1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 // Disable the smallest fractional LMUL types if ELEN is less than 116 // RVVBitsPerBlock. 117 unsigned MinElts = RISCV::RVVBitsPerBlock / Subtarget.getELEN(); 118 if (VT.getVectorMinNumElements() < MinElts) 119 return; 120 121 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 122 const TargetRegisterClass *RC; 123 if (Size <= RISCV::RVVBitsPerBlock) 124 RC = &RISCV::VRRegClass; 125 else if (Size == 2 * RISCV::RVVBitsPerBlock) 126 RC = &RISCV::VRM2RegClass; 127 else if (Size == 4 * RISCV::RVVBitsPerBlock) 128 RC = &RISCV::VRM4RegClass; 129 else if (Size == 8 * RISCV::RVVBitsPerBlock) 130 RC = &RISCV::VRM8RegClass; 131 else 132 llvm_unreachable("Unexpected size"); 133 134 addRegisterClass(VT, RC); 135 }; 136 137 for (MVT VT : BoolVecVTs) 138 addRegClassForRVV(VT); 139 for (MVT VT : IntVecVTs) { 140 if (VT.getVectorElementType() == MVT::i64 && 141 !Subtarget.hasVInstructionsI64()) 142 continue; 143 addRegClassForRVV(VT); 144 } 145 146 if (Subtarget.hasVInstructionsF16()) 147 for (MVT VT : F16VecVTs) 148 addRegClassForRVV(VT); 149 150 if (Subtarget.hasVInstructionsF32()) 151 for (MVT VT : F32VecVTs) 152 addRegClassForRVV(VT); 153 154 if (Subtarget.hasVInstructionsF64()) 155 for (MVT VT : F64VecVTs) 156 addRegClassForRVV(VT); 157 158 if (Subtarget.useRVVForFixedLengthVectors()) { 159 auto addRegClassForFixedVectors = [this](MVT VT) { 160 MVT ContainerVT = getContainerForFixedLengthVector(VT); 161 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 162 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 163 addRegisterClass(VT, TRI.getRegClass(RCID)); 164 }; 165 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 166 if (useRVVForFixedLengthVectorVT(VT)) 167 addRegClassForFixedVectors(VT); 168 169 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 170 if (useRVVForFixedLengthVectorVT(VT)) 171 addRegClassForFixedVectors(VT); 172 } 173 } 174 175 // Compute derived properties from the register classes. 176 computeRegisterProperties(STI.getRegisterInfo()); 177 178 setStackPointerRegisterToSaveRestore(RISCV::X2); 179 180 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT, 181 MVT::i1, Promote); 182 183 // TODO: add all necessary setOperationAction calls. 184 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 185 186 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 187 setOperationAction(ISD::BR_CC, XLenVT, Expand); 188 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 189 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 190 191 setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand); 192 193 setOperationAction(ISD::VASTART, MVT::Other, Custom); 194 setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand); 195 196 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 197 198 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 199 200 if (!Subtarget.hasStdExtZbb()) 201 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand); 202 203 if (Subtarget.is64Bit()) { 204 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 205 206 setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL}, 207 MVT::i32, Custom); 208 209 setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT}, 210 MVT::i32, Custom); 211 } else { 212 setLibcallName( 213 {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128}, 214 nullptr); 215 setLibcallName(RTLIB::MULO_I64, nullptr); 216 } 217 218 if (!Subtarget.hasStdExtM() && !Subtarget.hasStdExtZmmul()) { 219 setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU}, XLenVT, Expand); 220 } else { 221 if (Subtarget.is64Bit()) { 222 setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom); 223 } else { 224 setOperationAction(ISD::MUL, MVT::i64, Custom); 225 } 226 } 227 228 if (!Subtarget.hasStdExtM()) { 229 setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM}, 230 XLenVT, Expand); 231 } else { 232 if (Subtarget.is64Bit()) { 233 setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM}, 234 {MVT::i8, MVT::i16, MVT::i32}, Custom); 235 } 236 } 237 238 setOperationAction( 239 {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT, 240 Expand); 241 242 setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT, 243 Custom); 244 245 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 246 Subtarget.hasStdExtZbkb()) { 247 if (Subtarget.is64Bit()) 248 setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom); 249 } else { 250 setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand); 251 } 252 253 if (Subtarget.hasStdExtZbp()) { 254 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 255 // more combining. 256 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, XLenVT, Custom); 257 258 // BSWAP i8 doesn't exist. 259 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 260 261 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i16, Custom); 262 263 if (Subtarget.is64Bit()) 264 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i32, Custom); 265 } else { 266 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 267 // pattern match it directly in isel. 268 setOperationAction(ISD::BSWAP, XLenVT, 269 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 270 ? Legal 271 : Expand); 272 // Zbkb can use rev8+brev8 to implement bitreverse. 273 setOperationAction(ISD::BITREVERSE, XLenVT, 274 Subtarget.hasStdExtZbkb() ? Custom : Expand); 275 } 276 277 if (Subtarget.hasStdExtZbb()) { 278 setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT, 279 Legal); 280 281 if (Subtarget.is64Bit()) 282 setOperationAction( 283 {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, 284 MVT::i32, Custom); 285 } else { 286 setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand); 287 288 if (Subtarget.is64Bit()) 289 setOperationAction(ISD::ABS, MVT::i32, Custom); 290 } 291 292 if (Subtarget.hasStdExtZbt()) { 293 setOperationAction({ISD::FSHL, ISD::FSHR}, XLenVT, Custom); 294 setOperationAction(ISD::SELECT, XLenVT, Legal); 295 296 if (Subtarget.is64Bit()) 297 setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Custom); 298 } else { 299 setOperationAction(ISD::SELECT, XLenVT, Custom); 300 } 301 302 static const unsigned FPLegalNodeTypes[] = { 303 ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT, 304 ISD::LLRINT, ISD::LROUND, ISD::LLROUND, 305 ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND, 306 ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD, 307 ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, 308 ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS}; 309 310 static const ISD::CondCode FPCCToExpand[] = { 311 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 312 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 313 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 314 315 static const unsigned FPOpToExpand[] = { 316 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 317 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 318 319 if (Subtarget.hasStdExtZfh()) 320 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 321 322 if (Subtarget.hasStdExtZfh()) { 323 setOperationAction(FPLegalNodeTypes, MVT::f16, Legal); 324 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 325 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 326 setCondCodeAction(FPCCToExpand, MVT::f16, Expand); 327 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 328 setOperationAction(ISD::SELECT, MVT::f16, Custom); 329 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 330 331 setOperationAction({ISD::FREM, ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, 332 ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC, 333 ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN, 334 ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FLOG, 335 ISD::FLOG2, ISD::FLOG10}, 336 MVT::f16, Promote); 337 338 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 339 // complete support for all operations in LegalizeDAG. 340 341 // We need to custom promote this. 342 if (Subtarget.is64Bit()) 343 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 344 } 345 346 if (Subtarget.hasStdExtF()) { 347 setOperationAction(FPLegalNodeTypes, MVT::f32, Legal); 348 setCondCodeAction(FPCCToExpand, MVT::f32, Expand); 349 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 350 setOperationAction(ISD::SELECT, MVT::f32, Custom); 351 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 352 setOperationAction(FPOpToExpand, MVT::f32, Expand); 353 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 354 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 355 } 356 357 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 358 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 359 360 if (Subtarget.hasStdExtD()) { 361 setOperationAction(FPLegalNodeTypes, MVT::f64, Legal); 362 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 363 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 364 setCondCodeAction(FPCCToExpand, MVT::f64, Expand); 365 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 366 setOperationAction(ISD::SELECT, MVT::f64, Custom); 367 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 368 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 369 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 370 setOperationAction(FPOpToExpand, MVT::f64, Expand); 371 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 372 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 373 } 374 375 if (Subtarget.is64Bit()) 376 setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT, 377 ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT}, 378 MVT::i32, Custom); 379 380 if (Subtarget.hasStdExtF()) { 381 setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT, 382 Custom); 383 384 setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT, 385 ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP}, 386 XLenVT, Legal); 387 388 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 389 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 390 } 391 392 setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool, 393 ISD::JumpTable}, 394 XLenVT, Custom); 395 396 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 397 398 if (Subtarget.is64Bit()) 399 setOperationAction(ISD::Constant, MVT::i64, Custom); 400 401 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 402 // Unfortunately this can't be determined just from the ISA naming string. 403 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 404 Subtarget.is64Bit() ? Legal : Custom); 405 406 setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal); 407 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 408 if (Subtarget.is64Bit()) 409 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 410 411 if (Subtarget.hasStdExtA()) { 412 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 413 setMinCmpXchgSizeInBits(32); 414 } else { 415 setMaxAtomicSizeInBitsSupported(0); 416 } 417 418 setBooleanContents(ZeroOrOneBooleanContent); 419 420 if (Subtarget.hasVInstructions()) { 421 setBooleanVectorContents(ZeroOrOneBooleanContent); 422 423 setOperationAction(ISD::VSCALE, XLenVT, Custom); 424 425 // RVV intrinsics may have illegal operands. 426 // We also need to custom legalize vmv.x.s. 427 setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN}, 428 {MVT::i8, MVT::i16}, Custom); 429 if (Subtarget.is64Bit()) 430 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 431 else 432 setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN}, 433 MVT::i64, Custom); 434 435 setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}, 436 MVT::Other, Custom); 437 438 static const unsigned IntegerVPOps[] = { 439 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 440 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 441 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 442 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 443 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 444 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 445 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 446 ISD::VP_MERGE, ISD::VP_SELECT, ISD::VP_FPTOSI, 447 ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_SIGN_EXTEND, 448 ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE}; 449 450 static const unsigned FloatingPointVPOps[] = { 451 ISD::VP_FADD, ISD::VP_FSUB, 452 ISD::VP_FMUL, ISD::VP_FDIV, 453 ISD::VP_FNEG, ISD::VP_FMA, 454 ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 455 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, 456 ISD::VP_MERGE, ISD::VP_SELECT, 457 ISD::VP_SITOFP, ISD::VP_UITOFP, 458 ISD::VP_SETCC, ISD::VP_FP_ROUND, 459 ISD::VP_FP_EXTEND}; 460 461 static const unsigned IntegerVecReduceOps[] = { 462 ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, 463 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, 464 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN}; 465 466 static const unsigned FloatingPointVecReduceOps[] = { 467 ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_FMIN, 468 ISD::VECREDUCE_FMAX}; 469 470 if (!Subtarget.is64Bit()) { 471 // We must custom-lower certain vXi64 operations on RV32 due to the vector 472 // element type being illegal. 473 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, 474 MVT::i64, Custom); 475 476 setOperationAction(IntegerVecReduceOps, MVT::i64, Custom); 477 478 setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 479 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, 480 ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN, 481 ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN}, 482 MVT::i64, Custom); 483 } 484 485 for (MVT VT : BoolVecVTs) { 486 if (!isTypeLegal(VT)) 487 continue; 488 489 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 490 491 // Mask VTs are custom-expanded into a series of standard nodes 492 setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS, 493 ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, 494 VT, Custom); 495 496 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 497 Custom); 498 499 setOperationAction(ISD::SELECT, VT, Custom); 500 setOperationAction( 501 {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT, 502 Expand); 503 504 setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom); 505 506 setOperationAction( 507 {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT, 508 Custom); 509 510 setOperationAction( 511 {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT, 512 Custom); 513 514 // RVV has native int->float & float->int conversions where the 515 // element type sizes are within one power-of-two of each other. Any 516 // wider distances between type sizes have to be lowered as sequences 517 // which progressively narrow the gap in stages. 518 setOperationAction( 519 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, 520 VT, Custom); 521 522 // Expand all extending loads to types larger than this, and truncating 523 // stores from types larger than this. 524 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 525 setTruncStoreAction(OtherVT, VT, Expand); 526 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT, 527 VT, Expand); 528 } 529 530 setOperationAction( 531 {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_TRUNCATE, ISD::VP_SETCC}, VT, 532 Custom); 533 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 534 535 setOperationPromotedToType( 536 ISD::VECTOR_SPLICE, VT, 537 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount())); 538 } 539 540 for (MVT VT : IntVecVTs) { 541 if (!isTypeLegal(VT)) 542 continue; 543 544 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 545 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 546 547 // Vectors implement MULHS/MULHU. 548 setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand); 549 550 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 551 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) 552 setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand); 553 554 setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT, 555 Legal); 556 557 setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand); 558 559 setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP, ISD::BSWAP}, VT, 560 Expand); 561 562 setOperationAction(ISD::BSWAP, VT, Expand); 563 564 // Custom-lower extensions and truncations from/to mask types. 565 setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, 566 VT, Custom); 567 568 // RVV has native int->float & float->int conversions where the 569 // element type sizes are within one power-of-two of each other. Any 570 // wider distances between type sizes have to be lowered as sequences 571 // which progressively narrow the gap in stages. 572 setOperationAction( 573 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, 574 VT, Custom); 575 576 setOperationAction( 577 {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal); 578 579 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 580 // nodes which truncate by one power of two at a time. 581 setOperationAction(ISD::TRUNCATE, VT, Custom); 582 583 // Custom-lower insert/extract operations to simplify patterns. 584 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 585 Custom); 586 587 // Custom-lower reduction operations to set up the corresponding custom 588 // nodes' operands. 589 setOperationAction(IntegerVecReduceOps, VT, Custom); 590 591 setOperationAction(IntegerVPOps, VT, Custom); 592 593 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 594 595 setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, 596 VT, Custom); 597 598 setOperationAction( 599 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 600 Custom); 601 602 setOperationAction( 603 {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, 604 VT, Custom); 605 606 setOperationAction(ISD::SELECT, VT, Custom); 607 setOperationAction(ISD::SELECT_CC, VT, Expand); 608 609 setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom); 610 611 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 612 setTruncStoreAction(VT, OtherVT, Expand); 613 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT, 614 VT, Expand); 615 } 616 617 // Splice 618 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 619 620 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 621 // type that can represent the value exactly. 622 if (VT.getVectorElementType() != MVT::i64) { 623 MVT FloatEltVT = 624 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 625 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 626 if (isTypeLegal(FloatVT)) { 627 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, 628 Custom); 629 } 630 } 631 } 632 633 // Expand various CCs to best match the RVV ISA, which natively supports UNE 634 // but no other unordered comparisons, and supports all ordered comparisons 635 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 636 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 637 // and we pattern-match those back to the "original", swapping operands once 638 // more. This way we catch both operations and both "vf" and "fv" forms with 639 // fewer patterns. 640 static const ISD::CondCode VFPCCToExpand[] = { 641 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 642 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 643 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 644 }; 645 646 // Sets common operation actions on RVV floating-point vector types. 647 const auto SetCommonVFPActions = [&](MVT VT) { 648 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 649 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 650 // sizes are within one power-of-two of each other. Therefore conversions 651 // between vXf16 and vXf64 must be lowered as sequences which convert via 652 // vXf32. 653 setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); 654 // Custom-lower insert/extract operations to simplify patterns. 655 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 656 Custom); 657 // Expand various condition codes (explained above). 658 setCondCodeAction(VFPCCToExpand, VT, Expand); 659 660 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal); 661 662 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND}, 663 VT, Custom); 664 665 setOperationAction(FloatingPointVecReduceOps, VT, Custom); 666 667 // Expand FP operations that need libcalls. 668 setOperationAction(ISD::FREM, VT, Expand); 669 setOperationAction(ISD::FPOW, VT, Expand); 670 setOperationAction(ISD::FCOS, VT, Expand); 671 setOperationAction(ISD::FSIN, VT, Expand); 672 setOperationAction(ISD::FSINCOS, VT, Expand); 673 setOperationAction(ISD::FEXP, VT, Expand); 674 setOperationAction(ISD::FEXP2, VT, Expand); 675 setOperationAction(ISD::FLOG, VT, Expand); 676 setOperationAction(ISD::FLOG2, VT, Expand); 677 setOperationAction(ISD::FLOG10, VT, Expand); 678 setOperationAction(ISD::FRINT, VT, Expand); 679 setOperationAction(ISD::FNEARBYINT, VT, Expand); 680 681 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 682 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 683 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 684 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 685 686 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 687 688 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 689 690 setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, 691 VT, Custom); 692 693 setOperationAction( 694 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 695 Custom); 696 697 setOperationAction(ISD::SELECT, VT, Custom); 698 setOperationAction(ISD::SELECT_CC, VT, Expand); 699 700 setOperationAction( 701 {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, 702 VT, Custom); 703 704 setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom); 705 706 setOperationAction(FloatingPointVPOps, VT, Custom); 707 }; 708 709 // Sets common extload/truncstore actions on RVV floating-point vector 710 // types. 711 const auto SetCommonVFPExtLoadTruncStoreActions = 712 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 713 for (auto SmallVT : SmallerVTs) { 714 setTruncStoreAction(VT, SmallVT, Expand); 715 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 716 } 717 }; 718 719 if (Subtarget.hasVInstructionsF16()) { 720 for (MVT VT : F16VecVTs) { 721 if (!isTypeLegal(VT)) 722 continue; 723 SetCommonVFPActions(VT); 724 } 725 } 726 727 if (Subtarget.hasVInstructionsF32()) { 728 for (MVT VT : F32VecVTs) { 729 if (!isTypeLegal(VT)) 730 continue; 731 SetCommonVFPActions(VT); 732 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 733 } 734 } 735 736 if (Subtarget.hasVInstructionsF64()) { 737 for (MVT VT : F64VecVTs) { 738 if (!isTypeLegal(VT)) 739 continue; 740 SetCommonVFPActions(VT); 741 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 742 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 743 } 744 } 745 746 if (Subtarget.useRVVForFixedLengthVectors()) { 747 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 748 if (!useRVVForFixedLengthVectorVT(VT)) 749 continue; 750 751 // By default everything must be expanded. 