISD::BR_CC: {
10329     SDValue LHS = N->getOperand(1);
10330     SDValue RHS = N->getOperand(2);
10331     SDValue CC = N->getOperand(3);
10332     SDLoc DL(N);
10333 
10334     if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget))
10335       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
10336                          N->getOperand(0), LHS, RHS, CC, N->getOperand(4));
10337 
10338     return SDValue();
10339   }
10340   case ISD::BITREVERSE:
10341     return performBITREVERSECombine(N, DAG, Subtarget);
10342   case ISD::FP_TO_SINT:
10343   case ISD::FP_TO_UINT:
10344     return performFP_TO_INTCombine(N, DCI, Subtarget);
10345   case ISD::FP_TO_SINT_SAT:
10346   case ISD::FP_TO_UINT_SAT:
10347     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
10348   case ISD::FCOPYSIGN: {
10349     EVT VT = N->getValueType(0);
10350     if (!VT.isVector())
10351       break;
10352     // There is a form of VFSGNJ which injects the negated sign of its second
10353     // operand. Try and bubble any FNEG up after the extend/round to produce
10354     // this optimized pattern. Avoid modifying cases where FP_ROUND and
10355     // TRUNC=1.
10356     SDValue In2 = N->getOperand(1);
10357     // Avoid cases where the extend/round has multiple uses, as duplicating
10358     // those is typically more expensive than removing a fneg.
10359     if (!In2.hasOneUse())
10360       break;
10361     if (In2.getOpcode() != ISD::FP_EXTEND &&
10362         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
10363       break;
10364     In2 = In2.getOperand(0);
10365     if (In2.getOpcode() != ISD::FNEG)
10366       break;
10367     SDLoc DL(N);
10368     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
10369     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
10370                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
10371   }
10372   case ISD::MGATHER:
10373   case ISD::MSCATTER:
10374   case ISD::VP_GATHER:
10375   case ISD::VP_SCATTER: {
10376     if (!DCI.isBeforeLegalize())
10377       break;
10378     SDValue Index, ScaleOp;
10379     bool IsIndexSigned = false;
10380     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
10381       Index = VPGSN->getIndex();
10382       ScaleOp = VPGSN->getScale();
10383       IsIndexSigned = VPGSN->isIndexSigned();
10384       assert(!VPGSN->isIndexScaled() &&
10385              "Scaled gather/scatter should not be formed");
10386     } else {
10387       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
10388       Index = MGSN->getIndex();
10389       ScaleOp = MGSN->getScale();
10390       IsIndexSigned = MGSN->isIndexSigned();
10391       assert(!MGSN->isIndexScaled() &&
10392              "Scaled gather/scatter should not be formed");
10393 
10394     }
10395     EVT IndexVT = Index.getValueType();
10396     MVT XLenVT = Subtarget.getXLenVT();
10397     // RISCV indexed loads only support the "unsigned unscaled" addressing
10398     // mode, so anything else must be manually legalized.
10399     bool NeedsIdxLegalization =
10400         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
10401     if (!NeedsIdxLegalization)
10402       break;
10403 
10404     SDLoc DL(N);
10405 
10406     // Any index legalization should first promote to XLenVT, so we don't lose
10407     // bits when scaling. This may create an illegal index type so we let
10408     // LLVM's legalization take care of the splitting.
10409     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
10410     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
10411       IndexVT = IndexVT.changeVectorElementType(XLenVT);
10412       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
10413                           DL, IndexVT, Index);
10414     }
10415 
10416     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_SCALED;
10417     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
10418       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
10419                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
10420                               ScaleOp, VPGN->getMask(),
10421                               VPGN->getVectorLength()},
10422                              VPGN->getMemOperand(), NewIndexTy);
10423     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
10424       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
10425                               {VPSN->getChain(), VPSN->getValue(),
10426                                VPSN->getBasePtr(), Index, ScaleOp,
10427                                VPSN->getMask(), VPSN->getVectorLength()},
10428                               VPSN->getMemOperand(), NewIndexTy);
10429     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
10430       return DAG.getMaskedGather(
10431           N->getVTList(), MGN->getMemoryVT(), DL,
10432           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
10433            MGN->getBasePtr(), Index, ScaleOp},
10434           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
10435     const auto *MSN = cast<MaskedScatterSDNode>(N);
10436     return DAG.getMaskedScatter(
10437         N->getVTList(), MSN->getMemoryVT(), DL,
10438         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
10439          Index, ScaleOp},
10440         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
10441   }
10442   case RISCVISD::SRA_VL:
10443   case RISCVISD::SRL_VL:
10444   case RISCVISD::SHL_VL: {
10445     SDValue ShAmt = N->getOperand(1);
10446     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
10447       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
10448       SDLoc DL(N);
10449       SDValue VL = N->getOperand(3);
10450       EVT VT = N->getValueType(0);
10451       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
10452                           ShAmt.getOperand(1), VL);
10453       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
10454                          N->getOperand(2), N->getOperand(3), N->getOperand(4));
10455     }
10456     break;
10457   }
10458   case ISD::SRA:
10459     if (SDValue V = performSRACombine(N, DAG, Subtarget))
10460       return V;
10461     [[fallthrough]];
10462   case ISD::SRL:
10463   case ISD::SHL: {
10464     SDValue ShAmt = N->getOperand(1);
10465     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
10466       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
10467       SDLoc DL(N);
10468       EVT VT = N->getValueType(0);
10469       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
10470                           ShAmt.getOperand(1),
10471                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
10472       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
10473     }
10474     break;
10475   }
10476   case RISCVISD::ADD_VL:
10477   case RISCVISD::SUB_VL:
10478   case RISCVISD::VWADD_W_VL:
10479   case RISCVISD::VWADDU_W_VL:
10480   case RISCVISD::VWSUB_W_VL:
10481   case RISCVISD::VWSUBU_W_VL:
10482   case RISCVISD::MUL_VL:
10483     return combineBinOp_VLToVWBinOp_VL(N, DCI);
10484   case RISCVISD::VFMADD_VL:
10485   case RISCVISD::VFNMADD_VL:
10486   case RISCVISD::VFMSUB_VL:
10487   case RISCVISD::VFNMSUB_VL: {
10488     // Fold FNEG_VL into FMA opcodes.
10489     SDValue A = N->getOperand(0);
10490     SDValue B = N->getOperand(1);
10491     SDValue C = N->getOperand(2);
10492     SDValue Mask = N->getOperand(3);
10493     SDValue VL = N->getOperand(4);
10494 
10495     auto invertIfNegative = [&Mask, &VL](SDValue &V) {
10496       if (V.getOpcode() == RISCVISD::FNEG_VL && V.getOperand(1) == Mask &&
10497           V.getOperand(2) == VL) {
10498         // Return the negated input.
10499         V = V.getOperand(0);
10500         return true;
10501       }
10502 
10503       return false;
10504     };
10505 
10506     bool NegA = invertIfNegative(A);
10507     bool NegB = invertIfNegative(B);
10508     bool NegC = invertIfNegative(C);
10509 
10510     // If no operands are negated, we're done.
10511     if (!NegA && !NegB && !NegC)
10512       return SDValue();
10513 
10514     unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC);
10515     return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), A, B, C, Mask,
10516                        VL);
10517   }
10518   case ISD::STORE: {
10519     auto *Store = cast<StoreSDNode>(N);
10520     SDValue Val = Store->getValue();
10521     // Combine store of vmv.x.s/vfmv.f.s to vse with VL of 1.
10522     // vfmv.f.s is represented as extract element from 0. Match it late to avoid
10523     // any illegal types.
10524     if (Val.getOpcode() == RISCVISD::VMV_X_S ||
10525         (DCI.isAfterLegalizeDAG() &&
10526          Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
10527          isNullConstant(Val.getOperand(1)))) {
10528       SDValue Src = Val.getOperand(0);
10529       MVT VecVT = Src.getSimpleValueType();
10530       EVT MemVT = Store->getMemoryVT();
10531       // VecVT should be scalable and memory VT should match the element type.
10532       if (VecVT.isScalableVector() &&
10533           MemVT == VecVT.getVectorElementType()) {
10534         SDLoc DL(N);
10535         MVT MaskVT = getMaskTypeFor(VecVT);
10536         return DAG.getStoreVP(
10537             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
10538             DAG.getConstant(1, DL, MaskVT),
10539             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
10540             Store->getMemOperand(), Store->getAddressingMode(),
10541             Store->isTruncatingStore(), /*IsCompress*/ false);
10542       }
10543     }
10544 
10545     break;
10546   }
10547   case ISD::SPLAT_VECTOR: {
10548     EVT VT = N->getValueType(0);
10549     // Only perform this combine on legal MVT types.
10550     if (!isTypeLegal(VT))
10551       break;
10552     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
10553                                          DAG, Subtarget))
10554       return Gather;
10555     break;
10556   }
10557   case RISCVISD::VMV_V_X_VL: {
10558     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
10559     // scalar input.
10560     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
10561     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
10562     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
10563       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
10564         return SDValue(N, 0);
10565 
10566     break;
10567   }
10568   case RISCVISD::VFMV_S_F_VL: {
10569     SDValue Src = N->getOperand(1);
10570     // Try to remove vector->scalar->vector if the scalar->vector is inserting
10571     // into an undef vector.
10572     // TODO: Could use a vslide or vmv.v.v for non-undef.
10573     if (N->getOperand(0).isUndef() &&
10574         Src.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
10575         isNullConstant(Src.getOperand(1)) &&
10576         Src.getOperand(0).getValueType().isScalableVector()) {
10577       EVT VT = N->getValueType(0);
10578       EVT SrcVT = Src.getOperand(0).getValueType();
10579       assert(SrcVT.getVectorElementType() == VT.getVectorElementType());
10580       // Widths match, just return the original vector.
10581       if (SrcVT == VT)
10582         return Src.getOperand(0);
10583       // TODO: Use insert_subvector/extract_subvector to change widen/narrow?
10584     }
10585     break;
10586   }
10587   case ISD::INTRINSIC_WO_CHAIN: {
10588     unsigned IntNo = N->getConstantOperandVal(0);
10589     switch (IntNo) {
10590       // By default we do not combine any intrinsic.
10591     default:
10592       return SDValue();
10593     case Intrinsic::riscv_vcpop:
10594     case Intrinsic::riscv_vcpop_mask:
10595     case Intrinsic::riscv_vfirst:
10596     case Intrinsic::riscv_vfirst_mask: {
10597       SDValue VL = N->getOperand(2);
10598       if (IntNo == Intrinsic::riscv_vcpop_mask ||
10599           IntNo == Intrinsic::riscv_vfirst_mask)
10600         VL = N->getOperand(3);
10601       if (!isNullConstant(VL))
10602         return SDValue();
10603       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
10604       SDLoc DL(N);
10605       EVT VT = N->getValueType(0);
10606       if (IntNo == Intrinsic::riscv_vfirst ||
10607           IntNo == Intrinsic::riscv_vfirst_mask)
10608         return DAG.getConstant(-1, DL, VT);
10609       return DAG.getConstant(0, DL, VT);
10610     }
10611     }
10612   }
10613   case ISD::BITCAST: {
10614     assert(Subtarget.useRVVForFixedLengthVectors());
10615     SDValue N0 = N->getOperand(0);
10616     EVT VT = N->getValueType(0);
10617     EVT SrcVT = N0.getValueType();
10618     // If this is a bitcast between a MVT::v4i1/v2i1/v1i1 and an illegal integer
10619     // type, widen both sides to avoid a trip through memory.
10620     if ((SrcVT == MVT::v1i1 || SrcVT == MVT::v2i1 || SrcVT == MVT::v4i1) &&
10621         VT.isScalarInteger()) {
10622       unsigned NumConcats = 8 / SrcVT.getVectorNumElements();
10623       SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT));
10624       Ops[0] = N0;
10625       SDLoc DL(N);
10626       N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i1, Ops);
10627       N0 = DAG.getBitcast(MVT::i8, N0);
10628       return DAG.getNode(ISD::TRUNCATE, DL, VT, N0);
10629     }
10630 
10631     return SDValue();
10632   }
10633   }
10634 
10635   return SDValue();
10636 }
10637 
10638 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
10639     const SDNode *N, CombineLevel Level) const {
10640   assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA ||
10641           N->getOpcode() == ISD::SRL) &&
10642          "Expected shift op");
10643 
10644   // The following folds are only desirable if `(OP _, c1 << c2)` can be
10645   // materialised in fewer instructions than `(OP _, c1)`:
10646   //
10647   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
10648   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
10649   SDValue N0 = N->getOperand(0);
10650   EVT Ty = N0.getValueType();
10651   if (Ty.isScalarInteger() &&
10652       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
10653     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
10654     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
10655     if (C1 && C2) {
10656       const APInt &C1Int = C1->getAPIntValue();
10657       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
10658 
10659       // We can materialise `c1 << c2` into an add immediate, so it's "free",
10660       // and the combine should happen, to potentially allow further combines
10661       // later.
10662       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
10663           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
10664         return true;
10665 
10666       // We can materialise `c1` in an add immediate, so it's "free", and the
10667       // combine should be prevented.
10668       if (C1Int.getMinSignedBits() <= 64 &&
10669           isLegalAddImmediate(C1Int.getSExtValue()))
10670         return false;
10671 
10672       // Neither constant will fit into an immediate, so find materialisation
10673       // costs.
10674       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
10675                                               Subtarget.getFeatureBits(),
10676                                               /*CompressionCost*/true);
10677       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
10678           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
10679           /*CompressionCost*/true);
10680 
10681       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
10682       // combine should be prevented.
10683       if (C1Cost < ShiftedC1Cost)
10684         return false;
10685     }
10686   }
10687   return true;
10688 }
10689 
10690 bool RISCVTargetLowering::targetShrinkDemandedConstant(
10691     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
10692     TargetLoweringOpt &TLO) const {
10693   // Delay this optimization as late as possible.
10694   if (!TLO.LegalOps)
10695     return false;
10696 
10697   EVT VT = Op.getValueType();
10698   if (VT.isVector())
10699     return false;
10700 
10701   unsigned Opcode = Op.getOpcode();
10702   if (Opcode != ISD::AND && Opcode != ISD::OR && Opcode != ISD::XOR)
10703     return false;
10704 
10705   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
10706   if (!C)
10707     return false;
10708 
10709   const APInt &Mask = C->getAPIntValue();
10710 
10711   // Clear all non-demanded bits initially.
10712   APInt ShrunkMask = Mask & DemandedBits;
10713 
10714   // Try to make a smaller immediate by setting undemanded bits.
10715 
10716   APInt ExpandedMask = Mask | ~DemandedBits;
10717 
10718   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
10719     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
10720   };
10721   auto UseMask = [Mask, Op, &TLO](const APInt &NewMask) -> bool {
10722     if (NewMask == Mask)
10723       return true;
10724     SDLoc DL(Op);
10725     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, Op.getValueType());
10726     SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), DL, Op.getValueType(),
10727                                     Op.getOperand(0), NewC);
10728     return TLO.CombineTo(Op, NewOp);
10729   };
10730 
10731   // If the shrunk mask fits in sign extended 12 bits, let the target
10732   // independent code apply it.
10733   if (ShrunkMask.isSignedIntN(12))
10734     return false;
10735 
10736   // And has a few special cases for zext.
10737   if (Opcode == ISD::AND) {
10738     // Preserve (and X, 0xffff), if zext.h exists use zext.h,
10739     // otherwise use SLLI + SRLI.
10740     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
10741     if (IsLegalMask(NewMask))
10742       return UseMask(NewMask);
10743 
10744     // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
10745     if (VT == MVT::i64) {
10746       APInt NewMask = APInt(64, 0xffffffff);
10747       if (IsLegalMask(NewMask))
10748         return UseMask(NewMask);
10749     }
10750   }
10751 
10752   // For the remaining optimizations, we need to be able to make a negative
10753   // number through a combination of mask and undemanded bits.
10754   if (!ExpandedMask.isNegative())
10755     return false;
10756 
10757   // What is the fewest number of bits we need to represent the negative number.
10758   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
10759 
10760   // Try to make a 12 bit negative immediate. If that fails try to make a 32
10761   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
10762   // If we can't create a simm12, we shouldn't change opaque constants.
10763   APInt NewMask = ShrunkMask;
10764   if (MinSignedBits <= 12)
10765     NewMask.setBitsFrom(11);
10766   else if (!C->isOpaque() && MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
10767     NewMask.setBitsFrom(31);
10768   else
10769     return false;
10770 
10771   // Check that our new mask is a subset of the demanded mask.
10772   assert(IsLegalMask(NewMask));
10773   return UseMask(NewMask);
10774 }
10775 
10776 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
10777   static const uint64_t GREVMasks[] = {
10778       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
10779       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
10780 
10781   for (unsigned Stage = 0; Stage != 6; ++Stage) {
10782     unsigned Shift = 1 << Stage;
10783     if (ShAmt & Shift) {
10784       uint64_t Mask = GREVMasks[Stage];
10785       uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
10786       if (IsGORC)
10787         Res |= x;
10788       x = Res;
10789     }
10790   }
10791 
10792   return x;
10793 }
10794 
10795 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
10796                                                         KnownBits &Known,
10797                                                         const APInt &DemandedElts,
10798                                                         const SelectionDAG &DAG,
10799                                                         unsigned Depth) const {
10800   unsigned BitWidth = Known.getBitWidth();
10801   unsigned Opc = Op.getOpcode();
10802   assert((Opc >= ISD::BUILTIN_OP_END ||
10803           Opc == ISD::INTRINSIC_WO_CHAIN ||
10804           Opc == ISD::INTRINSIC_W_CHAIN ||
10805           Opc == ISD::INTRINSIC_VOID) &&
10806          "Should use MaskedValueIsZero if you don't know whether Op"
10807          " is a target node!");
10808 
10809   Known.resetAll();
10810   switch (Opc) {
10811   default: break;
10812   case RISCVISD::SELECT_CC: {
10813     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
10814     // If we don't know any bits, early out.
10815     if (Known.isUnknown())
10816       break;
10817     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
10818 
10819     // Only known if known in both the LHS and RHS.
