1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "RISCV.h" 16 #include "RISCVMachineFunctionInfo.h" 17 #include "RISCVRegisterInfo.h" 18 #include "RISCVSubtarget.h" 19 #include "RISCVTargetMachine.h" 20 #include "Utils/RISCVMatInt.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAGISel.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "riscv-lower" 40 41 STATISTIC(NumTailCalls, "Number of tail calls"); 42 43 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 44 const RISCVSubtarget &STI) 45 : TargetLowering(TM), Subtarget(STI) { 46 47 if (Subtarget.isRV32E()) 48 report_fatal_error("Codegen not yet implemented for RV32E"); 49 50 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 51 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 52 53 switch (ABI) { 54 default: 55 report_fatal_error("Don't know how to lower this ABI"); 56 case RISCVABI::ABI_ILP32: 57 case RISCVABI::ABI_ILP32F: 58 case RISCVABI::ABI_ILP32D: 59 case RISCVABI::ABI_LP64: 60 case RISCVABI::ABI_LP64F: 61 case RISCVABI::ABI_LP64D: 62 break; 63 } 64 65 MVT XLenVT = Subtarget.getXLenVT(); 66 67 // Set up the register classes. 68 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 69 70 if (Subtarget.hasStdExtF()) 71 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 72 if (Subtarget.hasStdExtD()) 73 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 74 75 // Compute derived properties from the register classes. 76 computeRegisterProperties(STI.getRegisterInfo()); 77 78 setStackPointerRegisterToSaveRestore(RISCV::X2); 79 80 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 81 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 82 83 // TODO: add all necessary setOperationAction calls. 84 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 85 86 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 87 setOperationAction(ISD::BR_CC, XLenVT, Expand); 88 setOperationAction(ISD::SELECT, XLenVT, Custom); 89 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 90 91 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 92 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 93 94 setOperationAction(ISD::VASTART, MVT::Other, Custom); 95 setOperationAction(ISD::VAARG, MVT::Other, Expand); 96 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 97 setOperationAction(ISD::VAEND, MVT::Other, Expand); 98 99 for (auto VT : {MVT::i1, MVT::i8, MVT::i16}) 100 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 101 102 if (Subtarget.is64Bit()) { 103 setOperationAction(ISD::ADD, MVT::i32, Custom); 104 setOperationAction(ISD::SUB, MVT::i32, Custom); 105 setOperationAction(ISD::SHL, MVT::i32, Custom); 106 setOperationAction(ISD::SRA, MVT::i32, Custom); 107 setOperationAction(ISD::SRL, MVT::i32, Custom); 108 } 109 110 if (!Subtarget.hasStdExtM()) { 111 setOperationAction(ISD::MUL, XLenVT, Expand); 112 setOperationAction(ISD::MULHS, XLenVT, Expand); 113 setOperationAction(ISD::MULHU, XLenVT, Expand); 114 setOperationAction(ISD::SDIV, XLenVT, Expand); 115 setOperationAction(ISD::UDIV, XLenVT, Expand); 116 setOperationAction(ISD::SREM, XLenVT, Expand); 117 setOperationAction(ISD::UREM, XLenVT, Expand); 118 } 119 120 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 121 setOperationAction(ISD::MUL, MVT::i32, Custom); 122 setOperationAction(ISD::SDIV, MVT::i32, Custom); 123 setOperationAction(ISD::UDIV, MVT::i32, Custom); 124 setOperationAction(ISD::UREM, MVT::i32, Custom); 125 } 126 127 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 128 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 129 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 130 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 131 132 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 133 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 134 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 135 136 setOperationAction(ISD::ROTL, XLenVT, Expand); 137 setOperationAction(ISD::ROTR, XLenVT, Expand); 138 setOperationAction(ISD::BSWAP, XLenVT, Expand); 139 setOperationAction(ISD::CTTZ, XLenVT, Expand); 140 setOperationAction(ISD::CTLZ, XLenVT, Expand); 141 setOperationAction(ISD::CTPOP, XLenVT, Expand); 142 143 ISD::CondCode FPCCToExtend[] = { 144 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 145 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 146 ISD::SETGE, ISD::SETNE}; 147 148 ISD::NodeType FPOpToExtend[] = { 149 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM}; 150 151 if (Subtarget.hasStdExtF()) { 152 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 153 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 154 for (auto CC : FPCCToExtend) 155 setCondCodeAction(CC, MVT::f32, Expand); 156 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 157 setOperationAction(ISD::SELECT, MVT::f32, Custom); 158 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 159 for (auto Op : FPOpToExtend) 160 setOperationAction(Op, MVT::f32, Expand); 161 } 162 163 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 164 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 165 166 if (Subtarget.hasStdExtD()) { 167 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 168 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 169 for (auto CC : FPCCToExtend) 170 setCondCodeAction(CC, MVT::f64, Expand); 171 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 172 setOperationAction(ISD::SELECT, MVT::f64, Custom); 173 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 174 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 175 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 176 for (auto Op : FPOpToExtend) 177 setOperationAction(Op, MVT::f64, Expand); 178 } 179 180 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 181 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 182 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 183 184 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 185 186 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 187 // Unfortunately this can't be determined just from the ISA naming string. 188 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 189 Subtarget.is64Bit() ? Legal : Custom); 190 191 if (Subtarget.hasStdExtA()) { 192 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 193 setMinCmpXchgSizeInBits(32); 194 } else { 195 setMaxAtomicSizeInBitsSupported(0); 196 } 197 198 setBooleanContents(ZeroOrOneBooleanContent); 199 200 // Function alignments. 201 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 202 setMinFunctionAlignment(FunctionAlignment); 203 setPrefFunctionAlignment(FunctionAlignment); 204 205 // Effectively disable jump table generation. 206 setMinimumJumpTableEntries(INT_MAX); 207 } 208 209 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 210 EVT VT) const { 211 if (!VT.isVector()) 212 return getPointerTy(DL); 213 return VT.changeVectorElementTypeToInteger(); 214 } 215 216 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 217 const CallInst &I, 218 MachineFunction &MF, 219 unsigned Intrinsic) const { 220 switch (Intrinsic) { 221 default: 222 return false; 223 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 224 case Intrinsic::riscv_masked_atomicrmw_add_i32: 225 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 226 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 227 case Intrinsic::riscv_masked_atomicrmw_max_i32: 228 case Intrinsic::riscv_masked_atomicrmw_min_i32: 229 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 230 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 231 case Intrinsic::riscv_masked_cmpxchg_i32: 232 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 233 Info.opc = ISD::INTRINSIC_W_CHAIN; 234 Info.memVT = MVT::getVT(PtrTy->getElementType()); 235 Info.ptrVal = I.getArgOperand(0); 236 Info.offset = 0; 237 Info.align = Align(4); 238 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 239 MachineMemOperand::MOVolatile; 240 return true; 241 } 242 } 243 244 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 245 const AddrMode &AM, Type *Ty, 246 unsigned AS, 247 Instruction *I) const { 248 // No global is ever allowed as a base. 249 if (AM.BaseGV) 250 return false; 251 252 // Require a 12-bit signed offset. 253 if (!isInt<12>(AM.BaseOffs)) 254 return false; 255 256 switch (AM.Scale) { 257 case 0: // "r+i" or just "i", depending on HasBaseReg. 258 break; 259 case 1: 260 if (!AM.HasBaseReg) // allow "r+i". 261 break; 262 return false; // disallow "r+r" or "r+r+i". 263 default: 264 return false; 265 } 266 267 return true; 268 } 269 270 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 271 return isInt<12>(Imm); 272 } 273 274 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 275 return isInt<12>(Imm); 276 } 277 278 // On RV32, 64-bit integers are split into their high and low parts and held 279 // in two different registers, so the trunc is free since the low register can 280 // just be used. 281 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 282 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 283 return false; 284 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 285 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 286 return (SrcBits == 64 && DestBits == 32); 287 } 288 289 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 290 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 291 !SrcVT.isInteger() || !DstVT.isInteger()) 292 return false; 293 unsigned SrcBits = SrcVT.getSizeInBits(); 294 unsigned DestBits = DstVT.getSizeInBits(); 295 return (SrcBits == 64 && DestBits == 32); 296 } 297 298 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 299 // Zexts are free if they can be combined with a load. 300 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 301 EVT MemVT = LD->getMemoryVT(); 302 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 303 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 304 (LD->getExtensionType() == ISD::NON_EXTLOAD || 305 LD->getExtensionType() == ISD::ZEXTLOAD)) 306 return true; 307 } 308 309 return TargetLowering::isZExtFree(Val, VT2); 310 } 311 312 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 313 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 314 } 315 316 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 317 return (VT == MVT::f32 && Subtarget.hasStdExtF()) || 318 (VT == MVT::f64 && Subtarget.hasStdExtD()); 319 } 320 321 // Changes the condition code and swaps operands if necessary, so the SetCC 322 // operation matches one of the comparisons supported directly in the RISC-V 323 // ISA. 324 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 325 switch (CC) { 326 default: 327 break; 328 case ISD::SETGT: 329 case ISD::SETLE: 330 case ISD::SETUGT: 331 case ISD::SETULE: 332 CC = ISD::getSetCCSwappedOperands(CC); 333 std::swap(LHS, RHS); 334 break; 335 } 336 } 337 338 // Return the RISC-V branch opcode that matches the given DAG integer 339 // condition code. The CondCode must be one of those supported by the RISC-V 340 // ISA (see normaliseSetCC). 341 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 342 switch (CC) { 343 default: 344 llvm_unreachable("Unsupported CondCode"); 345 case ISD::SETEQ: 346 return RISCV::BEQ; 347 case ISD::SETNE: 348 return RISCV::BNE; 349 case ISD::SETLT: 350 return RISCV::BLT; 351 case ISD::SETGE: 352 return RISCV::BGE; 353 case ISD::SETULT: 354 return RISCV::BLTU; 355 case ISD::SETUGE: 356 return RISCV::BGEU; 357 } 358 } 359 360 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 361 SelectionDAG &DAG) const { 362 switch (Op.getOpcode()) { 363 default: 364 report_fatal_error("unimplemented operand"); 365 case ISD::GlobalAddress: 366 return lowerGlobalAddress(Op, DAG); 367 case ISD::BlockAddress: 368 return lowerBlockAddress(Op, DAG); 369 case ISD::ConstantPool: 370 return lowerConstantPool(Op, DAG); 371 case ISD::GlobalTLSAddress: 372 return lowerGlobalTLSAddress(Op, DAG); 373 case ISD::SELECT: 374 return lowerSELECT(Op, DAG); 375 case ISD::VASTART: 376 return lowerVASTART(Op, DAG); 377 case ISD::FRAMEADDR: 378 return lowerFRAMEADDR(Op, DAG); 379 case ISD::RETURNADDR: 380 return lowerRETURNADDR(Op, DAG); 381 case ISD::SHL_PARTS: 382 return lowerShiftLeftParts(Op, DAG); 383 case ISD::SRA_PARTS: 384 return lowerShiftRightParts(Op, DAG, true); 385 case ISD::SRL_PARTS: 386 return lowerShiftRightParts(Op, DAG, false); 387 case ISD::BITCAST: { 388 assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() && 389 "Unexpected custom legalisation"); 390 SDLoc DL(Op); 391 SDValue Op0 = Op.getOperand(0); 392 if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32) 393 return SDValue(); 394 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 395 SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 396 return FPConv; 397 } 398 } 399 } 400 401 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 402 SelectionDAG &DAG, unsigned Flags) { 403 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 404 } 405 406 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 407 SelectionDAG &DAG, unsigned Flags) { 408 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 409 Flags); 410 } 411 412 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 413 SelectionDAG &DAG, unsigned Flags) { 414 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), 415 N->getOffset(), Flags); 416 } 417 418 template <class NodeTy> 419 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 420 bool IsLocal) const { 421 SDLoc DL(N); 422 EVT Ty = getPointerTy(DAG.getDataLayout()); 423 424 if (isPositionIndependent()) { 425 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 426 if (IsLocal) 427 // Use PC-relative addressing to access the symbol. This generates the 428 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 429 // %pcrel_lo(auipc)). 