1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "RISCV.h" 16 #include "RISCVMachineFunctionInfo.h" 17 #include "RISCVRegisterInfo.h" 18 #include "RISCVSubtarget.h" 19 #include "RISCVTargetMachine.h" 20 #include "Utils/RISCVMatInt.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAGISel.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "riscv-lower" 40 41 STATISTIC(NumTailCalls, "Number of tail calls"); 42 43 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 44 const RISCVSubtarget &STI) 45 : TargetLowering(TM), Subtarget(STI) { 46 47 if (Subtarget.isRV32E()) 48 report_fatal_error("Codegen not yet implemented for RV32E"); 49 50 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 51 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 52 53 switch (ABI) { 54 default: 55 report_fatal_error("Don't know how to lower this ABI"); 56 case RISCVABI::ABI_ILP32: 57 case RISCVABI::ABI_ILP32F: 58 case RISCVABI::ABI_ILP32D: 59 case RISCVABI::ABI_LP64: 60 case RISCVABI::ABI_LP64F: 61 case RISCVABI::ABI_LP64D: 62 break; 63 } 64 65 MVT XLenVT = Subtarget.getXLenVT(); 66 67 // Set up the register classes. 68 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 69 70 if (Subtarget.hasStdExtF()) 71 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 72 if (Subtarget.hasStdExtD()) 73 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 74 75 // Compute derived properties from the register classes. 76 computeRegisterProperties(STI.getRegisterInfo()); 77 78 setStackPointerRegisterToSaveRestore(RISCV::X2); 79 80 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 81 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 82 83 // TODO: add all necessary setOperationAction calls. 84 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 85 86 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 87 setOperationAction(ISD::BR_CC, XLenVT, Expand); 88 setOperationAction(ISD::SELECT, XLenVT, Custom); 89 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 90 91 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 92 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 93 94 setOperationAction(ISD::VASTART, MVT::Other, Custom); 95 setOperationAction(ISD::VAARG, MVT::Other, Expand); 96 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 97 setOperationAction(ISD::VAEND, MVT::Other, Expand); 98 99 for (auto VT : {MVT::i1, MVT::i8, MVT::i16}) 100 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 101 102 if (Subtarget.is64Bit()) { 103 setOperationAction(ISD::SHL, MVT::i32, Custom); 104 setOperationAction(ISD::SRA, MVT::i32, Custom); 105 setOperationAction(ISD::SRL, MVT::i32, Custom); 106 } 107 108 if (!Subtarget.hasStdExtM()) { 109 setOperationAction(ISD::MUL, XLenVT, Expand); 110 setOperationAction(ISD::MULHS, XLenVT, Expand); 111 setOperationAction(ISD::MULHU, XLenVT, Expand); 112 setOperationAction(ISD::SDIV, XLenVT, Expand); 113 setOperationAction(ISD::UDIV, XLenVT, Expand); 114 setOperationAction(ISD::SREM, XLenVT, Expand); 115 setOperationAction(ISD::UREM, XLenVT, Expand); 116 } 117 118 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 119 setOperationAction(ISD::SDIV, MVT::i32, Custom); 120 setOperationAction(ISD::UDIV, MVT::i32, Custom); 121 setOperationAction(ISD::UREM, MVT::i32, Custom); 122 } 123 124 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 125 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 126 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 127 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 128 129 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 130 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 131 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 132 133 setOperationAction(ISD::ROTL, XLenVT, Expand); 134 setOperationAction(ISD::ROTR, XLenVT, Expand); 135 setOperationAction(ISD::BSWAP, XLenVT, Expand); 136 setOperationAction(ISD::CTTZ, XLenVT, Expand); 137 setOperationAction(ISD::CTLZ, XLenVT, Expand); 138 setOperationAction(ISD::CTPOP, XLenVT, Expand); 139 140 ISD::CondCode FPCCToExtend[] = { 141 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 142 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 143 ISD::SETGE, ISD::SETNE}; 144 145 ISD::NodeType FPOpToExtend[] = { 146 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM}; 147 148 if (Subtarget.hasStdExtF()) { 149 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 150 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 151 for (auto CC : FPCCToExtend) 152 setCondCodeAction(CC, MVT::f32, Expand); 153 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 154 setOperationAction(ISD::SELECT, MVT::f32, Custom); 155 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 156 for (auto Op : FPOpToExtend) 157 setOperationAction(Op, MVT::f32, Expand); 158 } 159 160 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 161 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 162 163 if (Subtarget.hasStdExtD()) { 164 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 165 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 166 for (auto CC : FPCCToExtend) 167 setCondCodeAction(CC, MVT::f64, Expand); 168 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 169 setOperationAction(ISD::SELECT, MVT::f64, Custom); 170 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 171 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 172 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 173 for (auto Op : FPOpToExtend) 174 setOperationAction(Op, MVT::f64, Expand); 175 } 176 177 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 178 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 179 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 180 181 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 182 183 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 184 // Unfortunately this can't be determined just from the ISA naming string. 185 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 186 Subtarget.is64Bit() ? Legal : Custom); 187 188 if (Subtarget.hasStdExtA()) { 189 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 190 setMinCmpXchgSizeInBits(32); 191 } else { 192 setMaxAtomicSizeInBitsSupported(0); 193 } 194 195 setBooleanContents(ZeroOrOneBooleanContent); 196 197 // Function alignments (log2). 198 unsigned FunctionAlignment = Subtarget.hasStdExtC() ? 1 : 2; 199 setMinFunctionAlignment(FunctionAlignment); 200 setPrefFunctionAlignment(FunctionAlignment); 201 202 // Effectively disable jump table generation. 203 setMinimumJumpTableEntries(INT_MAX); 204 } 205 206 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 207 EVT VT) const { 208 if (!VT.isVector()) 209 return getPointerTy(DL); 210 return VT.changeVectorElementTypeToInteger(); 211 } 212 213 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 214 const CallInst &I, 215 MachineFunction &MF, 216 unsigned Intrinsic) const { 217 switch (Intrinsic) { 218 default: 219 return false; 220 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 221 case Intrinsic::riscv_masked_atomicrmw_add_i32: 222 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 223 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 224 case Intrinsic::riscv_masked_atomicrmw_max_i32: 225 case Intrinsic::riscv_masked_atomicrmw_min_i32: 226 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 227 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 228 case Intrinsic::riscv_masked_cmpxchg_i32: 229 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 230 Info.opc = ISD::INTRINSIC_W_CHAIN; 231 Info.memVT = MVT::getVT(PtrTy->getElementType()); 232 Info.ptrVal = I.getArgOperand(0); 233 Info.offset = 0; 234 Info.align = 4; 235 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 236 MachineMemOperand::MOVolatile; 237 return true; 238 } 239 } 240 241 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 242 const AddrMode &AM, Type *Ty, 243 unsigned AS, 244 Instruction *I) const { 245 // No global is ever allowed as a base. 246 if (AM.BaseGV) 247 return false; 248 249 // Require a 12-bit signed offset. 250 if (!isInt<12>(AM.BaseOffs)) 251 return false; 252 253 switch (AM.Scale) { 254 case 0: // "r+i" or just "i", depending on HasBaseReg. 255 break; 256 case 1: 257 if (!AM.HasBaseReg) // allow "r+i". 258 break; 259 return false; // disallow "r+r" or "r+r+i". 260 default: 261 return false; 262 } 263 264 return true; 265 } 266 267 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 268 return isInt<12>(Imm); 269 } 270 271 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 272 return isInt<12>(Imm); 273 } 274 275 // On RV32, 64-bit integers are split into their high and low parts and held 276 // in two different registers, so the trunc is free since the low register can 277 // just be used. 278 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 279 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 280 return false; 281 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 282 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 283 return (SrcBits == 64 && DestBits == 32); 284 } 285 286 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 287 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 288 !SrcVT.isInteger() || !DstVT.isInteger()) 289 return false; 290 unsigned SrcBits = SrcVT.getSizeInBits(); 291 unsigned DestBits = DstVT.getSizeInBits(); 292 return (SrcBits == 64 && DestBits == 32); 293 } 294 295 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 296 // Zexts are free if they can be combined with a load. 297 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 298 EVT MemVT = LD->getMemoryVT(); 299 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 300 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 301 (LD->getExtensionType() == ISD::NON_EXTLOAD || 302 LD->getExtensionType() == ISD::ZEXTLOAD)) 303 return true; 304 } 305 306 return TargetLowering::isZExtFree(Val, VT2); 307 } 308 309 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 310 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 311 } 312 313 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 314 return (VT == MVT::f32 && Subtarget.hasStdExtF()) || 315 (VT == MVT::f64 && Subtarget.hasStdExtD()); 316 } 317 318 // Changes the condition code and swaps operands if necessary, so the SetCC 319 // operation matches one of the comparisons supported directly in the RISC-V 320 // ISA. 321 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 322 switch (CC) { 323 default: 324 break; 325 case ISD::SETGT: 326 case ISD::SETLE: 327 case ISD::SETUGT: 328 case ISD::SETULE: 329 CC = ISD::getSetCCSwappedOperands(CC); 330 std::swap(LHS, RHS); 331 break; 332 } 333 } 334 335 // Return the RISC-V branch opcode that matches the given DAG integer 336 // condition code. The CondCode must be one of those supported by the RISC-V 337 // ISA (see normaliseSetCC). 