752 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 753 setOperationAction(Op, VT, Expand); 754 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 755 setTruncStoreAction(VT, OtherVT, Expand); 756 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, 757 OtherVT, VT, Expand); 758 } 759 760 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 761 setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT, 762 Custom); 763 764 setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT, 765 Custom); 766 767 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, 768 VT, Custom); 769 770 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 771 772 setOperationAction(ISD::SETCC, VT, Custom); 773 774 setOperationAction(ISD::SELECT, VT, Custom); 775 776 setOperationAction(ISD::TRUNCATE, VT, Custom); 777 778 setOperationAction(ISD::BITCAST, VT, Custom); 779 780 setOperationAction( 781 {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT, 782 Custom); 783 784 setOperationAction( 785 {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT, 786 Custom); 787 788 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, 789 ISD::FP_TO_UINT}, 790 VT, Custom); 791 792 // Operations below are different for between masks and other vectors. 793 if (VT.getVectorElementType() == MVT::i1) { 794 setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND, 795 ISD::OR, ISD::XOR}, 796 VT, Custom); 797 798 setOperationAction( 799 {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_TRUNCATE}, 800 VT, Custom); 801 continue; 802 } 803 804 // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to 805 // it before type legalization for i64 vectors on RV32. It will then be 806 // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle. 807 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 808 // improvements first. 809 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 810 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 811 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 812 } 813 814 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 815 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 816 817 setOperationAction( 818 {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom); 819 820 setOperationAction( 821 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 822 Custom); 823 824 setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR, 825 ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV, 826 ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL}, 827 VT, Custom); 828 829 setOperationAction( 830 {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom); 831 832 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 833 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) 834 setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom); 835 836 setOperationAction( 837 {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, 838 Custom); 839 840 setOperationAction(ISD::VSELECT, VT, Custom); 841 setOperationAction(ISD::SELECT_CC, VT, Expand); 842 843 setOperationAction( 844 {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom); 845 846 // Custom-lower reduction operations to set up the corresponding custom 847 // nodes' operands. 848 setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX, 849 ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX, 850 ISD::VECREDUCE_UMIN}, 851 VT, Custom); 852 853 setOperationAction(IntegerVPOps, VT, Custom); 854 855 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 856 // type that can represent the value exactly. 857 if (VT.getVectorElementType() != MVT::i64) { 858 MVT FloatEltVT = 859 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 860 EVT FloatVT = 861 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 862 if (isTypeLegal(FloatVT)) 863 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, 864 Custom); 865 } 866 } 867 868 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 869 if (!useRVVForFixedLengthVectorVT(VT)) 870 continue; 871 872 // By default everything must be expanded. 873 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 874 setOperationAction(Op, VT, Expand); 875 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 876 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 877 setTruncStoreAction(VT, OtherVT, Expand); 878 } 879 880 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 881 setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT, 882 Custom); 883 884 setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS, 885 ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT, 886 ISD::EXTRACT_VECTOR_ELT}, 887 VT, Custom); 888 889 setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE, 890 ISD::MGATHER, ISD::MSCATTER}, 891 VT, Custom); 892 893 setOperationAction( 894 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 895 Custom); 896 897 setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV, 898 ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT, 899 ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM}, 900 VT, Custom); 901 902 setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); 903 904 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND}, 905 VT, Custom); 906 907 setCondCodeAction(VFPCCToExpand, VT, Expand); 908 909 setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom); 910 setOperationAction(ISD::SELECT_CC, VT, Expand); 911 912 setOperationAction(ISD::BITCAST, VT, Custom); 913 914 setOperationAction(FloatingPointVecReduceOps, VT, Custom); 915 916 setOperationAction(FloatingPointVPOps, VT, Custom); 917 } 918 919 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 920 setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64}, 921 Custom); 922 if (Subtarget.hasStdExtZfh()) 923 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 924 if (Subtarget.hasStdExtF()) 925 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 926 if (Subtarget.hasStdExtD()) 927 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 928 } 929 } 930 931 // Function alignments. 932 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 933 setMinFunctionAlignment(FunctionAlignment); 934 setPrefFunctionAlignment(FunctionAlignment); 935 936 setMinimumJumpTableEntries(5); 937 938 // Jumps are expensive, compared to logic 939 setJumpIsExpensive(); 940 941 setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND, 942 ISD::OR, ISD::XOR, ISD::SETCC}); 943 if (Subtarget.is64Bit()) 944 setTargetDAGCombine(ISD::SRA); 945 946 if (Subtarget.hasStdExtF()) 947 setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM}); 948 949 if (Subtarget.hasStdExtZbp()) 950 setTargetDAGCombine({ISD::ROTL, ISD::ROTR}); 951 952 if (Subtarget.hasStdExtZbb()) 953 setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN}); 954 955 if (Subtarget.hasStdExtZbkb()) 956 setTargetDAGCombine(ISD::BITREVERSE); 957 if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb()) 958 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 959 if (Subtarget.hasStdExtF()) 960 setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT, 961 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}); 962 if (Subtarget.hasVInstructions()) 963 setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER, 964 ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL, 965 ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR}); 966 if (Subtarget.useRVVForFixedLengthVectors()) 967 setTargetDAGCombine(ISD::BITCAST); 968 969 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 970 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 971 } 972 973 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 974 LLVMContext &Context, 975 EVT VT) const { 976 if (!VT.isVector()) 977 return getPointerTy(DL); 978 if (Subtarget.hasVInstructions() && 979 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 980 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 981 return VT.changeVectorElementTypeToInteger(); 982 } 983 984 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 985 return Subtarget.getXLenVT(); 986 } 987 988 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 989 const CallInst &I, 990 MachineFunction &MF, 991 unsigned Intrinsic) const { 992 auto &DL = I.getModule()->getDataLayout(); 993 switch (Intrinsic) { 994 default: 995 return false; 996 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 997 case Intrinsic::riscv_masked_atomicrmw_add_i32: 998 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 999 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1000 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1001 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1002 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1003 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1004 case Intrinsic::riscv_masked_cmpxchg_i32: 1005 Info.opc = ISD::INTRINSIC_W_CHAIN; 1006 Info.memVT = MVT::i32; 1007 Info.ptrVal = I.getArgOperand(0); 1008 Info.offset = 0; 1009 Info.align = Align(4); 1010 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1011 MachineMemOperand::MOVolatile; 1012 return true; 1013 case Intrinsic::riscv_masked_strided_load: 1014 Info.opc = ISD::INTRINSIC_W_CHAIN; 1015 Info.ptrVal = I.getArgOperand(1); 1016 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1017 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1018 Info.size = MemoryLocation::UnknownSize; 1019 Info.flags |= MachineMemOperand::MOLoad; 1020 return true; 1021 case Intrinsic::riscv_masked_strided_store: 1022 Info.opc = ISD::INTRINSIC_VOID; 1023 Info.ptrVal = I.getArgOperand(1); 1024 Info.memVT = 1025 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1026 Info.align = Align( 1027 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1028 8); 1029 Info.size = MemoryLocation::UnknownSize; 1030 Info.flags |= MachineMemOperand::MOStore; 1031 return true; 1032 case Intrinsic::riscv_seg2_load: 1033 case Intrinsic::riscv_seg3_load: 1034 case Intrinsic::riscv_seg4_load: 1035 case Intrinsic::riscv_seg5_load: 1036 case Intrinsic::riscv_seg6_load: 1037 case Intrinsic::riscv_seg7_load: 1038 case Intrinsic::riscv_seg8_load: 1039 Info.opc = ISD::INTRINSIC_W_CHAIN; 1040 Info.ptrVal = I.getArgOperand(0); 1041 Info.memVT = 1042 getValueType(DL, I.getType()->getStructElementType(0)->getScalarType()); 1043 Info.align = 1044 Align(DL.getTypeSizeInBits( 1045 I.getType()->getStructElementType(0)->getScalarType()) / 1046 8); 1047 Info.size = MemoryLocation::UnknownSize; 1048 Info.flags |= MachineMemOperand::MOLoad; 1049 return true; 1050 } 1051 } 1052 1053 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1054 const AddrMode &AM, Type *Ty, 1055 unsigned AS, 1056 Instruction *I) const { 1057 // No global is ever allowed as a base. 1058 if (AM.BaseGV) 1059 return false; 1060 1061 // RVV instructions only support register addressing. 1062 if (Subtarget.hasVInstructions() && isa<VectorType>(Ty)) 1063 return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs; 1064 1065 // Require a 12-bit signed offset. 1066 if (!isInt<12>(AM.BaseOffs)) 1067 return false; 1068 1069 switch (AM.Scale) { 1070 case 0: // "r+i" or just "i", depending on HasBaseReg. 1071 break; 1072 case 1: 1073 if (!AM.HasBaseReg) // allow "r+i". 1074 break; 1075 return false; // disallow "r+r" or "r+r+i". 1076 default: 1077 return false; 1078 } 1079 1080 return true; 1081 } 1082 1083 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1084 return isInt<12>(Imm); 1085 } 1086 1087 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1088 return isInt<12>(Imm); 1089 } 1090 1091 // On RV32, 64-bit integers are split into their high and low parts and held 1092 // in two different registers, so the trunc is free since the low register can 1093 // just be used. 1094 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1095 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1096 return false; 1097 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1098 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1099 return (SrcBits == 64 && DestBits == 32); 1100 } 1101 1102 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1103 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1104 !SrcVT.isInteger() || !DstVT.isInteger()) 1105 return false; 1106 unsigned SrcBits = SrcVT.getSizeInBits(); 1107 unsigned DestBits = DstVT.getSizeInBits(); 1108 return (SrcBits == 64 && DestBits == 32); 1109 } 1110 1111 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1112 // Zexts are free if they can be combined with a load. 1113 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1114 // poorly with type legalization of compares preferring sext. 1115 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1116 EVT MemVT = LD->getMemoryVT(); 1117 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1118 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1119 LD->getExtensionType() == ISD::ZEXTLOAD)) 1120 return true; 1121 } 1122 1123 return TargetLowering::isZExtFree(Val, VT2); 1124 } 1125 1126 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1127 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1128 } 1129 1130 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const { 1131 return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32); 1132 } 1133 1134 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1135 return Subtarget.hasStdExtZbb(); 1136 } 1137 1138 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1139 return Subtarget.hasStdExtZbb(); 1140 } 1141 1142 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1143 EVT VT = Y.getValueType(); 1144 1145 // FIXME: Support vectors once we have tests. 1146 if (VT.isVector()) 1147 return false; 1148 1149 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1150 Subtarget.hasStdExtZbkb()) && 1151 !isa<ConstantSDNode>(Y); 1152 } 1153 1154 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const { 1155 // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position. 1156 auto *C = dyn_cast<ConstantSDNode>(Y); 1157 return C && C->getAPIntValue().ule(10); 1158 } 1159 1160 bool RISCVTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 1161 Type *Ty) const { 1162 assert(Ty->isIntegerTy()); 1163 1164 unsigned BitSize = Ty->getIntegerBitWidth(); 1165 if (BitSize > Subtarget.getXLen()) 1166 return false; 1167 1168 // Fast path, assume 32-bit immediates are cheap. 1169 int64_t Val = Imm.getSExtValue(); 1170 if (isInt<32>(Val)) 1171 return true; 1172 1173 // A constant pool entry may be more aligned thant he load we're trying to 1174 // replace. If we don't support unaligned scalar mem, prefer the constant 1175 // pool. 1176 // TODO: Can the caller pass down the alignment? 1177 if (!Subtarget.enableUnalignedScalarMem()) 1178 return true; 1179 1180 // Prefer to keep the load if it would require many instructions. 1181 // This uses the same threshold we use for constant pools but doesn't 1182 // check useConstantPoolForLargeInts. 1183 // TODO: Should we keep the load only when we're definitely going to emit a 1184 // constant pool? 1185 1186 RISCVMatInt::InstSeq Seq = 1187 RISCVMatInt::generateInstSeq(Val, Subtarget.getFeatureBits()); 1188 return Seq.size() <= Subtarget.getMaxBuildIntsCost(); 1189 } 1190 1191 bool RISCVTargetLowering:: 1192 shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 1193 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, 1194 unsigned OldShiftOpcode, unsigned NewShiftOpcode, 1195 SelectionDAG &DAG) const { 1196 // One interesting pattern that we'd want to form is 'bit extract': 1197 // ((1 >> Y) & 1) ==/!= 0 1198 // But we also need to be careful not to try to reverse that fold. 1199 1200 // Is this '((1 >> Y) & 1)'? 1201 if (XC && OldShiftOpcode == ISD::SRL && XC->isOne()) 1202 return false; // Keep the 'bit extract' pattern. 1203 1204 // Will this be '((1 >> Y) & 1)' after the transform? 1205 if (NewShiftOpcode == ISD::SRL && CC->isOne()) 1206 return true; // Do form the 'bit extract' pattern. 1207 1208 // If 'X' is a constant, and we transform, then we will immediately 1209 // try to undo the fold, thus causing endless combine loop. 1210 // So only do the transform if X is not a constant. This matches the default 1211 // implementation of this function. 1212 return !XC; 1213 } 1214 1215 /// Check if sinking \p I's operands to I's basic block is profitable, because 1216 /// the operands can be folded into a target instruction, e.g. 1217 /// splats of scalars can fold into vector instructions. 1218 bool RISCVTargetLowering::shouldSinkOperands( 1219 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1220 using namespace llvm::PatternMatch; 1221 1222 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1223 return false; 1224 1225 auto IsSinker = [&](Instruction *I, int Operand) { 1226 switch (I->getOpcode()) { 1227 case Instruction::Add: 1228 case Instruction::Sub: 1229 case Instruction::Mul: 1230 case Instruction::And: 1231 case Instruction::Or: 1232 case Instruction::Xor: 1233 case Instruction::FAdd: 1234 case Instruction::FSub: 1235 case Instruction::FMul: 1236 case Instruction::FDiv: 1237 case Instruction::ICmp: 1238 case Instruction::FCmp: 1239 return true; 1240 case Instruction::Shl: 1241 case Instruction::LShr: 1242 case Instruction::AShr: 1243 case Instruction::UDiv: 1244 case Instruction::SDiv: 1245 case Instruction::URem: 1246 case Instruction::SRem: 1247 return Operand == 1; 1248 case Instruction::Call: 1249 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1250 switch (II->getIntrinsicID()) { 1251 case Intrinsic::fma: 1252 case Intrinsic::vp_fma: 1253 return Operand == 0 || Operand == 1; 1254 // FIXME: Our patterns can only match vx/vf instructions when the splat 1255 // it on the RHS, because TableGen doesn't recognize our VP operations 1256 // as commutative. 1257 case Intrinsic::vp_add: 1258 case Intrinsic::vp_mul: 1259 case Intrinsic::vp_and: 1260 case Intrinsic::vp_or: 1261 case Intrinsic::vp_xor: 1262 case Intrinsic::vp_fadd: 1263 case Intrinsic::vp_fmul: 1264 case Intrinsic::vp_shl: 1265 case Intrinsic::vp_lshr: 1266 case Intrinsic::vp_ashr: 1267 case Intrinsic::vp_udiv: 1268 case Intrinsic::vp_sdiv: 1269 case Intrinsic::vp_urem: 1270 case Intrinsic::vp_srem: 1271 return Operand == 1; 1272 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1273 // explicit patterns for both LHS and RHS (as 'vr' versions). 1274 case Intrinsic::vp_sub: 1275 case Intrinsic::vp_fsub: 1276 case Intrinsic::vp_fdiv: 1277 return Operand == 0 || Operand == 1; 1278 default: 1279 return false; 1280 } 1281 } 1282 return false; 1283 default: 1284 return false; 1285 } 1286 }; 1287 1288 for (auto OpIdx : enumerate(I->operands())) { 1289 if (!IsSinker(I, OpIdx.index())) 1290 continue; 1291 1292 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1293 // Make sure we are not already sinking this operand 1294 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1295 continue; 1296 1297 // We are looking for a splat that can be sunk. 1298 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1299 m_Undef(), m_ZeroMask()))) 1300 continue; 1301 1302 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1303 // and vector registers 1304 for (Use &U : Op->uses()) { 1305 Instruction *Insn = cast<Instruction>(U.getUser()); 1306 if (!IsSinker(Insn, U.getOperandNo())) 1307 return false; 1308 } 1309 1310 Ops.push_back(&Op->getOperandUse(0)); 1311 Ops.push_back(&OpIdx.value()); 1312 } 1313 return true; 1314 } 1315 1316 bool RISCVTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 1317 unsigned Opc = VecOp.getOpcode(); 1318 1319 // Assume target opcodes can't be scalarized. 1320 // TODO - do we have any exceptions? 1321 if (Opc >= ISD::BUILTIN_OP_END) 1322 return false; 1323 1324 // If the vector op is not supported, try to convert to scalar. 1325 EVT VecVT = VecOp.getValueType(); 1326 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 1327 return true; 1328 1329 // If the vector op is supported, but the scalar op is not, the transform may 1330 // not be worthwhile. 1331 EVT ScalarVT = VecVT.getScalarType(); 1332 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 1333 } 1334 1335 bool RISCVTargetLowering::isOffsetFoldingLegal( 1336 const GlobalAddressSDNode *GA) const { 1337 // In order to maximise the opportunity for common subexpression elimination, 1338 // keep a separate ADD node for the global address offset instead of folding 1339 // it in the global address node. Later peephole optimisations may choose to 1340 // fold it back in when profitable. 1341 return false; 1342 } 1343 1344 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1345 bool ForCodeSize) const { 1346 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1347 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1348 return false; 1349 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1350 return false; 1351 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1352 return false; 1353 return Imm.isZero(); 1354 } 1355 1356 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1357 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1358 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1359 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1360 } 1361 1362 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1363 CallingConv::ID CC, 1364 EVT VT) const { 1365 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1366 // We might still end up using a GPR but that will be decided based on ABI. 1367 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1368 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1369 return MVT::f32; 1370 1371 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1372 } 1373 1374 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1375 CallingConv::ID CC, 1376 EVT VT) const { 1377 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1378 // We might still end up using a GPR but that will be decided based on ABI. 1379 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1380 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1381 return 1; 1382 1383 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1384 } 1385 1386 // Changes the condition code and swaps operands if necessary, so the SetCC 1387 // operation matches one of the comparisons supported directly by branches 1388 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1389 // with 1/-1. 