430 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 431 432 // Use PC-relative addressing to access the GOT for this symbol, then load 433 // the address from the GOT. This generates the pattern (PseudoLA sym), 434 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 435 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 436 } 437 438 switch (getTargetMachine().getCodeModel()) { 439 default: 440 report_fatal_error("Unsupported code model for lowering"); 441 case CodeModel::Small: { 442 // Generate a sequence for accessing addresses within the first 2 GiB of 443 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 444 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 445 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 446 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 447 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 448 } 449 case CodeModel::Medium: { 450 // Generate a sequence for accessing addresses within any 2GiB range within 451 // the address space. This generates the pattern (PseudoLLA sym), which 452 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 453 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 454 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 455 } 456 } 457 } 458 459 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 460 SelectionDAG &DAG) const { 461 SDLoc DL(Op); 462 EVT Ty = Op.getValueType(); 463 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 464 int64_t Offset = N->getOffset(); 465 MVT XLenVT = Subtarget.getXLenVT(); 466 467 const GlobalValue *GV = N->getGlobal(); 468 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 469 SDValue Addr = getAddr(N, DAG, IsLocal); 470 471 // In order to maximise the opportunity for common subexpression elimination, 472 // emit a separate ADD node for the global address offset instead of folding 473 // it in the global address node. Later peephole optimisations may choose to 474 // fold it back in when profitable. 475 if (Offset != 0) 476 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 477 DAG.getConstant(Offset, DL, XLenVT)); 478 return Addr; 479 } 480 481 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 482 SelectionDAG &DAG) const { 483 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 484 485 return getAddr(N, DAG); 486 } 487 488 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 489 SelectionDAG &DAG) const { 490 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 491 492 return getAddr(N, DAG); 493 } 494 495 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 496 SelectionDAG &DAG, 497 bool UseGOT) const { 498 SDLoc DL(N); 499 EVT Ty = getPointerTy(DAG.getDataLayout()); 500 const GlobalValue *GV = N->getGlobal(); 501 MVT XLenVT = Subtarget.getXLenVT(); 502 503 if (UseGOT) { 504 // Use PC-relative addressing to access the GOT for this TLS symbol, then 505 // load the address from the GOT and add the thread pointer. This generates 506 // the pattern (PseudoLA_TLS_IE sym), which expands to 507 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 508 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 509 SDValue Load = 510 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 511 512 // Add the thread pointer. 513 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 514 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 515 } 516 517 // Generate a sequence for accessing the address relative to the thread 518 // pointer, with the appropriate adjustment for the thread pointer offset. 519 // This generates the pattern 520 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 521 SDValue AddrHi = 522 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 523 SDValue AddrAdd = 524 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 525 SDValue AddrLo = 526 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 527 528 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 529 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 530 SDValue MNAdd = SDValue( 531 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 532 0); 533 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 534 } 535 536 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 537 SelectionDAG &DAG) const { 538 SDLoc DL(N); 539 EVT Ty = getPointerTy(DAG.getDataLayout()); 540 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 541 const GlobalValue *GV = N->getGlobal(); 542 543 // Use a PC-relative addressing mode to access the global dynamic GOT address. 544 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 545 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 546 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 547 SDValue Load = 548 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 549 550 // Prepare argument list to generate call. 551 ArgListTy Args; 552 ArgListEntry Entry; 553 Entry.Node = Load; 554 Entry.Ty = CallTy; 555 Args.push_back(Entry); 556 557 // Setup call to __tls_get_addr. 558 TargetLowering::CallLoweringInfo CLI(DAG); 559 CLI.setDebugLoc(DL) 560 .setChain(DAG.getEntryNode()) 561 .setLibCallee(CallingConv::C, CallTy, 562 DAG.getExternalSymbol("__tls_get_addr", Ty), 563 std::move(Args)); 564 565 return LowerCallTo(CLI).first; 566 } 567 568 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 569 SelectionDAG &DAG) const { 570 SDLoc DL(Op); 571 EVT Ty = Op.getValueType(); 572 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 573 int64_t Offset = N->getOffset(); 574 MVT XLenVT = Subtarget.getXLenVT(); 575 576 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 577 578 SDValue Addr; 579 switch (Model) { 580 case TLSModel::LocalExec: 581 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 582 break; 583 case TLSModel::InitialExec: 584 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 585 break; 586 case TLSModel::LocalDynamic: 587 case TLSModel::GeneralDynamic: 588 Addr = getDynamicTLSAddr(N, DAG); 589 break; 590 } 591 592 // In order to maximise the opportunity for common subexpression elimination, 593 // emit a separate ADD node for the global address offset instead of folding 594 // it in the global address node. Later peephole optimisations may choose to 595 // fold it back in when profitable. 596 if (Offset != 0) 597 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 598 DAG.getConstant(Offset, DL, XLenVT)); 599 return Addr; 600 } 601 602 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 603 SDValue CondV = Op.getOperand(0); 604 SDValue TrueV = Op.getOperand(1); 605 SDValue FalseV = Op.getOperand(2); 606 SDLoc DL(Op); 607 MVT XLenVT = Subtarget.getXLenVT(); 608 609 // If the result type is XLenVT and CondV is the output of a SETCC node 610 // which also operated on XLenVT inputs, then merge the SETCC node into the 611 // lowered RISCVISD::SELECT_CC to take advantage of the integer 612 // compare+branch instructions. i.e.: 613 // (select (setcc lhs, rhs, cc), truev, falsev) 614 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 615 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 616 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 617 SDValue LHS = CondV.getOperand(0); 618 SDValue RHS = CondV.getOperand(1); 619 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 620 ISD::CondCode CCVal = CC->get(); 621 622 normaliseSetCC(LHS, RHS, CCVal); 623 624 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 625 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 626 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 627 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 628 } 629 630 // Otherwise: 631 // (select condv, truev, falsev) 632 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 633 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 634 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 635 636 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 637 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 638 639 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 640 } 641 642 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 643 MachineFunction &MF = DAG.getMachineFunction(); 644 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 645 646 SDLoc DL(Op); 647 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 648 getPointerTy(MF.getDataLayout())); 649 650 // vastart just stores the address of the VarArgsFrameIndex slot into the 651 // memory location argument. 652 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 653 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 654 MachinePointerInfo(SV)); 655 } 656 657 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 658 SelectionDAG &DAG) const { 659 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 660 MachineFunction &MF = DAG.getMachineFunction(); 661 MachineFrameInfo &MFI = MF.getFrameInfo(); 662 MFI.setFrameAddressIsTaken(true); 663 Register FrameReg = RI.getFrameRegister(MF); 664 int XLenInBytes = Subtarget.getXLen() / 8; 665 666 EVT VT = Op.getValueType(); 667 SDLoc DL(Op); 668 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 669 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 670 while (Depth--) { 671 int Offset = -(XLenInBytes * 2); 672 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 673 DAG.getIntPtrConstant(Offset, DL)); 674 FrameAddr = 675 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 676 } 677 return FrameAddr; 678 } 679 680 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 681 SelectionDAG &DAG) const { 682 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 683 MachineFunction &MF = DAG.getMachineFunction(); 684 MachineFrameInfo &MFI = MF.getFrameInfo(); 685 MFI.setReturnAddressIsTaken(true); 686 MVT XLenVT = Subtarget.getXLenVT(); 687 int XLenInBytes = Subtarget.getXLen() / 8; 688 689 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 690 return SDValue(); 691 692 EVT VT = Op.getValueType(); 693 SDLoc DL(Op); 694 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 695 if (Depth) { 696 int Off = -XLenInBytes; 697 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 698 SDValue Offset = DAG.getConstant(Off, DL, VT); 699 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 700 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 701 MachinePointerInfo()); 702 } 703 704 // Return the value of the return address register, marking it an implicit 705 // live-in. 706 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 707 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 708 } 709 710 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 711 SelectionDAG &DAG) const { 712 SDLoc DL(Op); 713 SDValue Lo = Op.getOperand(0); 714 SDValue Hi = Op.getOperand(1); 715 SDValue Shamt = Op.getOperand(2); 716 EVT VT = Lo.getValueType(); 717 718 // if Shamt-XLEN < 0: // Shamt < XLEN 719 // Lo = Lo << Shamt 720 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 721 // else: 722 // Lo = 0 723 // Hi = Lo << (Shamt-XLEN) 724 725 SDValue Zero = DAG.getConstant(0, DL, VT); 726 SDValue One = DAG.getConstant(1, DL, VT); 727 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 728 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 729 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 730 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 731 732 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 733 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 734 SDValue ShiftRightLo = 735 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 736 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 737 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 738 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 739 740 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 741 742 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 743 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 744 745 SDValue Parts[2] = {Lo, Hi}; 746 return DAG.getMergeValues(Parts, DL); 747 } 748 749 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 750 bool IsSRA) const { 751 SDLoc DL(Op); 752 SDValue Lo = Op.getOperand(0); 753 SDValue Hi = Op.getOperand(1); 754 SDValue Shamt = Op.getOperand(2); 755 EVT VT = Lo.getValueType(); 756 757 // SRA expansion: 758 // if Shamt-XLEN < 0: // Shamt < XLEN 759 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 760 // Hi = Hi >>s Shamt 761 // else: 762 // Lo = Hi >>s (Shamt-XLEN); 763 // Hi = Hi >>s (XLEN-1) 764 // 765 // SRL expansion: 766 // if Shamt-XLEN < 0: // Shamt < XLEN 767 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 768 // Hi = Hi >>u Shamt 769 // else: 770 // Lo = Hi >>u (Shamt-XLEN); 771 // Hi = 0; 772 773 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 774 775 SDValue Zero = DAG.getConstant(0, DL, VT); 776 SDValue One = DAG.getConstant(1, DL, VT); 777 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 778 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 779 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 780 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 781 782 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 783 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 784 SDValue ShiftLeftHi = 785 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 786 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 787 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 788 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 789 SDValue HiFalse = 790 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 791 792 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 793 794 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 795 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 796 797 SDValue Parts[2] = {Lo, Hi}; 798 return DAG.getMergeValues(Parts, DL); 799 } 800 801 // Returns the opcode of the target-specific SDNode that implements the 32-bit 802 // form of the given Opcode. 