10820     Known = KnownBits::commonBits(Known, Known2);
10821     break;
10822   }
10823   case RISCVISD::REMUW: {
10824     KnownBits Known2;
10825     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
10826     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
10827     // We only care about the lower 32 bits.
10828     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
10829     // Restore the original width by sign extending.
10830     Known = Known.sext(BitWidth);
10831     break;
10832   }
10833   case RISCVISD::DIVUW: {
10834     KnownBits Known2;
10835     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
10836     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
10837     // We only care about the lower 32 bits.
10838     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
10839     // Restore the original width by sign extending.
10840     Known = Known.sext(BitWidth);
10841     break;
10842   }
10843   case RISCVISD::CTZW: {
10844     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
10845     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
10846     unsigned LowBits = llvm::bit_width(PossibleTZ);
10847     Known.Zero.setBitsFrom(LowBits);
10848     break;
10849   }
10850   case RISCVISD::CLZW: {
10851     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
10852     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
10853     unsigned LowBits = llvm::bit_width(PossibleLZ);
10854     Known.Zero.setBitsFrom(LowBits);
10855     break;
10856   }
10857   case RISCVISD::BREV8:
10858   case RISCVISD::ORC_B: {
10859     // FIXME: This is based on the non-ratified Zbp GREV and GORC where a
10860     // control value of 7 is equivalent to brev8 and orc.b.
10861     Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
10862     bool IsGORC = Op.getOpcode() == RISCVISD::ORC_B;
10863     // To compute zeros, we need to invert the value and invert it back after.
10864     Known.Zero =
10865         ~computeGREVOrGORC(~Known.Zero.getZExtValue(), 7, IsGORC);
10866     Known.One = computeGREVOrGORC(Known.One.getZExtValue(), 7, IsGORC);
10867     break;
10868   }
10869   case RISCVISD::READ_VLENB: {
10870     // We can use the minimum and maximum VLEN values to bound VLENB.  We
10871     // know VLEN must be a power of two.
10872     const unsigned MinVLenB = Subtarget.getRealMinVLen() / 8;
10873     const unsigned MaxVLenB = Subtarget.getRealMaxVLen() / 8;
10874     assert(MinVLenB > 0 && "READ_VLENB without vector extension enabled?");
10875     Known.Zero.setLowBits(Log2_32(MinVLenB));
10876     Known.Zero.setBitsFrom(Log2_32(MaxVLenB)+1);
10877     if (MaxVLenB == MinVLenB)
10878       Known.One.setBit(Log2_32(MinVLenB));
10879     break;
10880   }
10881   case ISD::INTRINSIC_W_CHAIN:
10882   case ISD::INTRINSIC_WO_CHAIN: {
10883     unsigned IntNo =
10884         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
10885     switch (IntNo) {
10886     default:
10887       // We can't do anything for most intrinsics.
10888       break;
10889     case Intrinsic::riscv_vsetvli:
10890     case Intrinsic::riscv_vsetvlimax:
10891     case Intrinsic::riscv_vsetvli_opt:
10892     case Intrinsic::riscv_vsetvlimax_opt:
10893       // Assume that VL output is positive and would fit in an int32_t.
10894       // TODO: VLEN might be capped at 16 bits in a future V spec update.
10895       if (BitWidth >= 32)
10896         Known.Zero.setBitsFrom(31);
10897       break;
10898     }
10899     break;
10900   }
10901   }
10902 }
10903 
10904 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
10905     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
10906     unsigned Depth) const {
10907   switch (Op.getOpcode()) {
10908   default:
10909     break;
10910   case RISCVISD::SELECT_CC: {
10911     unsigned Tmp =
10912         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
10913     if (Tmp == 1) return 1;  // Early out.
10914     unsigned Tmp2 =
10915         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
10916     return std::min(Tmp, Tmp2);
10917   }
10918   case RISCVISD::ABSW: {
10919     // We expand this at isel to negw+max. The result will have 33 sign bits
10920     // if the input has at least 33 sign bits.
10921     unsigned Tmp =
10922         DAG.ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
10923     if (Tmp < 33) return 1;
10924     return 33;
10925   }
10926   case RISCVISD::SLLW:
10927   case RISCVISD::SRAW:
10928   case RISCVISD::SRLW:
10929   case RISCVISD::DIVW:
10930   case RISCVISD::DIVUW:
10931   case RISCVISD::REMUW:
10932   case RISCVISD::ROLW:
10933   case RISCVISD::RORW:
10934   case RISCVISD::FCVT_W_RV64:
10935   case RISCVISD::FCVT_WU_RV64:
10936   case RISCVISD::STRICT_FCVT_W_RV64:
10937   case RISCVISD::STRICT_FCVT_WU_RV64:
10938     // TODO: As the result is sign-extended, this is conservatively correct. A
10939     // more precise answer could be calculated for SRAW depending on known
10940     // bits in the shift amount.
10941     return 33;
10942   case RISCVISD::VMV_X_S: {
10943     // The number of sign bits of the scalar result is computed by obtaining the
10944     // element type of the input vector operand, subtracting its width from the
10945     // XLEN, and then adding one (sign bit within the element type). If the
10946     // element type is wider than XLen, the least-significant XLEN bits are
10947     // taken.
10948     unsigned XLen = Subtarget.getXLen();
10949     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
10950     if (EltBits <= XLen)
10951       return XLen - EltBits + 1;
10952     break;
10953   }
10954   case ISD::INTRINSIC_W_CHAIN: {
10955     unsigned IntNo = Op.getConstantOperandVal(1);
10956     switch (IntNo) {
10957     default:
10958       break;
10959     case Intrinsic::riscv_masked_atomicrmw_xchg_i64:
10960     case Intrinsic::riscv_masked_atomicrmw_add_i64:
10961     case Intrinsic::riscv_masked_atomicrmw_sub_i64:
10962     case Intrinsic::riscv_masked_atomicrmw_nand_i64:
10963     case Intrinsic::riscv_masked_atomicrmw_max_i64:
10964     case Intrinsic::riscv_masked_atomicrmw_min_i64:
10965     case Intrinsic::riscv_masked_atomicrmw_umax_i64:
10966     case Intrinsic::riscv_masked_atomicrmw_umin_i64:
10967     case Intrinsic::riscv_masked_cmpxchg_i64:
10968       // riscv_masked_{atomicrmw_*,cmpxchg} intrinsics represent an emulated
10969       // narrow atomic operation. These are implemented using atomic
10970       // operations at the minimum supported atomicrmw/cmpxchg width whose
10971       // result is then sign extended to XLEN. With +A, the minimum width is
10972       // 32 for both 64 and 32.
10973       assert(Subtarget.getXLen() == 64);
10974       assert(getMinCmpXchgSizeInBits() == 32);
10975       assert(Subtarget.hasStdExtA());
10976       return 33;
10977     }
10978   }
10979   }
10980 
10981   return 1;
10982 }
10983 
10984 const Constant *
10985 RISCVTargetLowering::getTargetConstantFromLoad(LoadSDNode *Ld) const {
10986   assert(Ld && "Unexpected null LoadSDNode");
10987   if (!ISD::isNormalLoad(Ld))
10988     return nullptr;
10989 
10990   SDValue Ptr = Ld->getBasePtr();
10991 
10992   // Only constant pools with no offset are supported.
10993   auto GetSupportedConstantPool = [](SDValue Ptr) -> ConstantPoolSDNode * {
10994     auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr);
10995     if (!CNode || CNode->isMachineConstantPoolEntry() ||
10996         CNode->getOffset() != 0)
10997       return nullptr;
10998 
10999     return CNode;
11000   };
11001 
11002   // Simple case, LLA.
11003   if (Ptr.getOpcode() == RISCVISD::LLA) {
11004     auto *CNode = GetSupportedConstantPool(Ptr);
11005     if (!CNode || CNode->getTargetFlags() != 0)
11006       return nullptr;
11007 
11008     return CNode->getConstVal();
11009   }
11010 
11011   // Look for a HI and ADD_LO pair.
11012   if (Ptr.getOpcode() != RISCVISD::ADD_LO ||
11013       Ptr.getOperand(0).getOpcode() != RISCVISD::HI)
11014     return nullptr;
11015 
11016   auto *CNodeLo = GetSupportedConstantPool(Ptr.getOperand(1));
11017   auto *CNodeHi = GetSupportedConstantPool(Ptr.getOperand(0).getOperand(0));
11018 
11019   if (!CNodeLo || CNodeLo->getTargetFlags() != RISCVII::MO_LO ||
11020       !CNodeHi || CNodeHi->getTargetFlags() != RISCVII::MO_HI)
11021     return nullptr;
11022 
11023   if (CNodeLo->getConstVal() != CNodeHi->getConstVal())
11024     return nullptr;
11025 
11026   return CNodeLo->getConstVal();
11027 }
11028 
11029 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
11030                                                   MachineBasicBlock *BB) {
11031   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
11032 
11033   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
11034   // Should the count have wrapped while it was being read, we need to try
11035   // again.
11036   // ...
11037   // read:
11038   // rdcycleh x3 # load high word of cycle
11039   // rdcycle  x2 # load low word of cycle
11040   // rdcycleh x4 # load high word of cycle
11041   // bne x3, x4, read # check if high word reads match, otherwise try again
11042   // ...
11043 
11044   MachineFunction &MF = *BB->getParent();
11045   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11046   MachineFunction::iterator It = ++BB->getIterator();
11047 
11048   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
11049   MF.insert(It, LoopMBB);
11050 
11051   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
11052   MF.insert(It, DoneMBB);
11053 
11054   // Transfer the remainder of BB and its successor edges to DoneMBB.
11055   DoneMBB->splice(DoneMBB->begin(), BB,
11056                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11057   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
11058 
11059   BB->addSuccessor(LoopMBB);
11060 
11061   MachineRegisterInfo &RegInfo = MF.getRegInfo();
11062   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
11063   Register LoReg = MI.getOperand(0).getReg();
11064   Register HiReg = MI.getOperand(1).getReg();
11065   DebugLoc DL = MI.getDebugLoc();
11066 
11067   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
11068   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
11069       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
11070       .addReg(RISCV::X0);
11071   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
11072       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
11073       .addReg(RISCV::X0);
11074   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
11075       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
11076       .addReg(RISCV::X0);
11077 
11078   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
11079       .addReg(HiReg)
11080       .addReg(ReadAgainReg)
11081       .addMBB(LoopMBB);
11082 
11083   LoopMBB->addSuccessor(LoopMBB);
11084   LoopMBB->addSuccessor(DoneMBB);
11085 
11086   MI.eraseFromParent();
11087 
11088   return DoneMBB;
11089 }
11090 
11091 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
11092                                              MachineBasicBlock *BB) {
11093   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
11094 
11095   MachineFunction &MF = *BB->getParent();
11096   DebugLoc DL = MI.getDebugLoc();
11097   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
11098   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
11099   Register LoReg = MI.getOperand(0).getReg();
11100   Register HiReg = MI.getOperand(1).getReg();
11101   Register SrcReg = MI.getOperand(2).getReg();
11102   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
11103   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
11104 
11105   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
11106                           RI, Register());
11107   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
11108   MachineMemOperand *MMOLo =
11109       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
11110   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
11111       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
11112   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
11113       .addFrameIndex(FI)
11114       .addImm(0)
11115       .addMemOperand(MMOLo);
11116   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
11117       .addFrameIndex(FI)
11118       .addImm(4)
11119       .addMemOperand(MMOHi);
11120   MI.eraseFromParent(); // The pseudo instruction is gone now.
11121   return BB;
11122 }
11123 
11124 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
11125                                                  MachineBasicBlock *BB) {
11126   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
11127          "Unexpected instruction");
11128 
11129   MachineFunction &MF = *BB->getParent();
11130   DebugLoc DL = MI.getDebugLoc();
11131   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
11132   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
11133   Register DstReg = MI.getOperand(0).getReg();
11134   Register LoReg = MI.getOperand(1).getReg();
11135   Register HiReg = MI.getOperand(2).getReg();
11136   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
11137   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
11138 
11139   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
11140   MachineMemOperand *MMOLo =
11141       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
11142   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
11143       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
11144   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
11145       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
11146       .addFrameIndex(FI)
11147       .addImm(0)
11148       .addMemOperand(MMOLo);
11149   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
11150       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
11151       .addFrameIndex(FI)
11152       .addImm(4)
11153       .addMemOperand(MMOHi);
11154   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI, Register());
11155   MI.eraseFromParent(); // The pseudo instruction is gone now.
11156   return BB;
11157 }
11158 
11159 static bool isSelectPseudo(MachineInstr &MI) {
11160   switch (MI.getOpcode()) {
11161   default:
11162     return false;
11163   case RISCV::Select_GPR_Using_CC_GPR:
11164   case RISCV::Select_FPR16_Using_CC_GPR:
11165   case RISCV::Select_FPR32_Using_CC_GPR:
11166   case RISCV::Select_FPR64_Using_CC_GPR:
11167     return true;
11168   }
11169 }
11170 
11171 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
11172                                         unsigned RelOpcode, unsigned EqOpcode,
11173                                         const RISCVSubtarget &Subtarget) {
11174   DebugLoc DL = MI.getDebugLoc();
11175   Register DstReg = MI.getOperand(0).getReg();
11176   Register Src1Reg = MI.getOperand(1).getReg();
11177   Register Src2Reg = MI.getOperand(2).getReg();
11178   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
11179   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
11180   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
11181 
11182   // Save the current FFLAGS.
11183   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
11184 
11185   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
11186                  .addReg(Src1Reg)
11187                  .addReg(Src2Reg);
11188   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
11189     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
11190 
11191   // Restore the FFLAGS.
11192   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
11193       .addReg(SavedFFlags, RegState::Kill);
11194 
11195   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
11196   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
11197                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
11198                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
11199   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
11200     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
11201 
11202   // Erase the pseudoinstruction.
11203   MI.eraseFromParent();
11204   return BB;
11205 }
11206 
11207 static MachineBasicBlock *
11208 EmitLoweredCascadedSelect(MachineInstr &First, MachineInstr &Second,
11209                           MachineBasicBlock *ThisMBB,
11210                           const RISCVSubtarget &Subtarget) {
11211   // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5)
11212   // Without this, custom-inserter would have generated:
11213   //
11214   //   A
11215   //   | \
11216   //   |  B
11217   //   | /
11218   //   C
11219   //   | \
11220   //   |  D
11221   //   | /
11222   //   E
11223   //
11224   // A: X = ...; Y = ...
11225   // B: empty
11226   // C: Z = PHI [X, A], [Y, B]
11227   // D: empty
11228   // E: PHI [X, C], [Z, D]
11229   //
11230   // If we lower both Select_FPRX_ in a single step, we can instead generate:
11231   //
11232   //   A
11233   //   | \
11234   //   |  C
11235   //   | /|
11236   //   |/ |
11237   //   |  |
11238   //   |  D
11239   //   | /
11240   //   E
11241   //
11242   // A: X = ...; Y = ...
11243   // D: empty
11244   // E: PHI [X, A], [X, C], [Y, D]
11245 
11246   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
11247   const DebugLoc &DL = First.getDebugLoc();
11248   const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
11249   MachineFunction *F = ThisMBB->getParent();
11250   MachineBasicBlock *FirstMBB = F->CreateMachineBasicBlock(LLVM_BB);
11251   MachineBasicBlock *SecondMBB = F->CreateMachineBasicBlock(LLVM_BB);
11252   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11253   MachineFunction::iterator It = ++ThisMBB->getIterator();
11254   F->insert(It, FirstMBB);
11255   F->insert(It, SecondMBB);
11256   F->insert(It, SinkMBB);
11257 
11258   // Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
11259   SinkMBB->splice(SinkMBB->begin(), ThisMBB,
11260                   std::next(MachineBasicBlock::iterator(First)),
11261                   ThisMBB->end());
11262   SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
11263 
11264   // Fallthrough block for ThisMBB.
11265   ThisMBB->addSuccessor(FirstMBB);
11266   // Fallthrough block for FirstMBB.
11267   FirstMBB->addSuccessor(SecondMBB);
11268   ThisMBB->addSuccessor(SinkMBB);
11269   FirstMBB->addSuccessor(SinkMBB);
11270   // This is fallthrough.
11271   SecondMBB->addSuccessor(SinkMBB);
11272 
11273   auto FirstCC = static_cast<RISCVCC::CondCode>(First.getOperand(3).getImm());
11274   Register FLHS = First.getOperand(1).getReg();
11275   Register FRHS = First.getOperand(2).getReg();
11276   // Insert appropriate branch.
11277   BuildMI(FirstMBB, DL, TII.getBrCond(FirstCC))
11278       .addReg(FLHS)
11279       .addReg(FRHS)
11280       .addMBB(SinkMBB);
11281 
11282   Register SLHS = Second.getOperand(1).getReg();
11283   Register SRHS = Second.getOperand(2).getReg();
11284   Register Op1Reg4 = First.getOperand(4).getReg();
11285   Register Op1Reg5 = First.getOperand(5).getReg();
11286 
11287   auto SecondCC = static_cast<RISCVCC::CondCode>(Second.getOperand(3).getImm());
11288   // Insert appropriate branch.
11289   BuildMI(ThisMBB, DL, TII.getBrCond(SecondCC))
11290       .addReg(SLHS)
11291       .addReg(SRHS)
11292       .addMBB(SinkMBB);
11293 
11294   Register DestReg = Second.getOperand(0).getReg();
11295   Register Op2Reg4 = Second.getOperand(4).getReg();
11296   BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII.get(RISCV::PHI), DestReg)
11297       .addReg(Op2Reg4)
11298       .addMBB(ThisMBB)
11299       .addReg(Op1Reg4)
11300       .addMBB(FirstMBB)
11301       .addReg(Op1Reg5)
11302       .addMBB(SecondMBB);
11303 
11304   // Now remove the Select_FPRX_s.
11305   First.eraseFromParent();
11306   Second.eraseFromParent();
11307   return SinkMBB;
11308 }
11309 
11310 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
11311                                            MachineBasicBlock *BB,
11312                                            const RISCVSubtarget &Subtarget) {
11313   // To "insert" Select_* instructions, we actually have to insert the triangle
11314   // control-flow pattern.  The incoming instructions know the destination vreg
11315   // to set, the condition code register to branch on, the true/false values to
11316   // select between, and the condcode to use to select the appropriate branch.