1390 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1391 ISD::CondCode &CC, SelectionDAG &DAG) { 1392 // If this is a single bit test that can't be handled by ANDI, shift the 1393 // bit to be tested to the MSB and perform a signed compare with 0. 1394 if (isIntEqualitySetCC(CC) && isNullConstant(RHS) && 1395 LHS.getOpcode() == ISD::AND && LHS.hasOneUse() && 1396 isa<ConstantSDNode>(LHS.getOperand(1))) { 1397 uint64_t Mask = LHS.getConstantOperandVal(1); 1398 if (isPowerOf2_64(Mask) && !isInt<12>(Mask)) { 1399 CC = CC == ISD::SETEQ ? ISD::SETGE : ISD::SETLT; 1400 unsigned ShAmt = LHS.getValueSizeInBits() - 1 - Log2_64(Mask); 1401 LHS = LHS.getOperand(0); 1402 if (ShAmt != 0) 1403 LHS = DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS, 1404 DAG.getConstant(ShAmt, DL, LHS.getValueType())); 1405 return; 1406 } 1407 } 1408 1409 if (auto *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 1410 int64_t C = RHSC->getSExtValue(); 1411 switch (CC) { 1412 default: break; 1413 case ISD::SETGT: 1414 // Convert X > -1 to X >= 0. 1415 if (C == -1) { 1416 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1417 CC = ISD::SETGE; 1418 return; 1419 } 1420 break; 1421 case ISD::SETLT: 1422 // Convert X < 1 to 0 <= X. 1423 if (C == 1) { 1424 RHS = LHS; 1425 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1426 CC = ISD::SETGE; 1427 return; 1428 } 1429 break; 1430 } 1431 } 1432 1433 switch (CC) { 1434 default: 1435 break; 1436 case ISD::SETGT: 1437 case ISD::SETLE: 1438 case ISD::SETUGT: 1439 case ISD::SETULE: 1440 CC = ISD::getSetCCSwappedOperands(CC); 1441 std::swap(LHS, RHS); 1442 break; 1443 } 1444 } 1445 1446 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1447 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1448 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1449 if (VT.getVectorElementType() == MVT::i1) 1450 KnownSize *= 8; 1451 1452 switch (KnownSize) { 1453 default: 1454 llvm_unreachable("Invalid LMUL."); 1455 case 8: 1456 return RISCVII::VLMUL::LMUL_F8; 1457 case 16: 1458 return RISCVII::VLMUL::LMUL_F4; 1459 case 32: 1460 return RISCVII::VLMUL::LMUL_F2; 1461 case 64: 1462 return RISCVII::VLMUL::LMUL_1; 1463 case 128: 1464 return RISCVII::VLMUL::LMUL_2; 1465 case 256: 1466 return RISCVII::VLMUL::LMUL_4; 1467 case 512: 1468 return RISCVII::VLMUL::LMUL_8; 1469 } 1470 } 1471 1472 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1473 switch (LMul) { 1474 default: 1475 llvm_unreachable("Invalid LMUL."); 1476 case RISCVII::VLMUL::LMUL_F8: 1477 case RISCVII::VLMUL::LMUL_F4: 1478 case RISCVII::VLMUL::LMUL_F2: 1479 case RISCVII::VLMUL::LMUL_1: 1480 return RISCV::VRRegClassID; 1481 case RISCVII::VLMUL::LMUL_2: 1482 return RISCV::VRM2RegClassID; 1483 case RISCVII::VLMUL::LMUL_4: 1484 return RISCV::VRM4RegClassID; 1485 case RISCVII::VLMUL::LMUL_8: 1486 return RISCV::VRM8RegClassID; 1487 } 1488 } 1489 1490 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1491 RISCVII::VLMUL LMUL = getLMUL(VT); 1492 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1493 LMUL == RISCVII::VLMUL::LMUL_F4 || 1494 LMUL == RISCVII::VLMUL::LMUL_F2 || 1495 LMUL == RISCVII::VLMUL::LMUL_1) { 1496 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1497 "Unexpected subreg numbering"); 1498 return RISCV::sub_vrm1_0 + Index; 1499 } 1500 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1501 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1502 "Unexpected subreg numbering"); 1503 return RISCV::sub_vrm2_0 + Index; 1504 } 1505 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1506 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1507 "Unexpected subreg numbering"); 1508 return RISCV::sub_vrm4_0 + Index; 1509 } 1510 llvm_unreachable("Invalid vector type."); 1511 } 1512 1513 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1514 if (VT.getVectorElementType() == MVT::i1) 1515 return RISCV::VRRegClassID; 1516 return getRegClassIDForLMUL(getLMUL(VT)); 1517 } 1518 1519 // Attempt to decompose a subvector insert/extract between VecVT and 1520 // SubVecVT via subregister indices. Returns the subregister index that 1521 // can perform the subvector insert/extract with the given element index, as 1522 // well as the index corresponding to any leftover subvectors that must be 1523 // further inserted/extracted within the register class for SubVecVT. 1524 std::pair<unsigned, unsigned> 1525 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1526 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1527 const RISCVRegisterInfo *TRI) { 1528 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1529 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1530 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1531 "Register classes not ordered"); 1532 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1533 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1534 // Try to compose a subregister index that takes us from the incoming 1535 // LMUL>1 register class down to the outgoing one. At each step we half 1536 // the LMUL: 1537 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1538 // Note that this is not guaranteed to find a subregister index, such as 1539 // when we are extracting from one VR type to another. 1540 unsigned SubRegIdx = RISCV::NoSubRegister; 1541 for (const unsigned RCID : 1542 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1543 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1544 VecVT = VecVT.getHalfNumVectorElementsVT(); 1545 bool IsHi = 1546 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1547 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1548 getSubregIndexByMVT(VecVT, IsHi)); 1549 if (IsHi) 1550 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1551 } 1552 return {SubRegIdx, InsertExtractIdx}; 1553 } 1554 1555 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1556 // stores for those types. 1557 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1558 return !Subtarget.useRVVForFixedLengthVectors() || 1559 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1560 } 1561 1562 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1563 if (ScalarTy->isPointerTy()) 1564 return true; 1565 1566 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1567 ScalarTy->isIntegerTy(32)) 1568 return true; 1569 1570 if (ScalarTy->isIntegerTy(64)) 1571 return Subtarget.hasVInstructionsI64(); 1572 1573 if (ScalarTy->isHalfTy()) 1574 return Subtarget.hasVInstructionsF16(); 1575 if (ScalarTy->isFloatTy()) 1576 return Subtarget.hasVInstructionsF32(); 1577 if (ScalarTy->isDoubleTy()) 1578 return Subtarget.hasVInstructionsF64(); 1579 1580 return false; 1581 } 1582 1583 static SDValue getVLOperand(SDValue Op) { 1584 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1585 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1586 "Unexpected opcode"); 1587 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1588 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1589 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1590 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1591 if (!II) 1592 return SDValue(); 1593 return Op.getOperand(II->VLOperand + 1 + HasChain); 1594 } 1595 1596 static bool useRVVForFixedLengthVectorVT(MVT VT, 1597 const RISCVSubtarget &Subtarget) { 1598 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1599 if (!Subtarget.useRVVForFixedLengthVectors()) 1600 return false; 1601 1602 // We only support a set of vector types with a consistent maximum fixed size 1603 // across all supported vector element types to avoid legalization issues. 1604 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1605 // fixed-length vector type we support is 1024 bytes. 1606 if (VT.getFixedSizeInBits() > 1024 * 8) 1607 return false; 1608 1609 unsigned MinVLen = Subtarget.getRealMinVLen(); 1610 1611 MVT EltVT = VT.getVectorElementType(); 1612 1613 // Don't use RVV for vectors we cannot scalarize if required. 1614 switch (EltVT.SimpleTy) { 1615 // i1 is supported but has different rules. 1616 default: 1617 return false; 1618 case MVT::i1: 1619 // Masks can only use a single register. 1620 if (VT.getVectorNumElements() > MinVLen) 1621 return false; 1622 MinVLen /= 8; 1623 break; 1624 case MVT::i8: 1625 case MVT::i16: 1626 case MVT::i32: 1627 break; 1628 case MVT::i64: 1629 if (!Subtarget.hasVInstructionsI64()) 1630 return false; 1631 break; 1632 case MVT::f16: 1633 if (!Subtarget.hasVInstructionsF16()) 1634 return false; 1635 break; 1636 case MVT::f32: 1637 if (!Subtarget.hasVInstructionsF32()) 1638 return false; 1639 break; 1640 case MVT::f64: 1641 if (!Subtarget.hasVInstructionsF64()) 1642 return false; 1643 break; 1644 } 1645 1646 // Reject elements larger than ELEN. 1647 if (EltVT.getSizeInBits() > Subtarget.getELEN()) 1648 return false; 1649 1650 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1651 // Don't use RVV for types that don't fit. 1652 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1653 return false; 1654 1655 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1656 // the base fixed length RVV support in place. 1657 if (!VT.isPow2VectorType()) 1658 return false; 1659 1660 return true; 1661 } 1662 1663 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1664 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1665 } 1666 1667 // Return the largest legal scalable vector type that matches VT's element type. 1668 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1669 const RISCVSubtarget &Subtarget) { 1670 // This may be called before legal types are setup. 1671 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1672 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1673 "Expected legal fixed length vector!"); 1674 1675 unsigned MinVLen = Subtarget.getRealMinVLen(); 1676 unsigned MaxELen = Subtarget.getELEN(); 1677 1678 MVT EltVT = VT.getVectorElementType(); 1679 switch (EltVT.SimpleTy) { 1680 default: 1681 llvm_unreachable("unexpected element type for RVV container"); 1682 case MVT::i1: 1683 case MVT::i8: 1684 case MVT::i16: 1685 case MVT::i32: 1686 case MVT::i64: 1687 case MVT::f16: 1688 case MVT::f32: 1689 case MVT::f64: { 1690 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1691 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1692 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1693 unsigned NumElts = 1694 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1695 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1696 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1697 return MVT::getScalableVectorVT(EltVT, NumElts); 1698 } 1699 } 1700 } 1701 1702 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1703 const RISCVSubtarget &Subtarget) { 1704 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1705 Subtarget); 1706 } 1707 1708 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1709 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1710 } 1711 1712 // Grow V to consume an entire RVV register. 1713 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1714 const RISCVSubtarget &Subtarget) { 1715 assert(VT.isScalableVector() && 1716 "Expected to convert into a scalable vector!"); 1717 assert(V.getValueType().isFixedLengthVector() && 1718 "Expected a fixed length vector operand!"); 1719 SDLoc DL(V); 1720 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1721 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1722 } 1723 1724 // Shrink V so it's just big enough to maintain a VT's worth of data. 1725 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1726 const RISCVSubtarget &Subtarget) { 1727 assert(VT.isFixedLengthVector() && 1728 "Expected to convert into a fixed length vector!"); 1729 assert(V.getValueType().isScalableVector() && 1730 "Expected a scalable vector operand!"); 1731 SDLoc DL(V); 1732 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1733 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1734 } 1735 1736 /// Return the type of the mask type suitable for masking the provided 1737 /// vector type. This is simply an i1 element type vector of the same 1738 /// (possibly scalable) length. 1739 static MVT getMaskTypeFor(MVT VecVT) { 1740 assert(VecVT.isVector()); 1741 ElementCount EC = VecVT.getVectorElementCount(); 1742 return MVT::getVectorVT(MVT::i1, EC); 1743 } 1744 1745 /// Creates an all ones mask suitable for masking a vector of type VecTy with 1746 /// vector length VL. . 1747 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL, 1748 SelectionDAG &DAG) { 1749 MVT MaskVT = getMaskTypeFor(VecVT); 1750 return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1751 } 1752 1753 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1754 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1755 // the vector type that it is contained in. 1756 static std::pair<SDValue, SDValue> 1757 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1758 const RISCVSubtarget &Subtarget) { 1759 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1760 MVT XLenVT = Subtarget.getXLenVT(); 1761 SDValue VL = VecVT.isFixedLengthVector() 1762 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1763 : DAG.getRegister(RISCV::X0, XLenVT); 1764 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 1765 return {Mask, VL}; 1766 } 1767 1768 // As above but assuming the given type is a scalable vector type. 1769 static std::pair<SDValue, SDValue> 1770 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1771 const RISCVSubtarget &Subtarget) { 1772 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1773 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1774 } 1775 1776 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1777 // of either is (currently) supported. This can get us into an infinite loop 1778 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1779 // as a ..., etc. 1780 // Until either (or both) of these can reliably lower any node, reporting that 1781 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1782 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1783 // which is not desirable. 1784 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1785 EVT VT, unsigned DefinedValues) const { 1786 return false; 1787 } 1788 1789 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1790 const RISCVSubtarget &Subtarget) { 1791 // RISCV FP-to-int conversions saturate to the destination register size, but 1792 // don't produce 0 for nan. We can use a conversion instruction and fix the 1793 // nan case with a compare and a select. 1794 SDValue Src = Op.getOperand(0); 1795 1796 EVT DstVT = Op.getValueType(); 1797 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1798 1799 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1800 unsigned Opc; 1801 if (SatVT == DstVT) 1802 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1803 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1804 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1805 else 1806 return SDValue(); 1807 // FIXME: Support other SatVTs by clamping before or after the conversion. 1808 1809 SDLoc DL(Op); 1810 SDValue FpToInt = DAG.getNode( 1811 Opc, DL, DstVT, Src, 1812 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1813 1814 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1815 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1816 } 1817 1818 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1819 // and back. Taking care to avoid converting values that are nan or already 1820 // correct. 1821 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1822 // have FRM dependencies modeled yet. 1823 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1824 MVT VT = Op.getSimpleValueType(); 1825 assert(VT.isVector() && "Unexpected type"); 1826 1827 SDLoc DL(Op); 1828 1829 // Freeze the source since we are increasing the number of uses. 1830 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1831 1832 // Truncate to integer and convert back to FP. 1833 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1834 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1835 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1836 1837 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1838 1839 if (Op.getOpcode() == ISD::FCEIL) { 1840 // If the truncated value is the greater than or equal to the original 1841 // value, we've computed the ceil. Otherwise, we went the wrong way and 1842 // need to increase by 1. 1843 // FIXME: This should use a masked operation. Handle here or in isel? 1844 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1845 DAG.getConstantFP(1.0, DL, VT)); 1846 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1847 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1848 } else if (Op.getOpcode() == ISD::FFLOOR) { 1849 // If the truncated value is the less than or equal to the original value, 1850 // we've computed the floor. Otherwise, we went the wrong way and need to 1851 // decrease by 1. 1852 // FIXME: This should use a masked operation. Handle here or in isel? 1853 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1854 DAG.getConstantFP(1.0, DL, VT)); 1855 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1856 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1857 } 1858 1859 // Restore the original sign so that -0.0 is preserved. 1860 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1861 1862 // Determine the largest integer that can be represented exactly. This and 1863 // values larger than it don't have any fractional bits so don't need to 1864 // be converted. 1865 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1866 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1867 APFloat MaxVal = APFloat(FltSem); 1868 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1869 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1870 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1871 1872 // If abs(Src) was larger than MaxVal or nan, keep it. 1873 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1874 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1875 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1876 } 1877 1878 // ISD::FROUND is defined to round to nearest with ties rounding away from 0. 1879 // This mode isn't supported in vector hardware on RISCV. But as long as we 1880 // aren't compiling with trapping math, we can emulate this with 1881 // floor(X + copysign(nextafter(0.5, 0.0), X)). 1882 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM 1883 // dependencies modeled yet. 1884 // FIXME: Use masked operations to avoid final merge. 1885 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) { 1886 MVT VT = Op.getSimpleValueType(); 1887 assert(VT.isVector() && "Unexpected type"); 1888 1889 SDLoc DL(Op); 1890 1891 // Freeze the source since we are increasing the number of uses. 1892 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1893 1894 // We do the conversion on the absolute value and fix the sign at the end. 1895 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1896 1897 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1898 bool Ignored; 1899 APFloat Point5Pred = APFloat(0.5f); 1900 Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored); 1901 Point5Pred.next(/*nextDown*/ true); 1902 1903 // Add the adjustment. 1904 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs, 1905 DAG.getConstantFP(Point5Pred, DL, VT)); 1906 1907 // Truncate to integer and convert back to fp. 1908 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1909 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust); 1910 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1911 1912 // Restore the original sign. 1913 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1914 1915 // Determine the largest integer that can be represented exactly. This and 1916 // values larger than it don't have any fractional bits so don't need to 1917 // be converted. 1918 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1919 APFloat MaxVal = APFloat(FltSem); 1920 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1921 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1922 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1923 1924 // If abs(Src) was larger than MaxVal or nan, keep it. 1925 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1926 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1927 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1928 } 1929 1930 struct VIDSequence { 1931 int64_t StepNumerator; 1932 unsigned StepDenominator; 1933 int64_t Addend; 1934 }; 1935 1936 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1937 // to the (non-zero) step S and start value X. This can be then lowered as the 1938 // RVV sequence (VID * S) + X, for example. 1939 // The step S is represented as an integer numerator divided by a positive 1940 // denominator. Note that the implementation currently only identifies 1941 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1942 // cannot detect 2/3, for example. 1943 // Note that this method will also match potentially unappealing index 1944 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1945 // determine whether this is worth generating code for. 1946 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1947 unsigned NumElts = Op.getNumOperands(); 1948 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1949 if (!Op.getValueType().isInteger()) 1950 return None; 1951 1952 Optional<unsigned> SeqStepDenom; 1953 Optional<int64_t> SeqStepNum, SeqAddend; 1954 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1955 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1956 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1957 // Assume undef elements match the sequence; we just have to be careful 1958 // when interpolating across them. 1959 if (Op.getOperand(Idx).isUndef()) 1960 continue; 1961 // The BUILD_VECTOR must be all constants. 1962 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1963 return None; 1964 1965 uint64_t Val = Op.getConstantOperandVal(Idx) & 1966 maskTrailingOnes<uint64_t>(EltSizeInBits); 1967 1968 if (PrevElt) { 1969 // Calculate the step since the last non-undef element, and ensure 1970 // it's consistent across the entire sequence. 