803 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 804 switch (Opcode) { 805 default: 806 llvm_unreachable("Unexpected opcode"); 807 case ISD::SHL: 808 return RISCVISD::SLLW; 809 case ISD::SRA: 810 return RISCVISD::SRAW; 811 case ISD::SRL: 812 return RISCVISD::SRLW; 813 case ISD::SDIV: 814 return RISCVISD::DIVW; 815 case ISD::UDIV: 816 return RISCVISD::DIVUW; 817 case ISD::UREM: 818 return RISCVISD::REMUW; 819 } 820 } 821 822 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 823 // Because i32 isn't a legal type for RV64, these operations would otherwise 824 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 825 // later one because the fact the operation was originally of type i32 is 826 // lost. 827 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { 828 SDLoc DL(N); 829 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 830 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 831 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 832 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 833 // ReplaceNodeResults requires we maintain the same type for the return value. 834 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 835 } 836 837 // Converts the given 32-bit operation to a i64 operation with signed extension 838 // semantic to reduce the signed extension instructions. 839 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 840 SDLoc DL(N); 841 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 842 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 843 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 844 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 845 DAG.getValueType(MVT::i32)); 846 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 847 } 848 849 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 850 SmallVectorImpl<SDValue> &Results, 851 SelectionDAG &DAG) const { 852 SDLoc DL(N); 853 switch (N->getOpcode()) { 854 default: 855 llvm_unreachable("Don't know how to custom type legalize this operation!"); 856 case ISD::READCYCLECOUNTER: { 857 assert(!Subtarget.is64Bit() && 858 "READCYCLECOUNTER only has custom type legalization on riscv32"); 859 860 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 861 SDValue RCW = 862 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 863 864 Results.push_back(RCW); 865 Results.push_back(RCW.getValue(1)); 866 Results.push_back(RCW.getValue(2)); 867 break; 868 } 869 case ISD::ADD: 870 case ISD::SUB: 871 case ISD::MUL: 872 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 873 "Unexpected custom legalisation"); 874 if (N->getOperand(1).getOpcode() == ISD::Constant) 875 return; 876 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 877 break; 878 case ISD::SHL: 879 case ISD::SRA: 880 case ISD::SRL: 881 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 882 "Unexpected custom legalisation"); 883 if (N->getOperand(1).getOpcode() == ISD::Constant) 884 return; 885 Results.push_back(customLegalizeToWOp(N, DAG)); 886 break; 887 case ISD::SDIV: 888 case ISD::UDIV: 889 case ISD::UREM: 890 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 891 Subtarget.hasStdExtM() && "Unexpected custom legalisation"); 892 if (N->getOperand(0).getOpcode() == ISD::Constant || 893 N->getOperand(1).getOpcode() == ISD::Constant) 894 return; 895 Results.push_back(customLegalizeToWOp(N, DAG)); 896 break; 897 case ISD::BITCAST: { 898 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 899 Subtarget.hasStdExtF() && "Unexpected custom legalisation"); 900 SDLoc DL(N); 901 SDValue Op0 = N->getOperand(0); 902 if (Op0.getValueType() != MVT::f32) 903 return; 904 SDValue FPConv = 905 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 906 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 907 break; 908 } 909 } 910 } 911 912 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 913 DAGCombinerInfo &DCI) const { 914 SelectionDAG &DAG = DCI.DAG; 915 916 switch (N->getOpcode()) { 917 default: 918 break; 919 case RISCVISD::SplitF64: { 920 SDValue Op0 = N->getOperand(0); 921 // If the input to SplitF64 is just BuildPairF64 then the operation is 922 // redundant. Instead, use BuildPairF64's operands directly. 923 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 924 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 925 926 SDLoc DL(N); 927 928 // It's cheaper to materialise two 32-bit integers than to load a double 929 // from the constant pool and transfer it to integer registers through the 930 // stack. 931 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 932 APInt V = C->getValueAPF().bitcastToAPInt(); 933 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 934 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 935 return DCI.CombineTo(N, Lo, Hi); 936 } 937 938 // This is a target-specific version of a DAGCombine performed in 939 // DAGCombiner::visitBITCAST. It performs the equivalent of: 940 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 941 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 942 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 943 !Op0.getNode()->hasOneUse()) 944 break; 945 SDValue NewSplitF64 = 946 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 947 Op0.getOperand(0)); 948 SDValue Lo = NewSplitF64.getValue(0); 949 SDValue Hi = NewSplitF64.getValue(1); 950 APInt SignBit = APInt::getSignMask(32); 951 if (Op0.getOpcode() == ISD::FNEG) { 952 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 953 DAG.getConstant(SignBit, DL, MVT::i32)); 954 return DCI.CombineTo(N, Lo, NewHi); 955 } 956 assert(Op0.getOpcode() == ISD::FABS); 957 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 958 DAG.getConstant(~SignBit, DL, MVT::i32)); 959 return DCI.CombineTo(N, Lo, NewHi); 960 } 961 case RISCVISD::SLLW: 962 case RISCVISD::SRAW: 963 case RISCVISD::SRLW: { 964 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 965 SDValue LHS = N->getOperand(0); 966 SDValue RHS = N->getOperand(1); 967 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 968 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 969 if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) || 970 (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI))) 971 return SDValue(); 972 break; 973 } 974 case RISCVISD::FMV_X_ANYEXTW_RV64: { 975 SDLoc DL(N); 976 SDValue Op0 = N->getOperand(0); 977 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 978 // conversion is unnecessary and can be replaced with an ANY_EXTEND 979 // of the FMV_W_X_RV64 operand. 980 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 981 SDValue AExtOp = 982 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0)); 983 return DCI.CombineTo(N, AExtOp); 984 } 985 986 // This is a target-specific version of a DAGCombine performed in 987 // DAGCombiner::visitBITCAST. It performs the equivalent of: 988 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 989 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 990 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 991 !Op0.getNode()->hasOneUse()) 992 break; 993 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 994 Op0.getOperand(0)); 995 APInt SignBit = APInt::getSignMask(32).sext(64); 996 if (Op0.getOpcode() == ISD::FNEG) { 997 return DCI.CombineTo(N, 998 DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 999 DAG.getConstant(SignBit, DL, MVT::i64))); 1000 } 1001 assert(Op0.getOpcode() == ISD::FABS); 1002 return DCI.CombineTo(N, 1003 DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 1004 DAG.getConstant(~SignBit, DL, MVT::i64))); 1005 } 1006 } 1007 1008 return SDValue(); 1009 } 1010 1011 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 1012 const SDNode *N, CombineLevel Level) const { 1013 // The following folds are only desirable if `(OP _, c1 << c2)` can be 1014 // materialised in fewer instructions than `(OP _, c1)`: 1015 // 1016 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 1017 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 1018 SDValue N0 = N->getOperand(0); 1019 EVT Ty = N0.getValueType(); 1020 if (Ty.isScalarInteger() && 1021 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 1022 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 1023 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1024 if (C1 && C2) { 1025 APInt C1Int = C1->getAPIntValue(); 1026 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 1027 1028 // We can materialise `c1 << c2` into an add immediate, so it's "free", 1029 // and the combine should happen, to potentially allow further combines 1030 // later. 1031 if (ShiftedC1Int.getMinSignedBits() <= 64 && 1032 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 1033 return true; 1034 1035 // We can materialise `c1` in an add immediate, so it's "free", and the 1036 // combine should be prevented. 1037 if (C1Int.getMinSignedBits() <= 64 && 1038 isLegalAddImmediate(C1Int.getSExtValue())) 1039 return false; 1040 1041 // Neither constant will fit into an immediate, so find materialisation 1042 // costs. 1043 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 1044 Subtarget.is64Bit()); 1045 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 1046 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 1047 1048 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 1049 // combine should be prevented. 1050 if (C1Cost < ShiftedC1Cost) 1051 return false; 1052 } 1053 } 1054 return true; 1055 } 1056 1057 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 1058 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 1059 unsigned Depth) const { 1060 switch (Op.getOpcode()) { 1061 default: 1062 break; 1063 case RISCVISD::SLLW: 1064 case RISCVISD::SRAW: 1065 case RISCVISD::SRLW: 1066 case RISCVISD::DIVW: 1067 case RISCVISD::DIVUW: 1068 case RISCVISD::REMUW: 1069 // TODO: As the result is sign-extended, this is conservatively correct. A 1070 // more precise answer could be calculated for SRAW depending on known 1071 // bits in the shift amount. 1072 return 33; 1073 } 1074 1075 return 1; 1076 } 1077 1078 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 1079 MachineBasicBlock *BB) { 1080 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 1081 1082 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 1083 // Should the count have wrapped while it was being read, we need to try 1084 // again. 1085 // ... 1086 // read: 1087 // rdcycleh x3 # load high word of cycle 1088 // rdcycle x2 # load low word of cycle 1089 // rdcycleh x4 # load high word of cycle 1090 // bne x3, x4, read # check if high word reads match, otherwise try again 1091 // ... 1092 1093 MachineFunction &MF = *BB->getParent(); 1094 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1095 MachineFunction::iterator It = ++BB->getIterator(); 1096 1097 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1098 MF.insert(It, LoopMBB); 1099 1100 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1101 MF.insert(It, DoneMBB); 1102 1103 // Transfer the remainder of BB and its successor edges to DoneMBB. 