11317   //
11318   // We produce the following control flow:
11319   //     HeadMBB
11320   //     |  \
11321   //     |  IfFalseMBB
11322   //     | /
11323   //    TailMBB
11324   //
11325   // When we find a sequence of selects we attempt to optimize their emission
11326   // by sharing the control flow. Currently we only handle cases where we have
11327   // multiple selects with the exact same condition (same LHS, RHS and CC).
11328   // The selects may be interleaved with other instructions if the other
11329   // instructions meet some requirements we deem safe:
11330   // - They are not pseudo instructions.
11331   // - They are debug instructions. Otherwise,
11332   // - They do not have side-effects, do not access memory and their inputs do
11333   //   not depend on the results of the select pseudo-instructions.
11334   // The TrueV/FalseV operands of the selects cannot depend on the result of
11335   // previous selects in the sequence.
11336   // These conditions could be further relaxed. See the X86 target for a
11337   // related approach and more information.
11338   //
11339   // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5))
11340   // is checked here and handled by a separate function -
11341   // EmitLoweredCascadedSelect.
11342   Register LHS = MI.getOperand(1).getReg();
11343   Register RHS = MI.getOperand(2).getReg();
11344   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
11345 
11346   SmallVector<MachineInstr *, 4> SelectDebugValues;
11347   SmallSet<Register, 4> SelectDests;
11348   SelectDests.insert(MI.getOperand(0).getReg());
11349 
11350   MachineInstr *LastSelectPseudo = &MI;
11351   auto Next = next_nodbg(MI.getIterator(), BB->instr_end());
11352   if (MI.getOpcode() != RISCV::Select_GPR_Using_CC_GPR && Next != BB->end() &&
11353       Next->getOpcode() == MI.getOpcode() &&
11354       Next->getOperand(5).getReg() == MI.getOperand(0).getReg() &&
11355       Next->getOperand(5).isKill()) {
11356     return EmitLoweredCascadedSelect(MI, *Next, BB, Subtarget);
11357   }
11358 
11359   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
11360        SequenceMBBI != E; ++SequenceMBBI) {
11361     if (SequenceMBBI->isDebugInstr())
11362       continue;
11363     if (isSelectPseudo(*SequenceMBBI)) {
11364       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
11365           SequenceMBBI->getOperand(2).getReg() != RHS ||
11366           SequenceMBBI->getOperand(3).getImm() != CC ||
11367           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
11368           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
11369         break;
11370       LastSelectPseudo = &*SequenceMBBI;
11371       SequenceMBBI->collectDebugValues(SelectDebugValues);
11372       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
11373       continue;
11374     }
11375     if (SequenceMBBI->hasUnmodeledSideEffects() ||
11376         SequenceMBBI->mayLoadOrStore() ||
11377         SequenceMBBI->usesCustomInsertionHook())
11378       break;
11379     if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
11380           return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
11381         }))
11382       break;
11383   }
11384 
11385   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
11386   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11387   DebugLoc DL = MI.getDebugLoc();
11388   MachineFunction::iterator I = ++BB->getIterator();
11389 
11390   MachineBasicBlock *HeadMBB = BB;
11391   MachineFunction *F = BB->getParent();
11392   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
11393   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
11394 
11395   F->insert(I, IfFalseMBB);
11396   F->insert(I, TailMBB);
11397 
11398   // Transfer debug instructions associated with the selects to TailMBB.
11399   for (MachineInstr *DebugInstr : SelectDebugValues) {
11400     TailMBB->push_back(DebugInstr->removeFromParent());
11401   }
11402 
11403   // Move all instructions after the sequence to TailMBB.
11404   TailMBB->splice(TailMBB->end(), HeadMBB,
11405                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
11406   // Update machine-CFG edges by transferring all successors of the current
11407   // block to the new block which will contain the Phi nodes for the selects.
11408   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
11409   // Set the successors for HeadMBB.
11410   HeadMBB->addSuccessor(IfFalseMBB);
11411   HeadMBB->addSuccessor(TailMBB);
11412 
11413   // Insert appropriate branch.
11414   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
11415     .addReg(LHS)
11416     .addReg(RHS)
11417     .addMBB(TailMBB);
11418 
11419   // IfFalseMBB just falls through to TailMBB.
11420   IfFalseMBB->addSuccessor(TailMBB);
11421 
11422   // Create PHIs for all of the select pseudo-instructions.
11423   auto SelectMBBI = MI.getIterator();
11424   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
11425   auto InsertionPoint = TailMBB->begin();
11426   while (SelectMBBI != SelectEnd) {
11427     auto Next = std::next(SelectMBBI);
11428     if (isSelectPseudo(*SelectMBBI)) {
11429       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
11430       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
11431               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
11432           .addReg(SelectMBBI->getOperand(4).getReg())
11433           .addMBB(HeadMBB)
11434           .addReg(SelectMBBI->getOperand(5).getReg())
11435           .addMBB(IfFalseMBB);
11436       SelectMBBI->eraseFromParent();
11437     }
11438     SelectMBBI = Next;
11439   }
11440 
11441   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
11442   return TailMBB;
11443 }
11444 
11445 static MachineBasicBlock *
11446 emitVFCVT_RM_MASK(MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode) {
11447   DebugLoc DL = MI.getDebugLoc();
11448 
11449   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
11450 
11451   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
11452   Register SavedFRM = MRI.createVirtualRegister(&RISCV::GPRRegClass);
11453 
11454   // Update FRM and save the old value.
11455   BuildMI(*BB, MI, DL, TII.get(RISCV::SwapFRMImm), SavedFRM)
11456       .addImm(MI.getOperand(4).getImm());
11457 
11458   // Emit an VFCVT without the FRM operand.
11459   assert(MI.getNumOperands() == 8);
11460   auto MIB = BuildMI(*BB, MI, DL, TII.get(Opcode))
11461                  .add(MI.getOperand(0))
11462                  .add(MI.getOperand(1))
11463                  .add(MI.getOperand(2))
11464                  .add(MI.getOperand(3))
11465                  .add(MI.getOperand(5))
11466                  .add(MI.getOperand(6))
11467                  .add(MI.getOperand(7));
11468   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
11469     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
11470 
11471   // Restore FRM.
11472   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFRM))
11473       .addReg(SavedFRM, RegState::Kill);
11474 
11475   // Erase the pseudoinstruction.
11476   MI.eraseFromParent();
11477   return BB;
11478 }
11479 
11480 static MachineBasicBlock *emitVFROUND_NOEXCEPT_MASK(MachineInstr &MI,
11481                                                     MachineBasicBlock *BB,
11482                                                     unsigned CVTXOpc,
11483                                                     unsigned CVTFOpc) {
11484   DebugLoc DL = MI.getDebugLoc();
11485 
11486   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
11487 
11488   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
11489   Register SavedFFLAGS = MRI.createVirtualRegister(&RISCV::GPRRegClass);
11490 
11491   // Save the old value of FFLAGS.
11492   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFLAGS);
11493 
11494   assert(MI.getNumOperands() == 7);
11495 
11496   // Emit a VFCVT_X_F
11497   const TargetRegisterInfo *TRI =
11498       BB->getParent()->getSubtarget().getRegisterInfo();
11499   const TargetRegisterClass *RC = MI.getRegClassConstraint(0, &TII, TRI);
11500   Register Tmp = MRI.createVirtualRegister(RC);
11501   BuildMI(*BB, MI, DL, TII.get(CVTXOpc), Tmp)
11502       .add(MI.getOperand(1))
11503       .add(MI.getOperand(2))
11504       .add(MI.getOperand(3))
11505       .add(MI.getOperand(4))
11506       .add(MI.getOperand(5))
11507       .add(MI.getOperand(6));
11508 
11509   // Emit a VFCVT_F_X
11510   BuildMI(*BB, MI, DL, TII.get(CVTFOpc))
11511       .add(MI.getOperand(0))
11512       .add(MI.getOperand(1))
11513       .addReg(Tmp)
11514       .add(MI.getOperand(3))
11515       .add(MI.getOperand(4))
11516       .add(MI.getOperand(5))
11517       .add(MI.getOperand(6));
11518 
11519   // Restore FFLAGS.
11520   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
11521       .addReg(SavedFFLAGS, RegState::Kill);
11522 
11523   // Erase the pseudoinstruction.
11524   MI.eraseFromParent();
11525   return BB;
11526 }
11527 
11528 static MachineBasicBlock *emitFROUND(MachineInstr &MI, MachineBasicBlock *MBB,
11529                                      const RISCVSubtarget &Subtarget) {
11530   unsigned CmpOpc, F2IOpc, I2FOpc, FSGNJOpc, FSGNJXOpc;
11531   const TargetRegisterClass *RC;
11532   switch (MI.getOpcode()) {
11533   default:
11534     llvm_unreachable("Unexpected opcode");
11535   case RISCV::PseudoFROUND_H:
11536     CmpOpc = RISCV::FLT_H;
11537     F2IOpc = RISCV::FCVT_W_H;
11538     I2FOpc = RISCV::FCVT_H_W;
11539     FSGNJOpc = RISCV::FSGNJ_H;
11540     FSGNJXOpc = RISCV::FSGNJX_H;
11541     RC = &RISCV::FPR16RegClass;
11542     break;
11543   case RISCV::PseudoFROUND_S:
11544     CmpOpc = RISCV::FLT_S;
11545     F2IOpc = RISCV::FCVT_W_S;
11546     I2FOpc = RISCV::FCVT_S_W;
11547     FSGNJOpc = RISCV::FSGNJ_S;
11548     FSGNJXOpc = RISCV::FSGNJX_S;
11549     RC = &RISCV::FPR32RegClass;
11550     break;
11551   case RISCV::PseudoFROUND_D:
11552     assert(Subtarget.is64Bit() && "Expected 64-bit GPR.");
11553     CmpOpc = RISCV::FLT_D;
11554     F2IOpc = RISCV::FCVT_L_D;
11555     I2FOpc = RISCV::FCVT_D_L;
11556     FSGNJOpc = RISCV::FSGNJ_D;
11557     FSGNJXOpc = RISCV::FSGNJX_D;
11558     RC = &RISCV::FPR64RegClass;
11559     break;
11560   }
11561 
11562   const BasicBlock *BB = MBB->getBasicBlock();
11563   DebugLoc DL = MI.getDebugLoc();
11564   MachineFunction::iterator I = ++MBB->getIterator();
11565 
11566   MachineFunction *F = MBB->getParent();
11567   MachineBasicBlock *CvtMBB = F->CreateMachineBasicBlock(BB);
11568   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(BB);
11569 
11570   F->insert(I, CvtMBB);
11571   F->insert(I, DoneMBB);
11572   // Move all instructions after the sequence to DoneMBB.
11573   DoneMBB->splice(DoneMBB->end(), MBB, MachineBasicBlock::iterator(MI),
11574                   MBB->end());
11575   // Update machine-CFG edges by transferring all successors of the current
11576   // block to the new block which will contain the Phi nodes for the selects.
11577   DoneMBB->transferSuccessorsAndUpdatePHIs(MBB);
11578   // Set the successors for MBB.
11579   MBB->addSuccessor(CvtMBB);
11580   MBB->addSuccessor(DoneMBB);
11581 
11582   Register DstReg = MI.getOperand(0).getReg();
11583   Register SrcReg = MI.getOperand(1).getReg();
11584   Register MaxReg = MI.getOperand(2).getReg();
11585   int64_t FRM = MI.getOperand(3).getImm();
11586 
11587   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
11588   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11589 
11590   Register FabsReg = MRI.createVirtualRegister(RC);
11591   BuildMI(MBB, DL, TII.get(FSGNJXOpc), FabsReg).addReg(SrcReg).addReg(SrcReg);
11592 
11593   // Compare the FP value to the max value.
11594   Register CmpReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
11595   auto MIB =
11596       BuildMI(MBB, DL, TII.get(CmpOpc), CmpReg).addReg(FabsReg).addReg(MaxReg);
11597   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
11598     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
11599 
11600   // Insert branch.
11601   BuildMI(MBB, DL, TII.get(RISCV::BEQ))
11602       .addReg(CmpReg)
11603       .addReg(RISCV::X0)
11604       .addMBB(DoneMBB);
11605 
11606   CvtMBB->addSuccessor(DoneMBB);
11607 
11608   // Convert to integer.
11609   Register F2IReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
11610   MIB = BuildMI(CvtMBB, DL, TII.get(F2IOpc), F2IReg).addReg(SrcReg).addImm(FRM);
11611   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
11612     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
11613 
11614   // Convert back to FP.
11615   Register I2FReg = MRI.createVirtualRegister(RC);
11616   MIB = BuildMI(CvtMBB, DL, TII.get(I2FOpc), I2FReg).addReg(F2IReg).addImm(FRM);
11617   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
11618     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
11619 
11620   // Restore the sign bit.
11621   Register CvtReg = MRI.createVirtualRegister(RC);
11622   BuildMI(CvtMBB, DL, TII.get(FSGNJOpc), CvtReg).addReg(I2FReg).addReg(SrcReg);
11623 
11624   // Merge the results.