1971 unsigned IdxDiff = Idx - PrevElt->second; 1972 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1973 1974 // A zero-value value difference means that we're somewhere in the middle 1975 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1976 // step change before evaluating the sequence. 1977 if (ValDiff == 0) 1978 continue; 1979 1980 int64_t Remainder = ValDiff % IdxDiff; 1981 // Normalize the step if it's greater than 1. 1982 if (Remainder != ValDiff) { 1983 // The difference must cleanly divide the element span. 1984 if (Remainder != 0) 1985 return None; 1986 ValDiff /= IdxDiff; 1987 IdxDiff = 1; 1988 } 1989 1990 if (!SeqStepNum) 1991 SeqStepNum = ValDiff; 1992 else if (ValDiff != SeqStepNum) 1993 return None; 1994 1995 if (!SeqStepDenom) 1996 SeqStepDenom = IdxDiff; 1997 else if (IdxDiff != *SeqStepDenom) 1998 return None; 1999 } 2000 2001 // Record this non-undef element for later. 2002 if (!PrevElt || PrevElt->first != Val) 2003 PrevElt = std::make_pair(Val, Idx); 2004 } 2005 2006 // We need to have logged a step for this to count as a legal index sequence. 2007 if (!SeqStepNum || !SeqStepDenom) 2008 return None; 2009 2010 // Loop back through the sequence and validate elements we might have skipped 2011 // while waiting for a valid step. While doing this, log any sequence addend. 2012 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 2013 if (Op.getOperand(Idx).isUndef()) 2014 continue; 2015 uint64_t Val = Op.getConstantOperandVal(Idx) & 2016 maskTrailingOnes<uint64_t>(EltSizeInBits); 2017 uint64_t ExpectedVal = 2018 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 2019 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 2020 if (!SeqAddend) 2021 SeqAddend = Addend; 2022 else if (Addend != SeqAddend) 2023 return None; 2024 } 2025 2026 assert(SeqAddend && "Must have an addend if we have a step"); 2027 2028 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 2029 } 2030 2031 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT 2032 // and lower it as a VRGATHER_VX_VL from the source vector. 2033 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, 2034 SelectionDAG &DAG, 2035 const RISCVSubtarget &Subtarget) { 2036 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2037 return SDValue(); 2038 SDValue Vec = SplatVal.getOperand(0); 2039 // Only perform this optimization on vectors of the same size for simplicity. 2040 // Don't perform this optimization for i1 vectors. 2041 // FIXME: Support i1 vectors, maybe by promoting to i8? 2042 if (Vec.getValueType() != VT || VT.getVectorElementType() == MVT::i1) 2043 return SDValue(); 2044 SDValue Idx = SplatVal.getOperand(1); 2045 // The index must be a legal type. 2046 if (Idx.getValueType() != Subtarget.getXLenVT()) 2047 return SDValue(); 2048 2049 MVT ContainerVT = VT; 2050 if (VT.isFixedLengthVector()) { 2051 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2052 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2053 } 2054 2055 SDValue Mask, VL; 2056 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2057 2058 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, 2059 Idx, Mask, DAG.getUNDEF(ContainerVT), VL); 2060 2061 if (!VT.isFixedLengthVector()) 2062 return Gather; 2063 2064 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2065 } 2066 2067 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 2068 const RISCVSubtarget &Subtarget) { 2069 MVT VT = Op.getSimpleValueType(); 2070 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 2071 2072 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2073 2074 SDLoc DL(Op); 2075 SDValue Mask, VL; 2076 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2077 2078 MVT XLenVT = Subtarget.getXLenVT(); 2079 unsigned NumElts = Op.getNumOperands(); 2080 2081 if (VT.getVectorElementType() == MVT::i1) { 2082 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 2083 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 2084 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 2085 } 2086 2087 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 2088 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 2089 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 2090 } 2091 2092 // Lower constant mask BUILD_VECTORs via an integer vector type, in 2093 // scalar integer chunks whose bit-width depends on the number of mask 2094 // bits and XLEN. 2095 // First, determine the most appropriate scalar integer type to use. This 2096 // is at most XLenVT, but may be shrunk to a smaller vector element type 2097 // according to the size of the final vector - use i8 chunks rather than 2098 // XLenVT if we're producing a v8i1. This results in more consistent 2099 // codegen across RV32 and RV64. 2100 unsigned NumViaIntegerBits = 2101 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 2102 NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN()); 2103 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 2104 // If we have to use more than one INSERT_VECTOR_ELT then this 2105 // optimization is likely to increase code size; avoid peforming it in 2106 // such a case. We can use a load from a constant pool in this case. 2107 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 2108 return SDValue(); 2109 // Now we can create our integer vector type. Note that it may be larger 2110 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2111 MVT IntegerViaVecVT = 2112 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2113 divideCeil(NumElts, NumViaIntegerBits)); 2114 2115 uint64_t Bits = 0; 2116 unsigned BitPos = 0, IntegerEltIdx = 0; 2117 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2118 2119 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2120 // Once we accumulate enough bits to fill our scalar type, insert into 2121 // our vector and clear our accumulated data. 2122 if (I != 0 && I % NumViaIntegerBits == 0) { 2123 if (NumViaIntegerBits <= 32) 2124 Bits = SignExtend64<32>(Bits); 2125 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2126 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2127 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2128 Bits = 0; 2129 BitPos = 0; 2130 IntegerEltIdx++; 2131 } 2132 SDValue V = Op.getOperand(I); 2133 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2134 Bits |= ((uint64_t)BitValue << BitPos); 2135 } 2136 2137 // Insert the (remaining) scalar value into position in our integer 2138 // vector type. 2139 if (NumViaIntegerBits <= 32) 2140 Bits = SignExtend64<32>(Bits); 2141 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2142 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2143 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2144 2145 if (NumElts < NumViaIntegerBits) { 2146 // If we're producing a smaller vector than our minimum legal integer 2147 // type, bitcast to the equivalent (known-legal) mask type, and extract 2148 // our final mask. 2149 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2150 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2151 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2152 DAG.getConstant(0, DL, XLenVT)); 2153 } else { 2154 // Else we must have produced an integer type with the same size as the 2155 // mask type; bitcast for the final result. 2156 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2157 Vec = DAG.getBitcast(VT, Vec); 2158 } 2159 2160 return Vec; 2161 } 2162 2163 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2164 // vector type, we have a legal equivalently-sized i8 type, so we can use 2165 // that. 2166 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2167 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2168 2169 SDValue WideVec; 2170 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2171 // For a splat, perform a scalar truncate before creating the wider 2172 // vector. 2173 assert(Splat.getValueType() == XLenVT && 2174 "Unexpected type for i1 splat value"); 2175 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2176 DAG.getConstant(1, DL, XLenVT)); 2177 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2178 } else { 2179 SmallVector<SDValue, 8> Ops(Op->op_values()); 2180 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2181 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2182 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2183 } 2184 2185 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2186 } 2187 2188 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2189 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) 2190 return Gather; 2191 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2192 : RISCVISD::VMV_V_X_VL; 2193 Splat = 2194 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); 2195 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2196 } 2197 2198 // Try and match index sequences, which we can lower to the vid instruction 2199 // with optional modifications. An all-undef vector is matched by 2200 // getSplatValue, above. 2201 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2202 int64_t StepNumerator = SimpleVID->StepNumerator; 2203 unsigned StepDenominator = SimpleVID->StepDenominator; 2204 int64_t Addend = SimpleVID->Addend; 2205 2206 assert(StepNumerator != 0 && "Invalid step"); 2207 bool Negate = false; 2208 int64_t SplatStepVal = StepNumerator; 2209 unsigned StepOpcode = ISD::MUL; 2210 if (StepNumerator != 1) { 2211 if (isPowerOf2_64(std::abs(StepNumerator))) { 2212 Negate = StepNumerator < 0; 2213 StepOpcode = ISD::SHL; 2214 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2215 } 2216 } 2217 2218 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2219 // threshold since it's the immediate value many RVV instructions accept. 2220 // There is no vmul.vi instruction so ensure multiply constant can fit in 2221 // a single addi instruction. 2222 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2223 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2224 isPowerOf2_32(StepDenominator) && 2225 (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) { 2226 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2227 // Convert right out of the scalable type so we can use standard ISD 2228 // nodes for the rest of the computation. If we used scalable types with 2229 // these, we'd lose the fixed-length vector info and generate worse 2230 // vsetvli code. 2231 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2232 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2233 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2234 SDValue SplatStep = DAG.getSplatBuildVector( 2235 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2236 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2237 } 2238 if (StepDenominator != 1) { 2239 SDValue SplatStep = DAG.getSplatBuildVector( 2240 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2241 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2242 } 2243 if (Addend != 0 || Negate) { 2244 SDValue SplatAddend = DAG.getSplatBuildVector( 2245 VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2246 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2247 } 2248 return VID; 2249 } 2250 } 2251 2252 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2253 // when re-interpreted as a vector with a larger element type. For example, 2254 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2255 // could be instead splat as 2256 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2257 // TODO: This optimization could also work on non-constant splats, but it 2258 // would require bit-manipulation instructions to construct the splat value. 2259 SmallVector<SDValue> Sequence; 2260 unsigned EltBitSize = VT.getScalarSizeInBits(); 2261 const auto *BV = cast<BuildVectorSDNode>(Op); 2262 if (VT.isInteger() && EltBitSize < 64 && 2263 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2264 BV->getRepeatedSequence(Sequence) && 2265 (Sequence.size() * EltBitSize) <= 64) { 2266 unsigned SeqLen = Sequence.size(); 2267 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2268 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2269 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2270 ViaIntVT == MVT::i64) && 2271 "Unexpected sequence type"); 2272 2273 unsigned EltIdx = 0; 2274 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2275 uint64_t SplatValue = 0; 2276 // Construct the amalgamated value which can be splatted as this larger 2277 // vector type. 2278 for (const auto &SeqV : Sequence) { 2279 if (!SeqV.isUndef()) 2280 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2281 << (EltIdx * EltBitSize)); 2282 EltIdx++; 2283 } 2284 2285 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2286 // achieve better constant materializion. 2287 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2288 SplatValue = SignExtend64<32>(SplatValue); 2289 2290 // Since we can't introduce illegal i64 types at this stage, we can only 2291 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2292 // way we can use RVV instructions to splat. 2293 assert((ViaIntVT.bitsLE(XLenVT) || 2294 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2295 "Unexpected bitcast sequence"); 2296 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2297 SDValue ViaVL = 2298 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2299 MVT ViaContainerVT = 2300 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2301 SDValue Splat = 2302 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2303 DAG.getUNDEF(ViaContainerVT), 2304 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2305 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2306 return DAG.getBitcast(VT, Splat); 2307 } 2308 } 2309 2310 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2311 // which constitute a large proportion of the elements. In such cases we can 2312 // splat a vector with the dominant element and make up the shortfall with 2313 // INSERT_VECTOR_ELTs. 2314 // Note that this includes vectors of 2 elements by association. The 2315 // upper-most element is the "dominant" one, allowing us to use a splat to 2316 // "insert" the upper element, and an insert of the lower element at position 2317 // 0, which improves codegen. 2318 SDValue DominantValue; 2319 unsigned MostCommonCount = 0; 2320 DenseMap<SDValue, unsigned> ValueCounts; 2321 unsigned NumUndefElts = 2322 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2323 2324 // Track the number of scalar loads we know we'd be inserting, estimated as 2325 // any non-zero floating-point constant. Other kinds of element are either 2326 // already in registers or are materialized on demand. The threshold at which 2327 // a vector load is more desirable than several scalar materializion and 2328 // vector-insertion instructions is not known. 2329 unsigned NumScalarLoads = 0; 2330 2331 for (SDValue V : Op->op_values()) { 2332 if (V.isUndef()) 2333 continue; 2334 2335 ValueCounts.insert(std::make_pair(V, 0)); 2336 unsigned &Count = ValueCounts[V]; 2337 2338 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2339 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2340 2341 // Is this value dominant? In case of a tie, prefer the highest element as 2342 // it's cheaper to insert near the beginning of a vector than it is at the 2343 // end. 2344 if (++Count >= MostCommonCount) { 2345 DominantValue = V; 2346 MostCommonCount = Count; 2347 } 2348 } 2349 2350 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2351 unsigned NumDefElts = NumElts - NumUndefElts; 2352 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2353 2354 // Don't perform this optimization when optimizing for size, since 2355 // materializing elements and inserting them tends to cause code bloat. 2356 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2357 ((MostCommonCount > DominantValueCountThreshold) || 2358 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2359 // Start by splatting the most common element. 2360 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2361 2362 DenseSet<SDValue> Processed{DominantValue}; 2363 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2364 for (const auto &OpIdx : enumerate(Op->ops())) { 2365 const SDValue &V = OpIdx.value(); 2366 if (V.isUndef() || !Processed.insert(V).second) 2367 continue; 2368 if (ValueCounts[V] == 1) { 2369 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2370 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2371 } else { 2372 // Blend in all instances of this value using a VSELECT, using a 2373 // mask where each bit signals whether that element is the one 2374 // we're after. 2375 SmallVector<SDValue> Ops; 2376 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2377 return DAG.getConstant(V == V1, DL, XLenVT); 2378 }); 2379 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2380 DAG.getBuildVector(SelMaskTy, DL, Ops), 2381 DAG.getSplatBuildVector(VT, DL, V), Vec); 2382 } 2383 } 2384 2385 return Vec; 2386 } 2387 2388 return SDValue(); 2389 } 2390 2391 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2392 SDValue Lo, SDValue Hi, SDValue VL, 2393 SelectionDAG &DAG) { 2394 if (!Passthru) 2395 Passthru = DAG.getUNDEF(VT); 2396 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2397 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2398 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2399 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2400 // node in order to try and match RVV vector/scalar instructions. 2401 if ((LoC >> 31) == HiC) 2402 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); 2403 2404 // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use 2405 // vmv.v.x whose EEW = 32 to lower it. 2406 auto *Const = dyn_cast<ConstantSDNode>(VL); 2407 if (LoC == HiC && Const && Const->isAllOnesValue()) { 2408 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2409 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2410 // access the subtarget here now. 2411 auto InterVec = DAG.getNode( 2412 RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo, 2413 DAG.getRegister(RISCV::X0, MVT::i32)); 2414 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2415 } 2416 } 2417 2418 // Fall back to a stack store and stride x0 vector load. 2419 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo, 2420 Hi, VL); 2421 } 2422 2423 // Called by type legalization to handle splat of i64 on RV32. 2424 // FIXME: We can optimize this when the type has sign or zero bits in one 2425 // of the halves. 2426 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2427 SDValue Scalar, SDValue VL, 2428 SelectionDAG &DAG) { 2429 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2430 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2431 DAG.getConstant(0, DL, MVT::i32)); 2432 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2433 DAG.getConstant(1, DL, MVT::i32)); 2434 return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG); 2435 } 2436 2437 // This function lowers a splat of a scalar operand Splat with the vector 2438 // length VL. It ensures the final sequence is type legal, which is useful when 2439 // lowering a splat after type legalization. 2440 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL, 2441 MVT VT, SDLoc DL, SelectionDAG &DAG, 2442 const RISCVSubtarget &Subtarget) { 2443 bool HasPassthru = Passthru && !Passthru.isUndef(); 2444 if (!HasPassthru && !Passthru) 2445 Passthru = DAG.getUNDEF(VT); 2446 if (VT.isFloatingPoint()) { 2447 // If VL is 1, we could use vfmv.s.f. 2448 if (isOneConstant(VL)) 2449 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL); 2450 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL); 2451 } 2452 2453 MVT XLenVT = Subtarget.getXLenVT(); 2454 2455 // Simplest case is that the operand needs to be promoted to XLenVT. 2456 if (Scalar.getValueType().bitsLE(XLenVT)) { 2457 // If the operand is a constant, sign extend to increase our chances 2458 // of being able to use a .vi instruction. ANY_EXTEND would become a 2459 // a zero extend and the simm5 check in isel would fail. 2460 // FIXME: Should we ignore the upper bits in isel instead? 2461 unsigned ExtOpc = 2462 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2463 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2464 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2465 // If VL is 1 and the scalar value won't benefit from immediate, we could 2466 // use vmv.s.x. 2467 if (isOneConstant(VL) && 2468 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2469 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL); 2470 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); 2471 } 2472 2473 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2474 "Unexpected scalar for splat lowering!"); 2475 2476 if (isOneConstant(VL) && isNullConstant(Scalar)) 2477 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, 2478 DAG.getConstant(0, DL, XLenVT), VL); 2479 2480 // Otherwise use the more complicated splatting algorithm. 2481 return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG); 2482 } 2483 2484 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2485 const RISCVSubtarget &Subtarget) { 2486 // We need to be able to widen elements to the next larger integer type. 2487 if (VT.getScalarSizeInBits() >= Subtarget.getELEN()) 2488 return false; 2489 2490 int Size = Mask.size(); 2491 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2492 2493 int Srcs[] = {-1, -1}; 2494 for (int i = 0; i != Size; ++i) { 2495 // Ignore undef elements. 2496 if (Mask[i] < 0) 2497 continue; 2498 2499 // Is this an even or odd element. 2500 int Pol = i % 2; 2501 2502 // Ensure we consistently use the same source for this element polarity. 2503 int Src = Mask[i] / Size; 2504 if (Srcs[Pol] < 0) 2505 Srcs[Pol] = Src; 2506 if (Srcs[Pol] != Src) 2507 return false; 2508 2509 // Make sure the element within the source is appropriate for this element 2510 // in the destination. 2511 int Elt = Mask[i] % Size; 2512 if (Elt != i / 2) 2513 return false; 2514 } 2515 2516 // We need to find a source for each polarity and they can't be the same. 2517 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2518 return false; 2519 2520 // Swap the sources if the second source was in the even polarity. 2521 SwapSources = Srcs[0] > Srcs[1]; 2522 2523 return true; 2524 } 2525 2526 /// Match shuffles that concatenate two vectors, rotate the concatenation, 2527 /// and then extract the original number of elements from the rotated result. 