1104 DoneMBB->splice(DoneMBB->begin(), BB, 1105 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1106 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 1107 1108 BB->addSuccessor(LoopMBB); 1109 1110 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1111 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1112 Register LoReg = MI.getOperand(0).getReg(); 1113 Register HiReg = MI.getOperand(1).getReg(); 1114 DebugLoc DL = MI.getDebugLoc(); 1115 1116 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1117 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 1118 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1119 .addReg(RISCV::X0); 1120 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 1121 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 1122 .addReg(RISCV::X0); 1123 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 1124 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1125 .addReg(RISCV::X0); 1126 1127 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 1128 .addReg(HiReg) 1129 .addReg(ReadAgainReg) 1130 .addMBB(LoopMBB); 1131 1132 LoopMBB->addSuccessor(LoopMBB); 1133 LoopMBB->addSuccessor(DoneMBB); 1134 1135 MI.eraseFromParent(); 1136 1137 return DoneMBB; 1138 } 1139 1140 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 1141 MachineBasicBlock *BB) { 1142 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 1143 1144 MachineFunction &MF = *BB->getParent(); 1145 DebugLoc DL = MI.getDebugLoc(); 1146 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1147 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1148 Register LoReg = MI.getOperand(0).getReg(); 1149 Register HiReg = MI.getOperand(1).getReg(); 1150 Register SrcReg = MI.getOperand(2).getReg(); 1151 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 1152 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 1153 1154 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 1155 RI); 1156 MachineMemOperand *MMO = 1157 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 1158 MachineMemOperand::MOLoad, 8, 8); 1159 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 1160 .addFrameIndex(FI) 1161 .addImm(0) 1162 .addMemOperand(MMO); 1163 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 1164 .addFrameIndex(FI) 1165 .addImm(4) 1166 .addMemOperand(MMO); 1167 MI.eraseFromParent(); // The pseudo instruction is gone now. 1168 return BB; 1169 } 1170 1171 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 1172 MachineBasicBlock *BB) { 1173 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 1174 "Unexpected instruction"); 1175 1176 MachineFunction &MF = *BB->getParent(); 1177 DebugLoc DL = MI.getDebugLoc(); 1178 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1179 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1180 Register DstReg = MI.getOperand(0).getReg(); 1181 Register LoReg = MI.getOperand(1).getReg(); 1182 Register HiReg = MI.getOperand(2).getReg(); 1183 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 1184 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 1185 1186 MachineMemOperand *MMO = 1187 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 1188 MachineMemOperand::MOStore, 8, 8); 1189 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1190 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 1191 .addFrameIndex(FI) 1192 .addImm(0) 1193 .addMemOperand(MMO); 1194 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1195 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 1196 .addFrameIndex(FI) 1197 .addImm(4) 1198 .addMemOperand(MMO); 1199 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 1200 MI.eraseFromParent(); // The pseudo instruction is gone now. 1201 return BB; 1202 } 1203 1204 static bool isSelectPseudo(MachineInstr &MI) { 1205 switch (MI.getOpcode()) { 1206 default: 1207 return false; 1208 case RISCV::Select_GPR_Using_CC_GPR: 1209 case RISCV::Select_FPR32_Using_CC_GPR: 1210 case RISCV::Select_FPR64_Using_CC_GPR: 1211 return true; 1212 } 1213 } 1214 1215 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 1216 MachineBasicBlock *BB) { 1217 // To "insert" Select_* instructions, we actually have to insert the triangle 1218 // control-flow pattern. The incoming instructions know the destination vreg 1219 // to set, the condition code register to branch on, the true/false values to 1220 // select between, and the condcode to use to select the appropriate branch. 1221 // 1222 // We produce the following control flow: 1223 // HeadMBB 1224 // | \ 1225 // | IfFalseMBB 1226 // | / 1227 // TailMBB 1228 // 1229 // When we find a sequence of selects we attempt to optimize their emission 1230 // by sharing the control flow. Currently we only handle cases where we have 1231 // multiple selects with the exact same condition (same LHS, RHS and CC). 1232 // The selects may be interleaved with other instructions if the other 1233 // instructions meet some requirements we deem safe: 1234 // - They are debug instructions. Otherwise, 1235 // - They do not have side-effects, do not access memory and their inputs do 1236 // not depend on the results of the select pseudo-instructions. 1237 // The TrueV/FalseV operands of the selects cannot depend on the result of 1238 // previous selects in the sequence. 1239 // These conditions could be further relaxed. See the X86 target for a 1240 // related approach and more information. 1241 Register LHS = MI.getOperand(1).getReg(); 1242 Register RHS = MI.getOperand(2).getReg(); 1243 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 1244 1245 SmallVector<MachineInstr *, 4> SelectDebugValues; 1246 SmallSet<Register, 4> SelectDests; 1247 SelectDests.insert(MI.getOperand(0).getReg()); 1248 1249 MachineInstr *LastSelectPseudo = &MI; 1250 1251 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 1252 SequenceMBBI != E; ++SequenceMBBI) { 1253 if (SequenceMBBI->isDebugInstr()) 1254 continue; 1255 else if (isSelectPseudo(*SequenceMBBI)) { 1256 if (SequenceMBBI->getOperand(1).getReg() != LHS || 1257 SequenceMBBI->getOperand(2).getReg() != RHS || 1258 SequenceMBBI->getOperand(3).getImm() != CC || 1259 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 1260 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 1261 break; 1262 LastSelectPseudo = &*SequenceMBBI; 1263 SequenceMBBI->collectDebugValues(SelectDebugValues); 1264 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 1265 } else { 1266 if (SequenceMBBI->hasUnmodeledSideEffects() || 1267 SequenceMBBI->mayLoadOrStore()) 1268 break; 1269 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 1270 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 1271 })) 1272 break; 1273 } 1274 } 1275 1276 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1277 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1278 DebugLoc DL = MI.getDebugLoc(); 1279 MachineFunction::iterator I = ++BB->getIterator(); 1280 1281 MachineBasicBlock *HeadMBB = BB; 1282 MachineFunction *F = BB->getParent(); 1283 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 1284 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 1285 1286 F->insert(I, IfFalseMBB); 1287 F->insert(I, TailMBB); 1288 1289 // Transfer debug instructions associated with the selects to TailMBB. 1290 for (MachineInstr *DebugInstr : SelectDebugValues) { 1291 TailMBB->push_back(DebugInstr->removeFromParent()); 1292 } 1293 1294 // Move all instructions after the sequence to TailMBB. 1295 TailMBB->splice(TailMBB->end(), HeadMBB, 1296 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 1297 // Update machine-CFG edges by transferring all successors of the current 1298 // block to the new block which will contain the Phi nodes for the selects. 1299 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 1300 // Set the successors for HeadMBB. 1301 HeadMBB->addSuccessor(IfFalseMBB); 1302 HeadMBB->addSuccessor(TailMBB); 1303 1304 // Insert appropriate branch. 1305 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 1306 1307 BuildMI(HeadMBB, DL, TII.get(Opcode)) 1308 .addReg(LHS) 1309 .addReg(RHS) 1310 .addMBB(TailMBB); 1311 1312 // IfFalseMBB just falls through to TailMBB. 1313 IfFalseMBB->addSuccessor(TailMBB); 1314 1315 // Create PHIs for all of the select pseudo-instructions. 1316 auto SelectMBBI = MI.getIterator(); 1317 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 1318 auto InsertionPoint = TailMBB->begin(); 1319 while (SelectMBBI != SelectEnd) { 1320 auto Next = std::next(SelectMBBI); 1321 if (isSelectPseudo(*SelectMBBI)) { 1322 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 1323 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 1324 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 1325 .addReg(SelectMBBI->getOperand(4).getReg()) 1326 .addMBB(HeadMBB) 1327 .addReg(SelectMBBI->getOperand(5).getReg()) 1328 .addMBB(IfFalseMBB); 1329 SelectMBBI->eraseFromParent(); 1330 } 1331 SelectMBBI = Next; 1332 } 1333 1334 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 1335 return TailMBB; 1336 } 1337 1338 MachineBasicBlock * 1339 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1340 MachineBasicBlock *BB) const { 1341 switch (MI.getOpcode()) { 1342 default: 1343 llvm_unreachable("Unexpected instr type to insert"); 1344 case RISCV::ReadCycleWide: 1345 assert(!Subtarget.is64Bit() && 1346 "ReadCycleWrite is only to be used on riscv32"); 1347 return emitReadCycleWidePseudo(MI, BB); 1348 case RISCV::Select_GPR_Using_CC_GPR: 1349 case RISCV::Select_FPR32_Using_CC_GPR: 1350 case RISCV::Select_FPR64_Using_CC_GPR: 1351 return emitSelectPseudo(MI, BB); 1352 case RISCV::BuildPairF64Pseudo: 1353 return emitBuildPairF64Pseudo(MI, BB); 1354 case RISCV::SplitF64Pseudo: 1355 return emitSplitF64Pseudo(MI, BB); 1356 } 1357 } 1358 1359 // Calling Convention Implementation. 1360 // The expectations for frontend ABI lowering vary from target to target. 1361 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 1362 // details, but this is a longer term goal. For now, we simply try to keep the 1363 // role of the frontend as simple and well-defined as possible. The rules can 1364 // be summarised as: 1365 // * Never split up large scalar arguments. We handle them here. 1366 // * If a hardfloat calling convention is being used, and the struct may be 1367 // passed in a pair of registers (fp+fp, int+fp), and both registers are 1368 // available, then pass as two separate arguments. If either the GPRs or FPRs 1369 // are exhausted, then pass according to the rule below. 1370 // * If a struct could never be passed in registers or directly in a stack 1371 // slot (as it is larger than 2*XLEN and the floating point rules don't 1372 // apply), then pass it using a pointer with the byval attribute. 1373 // * If a struct is less than 2*XLEN, then coerce to either a two-element 1374 // word-sized array or a 2*XLEN scalar (depending on alignment). 1375 // * The frontend can determine whether a struct is returned by reference or 1376 // not based on its size and fields. If it will be returned by reference, the 1377 // frontend must modify the prototype so a pointer with the sret annotation is 1378 // passed as the first argument. This is not necessary for large scalar 1379 // returns. 1380 // * Struct return values and varargs should be coerced to structs containing 1381 // register-size fields in the same situations they would be for fixed 1382 // arguments. 1383 1384 static const MCPhysReg ArgGPRs[] = { 1385 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 1386 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 1387 }; 1388 static const MCPhysReg ArgFPR32s[] = { 1389 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 1390 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 1391 }; 1392 static const MCPhysReg ArgFPR64s[] = { 1393 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 1394 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 1395 }; 1396 1397 // Pass a 2*XLEN argument that has been split into two XLEN values through 1398 // registers or the stack as necessary. 1399 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 1400 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 1401 MVT ValVT2, MVT LocVT2, 1402 ISD::ArgFlagsTy ArgFlags2) { 1403 unsigned XLenInBytes = XLen / 8; 1404 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1405 // At least one half can be passed via register. 1406 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 1407 VA1.getLocVT(), CCValAssign::Full)); 1408 } else { 1409 // Both halves must be passed on the stack, with proper alignment. 1410 unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign()); 1411 State.addLoc( 1412 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 1413 State.AllocateStack(XLenInBytes, StackAlign), 1414 VA1.getLocVT(), CCValAssign::Full)); 1415 State.addLoc(CCValAssign::getMem( 1416 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 1417 CCValAssign::Full)); 1418 return false; 1419 } 1420 1421 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1422 // The second half can also be passed via register. 1423 State.addLoc( 1424 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 1425 } else { 1426 // The second half is passed via the stack, without additional alignment. 1427 State.addLoc(CCValAssign::getMem( 1428 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 1429 CCValAssign::Full)); 1430 } 1431 1432 return false; 1433 } 1434 1435 // Implements the RISC-V calling convention. Returns true upon failure. 1436 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 1437 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 1438 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 1439 bool IsRet, Type *OrigTy) { 1440 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 1441 assert(XLen == 32 || XLen == 64); 1442 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 1443 1444 // Any return value split in to more than two values can't be returned 1445 // directly. 