11625   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(RISCV::PHI), DstReg)
11626       .addReg(SrcReg)
11627       .addMBB(MBB)
11628       .addReg(CvtReg)
11629       .addMBB(CvtMBB);
11630 
11631   MI.eraseFromParent();
11632   return DoneMBB;
11633 }
11634 
11635 MachineBasicBlock *
11636 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11637                                                  MachineBasicBlock *BB) const {
11638   switch (MI.getOpcode()) {
11639   default:
11640     llvm_unreachable("Unexpected instr type to insert");
11641   case RISCV::ReadCycleWide:
11642     assert(!Subtarget.is64Bit() &&
11643            "ReadCycleWrite is only to be used on riscv32");
11644     return emitReadCycleWidePseudo(MI, BB);
11645   case RISCV::Select_GPR_Using_CC_GPR:
11646   case RISCV::Select_FPR16_Using_CC_GPR:
11647   case RISCV::Select_FPR32_Using_CC_GPR:
11648   case RISCV::Select_FPR64_Using_CC_GPR:
11649     return emitSelectPseudo(MI, BB, Subtarget);
11650   case RISCV::BuildPairF64Pseudo:
11651     return emitBuildPairF64Pseudo(MI, BB);
11652   case RISCV::SplitF64Pseudo:
11653     return emitSplitF64Pseudo(MI, BB);
11654   case RISCV::PseudoQuietFLE_H:
11655     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
11656   case RISCV::PseudoQuietFLT_H:
11657     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
11658   case RISCV::PseudoQuietFLE_S:
11659     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
11660   case RISCV::PseudoQuietFLT_S:
11661     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
11662   case RISCV::PseudoQuietFLE_D:
11663     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
11664   case RISCV::PseudoQuietFLT_D:
11665     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
11666 
11667     // =========================================================================
11668     // VFCVT
11669     // =========================================================================
11670 
11671   case RISCV::PseudoVFCVT_RM_X_F_V_M1_MASK:
11672     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M1_MASK);
11673   case RISCV::PseudoVFCVT_RM_X_F_V_M2_MASK:
11674     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M2_MASK);
11675   case RISCV::PseudoVFCVT_RM_X_F_V_M4_MASK:
11676     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M4_MASK);
11677   case RISCV::PseudoVFCVT_RM_X_F_V_M8_MASK:
11678     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M8_MASK);
11679   case RISCV::PseudoVFCVT_RM_X_F_V_MF2_MASK:
11680     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF2_MASK);
11681   case RISCV::PseudoVFCVT_RM_X_F_V_MF4_MASK:
11682     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF4_MASK);
11683 
11684   case RISCV::PseudoVFCVT_RM_XU_F_V_M1_MASK:
11685     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_M1_MASK);
11686   case RISCV::PseudoVFCVT_RM_XU_F_V_M2_MASK:
11687     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_M2_MASK);
11688   case RISCV::PseudoVFCVT_RM_XU_F_V_M4_MASK:
11689     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_M4_MASK);
11690   case RISCV::PseudoVFCVT_RM_XU_F_V_M8_MASK:
11691     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_M8_MASK);
11692   case RISCV::PseudoVFCVT_RM_XU_F_V_MF2_MASK:
11693     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_MF2_MASK);
11694   case RISCV::PseudoVFCVT_RM_XU_F_V_MF4_MASK:
11695     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_MF4_MASK);
11696 
11697   case RISCV::PseudoVFCVT_RM_F_XU_V_M1_MASK:
11698     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_M1_MASK);
11699   case RISCV::PseudoVFCVT_RM_F_XU_V_M2_MASK:
11700     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_M2_MASK);
11701   case RISCV::PseudoVFCVT_RM_F_XU_V_M4_MASK:
11702     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_M4_MASK);
11703   case RISCV::PseudoVFCVT_RM_F_XU_V_M8_MASK:
11704     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_M8_MASK);
11705   case RISCV::PseudoVFCVT_RM_F_XU_V_MF2_MASK:
11706     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_MF2_MASK);
11707   case RISCV::PseudoVFCVT_RM_F_XU_V_MF4_MASK:
11708     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_MF4_MASK);
11709 
11710   case RISCV::PseudoVFCVT_RM_F_X_V_M1_MASK:
11711     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_M1_MASK);
11712   case RISCV::PseudoVFCVT_RM_F_X_V_M2_MASK:
11713     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_M2_MASK);
11714   case RISCV::PseudoVFCVT_RM_F_X_V_M4_MASK:
11715     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_M4_MASK);
11716   case RISCV::PseudoVFCVT_RM_F_X_V_M8_MASK:
11717     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_M8_MASK);
11718   case RISCV::PseudoVFCVT_RM_F_X_V_MF2_MASK:
11719     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_MF2_MASK);
11720   case RISCV::PseudoVFCVT_RM_F_X_V_MF4_MASK:
11721     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_MF4_MASK);
11722 
11723     // =========================================================================
11724     // VFWCVT
11725     // =========================================================================
11726 
11727   case RISCV::PseudoVFWCVT_RM_XU_F_V_M1_MASK:
11728     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M1_MASK);
11729   case RISCV::PseudoVFWCVT_RM_XU_F_V_M2_MASK:
11730     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M2_MASK);
11731   case RISCV::PseudoVFWCVT_RM_XU_F_V_M4_MASK:
11732     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M4_MASK);
11733   case RISCV::PseudoVFWCVT_RM_XU_F_V_MF2_MASK:
11734     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_MF2_MASK);
11735   case RISCV::PseudoVFWCVT_RM_XU_F_V_MF4_MASK:
11736     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_MF4_MASK);
11737 
11738   case RISCV::PseudoVFWCVT_RM_X_F_V_M1_MASK:
11739     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M1_MASK);
11740   case RISCV::PseudoVFWCVT_RM_X_F_V_M2_MASK:
11741     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M2_MASK);
11742   case RISCV::PseudoVFWCVT_RM_X_F_V_M4_MASK:
11743     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M4_MASK);
11744   case RISCV::PseudoVFWCVT_RM_X_F_V_MF2_MASK:
11745     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_MF2_MASK);
11746   case RISCV::PseudoVFWCVT_RM_X_F_V_MF4_MASK:
11747     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_MF4_MASK);
11748 
11749   case RISCV::PseudoVFWCVT_RM_F_XU_V_M1_MASK:
11750     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M1_MASK);
11751   case RISCV::PseudoVFWCVT_RM_F_XU_V_M2_MASK:
11752     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M2_MASK);
11753   case RISCV::PseudoVFWCVT_RM_F_XU_V_M4_MASK:
11754     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M4_MASK);
11755   case RISCV::PseudoVFWCVT_RM_F_XU_V_MF2_MASK:
11756     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF2_MASK);
11757   case RISCV::PseudoVFWCVT_RM_F_XU_V_MF4_MASK:
11758     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF4_MASK);
11759   case RISCV::PseudoVFWCVT_RM_F_XU_V_MF8_MASK:
11760     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF8_MASK);
11761 
11762   case RISCV::PseudoVFWCVT_RM_F_X_V_M1_MASK:
11763     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M1_MASK);
11764   case RISCV::PseudoVFWCVT_RM_F_X_V_M2_MASK:
11765     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M2_MASK);
11766   case RISCV::PseudoVFWCVT_RM_F_X_V_M4_MASK:
11767     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M4_MASK);
11768   case RISCV::PseudoVFWCVT_RM_F_X_V_MF2_MASK:
11769     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF2_MASK);
11770   case RISCV::PseudoVFWCVT_RM_F_X_V_MF4_MASK:
11771     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF4_MASK);
11772   case RISCV::PseudoVFWCVT_RM_F_X_V_MF8_MASK:
11773     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF8_MASK);
11774 
11775     // =========================================================================
11776     // VFNCVT
11777     // =========================================================================
11778 
11779   case RISCV::PseudoVFNCVT_RM_XU_F_W_M1_MASK:
11780     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M1_MASK);
11781   case RISCV::PseudoVFNCVT_RM_XU_F_W_M2_MASK:
11782     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M2_MASK);
11783   case RISCV::PseudoVFNCVT_RM_XU_F_W_M4_MASK:
11784     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M4_MASK);
11785   case RISCV::PseudoVFNCVT_RM_XU_F_W_MF2_MASK:
11786     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_MF2_MASK);
11787   case RISCV::PseudoVFNCVT_RM_XU_F_W_MF4_MASK:
11788     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_MF4_MASK);
11789   case RISCV::PseudoVFNCVT_RM_XU_F_W_MF8_MASK:
11790     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_XU_F_W_MF8_MASK);
11791 
11792   case RISCV::PseudoVFNCVT_RM_X_F_W_M1_MASK:
11793     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M1_MASK);
11794   case RISCV::PseudoVFNCVT_RM_X_F_W_M2_MASK:
11795     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M2_MASK);
11796   case RISCV::PseudoVFNCVT_RM_X_F_W_M4_MASK:
11797     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M4_MASK);
11798   case RISCV::PseudoVFNCVT_RM_X_F_W_MF2_MASK:
11799     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_MF2_MASK);
11800   case RISCV::PseudoVFNCVT_RM_X_F_W_MF4_MASK:
11801     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_MF4_MASK);
11802   case RISCV::PseudoVFNCVT_RM_X_F_W_MF8_MASK:
11803     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_MF8_MASK);
11804 
11805   case RISCV::PseudoVFNCVT_RM_F_XU_W_M1_MASK:
11806     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M1_MASK);
11807   case RISCV::PseudoVFNCVT_RM_F_XU_W_M2_MASK:
11808     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M2_MASK);
11809   case RISCV::PseudoVFNCVT_RM_F_XU_W_M4_MASK:
11810     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M4_MASK);
11811   case RISCV::PseudoVFNCVT_RM_F_XU_W_MF2_MASK:
11812     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_MF2_MASK);
11813   case RISCV::PseudoVFNCVT_RM_F_XU_W_MF4_MASK:
11814     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_MF4_MASK);
11815 
11816   case RISCV::PseudoVFNCVT_RM_F_X_W_M1_MASK:
11817     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M1_MASK);
11818   case RISCV::PseudoVFNCVT_RM_F_X_W_M2_MASK:
11819     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M2_MASK);
11820   case RISCV::PseudoVFNCVT_RM_F_X_W_M4_MASK:
11821     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M4_MASK);
11822   case RISCV::PseudoVFNCVT_RM_F_X_W_MF2_MASK:
11823     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_MF2_MASK);
11824   case RISCV::PseudoVFNCVT_RM_F_X_W_MF4_MASK:
11825     return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_MF4_MASK);
11826 
11827   case RISCV::PseudoVFROUND_NOEXCEPT_V_M1_MASK:
11828     return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M1_MASK,
11829                                      RISCV::PseudoVFCVT_F_X_V_M1_MASK);
11830   case RISCV::PseudoVFROUND_NOEXCEPT_V_M2_MASK:
11831     return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M2_MASK,
11832                                      RISCV::PseudoVFCVT_F_X_V_M2_MASK);
11833   case RISCV::PseudoVFROUND_NOEXCEPT_V_M4_MASK:
11834     return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M4_MASK,
11835                                      RISCV::PseudoVFCVT_F_X_V_M4_MASK);
11836   case RISCV::PseudoVFROUND_NOEXCEPT_V_M8_MASK:
11837     return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M8_MASK,
11838                                      RISCV::PseudoVFCVT_F_X_V_M8_MASK);
11839   case RISCV::PseudoVFROUND_NOEXCEPT_V_MF2_MASK:
11840     return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF2_MASK,
11841                                      RISCV::PseudoVFCVT_F_X_V_MF2_MASK);
11842   case RISCV::PseudoVFROUND_NOEXCEPT_V_MF4_MASK:
11843     return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF4_MASK,
11844                                      RISCV::PseudoVFCVT_F_X_V_MF4_MASK);
11845   case RISCV::PseudoFROUND_H:
11846   case RISCV::PseudoFROUND_S:
11847   case RISCV::PseudoFROUND_D:
11848     return emitFROUND(MI, BB, Subtarget);
11849   }
11850 }
11851 
11852 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11853                                                         SDNode *Node) const {
11854   // Add FRM dependency to any instructions with dynamic rounding mode.
11855   unsigned Opc = MI.getOpcode();
11856   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
11857   if (Idx < 0)
11858     return;
11859   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
11860     return;
11861   // If the instruction already reads FRM, don't add another read.
11862   if (MI.readsRegister(RISCV::FRM))
11863     return;
11864   MI.addOperand(
11865       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
11866 }
11867 
11868 // Calling Convention Implementation.
11869 // The expectations for frontend ABI lowering vary from target to target.
11870 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
11871 // details, but this is a longer term goal. For now, we simply try to keep the
11872 // role of the frontend as simple and well-defined as possible. The rules can
11873 // be summarised as:
11874 // * Never split up large scalar arguments. We handle them here.
11875 // * If a hardfloat calling convention is being used, and the struct may be
11876 // passed in a pair of registers (fp+fp, int+fp), and both registers are
11877 // available, then pass as two separate arguments. If either the GPRs or FPRs
11878 // are exhausted, then pass according to the rule below.
11879 // * If a struct could never be passed in registers or directly in a stack
11880 // slot (as it is larger than 2*XLEN and the floating point rules don't
11881 // apply), then pass it using a pointer with the byval attribute.
11882 // * If a struct is less than 2*XLEN, then coerce to either a two-element
11883 // word-sized array or a 2*XLEN scalar (depending on alignment).
11884 // * The frontend can determine whether a struct is returned by reference or
11885 // not based on its size and fields. If it will be returned by reference, the
11886 // frontend must modify the prototype so a pointer with the sret annotation is
11887 // passed as the first argument. This is not necessary for large scalar
11888 // returns.
11889 // * Struct return values and varargs should be coerced to structs containing
11890 // register-size fields in the same situations they would be for fixed
11891 // arguments.
11892 
11893 static const MCPhysReg ArgGPRs[] = {
11894   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
11895   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
11896 };
11897 static const MCPhysReg ArgFPR16s[] = {
11898   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
11899   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
11900 };
11901 static const MCPhysReg ArgFPR32s[] = {
11902   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
11903   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
11904 };
11905 static const MCPhysReg ArgFPR64s[] = {
11906   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
11907   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
11908 };
11909 // This is an interim calling convention and it may be changed in the future.
11910 static const MCPhysReg ArgVRs[] = {
11911     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
11912     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
11913     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
11914 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
11915                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
11916                                      RISCV::V20M2, RISCV::V22M2};
11917 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
11918                                      RISCV::V20M4};
11919 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
11920 
11921 // Pass a 2*XLEN argument that has been split into two XLEN values through
11922 // registers or the stack as necessary.
11923 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
11924                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
11925                                 MVT ValVT2, MVT LocVT2,
11926                                 ISD::ArgFlagsTy ArgFlags2) {
11927   unsigned XLenInBytes = XLen / 8;
11928   if (Register Reg = State.AllocateReg(ArgGPRs)) {
11929     // At least one half can be passed via register.
11930     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
11931                                      VA1.getLocVT(), CCValAssign::Full));
11932   } else {
11933     // Both halves must be passed on the stack, with proper alignment.
11934     Align StackAlign =
11935         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
11936     State.addLoc(
11937         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
11938                             State.AllocateStack(XLenInBytes, StackAlign),
11939                             VA1.getLocVT(), CCValAssign::Full));
11940     State.addLoc(CCValAssign::getMem(
11941         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
11942         LocVT2, CCValAssign::Full));
11943     return false;
11944   }
11945 
11946   if (Register Reg = State.AllocateReg(ArgGPRs)) {
11947     // The second half can also be passed via register.
11948     State.addLoc(
11949         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
11950   } else {
11951     // The second half is passed via the stack, without additional alignment.
11952     State.addLoc(CCValAssign::getMem(
11953         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
11954         LocVT2, CCValAssign::Full));
11955   }
11956 
11957   return false;
11958 }
11959 
11960 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
11961                                std::optional<unsigned> FirstMaskArgument,
11962                                CCState &State, const RISCVTargetLowering &TLI) {
11963   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
11964   if (RC == &RISCV::VRRegClass) {
11965     // Assign the first mask argument to V0.
11966     // This is an interim calling convention and it may be changed in the
11967     // future.
11968     if (FirstMaskArgument && ValNo == *FirstMaskArgument)
11969       return State.AllocateReg(RISCV::V0);
11970     return State.AllocateReg(ArgVRs);
11971   }
11972   if (RC == &RISCV::VRM2RegClass)
11973     return State.AllocateReg(ArgVRM2s);
11974   if (RC == &RISCV::VRM4RegClass)
11975     return State.AllocateReg(ArgVRM4s);
11976   if (RC == &RISCV::VRM8RegClass)
11977     return State.AllocateReg(ArgVRM8s);
11978   llvm_unreachable("Unhandled register class for ValueType");
11979 }
11980 
11981 // Implements the RISC-V calling convention. Returns true upon failure.
11982 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
11983                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
11984                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
11985                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
11986                      std::optional<unsigned> FirstMaskArgument) {
11987   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
11988   assert(XLen == 32 || XLen == 64);
11989   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
11990 
11991   // Static chain parameter must not be passed in normal argument registers,
11992   // so we assign t2 for it as done in GCC's __builtin_call_with_static_chain
11993   if (ArgFlags.isNest()) {
11994     if (unsigned Reg = State.AllocateReg(RISCV::X7)) {
11995       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
11996       return false;
11997     }
11998   }
11999 
12000   // Any return value split in to more than two values can't be returned
12001   // directly. Vectors are returned via the available vector registers.
12002   if (!LocVT.isVector() && IsRet && ValNo > 1)
12003     return true;
12004 
12005   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
12006   // variadic argument, or if no F16/F32 argument registers are available.
12007   bool UseGPRForF16_F32 = true;
12008   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
12009   // variadic argument, or if no F64 argument registers are available.
12010   bool UseGPRForF64 = true;
12011 
12012   switch (ABI) {
12013   default:
12014     llvm_unreachable("Unexpected ABI");
12015   case RISCVABI::ABI_ILP32:
12016   case RISCVABI::ABI_LP64:
12017     break;
12018   case RISCVABI::ABI_ILP32F:
12019   case RISCVABI::ABI_LP64F:
12020     UseGPRForF16_F32 = !IsFixed;
12021     break;
12022   case RISCVABI::ABI_ILP32D:
12023   case RISCVABI::ABI_LP64D:
12024     UseGPRForF16_F32 = !IsFixed;
12025     UseGPRForF64 = !IsFixed;
12026     break;
12027   }
12028 
12029   // FPR16, FPR32, and FPR64 alias each other.
12030   if (State.getFirstUnallocated(ArgFPR32s) == std::size(ArgFPR32s)) {
12031     UseGPRForF16_F32 = true;
12032     UseGPRForF64 = true;
12033   }
12034 
12035   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
12036   // similar local variables rather than directly checking against the target
12037   // ABI.
12038 
12039   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
12040     LocVT = XLenVT;
12041     LocInfo = CCValAssign::BCvt;
12042   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
12043     LocVT = MVT::i64;
12044     LocInfo = CCValAssign::BCvt;
12045   }
12046 
12047   // If this is a variadic argument, the RISC-V calling convention requires
12048   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
12049   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
12050   // be used regardless of whether the original argument was split during
12051   // legalisation or not. The argument will not be passed by registers if the
12052   // original type is larger than 2*XLEN, so the register alignment rule does
12053   // not apply.
12054   unsigned TwoXLenInBytes = (2 * XLen) / 8;
12055   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
12056       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
12057     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
12058     // Skip 'odd' register if necessary.
12059     if (RegIdx != std::size(ArgGPRs) && RegIdx % 2 == 1)
12060       State.AllocateReg(ArgGPRs);
12061   }
12062 
12063   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
12064   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
12065       State.getPendingArgFlags();
12066 
12067   assert(PendingLocs.size() == PendingArgFlags.size() &&
12068          "PendingLocs and PendingArgFlags out of sync");
12069 
12070   // Handle passing f64 on RV32D with a soft float ABI or when floating point
12071   // registers are exhausted.
12072   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
12073     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
12074            "Can't lower f64 if it is split");
12075     // Depending on available argument GPRS, f64 may be passed in a pair of
12076     // GPRs, split between a GPR and the stack, or passed completely on the
12077     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
12078     // cases.
12079     Register Reg = State.AllocateReg(ArgGPRs);
12080     LocVT = MVT::i32;
12081     if (!Reg) {
12082       unsigned StackOffset = State.AllocateStack(8, Align(8));
12083       State.addLoc(
12084           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
12085       return false;
12086     }
12087     if (!State.AllocateReg(ArgGPRs))
12088       State.AllocateStack(4, Align(4));
12089     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
12090     return false;
12091   }
12092 
12093   // Fixed-length vectors are located in the corresponding scalable-vector
12094   // container types.
12095   if (ValVT.isFixedLengthVector())
12096     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
12097 
12098   // Split arguments might be passed indirectly, so keep track of the pending
12099   // values. Split vectors are passed via a mix of registers and indirectly, so
12100   // treat them as we would any other argument.
12101   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
12102     LocVT = XLenVT;
12103     LocInfo = CCValAssign::Indirect;
12104     PendingLocs.push_back(
12105         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
12106     PendingArgFlags.push_back(ArgFlags);
12107     if (!ArgFlags.isSplitEnd()) {
12108       return false;
12109     }
12110   }
12111 
12112   // If the split argument only had two elements, it should be passed directly
12113   // in registers or on the stack.
12114   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
12115       PendingLocs.size() <= 2) {
12116     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
12117     // Apply the normal calling convention rules to the first half of the
12118     // split argument.
12119     CCValAssign VA = PendingLocs[0];
12120     ISD::ArgFlagsTy AF = PendingArgFlags[0];
12121     PendingLocs.clear();
12122     PendingArgFlags.clear();
12123     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
12124                                ArgFlags);
12125   }
12126 
12127   // Allocate to a register if possible, or else a stack slot.
12128   Register Reg;
12129   unsigned StoreSizeBytes = XLen / 8;
12130   Align StackAlign = Align(XLen / 8);
12131 
12132   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
12133     Reg = State.AllocateReg(ArgFPR16s);
12134   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
12135     Reg = State.AllocateReg(ArgFPR32s);
12136   else if (ValVT == MVT::f64 && !UseGPRForF64)
12137     Reg = State.AllocateReg(ArgFPR64s);
12138   else if (ValVT.isVector()) {
12139     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
12140     if (!Reg) {
12141       // For return values, the vector must be passed fully via registers or
12142       // via the stack.
12143       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
12144       // but we're using all of them.
12145       if (IsRet)
12146         return true;
12147       // Try using a GPR to pass the address
12148       if ((Reg = State.AllocateReg(ArgGPRs))) {
12149         LocVT = XLenVT;
12150         LocInfo = CCValAssign::Indirect;
12151       } else if (ValVT.isScalableVector()) {
12152         LocVT = XLenVT;
12153         LocInfo = CCValAssign::Indirect;
12154       } else {
12155         // Pass fixed-length vectors on the stack.
12156         LocVT = ValVT;
12157         StoreSizeBytes = ValVT.getStoreSize();
12158         // Align vectors to their element sizes, being careful for vXi1
12159         // vectors.