2528 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The 2529 /// returned rotation amount is for a rotate right, where elements move from 2530 /// higher elements to lower elements. \p LoSrc indicates the first source 2531 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector 2532 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be 2533 /// 0 or 1 if a rotation is found. 2534 /// 2535 /// NOTE: We talk about rotate to the right which matches how bit shift and 2536 /// rotate instructions are described where LSBs are on the right, but LLVM IR 2537 /// and the table below write vectors with the lowest elements on the left. 2538 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) { 2539 int Size = Mask.size(); 2540 2541 // We need to detect various ways of spelling a rotation: 2542 // [11, 12, 13, 14, 15, 0, 1, 2] 2543 // [-1, 12, 13, 14, -1, -1, 1, -1] 2544 // [-1, -1, -1, -1, -1, -1, 1, 2] 2545 // [ 3, 4, 5, 6, 7, 8, 9, 10] 2546 // [-1, 4, 5, 6, -1, -1, 9, -1] 2547 // [-1, 4, 5, 6, -1, -1, -1, -1] 2548 int Rotation = 0; 2549 LoSrc = -1; 2550 HiSrc = -1; 2551 for (int i = 0; i != Size; ++i) { 2552 int M = Mask[i]; 2553 if (M < 0) 2554 continue; 2555 2556 // Determine where a rotate vector would have started. 2557 int StartIdx = i - (M % Size); 2558 // The identity rotation isn't interesting, stop. 2559 if (StartIdx == 0) 2560 return -1; 2561 2562 // If we found the tail of a vector the rotation must be the missing 2563 // front. If we found the head of a vector, it must be how much of the 2564 // head. 2565 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; 2566 2567 if (Rotation == 0) 2568 Rotation = CandidateRotation; 2569 else if (Rotation != CandidateRotation) 2570 // The rotations don't match, so we can't match this mask. 2571 return -1; 2572 2573 // Compute which value this mask is pointing at. 2574 int MaskSrc = M < Size ? 0 : 1; 2575 2576 // Compute which of the two target values this index should be assigned to. 2577 // This reflects whether the high elements are remaining or the low elemnts 2578 // are remaining. 2579 int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc; 2580 2581 // Either set up this value if we've not encountered it before, or check 2582 // that it remains consistent. 2583 if (TargetSrc < 0) 2584 TargetSrc = MaskSrc; 2585 else if (TargetSrc != MaskSrc) 2586 // This may be a rotation, but it pulls from the inputs in some 2587 // unsupported interleaving. 2588 return -1; 2589 } 2590 2591 // Check that we successfully analyzed the mask, and normalize the results. 2592 assert(Rotation != 0 && "Failed to locate a viable rotation!"); 2593 assert((LoSrc >= 0 || HiSrc >= 0) && 2594 "Failed to find a rotated input vector!"); 2595 2596 return Rotation; 2597 } 2598 2599 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2600 const RISCVSubtarget &Subtarget) { 2601 SDValue V1 = Op.getOperand(0); 2602 SDValue V2 = Op.getOperand(1); 2603 SDLoc DL(Op); 2604 MVT XLenVT = Subtarget.getXLenVT(); 2605 MVT VT = Op.getSimpleValueType(); 2606 unsigned NumElts = VT.getVectorNumElements(); 2607 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2608 2609 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2610 2611 SDValue TrueMask, VL; 2612 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2613 2614 if (SVN->isSplat()) { 2615 const int Lane = SVN->getSplatIndex(); 2616 if (Lane >= 0) { 2617 MVT SVT = VT.getVectorElementType(); 2618 2619 // Turn splatted vector load into a strided load with an X0 stride. 2620 SDValue V = V1; 2621 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2622 // with undef. 2623 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2624 int Offset = Lane; 2625 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2626 int OpElements = 2627 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2628 V = V.getOperand(Offset / OpElements); 2629 Offset %= OpElements; 2630 } 2631 2632 // We need to ensure the load isn't atomic or volatile. 2633 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2634 auto *Ld = cast<LoadSDNode>(V); 2635 Offset *= SVT.getStoreSize(); 2636 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2637 TypeSize::Fixed(Offset), DL); 2638 2639 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2640 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2641 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2642 SDValue IntID = 2643 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2644 SDValue Ops[] = {Ld->getChain(), 2645 IntID, 2646 DAG.getUNDEF(ContainerVT), 2647 NewAddr, 2648 DAG.getRegister(RISCV::X0, XLenVT), 2649 VL}; 2650 SDValue NewLoad = DAG.getMemIntrinsicNode( 2651 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2652 DAG.getMachineFunction().getMachineMemOperand( 2653 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2654 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2655 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2656 } 2657 2658 // Otherwise use a scalar load and splat. This will give the best 2659 // opportunity to fold a splat into the operation. ISel can turn it into 2660 // the x0 strided load if we aren't able to fold away the select. 2661 if (SVT.isFloatingPoint()) 2662 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2663 Ld->getPointerInfo().getWithOffset(Offset), 2664 Ld->getOriginalAlign(), 2665 Ld->getMemOperand()->getFlags()); 2666 else 2667 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2668 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2669 Ld->getOriginalAlign(), 2670 Ld->getMemOperand()->getFlags()); 2671 DAG.makeEquivalentMemoryOrdering(Ld, V); 2672 2673 unsigned Opc = 2674 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2675 SDValue Splat = 2676 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL); 2677 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2678 } 2679 2680 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2681 assert(Lane < (int)NumElts && "Unexpected lane!"); 2682 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, 2683 V1, DAG.getConstant(Lane, DL, XLenVT), 2684 TrueMask, DAG.getUNDEF(ContainerVT), VL); 2685 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2686 } 2687 } 2688 2689 ArrayRef<int> Mask = SVN->getMask(); 2690 2691 // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may 2692 // be undef which can be handled with a single SLIDEDOWN/UP. 2693 int LoSrc, HiSrc; 2694 int Rotation = isElementRotate(LoSrc, HiSrc, Mask); 2695 if (Rotation > 0) { 2696 SDValue LoV, HiV; 2697 if (LoSrc >= 0) { 2698 LoV = LoSrc == 0 ? V1 : V2; 2699 LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget); 2700 } 2701 if (HiSrc >= 0) { 2702 HiV = HiSrc == 0 ? V1 : V2; 2703 HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget); 2704 } 2705 2706 // We found a rotation. We need to slide HiV down by Rotation. Then we need 2707 // to slide LoV up by (NumElts - Rotation). 2708 unsigned InvRotate = NumElts - Rotation; 2709 2710 SDValue Res = DAG.getUNDEF(ContainerVT); 2711 if (HiV) { 2712 // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN. 2713 // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it 2714 // causes multiple vsetvlis in some test cases such as lowering 2715 // reduce.mul 2716 SDValue DownVL = VL; 2717 if (LoV) 2718 DownVL = DAG.getConstant(InvRotate, DL, XLenVT); 2719 Res = 2720 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV, 2721 DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL); 2722 } 2723 if (LoV) 2724 Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV, 2725 DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL); 2726 2727 return convertFromScalableVector(VT, Res, DAG, Subtarget); 2728 } 2729 2730 // Detect an interleave shuffle and lower to 2731 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2732 bool SwapSources; 2733 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2734 // Swap sources if needed. 2735 if (SwapSources) 2736 std::swap(V1, V2); 2737 2738 // Extract the lower half of the vectors. 2739 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2740 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2741 DAG.getConstant(0, DL, XLenVT)); 2742 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2743 DAG.getConstant(0, DL, XLenVT)); 2744 2745 // Double the element width and halve the number of elements in an int type. 2746 unsigned EltBits = VT.getScalarSizeInBits(); 2747 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2748 MVT WideIntVT = 2749 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2750 // Convert this to a scalable vector. We need to base this on the 2751 // destination size to ensure there's always a type with a smaller LMUL. 2752 MVT WideIntContainerVT = 2753 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2754 2755 // Convert sources to scalable vectors with the same element count as the 2756 // larger type. 2757 MVT HalfContainerVT = MVT::getVectorVT( 2758 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2759 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2760 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2761 2762 // Cast sources to integer. 2763 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2764 MVT IntHalfVT = 2765 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2766 V1 = DAG.getBitcast(IntHalfVT, V1); 2767 V2 = DAG.getBitcast(IntHalfVT, V2); 2768 2769 // Freeze V2 since we use it twice and we need to be sure that the add and 2770 // multiply see the same value. 2771 V2 = DAG.getFreeze(V2); 2772 2773 // Recreate TrueMask using the widened type's element count. 2774 TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG); 2775 2776 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2777 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2778 V2, TrueMask, VL); 2779 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2780 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2781 DAG.getUNDEF(IntHalfVT), 2782 DAG.getAllOnesConstant(DL, XLenVT)); 2783 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2784 V2, Multiplier, TrueMask, VL); 2785 // Add the new copies to our previous addition giving us 2^eltbits copies of 2786 // V2. This is equivalent to shifting V2 left by eltbits. This should 2787 // combine with the vwmulu.vv above to form vwmaccu.vv. 2788 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2789 TrueMask, VL); 2790 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2791 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2792 // vector VT. 2793 ContainerVT = 2794 MVT::getVectorVT(VT.getVectorElementType(), 2795 WideIntContainerVT.getVectorElementCount() * 2); 2796 Add = DAG.getBitcast(ContainerVT, Add); 2797 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2798 } 2799 2800 // Detect shuffles which can be re-expressed as vector selects; these are 2801 // shuffles in which each element in the destination is taken from an element 2802 // at the corresponding index in either source vectors. 2803 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2804 int MaskIndex = MaskIdx.value(); 2805 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2806 }); 2807 2808 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2809 2810 SmallVector<SDValue> MaskVals; 2811 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2812 // merged with a second vrgather. 2813 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2814 2815 // By default we preserve the original operand order, and use a mask to 2816 // select LHS as true and RHS as false. However, since RVV vector selects may 2817 // feature splats but only on the LHS, we may choose to invert our mask and 2818 // instead select between RHS and LHS. 2819 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2820 bool InvertMask = IsSelect == SwapOps; 2821 2822 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2823 // half. 2824 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2825 2826 // Now construct the mask that will be used by the vselect or blended 2827 // vrgather operation. For vrgathers, construct the appropriate indices into 2828 // each vector. 2829 for (int MaskIndex : Mask) { 2830 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2831 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2832 if (!IsSelect) { 2833 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2834 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2835 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2836 : DAG.getUNDEF(XLenVT)); 2837 GatherIndicesRHS.push_back( 2838 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2839 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2840 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2841 ++LHSIndexCounts[MaskIndex]; 2842 if (!IsLHSOrUndefIndex) 2843 ++RHSIndexCounts[MaskIndex - NumElts]; 2844 } 2845 } 2846 2847 if (SwapOps) { 2848 std::swap(V1, V2); 2849 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2850 } 2851 2852 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2853 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2854 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2855 2856 if (IsSelect) 2857 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2858 2859 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2860 // On such a large vector we're unable to use i8 as the index type. 2861 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2862 // may involve vector splitting if we're already at LMUL=8, or our 2863 // user-supplied maximum fixed-length LMUL. 2864 return SDValue(); 2865 } 2866 2867 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2868 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2869 MVT IndexVT = VT.changeTypeToInteger(); 2870 // Since we can't introduce illegal index types at this stage, use i16 and 2871 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2872 // than XLenVT. 2873 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2874 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2875 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2876 } 2877 2878 MVT IndexContainerVT = 2879 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2880 2881 SDValue Gather; 2882 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2883 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2884 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2885 Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG, 2886 Subtarget); 2887 } else { 2888 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2889 // If only one index is used, we can use a "splat" vrgather. 2890 // TODO: We can splat the most-common index and fix-up any stragglers, if 2891 // that's beneficial. 2892 if (LHSIndexCounts.size() == 1) { 2893 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2894 Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2895 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, 2896 DAG.getUNDEF(ContainerVT), VL); 2897 } else { 2898 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2899 LHSIndices = 2900 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2901 2902 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2903 TrueMask, DAG.getUNDEF(ContainerVT), VL); 2904 } 2905 } 2906 2907 // If a second vector operand is used by this shuffle, blend it in with an 2908 // additional vrgather. 2909 if (!V2.isUndef()) { 2910 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2911 2912 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2913 SelectMask = 2914 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2915 2916 // If only one index is used, we can use a "splat" vrgather. 2917 // TODO: We can splat the most-common index and fix-up any stragglers, if 2918 // that's beneficial. 2919 if (RHSIndexCounts.size() == 1) { 2920 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2921 Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2922 DAG.getConstant(SplatIndex, DL, XLenVT), SelectMask, 2923 Gather, VL); 2924 } else { 2925 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2926 RHSIndices = 2927 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2928 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, 2929 SelectMask, Gather, VL); 2930 } 2931 } 2932 2933 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2934 } 2935 2936 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 2937 // Support splats for any type. These should type legalize well. 2938 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 2939 return true; 2940 2941 // Only support legal VTs for other shuffles for now. 2942 if (!isTypeLegal(VT)) 2943 return false; 2944 2945 MVT SVT = VT.getSimpleVT(); 2946 2947 bool SwapSources; 2948 int LoSrc, HiSrc; 2949 return (isElementRotate(LoSrc, HiSrc, M) > 0) || 2950 isInterleaveShuffle(M, SVT, SwapSources, Subtarget); 2951 } 2952 2953 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2954 // the exponent. 2955 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2956 MVT VT = Op.getSimpleValueType(); 2957 unsigned EltSize = VT.getScalarSizeInBits(); 2958 SDValue Src = Op.getOperand(0); 2959 SDLoc DL(Op); 2960 2961 // We need a FP type that can represent the value. 2962 // TODO: Use f16 for i8 when possible? 2963 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2964 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2965 2966 // Legal types should have been checked in the RISCVTargetLowering 2967 // constructor. 2968 // TODO: Splitting may make sense in some cases. 2969 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2970 "Expected legal float type!"); 2971 2972 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2973 // The trailing zero count is equal to log2 of this single bit value. 2974 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2975 SDValue Neg = 2976 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2977 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2978 } 2979 2980 // We have a legal FP type, convert to it. 2981 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2982 // Bitcast to integer and shift the exponent to the LSB. 2983 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2984 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2985 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2986 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2987 DAG.getConstant(ShiftAmt, DL, IntVT)); 2988 // Truncate back to original type to allow vnsrl. 2989 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2990 // The exponent contains log2 of the value in biased form. 2991 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2992 2993 // For trailing zeros, we just need to subtract the bias. 2994 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2995 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2996 DAG.getConstant(ExponentBias, DL, VT)); 2997 2998 // For leading zeros, we need to remove the bias and convert from log2 to 2999 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 3000 unsigned Adjust = ExponentBias + (EltSize - 1); 3001 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 3002 } 3003 3004 // While RVV has alignment restrictions, we should always be able to load as a 3005 // legal equivalently-sized byte-typed vector instead. This method is 3006 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 3007 // the load is already correctly-aligned, it returns SDValue(). 3008 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 3009 SelectionDAG &DAG) const { 3010 auto *Load = cast<LoadSDNode>(Op); 3011 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 3012 3013 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 3014 Load->getMemoryVT(), 3015 *Load->getMemOperand())) 3016 return SDValue(); 3017 3018 SDLoc DL(Op); 3019 MVT VT = Op.getSimpleValueType(); 3020 unsigned EltSizeBits = VT.getScalarSizeInBits(); 3021 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 3022 "Unexpected unaligned RVV load type"); 3023 MVT NewVT = 3024 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 3025 assert(NewVT.isValid() && 3026 "Expecting equally-sized RVV vector types to be legal"); 3027 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 3028 Load->getPointerInfo(), Load->getOriginalAlign(), 3029 Load->getMemOperand()->getFlags()); 3030 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 3031 } 3032 3033 // While RVV has alignment restrictions, we should always be able to store as a 3034 // legal equivalently-sized byte-typed vector instead. This method is 3035 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 3036 // returns SDValue() if the store is already correctly aligned. 3037 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 3038 SelectionDAG &DAG) const { 3039 auto *Store = cast<StoreSDNode>(Op); 3040 assert(Store && Store->getValue().getValueType().isVector() && 3041 "Expected vector store"); 3042 3043 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 3044 Store->getMemoryVT(), 3045 *Store->getMemOperand())) 3046 return SDValue(); 3047 3048 SDLoc DL(Op); 3049 SDValue StoredVal = Store->getValue(); 3050 MVT VT = StoredVal.getSimpleValueType(); 3051 unsigned EltSizeBits = VT.getScalarSizeInBits(); 3052 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 3053 "Unexpected unaligned RVV store type"); 3054 MVT NewVT = 3055 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 3056 assert(NewVT.isValid() && 3057 "Expecting equally-sized RVV vector types to be legal"); 3058 StoredVal = DAG.getBitcast(NewVT, StoredVal); 3059 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 3060 Store->getPointerInfo(), Store->getOriginalAlign(), 3061 Store->getMemOperand()->getFlags()); 3062 } 3063 3064 static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG, 3065 const RISCVSubtarget &Subtarget) { 3066 assert(Op.getValueType() == MVT::i64 && "Unexpected VT"); 3067 3068 int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue(); 3069 3070 // All simm32 constants should be handled by isel. 3071 // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making 3072 // this check redundant, but small immediates are common so this check 3073 // should have better compile time. 3074 if (isInt<32>(Imm)) 3075 return Op; 3076 3077 // We only need to cost the immediate, if constant pool lowering is enabled. 