338 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 339 switch (CC) { 340 default: 341 llvm_unreachable("Unsupported CondCode"); 342 case ISD::SETEQ: 343 return RISCV::BEQ; 344 case ISD::SETNE: 345 return RISCV::BNE; 346 case ISD::SETLT: 347 return RISCV::BLT; 348 case ISD::SETGE: 349 return RISCV::BGE; 350 case ISD::SETULT: 351 return RISCV::BLTU; 352 case ISD::SETUGE: 353 return RISCV::BGEU; 354 } 355 } 356 357 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 358 SelectionDAG &DAG) const { 359 switch (Op.getOpcode()) { 360 default: 361 report_fatal_error("unimplemented operand"); 362 case ISD::GlobalAddress: 363 return lowerGlobalAddress(Op, DAG); 364 case ISD::BlockAddress: 365 return lowerBlockAddress(Op, DAG); 366 case ISD::ConstantPool: 367 return lowerConstantPool(Op, DAG); 368 case ISD::GlobalTLSAddress: 369 return lowerGlobalTLSAddress(Op, DAG); 370 case ISD::SELECT: 371 return lowerSELECT(Op, DAG); 372 case ISD::VASTART: 373 return lowerVASTART(Op, DAG); 374 case ISD::FRAMEADDR: 375 return lowerFRAMEADDR(Op, DAG); 376 case ISD::RETURNADDR: 377 return lowerRETURNADDR(Op, DAG); 378 case ISD::SHL_PARTS: 379 return lowerShiftLeftParts(Op, DAG); 380 case ISD::SRA_PARTS: 381 return lowerShiftRightParts(Op, DAG, true); 382 case ISD::SRL_PARTS: 383 return lowerShiftRightParts(Op, DAG, false); 384 case ISD::BITCAST: { 385 assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() && 386 "Unexpected custom legalisation"); 387 SDLoc DL(Op); 388 SDValue Op0 = Op.getOperand(0); 389 if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32) 390 return SDValue(); 391 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 392 SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 393 return FPConv; 394 } 395 } 396 } 397 398 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 399 SelectionDAG &DAG, unsigned Flags) { 400 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 401 } 402 403 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 404 SelectionDAG &DAG, unsigned Flags) { 405 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 406 Flags); 407 } 408 409 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 410 SelectionDAG &DAG, unsigned Flags) { 411 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), 412 N->getOffset(), Flags); 413 } 414 415 template <class NodeTy> 416 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 417 bool IsLocal) const { 418 SDLoc DL(N); 419 EVT Ty = getPointerTy(DAG.getDataLayout()); 420 421 if (isPositionIndependent()) { 422 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 423 if (IsLocal) 424 // Use PC-relative addressing to access the symbol. This generates the 425 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 426 // %pcrel_lo(auipc)). 427 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 428 429 // Use PC-relative addressing to access the GOT for this symbol, then load 430 // the address from the GOT. This generates the pattern (PseudoLA sym), 431 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 432 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 433 } 434 435 switch (getTargetMachine().getCodeModel()) { 436 default: 437 report_fatal_error("Unsupported code model for lowering"); 438 case CodeModel::Small: { 439 // Generate a sequence for accessing addresses within the first 2 GiB of 440 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 441 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 442 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 443 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 444 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 445 } 446 case CodeModel::Medium: { 447 // Generate a sequence for accessing addresses within any 2GiB range within 448 // the address space. This generates the pattern (PseudoLLA sym), which 449 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 450 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 451 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 452 } 453 } 454 } 455 456 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 457 SelectionDAG &DAG) const { 458 SDLoc DL(Op); 459 EVT Ty = Op.getValueType(); 460 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 461 int64_t Offset = N->getOffset(); 462 MVT XLenVT = Subtarget.getXLenVT(); 463 464 const GlobalValue *GV = N->getGlobal(); 465 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 466 SDValue Addr = getAddr(N, DAG, IsLocal); 467 468 // In order to maximise the opportunity for common subexpression elimination, 469 // emit a separate ADD node for the global address offset instead of folding 470 // it in the global address node. Later peephole optimisations may choose to 471 // fold it back in when profitable. 472 if (Offset != 0) 473 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 474 DAG.getConstant(Offset, DL, XLenVT)); 475 return Addr; 476 } 477 478 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 479 SelectionDAG &DAG) const { 480 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 481 482 return getAddr(N, DAG); 483 } 484 485 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 486 SelectionDAG &DAG) const { 487 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 488 489 return getAddr(N, DAG); 490 } 491 492 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 493 SelectionDAG &DAG, 494 bool UseGOT) const { 495 SDLoc DL(N); 496 EVT Ty = getPointerTy(DAG.getDataLayout()); 497 const GlobalValue *GV = N->getGlobal(); 498 MVT XLenVT = Subtarget.getXLenVT(); 499 500 if (UseGOT) { 501 // Use PC-relative addressing to access the GOT for this TLS symbol, then 502 // load the address from the GOT and add the thread pointer. This generates 503 // the pattern (PseudoLA_TLS_IE sym), which expands to 504 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 505 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 506 SDValue Load = 507 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 508 509 // Add the thread pointer. 510 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 511 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 512 } 513 514 // Generate a sequence for accessing the address relative to the thread 515 // pointer, with the appropriate adjustment for the thread pointer offset. 516 // This generates the pattern 517 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 518 SDValue AddrHi = 519 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 520 SDValue AddrAdd = 521 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 522 SDValue AddrLo = 523 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 524 525 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 526 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 527 SDValue MNAdd = SDValue( 528 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 529 0); 530 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 531 } 532 533 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 534 SelectionDAG &DAG) const { 535 SDLoc DL(N); 536 EVT Ty = getPointerTy(DAG.getDataLayout()); 537 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 538 const GlobalValue *GV = N->getGlobal(); 539 540 // Use a PC-relative addressing mode to access the global dynamic GOT address. 541 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 542 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 543 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 544 SDValue Load = 545 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 546 547 // Prepare argument list to generate call. 548 ArgListTy Args; 549 ArgListEntry Entry; 550 Entry.Node = Load; 551 Entry.Ty = CallTy; 552 Args.push_back(Entry); 553 554 // Setup call to __tls_get_addr. 555 TargetLowering::CallLoweringInfo CLI(DAG); 556 CLI.setDebugLoc(DL) 557 .setChain(DAG.getEntryNode()) 558 .setLibCallee(CallingConv::C, CallTy, 559 DAG.getExternalSymbol("__tls_get_addr", Ty), 560 std::move(Args)); 561 562 return LowerCallTo(CLI).first; 563 } 564 565 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 566 SelectionDAG &DAG) const { 567 SDLoc DL(Op); 568 EVT Ty = Op.getValueType(); 569 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 570 int64_t Offset = N->getOffset(); 571 MVT XLenVT = Subtarget.getXLenVT(); 572 573 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 574 575 SDValue Addr; 576 switch (Model) { 577 case TLSModel::LocalExec: 578 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 579 break; 580 case TLSModel::InitialExec: 581 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 582 break; 583 case TLSModel::LocalDynamic: 584 case TLSModel::GeneralDynamic: 585 Addr = getDynamicTLSAddr(N, DAG); 586 break; 587 } 588 589 // In order to maximise the opportunity for common subexpression elimination, 590 // emit a separate ADD node for the global address offset instead of folding 591 // it in the global address node. Later peephole optimisations may choose to 592 // fold it back in when profitable. 593 if (Offset != 0) 594 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 595 DAG.getConstant(Offset, DL, XLenVT)); 596 return Addr; 597 } 598 599 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 600 SDValue CondV = Op.getOperand(0); 601 SDValue TrueV = Op.getOperand(1); 602 SDValue FalseV = Op.getOperand(2); 603 SDLoc DL(Op); 604 MVT XLenVT = Subtarget.getXLenVT(); 605 606 // If the result type is XLenVT and CondV is the output of a SETCC node 607 // which also operated on XLenVT inputs, then merge the SETCC node into the 608 // lowered RISCVISD::SELECT_CC to take advantage of the integer 609 // compare+branch instructions. i.e.: 610 // (select (setcc lhs, rhs, cc), truev, falsev) 611 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 612 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 613 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 614 SDValue LHS = CondV.getOperand(0); 615 SDValue RHS = CondV.getOperand(1); 616 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 617 ISD::CondCode CCVal = CC->get(); 618 619 normaliseSetCC(LHS, RHS, CCVal); 620 621 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 622 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 623 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 624 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 625 } 626 627 // Otherwise: 628 // (select condv, truev, falsev) 629 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 630 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 631 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 632 633 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 634 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 635 636 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 637 } 638 639 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 640 MachineFunction &MF = DAG.getMachineFunction(); 641 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 642 643 SDLoc DL(Op); 644 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 645 getPointerTy(MF.getDataLayout())); 646 647 // vastart just stores the address of the VarArgsFrameIndex slot into the 648 // memory location argument. 649 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 650 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 651 MachinePointerInfo(SV)); 652 } 653 654 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 655 SelectionDAG &DAG) const { 656 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 657 MachineFunction &MF = DAG.getMachineFunction(); 658 MachineFrameInfo &MFI = MF.getFrameInfo(); 659 MFI.setFrameAddressIsTaken(true); 660 unsigned FrameReg = RI.getFrameRegister(MF); 661 int XLenInBytes = Subtarget.getXLen() / 8; 662 663 EVT VT = Op.getValueType(); 664 SDLoc DL(Op); 665 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 666 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 667 while (Depth--) { 668 int Offset = -(XLenInBytes * 2); 669 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 670 DAG.getIntPtrConstant(Offset, DL)); 671 FrameAddr = 672 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 673 } 674 return FrameAddr; 675 } 676 677 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 678 SelectionDAG &DAG) const { 679 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 680 MachineFunction &MF = DAG.getMachineFunction(); 681 MachineFrameInfo &MFI = MF.getFrameInfo(); 682 MFI.setReturnAddressIsTaken(true); 683 MVT XLenVT = Subtarget.getXLenVT(); 684 int XLenInBytes = Subtarget.getXLen() / 8; 685 686 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 687 return SDValue(); 688 689 EVT VT = Op.getValueType(); 690 SDLoc DL(Op); 691 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 692 if (Depth) { 693 int Off = -XLenInBytes; 694 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 695 SDValue Offset = DAG.getConstant(Off, DL, VT); 696 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 697 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 698 MachinePointerInfo()); 699 } 700 701 // Return the value of the return address register, marking it an implicit 702 // live-in. 703 unsigned Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 704 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 705 } 706 707 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 708 SelectionDAG &DAG) const { 709 SDLoc DL(Op); 710 SDValue Lo = Op.getOperand(0); 711 SDValue Hi = Op.getOperand(1); 712 SDValue Shamt = Op.getOperand(2); 713 EVT VT = Lo.getValueType(); 714 715 // if Shamt-XLEN < 0: // Shamt < XLEN 716 // Lo = Lo << Shamt 717 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 718 // else: 719 // Lo = 0 720 // Hi = Lo << (Shamt-XLEN) 721 722 SDValue Zero = DAG.getConstant(0, DL, VT); 723 SDValue One = DAG.getConstant(1, DL, VT); 724 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 725 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 726 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 727 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 728 729 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 730 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 731 SDValue ShiftRightLo = 732 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 733 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 734 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 735 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 736 737 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 738 739 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 740 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 741 742 SDValue Parts[2] = {Lo, Hi}; 743 return DAG.getMergeValues(Parts, DL); 744 } 745 746 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 747 bool IsSRA) const { 748 SDLoc DL(Op); 749 SDValue Lo = Op.getOperand(0); 750 SDValue Hi = Op.getOperand(1); 751 SDValue Shamt = Op.getOperand(2); 752 EVT VT = Lo.getValueType(); 753 754 // SRA expansion: 755 // if Shamt-XLEN < 0: // Shamt < XLEN 756 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 757 // Hi = Hi >>s Shamt 758 // else: 759 // Lo = Hi >>s (Shamt-XLEN); 760 // Hi = Hi >>s (XLEN-1) 761 // 762 // SRL expansion: 763 // if Shamt-XLEN < 0: // Shamt < XLEN 764 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 765 // Hi = Hi >>u Shamt 766 // else: 767 // Lo = Hi >>u (Shamt-XLEN); 768 // Hi = 0; 769 770 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 771 772 SDValue Zero = DAG.getConstant(0, DL, VT); 773 SDValue One = DAG.getConstant(1, DL, VT); 774 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 775 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 776 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 777 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 778 779 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 780 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 781 SDValue ShiftLeftHi = 782 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 783 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 784 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 785 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 786 SDValue HiFalse = 787 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 788 789 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 790 791 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 792 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 793 794 SDValue Parts[2] = {Lo, Hi}; 795 return DAG.getMergeValues(Parts, DL); 796 } 797 798 // Returns the opcode of the target-specific SDNode that implements the 32-bit 799 // form of the given Opcode. 800 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 801 switch (Opcode) { 802 default: 803 llvm_unreachable("Unexpected opcode"); 804 case ISD::SHL: 805 return RISCVISD::SLLW; 806 case ISD::SRA: 807 return RISCVISD::SRAW; 808 case ISD::SRL: 809 return RISCVISD::SRLW; 810 case ISD::SDIV: 811 return RISCVISD::DIVW; 812 case ISD::UDIV: 813 return RISCVISD::DIVUW; 814 case ISD::UREM: 815 return RISCVISD::REMUW; 816 } 817 } 818 819 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 820 // Because i32 isn't a legal type for RV64, these operations would otherwise 821 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 822 // later one because the fact the operation was originally of type i32 is 823 // lost. 824 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { 825 SDLoc DL(N); 826 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 827 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 828 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 829 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 830 // ReplaceNodeResults requires we maintain the same type for the return value. 831 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 832 } 833 834 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 835 SmallVectorImpl<SDValue> &Results, 836 SelectionDAG &DAG) const { 837 SDLoc DL(N); 838 switch (N->getOpcode()) { 839 default: 840 llvm_unreachable("Don't know how to custom type legalize this operation!"); 841 case ISD::READCYCLECOUNTER: { 842 assert(!Subtarget.is64Bit() && 843 "READCYCLECOUNTER only has custom type legalization on riscv32"); 844 845 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 846 SDValue RCW = 847 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 848 849 Results.push_back(RCW); 850 Results.push_back(RCW.getValue(1)); 851 Results.push_back(RCW.getValue(2)); 852 break; 853 } 854 case ISD::SHL: 855 case ISD::SRA: 856 case ISD::SRL: 857 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 858 "Unexpected custom legalisation"); 859 if (N->getOperand(1).getOpcode() == ISD::Constant) 860 return; 861 Results.push_back(customLegalizeToWOp(N, DAG)); 862 break; 863 case ISD::SDIV: 864 case ISD::UDIV: 865 case ISD::UREM: 866 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 867 Subtarget.hasStdExtM() && "Unexpected custom legalisation"); 868 if (N->getOperand(0).getOpcode() == ISD::Constant || 869 N->getOperand(1).getOpcode() == ISD::Constant) 870 return; 871 Results.push_back(customLegalizeToWOp(N, DAG)); 872 break; 873 case ISD::BITCAST: { 874 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 875 Subtarget.hasStdExtF() && "Unexpected custom legalisation"); 876 SDLoc DL(N); 877 SDValue Op0 = N->getOperand(0); 878 if (Op0.getValueType() != MVT::f32) 879 return; 880 SDValue FPConv = 881 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 882 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 883 break; 884 } 885 } 886 } 887 888 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 889 DAGCombinerInfo &DCI) const { 890 SelectionDAG &DAG = DCI.DAG; 891 892 switch (N->getOpcode()) { 893 default: 894 break; 895 case RISCVISD::SplitF64: { 896 SDValue Op0 = N->getOperand(0); 897 // If the input to SplitF64 is just BuildPairF64 then the operation is 898 // redundant. Instead, use BuildPairF64's operands directly. 899 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 900 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 901 902 SDLoc DL(N); 903 904 // It's cheaper to materialise two 32-bit integers than to load a double 905 // from the constant pool and transfer it to integer registers through the 906 // stack. 907 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 908 APInt V = C->getValueAPF().bitcastToAPInt(); 909 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 910 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 911 return DCI.CombineTo(N, Lo, Hi); 912 } 913 914 // This is a target-specific version of a DAGCombine performed in 915 // DAGCombiner::visitBITCAST. It performs the equivalent of: 916 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 917 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 918 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 919 !Op0.getNode()->hasOneUse()) 920 break; 921 SDValue NewSplitF64 = 922 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 923 Op0.getOperand(0)); 924 SDValue Lo = NewSplitF64.getValue(0); 925 SDValue Hi = NewSplitF64.getValue(1); 926 APInt SignBit = APInt::getSignMask(32); 927 if (Op0.getOpcode() == ISD::FNEG) { 928 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 929 DAG.getConstant(SignBit, DL, MVT::i32)); 930 return DCI.CombineTo(N, Lo, NewHi); 931 } 932 assert(Op0.getOpcode() == ISD::FABS); 933 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 934 DAG.getConstant(~SignBit, DL, MVT::i32)); 935 return DCI.CombineTo(N, Lo, NewHi); 936 } 937 case RISCVISD::SLLW: 938 case RISCVISD::SRAW: 939 case RISCVISD::SRLW: { 940 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 941 SDValue LHS = N->getOperand(0); 942 SDValue RHS = N->getOperand(1); 943 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 944 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 945 if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) || 946 (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI))) 947 return SDValue(); 948 break; 949 } 950 case RISCVISD::FMV_X_ANYEXTW_RV64: { 951 SDLoc DL(N); 952 SDValue Op0 = N->getOperand(0); 953 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 954 // conversion is unnecessary and can be replaced with an ANY_EXTEND 955 // of the FMV_W_X_RV64 operand. 956 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 957 SDValue AExtOp = 958 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0)); 959 return DCI.CombineTo(N, AExtOp); 960 } 961 962 // This is a target-specific version of a DAGCombine performed in 963 // DAGCombiner::visitBITCAST. It performs the equivalent of: 964 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 965 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 966 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 967 !Op0.getNode()->hasOneUse()) 968 break; 969 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 970 Op0.getOperand(0)); 971 APInt SignBit = APInt::getSignMask(32).sext(64); 972 if (Op0.getOpcode() == ISD::FNEG) { 973 return DCI.CombineTo(N, 974 DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 975 DAG.getConstant(SignBit, DL, MVT::i64))); 976 } 977 assert(Op0.getOpcode() == ISD::FABS); 978 return DCI.CombineTo(N, 979 DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 980 DAG.getConstant(~SignBit, DL, MVT::i64))); 981 } 982 } 983 984 return SDValue(); 985 } 986 987 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 988 const SDNode *N, CombineLevel Level) const { 989 // The following folds are only desirable if `(OP _, c1 << c2)` can be 990 // materialised in fewer instructions than `(OP _, c1)`: 991 // 992 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 993 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 994 SDValue N0 = N->getOperand(0); 995 EVT Ty = N0.getValueType(); 996 if (Ty.isScalarInteger() && 997 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 998 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 999 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1000 if (C1 && C2) { 1001 APInt C1Int = C1->getAPIntValue(); 1002 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 1003 1004 // We can materialise `c1 << c2` into an add immediate, so it's "free", 1005 // and the combine should happen, to potentially allow further combines 1006 // later. 1007 if (ShiftedC1Int.getMinSignedBits() <= 64 && 1008 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 1009 return true; 1010 1011 // We can materialise `c1` in an add immediate, so it's "free", and the 1012 // combine should be prevented. 1013 if (C1Int.getMinSignedBits() <= 64 && 1014 isLegalAddImmediate(C1Int.getSExtValue())) 1015 return false; 1016 1017 // Neither constant will fit into an immediate, so find materialisation 1018 // costs. 1019 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 1020 Subtarget.is64Bit()); 1021 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 1022 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 1023 1024 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 1025 // combine should be prevented. 1026 if (C1Cost < ShiftedC1Cost) 1027 return false; 1028 } 1029 } 1030 return true; 1031 } 1032 1033 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 1034 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 1035 unsigned Depth) const { 1036 switch (Op.getOpcode()) { 1037 default: 1038 break; 1039 case RISCVISD::SLLW: 1040 case RISCVISD::SRAW: 1041 case RISCVISD::SRLW: 1042 case RISCVISD::DIVW: 1043 case RISCVISD::DIVUW: 1044 case RISCVISD::REMUW: 1045 // TODO: As the result is sign-extended, this is conservatively correct. A 1046 // more precise answer could be calculated for SRAW depending on known 1047 // bits in the shift amount. 