12160         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
12161       }
12162     }
12163   } else {
12164     Reg = State.AllocateReg(ArgGPRs);
12165   }
12166 
12167   unsigned StackOffset =
12168       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
12169 
12170   // If we reach this point and PendingLocs is non-empty, we must be at the
12171   // end of a split argument that must be passed indirectly.
12172   if (!PendingLocs.empty()) {
12173     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
12174     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
12175 
12176     for (auto &It : PendingLocs) {
12177       if (Reg)
12178         It.convertToReg(Reg);
12179       else
12180         It.convertToMem(StackOffset);
12181       State.addLoc(It);
12182     }
12183     PendingLocs.clear();
12184     PendingArgFlags.clear();
12185     return false;
12186   }
12187 
12188   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
12189           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
12190          "Expected an XLenVT or vector types at this stage");
12191 
12192   if (Reg) {
12193     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
12194     return false;
12195   }
12196 
12197   // When a floating-point value is passed on the stack, no bit-conversion is
12198   // needed.
12199   if (ValVT.isFloatingPoint()) {
12200     LocVT = ValVT;
12201     LocInfo = CCValAssign::Full;
12202   }
12203   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
12204   return false;
12205 }
12206 
12207 template <typename ArgTy>
12208 static std::optional<unsigned> preAssignMask(const ArgTy &Args) {
12209   for (const auto &ArgIdx : enumerate(Args)) {
12210     MVT ArgVT = ArgIdx.value().VT;
12211     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
12212       return ArgIdx.index();
12213   }
12214   return std::nullopt;
12215 }
12216 
12217 void RISCVTargetLowering::analyzeInputArgs(
12218     MachineFunction &MF, CCState &CCInfo,
12219     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
12220     RISCVCCAssignFn Fn) const {
12221   unsigned NumArgs = Ins.size();
12222   FunctionType *FType = MF.getFunction().getFunctionType();
12223 
12224   std::optional<unsigned> FirstMaskArgument;
12225   if (Subtarget.hasVInstructions())
12226     FirstMaskArgument = preAssignMask(Ins);
12227 
12228   for (unsigned i = 0; i != NumArgs; ++i) {
12229     MVT ArgVT = Ins[i].VT;
12230     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
12231 
12232     Type *ArgTy = nullptr;
12233     if (IsRet)
12234       ArgTy = FType->getReturnType();
12235     else if (Ins[i].isOrigArg())
12236       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
12237 
12238     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
12239     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
12240            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
12241            FirstMaskArgument)) {
12242       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
12243                         << EVT(ArgVT).getEVTString() << '\n');
12244       llvm_unreachable(nullptr);
12245     }
12246   }
12247 }
12248 
12249 void RISCVTargetLowering::analyzeOutputArgs(
12250     MachineFunction &MF, CCState &CCInfo,
12251     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
12252     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
12253   unsigned NumArgs = Outs.size();
12254 
12255   std::optional<unsigned> FirstMaskArgument;
12256   if (Subtarget.hasVInstructions())
12257     FirstMaskArgument = preAssignMask(Outs);
12258 
12259   for (unsigned i = 0; i != NumArgs; i++) {
12260     MVT ArgVT = Outs[i].VT;
12261     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
12262     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
12263 
12264     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
12265     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
12266            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
12267            FirstMaskArgument)) {
12268       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
12269                         << EVT(ArgVT).getEVTString() << "\n");
12270       llvm_unreachable(nullptr);
12271     }
12272   }
12273 }
12274 
12275 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
12276 // values.
12277 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
12278                                    const CCValAssign &VA, const SDLoc &DL,
12279                                    const RISCVSubtarget &Subtarget) {
12280   switch (VA.getLocInfo()) {
12281   default:
12282     llvm_unreachable("Unexpected CCValAssign::LocInfo");
12283   case CCValAssign::Full:
12284     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
12285       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
12286     break;
12287   case CCValAssign::BCvt:
12288     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
12289       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
12290     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
12291       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
12292     else
12293       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
12294     break;
12295   }
12296   return Val;
12297 }
12298 
12299 // The caller is responsible for loading the full value if the argument is
12300 // passed with CCValAssign::Indirect.
12301 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
12302                                 const CCValAssign &VA, const SDLoc &DL,
12303                                 const ISD::InputArg &In,
12304                                 const RISCVTargetLowering &TLI) {
12305   MachineFunction &MF = DAG.getMachineFunction();
12306   MachineRegisterInfo &RegInfo = MF.getRegInfo();
12307   EVT LocVT = VA.getLocVT();
12308   SDValue Val;
12309   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
12310   Register VReg = RegInfo.createVirtualRegister(RC);
12311   RegInfo.addLiveIn(VA.getLocReg(), VReg);
12312   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
12313 
12314   // If input is sign extended from 32 bits, note it for the SExtWRemoval pass.
12315   if (In.isOrigArg()) {
12316     Argument *OrigArg = MF.getFunction().getArg(In.getOrigArgIndex());
12317     if (OrigArg->getType()->isIntegerTy()) {
12318       unsigned BitWidth = OrigArg->getType()->getIntegerBitWidth();
12319       // An input zero extended from i31 can also be considered sign extended.
12320       if ((BitWidth <= 32 && In.Flags.isSExt()) ||
12321           (BitWidth < 32 && In.Flags.isZExt())) {
12322         RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
12323         RVFI->addSExt32Register(VReg);
12324       }
12325     }
12326   }
12327 
12328   if (VA.getLocInfo() == CCValAssign::Indirect)
12329     return Val;
12330 
12331   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
12332 }
12333 
12334 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
12335                                    const CCValAssign &VA, const SDLoc &DL,
12336                                    const RISCVSubtarget &Subtarget) {
12337   EVT LocVT = VA.getLocVT();
12338 
12339   switch (VA.getLocInfo()) {
12340   default:
12341     llvm_unreachable("Unexpected CCValAssign::LocInfo");
12342   case CCValAssign::Full:
12343     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
12344       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
12345     break;
12346   case CCValAssign::BCvt:
12347     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
12348       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
12349     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
12350       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
12351     else
12352       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
12353     break;
12354   }
12355   return Val;
12356 }
12357 
12358 // The caller is responsible for loading the full value if the argument is
12359 // passed with CCValAssign::Indirect.
12360 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
12361                                 const CCValAssign &VA, const SDLoc &DL) {
12362   MachineFunction &MF = DAG.getMachineFunction();
12363   MachineFrameInfo &MFI = MF.getFrameInfo();
12364   EVT LocVT = VA.getLocVT();
12365   EVT ValVT = VA.getValVT();
12366   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
12367   if (ValVT.isScalableVector()) {
12368     // When the value is a scalable vector, we save the pointer which points to
12369     // the scalable vector value in the stack. The ValVT will be the pointer
12370     // type, instead of the scalable vector type.
12371     ValVT = LocVT;
12372   }
12373   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
12374                                  /*IsImmutable=*/true);
12375   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
12376   SDValue Val;
12377 
12378   ISD::LoadExtType ExtType;
12379   switch (VA.getLocInfo()) {
12380   default:
12381     llvm_unreachable("Unexpected CCValAssign::LocInfo");
12382   case CCValAssign::Full:
12383   case CCValAssign::Indirect:
12384   case CCValAssign::BCvt:
12385     ExtType = ISD::NON_EXTLOAD;
12386     break;
12387   }
12388   Val = DAG.getExtLoad(
12389       ExtType, DL, LocVT, Chain, FIN,
12390       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
12391   return Val;
12392 }
12393 
12394 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
12395                                        const CCValAssign &VA, const SDLoc &DL) {
12396   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
12397          "Unexpected VA");
12398   MachineFunction &MF = DAG.getMachineFunction();
12399   MachineFrameInfo &MFI = MF.getFrameInfo();
12400   MachineRegisterInfo &RegInfo = MF.getRegInfo();
12401 
12402   if (VA.isMemLoc()) {
12403     // f64 is passed on the stack.
12404     int FI =
12405         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
12406     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
12407     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
12408                        MachinePointerInfo::getFixedStack(MF, FI));
12409   }
12410 
12411   assert(VA.isRegLoc() && "Expected register VA assignment");
12412 
12413   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
12414   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
12415   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
12416   SDValue Hi;
12417   if (VA.getLocReg() == RISCV::X17) {
12418     // Second half of f64 is passed on the stack.
12419     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
12420     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
12421     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
12422                      MachinePointerInfo::getFixedStack(MF, FI));
12423   } else {
12424     // Second half of f64 is passed in another GPR.
12425     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
12426     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
12427     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
12428   }
12429   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
12430 }
12431 
12432 // FastCC has less than 1% performance improvement for some particular
12433 // benchmark. But theoretically, it may has benenfit for some cases.
12434 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
12435                             unsigned ValNo, MVT ValVT, MVT LocVT,
12436                             CCValAssign::LocInfo LocInfo,
12437                             ISD::ArgFlagsTy ArgFlags, CCState &State,
12438                             bool IsFixed, bool IsRet, Type *OrigTy,
12439                             const RISCVTargetLowering &TLI,
12440                             std::optional<unsigned> FirstMaskArgument) {
12441 
12442   // X5 and X6 might be used for save-restore libcall.
12443   static const MCPhysReg GPRList[] = {
12444       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
12445       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
12446       RISCV::X29, RISCV::X30, RISCV::X31};
12447 
12448   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
12449     if (unsigned Reg = State.AllocateReg(GPRList)) {
12450       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
12451       return false;
12452     }
12453   }
12454 
12455   if (LocVT == MVT::f16) {
12456     static const MCPhysReg FPR16List[] = {
12457         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
12458         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
12459         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
12460         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
12461     if (unsigned Reg = State.AllocateReg(FPR16List)) {
12462       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
12463       return false;
12464     }
12465   }
12466 
12467   if (LocVT == MVT::f32) {
12468     static const MCPhysReg FPR32List[] = {
12469         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
12470         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
12471         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
12472         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
12473     if (unsigned Reg = State.AllocateReg(FPR32List)) {
12474       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
12475       return false;
12476     }
12477   }
12478 
12479   if (LocVT == MVT::f64) {
12480     static const MCPhysReg FPR64List[] = {
12481         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
12482         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
12483         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
12484         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
12485     if (unsigned Reg = State.AllocateReg(FPR64List)) {
12486       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
12487       return false;
12488     }
12489   }
12490 
12491   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
12492     unsigned Offset4 = State.AllocateStack(4, Align(4));
12493     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
12494     return false;
12495   }
12496 
12497   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
12498     unsigned Offset5 = State.AllocateStack(8, Align(8));
12499     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
12500     return false;
12501   }
12502 
12503   if (LocVT.isVector()) {
12504     if (unsigned Reg =
12505             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
12506       // Fixed-length vectors are located in the corresponding scalable-vector
12507       // container types.
12508       if (ValVT.isFixedLengthVector())
12509         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
12510       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
12511     } else {
12512       // Try and pass the address via a "fast" GPR.
12513       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
12514         LocInfo = CCValAssign::Indirect;
12515         LocVT = TLI.getSubtarget().getXLenVT();
12516         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
12517       } else if (ValVT.isFixedLengthVector()) {
12518         auto StackAlign =
12519             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
12520         unsigned StackOffset =
12521             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
12522         State.addLoc(
12523             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
12524       } else {
12525         // Can't pass scalable vectors on the stack.
12526         return true;
12527       }
12528     }
12529 
12530     return false;
12531   }
12532 
12533   return true; // CC didn't match.
12534 }
12535 
12536 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
12537                          CCValAssign::LocInfo LocInfo,
12538                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
12539 
12540   if (ArgFlags.isNest()) {
12541     report_fatal_error(
12542         "Attribute 'nest' is not supported in GHC calling convention");
12543   }
12544 
12545   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
12546     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
12547     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
12548     static const MCPhysReg GPRList[] = {
12549         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
12550         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
12551     if (unsigned Reg = State.AllocateReg(GPRList)) {
12552       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
12553       return false;
12554     }
12555   }
12556 
12557   if (LocVT == MVT::f32) {
12558     // Pass in STG registers: F1, ..., F6
12559     //                        fs0 ... fs5
12560     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
12561                                           RISCV::F18_F, RISCV::F19_F,
12562                                           RISCV::F20_F, RISCV::F21_F};
12563     if (unsigned Reg = State.AllocateReg(FPR32List)) {
12564       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
12565       return false;
12566     }
12567   }
12568 
12569   if (LocVT == MVT::f64) {
12570     // Pass in STG registers: D1, ..., D6
12571     //                        fs6 ... fs11
12572     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
12573                                           RISCV::F24_D, RISCV::F25_D,
12574                                           RISCV::F26_D, RISCV::F27_D};
12575     if (unsigned Reg = State.AllocateReg(FPR64List)) {
12576       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
12577       return false;
12578     }
12579   }
12580 
12581   report_fatal_error("No registers left in GHC calling convention");
12582   return true;
12583 }
12584 
12585 // Transform physical registers into virtual registers.
12586 SDValue RISCVTargetLowering::LowerFormalArguments(
12587     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
12588     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
12589     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
12590 
12591   MachineFunction &MF = DAG.getMachineFunction();
12592 
12593   switch (CallConv) {
12594   default:
12595     report_fatal_error("Unsupported calling convention");
12596   case CallingConv::C:
12597   case CallingConv::Fast:
12598     break;
12599   case CallingConv::GHC:
12600     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
12601         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
12602       report_fatal_error(
12603         "GHC calling convention requires the F and D instruction set extensions");
12604   }
12605 
12606   const Function &Func = MF.getFunction();
12607   if (Func.hasFnAttribute("interrupt")) {
12608     if (!Func.arg_empty())
12609       report_fatal_error(
12610         "Functions with the interrupt attribute cannot have arguments!");
12611 
12612     StringRef Kind =
12613       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
12614 
12615     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
12616       report_fatal_error(
12617         "Function interrupt attribute argument not supported!");
12618   }
12619 
12620   EVT PtrVT = getPointerTy(DAG.getDataLayout());
12621   MVT XLenVT = Subtarget.getXLenVT();
12622   unsigned XLenInBytes = Subtarget.getXLen() / 8;
12623   // Used with vargs to acumulate store chains.
12624   std::vector<SDValue> OutChains;
12625 
12626   // Assign locations to all of the incoming arguments.
12627   SmallVector<CCValAssign, 16> ArgLocs;
12628   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
12629 
12630   if (CallConv == CallingConv::GHC)
12631     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
12632   else
12633     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
12634                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
12635                                                    : CC_RISCV);
12636 
12637   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
12638     CCValAssign &VA = ArgLocs[i];
12639     SDValue ArgValue;
12640     // Passing f64 on RV32D with a soft float ABI must be handled as a special
12641     // case.
12642     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
12643       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
12644     else if (VA.isRegLoc())
12645       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, Ins[i], *this);
12646     else
12647       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
12648 
12649     if (VA.getLocInfo() == CCValAssign::Indirect) {
12650       // If the original argument was split and passed by reference (e.g. i128
12651       // on RV32), we need to load all parts of it here (using the same
12652       // address). Vectors may be partly split to registers and partly to the
12653       // stack, in which case the base address is partly offset and subsequent
12654       // stores are relative to that.
12655       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
12656                                    MachinePointerInfo()));
12657       unsigned ArgIndex = Ins[i].OrigArgIndex;
12658       unsigned ArgPartOffset = Ins[i].PartOffset;
12659       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
12660       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
12661         CCValAssign &PartVA = ArgLocs[i + 1];
12662         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
12663         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
12664         if (PartVA.getValVT().isScalableVector())
12665           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
12666         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
12667         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
12668                                      MachinePointerInfo()));
12669         ++i;
12670       }
12671       continue;
12672     }
12673     InVals.push_back(ArgValue);
12674   }
12675 
12676   if (any_of(ArgLocs,
12677              [](CCValAssign &VA) { return VA.getLocVT().isScalableVector(); }))
12678     MF.getInfo<RISCVMachineFunctionInfo>()->setIsVectorCall();
12679 
12680   if (IsVarArg) {
12681     ArrayRef<MCPhysReg> ArgRegs = ArrayRef(ArgGPRs);
12682     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
12683     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
12684     MachineFrameInfo &MFI = MF.getFrameInfo();
12685     MachineRegisterInfo &RegInfo = MF.getRegInfo();
12686     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
12687 
12688     // Offset of the first variable argument from stack pointer, and size of
12689     // the vararg save area. For now, the varargs save area is either zero or
12690     // large enough to hold a0-a7.
12691     int VaArgOffset, VarArgsSaveSize;
12692 
12693     // If all registers are allocated, then all varargs must be passed on the
12694     // stack and we don't need to save any argregs.
12695     if (ArgRegs.size() == Idx) {
12696       VaArgOffset = CCInfo.getNextStackOffset();
12697       VarArgsSaveSize = 0;
12698     } else {
12699       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
12700       VaArgOffset = -VarArgsSaveSize;
12701     }
12702 
12703     // Record the frame index of the first variable argument
12704     // which is a value necessary to VASTART.
12705     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
12706     RVFI->setVarArgsFrameIndex(FI);
12707 
12708     // If saving an odd number of registers then create an extra stack slot to
12709     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
12710     // offsets to even-numbered registered remain 2*XLEN-aligned.
12711     if (Idx % 2) {
12712       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
12713       VarArgsSaveSize += XLenInBytes;
12714     }
12715 
12716     // Copy the integer registers that may have been used for passing varargs
12717     // to the vararg save area.
12718     for (unsigned I = Idx; I < ArgRegs.size();
12719          ++I, VaArgOffset += XLenInBytes) {
12720       const Register Reg = RegInfo.createVirtualRegister(RC);
12721       RegInfo.addLiveIn(ArgRegs[I], Reg);
12722       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
12723       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
12724       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
12725       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
12726                                    MachinePointerInfo::getFixedStack(MF, FI));
12727       cast<StoreSDNode>(Store.getNode())
12728           ->getMemOperand()
12729           ->setValue((Value *)nullptr);
12730       OutChains.push_back(Store);
12731     }
12732     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
12733   }
12734 
12735   // All stores are grouped in one node to allow the matching between
12736   // the size of Ins and InVals. This only happens for vararg functions.