1446 if (IsRet && ValNo > 1) 1447 return true; 1448 1449 // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a 1450 // variadic argument, or if no F32 argument registers are available. 1451 bool UseGPRForF32 = true; 1452 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 1453 // variadic argument, or if no F64 argument registers are available. 1454 bool UseGPRForF64 = true; 1455 1456 switch (ABI) { 1457 default: 1458 llvm_unreachable("Unexpected ABI"); 1459 case RISCVABI::ABI_ILP32: 1460 case RISCVABI::ABI_LP64: 1461 break; 1462 case RISCVABI::ABI_ILP32F: 1463 case RISCVABI::ABI_LP64F: 1464 UseGPRForF32 = !IsFixed; 1465 break; 1466 case RISCVABI::ABI_ILP32D: 1467 case RISCVABI::ABI_LP64D: 1468 UseGPRForF32 = !IsFixed; 1469 UseGPRForF64 = !IsFixed; 1470 break; 1471 } 1472 1473 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) 1474 UseGPRForF32 = true; 1475 if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s)) 1476 UseGPRForF64 = true; 1477 1478 // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local 1479 // variables rather than directly checking against the target ABI. 1480 1481 if (UseGPRForF32 && ValVT == MVT::f32) { 1482 LocVT = XLenVT; 1483 LocInfo = CCValAssign::BCvt; 1484 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 1485 LocVT = MVT::i64; 1486 LocInfo = CCValAssign::BCvt; 1487 } 1488 1489 // If this is a variadic argument, the RISC-V calling convention requires 1490 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 1491 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 1492 // be used regardless of whether the original argument was split during 1493 // legalisation or not. The argument will not be passed by registers if the 1494 // original type is larger than 2*XLEN, so the register alignment rule does 1495 // not apply. 1496 unsigned TwoXLenInBytes = (2 * XLen) / 8; 1497 if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes && 1498 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 1499 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 1500 // Skip 'odd' register if necessary. 1501 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 1502 State.AllocateReg(ArgGPRs); 1503 } 1504 1505 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 1506 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 1507 State.getPendingArgFlags(); 1508 1509 assert(PendingLocs.size() == PendingArgFlags.size() && 1510 "PendingLocs and PendingArgFlags out of sync"); 1511 1512 // Handle passing f64 on RV32D with a soft float ABI or when floating point 1513 // registers are exhausted. 1514 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 1515 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 1516 "Can't lower f64 if it is split"); 1517 // Depending on available argument GPRS, f64 may be passed in a pair of 1518 // GPRs, split between a GPR and the stack, or passed completely on the 1519 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 1520 // cases. 1521 Register Reg = State.AllocateReg(ArgGPRs); 1522 LocVT = MVT::i32; 1523 if (!Reg) { 1524 unsigned StackOffset = State.AllocateStack(8, 8); 1525 State.addLoc( 1526 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1527 return false; 1528 } 1529 if (!State.AllocateReg(ArgGPRs)) 1530 State.AllocateStack(4, 4); 1531 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1532 return false; 1533 } 1534 1535 // Split arguments might be passed indirectly, so keep track of the pending 1536 // values. 1537 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 1538 LocVT = XLenVT; 1539 LocInfo = CCValAssign::Indirect; 1540 PendingLocs.push_back( 1541 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 1542 PendingArgFlags.push_back(ArgFlags); 1543 if (!ArgFlags.isSplitEnd()) { 1544 return false; 1545 } 1546 } 1547 1548 // If the split argument only had two elements, it should be passed directly 1549 // in registers or on the stack. 1550 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 1551 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 1552 // Apply the normal calling convention rules to the first half of the 1553 // split argument. 1554 CCValAssign VA = PendingLocs[0]; 1555 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 1556 PendingLocs.clear(); 1557 PendingArgFlags.clear(); 1558 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 1559 ArgFlags); 1560 } 1561 1562 // Allocate to a register if possible, or else a stack slot. 1563 Register Reg; 1564 if (ValVT == MVT::f32 && !UseGPRForF32) 1565 Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s); 1566 else if (ValVT == MVT::f64 && !UseGPRForF64) 1567 Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s); 1568 else 1569 Reg = State.AllocateReg(ArgGPRs); 1570 unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8); 1571 1572 // If we reach this point and PendingLocs is non-empty, we must be at the 1573 // end of a split argument that must be passed indirectly. 1574 if (!PendingLocs.empty()) { 1575 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 1576 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 1577 1578 for (auto &It : PendingLocs) { 1579 if (Reg) 1580 It.convertToReg(Reg); 1581 else 1582 It.convertToMem(StackOffset); 1583 State.addLoc(It); 1584 } 1585 PendingLocs.clear(); 1586 PendingArgFlags.clear(); 1587 return false; 1588 } 1589 1590 assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) && 1591 "Expected an XLenVT at this stage"); 1592 1593 if (Reg) { 1594 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1595 return false; 1596 } 1597 1598 // When an f32 or f64 is passed on the stack, no bit-conversion is needed. 1599 if (ValVT == MVT::f32 || ValVT == MVT::f64) { 1600 LocVT = ValVT; 1601 LocInfo = CCValAssign::Full; 1602 } 1603 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1604 return false; 1605 } 1606 1607 void RISCVTargetLowering::analyzeInputArgs( 1608 MachineFunction &MF, CCState &CCInfo, 1609 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 1610 unsigned NumArgs = Ins.size(); 1611 FunctionType *FType = MF.getFunction().getFunctionType(); 1612 1613 for (unsigned i = 0; i != NumArgs; ++i) { 1614 MVT ArgVT = Ins[i].VT; 1615 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 1616 1617 Type *ArgTy = nullptr; 1618 if (IsRet) 1619 ArgTy = FType->getReturnType(); 1620 else if (Ins[i].isOrigArg()) 1621 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 1622 1623 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1624 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1625 ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) { 1626 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 1627 << EVT(ArgVT).getEVTString() << '\n'); 1628 llvm_unreachable(nullptr); 1629 } 1630 } 1631 } 1632 1633 void RISCVTargetLowering::analyzeOutputArgs( 1634 MachineFunction &MF, CCState &CCInfo, 1635 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 1636 CallLoweringInfo *CLI) const { 1637 unsigned NumArgs = Outs.size(); 1638 1639 for (unsigned i = 0; i != NumArgs; i++) { 1640 MVT ArgVT = Outs[i].VT; 1641 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 1642 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 1643 1644 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1645 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1646 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { 1647 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 1648 << EVT(ArgVT).getEVTString() << "\n"); 1649 llvm_unreachable(nullptr); 1650 } 1651 } 1652 } 1653 1654 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 1655 // values. 1656 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 1657 const CCValAssign &VA, const SDLoc &DL) { 1658 switch (VA.getLocInfo()) { 1659 default: 1660 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1661 case CCValAssign::Full: 1662 break; 1663 case CCValAssign::BCvt: 1664 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1665 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 1666 break; 1667 } 1668 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 1669 break; 1670 } 1671 return Val; 1672 } 1673 1674 // The caller is responsible for loading the full value if the argument is 1675 // passed with CCValAssign::Indirect. 1676 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 1677 const CCValAssign &VA, const SDLoc &DL) { 1678 MachineFunction &MF = DAG.getMachineFunction(); 1679 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1680 EVT LocVT = VA.getLocVT(); 1681 SDValue Val; 1682 const TargetRegisterClass *RC; 1683 1684 switch (LocVT.getSimpleVT().SimpleTy) { 1685 default: 1686 llvm_unreachable("Unexpected register type"); 1687 case MVT::i32: 1688 case MVT::i64: 1689 RC = &RISCV::GPRRegClass; 1690 break; 1691 case MVT::f32: 1692 RC = &RISCV::FPR32RegClass; 1693 break; 1694 case MVT::f64: 1695 RC = &RISCV::FPR64RegClass; 1696 break; 1697 } 1698 1699 Register VReg = RegInfo.createVirtualRegister(RC); 1700 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1701 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1702 1703 if (VA.getLocInfo() == CCValAssign::Indirect) 1704 return Val; 1705 1706 return convertLocVTToValVT(DAG, Val, VA, DL); 1707 } 1708 1709 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 1710 const CCValAssign &VA, const SDLoc &DL) { 1711 EVT LocVT = VA.getLocVT(); 1712 1713 switch (VA.getLocInfo()) { 1714 default: 1715 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1716 case CCValAssign::Full: 1717 break; 1718 case CCValAssign::BCvt: 1719 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1720 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 1721 break; 1722 } 1723 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 1724 break; 1725 } 1726 return Val; 1727 } 1728 1729 // The caller is responsible for loading the full value if the argument is 1730 // passed with CCValAssign::Indirect. 1731 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 1732 const CCValAssign &VA, const SDLoc &DL) { 1733 MachineFunction &MF = DAG.getMachineFunction(); 1734 MachineFrameInfo &MFI = MF.getFrameInfo(); 1735 EVT LocVT = VA.getLocVT(); 1736 EVT ValVT = VA.getValVT(); 1737 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 1738 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 1739 VA.getLocMemOffset(), /*Immutable=*/true); 1740 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1741 SDValue Val; 1742 1743 ISD::LoadExtType ExtType; 1744 switch (VA.getLocInfo()) { 1745 default: 1746 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1747 case CCValAssign::Full: 1748 case CCValAssign::Indirect: 1749 case CCValAssign::BCvt: 1750 ExtType = ISD::NON_EXTLOAD; 1751 break; 1752 } 1753 Val = DAG.getExtLoad( 1754 ExtType, DL, LocVT, Chain, FIN, 1755 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 1756 return Val; 1757 } 1758 1759 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 1760 const CCValAssign &VA, const SDLoc &DL) { 1761 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 1762 "Unexpected VA"); 1763 MachineFunction &MF = DAG.getMachineFunction(); 1764 MachineFrameInfo &MFI = MF.getFrameInfo(); 1765 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1766 1767 if (VA.isMemLoc()) { 1768 // f64 is passed on the stack. 1769 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 1770 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1771 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 1772 MachinePointerInfo::getFixedStack(MF, FI)); 1773 } 1774 1775 assert(VA.isRegLoc() && "Expected register VA assignment"); 1776 1777 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1778 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 1779 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 1780 SDValue Hi; 1781 if (VA.getLocReg() == RISCV::X17) { 1782 // Second half of f64 is passed on the stack. 1783 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 1784 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1785 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 1786 MachinePointerInfo::getFixedStack(MF, FI)); 1787 } else { 1788 // Second half of f64 is passed in another GPR. 1789 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1790 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 1791 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 1792 } 1793 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 1794 } 1795 1796 // FastCC has less than 1% performance improvement for some particular 1797 // benchmark. But theoretically, it may has benenfit for some cases. 1798 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 1799 CCValAssign::LocInfo LocInfo, 1800 ISD::ArgFlagsTy ArgFlags, CCState &State) { 1801 1802 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 1803 // X5 and X6 might be used for save-restore libcall. 