1048 return 33; 1049 } 1050 1051 return 1; 1052 } 1053 1054 MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 1055 MachineBasicBlock *BB) { 1056 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 1057 1058 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 1059 // Should the count have wrapped while it was being read, we need to try 1060 // again. 1061 // ... 1062 // read: 1063 // rdcycleh x3 # load high word of cycle 1064 // rdcycle x2 # load low word of cycle 1065 // rdcycleh x4 # load high word of cycle 1066 // bne x3, x4, read # check if high word reads match, otherwise try again 1067 // ... 1068 1069 MachineFunction &MF = *BB->getParent(); 1070 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1071 MachineFunction::iterator It = ++BB->getIterator(); 1072 1073 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1074 MF.insert(It, LoopMBB); 1075 1076 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1077 MF.insert(It, DoneMBB); 1078 1079 // Transfer the remainder of BB and its successor edges to DoneMBB. 1080 DoneMBB->splice(DoneMBB->begin(), BB, 1081 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1082 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 1083 1084 BB->addSuccessor(LoopMBB); 1085 1086 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1087 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1088 unsigned LoReg = MI.getOperand(0).getReg(); 1089 unsigned HiReg = MI.getOperand(1).getReg(); 1090 DebugLoc DL = MI.getDebugLoc(); 1091 1092 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1093 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 1094 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1095 .addReg(RISCV::X0); 1096 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 1097 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 1098 .addReg(RISCV::X0); 1099 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 1100 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1101 .addReg(RISCV::X0); 1102 1103 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 1104 .addReg(HiReg) 1105 .addReg(ReadAgainReg) 1106 .addMBB(LoopMBB); 1107 1108 LoopMBB->addSuccessor(LoopMBB); 1109 LoopMBB->addSuccessor(DoneMBB); 1110 1111 MI.eraseFromParent(); 1112 1113 return DoneMBB; 1114 } 1115 1116 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 1117 MachineBasicBlock *BB) { 1118 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 1119 1120 MachineFunction &MF = *BB->getParent(); 1121 DebugLoc DL = MI.getDebugLoc(); 1122 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1123 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1124 unsigned LoReg = MI.getOperand(0).getReg(); 1125 unsigned HiReg = MI.getOperand(1).getReg(); 1126 unsigned SrcReg = MI.getOperand(2).getReg(); 1127 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 1128 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 1129 1130 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 1131 RI); 1132 MachineMemOperand *MMO = 1133 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 1134 MachineMemOperand::MOLoad, 8, 8); 1135 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 1136 .addFrameIndex(FI) 1137 .addImm(0) 1138 .addMemOperand(MMO); 1139 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 1140 .addFrameIndex(FI) 1141 .addImm(4) 1142 .addMemOperand(MMO); 1143 MI.eraseFromParent(); // The pseudo instruction is gone now. 1144 return BB; 1145 } 1146 1147 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 1148 MachineBasicBlock *BB) { 1149 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 1150 "Unexpected instruction"); 1151 1152 MachineFunction &MF = *BB->getParent(); 1153 DebugLoc DL = MI.getDebugLoc(); 1154 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1155 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1156 unsigned DstReg = MI.getOperand(0).getReg(); 1157 unsigned LoReg = MI.getOperand(1).getReg(); 1158 unsigned HiReg = MI.getOperand(2).getReg(); 1159 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 1160 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 1161 1162 MachineMemOperand *MMO = 1163 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 1164 MachineMemOperand::MOStore, 8, 8); 1165 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1166 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 1167 .addFrameIndex(FI) 1168 .addImm(0) 1169 .addMemOperand(MMO); 1170 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1171 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 1172 .addFrameIndex(FI) 1173 .addImm(4) 1174 .addMemOperand(MMO); 1175 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 1176 MI.eraseFromParent(); // The pseudo instruction is gone now. 1177 return BB; 1178 } 1179 1180 static bool isSelectPseudo(MachineInstr &MI) { 1181 switch (MI.getOpcode()) { 1182 default: 1183 return false; 1184 case RISCV::Select_GPR_Using_CC_GPR: 1185 case RISCV::Select_FPR32_Using_CC_GPR: 1186 case RISCV::Select_FPR64_Using_CC_GPR: 1187 return true; 1188 } 1189 } 1190 1191 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 1192 MachineBasicBlock *BB) { 1193 // To "insert" Select_* instructions, we actually have to insert the triangle 1194 // control-flow pattern. The incoming instructions know the destination vreg 1195 // to set, the condition code register to branch on, the true/false values to 1196 // select between, and the condcode to use to select the appropriate branch. 1197 // 1198 // We produce the following control flow: 1199 // HeadMBB 1200 // | \ 1201 // | IfFalseMBB 1202 // | / 1203 // TailMBB 1204 // 1205 // When we find a sequence of selects we attempt to optimize their emission 1206 // by sharing the control flow. Currently we only handle cases where we have 1207 // multiple selects with the exact same condition (same LHS, RHS and CC). 1208 // The selects may be interleaved with other instructions if the other 1209 // instructions meet some requirements we deem safe: 1210 // - They are debug instructions. Otherwise, 1211 // - They do not have side-effects, do not access memory and their inputs do 1212 // not depend on the results of the select pseudo-instructions. 1213 // The TrueV/FalseV operands of the selects cannot depend on the result of 1214 // previous selects in the sequence. 1215 // These conditions could be further relaxed. See the X86 target for a 1216 // related approach and more information. 1217 unsigned LHS = MI.getOperand(1).getReg(); 1218 unsigned RHS = MI.getOperand(2).getReg(); 1219 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 1220 1221 SmallVector<MachineInstr *, 4> SelectDebugValues; 1222 SmallSet<unsigned, 4> SelectDests; 1223 SelectDests.insert(MI.getOperand(0).getReg()); 1224 1225 MachineInstr *LastSelectPseudo = &MI; 1226 1227 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 1228 SequenceMBBI != E; ++SequenceMBBI) { 1229 if (SequenceMBBI->isDebugInstr()) 1230 continue; 1231 else if (isSelectPseudo(*SequenceMBBI)) { 1232 if (SequenceMBBI->getOperand(1).getReg() != LHS || 1233 SequenceMBBI->getOperand(2).getReg() != RHS || 1234 SequenceMBBI->getOperand(3).getImm() != CC || 1235 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 1236 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 1237 break; 1238 LastSelectPseudo = &*SequenceMBBI; 1239 SequenceMBBI->collectDebugValues(SelectDebugValues); 1240 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 1241 } else { 1242 if (SequenceMBBI->hasUnmodeledSideEffects() || 1243 SequenceMBBI->mayLoadOrStore()) 1244 break; 1245 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 1246 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 1247 })) 1248 break; 1249 } 1250 } 1251 1252 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1253 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1254 DebugLoc DL = MI.getDebugLoc(); 1255 MachineFunction::iterator I = ++BB->getIterator(); 1256 1257 MachineBasicBlock *HeadMBB = BB; 1258 MachineFunction *F = BB->getParent(); 1259 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 1260 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 1261 1262 F->insert(I, IfFalseMBB); 1263 F->insert(I, TailMBB); 1264 1265 // Transfer debug instructions associated with the selects to TailMBB. 1266 for (MachineInstr *DebugInstr : SelectDebugValues) { 1267 TailMBB->push_back(DebugInstr->removeFromParent()); 1268 } 1269 1270 // Move all instructions after the sequence to TailMBB. 1271 TailMBB->splice(TailMBB->end(), HeadMBB, 1272 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 1273 // Update machine-CFG edges by transferring all successors of the current 1274 // block to the new block which will contain the Phi nodes for the selects. 1275 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 1276 // Set the successors for HeadMBB. 1277 HeadMBB->addSuccessor(IfFalseMBB); 1278 HeadMBB->addSuccessor(TailMBB); 1279 1280 // Insert appropriate branch. 1281 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 1282 1283 BuildMI(HeadMBB, DL, TII.get(Opcode)) 1284 .addReg(LHS) 1285 .addReg(RHS) 1286 .addMBB(TailMBB); 1287 1288 // IfFalseMBB just falls through to TailMBB. 1289 IfFalseMBB->addSuccessor(TailMBB); 1290 1291 // Create PHIs for all of the select pseudo-instructions. 1292 auto SelectMBBI = MI.getIterator(); 1293 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 1294 auto InsertionPoint = TailMBB->begin(); 1295 while (SelectMBBI != SelectEnd) { 1296 auto Next = std::next(SelectMBBI); 1297 if (isSelectPseudo(*SelectMBBI)) { 1298 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 1299 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 1300 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 1301 .addReg(SelectMBBI->getOperand(4).getReg()) 1302 .addMBB(HeadMBB) 1303 .addReg(SelectMBBI->getOperand(5).getReg()) 1304 .addMBB(IfFalseMBB); 1305 SelectMBBI->eraseFromParent(); 1306 } 1307 SelectMBBI = Next; 1308 } 1309 1310 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 1311 return TailMBB; 1312 } 1313 1314 MachineBasicBlock * 1315 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1316 MachineBasicBlock *BB) const { 1317 switch (MI.getOpcode()) { 1318 default: 1319 llvm_unreachable("Unexpected instr type to insert"); 1320 case RISCV::ReadCycleWide: 1321 assert(!Subtarget.is64Bit() && 1322 "ReadCycleWrite is only to be used on riscv32"); 1323 return emitReadCycleWidePseudo(MI, BB); 1324 case RISCV::Select_GPR_Using_CC_GPR: 1325 case RISCV::Select_FPR32_Using_CC_GPR: 1326 case RISCV::Select_FPR64_Using_CC_GPR: 1327 return emitSelectPseudo(MI, BB); 1328 case RISCV::BuildPairF64Pseudo: 1329 return emitBuildPairF64Pseudo(MI, BB); 1330 case RISCV::SplitF64Pseudo: 1331 return emitSplitF64Pseudo(MI, BB); 1332 } 1333 } 1334 1335 // Calling Convention Implementation. 1336 // The expectations for frontend ABI lowering vary from target to target. 1337 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 1338 // details, but this is a longer term goal. For now, we simply try to keep the 1339 // role of the frontend as simple and well-defined as possible. The rules can 1340 // be summarised as: 1341 // * Never split up large scalar arguments. We handle them here. 1342 // * If a hardfloat calling convention is being used, and the struct may be 1343 // passed in a pair of registers (fp+fp, int+fp), and both registers are 1344 // available, then pass as two separate arguments. If either the GPRs or FPRs 1345 // are exhausted, then pass according to the rule below. 1346 // * If a struct could never be passed in registers or directly in a stack 1347 // slot (as it is larger than 2*XLEN and the floating point rules don't 1348 // apply), then pass it using a pointer with the byval attribute. 