3078 if (!Subtarget.useConstantPoolForLargeInts()) 3079 return Op; 3080 3081 RISCVMatInt::InstSeq Seq = 3082 RISCVMatInt::generateInstSeq(Imm, Subtarget.getFeatureBits()); 3083 if (Seq.size() <= Subtarget.getMaxBuildIntsCost()) 3084 return Op; 3085 3086 // Expand to a constant pool using the default expansion code. 3087 return SDValue(); 3088 } 3089 3090 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 3091 SelectionDAG &DAG) const { 3092 switch (Op.getOpcode()) { 3093 default: 3094 report_fatal_error("unimplemented operand"); 3095 case ISD::GlobalAddress: 3096 return lowerGlobalAddress(Op, DAG); 3097 case ISD::BlockAddress: 3098 return lowerBlockAddress(Op, DAG); 3099 case ISD::ConstantPool: 3100 return lowerConstantPool(Op, DAG); 3101 case ISD::JumpTable: 3102 return lowerJumpTable(Op, DAG); 3103 case ISD::GlobalTLSAddress: 3104 return lowerGlobalTLSAddress(Op, DAG); 3105 case ISD::Constant: 3106 return lowerConstant(Op, DAG, Subtarget); 3107 case ISD::SELECT: 3108 return lowerSELECT(Op, DAG); 3109 case ISD::BRCOND: 3110 return lowerBRCOND(Op, DAG); 3111 case ISD::VASTART: 3112 return lowerVASTART(Op, DAG); 3113 case ISD::FRAMEADDR: 3114 return lowerFRAMEADDR(Op, DAG); 3115 case ISD::RETURNADDR: 3116 return lowerRETURNADDR(Op, DAG); 3117 case ISD::SHL_PARTS: 3118 return lowerShiftLeftParts(Op, DAG); 3119 case ISD::SRA_PARTS: 3120 return lowerShiftRightParts(Op, DAG, true); 3121 case ISD::SRL_PARTS: 3122 return lowerShiftRightParts(Op, DAG, false); 3123 case ISD::BITCAST: { 3124 SDLoc DL(Op); 3125 EVT VT = Op.getValueType(); 3126 SDValue Op0 = Op.getOperand(0); 3127 EVT Op0VT = Op0.getValueType(); 3128 MVT XLenVT = Subtarget.getXLenVT(); 3129 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 3130 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 3131 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 3132 return FPConv; 3133 } 3134 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 3135 Subtarget.hasStdExtF()) { 3136 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3137 SDValue FPConv = 3138 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 3139 return FPConv; 3140 } 3141 3142 // Consider other scalar<->scalar casts as legal if the types are legal. 3143 // Otherwise expand them. 3144 if (!VT.isVector() && !Op0VT.isVector()) { 3145 if (isTypeLegal(VT) && isTypeLegal(Op0VT)) 3146 return Op; 3147 return SDValue(); 3148 } 3149 3150 assert(!VT.isScalableVector() && !Op0VT.isScalableVector() && 3151 "Unexpected types"); 3152 3153 if (VT.isFixedLengthVector()) { 3154 // We can handle fixed length vector bitcasts with a simple replacement 3155 // in isel. 3156 if (Op0VT.isFixedLengthVector()) 3157 return Op; 3158 // When bitcasting from scalar to fixed-length vector, insert the scalar 3159 // into a one-element vector of the result type, and perform a vector 3160 // bitcast. 3161 if (!Op0VT.isVector()) { 3162 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 3163 if (!isTypeLegal(BVT)) 3164 return SDValue(); 3165 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 3166 DAG.getUNDEF(BVT), Op0, 3167 DAG.getConstant(0, DL, XLenVT))); 3168 } 3169 return SDValue(); 3170 } 3171 // Custom-legalize bitcasts from fixed-length vector types to scalar types 3172 // thus: bitcast the vector to a one-element vector type whose element type 3173 // is the same as the result type, and extract the first element. 3174 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 3175 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 3176 if (!isTypeLegal(BVT)) 3177 return SDValue(); 3178 SDValue BVec = DAG.getBitcast(BVT, Op0); 3179 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 3180 DAG.getConstant(0, DL, XLenVT)); 3181 } 3182 return SDValue(); 3183 } 3184 case ISD::INTRINSIC_WO_CHAIN: 3185 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3186 case ISD::INTRINSIC_W_CHAIN: 3187 return LowerINTRINSIC_W_CHAIN(Op, DAG); 3188 case ISD::INTRINSIC_VOID: 3189 return LowerINTRINSIC_VOID(Op, DAG); 3190 case ISD::BSWAP: 3191 case ISD::BITREVERSE: { 3192 MVT VT = Op.getSimpleValueType(); 3193 SDLoc DL(Op); 3194 if (Subtarget.hasStdExtZbp()) { 3195 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 3196 // Start with the maximum immediate value which is the bitwidth - 1. 3197 unsigned Imm = VT.getSizeInBits() - 1; 3198 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 3199 if (Op.getOpcode() == ISD::BSWAP) 3200 Imm &= ~0x7U; 3201 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 3202 DAG.getConstant(Imm, DL, VT)); 3203 } 3204 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 3205 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 3206 // Expand bitreverse to a bswap(rev8) followed by brev8. 3207 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 3208 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 3209 // as brev8 by an isel pattern. 3210 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 3211 DAG.getConstant(7, DL, VT)); 3212 } 3213 case ISD::FSHL: 3214 case ISD::FSHR: { 3215 MVT VT = Op.getSimpleValueType(); 3216 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 3217 SDLoc DL(Op); 3218 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 3219 // use log(XLen) bits. Mask the shift amount accordingly to prevent 3220 // accidentally setting the extra bit. 3221 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 3222 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 3223 DAG.getConstant(ShAmtWidth, DL, VT)); 3224 // fshl and fshr concatenate their operands in the same order. fsr and fsl 3225 // instruction use different orders. fshl will return its first operand for 3226 // shift of zero, fshr will return its second operand. fsl and fsr both 3227 // return rs1 so the ISD nodes need to have different operand orders. 3228 // Shift amount is in rs2. 3229 SDValue Op0 = Op.getOperand(0); 3230 SDValue Op1 = Op.getOperand(1); 3231 unsigned Opc = RISCVISD::FSL; 3232 if (Op.getOpcode() == ISD::FSHR) { 3233 std::swap(Op0, Op1); 3234 Opc = RISCVISD::FSR; 3235 } 3236 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3237 } 3238 case ISD::TRUNCATE: 3239 // Only custom-lower vector truncates 3240 if (!Op.getSimpleValueType().isVector()) 3241 return Op; 3242 return lowerVectorTruncLike(Op, DAG); 3243 case ISD::ANY_EXTEND: 3244 case ISD::ZERO_EXTEND: 3245 if (Op.getOperand(0).getValueType().isVector() && 3246 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3247 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3248 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3249 case ISD::SIGN_EXTEND: 3250 if (Op.getOperand(0).getValueType().isVector() && 3251 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3252 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3253 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3254 case ISD::SPLAT_VECTOR_PARTS: 3255 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3256 case ISD::INSERT_VECTOR_ELT: 3257 return lowerINSERT_VECTOR_ELT(Op, DAG); 3258 case ISD::EXTRACT_VECTOR_ELT: 3259 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3260 case ISD::VSCALE: { 3261 MVT VT = Op.getSimpleValueType(); 3262 SDLoc DL(Op); 3263 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3264 // We define our scalable vector types for lmul=1 to use a 64 bit known 3265 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3266 // vscale as VLENB / 8. 3267 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3268 if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock) 3269 report_fatal_error("Support for VLEN==32 is incomplete."); 3270 // We assume VLENB is a multiple of 8. We manually choose the best shift 3271 // here because SimplifyDemandedBits isn't always able to simplify it. 3272 uint64_t Val = Op.getConstantOperandVal(0); 3273 if (isPowerOf2_64(Val)) { 3274 uint64_t Log2 = Log2_64(Val); 3275 if (Log2 < 3) 3276 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3277 DAG.getConstant(3 - Log2, DL, VT)); 3278 if (Log2 > 3) 3279 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3280 DAG.getConstant(Log2 - 3, DL, VT)); 3281 return VLENB; 3282 } 3283 // If the multiplier is a multiple of 8, scale it down to avoid needing 3284 // to shift the VLENB value. 3285 if ((Val % 8) == 0) 3286 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3287 DAG.getConstant(Val / 8, DL, VT)); 3288 3289 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3290 DAG.getConstant(3, DL, VT)); 3291 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3292 } 3293 case ISD::FPOWI: { 3294 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3295 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3296 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3297 Op.getOperand(1).getValueType() == MVT::i32) { 3298 SDLoc DL(Op); 3299 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3300 SDValue Powi = 3301 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3302 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3303 DAG.getIntPtrConstant(0, DL)); 3304 } 3305 return SDValue(); 3306 } 3307 case ISD::FP_EXTEND: 3308 case ISD::FP_ROUND: 3309 if (!Op.getValueType().isVector()) 3310 return Op; 3311 return lowerVectorFPExtendOrRoundLike(Op, DAG); 3312 case ISD::FP_TO_SINT: 3313 case ISD::FP_TO_UINT: 3314 case ISD::SINT_TO_FP: 3315 case ISD::UINT_TO_FP: { 3316 // RVV can only do fp<->int conversions to types half/double the size as 3317 // the source. We custom-lower any conversions that do two hops into 3318 // sequences. 3319 MVT VT = Op.getSimpleValueType(); 3320 if (!VT.isVector()) 3321 return Op; 3322 SDLoc DL(Op); 3323 SDValue Src = Op.getOperand(0); 3324 MVT EltVT = VT.getVectorElementType(); 3325 MVT SrcVT = Src.getSimpleValueType(); 3326 MVT SrcEltVT = SrcVT.getVectorElementType(); 3327 unsigned EltSize = EltVT.getSizeInBits(); 3328 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3329 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3330 "Unexpected vector element types"); 3331 3332 bool IsInt2FP = SrcEltVT.isInteger(); 3333 // Widening conversions 3334 if (EltSize > (2 * SrcEltSize)) { 3335 if (IsInt2FP) { 3336 // Do a regular integer sign/zero extension then convert to float. 3337 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), 3338 VT.getVectorElementCount()); 3339 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3340 ? ISD::ZERO_EXTEND 3341 : ISD::SIGN_EXTEND; 3342 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3343 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3344 } 3345 // FP2Int 3346 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3347 // Do one doubling fp_extend then complete the operation by converting 3348 // to int. 3349 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3350 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3351 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3352 } 3353 3354 // Narrowing conversions 3355 if (SrcEltSize > (2 * EltSize)) { 3356 if (IsInt2FP) { 3357 // One narrowing int_to_fp, then an fp_round. 3358 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3359 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3360 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3361 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3362 } 3363 // FP2Int 3364 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3365 // representable by the integer, the result is poison. 3366 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 3367 VT.getVectorElementCount()); 3368 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3369 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3370 } 3371 3372 // Scalable vectors can exit here. Patterns will handle equally-sized 3373 // conversions halving/doubling ones. 3374 if (!VT.isFixedLengthVector()) 3375 return Op; 3376 3377 // For fixed-length vectors we lower to a custom "VL" node. 3378 unsigned RVVOpc = 0; 3379 switch (Op.getOpcode()) { 3380 default: 3381 llvm_unreachable("Impossible opcode"); 3382 case ISD::FP_TO_SINT: 3383 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3384 break; 3385 case ISD::FP_TO_UINT: 3386 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3387 break; 3388 case ISD::SINT_TO_FP: 3389 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3390 break; 3391 case ISD::UINT_TO_FP: 3392 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3393 break; 3394 } 3395 3396 MVT ContainerVT, SrcContainerVT; 3397 // Derive the reference container type from the larger vector type. 3398 if (SrcEltSize > EltSize) { 3399 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3400 ContainerVT = 3401 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3402 } else { 3403 ContainerVT = getContainerForFixedLengthVector(VT); 3404 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3405 } 3406 3407 SDValue Mask, VL; 3408 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3409 3410 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3411 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3412 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3413 } 3414 case ISD::FP_TO_SINT_SAT: 3415 case ISD::FP_TO_UINT_SAT: 3416 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3417 case ISD::FTRUNC: 3418 case ISD::FCEIL: 3419 case ISD::FFLOOR: 3420 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3421 case ISD::FROUND: 3422 return lowerFROUND(Op, DAG); 3423 case ISD::VECREDUCE_ADD: 3424 case ISD::VECREDUCE_UMAX: 3425 case ISD::VECREDUCE_SMAX: 3426 case ISD::VECREDUCE_UMIN: 3427 case ISD::VECREDUCE_SMIN: 3428 return lowerVECREDUCE(Op, DAG); 3429 case ISD::VECREDUCE_AND: 3430 case ISD::VECREDUCE_OR: 3431 case ISD::VECREDUCE_XOR: 3432 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3433 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3434 return lowerVECREDUCE(Op, DAG); 3435 case ISD::VECREDUCE_FADD: 3436 case ISD::VECREDUCE_SEQ_FADD: 3437 case ISD::VECREDUCE_FMIN: 3438 case ISD::VECREDUCE_FMAX: 3439 return lowerFPVECREDUCE(Op, DAG); 3440 case ISD::VP_REDUCE_ADD: 3441 case ISD::VP_REDUCE_UMAX: 3442 case ISD::VP_REDUCE_SMAX: 3443 case ISD::VP_REDUCE_UMIN: 3444 case ISD::VP_REDUCE_SMIN: 3445 case ISD::VP_REDUCE_FADD: 3446 case ISD::VP_REDUCE_SEQ_FADD: 3447 case ISD::VP_REDUCE_FMIN: 3448 case ISD::VP_REDUCE_FMAX: 3449 return lowerVPREDUCE(Op, DAG); 3450 case ISD::VP_REDUCE_AND: 3451 case ISD::VP_REDUCE_OR: 3452 case ISD::VP_REDUCE_XOR: 3453 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3454 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3455 return lowerVPREDUCE(Op, DAG); 3456 case ISD::INSERT_SUBVECTOR: 3457 return lowerINSERT_SUBVECTOR(Op, DAG); 3458 case ISD::EXTRACT_SUBVECTOR: 3459 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3460 case ISD::STEP_VECTOR: 3461 return lowerSTEP_VECTOR(Op, DAG); 3462 case ISD::VECTOR_REVERSE: 3463 return lowerVECTOR_REVERSE(Op, DAG); 3464 case ISD::VECTOR_SPLICE: 3465 return lowerVECTOR_SPLICE(Op, DAG); 3466 case ISD::BUILD_VECTOR: 3467 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3468 case ISD::SPLAT_VECTOR: 3469 if (Op.getValueType().getVectorElementType() == MVT::i1) 3470 return lowerVectorMaskSplat(Op, DAG); 3471 return SDValue(); 3472 case ISD::VECTOR_SHUFFLE: 3473 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3474 case ISD::CONCAT_VECTORS: { 3475 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3476 // better than going through the stack, as the default expansion does. 3477 SDLoc DL(Op); 3478 MVT VT = Op.getSimpleValueType(); 3479 unsigned NumOpElts = 3480 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3481 SDValue Vec = DAG.getUNDEF(VT); 3482 for (const auto &OpIdx : enumerate(Op->ops())) { 3483 SDValue SubVec = OpIdx.value(); 3484 // Don't insert undef subvectors. 3485 if (SubVec.isUndef()) 3486 continue; 3487 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3488 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3489 } 3490 return Vec; 3491 } 3492 case ISD::LOAD: 3493 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3494 return V; 3495 if (Op.getValueType().isFixedLengthVector()) 3496 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3497 return Op; 3498 case ISD::STORE: 3499 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3500 return V; 3501 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3502 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3503 return Op; 3504 case ISD::MLOAD: 3505 case ISD::VP_LOAD: 3506 return lowerMaskedLoad(Op, DAG); 3507 case ISD::MSTORE: 3508 case ISD::VP_STORE: 3509 return lowerMaskedStore(Op, DAG); 3510 case ISD::SETCC: 3511 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3512 case ISD::ADD: 3513 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3514 case ISD::SUB: 3515 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3516 case ISD::MUL: 3517 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3518 case ISD::MULHS: 3519 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3520 case ISD::MULHU: 3521 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3522 case ISD::AND: 3523 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3524 RISCVISD::AND_VL); 3525 case ISD::OR: 3526 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3527 RISCVISD::OR_VL); 3528 case ISD::XOR: 3529 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3530 RISCVISD::XOR_VL); 3531 case ISD::SDIV: 3532 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3533 case ISD::SREM: 3534 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3535 case ISD::UDIV: 3536 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3537 case ISD::UREM: 3538 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3539 case ISD::SHL: 3540 case ISD::SRA: 3541 case ISD::SRL: 3542 if (Op.getSimpleValueType().isFixedLengthVector()) 3543 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3544 // This can be called for an i32 shift amount that needs to be promoted. 3545 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3546 "Unexpected custom legalisation"); 3547 return SDValue(); 3548 case ISD::SADDSAT: 3549 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3550 case ISD::UADDSAT: 3551 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3552 case ISD::SSUBSAT: 3553 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3554 case ISD::USUBSAT: 3555 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3556 case ISD::FADD: 3557 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3558 case ISD::FSUB: 3559 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3560 case ISD::FMUL: 3561 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3562 case ISD::FDIV: 3563 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3564 case ISD::FNEG: 3565 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3566 case ISD::FABS: 3567 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3568 case ISD::FSQRT: 3569 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3570 case ISD::FMA: 3571 return lowerToScalableOp(Op, DAG, RISCVISD::VFMADD_VL); 3572 case ISD::SMIN: 3573 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3574 case ISD::SMAX: 3575 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3576 case ISD::UMIN: 3577 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3578 case ISD::UMAX: 3579 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3580 case ISD::FMINNUM: 3581 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3582 case ISD::FMAXNUM: 3583 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3584 case ISD::ABS: 3585 return lowerABS(Op, DAG); 3586 case ISD::CTLZ_ZERO_UNDEF: 3587 case ISD::CTTZ_ZERO_UNDEF: 3588 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3589 case ISD::VSELECT: 3590 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3591 case ISD::FCOPYSIGN: 3592 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3593 case ISD::MGATHER: 3594 case ISD::VP_GATHER: 3595 return lowerMaskedGather(Op, DAG); 3596 case ISD::MSCATTER: 3597 case ISD::VP_SCATTER: 3598 return lowerMaskedScatter(Op, DAG); 3599 case ISD::FLT_ROUNDS_: 3600 return lowerGET_ROUNDING(Op, DAG); 3601 case ISD::SET_ROUNDING: 3602 return lowerSET_ROUNDING(Op, DAG); 3603 case ISD::EH_DWARF_CFA: 3604 return lowerEH_DWARF_CFA(Op, DAG); 3605 case ISD::VP_SELECT: 3606 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3607 case ISD::VP_MERGE: 3608 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3609 case ISD::VP_ADD: 3610 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3611 case ISD::VP_SUB: 3612 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3613 case ISD::VP_MUL: 3614 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3615 case ISD::VP_SDIV: 3616 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3617 case ISD::VP_UDIV: 3618 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3619 case ISD::VP_SREM: 3620 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3621 case ISD::VP_UREM: 3622 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3623 case ISD::VP_AND: 3624 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3625 case ISD::VP_OR: 3626 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3627 case ISD::VP_XOR: 3628 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3629 case ISD::VP_ASHR: 3630 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3631 case ISD::VP_LSHR: 3632 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3633 case ISD::VP_SHL: 3634 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3635 case ISD::VP_FADD: 3636 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3637 case ISD::VP_FSUB: 3638 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3639 case ISD::VP_FMUL: 3640 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3641 case ISD::VP_FDIV: 3642 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3643 case ISD::VP_FNEG: 3644 return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL); 3645 case ISD::VP_FMA: 3646 return lowerVPOp(Op, DAG, RISCVISD::VFMADD_VL); 3647 case ISD::VP_SIGN_EXTEND: 3648 case ISD::VP_ZERO_EXTEND: 3649 if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) 3650 return lowerVPExtMaskOp(Op, DAG); 3651 return lowerVPOp(Op, DAG, 3652 Op.getOpcode() == ISD::VP_SIGN_EXTEND 3653 ? RISCVISD::VSEXT_VL 3654 : RISCVISD::VZEXT_VL); 3655 case ISD::VP_TRUNCATE: 3656 return lowerVectorTruncLike(Op, DAG); 3657 case ISD::VP_FP_EXTEND: 3658 case ISD::VP_FP_ROUND: 3659 return lowerVectorFPExtendOrRoundLike(Op, DAG); 3660 case ISD::VP_FPTOSI: 3661 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL); 3662 case ISD::VP_FPTOUI: 3663 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL); 3664 case ISD::VP_SITOFP: 3665 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL); 3666 case ISD::VP_UITOFP: 3667 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL); 3668 case ISD::VP_SETCC: 3669 if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) 3670 return lowerVPSetCCMaskOp(Op, DAG); 3671 return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL); 3672 } 3673 } 3674 3675 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3676 SelectionDAG &DAG, unsigned Flags) { 3677 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3678 } 3679 3680 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3681 SelectionDAG &DAG, unsigned Flags) { 3682 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3683 Flags); 3684 } 3685 3686 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3687 SelectionDAG &DAG, unsigned Flags) { 3688 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3689 N->getOffset(), Flags); 3690 } 3691 3692 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3693 SelectionDAG &DAG, unsigned Flags) { 3694 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3695 } 3696 3697 template <class NodeTy> 3698 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3699 bool IsLocal) const { 3700 SDLoc DL(N); 3701 EVT Ty = getPointerTy(DAG.getDataLayout()); 3702 3703 if (isPositionIndependent()) { 3704 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3705 if (IsLocal) 3706 // Use PC-relative addressing to access the symbol. This generates the 3707 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3708 // %pcrel_lo(auipc)). 