1804 static const MCPhysReg GPRList[] = { 1805 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 1806 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 1807 RISCV::X29, RISCV::X30, RISCV::X31}; 1808 if (unsigned Reg = State.AllocateReg(GPRList)) { 1809 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1810 return false; 1811 } 1812 } 1813 1814 if (LocVT == MVT::f32) { 1815 static const MCPhysReg FPR32List[] = { 1816 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 1817 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 1818 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 1819 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 1820 if (unsigned Reg = State.AllocateReg(FPR32List)) { 1821 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1822 return false; 1823 } 1824 } 1825 1826 if (LocVT == MVT::f64) { 1827 static const MCPhysReg FPR64List[] = { 1828 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 1829 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 1830 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 1831 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 1832 if (unsigned Reg = State.AllocateReg(FPR64List)) { 1833 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1834 return false; 1835 } 1836 } 1837 1838 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 1839 unsigned Offset4 = State.AllocateStack(4, 4); 1840 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 1841 return false; 1842 } 1843 1844 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 1845 unsigned Offset5 = State.AllocateStack(8, 8); 1846 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 1847 return false; 1848 } 1849 1850 return true; // CC didn't match. 1851 } 1852 1853 // Transform physical registers into virtual registers. 1854 SDValue RISCVTargetLowering::LowerFormalArguments( 1855 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1856 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1857 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1858 1859 switch (CallConv) { 1860 default: 1861 report_fatal_error("Unsupported calling convention"); 1862 case CallingConv::C: 1863 case CallingConv::Fast: 1864 break; 1865 } 1866 1867 MachineFunction &MF = DAG.getMachineFunction(); 1868 1869 const Function &Func = MF.getFunction(); 1870 if (Func.hasFnAttribute("interrupt")) { 1871 if (!Func.arg_empty()) 1872 report_fatal_error( 1873 "Functions with the interrupt attribute cannot have arguments!"); 1874 1875 StringRef Kind = 1876 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 1877 1878 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 1879 report_fatal_error( 1880 "Function interrupt attribute argument not supported!"); 1881 } 1882 1883 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1884 MVT XLenVT = Subtarget.getXLenVT(); 1885 unsigned XLenInBytes = Subtarget.getXLen() / 8; 1886 // Used with vargs to acumulate store chains. 1887 std::vector<SDValue> OutChains; 1888 1889 // Assign locations to all of the incoming arguments. 1890 SmallVector<CCValAssign, 16> ArgLocs; 1891 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1892 1893 if (CallConv == CallingConv::Fast) 1894 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 1895 else 1896 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 1897 1898 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1899 CCValAssign &VA = ArgLocs[i]; 1900 SDValue ArgValue; 1901 // Passing f64 on RV32D with a soft float ABI must be handled as a special 1902 // case. 1903 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 1904 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 1905 else if (VA.isRegLoc()) 1906 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); 1907 else 1908 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 1909 1910 if (VA.getLocInfo() == CCValAssign::Indirect) { 1911 // If the original argument was split and passed by reference (e.g. i128 1912 // on RV32), we need to load all parts of it here (using the same 1913 // address). 1914 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1915 MachinePointerInfo())); 1916 unsigned ArgIndex = Ins[i].OrigArgIndex; 1917 assert(Ins[i].PartOffset == 0); 1918 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 1919 CCValAssign &PartVA = ArgLocs[i + 1]; 1920 unsigned PartOffset = Ins[i + 1].PartOffset; 1921 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1922 DAG.getIntPtrConstant(PartOffset, DL)); 1923 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1924 MachinePointerInfo())); 1925 ++i; 1926 } 1927 continue; 1928 } 1929 InVals.push_back(ArgValue); 1930 } 1931 1932 if (IsVarArg) { 1933 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 1934 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 1935 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 1936 MachineFrameInfo &MFI = MF.getFrameInfo(); 1937 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1938 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 1939 1940 // Offset of the first variable argument from stack pointer, and size of 1941 // the vararg save area. For now, the varargs save area is either zero or 1942 // large enough to hold a0-a7. 1943 int VaArgOffset, VarArgsSaveSize; 1944 1945 // If all registers are allocated, then all varargs must be passed on the 1946 // stack and we don't need to save any argregs. 1947 if (ArgRegs.size() == Idx) { 1948 VaArgOffset = CCInfo.getNextStackOffset(); 1949 VarArgsSaveSize = 0; 1950 } else { 1951 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 1952 VaArgOffset = -VarArgsSaveSize; 1953 } 1954 1955 // Record the frame index of the first variable argument 1956 // which is a value necessary to VASTART. 1957 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1958 RVFI->setVarArgsFrameIndex(FI); 1959 1960 // If saving an odd number of registers then create an extra stack slot to 1961 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 1962 // offsets to even-numbered registered remain 2*XLEN-aligned. 1963 if (Idx % 2) { 1964 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 1965 VarArgsSaveSize += XLenInBytes; 1966 } 1967 1968 // Copy the integer registers that may have been used for passing varargs 1969 // to the vararg save area. 1970 for (unsigned I = Idx; I < ArgRegs.size(); 1971 ++I, VaArgOffset += XLenInBytes) { 1972 const Register Reg = RegInfo.createVirtualRegister(RC); 1973 RegInfo.addLiveIn(ArgRegs[I], Reg); 1974 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 1975 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1976 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1977 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 1978 MachinePointerInfo::getFixedStack(MF, FI)); 1979 cast<StoreSDNode>(Store.getNode()) 1980 ->getMemOperand() 1981 ->setValue((Value *)nullptr); 1982 OutChains.push_back(Store); 1983 } 1984 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 1985 } 1986 1987 // All stores are grouped in one node to allow the matching between 1988 // the size of Ins and InVals. This only happens for vararg functions. 1989 if (!OutChains.empty()) { 1990 OutChains.push_back(Chain); 1991 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1992 } 1993 1994 return Chain; 1995 } 1996 1997 /// isEligibleForTailCallOptimization - Check whether the call is eligible 1998 /// for tail call optimization. 1999 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 2000 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 2001 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 2002 const SmallVector<CCValAssign, 16> &ArgLocs) const { 2003 2004 auto &Callee = CLI.Callee; 2005 auto CalleeCC = CLI.CallConv; 2006 auto &Outs = CLI.Outs; 2007 auto &Caller = MF.getFunction(); 2008 auto CallerCC = Caller.getCallingConv(); 2009 2010 // Do not tail call opt functions with "disable-tail-calls" attribute. 2011 if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 2012 return false; 2013 2014 // Exception-handling functions need a special set of instructions to 2015 // indicate a return to the hardware. Tail-calling another function would 2016 // probably break this. 2017 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 2018 // should be expanded as new function attributes are introduced. 2019 if (Caller.hasFnAttribute("interrupt")) 2020 return false; 2021 2022 // Do not tail call opt if the stack is used to pass parameters. 2023 if (CCInfo.getNextStackOffset() != 0) 2024 return false; 2025 2026 // Do not tail call opt if any parameters need to be passed indirectly. 2027 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 2028 // passed indirectly. So the address of the value will be passed in a 2029 // register, or if not available, then the address is put on the stack. In 2030 // order to pass indirectly, space on the stack often needs to be allocated 2031 // in order to store the value. In this case the CCInfo.getNextStackOffset() 2032 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 2033 // are passed CCValAssign::Indirect. 2034 for (auto &VA : ArgLocs) 2035 if (VA.getLocInfo() == CCValAssign::Indirect) 2036 return false; 2037 2038 // Do not tail call opt if either caller or callee uses struct return 2039 // semantics. 2040 auto IsCallerStructRet = Caller.hasStructRetAttr(); 2041 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 2042 if (IsCallerStructRet || IsCalleeStructRet) 2043 return false; 2044 2045 // Externally-defined functions with weak linkage should not be 2046 // tail-called. The behaviour of branch instructions in this situation (as 2047 // used for tail calls) is implementation-defined, so we cannot rely on the 2048 // linker replacing the tail call with a return. 2049 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2050 const GlobalValue *GV = G->getGlobal(); 2051 if (GV->hasExternalWeakLinkage()) 2052 return false; 2053 } 2054 2055 // The callee has to preserve all registers the caller needs to preserve. 2056 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2057 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2058 if (CalleeCC != CallerCC) { 2059 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 2060 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 2061 return false; 2062 } 2063 2064 // Byval parameters hand the function a pointer directly into the stack area 2065 // we want to reuse during a tail call. Working around this *is* possible 2066 // but less efficient and uglier in LowerCall. 2067 for (auto &Arg : Outs) 2068 if (Arg.Flags.isByVal()) 2069 return false; 2070 2071 return true; 2072 } 2073 2074 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 2075 // and output parameter nodes. 2076 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 2077 SmallVectorImpl<SDValue> &InVals) const { 2078 SelectionDAG &DAG = CLI.DAG; 2079 SDLoc &DL = CLI.DL; 2080 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 2081 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 2082 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 2083 SDValue Chain = CLI.Chain; 2084 SDValue Callee = CLI.Callee; 2085 bool &IsTailCall = CLI.IsTailCall; 2086 CallingConv::ID CallConv = CLI.CallConv; 2087 bool IsVarArg = CLI.IsVarArg; 2088 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2089 MVT XLenVT = Subtarget.getXLenVT(); 2090 2091 MachineFunction &MF = DAG.getMachineFunction(); 2092 2093 // Analyze the operands of the call, assigning locations to each operand. 2094 SmallVector<CCValAssign, 16> ArgLocs; 2095 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2096 2097 if (CallConv == CallingConv::Fast) 2098 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 2099 else 2100 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 2101 2102 // Check if it's really possible to do a tail call. 2103 if (IsTailCall) 2104 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 2105 2106 if (IsTailCall) 2107 ++NumTailCalls; 2108 else if (CLI.CS && CLI.CS.isMustTailCall()) 2109 report_fatal_error("failed to perform tail call elimination on a call " 2110 "site marked musttail"); 2111 2112 // Get a count of how many bytes are to be pushed on the stack. 2113 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 2114 2115 // Create local copies for byval args 2116 SmallVector<SDValue, 8> ByValArgs; 2117 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2118 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2119 if (!Flags.isByVal()) 2120 continue; 2121 2122 SDValue Arg = OutVals[i]; 2123 unsigned Size = Flags.getByValSize(); 2124 unsigned Align = Flags.getByValAlign(); 2125 2126 int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false); 2127 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2128 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 2129 2130 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, 2131 /*IsVolatile=*/false, 2132 /*AlwaysInline=*/false, 2133 IsTailCall, MachinePointerInfo(), 2134 MachinePointerInfo()); 2135 ByValArgs.push_back(FIPtr); 2136 } 2137 2138 if (!IsTailCall) 2139 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 2140 2141 // Copy argument values to their designated locations. 