1349 // * If a struct is less than 2*XLEN, then coerce to either a two-element 1350 // word-sized array or a 2*XLEN scalar (depending on alignment). 1351 // * The frontend can determine whether a struct is returned by reference or 1352 // not based on its size and fields. If it will be returned by reference, the 1353 // frontend must modify the prototype so a pointer with the sret annotation is 1354 // passed as the first argument. This is not necessary for large scalar 1355 // returns. 1356 // * Struct return values and varargs should be coerced to structs containing 1357 // register-size fields in the same situations they would be for fixed 1358 // arguments. 1359 1360 static const MCPhysReg ArgGPRs[] = { 1361 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 1362 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 1363 }; 1364 static const MCPhysReg ArgFPR32s[] = { 1365 RISCV::F10_32, RISCV::F11_32, RISCV::F12_32, RISCV::F13_32, 1366 RISCV::F14_32, RISCV::F15_32, RISCV::F16_32, RISCV::F17_32 1367 }; 1368 static const MCPhysReg ArgFPR64s[] = { 1369 RISCV::F10_64, RISCV::F11_64, RISCV::F12_64, RISCV::F13_64, 1370 RISCV::F14_64, RISCV::F15_64, RISCV::F16_64, RISCV::F17_64 1371 }; 1372 1373 // Pass a 2*XLEN argument that has been split into two XLEN values through 1374 // registers or the stack as necessary. 1375 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 1376 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 1377 MVT ValVT2, MVT LocVT2, 1378 ISD::ArgFlagsTy ArgFlags2) { 1379 unsigned XLenInBytes = XLen / 8; 1380 if (unsigned Reg = State.AllocateReg(ArgGPRs)) { 1381 // At least one half can be passed via register. 1382 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 1383 VA1.getLocVT(), CCValAssign::Full)); 1384 } else { 1385 // Both halves must be passed on the stack, with proper alignment. 1386 unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign()); 1387 State.addLoc( 1388 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 1389 State.AllocateStack(XLenInBytes, StackAlign), 1390 VA1.getLocVT(), CCValAssign::Full)); 1391 State.addLoc(CCValAssign::getMem( 1392 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 1393 CCValAssign::Full)); 1394 return false; 1395 } 1396 1397 if (unsigned Reg = State.AllocateReg(ArgGPRs)) { 1398 // The second half can also be passed via register. 1399 State.addLoc( 1400 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 1401 } else { 1402 // The second half is passed via the stack, without additional alignment. 1403 State.addLoc(CCValAssign::getMem( 1404 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 1405 CCValAssign::Full)); 1406 } 1407 1408 return false; 1409 } 1410 1411 // Implements the RISC-V calling convention. Returns true upon failure. 1412 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 1413 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 1414 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 1415 bool IsRet, Type *OrigTy) { 1416 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 1417 assert(XLen == 32 || XLen == 64); 1418 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 1419 1420 // Any return value split in to more than two values can't be returned 1421 // directly. 1422 if (IsRet && ValNo > 1) 1423 return true; 1424 1425 // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a 1426 // variadic argument, or if no F32 argument registers are available. 1427 bool UseGPRForF32 = true; 1428 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 1429 // variadic argument, or if no F64 argument registers are available. 1430 bool UseGPRForF64 = true; 1431 1432 switch (ABI) { 1433 default: 1434 llvm_unreachable("Unexpected ABI"); 1435 case RISCVABI::ABI_ILP32: 1436 case RISCVABI::ABI_LP64: 1437 break; 1438 case RISCVABI::ABI_ILP32F: 1439 case RISCVABI::ABI_LP64F: 1440 UseGPRForF32 = !IsFixed; 1441 break; 1442 case RISCVABI::ABI_ILP32D: 1443 case RISCVABI::ABI_LP64D: 1444 UseGPRForF32 = !IsFixed; 1445 UseGPRForF64 = !IsFixed; 1446 break; 1447 } 1448 1449 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) 1450 UseGPRForF32 = true; 1451 if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s)) 1452 UseGPRForF64 = true; 1453 1454 // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local 1455 // variables rather than directly checking against the target ABI. 1456 1457 if (UseGPRForF32 && ValVT == MVT::f32) { 1458 LocVT = XLenVT; 1459 LocInfo = CCValAssign::BCvt; 1460 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 1461 LocVT = MVT::i64; 1462 LocInfo = CCValAssign::BCvt; 1463 } 1464 1465 // If this is a variadic argument, the RISC-V calling convention requires 1466 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 1467 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 1468 // be used regardless of whether the original argument was split during 1469 // legalisation or not. The argument will not be passed by registers if the 1470 // original type is larger than 2*XLEN, so the register alignment rule does 1471 // not apply. 1472 unsigned TwoXLenInBytes = (2 * XLen) / 8; 1473 if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes && 1474 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 1475 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 1476 // Skip 'odd' register if necessary. 1477 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 1478 State.AllocateReg(ArgGPRs); 1479 } 1480 1481 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 1482 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 1483 State.getPendingArgFlags(); 1484 1485 assert(PendingLocs.size() == PendingArgFlags.size() && 1486 "PendingLocs and PendingArgFlags out of sync"); 1487 1488 // Handle passing f64 on RV32D with a soft float ABI or when floating point 1489 // registers are exhausted. 1490 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 1491 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 1492 "Can't lower f64 if it is split"); 1493 // Depending on available argument GPRS, f64 may be passed in a pair of 1494 // GPRs, split between a GPR and the stack, or passed completely on the 1495 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 1496 // cases. 1497 unsigned Reg = State.AllocateReg(ArgGPRs); 1498 LocVT = MVT::i32; 1499 if (!Reg) { 1500 unsigned StackOffset = State.AllocateStack(8, 8); 1501 State.addLoc( 1502 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1503 return false; 1504 } 1505 if (!State.AllocateReg(ArgGPRs)) 1506 State.AllocateStack(4, 4); 1507 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1508 return false; 1509 } 1510 1511 // Split arguments might be passed indirectly, so keep track of the pending 1512 // values. 1513 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 1514 LocVT = XLenVT; 1515 LocInfo = CCValAssign::Indirect; 1516 PendingLocs.push_back( 1517 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 1518 PendingArgFlags.push_back(ArgFlags); 1519 if (!ArgFlags.isSplitEnd()) { 1520 return false; 1521 } 1522 } 1523 1524 // If the split argument only had two elements, it should be passed directly 1525 // in registers or on the stack. 1526 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 1527 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 1528 // Apply the normal calling convention rules to the first half of the 1529 // split argument. 1530 CCValAssign VA = PendingLocs[0]; 1531 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 1532 PendingLocs.clear(); 1533 PendingArgFlags.clear(); 1534 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 1535 ArgFlags); 1536 } 1537 1538 // Allocate to a register if possible, or else a stack slot. 1539 unsigned Reg; 1540 if (ValVT == MVT::f32 && !UseGPRForF32) 1541 Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s); 1542 else if (ValVT == MVT::f64 && !UseGPRForF64) 1543 Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s); 1544 else 1545 Reg = State.AllocateReg(ArgGPRs); 1546 unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8); 1547 1548 // If we reach this point and PendingLocs is non-empty, we must be at the 1549 // end of a split argument that must be passed indirectly. 1550 if (!PendingLocs.empty()) { 1551 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 1552 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 1553 1554 for (auto &It : PendingLocs) { 1555 if (Reg) 1556 It.convertToReg(Reg); 1557 else 1558 It.convertToMem(StackOffset); 1559 State.addLoc(It); 1560 } 1561 PendingLocs.clear(); 1562 PendingArgFlags.clear(); 1563 return false; 1564 } 1565 1566 assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) && 1567 "Expected an XLenVT at this stage"); 1568 1569 if (Reg) { 1570 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1571 return false; 1572 } 1573 1574 // When an f32 or f64 is passed on the stack, no bit-conversion is needed. 1575 if (ValVT == MVT::f32 || ValVT == MVT::f64) { 1576 LocVT = ValVT; 1577 LocInfo = CCValAssign::Full; 1578 } 1579 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1580 return false; 1581 } 1582 1583 void RISCVTargetLowering::analyzeInputArgs( 1584 MachineFunction &MF, CCState &CCInfo, 1585 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 1586 unsigned NumArgs = Ins.size(); 1587 FunctionType *FType = MF.getFunction().getFunctionType(); 1588 1589 for (unsigned i = 0; i != NumArgs; ++i) { 1590 MVT ArgVT = Ins[i].VT; 1591 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 1592 1593 Type *ArgTy = nullptr; 1594 if (IsRet) 1595 ArgTy = FType->getReturnType(); 1596 else if (Ins[i].isOrigArg()) 1597 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 1598 1599 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1600 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1601 ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) { 1602 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 1603 << EVT(ArgVT).getEVTString() << '\n'); 1604 llvm_unreachable(nullptr); 1605 } 1606 } 1607 } 1608 1609 void RISCVTargetLowering::analyzeOutputArgs( 1610 MachineFunction &MF, CCState &CCInfo, 1611 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 1612 CallLoweringInfo *CLI) const { 1613 unsigned NumArgs = Outs.size(); 1614 1615 for (unsigned i = 0; i != NumArgs; i++) { 1616 MVT ArgVT = Outs[i].VT; 1617 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 1618 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 1619 1620 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1621 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1622 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { 1623 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 1624 << EVT(ArgVT).getEVTString() << "\n"); 1625 llvm_unreachable(nullptr); 1626 } 1627 } 1628 } 1629 1630 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 1631 // values. 1632 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 1633 const CCValAssign &VA, const SDLoc &DL) { 1634 switch (VA.getLocInfo()) { 1635 default: 1636 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1637 case CCValAssign::Full: 1638 break; 1639 case CCValAssign::BCvt: 1640 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1641 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 1642 break; 1643 } 1644 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 1645 break; 1646 } 1647 return Val; 1648 } 1649 1650 // The caller is responsible for loading the full value if the argument is 1651 // passed with CCValAssign::Indirect. 