3709 return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr); 3710 3711 // Use PC-relative addressing to access the GOT for this symbol, then load 3712 // the address from the GOT. This generates the pattern (PseudoLA sym), 3713 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3714 MachineFunction &MF = DAG.getMachineFunction(); 3715 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3716 MachinePointerInfo::getGOT(MF), 3717 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3718 MachineMemOperand::MOInvariant, 3719 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3720 SDValue Load = 3721 DAG.getMemIntrinsicNode(RISCVISD::LA, DL, DAG.getVTList(Ty, MVT::Other), 3722 {DAG.getEntryNode(), Addr}, Ty, MemOp); 3723 return Load; 3724 } 3725 3726 switch (getTargetMachine().getCodeModel()) { 3727 default: 3728 report_fatal_error("Unsupported code model for lowering"); 3729 case CodeModel::Small: { 3730 // Generate a sequence for accessing addresses within the first 2 GiB of 3731 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3732 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3733 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3734 SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi); 3735 return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNHi, AddrLo); 3736 } 3737 case CodeModel::Medium: { 3738 // Generate a sequence for accessing addresses within any 2GiB range within 3739 // the address space. This generates the pattern (PseudoLLA sym), which 3740 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3741 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3742 return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr); 3743 } 3744 } 3745 } 3746 3747 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3748 SelectionDAG &DAG) const { 3749 SDLoc DL(Op); 3750 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3751 assert(N->getOffset() == 0 && "unexpected offset in global node"); 3752 return getAddr(N, DAG, N->getGlobal()->isDSOLocal()); 3753 } 3754 3755 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3756 SelectionDAG &DAG) const { 3757 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3758 3759 return getAddr(N, DAG); 3760 } 3761 3762 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3763 SelectionDAG &DAG) const { 3764 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3765 3766 return getAddr(N, DAG); 3767 } 3768 3769 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3770 SelectionDAG &DAG) const { 3771 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3772 3773 return getAddr(N, DAG); 3774 } 3775 3776 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3777 SelectionDAG &DAG, 3778 bool UseGOT) const { 3779 SDLoc DL(N); 3780 EVT Ty = getPointerTy(DAG.getDataLayout()); 3781 const GlobalValue *GV = N->getGlobal(); 3782 MVT XLenVT = Subtarget.getXLenVT(); 3783 3784 if (UseGOT) { 3785 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3786 // load the address from the GOT and add the thread pointer. This generates 3787 // the pattern (PseudoLA_TLS_IE sym), which expands to 3788 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3789 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3790 MachineFunction &MF = DAG.getMachineFunction(); 3791 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3792 MachinePointerInfo::getGOT(MF), 3793 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3794 MachineMemOperand::MOInvariant, 3795 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3796 SDValue Load = DAG.getMemIntrinsicNode( 3797 RISCVISD::LA_TLS_IE, DL, DAG.getVTList(Ty, MVT::Other), 3798 {DAG.getEntryNode(), Addr}, Ty, MemOp); 3799 3800 // Add the thread pointer. 3801 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3802 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3803 } 3804 3805 // Generate a sequence for accessing the address relative to the thread 3806 // pointer, with the appropriate adjustment for the thread pointer offset. 3807 // This generates the pattern 3808 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3809 SDValue AddrHi = 3810 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3811 SDValue AddrAdd = 3812 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3813 SDValue AddrLo = 3814 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3815 3816 SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi); 3817 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3818 SDValue MNAdd = 3819 DAG.getNode(RISCVISD::ADD_TPREL, DL, Ty, MNHi, TPReg, AddrAdd); 3820 return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNAdd, AddrLo); 3821 } 3822 3823 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3824 SelectionDAG &DAG) const { 3825 SDLoc DL(N); 3826 EVT Ty = getPointerTy(DAG.getDataLayout()); 3827 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3828 const GlobalValue *GV = N->getGlobal(); 3829 3830 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3831 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3832 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3833 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3834 SDValue Load = DAG.getNode(RISCVISD::LA_TLS_GD, DL, Ty, Addr); 3835 3836 // Prepare argument list to generate call. 3837 ArgListTy Args; 3838 ArgListEntry Entry; 3839 Entry.Node = Load; 3840 Entry.Ty = CallTy; 3841 Args.push_back(Entry); 3842 3843 // Setup call to __tls_get_addr. 3844 TargetLowering::CallLoweringInfo CLI(DAG); 3845 CLI.setDebugLoc(DL) 3846 .setChain(DAG.getEntryNode()) 3847 .setLibCallee(CallingConv::C, CallTy, 3848 DAG.getExternalSymbol("__tls_get_addr", Ty), 3849 std::move(Args)); 3850 3851 return LowerCallTo(CLI).first; 3852 } 3853 3854 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3855 SelectionDAG &DAG) const { 3856 SDLoc DL(Op); 3857 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3858 assert(N->getOffset() == 0 && "unexpected offset in global node"); 3859 3860 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3861 3862 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3863 CallingConv::GHC) 3864 report_fatal_error("In GHC calling convention TLS is not supported"); 3865 3866 SDValue Addr; 3867 switch (Model) { 3868 case TLSModel::LocalExec: 3869 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3870 break; 3871 case TLSModel::InitialExec: 3872 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3873 break; 3874 case TLSModel::LocalDynamic: 3875 case TLSModel::GeneralDynamic: 3876 Addr = getDynamicTLSAddr(N, DAG); 3877 break; 3878 } 3879 3880 return Addr; 3881 } 3882 3883 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3884 SDValue CondV = Op.getOperand(0); 3885 SDValue TrueV = Op.getOperand(1); 3886 SDValue FalseV = Op.getOperand(2); 3887 SDLoc DL(Op); 3888 MVT VT = Op.getSimpleValueType(); 3889 MVT XLenVT = Subtarget.getXLenVT(); 3890 3891 // Lower vector SELECTs to VSELECTs by splatting the condition. 3892 if (VT.isVector()) { 3893 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3894 SDValue CondSplat = VT.isScalableVector() 3895 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3896 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3897 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3898 } 3899 3900 // If the result type is XLenVT and CondV is the output of a SETCC node 3901 // which also operated on XLenVT inputs, then merge the SETCC node into the 3902 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3903 // compare+branch instructions. i.e.: 3904 // (select (setcc lhs, rhs, cc), truev, falsev) 3905 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3906 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3907 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3908 SDValue LHS = CondV.getOperand(0); 3909 SDValue RHS = CondV.getOperand(1); 3910 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3911 ISD::CondCode CCVal = CC->get(); 3912 3913 // Special case for a select of 2 constants that have a diffence of 1. 3914 // Normally this is done by DAGCombine, but if the select is introduced by 3915 // type legalization or op legalization, we miss it. Restricting to SETLT 3916 // case for now because that is what signed saturating add/sub need. 3917 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3918 // but we would probably want to swap the true/false values if the condition 3919 // is SETGE/SETLE to avoid an XORI. 3920 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3921 CCVal == ISD::SETLT) { 3922 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3923 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3924 if (TrueVal - 1 == FalseVal) 3925 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3926 if (TrueVal + 1 == FalseVal) 3927 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3928 } 3929 3930 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3931 3932 SDValue TargetCC = DAG.getCondCode(CCVal); 3933 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3934 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3935 } 3936 3937 // Otherwise: 3938 // (select condv, truev, falsev) 3939 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3940 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3941 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3942 3943 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3944 3945 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3946 } 3947 3948 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3949 SDValue CondV = Op.getOperand(1); 3950 SDLoc DL(Op); 3951 MVT XLenVT = Subtarget.getXLenVT(); 3952 3953 if (CondV.getOpcode() == ISD::SETCC && 3954 CondV.getOperand(0).getValueType() == XLenVT) { 3955 SDValue LHS = CondV.getOperand(0); 3956 SDValue RHS = CondV.getOperand(1); 3957 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3958 3959 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3960 3961 SDValue TargetCC = DAG.getCondCode(CCVal); 3962 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3963 LHS, RHS, TargetCC, Op.getOperand(2)); 3964 } 3965 3966 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3967 CondV, DAG.getConstant(0, DL, XLenVT), 3968 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3969 } 3970 3971 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3972 MachineFunction &MF = DAG.getMachineFunction(); 3973 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3974 3975 SDLoc DL(Op); 3976 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3977 getPointerTy(MF.getDataLayout())); 3978 3979 // vastart just stores the address of the VarArgsFrameIndex slot into the 3980 // memory location argument. 3981 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3982 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3983 MachinePointerInfo(SV)); 3984 } 3985 3986 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3987 SelectionDAG &DAG) const { 3988 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3989 MachineFunction &MF = DAG.getMachineFunction(); 3990 MachineFrameInfo &MFI = MF.getFrameInfo(); 3991 MFI.setFrameAddressIsTaken(true); 3992 Register FrameReg = RI.getFrameRegister(MF); 3993 int XLenInBytes = Subtarget.getXLen() / 8; 3994 3995 EVT VT = Op.getValueType(); 3996 SDLoc DL(Op); 3997 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3998 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3999 while (Depth--) { 4000 int Offset = -(XLenInBytes * 2); 4001 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 4002 DAG.getIntPtrConstant(Offset, DL)); 4003 FrameAddr = 4004 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 4005 } 4006 return FrameAddr; 4007 } 4008 4009 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 4010 SelectionDAG &DAG) const { 4011 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4012 MachineFunction &MF = DAG.getMachineFunction(); 4013 MachineFrameInfo &MFI = MF.getFrameInfo(); 4014 MFI.setReturnAddressIsTaken(true); 4015 MVT XLenVT = Subtarget.getXLenVT(); 4016 int XLenInBytes = Subtarget.getXLen() / 8; 4017 4018 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 4019 return SDValue(); 4020 4021 EVT VT = Op.getValueType(); 4022 SDLoc DL(Op); 4023 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4024 if (Depth) { 4025 int Off = -XLenInBytes; 4026 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 4027 SDValue Offset = DAG.getConstant(Off, DL, VT); 4028 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 4029 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 4030 MachinePointerInfo()); 4031 } 4032 4033 // Return the value of the return address register, marking it an implicit 4034 // live-in. 4035 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 4036 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 4037 } 4038 4039 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 4040 SelectionDAG &DAG) const { 4041 SDLoc DL(Op); 4042 SDValue Lo = Op.getOperand(0); 4043 SDValue Hi = Op.getOperand(1); 4044 SDValue Shamt = Op.getOperand(2); 4045 EVT VT = Lo.getValueType(); 4046 4047 // if Shamt-XLEN < 0: // Shamt < XLEN 4048 // Lo = Lo << Shamt 4049 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt)) 4050 // else: 4051 // Lo = 0 4052 // Hi = Lo << (Shamt-XLEN) 4053 4054 SDValue Zero = DAG.getConstant(0, DL, VT); 4055 SDValue One = DAG.getConstant(1, DL, VT); 4056 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4057 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4058 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4059 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4060 4061 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 4062 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 4063 SDValue ShiftRightLo = 4064 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 4065 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 4066 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 4067 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 4068 4069 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4070 4071 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 4072 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4073 4074 SDValue Parts[2] = {Lo, Hi}; 4075 return DAG.getMergeValues(Parts, DL); 4076 } 4077 4078 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 4079 bool IsSRA) const { 4080 SDLoc DL(Op); 4081 SDValue Lo = Op.getOperand(0); 4082 SDValue Hi = Op.getOperand(1); 4083 SDValue Shamt = Op.getOperand(2); 4084 EVT VT = Lo.getValueType(); 4085 4086 // SRA expansion: 4087 // if Shamt-XLEN < 0: // Shamt < XLEN 4088 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4089 // Hi = Hi >>s Shamt 4090 // else: 4091 // Lo = Hi >>s (Shamt-XLEN); 4092 // Hi = Hi >>s (XLEN-1) 4093 // 4094 // SRL expansion: 4095 // if Shamt-XLEN < 0: // Shamt < XLEN 4096 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4097 // Hi = Hi >>u Shamt 4098 // else: 4099 // Lo = Hi >>u (Shamt-XLEN); 4100 // Hi = 0; 4101 4102 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 4103 4104 SDValue Zero = DAG.getConstant(0, DL, VT); 4105 SDValue One = DAG.getConstant(1, DL, VT); 4106 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4107 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4108 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4109 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4110 4111 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 4112 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 4113 SDValue ShiftLeftHi = 4114 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 4115 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 4116 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 4117 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 4118 SDValue HiFalse = 4119 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 4120 4121 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4122 4123 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 4124 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4125 4126 SDValue Parts[2] = {Lo, Hi}; 4127 return DAG.getMergeValues(Parts, DL); 4128 } 4129 4130 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 4131 // legal equivalently-sized i8 type, so we can use that as a go-between. 4132 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 4133 SelectionDAG &DAG) const { 4134 SDLoc DL(Op); 4135 MVT VT = Op.getSimpleValueType(); 4136 SDValue SplatVal = Op.getOperand(0); 4137 // All-zeros or all-ones splats are handled specially. 4138 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4139 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4140 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4141 } 4142 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4143 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4144 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4145 } 4146 MVT XLenVT = Subtarget.getXLenVT(); 4147 assert(SplatVal.getValueType() == XLenVT && 4148 "Unexpected type for i1 splat value"); 4149 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4150 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4151 DAG.getConstant(1, DL, XLenVT)); 4152 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4153 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4154 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4155 } 4156 4157 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4158 // illegal (currently only vXi64 RV32). 4159 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4160 // them to VMV_V_X_VL. 4161 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4162 SelectionDAG &DAG) const { 4163 SDLoc DL(Op); 4164 MVT VecVT = Op.getSimpleValueType(); 4165 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4166 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4167 4168 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4169 SDValue Lo = Op.getOperand(0); 4170 SDValue Hi = Op.getOperand(1); 4171 4172 if (VecVT.isFixedLengthVector()) { 4173 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4174 SDLoc DL(Op); 4175 SDValue Mask, VL; 4176 std::tie(Mask, VL) = 4177 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4178 4179 SDValue Res = 4180 splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG); 4181 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4182 } 4183 4184 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4185 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4186 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4187 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4188 // node in order to try and match RVV vector/scalar instructions. 4189 if ((LoC >> 31) == HiC) 4190 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4191 Lo, DAG.getRegister(RISCV::X0, MVT::i32)); 4192 } 4193 4194 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4195 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4196 isa<ConstantSDNode>(Hi.getOperand(1)) && 4197 Hi.getConstantOperandVal(1) == 31) 4198 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo, 4199 DAG.getRegister(RISCV::X0, MVT::i32)); 4200 4201 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4202 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, 4203 DAG.getUNDEF(VecVT), Lo, Hi, 4204 DAG.getRegister(RISCV::X0, MVT::i32)); 4205 } 4206 4207 // Custom-lower extensions from mask vectors by using a vselect either with 1 4208 // for zero/any-extension or -1 for sign-extension: 4209 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4210 // Note that any-extension is lowered identically to zero-extension. 4211 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4212 int64_t ExtTrueVal) const { 4213 SDLoc DL(Op); 4214 MVT VecVT = Op.getSimpleValueType(); 4215 SDValue Src = Op.getOperand(0); 4216 // Only custom-lower extensions from mask types 4217 assert(Src.getValueType().isVector() && 4218 Src.getValueType().getVectorElementType() == MVT::i1); 4219 4220 if (VecVT.isScalableVector()) { 4221 SDValue SplatZero = DAG.getConstant(0, DL, VecVT); 4222 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT); 4223 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4224 } 4225 4226 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4227 MVT I1ContainerVT = 4228 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4229 4230 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4231 4232 SDValue Mask, VL; 4233 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4234 4235 MVT XLenVT = Subtarget.getXLenVT(); 4236 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4237 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4238 4239 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4240 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4241 SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4242 DAG.getUNDEF(ContainerVT), SplatTrueVal, VL); 4243 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4244 SplatTrueVal, SplatZero, VL); 4245 4246 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4247 } 4248 4249 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4250 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4251 MVT ExtVT = Op.getSimpleValueType(); 4252 // Only custom-lower extensions from fixed-length vector types. 