2142 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 2143 SmallVector<SDValue, 8> MemOpChains; 2144 SDValue StackPtr; 2145 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 2146 CCValAssign &VA = ArgLocs[i]; 2147 SDValue ArgValue = OutVals[i]; 2148 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2149 2150 // Handle passing f64 on RV32D with a soft float ABI as a special case. 2151 bool IsF64OnRV32DSoftABI = 2152 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 2153 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 2154 SDValue SplitF64 = DAG.getNode( 2155 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 2156 SDValue Lo = SplitF64.getValue(0); 2157 SDValue Hi = SplitF64.getValue(1); 2158 2159 Register RegLo = VA.getLocReg(); 2160 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 2161 2162 if (RegLo == RISCV::X17) { 2163 // Second half of f64 is passed on the stack. 2164 // Work out the address of the stack slot. 2165 if (!StackPtr.getNode()) 2166 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2167 // Emit the store. 2168 MemOpChains.push_back( 2169 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 2170 } else { 2171 // Second half of f64 is passed in another GPR. 2172 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2173 Register RegHigh = RegLo + 1; 2174 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 2175 } 2176 continue; 2177 } 2178 2179 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 2180 // as any other MemLoc. 2181 2182 // Promote the value if needed. 2183 // For now, only handle fully promoted and indirect arguments. 2184 if (VA.getLocInfo() == CCValAssign::Indirect) { 2185 // Store the argument in a stack slot and pass its address. 2186 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 2187 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 2188 MemOpChains.push_back( 2189 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 2190 MachinePointerInfo::getFixedStack(MF, FI))); 2191 // If the original argument was split (e.g. i128), we need 2192 // to store all parts of it here (and pass just one address). 2193 unsigned ArgIndex = Outs[i].OrigArgIndex; 2194 assert(Outs[i].PartOffset == 0); 2195 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 2196 SDValue PartValue = OutVals[i + 1]; 2197 unsigned PartOffset = Outs[i + 1].PartOffset; 2198 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 2199 DAG.getIntPtrConstant(PartOffset, DL)); 2200 MemOpChains.push_back( 2201 DAG.getStore(Chain, DL, PartValue, Address, 2202 MachinePointerInfo::getFixedStack(MF, FI))); 2203 ++i; 2204 } 2205 ArgValue = SpillSlot; 2206 } else { 2207 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 2208 } 2209 2210 // Use local copy if it is a byval arg. 2211 if (Flags.isByVal()) 2212 ArgValue = ByValArgs[j++]; 2213 2214 if (VA.isRegLoc()) { 2215 // Queue up the argument copies and emit them at the end. 2216 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 2217 } else { 2218 assert(VA.isMemLoc() && "Argument not register or memory"); 2219 assert(!IsTailCall && "Tail call not allowed if stack is used " 2220 "for passing parameters"); 2221 2222 // Work out the address of the stack slot. 2223 if (!StackPtr.getNode()) 2224 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2225 SDValue Address = 2226 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 2227 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 2228 2229 // Emit the store. 2230 MemOpChains.push_back( 2231 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 2232 } 2233 } 2234 2235 // Join the stores, which are independent of one another. 2236 if (!MemOpChains.empty()) 2237 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2238 2239 SDValue Glue; 2240 2241 // Build a sequence of copy-to-reg nodes, chained and glued together. 2242 for (auto &Reg : RegsToPass) { 2243 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 2244 Glue = Chain.getValue(1); 2245 } 2246 2247 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 2248 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 2249 // split it and then direct call can be matched by PseudoCALL. 2250 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 2251 const GlobalValue *GV = S->getGlobal(); 2252 2253 unsigned OpFlags = RISCVII::MO_CALL; 2254 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 2255 OpFlags = RISCVII::MO_PLT; 2256 2257 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 2258 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2259 unsigned OpFlags = RISCVII::MO_CALL; 2260 2261 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 2262 nullptr)) 2263 OpFlags = RISCVII::MO_PLT; 2264 2265 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 2266 } 2267 2268 // The first call operand is the chain and the second is the target address. 2269 SmallVector<SDValue, 8> Ops; 2270 Ops.push_back(Chain); 2271 Ops.push_back(Callee); 2272 2273 // Add argument registers to the end of the list so that they are 2274 // known live into the call. 2275 for (auto &Reg : RegsToPass) 2276 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 2277 2278 if (!IsTailCall) { 2279 // Add a register mask operand representing the call-preserved registers. 2280 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2281 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2282 assert(Mask && "Missing call preserved mask for calling convention"); 2283 Ops.push_back(DAG.getRegisterMask(Mask)); 2284 } 2285 2286 // Glue the call to the argument copies, if any. 2287 if (Glue.getNode()) 2288 Ops.push_back(Glue); 2289 2290 // Emit the call. 2291 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2292 2293 if (IsTailCall) { 2294 MF.getFrameInfo().setHasTailCall(); 2295 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 2296 } 2297 2298 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 2299 Glue = Chain.getValue(1); 2300 2301 // Mark the end of the call, which is glued to the call itself. 2302 Chain = DAG.getCALLSEQ_END(Chain, 2303 DAG.getConstant(NumBytes, DL, PtrVT, true), 2304 DAG.getConstant(0, DL, PtrVT, true), 2305 Glue, DL); 2306 Glue = Chain.getValue(1); 2307 2308 // Assign locations to each value returned by this call. 2309 SmallVector<CCValAssign, 16> RVLocs; 2310 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 2311 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 2312 2313 // Copy all of the result registers out of their specified physreg. 2314 for (auto &VA : RVLocs) { 2315 // Copy the value out 2316 SDValue RetValue = 2317 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 2318 // Glue the RetValue to the end of the call sequence 2319 Chain = RetValue.getValue(1); 2320 Glue = RetValue.getValue(2); 2321 2322 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2323 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 2324 SDValue RetValue2 = 2325 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 2326 Chain = RetValue2.getValue(1); 2327 Glue = RetValue2.getValue(2); 2328 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 2329 RetValue2); 2330 } 2331 2332 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 2333 2334 InVals.push_back(RetValue); 2335 } 2336 2337 return Chain; 2338 } 2339 2340 bool RISCVTargetLowering::CanLowerReturn( 2341 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 2342 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 2343 SmallVector<CCValAssign, 16> RVLocs; 2344 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2345 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2346 MVT VT = Outs[i].VT; 2347 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2348 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2349 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 2350 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) 2351 return false; 2352 } 2353 return true; 2354 } 2355 2356 SDValue 2357 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2358 bool IsVarArg, 2359 const SmallVectorImpl<ISD::OutputArg> &Outs, 2360 const SmallVectorImpl<SDValue> &OutVals, 2361 const SDLoc &DL, SelectionDAG &DAG) const { 2362 // Stores the assignment of the return value to a location. 2363 SmallVector<CCValAssign, 16> RVLocs; 2364 2365 // Info about the registers and stack slot. 2366 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2367 *DAG.getContext()); 2368 2369 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 2370 nullptr); 2371 2372 SDValue Glue; 2373 SmallVector<SDValue, 4> RetOps(1, Chain); 2374 2375 // Copy the result values into the output registers. 2376 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 2377 SDValue Val = OutVals[i]; 2378 CCValAssign &VA = RVLocs[i]; 2379 assert(VA.isRegLoc() && "Can only return in registers!"); 2380 2381 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2382 // Handle returning f64 on RV32D with a soft float ABI. 2383 assert(VA.isRegLoc() && "Expected return via registers"); 2384 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 2385 DAG.getVTList(MVT::i32, MVT::i32), Val); 2386 SDValue Lo = SplitF64.getValue(0); 2387 SDValue Hi = SplitF64.getValue(1); 2388 Register RegLo = VA.getLocReg(); 2389 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2390 Register RegHi = RegLo + 1; 2391 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 2392 Glue = Chain.getValue(1); 2393 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 2394 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 2395 Glue = Chain.getValue(1); 2396 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 2397 } else { 2398 // Handle a 'normal' return. 2399 Val = convertValVTToLocVT(DAG, Val, VA, DL); 2400 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 2401 2402 // Guarantee that all emitted copies are stuck together. 2403 Glue = Chain.getValue(1); 2404 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2405 } 2406 } 2407 2408 RetOps[0] = Chain; // Update chain. 2409 2410 // Add the glue node if we have it. 2411 if (Glue.getNode()) { 2412 RetOps.push_back(Glue); 2413 } 2414 2415 // Interrupt service routines use different return instructions. 2416 const Function &Func = DAG.getMachineFunction().getFunction(); 2417 if (Func.hasFnAttribute("interrupt")) { 2418 if (!Func.getReturnType()->isVoidTy()) 2419 report_fatal_error( 2420 "Functions with the interrupt attribute must have void return type!"); 2421 2422 MachineFunction &MF = DAG.getMachineFunction(); 2423 StringRef Kind = 2424 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2425 2426 unsigned RetOpc; 2427 if (Kind == "user") 2428 RetOpc = RISCVISD::URET_FLAG; 2429 else if (Kind == "supervisor") 2430 RetOpc = RISCVISD::SRET_FLAG; 2431 else 2432 RetOpc = RISCVISD::MRET_FLAG; 2433 2434 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 2435 } 2436 2437 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 2438 } 2439 2440 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 2441 switch ((RISCVISD::NodeType)Opcode) { 2442 case RISCVISD::FIRST_NUMBER: 2443 break; 2444 case RISCVISD::RET_FLAG: 2445 return "RISCVISD::RET_FLAG"; 2446 case RISCVISD::URET_FLAG: 2447 return "RISCVISD::URET_FLAG"; 2448 case RISCVISD::SRET_FLAG: 2449 return "RISCVISD::SRET_FLAG"; 2450 case RISCVISD::MRET_FLAG: 2451 return "RISCVISD::MRET_FLAG"; 2452 case RISCVISD::CALL: 2453 return "RISCVISD::CALL"; 2454 case RISCVISD::SELECT_CC: 2455 return "RISCVISD::SELECT_CC"; 2456 case RISCVISD::BuildPairF64: 2457 return "RISCVISD::BuildPairF64"; 2458 case RISCVISD::SplitF64: 2459 return "RISCVISD::SplitF64"; 2460 case RISCVISD::TAIL: 2461 return "RISCVISD::TAIL"; 2462 case RISCVISD::SLLW: 2463 return "RISCVISD::SLLW"; 2464 case RISCVISD::SRAW: 2465 return "RISCVISD::SRAW"; 2466 case RISCVISD::SRLW: 2467 return "RISCVISD::SRLW"; 2468 case RISCVISD::DIVW: 2469 return "RISCVISD::DIVW"; 2470 case RISCVISD::DIVUW: 2471 return "RISCVISD::DIVUW"; 2472 case RISCVISD::REMUW: 2473 return "RISCVISD::REMUW"; 2474 case RISCVISD::FMV_W_X_RV64: 2475 return "RISCVISD::FMV_W_X_RV64"; 2476 case RISCVISD::FMV_X_ANYEXTW_RV64: 2477 return "RISCVISD::FMV_X_ANYEXTW_RV64"; 2478 case RISCVISD::READ_CYCLE_WIDE: 2479 return "RISCVISD::READ_CYCLE_WIDE"; 2480 } 2481 return nullptr; 2482 } 2483 2484 /// getConstraintType - Given a constraint letter, return the type of 2485 /// constraint it is for this target. 2486 RISCVTargetLowering::ConstraintType 2487 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 2488 if (Constraint.size() == 1) { 2489 switch (Constraint[0]) { 2490 default: 2491 break; 2492 case 'f': 2493 return C_RegisterClass; 2494 case 'I': 2495 case 'J': 2496 case 'K': 2497 return C_Immediate; 2498 case 'A': 2499 return C_Memory; 2500 } 2501 } 2502 return TargetLowering::getConstraintType(Constraint); 2503 } 2504 2505 std::pair<unsigned, const TargetRegisterClass *> 2506 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2507 StringRef Constraint, 2508 MVT VT) const { 2509 // First, see if this is a constraint that directly corresponds to a 2510 // RISCV register class. 