1652 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 1653 const CCValAssign &VA, const SDLoc &DL) { 1654 MachineFunction &MF = DAG.getMachineFunction(); 1655 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1656 EVT LocVT = VA.getLocVT(); 1657 SDValue Val; 1658 const TargetRegisterClass *RC; 1659 1660 switch (LocVT.getSimpleVT().SimpleTy) { 1661 default: 1662 llvm_unreachable("Unexpected register type"); 1663 case MVT::i32: 1664 case MVT::i64: 1665 RC = &RISCV::GPRRegClass; 1666 break; 1667 case MVT::f32: 1668 RC = &RISCV::FPR32RegClass; 1669 break; 1670 case MVT::f64: 1671 RC = &RISCV::FPR64RegClass; 1672 break; 1673 } 1674 1675 unsigned VReg = RegInfo.createVirtualRegister(RC); 1676 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1677 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1678 1679 if (VA.getLocInfo() == CCValAssign::Indirect) 1680 return Val; 1681 1682 return convertLocVTToValVT(DAG, Val, VA, DL); 1683 } 1684 1685 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 1686 const CCValAssign &VA, const SDLoc &DL) { 1687 EVT LocVT = VA.getLocVT(); 1688 1689 switch (VA.getLocInfo()) { 1690 default: 1691 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1692 case CCValAssign::Full: 1693 break; 1694 case CCValAssign::BCvt: 1695 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1696 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 1697 break; 1698 } 1699 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 1700 break; 1701 } 1702 return Val; 1703 } 1704 1705 // The caller is responsible for loading the full value if the argument is 1706 // passed with CCValAssign::Indirect. 1707 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 1708 const CCValAssign &VA, const SDLoc &DL) { 1709 MachineFunction &MF = DAG.getMachineFunction(); 1710 MachineFrameInfo &MFI = MF.getFrameInfo(); 1711 EVT LocVT = VA.getLocVT(); 1712 EVT ValVT = VA.getValVT(); 1713 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 1714 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 1715 VA.getLocMemOffset(), /*Immutable=*/true); 1716 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1717 SDValue Val; 1718 1719 ISD::LoadExtType ExtType; 1720 switch (VA.getLocInfo()) { 1721 default: 1722 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1723 case CCValAssign::Full: 1724 case CCValAssign::Indirect: 1725 case CCValAssign::BCvt: 1726 ExtType = ISD::NON_EXTLOAD; 1727 break; 1728 } 1729 Val = DAG.getExtLoad( 1730 ExtType, DL, LocVT, Chain, FIN, 1731 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 1732 return Val; 1733 } 1734 1735 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 1736 const CCValAssign &VA, const SDLoc &DL) { 1737 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 1738 "Unexpected VA"); 1739 MachineFunction &MF = DAG.getMachineFunction(); 1740 MachineFrameInfo &MFI = MF.getFrameInfo(); 1741 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1742 1743 if (VA.isMemLoc()) { 1744 // f64 is passed on the stack. 1745 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 1746 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1747 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 1748 MachinePointerInfo::getFixedStack(MF, FI)); 1749 } 1750 1751 assert(VA.isRegLoc() && "Expected register VA assignment"); 1752 1753 unsigned LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1754 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 1755 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 1756 SDValue Hi; 1757 if (VA.getLocReg() == RISCV::X17) { 1758 // Second half of f64 is passed on the stack. 1759 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 1760 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1761 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 1762 MachinePointerInfo::getFixedStack(MF, FI)); 1763 } else { 1764 // Second half of f64 is passed in another GPR. 1765 unsigned HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1766 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 1767 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 1768 } 1769 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 1770 } 1771 1772 // Transform physical registers into virtual registers. 1773 SDValue RISCVTargetLowering::LowerFormalArguments( 1774 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1775 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1776 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1777 1778 switch (CallConv) { 1779 default: 1780 report_fatal_error("Unsupported calling convention"); 1781 case CallingConv::C: 1782 case CallingConv::Fast: 1783 break; 1784 } 1785 1786 MachineFunction &MF = DAG.getMachineFunction(); 1787 1788 const Function &Func = MF.getFunction(); 1789 if (Func.hasFnAttribute("interrupt")) { 1790 if (!Func.arg_empty()) 1791 report_fatal_error( 1792 "Functions with the interrupt attribute cannot have arguments!"); 1793 1794 StringRef Kind = 1795 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 1796 1797 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 1798 report_fatal_error( 1799 "Function interrupt attribute argument not supported!"); 1800 } 1801 1802 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1803 MVT XLenVT = Subtarget.getXLenVT(); 1804 unsigned XLenInBytes = Subtarget.getXLen() / 8; 1805 // Used with vargs to acumulate store chains. 1806 std::vector<SDValue> OutChains; 1807 1808 // Assign locations to all of the incoming arguments. 1809 SmallVector<CCValAssign, 16> ArgLocs; 1810 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1811 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 1812 1813 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1814 CCValAssign &VA = ArgLocs[i]; 1815 SDValue ArgValue; 1816 // Passing f64 on RV32D with a soft float ABI must be handled as a special 1817 // case. 1818 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 1819 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 1820 else if (VA.isRegLoc()) 1821 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); 1822 else 1823 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 1824 1825 if (VA.getLocInfo() == CCValAssign::Indirect) { 1826 // If the original argument was split and passed by reference (e.g. i128 1827 // on RV32), we need to load all parts of it here (using the same 1828 // address). 1829 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1830 MachinePointerInfo())); 1831 unsigned ArgIndex = Ins[i].OrigArgIndex; 1832 assert(Ins[i].PartOffset == 0); 1833 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 1834 CCValAssign &PartVA = ArgLocs[i + 1]; 1835 unsigned PartOffset = Ins[i + 1].PartOffset; 1836 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1837 DAG.getIntPtrConstant(PartOffset, DL)); 1838 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1839 MachinePointerInfo())); 1840 ++i; 1841 } 1842 continue; 1843 } 1844 InVals.push_back(ArgValue); 1845 } 1846 1847 if (IsVarArg) { 1848 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 1849 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 1850 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 1851 MachineFrameInfo &MFI = MF.getFrameInfo(); 1852 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1853 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 1854 1855 // Offset of the first variable argument from stack pointer, and size of 1856 // the vararg save area. For now, the varargs save area is either zero or 1857 // large enough to hold a0-a7. 1858 int VaArgOffset, VarArgsSaveSize; 1859 1860 // If all registers are allocated, then all varargs must be passed on the 1861 // stack and we don't need to save any argregs. 1862 if (ArgRegs.size() == Idx) { 1863 VaArgOffset = CCInfo.getNextStackOffset(); 1864 VarArgsSaveSize = 0; 1865 } else { 1866 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 1867 VaArgOffset = -VarArgsSaveSize; 1868 } 1869 1870 // Record the frame index of the first variable argument 1871 // which is a value necessary to VASTART. 1872 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1873 RVFI->setVarArgsFrameIndex(FI); 1874 1875 // If saving an odd number of registers then create an extra stack slot to 1876 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 1877 // offsets to even-numbered registered remain 2*XLEN-aligned. 1878 if (Idx % 2) { 1879 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, 1880 true); 1881 VarArgsSaveSize += XLenInBytes; 1882 } 1883 1884 // Copy the integer registers that may have been used for passing varargs 1885 // to the vararg save area. 1886 for (unsigned I = Idx; I < ArgRegs.size(); 1887 ++I, VaArgOffset += XLenInBytes) { 1888 const unsigned Reg = RegInfo.createVirtualRegister(RC); 1889 RegInfo.addLiveIn(ArgRegs[I], Reg); 1890 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 1891 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1892 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1893 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 1894 MachinePointerInfo::getFixedStack(MF, FI)); 1895 cast<StoreSDNode>(Store.getNode()) 1896 ->getMemOperand() 1897 ->setValue((Value *)nullptr); 1898 OutChains.push_back(Store); 1899 } 1900 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 1901 } 1902 1903 // All stores are grouped in one node to allow the matching between 1904 // the size of Ins and InVals. This only happens for vararg functions. 1905 if (!OutChains.empty()) { 1906 OutChains.push_back(Chain); 1907 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1908 } 1909 1910 return Chain; 1911 } 1912 1913 /// isEligibleForTailCallOptimization - Check whether the call is eligible 1914 /// for tail call optimization. 1915 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 1916 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 1917 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 1918 const SmallVector<CCValAssign, 16> &ArgLocs) const { 1919 1920 auto &Callee = CLI.Callee; 1921 auto CalleeCC = CLI.CallConv; 1922 auto IsVarArg = CLI.IsVarArg; 1923 auto &Outs = CLI.Outs; 1924 auto &Caller = MF.getFunction(); 1925 auto CallerCC = Caller.getCallingConv(); 1926 1927 // Do not tail call opt functions with "disable-tail-calls" attribute. 1928 if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 1929 return false; 1930 1931 // Exception-handling functions need a special set of instructions to 1932 // indicate a return to the hardware. Tail-calling another function would 1933 // probably break this. 1934 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 1935 // should be expanded as new function attributes are introduced. 1936 if (Caller.hasFnAttribute("interrupt")) 1937 return false; 1938 1939 // Do not tail call opt functions with varargs. 1940 if (IsVarArg) 1941 return false; 1942 1943 // Do not tail call opt if the stack is used to pass parameters. 1944 if (CCInfo.getNextStackOffset() != 0) 1945 return false; 1946 1947 // Do not tail call opt if any parameters need to be passed indirectly. 1948 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 1949 // passed indirectly. So the address of the value will be passed in a 1950 // register, or if not available, then the address is put on the stack. In 1951 // order to pass indirectly, space on the stack often needs to be allocated 1952 // in order to store the value. In this case the CCInfo.getNextStackOffset() 1953 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 1954 // are passed CCValAssign::Indirect. 1955 for (auto &VA : ArgLocs) 1956 if (VA.getLocInfo() == CCValAssign::Indirect) 1957 return false; 1958 1959 // Do not tail call opt if either caller or callee uses struct return 1960 // semantics. 1961 auto IsCallerStructRet = Caller.hasStructRetAttr(); 1962 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 1963 if (IsCallerStructRet || IsCalleeStructRet) 1964 return false; 1965 1966 // Externally-defined functions with weak linkage should not be 1967 // tail-called. The behaviour of branch instructions in this situation (as 1968 // used for tail calls) is implementation-defined, so we cannot rely on the 1969 // linker replacing the tail call with a return. 1970 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1971 const GlobalValue *GV = G->getGlobal(); 1972 if (GV->hasExternalWeakLinkage()) 1973 return false; 1974 } 1975 1976 // The callee has to preserve all registers the caller needs to preserve. 