12737   if (!OutChains.empty()) {
12738     OutChains.push_back(Chain);
12739     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
12740   }
12741 
12742   return Chain;
12743 }
12744 
12745 /// isEligibleForTailCallOptimization - Check whether the call is eligible
12746 /// for tail call optimization.
12747 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
12748 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
12749     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
12750     const SmallVector<CCValAssign, 16> &ArgLocs) const {
12751 
12752   auto &Callee = CLI.Callee;
12753   auto CalleeCC = CLI.CallConv;
12754   auto &Outs = CLI.Outs;
12755   auto &Caller = MF.getFunction();
12756   auto CallerCC = Caller.getCallingConv();
12757 
12758   // Exception-handling functions need a special set of instructions to
12759   // indicate a return to the hardware. Tail-calling another function would
12760   // probably break this.
12761   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
12762   // should be expanded as new function attributes are introduced.
12763   if (Caller.hasFnAttribute("interrupt"))
12764     return false;
12765 
12766   // Do not tail call opt if the stack is used to pass parameters.
12767   if (CCInfo.getNextStackOffset() != 0)
12768     return false;
12769 
12770   // Do not tail call opt if any parameters need to be passed indirectly.
12771   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
12772   // passed indirectly. So the address of the value will be passed in a
12773   // register, or if not available, then the address is put on the stack. In
12774   // order to pass indirectly, space on the stack often needs to be allocated
12775   // in order to store the value. In this case the CCInfo.getNextStackOffset()
12776   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
12777   // are passed CCValAssign::Indirect.
12778   for (auto &VA : ArgLocs)
12779     if (VA.getLocInfo() == CCValAssign::Indirect)
12780       return false;
12781 
12782   // Do not tail call opt if either caller or callee uses struct return
12783   // semantics.
12784   auto IsCallerStructRet = Caller.hasStructRetAttr();
12785   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
12786   if (IsCallerStructRet || IsCalleeStructRet)
12787     return false;
12788 
12789   // Externally-defined functions with weak linkage should not be
12790   // tail-called. The behaviour of branch instructions in this situation (as
12791   // used for tail calls) is implementation-defined, so we cannot rely on the
12792   // linker replacing the tail call with a return.
12793   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
12794     const GlobalValue *GV = G->getGlobal();
12795     if (GV->hasExternalWeakLinkage())
12796       return false;
12797   }
12798 
12799   // The callee has to preserve all registers the caller needs to preserve.
12800   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
12801   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
12802   if (CalleeCC != CallerCC) {
12803     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
12804     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
12805       return false;
12806   }
12807 
12808   // Byval parameters hand the function a pointer directly into the stack area
12809   // we want to reuse during a tail call. Working around this *is* possible
12810   // but less efficient and uglier in LowerCall.
12811   for (auto &Arg : Outs)
12812     if (Arg.Flags.isByVal())
12813       return false;
12814 
12815   return true;
12816 }
12817 
12818 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
12819   return DAG.getDataLayout().getPrefTypeAlign(
12820       VT.getTypeForEVT(*DAG.getContext()));
12821 }
12822 
12823 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
12824 // and output parameter nodes.
12825 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
12826                                        SmallVectorImpl<SDValue> &InVals) const {
12827   SelectionDAG &DAG = CLI.DAG;
12828   SDLoc &DL = CLI.DL;
12829   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
12830   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
12831   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
12832   SDValue Chain = CLI.Chain;
12833   SDValue Callee = CLI.Callee;
12834   bool &IsTailCall = CLI.IsTailCall;
12835   CallingConv::ID CallConv = CLI.CallConv;
12836   bool IsVarArg = CLI.IsVarArg;
12837   EVT PtrVT = getPointerTy(DAG.getDataLayout());
12838   MVT XLenVT = Subtarget.getXLenVT();
12839 
12840   MachineFunction &MF = DAG.getMachineFunction();
12841 
12842   // Analyze the operands of the call, assigning locations to each operand.
12843   SmallVector<CCValAssign, 16> ArgLocs;
12844   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
12845 
12846   if (CallConv == CallingConv::GHC)
12847     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
12848   else
12849     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
12850                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
12851                                                     : CC_RISCV);
12852 
12853   // Check if it's really possible to do a tail call.
12854   if (IsTailCall)
12855     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
12856 
12857   if (IsTailCall)
12858     ++NumTailCalls;
12859   else if (CLI.CB && CLI.CB->isMustTailCall())
12860     report_fatal_error("failed to perform tail call elimination on a call "
12861                        "site marked musttail");
12862 
12863   // Get a count of how many bytes are to be pushed on the stack.
12864   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
12865 
12866   // Create local copies for byval args
12867   SmallVector<SDValue, 8> ByValArgs;
12868   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
12869     ISD::ArgFlagsTy Flags = Outs[i].Flags;
12870     if (!Flags.isByVal())
12871       continue;
12872 
12873     SDValue Arg = OutVals[i];
12874     unsigned Size = Flags.getByValSize();
12875     Align Alignment = Flags.getNonZeroByValAlign();
12876 
12877     int FI =
12878         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
12879     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
12880     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
12881 
12882     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
12883                           /*IsVolatile=*/false,
12884                           /*AlwaysInline=*/false, IsTailCall,
12885                           MachinePointerInfo(), MachinePointerInfo());
12886     ByValArgs.push_back(FIPtr);
12887   }
12888 
12889   if (!IsTailCall)
12890     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
12891 
12892   // Copy argument values to their designated locations.
12893   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
12894   SmallVector<SDValue, 8> MemOpChains;
12895   SDValue StackPtr;
12896   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
12897     CCValAssign &VA = ArgLocs[i];
12898     SDValue ArgValue = OutVals[i];
12899     ISD::ArgFlagsTy Flags = Outs[i].Flags;
12900 
12901     // Handle passing f64 on RV32D with a soft float ABI as a special case.
12902     bool IsF64OnRV32DSoftABI =
12903         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
12904     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
12905       SDValue SplitF64 = DAG.getNode(
12906           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
12907       SDValue Lo = SplitF64.getValue(0);
12908       SDValue Hi = SplitF64.getValue(1);
12909 
12910       Register RegLo = VA.getLocReg();
12911       RegsToPass.push_back(std::make_pair(RegLo, Lo));
12912 
12913       if (RegLo == RISCV::X17) {
12914         // Second half of f64 is passed on the stack.
12915         // Work out the address of the stack slot.
12916         if (!StackPtr.getNode())
12917           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
12918         // Emit the store.
12919         MemOpChains.push_back(
12920             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
12921       } else {
12922         // Second half of f64 is passed in another GPR.
12923         assert(RegLo < RISCV::X31 && "Invalid register pair");
12924         Register RegHigh = RegLo + 1;
12925         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
12926       }
12927       continue;
12928     }
12929 
12930     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
12931     // as any other MemLoc.
12932 
12933     // Promote the value if needed.
12934     // For now, only handle fully promoted and indirect arguments.
12935     if (VA.getLocInfo() == CCValAssign::Indirect) {
12936       // Store the argument in a stack slot and pass its address.
12937       Align StackAlign =
12938           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
12939                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
12940       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
12941       // If the original argument was split (e.g. i128), we need
12942       // to store the required parts of it here (and pass just one address).
12943       // Vectors may be partly split to registers and partly to the stack, in
12944       // which case the base address is partly offset and subsequent stores are
12945       // relative to that.
12946       unsigned ArgIndex = Outs[i].OrigArgIndex;
12947       unsigned ArgPartOffset = Outs[i].PartOffset;
12948       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
12949       // Calculate the total size to store. We don't have access to what we're
12950       // actually storing other than performing the loop and collecting the
12951       // info.
12952       SmallVector<std::pair<SDValue, SDValue>> Parts;
12953       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
12954         SDValue PartValue = OutVals[i + 1];
12955         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
12956         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
12957         EVT PartVT = PartValue.getValueType();
12958         if (PartVT.isScalableVector())
12959           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
12960         StoredSize += PartVT.getStoreSize();
12961         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
12962         Parts.push_back(std::make_pair(PartValue, Offset));
12963         ++i;
12964       }
12965       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
12966       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
12967       MemOpChains.push_back(
12968           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
12969                        MachinePointerInfo::getFixedStack(MF, FI)));
12970       for (const auto &Part : Parts) {
12971         SDValue PartValue = Part.first;
12972         SDValue PartOffset = Part.second;
12973         SDValue Address =
12974             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
12975         MemOpChains.push_back(
12976             DAG.getStore(Chain, DL, PartValue, Address,
12977                          MachinePointerInfo::getFixedStack(MF, FI)));
12978       }
12979       ArgValue = SpillSlot;
12980     } else {
12981       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
12982     }
12983 
12984     // Use local copy if it is a byval arg.
12985     if (Flags.isByVal())
12986       ArgValue = ByValArgs[j++];
12987 
12988     if (VA.isRegLoc()) {
12989       // Queue up the argument copies and emit them at the end.
12990       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
12991     } else {
12992       assert(VA.isMemLoc() && "Argument not register or memory");
12993       assert(!IsTailCall && "Tail call not allowed if stack is used "
12994                             "for passing parameters");
12995 
12996       // Work out the address of the stack slot.
12997       if (!StackPtr.getNode())
12998         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
12999       SDValue Address =
13000           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
13001                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
13002 
13003       // Emit the store.
13004       MemOpChains.push_back(
13005           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
13006     }
13007   }
13008 
13009   // Join the stores, which are independent of one another.
13010   if (!MemOpChains.empty())
13011     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
13012 
13013   SDValue Glue;
13014 
13015   // Build a sequence of copy-to-reg nodes, chained and glued together.
13016   for (auto &Reg : RegsToPass) {
13017     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
13018     Glue = Chain.getValue(1);
13019   }
13020 
13021   // Validate that none of the argument registers have been marked as
13022   // reserved, if so report an error. Do the same for the return address if this
13023   // is not a tailcall.
13024   validateCCReservedRegs(RegsToPass, MF);
13025   if (!IsTailCall &&
13026       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
13027     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
13028         MF.getFunction(),
13029         "Return address register required, but has been reserved."});
13030 
13031   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
13032   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
13033   // split it and then direct call can be matched by PseudoCALL.
13034   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
13035     const GlobalValue *GV = S->getGlobal();
13036 
13037     unsigned OpFlags = RISCVII::MO_CALL;
13038     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
13039       OpFlags = RISCVII::MO_PLT;
13040 
13041     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
13042   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
13043     unsigned OpFlags = RISCVII::MO_CALL;
13044 
13045     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
13046                                                  nullptr))
13047       OpFlags = RISCVII::MO_PLT;
13048 
13049     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
13050   }
13051 
13052   // The first call operand is the chain and the second is the target address.
13053   SmallVector<SDValue, 8> Ops;
13054   Ops.push_back(Chain);
13055   Ops.push_back(Callee);
13056 
13057   // Add argument registers to the end of the list so that they are
13058   // known live into the call.
13059   for (auto &Reg : RegsToPass)
13060     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
13061 
13062   if (!IsTailCall) {
13063     // Add a register mask operand representing the call-preserved registers.
13064     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
13065     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
13066     assert(Mask && "Missing call preserved mask for calling convention");
13067     Ops.push_back(DAG.getRegisterMask(Mask));
13068   }
13069 
13070   // Glue the call to the argument copies, if any.
13071   if (Glue.getNode())
13072     Ops.push_back(Glue);
13073 
13074   // Emit the call.
13075   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
13076 
13077   if (IsTailCall) {
13078     MF.getFrameInfo().setHasTailCall();
13079     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
13080   }
13081 
13082   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
13083   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
13084   Glue = Chain.getValue(1);
13085 
13086   // Mark the end of the call, which is glued to the call itself.
13087   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL);
13088   Glue = Chain.getValue(1);
13089 
13090   // Assign locations to each value returned by this call.
13091   SmallVector<CCValAssign, 16> RVLocs;
13092   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
13093   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
13094 
13095   // Copy all of the result registers out of their specified physreg.
13096   for (auto &VA : RVLocs) {
13097     // Copy the value out
13098     SDValue RetValue =
13099         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
13100     // Glue the RetValue to the end of the call sequence
13101     Chain = RetValue.getValue(1);
13102     Glue = RetValue.getValue(2);
13103 
13104     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
13105       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
13106       SDValue RetValue2 =
13107           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
13108       Chain = RetValue2.getValue(1);
13109       Glue = RetValue2.getValue(2);
13110       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
13111                              RetValue2);
13112     }
13113 
13114     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
13115 
13116     InVals.push_back(RetValue);
13117   }
13118 
13119   return Chain;
13120 }
13121 
13122 bool RISCVTargetLowering::CanLowerReturn(
13123     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
13124     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
13125   SmallVector<CCValAssign, 16> RVLocs;
13126   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
13127 
13128   std::optional<unsigned> FirstMaskArgument;
13129   if (Subtarget.hasVInstructions())
13130     FirstMaskArgument = preAssignMask(Outs);
13131 
13132   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
13133     MVT VT = Outs[i].VT;
13134     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
13135     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
13136     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
13137                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
13138                  *this, FirstMaskArgument))
13139       return false;
13140   }
13141   return true;
13142 }
13143 
13144 SDValue
13145 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
13146                                  bool IsVarArg,
13147                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
13148                                  const SmallVectorImpl<SDValue> &OutVals,
13149                                  const SDLoc &DL, SelectionDAG &DAG) const {
13150   MachineFunction &MF = DAG.getMachineFunction();
13151   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
13152 
13153   // Stores the assignment of the return value to a location.
13154   SmallVector<CCValAssign, 16> RVLocs;
13155 
13156   // Info about the registers and stack slot.
13157   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
13158                  *DAG.getContext());
13159 
13160   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
13161                     nullptr, CC_RISCV);
13162 
13163   if (CallConv == CallingConv::GHC && !RVLocs.empty())
13164     report_fatal_error("GHC functions return void only");
13165 
13166   SDValue Glue;
13167   SmallVector<SDValue, 4> RetOps(1, Chain);
13168 
13169   // Copy the result values into the output registers.
13170   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
13171     SDValue Val = OutVals[i];
13172     CCValAssign &VA = RVLocs[i];
13173     assert(VA.isRegLoc() && "Can only return in registers!");
13174 
13175     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
13176       // Handle returning f64 on RV32D with a soft float ABI.
13177       assert(VA.isRegLoc() && "Expected return via registers");
13178       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
13179                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
13180       SDValue Lo = SplitF64.getValue(0);
13181       SDValue Hi = SplitF64.getValue(1);
13182       Register RegLo = VA.getLocReg();
13183       assert(RegLo < RISCV::X31 && "Invalid register pair");
13184       Register RegHi = RegLo + 1;
13185 
13186       if (STI.isRegisterReservedByUser(RegLo) ||
13187           STI.isRegisterReservedByUser(RegHi))
13188         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
13189             MF.getFunction(),
13190             "Return value register required, but has been reserved."});
13191 
13192       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
13193       Glue = Chain.getValue(1);
13194       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
13195       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
13196       Glue = Chain.getValue(1);
13197       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
13198     } else {
13199       // Handle a 'normal' return.
13200       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
13201       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
13202 
13203       if (STI.isRegisterReservedByUser(VA.getLocReg()))
13204         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
13205             MF.getFunction(),
13206             "Return value register required, but has been reserved."});
13207 
13208       // Guarantee that all emitted copies are stuck together.
13209       Glue = Chain.getValue(1);
13210       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
13211     }
13212   }
13213 
13214   RetOps[0] = Chain; // Update chain.
13215 
13216   // Add the glue node if we have it.
13217   if (Glue.getNode()) {
13218     RetOps.push_back(Glue);
13219   }
13220 
13221   if (any_of(RVLocs,
13222              [](CCValAssign &VA) { return VA.getLocVT().isScalableVector(); }))
13223     MF.getInfo<RISCVMachineFunctionInfo>()->setIsVectorCall();
13224 
13225   unsigned RetOpc = RISCVISD::RET_FLAG;
13226   // Interrupt service routines use different return instructions.
13227   const Function &Func = DAG.getMachineFunction().getFunction();
13228   if (Func.hasFnAttribute("interrupt")) {
13229     if (!Func.getReturnType()->isVoidTy())
13230       report_fatal_error(
13231           "Functions with the interrupt attribute must have void return type!");
13232 
13233     MachineFunction &MF = DAG.getMachineFunction();
13234     StringRef Kind =
13235       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
13236 
13237     if (Kind == "user")
13238       RetOpc = RISCVISD::URET_FLAG;
13239     else if (Kind == "supervisor")
13240       RetOpc = RISCVISD::SRET_FLAG;
13241     else
13242       RetOpc = RISCVISD::MRET_FLAG;
13243   }
13244 
13245   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
13246 }
13247 
13248 void RISCVTargetLowering::validateCCReservedRegs(
13249     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
13250     MachineFunction &MF) const {
13251   const Function &F = MF.getFunction();
13252   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
13253 
13254   if (llvm::any_of(Regs, [&STI](auto Reg) {
13255         return STI.isRegisterReservedByUser(Reg.first);
13256       }))
13257     F.getContext().diagnose(DiagnosticInfoUnsupported{
13258         F, "Argument register required, but has been reserved."});
13259 }
13260 
13261 // Check if the result of the node is only used as a return value, as
13262 // otherwise we can't perform a tail-call.
13263 bool RISCVTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
13264   if (N->getNumValues() != 1)
13265     return false;
13266   if (!N->hasNUsesOfValue(1, 0))
13267     return false;
13268 
13269   SDNode *Copy = *N->use_begin();
13270   // TODO: Handle additional opcodes in order to support tail-calling libcalls
13271   // with soft float ABIs.
13272   if (Copy->getOpcode() != ISD::CopyToReg) {
13273     return false;
13274   }
13275 
13276   // If the ISD::CopyToReg has a glue operand, we conservatively assume it
13277   // isn't safe to perform a tail call.
13278   if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == MVT::Glue)
13279     return false;
13280 
13281   // The copy must be used by a RISCVISD::RET_FLAG, and nothing else.