2511 if (Constraint.size() == 1) { 2512 switch (Constraint[0]) { 2513 case 'r': 2514 return std::make_pair(0U, &RISCV::GPRRegClass); 2515 case 'f': 2516 if (Subtarget.hasStdExtF() && VT == MVT::f32) 2517 return std::make_pair(0U, &RISCV::FPR32RegClass); 2518 if (Subtarget.hasStdExtD() && VT == MVT::f64) 2519 return std::make_pair(0U, &RISCV::FPR64RegClass); 2520 break; 2521 default: 2522 break; 2523 } 2524 } 2525 2526 // Clang will correctly decode the usage of register name aliases into their 2527 // official names. However, other frontends like `rustc` do not. This allows 2528 // users of these frontends to use the ABI names for registers in LLVM-style 2529 // register constraints. 2530 Register XRegFromAlias = StringSwitch<Register>(Constraint.lower()) 2531 .Case("{zero}", RISCV::X0) 2532 .Case("{ra}", RISCV::X1) 2533 .Case("{sp}", RISCV::X2) 2534 .Case("{gp}", RISCV::X3) 2535 .Case("{tp}", RISCV::X4) 2536 .Case("{t0}", RISCV::X5) 2537 .Case("{t1}", RISCV::X6) 2538 .Case("{t2}", RISCV::X7) 2539 .Cases("{s0}", "{fp}", RISCV::X8) 2540 .Case("{s1}", RISCV::X9) 2541 .Case("{a0}", RISCV::X10) 2542 .Case("{a1}", RISCV::X11) 2543 .Case("{a2}", RISCV::X12) 2544 .Case("{a3}", RISCV::X13) 2545 .Case("{a4}", RISCV::X14) 2546 .Case("{a5}", RISCV::X15) 2547 .Case("{a6}", RISCV::X16) 2548 .Case("{a7}", RISCV::X17) 2549 .Case("{s2}", RISCV::X18) 2550 .Case("{s3}", RISCV::X19) 2551 .Case("{s4}", RISCV::X20) 2552 .Case("{s5}", RISCV::X21) 2553 .Case("{s6}", RISCV::X22) 2554 .Case("{s7}", RISCV::X23) 2555 .Case("{s8}", RISCV::X24) 2556 .Case("{s9}", RISCV::X25) 2557 .Case("{s10}", RISCV::X26) 2558 .Case("{s11}", RISCV::X27) 2559 .Case("{t3}", RISCV::X28) 2560 .Case("{t4}", RISCV::X29) 2561 .Case("{t5}", RISCV::X30) 2562 .Case("{t6}", RISCV::X31) 2563 .Default(RISCV::NoRegister); 2564 if (XRegFromAlias != RISCV::NoRegister) 2565 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 2566 2567 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 2568 // TableGen record rather than the AsmName to choose registers for InlineAsm 2569 // constraints, plus we want to match those names to the widest floating point 2570 // register type available, manually select floating point registers here. 2571 // 2572 // The second case is the ABI name of the register, so that frontends can also 2573 // use the ABI names in register constraint lists. 2574 if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) { 2575 std::pair<Register, Register> FReg = 2576 StringSwitch<std::pair<Register, Register>>(Constraint.lower()) 2577 .Cases("{f0}", "{ft0}", {RISCV::F0_F, RISCV::F0_D}) 2578 .Cases("{f1}", "{ft1}", {RISCV::F1_F, RISCV::F1_D}) 2579 .Cases("{f2}", "{ft2}", {RISCV::F2_F, RISCV::F2_D}) 2580 .Cases("{f3}", "{ft3}", {RISCV::F3_F, RISCV::F3_D}) 2581 .Cases("{f4}", "{ft4}", {RISCV::F4_F, RISCV::F4_D}) 2582 .Cases("{f5}", "{ft5}", {RISCV::F5_F, RISCV::F5_D}) 2583 .Cases("{f6}", "{ft6}", {RISCV::F6_F, RISCV::F6_D}) 2584 .Cases("{f7}", "{ft7}", {RISCV::F7_F, RISCV::F7_D}) 2585 .Cases("{f8}", "{fs0}", {RISCV::F8_F, RISCV::F8_D}) 2586 .Cases("{f9}", "{fs1}", {RISCV::F9_F, RISCV::F9_D}) 2587 .Cases("{f10}", "{fa0}", {RISCV::F10_F, RISCV::F10_D}) 2588 .Cases("{f11}", "{fa1}", {RISCV::F11_F, RISCV::F11_D}) 2589 .Cases("{f12}", "{fa2}", {RISCV::F12_F, RISCV::F12_D}) 2590 .Cases("{f13}", "{fa3}", {RISCV::F13_F, RISCV::F13_D}) 2591 .Cases("{f14}", "{fa4}", {RISCV::F14_F, RISCV::F14_D}) 2592 .Cases("{f15}", "{fa5}", {RISCV::F15_F, RISCV::F15_D}) 2593 .Cases("{f16}", "{fa6}", {RISCV::F16_F, RISCV::F16_D}) 2594 .Cases("{f17}", "{fa7}", {RISCV::F17_F, RISCV::F17_D}) 2595 .Cases("{f18}", "{fs2}", {RISCV::F18_F, RISCV::F18_D}) 2596 .Cases("{f19}", "{fs3}", {RISCV::F19_F, RISCV::F19_D}) 2597 .Cases("{f20}", "{fs4}", {RISCV::F20_F, RISCV::F20_D}) 2598 .Cases("{f21}", "{fs5}", {RISCV::F21_F, RISCV::F21_D}) 2599 .Cases("{f22}", "{fs6}", {RISCV::F22_F, RISCV::F22_D}) 2600 .Cases("{f23}", "{fs7}", {RISCV::F23_F, RISCV::F23_D}) 2601 .Cases("{f24}", "{fs8}", {RISCV::F24_F, RISCV::F24_D}) 2602 .Cases("{f25}", "{fs9}", {RISCV::F25_F, RISCV::F25_D}) 2603 .Cases("{f26}", "{fs10}", {RISCV::F26_F, RISCV::F26_D}) 2604 .Cases("{f27}", "{fs11}", {RISCV::F27_F, RISCV::F27_D}) 2605 .Cases("{f28}", "{ft8}", {RISCV::F28_F, RISCV::F28_D}) 2606 .Cases("{f29}", "{ft9}", {RISCV::F29_F, RISCV::F29_D}) 2607 .Cases("{f30}", "{ft10}", {RISCV::F30_F, RISCV::F30_D}) 2608 .Cases("{f31}", "{ft11}", {RISCV::F31_F, RISCV::F31_D}) 2609 .Default({RISCV::NoRegister, RISCV::NoRegister}); 2610 if (FReg.first != RISCV::NoRegister) 2611 return Subtarget.hasStdExtD() 2612 ? std::make_pair(FReg.second, &RISCV::FPR64RegClass) 2613 : std::make_pair(FReg.first, &RISCV::FPR32RegClass); 2614 } 2615 2616 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2617 } 2618 2619 unsigned 2620 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 2621 // Currently only support length 1 constraints. 2622 if (ConstraintCode.size() == 1) { 2623 switch (ConstraintCode[0]) { 2624 case 'A': 2625 return InlineAsm::Constraint_A; 2626 default: 2627 break; 2628 } 2629 } 2630 2631 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 2632 } 2633 2634 void RISCVTargetLowering::LowerAsmOperandForConstraint( 2635 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 2636 SelectionDAG &DAG) const { 2637 // Currently only support length 1 constraints. 2638 if (Constraint.length() == 1) { 2639 switch (Constraint[0]) { 2640 case 'I': 2641 // Validate & create a 12-bit signed immediate operand. 2642 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2643 uint64_t CVal = C->getSExtValue(); 2644 if (isInt<12>(CVal)) 2645 Ops.push_back( 2646 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 2647 } 2648 return; 2649 case 'J': 2650 // Validate & create an integer zero operand. 2651 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 2652 if (C->getZExtValue() == 0) 2653 Ops.push_back( 2654 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 2655 return; 2656 case 'K': 2657 // Validate & create a 5-bit unsigned immediate operand. 2658 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2659 uint64_t CVal = C->getZExtValue(); 2660 if (isUInt<5>(CVal)) 2661 Ops.push_back( 2662 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 2663 } 2664 return; 2665 default: 2666 break; 2667 } 2668 } 2669 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 2670 } 2671 2672 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 2673 Instruction *Inst, 2674 AtomicOrdering Ord) const { 2675 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 2676 return Builder.CreateFence(Ord); 2677 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 2678 return Builder.CreateFence(AtomicOrdering::Release); 2679 return nullptr; 2680 } 2681 2682 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 2683 Instruction *Inst, 2684 AtomicOrdering Ord) const { 2685 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 2686 return Builder.CreateFence(AtomicOrdering::Acquire); 2687 return nullptr; 2688 } 2689 2690 TargetLowering::AtomicExpansionKind 2691 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 2692 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 2693 // point operations can't be used in an lr/sc sequence without breaking the 2694 // forward-progress guarantee. 2695 if (AI->isFloatingPointOperation()) 2696 return AtomicExpansionKind::CmpXChg; 2697 2698 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 2699 if (Size == 8 || Size == 16) 2700 return AtomicExpansionKind::MaskedIntrinsic; 2701 return AtomicExpansionKind::None; 2702 } 2703 2704 static Intrinsic::ID 2705 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 2706 if (XLen == 32) { 2707 switch (BinOp) { 2708 default: 2709 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2710 case AtomicRMWInst::Xchg: 2711 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 2712 case AtomicRMWInst::Add: 2713 return Intrinsic::riscv_masked_atomicrmw_add_i32; 2714 case AtomicRMWInst::Sub: 2715 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 2716 case AtomicRMWInst::Nand: 2717 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 2718 case AtomicRMWInst::Max: 2719 return Intrinsic::riscv_masked_atomicrmw_max_i32; 2720 case AtomicRMWInst::Min: 2721 return Intrinsic::riscv_masked_atomicrmw_min_i32; 2722 case AtomicRMWInst::UMax: 2723 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 2724 case AtomicRMWInst::UMin: 2725 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 2726 } 2727 } 2728 2729 if (XLen == 64) { 2730 switch (BinOp) { 2731 default: 2732 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2733 case AtomicRMWInst::Xchg: 2734 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 2735 case AtomicRMWInst::Add: 2736 return Intrinsic::riscv_masked_atomicrmw_add_i64; 2737 case AtomicRMWInst::Sub: 2738 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 2739 case AtomicRMWInst::Nand: 2740 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 2741 case AtomicRMWInst::Max: 2742 return Intrinsic::riscv_masked_atomicrmw_max_i64; 2743 case AtomicRMWInst::Min: 2744 return Intrinsic::riscv_masked_atomicrmw_min_i64; 2745 case AtomicRMWInst::UMax: 2746 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 2747 case AtomicRMWInst::UMin: 2748 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 2749 } 2750 } 2751 2752 llvm_unreachable("Unexpected XLen\n"); 2753 } 2754 2755 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 2756 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 2757 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 2758 unsigned XLen = Subtarget.getXLen(); 2759 Value *Ordering = 2760 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 2761 Type *Tys[] = {AlignedAddr->getType()}; 2762 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 2763 AI->getModule(), 2764 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 2765 2766 if (XLen == 64) { 2767 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 2768 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2769 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 2770 } 2771 2772 Value *Result; 2773 2774 // Must pass the shift amount needed to sign extend the loaded value prior 2775 // to performing a signed comparison for min/max. ShiftAmt is the number of 2776 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 2777 // is the number of bits to left+right shift the value in order to 2778 // sign-extend. 2779 if (AI->getOperation() == AtomicRMWInst::Min || 2780 AI->getOperation() == AtomicRMWInst::Max) { 2781 const DataLayout &DL = AI->getModule()->getDataLayout(); 2782 unsigned ValWidth = 2783 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 2784 Value *SextShamt = 2785 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 2786 Result = Builder.CreateCall(LrwOpScwLoop, 2787 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 2788 } else { 2789 Result = 2790 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 2791 } 2792 2793 if (XLen == 64) 2794 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2795 return Result; 2796 } 2797 2798 TargetLowering::AtomicExpansionKind 2799 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 2800 AtomicCmpXchgInst *CI) const { 2801 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 2802 if (Size == 8 || Size == 16) 2803 return AtomicExpansionKind::MaskedIntrinsic; 2804 return AtomicExpansionKind::None; 2805 } 2806 2807 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 2808 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 2809 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 2810 unsigned XLen = Subtarget.getXLen(); 2811 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 2812 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 2813 if (XLen == 64) { 2814 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 2815 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 2816 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2817 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 2818 } 2819 Type *Tys[] = {AlignedAddr->getType()}; 2820 Function *MaskedCmpXchg = 2821 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 2822 Value *Result = Builder.CreateCall( 2823 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 2824 if (XLen == 64) 2825 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2826 return Result; 2827 } 2828 2829 unsigned RISCVTargetLowering::getExceptionPointerRegister( 2830 const Constant *PersonalityFn) const { 2831 return RISCV::X10; 2832 } 2833 2834 unsigned RISCVTargetLowering::getExceptionSelectorRegister( 2835 const Constant *PersonalityFn) const { 2836 return RISCV::X11; 2837 } 2838 2839 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 2840 // Return false to suppress the unnecessary extensions if the LibCall 2841 // arguments or return value is f32 type for LP64 ABI. 2842 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 2843 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 2844 return false; 2845 2846 return true; 2847 } 2848