1977 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1978 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1979 if (CalleeCC != CallerCC) { 1980 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 1981 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 1982 return false; 1983 } 1984 1985 // Byval parameters hand the function a pointer directly into the stack area 1986 // we want to reuse during a tail call. Working around this *is* possible 1987 // but less efficient and uglier in LowerCall. 1988 for (auto &Arg : Outs) 1989 if (Arg.Flags.isByVal()) 1990 return false; 1991 1992 return true; 1993 } 1994 1995 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 1996 // and output parameter nodes. 1997 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 1998 SmallVectorImpl<SDValue> &InVals) const { 1999 SelectionDAG &DAG = CLI.DAG; 2000 SDLoc &DL = CLI.DL; 2001 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 2002 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 2003 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 2004 SDValue Chain = CLI.Chain; 2005 SDValue Callee = CLI.Callee; 2006 bool &IsTailCall = CLI.IsTailCall; 2007 CallingConv::ID CallConv = CLI.CallConv; 2008 bool IsVarArg = CLI.IsVarArg; 2009 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2010 MVT XLenVT = Subtarget.getXLenVT(); 2011 2012 MachineFunction &MF = DAG.getMachineFunction(); 2013 2014 // Analyze the operands of the call, assigning locations to each operand. 2015 SmallVector<CCValAssign, 16> ArgLocs; 2016 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2017 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 2018 2019 // Check if it's really possible to do a tail call. 2020 if (IsTailCall) 2021 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 2022 2023 if (IsTailCall) 2024 ++NumTailCalls; 2025 else if (CLI.CS && CLI.CS.isMustTailCall()) 2026 report_fatal_error("failed to perform tail call elimination on a call " 2027 "site marked musttail"); 2028 2029 // Get a count of how many bytes are to be pushed on the stack. 2030 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 2031 2032 // Create local copies for byval args 2033 SmallVector<SDValue, 8> ByValArgs; 2034 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2035 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2036 if (!Flags.isByVal()) 2037 continue; 2038 2039 SDValue Arg = OutVals[i]; 2040 unsigned Size = Flags.getByValSize(); 2041 unsigned Align = Flags.getByValAlign(); 2042 2043 int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false); 2044 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2045 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 2046 2047 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, 2048 /*IsVolatile=*/false, 2049 /*AlwaysInline=*/false, 2050 IsTailCall, MachinePointerInfo(), 2051 MachinePointerInfo()); 2052 ByValArgs.push_back(FIPtr); 2053 } 2054 2055 if (!IsTailCall) 2056 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 2057 2058 // Copy argument values to their designated locations. 2059 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 2060 SmallVector<SDValue, 8> MemOpChains; 2061 SDValue StackPtr; 2062 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 2063 CCValAssign &VA = ArgLocs[i]; 2064 SDValue ArgValue = OutVals[i]; 2065 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2066 2067 // Handle passing f64 on RV32D with a soft float ABI as a special case. 2068 bool IsF64OnRV32DSoftABI = 2069 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 2070 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 2071 SDValue SplitF64 = DAG.getNode( 2072 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 2073 SDValue Lo = SplitF64.getValue(0); 2074 SDValue Hi = SplitF64.getValue(1); 2075 2076 unsigned RegLo = VA.getLocReg(); 2077 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 2078 2079 if (RegLo == RISCV::X17) { 2080 // Second half of f64 is passed on the stack. 2081 // Work out the address of the stack slot. 2082 if (!StackPtr.getNode()) 2083 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2084 // Emit the store. 2085 MemOpChains.push_back( 2086 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 2087 } else { 2088 // Second half of f64 is passed in another GPR. 2089 unsigned RegHigh = RegLo + 1; 2090 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 2091 } 2092 continue; 2093 } 2094 2095 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 2096 // as any other MemLoc. 2097 2098 // Promote the value if needed. 2099 // For now, only handle fully promoted and indirect arguments. 2100 if (VA.getLocInfo() == CCValAssign::Indirect) { 2101 // Store the argument in a stack slot and pass its address. 2102 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 2103 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 2104 MemOpChains.push_back( 2105 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 2106 MachinePointerInfo::getFixedStack(MF, FI))); 2107 // If the original argument was split (e.g. i128), we need 2108 // to store all parts of it here (and pass just one address). 2109 unsigned ArgIndex = Outs[i].OrigArgIndex; 2110 assert(Outs[i].PartOffset == 0); 2111 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 2112 SDValue PartValue = OutVals[i + 1]; 2113 unsigned PartOffset = Outs[i + 1].PartOffset; 2114 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 2115 DAG.getIntPtrConstant(PartOffset, DL)); 2116 MemOpChains.push_back( 2117 DAG.getStore(Chain, DL, PartValue, Address, 2118 MachinePointerInfo::getFixedStack(MF, FI))); 2119 ++i; 2120 } 2121 ArgValue = SpillSlot; 2122 } else { 2123 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 2124 } 2125 2126 // Use local copy if it is a byval arg. 2127 if (Flags.isByVal()) 2128 ArgValue = ByValArgs[j++]; 2129 2130 if (VA.isRegLoc()) { 2131 // Queue up the argument copies and emit them at the end. 2132 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 2133 } else { 2134 assert(VA.isMemLoc() && "Argument not register or memory"); 2135 assert(!IsTailCall && "Tail call not allowed if stack is used " 2136 "for passing parameters"); 2137 2138 // Work out the address of the stack slot. 2139 if (!StackPtr.getNode()) 2140 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2141 SDValue Address = 2142 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 2143 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 2144 2145 // Emit the store. 2146 MemOpChains.push_back( 2147 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 2148 } 2149 } 2150 2151 // Join the stores, which are independent of one another. 2152 if (!MemOpChains.empty()) 2153 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2154 2155 SDValue Glue; 2156 2157 // Build a sequence of copy-to-reg nodes, chained and glued together. 2158 for (auto &Reg : RegsToPass) { 2159 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 2160 Glue = Chain.getValue(1); 2161 } 2162 2163 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 2164 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 2165 // split it and then direct call can be matched by PseudoCALL. 2166 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 2167 const GlobalValue *GV = S->getGlobal(); 2168 2169 unsigned OpFlags = RISCVII::MO_CALL; 2170 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 2171 OpFlags = RISCVII::MO_PLT; 2172 2173 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 2174 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2175 unsigned OpFlags = RISCVII::MO_CALL; 2176 2177 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 2178 nullptr)) 2179 OpFlags = RISCVII::MO_PLT; 2180 2181 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 2182 } 2183 2184 // The first call operand is the chain and the second is the target address. 2185 SmallVector<SDValue, 8> Ops; 2186 Ops.push_back(Chain); 2187 Ops.push_back(Callee); 2188 2189 // Add argument registers to the end of the list so that they are 2190 // known live into the call. 2191 for (auto &Reg : RegsToPass) 2192 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 2193 2194 if (!IsTailCall) { 2195 // Add a register mask operand representing the call-preserved registers. 2196 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2197 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2198 assert(Mask && "Missing call preserved mask for calling convention"); 2199 Ops.push_back(DAG.getRegisterMask(Mask)); 2200 } 2201 2202 // Glue the call to the argument copies, if any. 2203 if (Glue.getNode()) 2204 Ops.push_back(Glue); 2205 2206 // Emit the call. 2207 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2208 2209 if (IsTailCall) { 2210 MF.getFrameInfo().setHasTailCall(); 2211 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 2212 } 2213 2214 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 2215 Glue = Chain.getValue(1); 2216 2217 // Mark the end of the call, which is glued to the call itself. 2218 Chain = DAG.getCALLSEQ_END(Chain, 2219 DAG.getConstant(NumBytes, DL, PtrVT, true), 2220 DAG.getConstant(0, DL, PtrVT, true), 2221 Glue, DL); 2222 Glue = Chain.getValue(1); 2223 2224 // Assign locations to each value returned by this call. 2225 SmallVector<CCValAssign, 16> RVLocs; 2226 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 2227 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 2228 2229 // Copy all of the result registers out of their specified physreg. 2230 for (auto &VA : RVLocs) { 2231 // Copy the value out 2232 SDValue RetValue = 2233 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 2234 // Glue the RetValue to the end of the call sequence 2235 Chain = RetValue.getValue(1); 2236 Glue = RetValue.getValue(2); 2237 2238 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2239 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 2240 SDValue RetValue2 = 2241 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 2242 Chain = RetValue2.getValue(1); 2243 Glue = RetValue2.getValue(2); 2244 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 2245 RetValue2); 2246 } 2247 2248 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 2249 2250 InVals.push_back(RetValue); 2251 } 2252 2253 return Chain; 2254 } 2255 2256 bool RISCVTargetLowering::CanLowerReturn( 2257 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 2258 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 2259 SmallVector<CCValAssign, 16> RVLocs; 2260 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2261 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2262 MVT VT = Outs[i].VT; 2263 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2264 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2265 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 2266 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) 2267 return false; 2268 } 2269 return true; 2270 } 2271 2272 SDValue 2273 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2274 bool IsVarArg, 2275 const SmallVectorImpl<ISD::OutputArg> &Outs, 2276 const SmallVectorImpl<SDValue> &OutVals, 2277 const SDLoc &DL, SelectionDAG &DAG) const { 2278 // Stores the assignment of the return value to a location. 2279 SmallVector<CCValAssign, 16> RVLocs; 2280 2281 // Info about the registers and stack slot. 2282 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2283 *DAG.getContext()); 2284 2285 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 2286 nullptr); 2287 2288 SDValue Glue; 2289 SmallVector<SDValue, 4> RetOps(1, Chain); 2290 2291 // Copy the result values into the output registers. 2292 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 2293 SDValue Val = OutVals[i]; 2294 CCValAssign &VA = RVLocs[i]; 2295 assert(VA.isRegLoc() && "Can only return in registers!"); 2296 2297 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2298 // Handle returning f64 on RV32D with a soft float ABI. 2299 assert(VA.isRegLoc() && "Expected return via registers"); 2300 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 2301 DAG.getVTList(MVT::i32, MVT::i32), Val); 2302 SDValue Lo = SplitF64.getValue(0); 2303 SDValue Hi = SplitF64.getValue(1); 2304 unsigned RegLo = VA.getLocReg(); 2305 unsigned RegHi = RegLo + 1; 2306 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 2307 Glue = Chain.getValue(1); 2308 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 2309 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 2310 Glue = Chain.getValue(1); 2311 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 2312 } else { 2313 // Handle a 'normal' return. 