13282   bool HasRet = false;
13283   for (SDNode *Node : Copy->uses()) {
13284     if (Node->getOpcode() != RISCVISD::RET_FLAG)
13285       return false;
13286     HasRet = true;
13287   }
13288   if (!HasRet)
13289     return false;
13290 
13291   Chain = Copy->getOperand(0);
13292   return true;
13293 }
13294 
13295 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
13296   return CI->isTailCall();
13297 }
13298 
13299 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
13300 #define NODE_NAME_CASE(NODE)                                                   \
13301   case RISCVISD::NODE:                                                         \
13302     return "RISCVISD::" #NODE;
13303   // clang-format off
13304   switch ((RISCVISD::NodeType)Opcode) {
13305   case RISCVISD::FIRST_NUMBER:
13306     break;
13307   NODE_NAME_CASE(RET_FLAG)
13308   NODE_NAME_CASE(URET_FLAG)
13309   NODE_NAME_CASE(SRET_FLAG)
13310   NODE_NAME_CASE(MRET_FLAG)
13311   NODE_NAME_CASE(CALL)
13312   NODE_NAME_CASE(SELECT_CC)
13313   NODE_NAME_CASE(BR_CC)
13314   NODE_NAME_CASE(BuildPairF64)
13315   NODE_NAME_CASE(SplitF64)
13316   NODE_NAME_CASE(TAIL)
13317   NODE_NAME_CASE(ADD_LO)
13318   NODE_NAME_CASE(HI)
13319   NODE_NAME_CASE(LLA)
13320   NODE_NAME_CASE(ADD_TPREL)
13321   NODE_NAME_CASE(LA)
13322   NODE_NAME_CASE(LA_TLS_IE)
13323   NODE_NAME_CASE(LA_TLS_GD)
13324   NODE_NAME_CASE(MULHSU)
13325   NODE_NAME_CASE(SLLW)
13326   NODE_NAME_CASE(SRAW)
13327   NODE_NAME_CASE(SRLW)
13328   NODE_NAME_CASE(DIVW)
13329   NODE_NAME_CASE(DIVUW)
13330   NODE_NAME_CASE(REMUW)
13331   NODE_NAME_CASE(ROLW)
13332   NODE_NAME_CASE(RORW)
13333   NODE_NAME_CASE(CLZW)
13334   NODE_NAME_CASE(CTZW)
13335   NODE_NAME_CASE(ABSW)
13336   NODE_NAME_CASE(FMV_H_X)
13337   NODE_NAME_CASE(FMV_X_ANYEXTH)
13338   NODE_NAME_CASE(FMV_X_SIGNEXTH)
13339   NODE_NAME_CASE(FMV_W_X_RV64)
13340   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
13341   NODE_NAME_CASE(FCVT_X)
13342   NODE_NAME_CASE(FCVT_XU)
13343   NODE_NAME_CASE(FCVT_W_RV64)
13344   NODE_NAME_CASE(FCVT_WU_RV64)
13345   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
13346   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
13347   NODE_NAME_CASE(FROUND)
13348   NODE_NAME_CASE(READ_CYCLE_WIDE)
13349   NODE_NAME_CASE(BREV8)
13350   NODE_NAME_CASE(ORC_B)
13351   NODE_NAME_CASE(ZIP)
13352   NODE_NAME_CASE(UNZIP)
13353   NODE_NAME_CASE(VMV_V_X_VL)
13354   NODE_NAME_CASE(VFMV_V_F_VL)
13355   NODE_NAME_CASE(VMV_X_S)
13356   NODE_NAME_CASE(VMV_S_X_VL)
13357   NODE_NAME_CASE(VFMV_S_F_VL)
13358   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
13359   NODE_NAME_CASE(READ_VLENB)
13360   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
13361   NODE_NAME_CASE(VSLIDEUP_VL)
13362   NODE_NAME_CASE(VSLIDE1UP_VL)
13363   NODE_NAME_CASE(VSLIDEDOWN_VL)
13364   NODE_NAME_CASE(VSLIDE1DOWN_VL)
13365   NODE_NAME_CASE(VID_VL)
13366   NODE_NAME_CASE(VFNCVT_ROD_VL)
13367   NODE_NAME_CASE(VECREDUCE_ADD_VL)
13368   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
13369   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
13370   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
13371   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
13372   NODE_NAME_CASE(VECREDUCE_AND_VL)
13373   NODE_NAME_CASE(VECREDUCE_OR_VL)
13374   NODE_NAME_CASE(VECREDUCE_XOR_VL)
13375   NODE_NAME_CASE(VECREDUCE_FADD_VL)
13376   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
13377   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
13378   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
13379   NODE_NAME_CASE(ADD_VL)
13380   NODE_NAME_CASE(AND_VL)
13381   NODE_NAME_CASE(MUL_VL)
13382   NODE_NAME_CASE(OR_VL)
13383   NODE_NAME_CASE(SDIV_VL)
13384   NODE_NAME_CASE(SHL_VL)
13385   NODE_NAME_CASE(SREM_VL)
13386   NODE_NAME_CASE(SRA_VL)
13387   NODE_NAME_CASE(SRL_VL)
13388   NODE_NAME_CASE(SUB_VL)
13389   NODE_NAME_CASE(UDIV_VL)
13390   NODE_NAME_CASE(UREM_VL)
13391   NODE_NAME_CASE(XOR_VL)
13392   NODE_NAME_CASE(SADDSAT_VL)
13393   NODE_NAME_CASE(UADDSAT_VL)
13394   NODE_NAME_CASE(SSUBSAT_VL)
13395   NODE_NAME_CASE(USUBSAT_VL)
13396   NODE_NAME_CASE(FADD_VL)
13397   NODE_NAME_CASE(FSUB_VL)
13398   NODE_NAME_CASE(FMUL_VL)
13399   NODE_NAME_CASE(FDIV_VL)
13400   NODE_NAME_CASE(FNEG_VL)
13401   NODE_NAME_CASE(FABS_VL)
13402   NODE_NAME_CASE(FSQRT_VL)
13403   NODE_NAME_CASE(VFMADD_VL)
13404   NODE_NAME_CASE(VFNMADD_VL)
13405   NODE_NAME_CASE(VFMSUB_VL)
13406   NODE_NAME_CASE(VFNMSUB_VL)
13407   NODE_NAME_CASE(FCOPYSIGN_VL)
13408   NODE_NAME_CASE(SMIN_VL)
13409   NODE_NAME_CASE(SMAX_VL)
13410   NODE_NAME_CASE(UMIN_VL)
13411   NODE_NAME_CASE(UMAX_VL)
13412   NODE_NAME_CASE(FMINNUM_VL)
13413   NODE_NAME_CASE(FMAXNUM_VL)
13414   NODE_NAME_CASE(MULHS_VL)
13415   NODE_NAME_CASE(MULHU_VL)
13416   NODE_NAME_CASE(VFCVT_RTZ_X_F_VL)
13417   NODE_NAME_CASE(VFCVT_RTZ_XU_F_VL)
13418   NODE_NAME_CASE(VFCVT_RM_X_F_VL)
13419   NODE_NAME_CASE(VFCVT_RM_XU_F_VL)
13420   NODE_NAME_CASE(VFCVT_X_F_VL)
13421   NODE_NAME_CASE(VFCVT_XU_F_VL)
13422   NODE_NAME_CASE(VFROUND_NOEXCEPT_VL)
13423   NODE_NAME_CASE(SINT_TO_FP_VL)
13424   NODE_NAME_CASE(UINT_TO_FP_VL)
13425   NODE_NAME_CASE(VFCVT_RM_F_XU_VL)
13426   NODE_NAME_CASE(VFCVT_RM_F_X_VL)
13427   NODE_NAME_CASE(FP_EXTEND_VL)
13428   NODE_NAME_CASE(FP_ROUND_VL)
13429   NODE_NAME_CASE(VWMUL_VL)
13430   NODE_NAME_CASE(VWMULU_VL)
13431   NODE_NAME_CASE(VWMULSU_VL)
13432   NODE_NAME_CASE(VWADD_VL)
13433   NODE_NAME_CASE(VWADDU_VL)
13434   NODE_NAME_CASE(VWSUB_VL)
13435   NODE_NAME_CASE(VWSUBU_VL)
13436   NODE_NAME_CASE(VWADD_W_VL)
13437   NODE_NAME_CASE(VWADDU_W_VL)
13438   NODE_NAME_CASE(VWSUB_W_VL)
13439   NODE_NAME_CASE(VWSUBU_W_VL)
13440   NODE_NAME_CASE(VNSRL_VL)
13441   NODE_NAME_CASE(SETCC_VL)
13442   NODE_NAME_CASE(VSELECT_VL)
13443   NODE_NAME_CASE(VP_MERGE_VL)
13444   NODE_NAME_CASE(VMAND_VL)
13445   NODE_NAME_CASE(VMOR_VL)
13446   NODE_NAME_CASE(VMXOR_VL)
13447   NODE_NAME_CASE(VMCLR_VL)
13448   NODE_NAME_CASE(VMSET_VL)
13449   NODE_NAME_CASE(VRGATHER_VX_VL)
13450   NODE_NAME_CASE(VRGATHER_VV_VL)
13451   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
13452   NODE_NAME_CASE(VSEXT_VL)
13453   NODE_NAME_CASE(VZEXT_VL)
13454   NODE_NAME_CASE(VCPOP_VL)
13455   NODE_NAME_CASE(VFIRST_VL)
13456   NODE_NAME_CASE(READ_CSR)
13457   NODE_NAME_CASE(WRITE_CSR)
13458   NODE_NAME_CASE(SWAP_CSR)
13459   }
13460   // clang-format on
13461   return nullptr;
13462 #undef NODE_NAME_CASE
13463 }
13464 
13465 /// getConstraintType - Given a constraint letter, return the type of
13466 /// constraint it is for this target.
13467 RISCVTargetLowering::ConstraintType
13468 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
13469   if (Constraint.size() == 1) {
13470     switch (Constraint[0]) {
13471     default:
13472       break;
13473     case 'f':
13474       return C_RegisterClass;
13475     case 'I':
13476     case 'J':
13477     case 'K':
13478       return C_Immediate;
13479     case 'A':
13480       return C_Memory;
13481     case 'S': // A symbolic address
13482       return C_Other;
13483     }
13484   } else {
13485     if (Constraint == "vr" || Constraint == "vm")
13486       return C_RegisterClass;
13487   }
13488   return TargetLowering::getConstraintType(Constraint);
13489 }
13490 
13491 std::pair<unsigned, const TargetRegisterClass *>
13492 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
13493                                                   StringRef Constraint,
13494                                                   MVT VT) const {
13495   // First, see if this is a constraint that directly corresponds to a
13496   // RISCV register class.
13497   if (Constraint.size() == 1) {
13498     switch (Constraint[0]) {
13499     case 'r':
13500       // TODO: Support fixed vectors up to XLen for P extension?
13501       if (VT.isVector())
13502         break;
13503       return std::make_pair(0U, &RISCV::GPRRegClass);
13504     case 'f':
13505       if (Subtarget.hasStdExtZfhOrZfhmin() && VT == MVT::f16)
13506         return std::make_pair(0U, &RISCV::FPR16RegClass);
13507       if (Subtarget.hasStdExtF() && VT == MVT::f32)
13508         return std::make_pair(0U, &RISCV::FPR32RegClass);
13509       if (Subtarget.hasStdExtD() && VT == MVT::f64)
13510         return std::make_pair(0U, &RISCV::FPR64RegClass);
13511       break;
13512     default:
13513       break;
13514     }
13515   } else if (Constraint == "vr") {
13516     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
13517                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
13518       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
13519         return std::make_pair(0U, RC);
13520     }
13521   } else if (Constraint == "vm") {
13522     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
13523       return std::make_pair(0U, &RISCV::VMV0RegClass);
13524   }
13525 
13526   // Clang will correctly decode the usage of register name aliases into their
13527   // official names. However, other frontends like `rustc` do not. This allows
13528   // users of these frontends to use the ABI names for registers in LLVM-style
13529   // register constraints.
13530   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
13531                                .Case("{zero}", RISCV::X0)
13532                                .Case("{ra}", RISCV::X1)
13533                                .Case("{sp}", RISCV::X2)
13534                                .Case("{gp}", RISCV::X3)
13535                                .Case("{tp}", RISCV::X4)
13536                                .Case("{t0}", RISCV::X5)
13537                                .Case("{t1}", RISCV::X6)
13538                                .Case("{t2}", RISCV::X7)
13539                                .Cases("{s0}", "{fp}", RISCV::X8)
13540                                .Case("{s1}", RISCV::X9)
13541                                .Case("{a0}", RISCV::X10)
13542                                .Case("{a1}", RISCV::X11)
13543                                .Case("{a2}", RISCV::X12)
13544                                .Case("{a3}", RISCV::X13)
13545                                .Case("{a4}", RISCV::X14)
13546                                .Case("{a5}", RISCV::X15)
13547                                .Case("{a6}", RISCV::X16)
13548                                .Case("{a7}", RISCV::X17)
13549                                .Case("{s2}", RISCV::X18)
13550                                .Case("{s3}", RISCV::X19)
13551                                .Case("{s4}", RISCV::X20)
13552                                .Case("{s5}", RISCV::X21)
13553                                .Case("{s6}", RISCV::X22)
13554                                .Case("{s7}", RISCV::X23)
13555                                .Case("{s8}", RISCV::X24)
13556                                .Case("{s9}", RISCV::X25)
13557                                .Case("{s10}", RISCV::X26)
13558                                .Case("{s11}", RISCV::X27)
13559                                .Case("{t3}", RISCV::X28)
13560                                .Case("{t4}", RISCV::X29)
13561                                .Case("{t5}", RISCV::X30)
13562                                .Case("{t6}", RISCV::X31)
13563                                .Default(RISCV::NoRegister);
13564   if (XRegFromAlias != RISCV::NoRegister)
13565     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
13566 
13567   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
13568   // TableGen record rather than the AsmName to choose registers for InlineAsm
13569   // constraints, plus we want to match those names to the widest floating point
13570   // register type available, manually select floating point registers here.
13571   //
13572   // The second case is the ABI name of the register, so that frontends can also
13573   // use the ABI names in register constraint lists.
13574   if (Subtarget.hasStdExtF()) {
13575     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
13576                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
13577                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
13578                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
13579                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
13580                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
13581                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
13582                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
13583                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
13584                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
13585                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
13586                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
13587                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
13588                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
13589                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
13590                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
13591                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
13592                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
13593                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
13594                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
13595                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
13596                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
13597                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
13598                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
13599                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
13600                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
13601                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
13602                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
13603                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
13604                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
13605                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
13606                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
13607                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
13608                         .Default(RISCV::NoRegister);
13609     if (FReg != RISCV::NoRegister) {
13610       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
13611       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
13612         unsigned RegNo = FReg - RISCV::F0_F;
13613         unsigned DReg = RISCV::F0_D + RegNo;
13614         return std::make_pair(DReg, &RISCV::FPR64RegClass);
13615       }
13616       if (VT == MVT::f32 || VT == MVT::Other)
13617         return std::make_pair(FReg, &RISCV::FPR32RegClass);
13618       if (Subtarget.hasStdExtZfhOrZfhmin() && VT == MVT::f16) {
13619         unsigned RegNo = FReg - RISCV::F0_F;
13620         unsigned HReg = RISCV::F0_H + RegNo;
13621         return std::make_pair(HReg, &RISCV::FPR16RegClass);
13622       }
13623     }
13624   }
13625 
13626   if (Subtarget.hasVInstructions()) {
13627     Register VReg = StringSwitch<Register>(Constraint.lower())
13628                         .Case("{v0}", RISCV::V0)
13629                         .Case("{v1}", RISCV::V1)
13630                         .Case("{v2}", RISCV::V2)
13631                         .Case("{v3}", RISCV::V3)
13632                         .Case("{v4}", RISCV::V4)
13633                         .Case("{v5}", RISCV::V5)
13634                         .Case("{v6}", RISCV::V6)
13635                         .Case("{v7}", RISCV::V7)
13636                         .Case("{v8}", RISCV::V8)
13637                         .Case("{v9}", RISCV::V9)
13638                         .Case("{v10}", RISCV::V10)
13639                         .Case("{v11}", RISCV::V11)
13640                         .Case("{v12}", RISCV::V12)
13641                         .Case("{v13}", RISCV::V13)
13642                         .Case("{v14}", RISCV::V14)
13643                         .Case("{v15}", RISCV::V15)
13644                         .Case("{v16}", RISCV::V16)
13645                         .Case("{v17}", RISCV::V17)
13646                         .Case("{v18}", RISCV::V18)
13647                         .Case("{v19}", RISCV::V19)
13648                         .Case("{v20}", RISCV::V20)
13649                         .Case("{v21}", RISCV::V21)
13650                         .Case("{v22}", RISCV::V22)
13651                         .Case("{v23}", RISCV::V23)
13652                         .Case("{v24}", RISCV::V24)
13653                         .Case("{v25}", RISCV::V25)
13654                         .Case("{v26}", RISCV::V26)
13655                         .Case("{v27}", RISCV::V27)
13656                         .Case("{v28}", RISCV::V28)
13657                         .Case("{v29}", RISCV::V29)
13658                         .Case("{v30}", RISCV::V30)
13659                         .Case("{v31}", RISCV::V31)
13660                         .Default(RISCV::NoRegister);
13661     if (VReg != RISCV::NoRegister) {
13662       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
13663         return std::make_pair(VReg, &RISCV::VMRegClass);
13664       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
13665         return std::make_pair(VReg, &RISCV::VRRegClass);
13666       for (const auto *RC :
13667            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
13668         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
13669           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
13670           return std::make_pair(VReg, RC);
13671         }
13672       }
13673     }
13674   }
13675 
13676   std::pair<Register, const TargetRegisterClass *> Res =
13677       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13678 
13679   // If we picked one of the Zfinx register classes, remap it to the GPR class.
13680   // FIXME: When Zfinx is supported in CodeGen this will need to take the
13681   // Subtarget into account.
13682   if (Res.second == &RISCV::GPRF16RegClass ||
13683       Res.second == &RISCV::GPRF32RegClass ||
13684       Res.second == &RISCV::GPRF64RegClass)
13685     return std::make_pair(Res.first, &RISCV::GPRRegClass);
13686 
13687   return Res;
13688 }
13689 
13690 unsigned
13691 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
13692   // Currently only support length 1 constraints.
13693   if (ConstraintCode.size() == 1) {
13694     switch (ConstraintCode[0]) {
13695     case 'A':
13696       return InlineAsm::Constraint_A;
13697     default:
13698       break;
13699     }
13700   }
13701 
13702   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
13703 }
13704 
13705 void RISCVTargetLowering::LowerAsmOperandForConstraint(
13706     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
13707     SelectionDAG &DAG) const {
13708   // Currently only support length 1 constraints.
13709   if (Constraint.length() == 1) {
13710     switch (Constraint[0]) {
13711     case 'I':
13712       // Validate & create a 12-bit signed immediate operand.
13713       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
13714         uint64_t CVal = C->getSExtValue();
13715         if (isInt<12>(CVal))
13716           Ops.push_back(
13717               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
13718       }
13719       return;
13720     case 'J':
13721       // Validate & create an integer zero operand.
13722       if (auto *C = dyn_cast<ConstantSDNode>(Op))
13723         if (C->getZExtValue() == 0)
13724           Ops.push_back(
13725               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
13726       return;
13727     case 'K':
13728       // Validate & create a 5-bit unsigned immediate operand.
13729       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
13730         uint64_t CVal = C->getZExtValue();
13731         if (isUInt<5>(CVal))
13732           Ops.push_back(
13733               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
13734       }
13735       return;
13736     case 'S':
13737       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
13738         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
13739                                                  GA->getValueType(0)));
13740       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
13741         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
13742                                                 BA->getValueType(0)));
13743       }
13744       return;
13745     default:
13746       break;
13747     }
13748   }
13749   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13750 }
13751 
13752 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
13753                                                    Instruction *Inst,
13754                                                    AtomicOrdering Ord) const {
13755   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
13756     return Builder.CreateFence(Ord);
13757   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
13758     return Builder.CreateFence(AtomicOrdering::Release);
13759   return nullptr;
13760 }
13761 
13762 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
13763                                                     Instruction *Inst,
13764                                                     AtomicOrdering Ord) const {
13765   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
13766     return Builder.CreateFence(AtomicOrdering::Acquire);
13767   return nullptr;
13768 }
13769 
13770 TargetLowering::AtomicExpansionKind
13771 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
13772   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
13773   // point operations can't be used in an lr/sc sequence without breaking the
13774   // forward-progress guarantee.
13775   if (AI->isFloatingPointOperation() ||
13776       AI->getOperation() == AtomicRMWInst::UIncWrap ||
13777       AI->getOperation() == AtomicRMWInst::UDecWrap)
13778     return AtomicExpansionKind::CmpXChg;
13779 
13780   // Don't expand forced atomics, we want to have __sync libcalls instead.
13781   if (Subtarget.hasForcedAtomics())
13782     return AtomicExpansionKind::None;
13783 
13784   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
13785   if (Size == 8 || Size == 16)
13786     return AtomicExpansionKind::MaskedIntrinsic;
13787   return AtomicExpansionKind::None;
13788 }
13789 
13790 static Intrinsic::ID
13791 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
13792   if (XLen == 32) {
13793     switch (BinOp) {
13794     default:
13795       llvm_unreachable("Unexpected AtomicRMW BinOp");
13796     case AtomicRMWInst::Xchg:
13797       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
13798     case AtomicRMWInst::Add:
13799       return Intrinsic::riscv_masked_atomicrmw_add_i32;
13800     case AtomicRMWInst::Sub:
13801       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
13802     case AtomicRMWInst::Nand:
13803       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
13804     case AtomicRMWInst::Max:
13805       return Intrinsic::riscv_masked_atomicrmw_max_i32;
13806     case AtomicRMWInst::Min:
13807       return Intrinsic::riscv_masked_atomicrmw_min_i32;
13808     case AtomicRMWInst::UMax:
13809       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
13810     case AtomicRMWInst::UMin:
13811       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
13812     }
13813   }
13814 
13815   if (XLen == 64) {
13816     switch (BinOp) {
13817     default:
13818       llvm_unreachable("Unexpected AtomicRMW BinOp");
13819     case AtomicRMWInst::Xchg:
13820       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
13821     case AtomicRMWInst::Add:
13822       return Intrinsic::riscv_masked_atomicrmw_add_i64;
13823     case AtomicRMWInst::Sub:
13824       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
13825     case AtomicRMWInst::Nand:
13826       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
13827     case AtomicRMWInst::Max:
13828       return Intrinsic::riscv_masked_atomicrmw_max_i64;
13829     case AtomicRMWInst::Min:
13830       return Intrinsic::riscv_masked_atomicrmw_min_i64;
13831     case AtomicRMWInst::UMax:
13832       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
13833     case AtomicRMWInst::UMin:
13834       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
13835     }
13836   }
13837 
13838   llvm_unreachable("Unexpected XLen\n");
13839 }
13840 
13841 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
13842     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
13843     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
13844   unsigned XLen = Subtarget.getXLen();
13845   Value *Ordering =
13846       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
13847   Type *Tys[] = {AlignedAddr->getType()};
13848   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
13849       AI->getModule(),
13850       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
13851 
13852   if (XLen == 64) {
13853     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
13854     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
13855     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
13856   }
13857 
13858   Value *Result;
13859 
13860   // Must pass the shift amount needed to sign extend the loaded value prior
13861   // to performing a signed comparison for min/max. ShiftAmt is the number of
13862   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
13863   // is the number of bits to left+right shift the value in order to
13864   // sign-extend.
13865   if (AI->getOperation() == AtomicRMWInst::Min ||
13866       AI->getOperation() == AtomicRMWInst::Max) {
13867     const DataLayout &DL = AI->getModule()->getDataLayout();
13868     unsigned ValWidth =
13869         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
13870     Value *SextShamt =
13871         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
13872     Result = Builder.CreateCall(LrwOpScwLoop,
13873                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
13874   } else {
13875     Result =
13876         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
13877   }
13878 
13879   if (XLen == 64)
13880     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
13881   return Result;
13882 }
13883 
13884 TargetLowering::AtomicExpansionKind
13885 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
13886     AtomicCmpXchgInst *CI) const {
13887   // Don't expand forced atomics, we want to have __sync libcalls instead.
13888   if (Subtarget.hasForcedAtomics())
13889     return AtomicExpansionKind::None;
13890 
13891   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
13892   if (Size == 8 || Size == 16)
13893     return AtomicExpansionKind::MaskedIntrinsic;
13894   return AtomicExpansionKind::None;
13895 }
13896 
13897 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
13898     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
13899     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
13900   unsigned XLen = Subtarget.getXLen();
13901   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
13902   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
13903   if (XLen == 64) {
13904     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
13905     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
13906     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
13907     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
13908   }
13909   Type *Tys[] = {AlignedAddr->getType()};
13910   Function *MaskedCmpXchg =
13911       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
13912   Value *Result = Builder.CreateCall(
13913       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
13914   if (XLen == 64)
13915     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
13916   return Result;
13917 }
13918 
13919 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT,
13920                                                         EVT DataVT) const {
13921   return false;
13922 }
13923 
13924 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
13925                                                EVT VT) const {
13926   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
13927     return false;
13928 
13929   switch (FPVT.getSimpleVT().SimpleTy) {
13930   case MVT::f16:
13931     return Subtarget.hasStdExtZfhOrZfhmin();
13932   case MVT::f32:
13933     return Subtarget.hasStdExtF();
13934   case MVT::f64:
13935     return Subtarget.hasStdExtD();
13936   default:
13937     return false;
13938   }
13939 }
13940 
13941 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
13942   // If we are using the small code model, we can reduce size of jump table
13943   // entry to 4 bytes.
13944   if (Subtarget.is64Bit() && !isPositionIndependent() &&
13945       getTargetMachine().getCodeModel() == CodeModel::Small) {
13946     return MachineJumpTableInfo::EK_Custom32;
13947   }
13948   return TargetLowering::getJumpTableEncoding();
13949 }
13950 
13951 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
13952     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
13953     unsigned uid, MCContext &Ctx) const {
13954   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
13955          getTargetMachine().getCodeModel() == CodeModel::Small);
13956   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
13957 }
13958 
13959 bool RISCVTargetLowering::isVScaleKnownToBeAPowerOfTwo() const {
13960   // We define vscale to be VLEN/RVVBitsPerBlock.  VLEN is always a power
13961   // of two >= 64, and RVVBitsPerBlock is 64.  Thus, vscale must be
13962   // a power of two as well.
13963   // FIXME: This doesn't work for zve32, but that's already broken
13964   // elsewhere for the same reason.
13965   assert(Subtarget.getRealMinVLen() >= 64 && "zve32* unsupported");
13966   static_assert(RISCV::RVVBitsPerBlock == 64,
13967                 "RVVBitsPerBlock changed, audit needed");
13968   return true;
13969 }
13970 
13971 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
13972                                                      EVT VT) const {
13973   EVT SVT = VT.getScalarType();
13974 
13975   if (!SVT.isSimple())
13976     return false;
13977 
13978   switch (SVT.getSimpleVT().SimpleTy) {
13979   case MVT::f16:
13980     return VT.isVector() ? Subtarget.hasVInstructionsF16()
13981                          : Subtarget.hasStdExtZfh();
13982   case MVT::f32:
13983     return Subtarget.hasStdExtF();
13984   case MVT::f64:
13985     return Subtarget.hasStdExtD();
13986   default:
13987     break;
13988   }
13989 
13990   return false;
13991 }
13992 
13993 Register RISCVTargetLowering::getExceptionPointerRegister(
13994     const Constant *PersonalityFn) const {
13995   return RISCV::X10;
13996 }
13997 
13998 Register RISCVTargetLowering::getExceptionSelectorRegister(
13999     const Constant *PersonalityFn) const {
14000   return RISCV::X11;
14001 }
14002 
14003 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
14004   // Return false to suppress the unnecessary extensions if the LibCall
14005   // arguments or return value is f32 type for LP64 ABI.
14006   RISCVABI::ABI ABI = Subtarget.getTargetABI();
14007   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
14008     return false;
14009 
14010   return true;
14011 }
14012 
14013 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
14014   if (Subtarget.is64Bit() && Type == MVT::i32)
14015     return true;
14016 
14017   return IsSigned;
14018 }
14019 
14020 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
14021                                                  SDValue C) const {
14022   // Check integral scalar types.
14023   const bool HasExtMOrZmmul =
14024       Subtarget.hasStdExtM() || Subtarget.hasStdExtZmmul();
14025   if (VT.isScalarInteger()) {
14026     // Omit the optimization if the sub target has the M extension and the data
14027     // size exceeds XLen.
14028     if (HasExtMOrZmmul && VT.getSizeInBits() > Subtarget.getXLen())
14029       return false;
14030     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
14031       // Break the MUL to a SLLI and an ADD/SUB.
14032       const APInt &Imm = ConstNode->getAPIntValue();
14033       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
14034           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
14035         return true;
14036       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
14037       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
14038           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
14039            (Imm - 8).isPowerOf2()))
14040         return true;
14041       // Omit the following optimization if the sub target has the M extension
14042       // and the data size >= XLen.
14043       if (HasExtMOrZmmul && VT.getSizeInBits() >= Subtarget.getXLen())
14044         return false;
14045       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
14046       // a pair of LUI/ADDI.
14047       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
14048         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
14049         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
14050             (1 - ImmS).isPowerOf2())
14051           return true;
14052       }
14053     }
14054   }
14055 
14056   return false;
14057 }
14058 
14059 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
14060                                                       SDValue ConstNode) const {
14061   // Let the DAGCombiner decide for vectors.
14062   EVT VT = AddNode.getValueType();
14063   if (VT.isVector())
14064     return true;
14065 
14066   // Let the DAGCombiner decide for larger types.
14067   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
14068     return true;
14069 
14070   // It is worse if c1 is simm12 while c1*c2 is not.
14071   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
14072   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
14073   const APInt &C1 = C1Node->getAPIntValue();
14074   const APInt &C2 = C2Node->getAPIntValue();
14075   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
14076     return false;
14077 
14078   // Default to true and let the DAGCombiner decide.
14079   return true;
14080 }
14081 
14082 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
14083     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
14084     unsigned *Fast) const {
14085   if (!VT.isVector()) {
14086     if (Fast)
14087       *Fast = 0;
14088     return Subtarget.enableUnalignedScalarMem();
14089   }
14090 
14091   // All vector implementations must support element alignment
14092   EVT ElemVT = VT.getVectorElementType();
14093   if (Alignment >= ElemVT.getStoreSize()) {
14094     if (Fast)
14095       *Fast = 1;
14096     return true;
14097   }
14098 
14099   return false;
14100 }
14101 
14102 bool RISCVTargetLowering::splitValueIntoRegisterParts(
14103     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
14104     unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
14105   bool IsABIRegCopy = CC.has_value();
14106   EVT ValueVT = Val.getValueType();
14107   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
14108     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
14109     // and cast to f32.
14110     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
14111     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
14112     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
14113                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
14114     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
14115     Parts[0] = Val;
14116     return true;
14117   }
14118 
14119   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
14120     LLVMContext &Context = *DAG.getContext();
14121     EVT ValueEltVT = ValueVT.getVectorElementType();
14122     EVT PartEltVT = PartVT.getVectorElementType();
14123     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinValue();
14124     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinValue();
14125     if (PartVTBitSize % ValueVTBitSize == 0) {
14126       assert(PartVTBitSize >= ValueVTBitSize);
14127       // If the element types are different, bitcast to the same element type of
14128       // PartVT first.
14129       // Give an example here, we want copy a <vscale x 1 x i8> value to
14130       // <vscale x 4 x i16>.
14131       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
14132       // subvector, then we can bitcast to <vscale x 4 x i16>.
14133       if (ValueEltVT != PartEltVT) {
14134         if (PartVTBitSize > ValueVTBitSize) {
14135           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
14136           assert(Count != 0 && "The number of element should not be zero.");
14137           EVT SameEltTypeVT =
14138               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
14139           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
14140                             DAG.getUNDEF(SameEltTypeVT), Val,
14141                             DAG.getVectorIdxConstant(0, DL));
14142         }
14143         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
14144       } else {
14145         Val =
14146             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
14147                         Val, DAG.getVectorIdxConstant(0, DL));
14148       }
14149       Parts[0] = Val;
14150       return true;
14151     }
14152   }
14153   return false;
14154 }
14155 
14156 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
14157     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
14158     MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const {
14159   bool IsABIRegCopy = CC.has_value();
14160   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
14161     SDValue Val = Parts[0];
14162 
14163     // Cast the f32 to i32, truncate to i16, and cast back to f16.
14164     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
14165     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
14166     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
14167     return Val;
14168   }
14169 
14170   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
14171     LLVMContext &Context = *DAG.getContext();
14172     SDValue Val = Parts[0];
14173     EVT ValueEltVT = ValueVT.getVectorElementType();
14174     EVT PartEltVT = PartVT.getVectorElementType();
14175     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinValue();
14176     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinValue();
14177     if (PartVTBitSize % ValueVTBitSize == 0) {
14178       assert(PartVTBitSize >= ValueVTBitSize);
14179       EVT SameEltTypeVT = ValueVT;
14180       // If the element types are different, convert it to the same element type
14181       // of PartVT.
14182       // Give an example here, we want copy a <vscale x 1 x i8> value from
14183       // <vscale x 4 x i16>.
14184       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
14185       // then we can extract <vscale x 1 x i8>.
14186       if (ValueEltVT != PartEltVT) {
14187         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
14188         assert(Count != 0 && "The number of element should not be zero.");
14189         SameEltTypeVT =
14190             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
14191         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
14192       }
14193       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
14194                         DAG.getVectorIdxConstant(0, DL));
14195       return Val;
14196     }
14197   }
14198   return SDValue();
14199 }
14200 
14201 bool RISCVTargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
14202   // When aggressively optimizing for code size, we prefer to use a div
14203   // instruction, as it is usually smaller than the alternative sequence.
14204   // TODO: Add vector division?
14205   bool OptSize = Attr.hasFnAttr(Attribute::MinSize);
14206   return OptSize && !VT.isVector();
14207 }
14208 
14209 bool RISCVTargetLowering::preferScalarizeSplat(unsigned Opc) const {
14210   // Scalarize zero_ext and sign_ext might stop match to widening instruction in
14211   // some situation.
14212   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND)
14213     return false;
14214   return true;
14215 }
14216 
14217 static Value *useTpOffset(IRBuilderBase &IRB, unsigned Offset) {
14218   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
14219   Function *ThreadPointerFunc =
14220       Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
14221   return IRB.CreatePointerCast(
14222       IRB.CreateConstGEP1_32(IRB.getInt8Ty(),
14223                              IRB.CreateCall(ThreadPointerFunc), Offset),
14224       IRB.getInt8PtrTy()->getPointerTo(0));
14225 }
14226 
14227 Value *RISCVTargetLowering::getIRStackGuard(IRBuilderBase &IRB) const {
14228   // Fuchsia provides a fixed TLS slot for the stack cookie.
14229   // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
14230   if (Subtarget.isTargetFuchsia())
14231     return useTpOffset(IRB, -0x10);
14232 
14233   return TargetLowering::getIRStackGuard(IRB);
14234 }
14235 
14236 #define GET_REGISTER_MATCHER
14237 #include "RISCVGenAsmMatcher.inc"
14238 
14239 Register
14240 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
14241                                        const MachineFunction &MF) const {
14242   Register Reg = MatchRegisterAltName(RegName);
14243   if (Reg == RISCV::NoRegister)
14244     Reg = MatchRegisterName(RegName);
14245   if (Reg == RISCV::NoRegister)
14246     report_fatal_error(
14247         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
14248   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
14249   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
14250     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
14251                              StringRef(RegName) + "\"."));
14252   return Reg;
14253 }
14254 
14255 namespace llvm::RISCVVIntrinsicsTable {
14256 
14257 #define GET_RISCVVIntrinsicsTable_IMPL
14258 #include "RISCVGenSearchableTables.inc"
14259 
14260 } // namespace llvm::RISCVVIntrinsicsTable
14261