2314 Val = convertValVTToLocVT(DAG, Val, VA, DL); 2315 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 2316 2317 // Guarantee that all emitted copies are stuck together. 2318 Glue = Chain.getValue(1); 2319 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2320 } 2321 } 2322 2323 RetOps[0] = Chain; // Update chain. 2324 2325 // Add the glue node if we have it. 2326 if (Glue.getNode()) { 2327 RetOps.push_back(Glue); 2328 } 2329 2330 // Interrupt service routines use different return instructions. 2331 const Function &Func = DAG.getMachineFunction().getFunction(); 2332 if (Func.hasFnAttribute("interrupt")) { 2333 if (!Func.getReturnType()->isVoidTy()) 2334 report_fatal_error( 2335 "Functions with the interrupt attribute must have void return type!"); 2336 2337 MachineFunction &MF = DAG.getMachineFunction(); 2338 StringRef Kind = 2339 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2340 2341 unsigned RetOpc; 2342 if (Kind == "user") 2343 RetOpc = RISCVISD::URET_FLAG; 2344 else if (Kind == "supervisor") 2345 RetOpc = RISCVISD::SRET_FLAG; 2346 else 2347 RetOpc = RISCVISD::MRET_FLAG; 2348 2349 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 2350 } 2351 2352 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 2353 } 2354 2355 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 2356 switch ((RISCVISD::NodeType)Opcode) { 2357 case RISCVISD::FIRST_NUMBER: 2358 break; 2359 case RISCVISD::RET_FLAG: 2360 return "RISCVISD::RET_FLAG"; 2361 case RISCVISD::URET_FLAG: 2362 return "RISCVISD::URET_FLAG"; 2363 case RISCVISD::SRET_FLAG: 2364 return "RISCVISD::SRET_FLAG"; 2365 case RISCVISD::MRET_FLAG: 2366 return "RISCVISD::MRET_FLAG"; 2367 case RISCVISD::CALL: 2368 return "RISCVISD::CALL"; 2369 case RISCVISD::SELECT_CC: 2370 return "RISCVISD::SELECT_CC"; 2371 case RISCVISD::BuildPairF64: 2372 return "RISCVISD::BuildPairF64"; 2373 case RISCVISD::SplitF64: 2374 return "RISCVISD::SplitF64"; 2375 case RISCVISD::TAIL: 2376 return "RISCVISD::TAIL"; 2377 case RISCVISD::SLLW: 2378 return "RISCVISD::SLLW"; 2379 case RISCVISD::SRAW: 2380 return "RISCVISD::SRAW"; 2381 case RISCVISD::SRLW: 2382 return "RISCVISD::SRLW"; 2383 case RISCVISD::DIVW: 2384 return "RISCVISD::DIVW"; 2385 case RISCVISD::DIVUW: 2386 return "RISCVISD::DIVUW"; 2387 case RISCVISD::REMUW: 2388 return "RISCVISD::REMUW"; 2389 case RISCVISD::FMV_W_X_RV64: 2390 return "RISCVISD::FMV_W_X_RV64"; 2391 case RISCVISD::FMV_X_ANYEXTW_RV64: 2392 return "RISCVISD::FMV_X_ANYEXTW_RV64"; 2393 case RISCVISD::READ_CYCLE_WIDE: 2394 return "RISCVISD::READ_CYCLE_WIDE"; 2395 } 2396 return nullptr; 2397 } 2398 2399 /// getConstraintType - Given a constraint letter, return the type of 2400 /// constraint it is for this target. 2401 RISCVTargetLowering::ConstraintType 2402 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 2403 if (Constraint.size() == 1) { 2404 switch (Constraint[0]) { 2405 default: 2406 break; 2407 case 'f': 2408 return C_RegisterClass; 2409 case 'I': 2410 case 'J': 2411 case 'K': 2412 return C_Immediate; 2413 case 'A': 2414 return C_Memory; 2415 } 2416 } 2417 return TargetLowering::getConstraintType(Constraint); 2418 } 2419 2420 std::pair<unsigned, const TargetRegisterClass *> 2421 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2422 StringRef Constraint, 2423 MVT VT) const { 2424 // First, see if this is a constraint that directly corresponds to a 2425 // RISCV register class. 2426 if (Constraint.size() == 1) { 2427 switch (Constraint[0]) { 2428 case 'r': 2429 return std::make_pair(0U, &RISCV::GPRRegClass); 2430 case 'f': 2431 if (Subtarget.hasStdExtF() && VT == MVT::f32) 2432 return std::make_pair(0U, &RISCV::FPR32RegClass); 2433 if (Subtarget.hasStdExtD() && VT == MVT::f64) 2434 return std::make_pair(0U, &RISCV::FPR64RegClass); 2435 break; 2436 default: 2437 break; 2438 } 2439 } 2440 2441 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2442 } 2443 2444 unsigned 2445 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 2446 // Currently only support length 1 constraints. 2447 if (ConstraintCode.size() == 1) { 2448 switch (ConstraintCode[0]) { 2449 case 'A': 2450 return InlineAsm::Constraint_A; 2451 default: 2452 break; 2453 } 2454 } 2455 2456 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 2457 } 2458 2459 void RISCVTargetLowering::LowerAsmOperandForConstraint( 2460 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 2461 SelectionDAG &DAG) const { 2462 // Currently only support length 1 constraints. 2463 if (Constraint.length() == 1) { 2464 switch (Constraint[0]) { 2465 case 'I': 2466 // Validate & create a 12-bit signed immediate operand. 2467 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2468 uint64_t CVal = C->getSExtValue(); 2469 if (isInt<12>(CVal)) 2470 Ops.push_back( 2471 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 2472 } 2473 return; 2474 case 'J': 2475 // Validate & create an integer zero operand. 2476 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 2477 if (C->getZExtValue() == 0) 2478 Ops.push_back( 2479 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 2480 return; 2481 case 'K': 2482 // Validate & create a 5-bit unsigned immediate operand. 2483 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2484 uint64_t CVal = C->getZExtValue(); 2485 if (isUInt<5>(CVal)) 2486 Ops.push_back( 2487 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 2488 } 2489 return; 2490 default: 2491 break; 2492 } 2493 } 2494 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 2495 } 2496 2497 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 2498 Instruction *Inst, 2499 AtomicOrdering Ord) const { 2500 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 2501 return Builder.CreateFence(Ord); 2502 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 2503 return Builder.CreateFence(AtomicOrdering::Release); 2504 return nullptr; 2505 } 2506 2507 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 2508 Instruction *Inst, 2509 AtomicOrdering Ord) const { 2510 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 2511 return Builder.CreateFence(AtomicOrdering::Acquire); 2512 return nullptr; 2513 } 2514 2515 TargetLowering::AtomicExpansionKind 2516 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 2517 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 2518 // point operations can't be used in an lr/sc sequence without breaking the 2519 // forward-progress guarantee. 2520 if (AI->isFloatingPointOperation()) 2521 return AtomicExpansionKind::CmpXChg; 2522 2523 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 2524 if (Size == 8 || Size == 16) 2525 return AtomicExpansionKind::MaskedIntrinsic; 2526 return AtomicExpansionKind::None; 2527 } 2528 2529 static Intrinsic::ID 2530 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 2531 if (XLen == 32) { 2532 switch (BinOp) { 2533 default: 2534 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2535 case AtomicRMWInst::Xchg: 2536 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 2537 case AtomicRMWInst::Add: 2538 return Intrinsic::riscv_masked_atomicrmw_add_i32; 2539 case AtomicRMWInst::Sub: 2540 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 2541 case AtomicRMWInst::Nand: 2542 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 2543 case AtomicRMWInst::Max: 2544 return Intrinsic::riscv_masked_atomicrmw_max_i32; 2545 case AtomicRMWInst::Min: 2546 return Intrinsic::riscv_masked_atomicrmw_min_i32; 2547 case AtomicRMWInst::UMax: 2548 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 2549 case AtomicRMWInst::UMin: 2550 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 2551 } 2552 } 2553 2554 if (XLen == 64) { 2555 switch (BinOp) { 2556 default: 2557 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2558 case AtomicRMWInst::Xchg: 2559 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 2560 case AtomicRMWInst::Add: 2561 return Intrinsic::riscv_masked_atomicrmw_add_i64; 2562 case AtomicRMWInst::Sub: 2563 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 2564 case AtomicRMWInst::Nand: 2565 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 2566 case AtomicRMWInst::Max: 2567 return Intrinsic::riscv_masked_atomicrmw_max_i64; 2568 case AtomicRMWInst::Min: 2569 return Intrinsic::riscv_masked_atomicrmw_min_i64; 2570 case AtomicRMWInst::UMax: 2571 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 2572 case AtomicRMWInst::UMin: 2573 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 2574 } 2575 } 2576 2577 llvm_unreachable("Unexpected XLen\n"); 2578 } 2579 2580 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 2581 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 2582 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 2583 unsigned XLen = Subtarget.getXLen(); 2584 Value *Ordering = 2585 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 2586 Type *Tys[] = {AlignedAddr->getType()}; 2587 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 2588 AI->getModule(), 2589 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 2590 2591 if (XLen == 64) { 2592 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 2593 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2594 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 2595 } 2596 2597 Value *Result; 2598 2599 // Must pass the shift amount needed to sign extend the loaded value prior 2600 // to performing a signed comparison for min/max. ShiftAmt is the number of 2601 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 2602 // is the number of bits to left+right shift the value in order to 2603 // sign-extend. 2604 if (AI->getOperation() == AtomicRMWInst::Min || 2605 AI->getOperation() == AtomicRMWInst::Max) { 2606 const DataLayout &DL = AI->getModule()->getDataLayout(); 2607 unsigned ValWidth = 2608 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 2609 Value *SextShamt = 2610 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 2611 Result = Builder.CreateCall(LrwOpScwLoop, 2612 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 2613 } else { 2614 Result = 2615 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 2616 } 2617 2618 if (XLen == 64) 2619 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2620 return Result; 2621 } 2622 2623 TargetLowering::AtomicExpansionKind 2624 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 2625 AtomicCmpXchgInst *CI) const { 2626 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 2627 if (Size == 8 || Size == 16) 2628 return AtomicExpansionKind::MaskedIntrinsic; 2629 return AtomicExpansionKind::None; 2630 } 2631 2632 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 2633 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 2634 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 2635 unsigned XLen = Subtarget.getXLen(); 2636 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 2637 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 2638 if (XLen == 64) { 2639 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 2640 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 2641 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2642 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 2643 } 2644 Type *Tys[] = {AlignedAddr->getType()}; 2645 Function *MaskedCmpXchg = 2646 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 2647 Value *Result = Builder.CreateCall( 2648 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 2649 if (XLen == 64) 2650 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2651 return Result; 2652 } 2653 2654 unsigned RISCVTargetLowering::getExceptionPointerRegister( 2655 const Constant *PersonalityFn) const { 2656 return RISCV::X10; 2657 } 2658 2659 unsigned RISCVTargetLowering::getExceptionSelectorRegister( 2660 const Constant *PersonalityFn) const { 2661 return RISCV::X11; 2662 } 2663