4253 if (!ExtVT.isFixedLengthVector()) 4254 return Op; 4255 MVT VT = Op.getOperand(0).getSimpleValueType(); 4256 // Grab the canonical container type for the extended type. Infer the smaller 4257 // type from that to ensure the same number of vector elements, as we know 4258 // the LMUL will be sufficient to hold the smaller type. 4259 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4260 // Get the extended container type manually to ensure the same number of 4261 // vector elements between source and dest. 4262 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4263 ContainerExtVT.getVectorElementCount()); 4264 4265 SDValue Op1 = 4266 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4267 4268 SDLoc DL(Op); 4269 SDValue Mask, VL; 4270 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4271 4272 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4273 4274 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4275 } 4276 4277 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4278 // setcc operation: 4279 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4280 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op, 4281 SelectionDAG &DAG) const { 4282 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE; 4283 SDLoc DL(Op); 4284 EVT MaskVT = Op.getValueType(); 4285 // Only expect to custom-lower truncations to mask types 4286 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4287 "Unexpected type for vector mask lowering"); 4288 SDValue Src = Op.getOperand(0); 4289 MVT VecVT = Src.getSimpleValueType(); 4290 SDValue Mask, VL; 4291 if (IsVPTrunc) { 4292 Mask = Op.getOperand(1); 4293 VL = Op.getOperand(2); 4294 } 4295 // If this is a fixed vector, we need to convert it to a scalable vector. 4296 MVT ContainerVT = VecVT; 4297 4298 if (VecVT.isFixedLengthVector()) { 4299 ContainerVT = getContainerForFixedLengthVector(VecVT); 4300 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4301 if (IsVPTrunc) { 4302 MVT MaskContainerVT = 4303 getContainerForFixedLengthVector(Mask.getSimpleValueType()); 4304 Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget); 4305 } 4306 } 4307 4308 if (!IsVPTrunc) { 4309 std::tie(Mask, VL) = 4310 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4311 } 4312 4313 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4314 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4315 4316 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4317 DAG.getUNDEF(ContainerVT), SplatOne, VL); 4318 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4319 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4320 4321 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4322 SDValue Trunc = 4323 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4324 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4325 DAG.getCondCode(ISD::SETNE), Mask, VL); 4326 if (MaskVT.isFixedLengthVector()) 4327 Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4328 return Trunc; 4329 } 4330 4331 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op, 4332 SelectionDAG &DAG) const { 4333 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE; 4334 SDLoc DL(Op); 4335 4336 MVT VT = Op.getSimpleValueType(); 4337 // Only custom-lower vector truncates 4338 assert(VT.isVector() && "Unexpected type for vector truncate lowering"); 4339 4340 // Truncates to mask types are handled differently 4341 if (VT.getVectorElementType() == MVT::i1) 4342 return lowerVectorMaskTruncLike(Op, DAG); 4343 4344 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 4345 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 4346 // truncate by one power of two at a time. 4347 MVT DstEltVT = VT.getVectorElementType(); 4348 4349 SDValue Src = Op.getOperand(0); 4350 MVT SrcVT = Src.getSimpleValueType(); 4351 MVT SrcEltVT = SrcVT.getVectorElementType(); 4352 4353 assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) && 4354 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 4355 "Unexpected vector truncate lowering"); 4356 4357 MVT ContainerVT = SrcVT; 4358 SDValue Mask, VL; 4359 if (IsVPTrunc) { 4360 Mask = Op.getOperand(1); 4361 VL = Op.getOperand(2); 4362 } 4363 if (SrcVT.isFixedLengthVector()) { 4364 ContainerVT = getContainerForFixedLengthVector(SrcVT); 4365 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4366 if (IsVPTrunc) { 4367 MVT MaskVT = getMaskTypeFor(ContainerVT); 4368 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4369 } 4370 } 4371 4372 SDValue Result = Src; 4373 if (!IsVPTrunc) { 4374 std::tie(Mask, VL) = 4375 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 4376 } 4377 4378 LLVMContext &Context = *DAG.getContext(); 4379 const ElementCount Count = ContainerVT.getVectorElementCount(); 4380 do { 4381 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 4382 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 4383 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 4384 Mask, VL); 4385 } while (SrcEltVT != DstEltVT); 4386 4387 if (SrcVT.isFixedLengthVector()) 4388 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4389 4390 return Result; 4391 } 4392 4393 SDValue 4394 RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op, 4395 SelectionDAG &DAG) const { 4396 bool IsVP = 4397 Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND; 4398 bool IsExtend = 4399 Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND; 4400 // RVV can only do truncate fp to types half the size as the source. We 4401 // custom-lower f64->f16 rounds via RVV's round-to-odd float 4402 // conversion instruction. 4403 SDLoc DL(Op); 4404 MVT VT = Op.getSimpleValueType(); 4405 4406 assert(VT.isVector() && "Unexpected type for vector truncate lowering"); 4407 4408 SDValue Src = Op.getOperand(0); 4409 MVT SrcVT = Src.getSimpleValueType(); 4410 4411 bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 || 4412 SrcVT.getVectorElementType() != MVT::f16); 4413 bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 || 4414 SrcVT.getVectorElementType() != MVT::f64); 4415 4416 bool IsDirectConv = IsDirectExtend || IsDirectTrunc; 4417 4418 // Prepare any fixed-length vector operands. 4419 MVT ContainerVT = VT; 4420 SDValue Mask, VL; 4421 if (IsVP) { 4422 Mask = Op.getOperand(1); 4423 VL = Op.getOperand(2); 4424 } 4425 if (VT.isFixedLengthVector()) { 4426 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 4427 ContainerVT = 4428 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 4429 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 4430 if (IsVP) { 4431 MVT MaskVT = getMaskTypeFor(ContainerVT); 4432 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4433 } 4434 } 4435 4436 if (!IsVP) 4437 std::tie(Mask, VL) = 4438 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 4439 4440 unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL; 4441 4442 if (IsDirectConv) { 4443 Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL); 4444 if (VT.isFixedLengthVector()) 4445 Src = convertFromScalableVector(VT, Src, DAG, Subtarget); 4446 return Src; 4447 } 4448 4449 unsigned InterConvOpc = 4450 IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL; 4451 4452 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 4453 SDValue IntermediateConv = 4454 DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL); 4455 SDValue Result = 4456 DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL); 4457 if (VT.isFixedLengthVector()) 4458 return convertFromScalableVector(VT, Result, DAG, Subtarget); 4459 return Result; 4460 } 4461 4462 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4463 // first position of a vector, and that vector is slid up to the insert index. 4464 // By limiting the active vector length to index+1 and merging with the 4465 // original vector (with an undisturbed tail policy for elements >= VL), we 4466 // achieve the desired result of leaving all elements untouched except the one 4467 // at VL-1, which is replaced with the desired value. 4468 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4469 SelectionDAG &DAG) const { 4470 SDLoc DL(Op); 4471 MVT VecVT = Op.getSimpleValueType(); 4472 SDValue Vec = Op.getOperand(0); 4473 SDValue Val = Op.getOperand(1); 4474 SDValue Idx = Op.getOperand(2); 4475 4476 if (VecVT.getVectorElementType() == MVT::i1) { 4477 // FIXME: For now we just promote to an i8 vector and insert into that, 4478 // but this is probably not optimal. 4479 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4480 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4481 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4482 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4483 } 4484 4485 MVT ContainerVT = VecVT; 4486 // If the operand is a fixed-length vector, convert to a scalable one. 4487 if (VecVT.isFixedLengthVector()) { 4488 ContainerVT = getContainerForFixedLengthVector(VecVT); 4489 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4490 } 4491 4492 MVT XLenVT = Subtarget.getXLenVT(); 4493 4494 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4495 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4496 // Even i64-element vectors on RV32 can be lowered without scalar 4497 // legalization if the most-significant 32 bits of the value are not affected 4498 // by the sign-extension of the lower 32 bits. 4499 // TODO: We could also catch sign extensions of a 32-bit value. 4500 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4501 const auto *CVal = cast<ConstantSDNode>(Val); 4502 if (isInt<32>(CVal->getSExtValue())) { 4503 IsLegalInsert = true; 4504 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4505 } 4506 } 4507 4508 SDValue Mask, VL; 4509 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4510 4511 SDValue ValInVec; 4512 4513 if (IsLegalInsert) { 4514 unsigned Opc = 4515 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4516 if (isNullConstant(Idx)) { 4517 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4518 if (!VecVT.isFixedLengthVector()) 4519 return Vec; 4520 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4521 } 4522 ValInVec = 4523 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4524 } else { 4525 // On RV32, i64-element vectors must be specially handled to place the 4526 // value at element 0, by using two vslide1up instructions in sequence on 4527 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4528 // this. 4529 SDValue One = DAG.getConstant(1, DL, XLenVT); 4530 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4531 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4532 MVT I32ContainerVT = 4533 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4534 SDValue I32Mask = 4535 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4536 // Limit the active VL to two. 4537 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4538 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4539 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4540 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, 4541 DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL); 4542 // First slide in the hi value, then the lo in underneath it. 4543 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4544 DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi, 4545 I32Mask, InsertI64VL); 4546 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4547 DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo, 4548 I32Mask, InsertI64VL); 4549 // Bitcast back to the right container type. 4550 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4551 } 4552 4553 // Now that the value is in a vector, slide it into position. 4554 SDValue InsertVL = 4555 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4556 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4557 ValInVec, Idx, Mask, InsertVL); 4558 if (!VecVT.isFixedLengthVector()) 4559 return Slideup; 4560 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4561 } 4562 4563 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4564 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4565 // types this is done using VMV_X_S to allow us to glean information about the 4566 // sign bits of the result. 4567 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4568 SelectionDAG &DAG) const { 4569 SDLoc DL(Op); 4570 SDValue Idx = Op.getOperand(1); 4571 SDValue Vec = Op.getOperand(0); 4572 EVT EltVT = Op.getValueType(); 4573 MVT VecVT = Vec.getSimpleValueType(); 4574 MVT XLenVT = Subtarget.getXLenVT(); 4575 4576 if (VecVT.getVectorElementType() == MVT::i1) { 4577 if (VecVT.isFixedLengthVector()) { 4578 unsigned NumElts = VecVT.getVectorNumElements(); 4579 if (NumElts >= 8) { 4580 MVT WideEltVT; 4581 unsigned WidenVecLen; 4582 SDValue ExtractElementIdx; 4583 SDValue ExtractBitIdx; 4584 unsigned MaxEEW = Subtarget.getELEN(); 4585 MVT LargestEltVT = MVT::getIntegerVT( 4586 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4587 if (NumElts <= LargestEltVT.getSizeInBits()) { 4588 assert(isPowerOf2_32(NumElts) && 4589 "the number of elements should be power of 2"); 4590 WideEltVT = MVT::getIntegerVT(NumElts); 4591 WidenVecLen = 1; 4592 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4593 ExtractBitIdx = Idx; 4594 } else { 4595 WideEltVT = LargestEltVT; 4596 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4597 // extract element index = index / element width 4598 ExtractElementIdx = DAG.getNode( 4599 ISD::SRL, DL, XLenVT, Idx, 4600 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4601 // mask bit index = index % element width 4602 ExtractBitIdx = DAG.getNode( 4603 ISD::AND, DL, XLenVT, Idx, 4604 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4605 } 4606 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4607 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4608 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4609 Vec, ExtractElementIdx); 4610 // Extract the bit from GPR. 4611 SDValue ShiftRight = 4612 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4613 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4614 DAG.getConstant(1, DL, XLenVT)); 4615 } 4616 } 4617 // Otherwise, promote to an i8 vector and extract from that. 4618 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4619 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4620 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4621 } 4622 4623 // If this is a fixed vector, we need to convert it to a scalable vector. 4624 MVT ContainerVT = VecVT; 4625 if (VecVT.isFixedLengthVector()) { 4626 ContainerVT = getContainerForFixedLengthVector(VecVT); 4627 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4628 } 4629 4630 // If the index is 0, the vector is already in the right position. 4631 if (!isNullConstant(Idx)) { 4632 // Use a VL of 1 to avoid processing more elements than we need. 4633 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4634 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 4635 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4636 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4637 } 4638 4639 if (!EltVT.isInteger()) { 4640 // Floating-point extracts are handled in TableGen. 4641 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4642 DAG.getConstant(0, DL, XLenVT)); 4643 } 4644 4645 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4646 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4647 } 4648 4649 // Some RVV intrinsics may claim that they want an integer operand to be 4650 // promoted or expanded. 4651 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG, 4652 const RISCVSubtarget &Subtarget) { 4653 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4654 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4655 "Unexpected opcode"); 4656 4657 if (!Subtarget.hasVInstructions()) 4658 return SDValue(); 4659 4660 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4661 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4662 SDLoc DL(Op); 4663 4664 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4665 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4666 if (!II || !II->hasScalarOperand()) 4667 return SDValue(); 4668 4669 unsigned SplatOp = II->ScalarOperand + 1 + HasChain; 4670 assert(SplatOp < Op.getNumOperands()); 4671 4672 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4673 SDValue &ScalarOp = Operands[SplatOp]; 4674 MVT OpVT = ScalarOp.getSimpleValueType(); 4675 MVT XLenVT = Subtarget.getXLenVT(); 4676 4677 // If this isn't a scalar, or its type is XLenVT we're done. 4678 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4679 return SDValue(); 4680 4681 // Simplest case is that the operand needs to be promoted to XLenVT. 4682 if (OpVT.bitsLT(XLenVT)) { 4683 // If the operand is a constant, sign extend to increase our chances 4684 // of being able to use a .vi instruction. ANY_EXTEND would become a 4685 // a zero extend and the simm5 check in isel would fail. 4686 // FIXME: Should we ignore the upper bits in isel instead? 4687 unsigned ExtOpc = 4688 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4689 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4690 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4691 } 4692 4693 // Use the previous operand to get the vXi64 VT. The result might be a mask 4694 // VT for compares. Using the previous operand assumes that the previous 4695 // operand will never have a smaller element size than a scalar operand and 4696 // that a widening operation never uses SEW=64. 4697 // NOTE: If this fails the below assert, we can probably just find the 4698 // element count from any operand or result and use it to construct the VT. 4699 assert(II->ScalarOperand > 0 && "Unexpected splat operand!"); 4700 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4701 4702 // The more complex case is when the scalar is larger than XLenVT. 4703 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4704 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4705 4706 // If this is a sign-extended 32-bit value, we can truncate it and rely on the 4707 // instruction to sign-extend since SEW>XLEN. 4708 if (DAG.ComputeNumSignBits(ScalarOp) > 32) { 4709 ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp); 4710 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4711 } 4712 4713 switch (IntNo) { 4714 case Intrinsic::riscv_vslide1up: 4715 case Intrinsic::riscv_vslide1down: 4716 case Intrinsic::riscv_vslide1up_mask: 4717 case Intrinsic::riscv_vslide1down_mask: { 4718 // We need to special case these when the scalar is larger than XLen. 4719 unsigned NumOps = Op.getNumOperands(); 4720 bool IsMasked = NumOps == 7; 4721 4722 // Convert the vector source to the equivalent nxvXi32 vector. 4723 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4724 SDValue Vec = DAG.getBitcast(I32VT, Operands[2]); 4725 4726 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4727 DAG.getConstant(0, DL, XLenVT)); 4728 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4729 DAG.getConstant(1, DL, XLenVT)); 4730 4731 // Double the VL since we halved SEW. 4732 SDValue AVL = getVLOperand(Op); 4733 SDValue I32VL; 4734 4735 // Optimize for constant AVL 4736 if (isa<ConstantSDNode>(AVL)) { 4737 unsigned EltSize = VT.getScalarSizeInBits(); 4738 unsigned MinSize = VT.getSizeInBits().getKnownMinValue(); 4739 4740 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 4741 unsigned MaxVLMAX = 4742 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 4743 4744 unsigned VectorBitsMin = Subtarget.getRealMinVLen(); 4745 unsigned MinVLMAX = 4746 RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize); 4747 4748 uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue(); 4749 if (AVLInt <= MinVLMAX) { 4750 I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT); 4751 } else if (AVLInt >= 2 * MaxVLMAX) { 4752 // Just set vl to VLMAX in this situation 4753 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT); 4754 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4755 unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits()); 4756 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4757 SDValue SETVLMAX = DAG.getTargetConstant( 4758 Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32); 4759 I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW, 4760 LMUL); 4761 } else { 4762 // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl 4763 // is related to the hardware implementation. 4764 // So let the following code handle 4765 } 4766 } 4767 if (!I32VL) { 4768 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT); 4769 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4770 unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits()); 4771 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4772 SDValue SETVL = 4773 DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32); 4774 // Using vsetvli instruction to get actually used length which related to 4775 // the hardware implementation 4776 SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL, 4777 SEW, LMUL); 4778 I32VL = 4779 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4780 } 4781 4782 SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG); 4783 4784 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4785 // instructions. 4786 SDValue Passthru; 4787 if (IsMasked) 4788 Passthru = DAG.getUNDEF(I32VT); 4789 else 4790 Passthru = DAG.getBitcast(I32VT, Operands[1]); 4791 4792 if (IntNo == Intrinsic::riscv_vslide1up || 4793 IntNo == Intrinsic::riscv_vslide1up_mask) { 4794 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4795 ScalarHi, I32Mask, I32VL); 4796 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4797 ScalarLo, I32Mask, I32VL); 4798 } else { 4799 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4800 ScalarLo, I32Mask, I32VL); 4801 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4802 ScalarHi, I32Mask, I32VL); 4803 } 4804 4805 // Convert back to nxvXi64. 4806 Vec = DAG.getBitcast(VT, Vec); 4807 4808 if (!IsMasked) 4809 return Vec; 4810 // Apply mask after the operation. 4811 SDValue Mask = Operands[NumOps - 3]; 4812 SDValue MaskedOff = Operands[1]; 4813 // Assume Policy operand is the last operand. 4814 uint64_t Policy = 4815 cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue(); 4816 // We don't need to select maskedoff if it's undef. 4817 if (MaskedOff.isUndef()) 4818 return Vec; 4819 // TAMU 4820 if (Policy == RISCVII::TAIL_AGNOSTIC) 4821 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, 4822 AVL); 4823 // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma. 4824 // It's fine because vmerge does not care mask policy. 4825 return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, 4826 AVL); 4827 } 4828 } 4829 4830 // We need to convert the scalar to a splat vector. 4831 SDValue VL = getVLOperand(Op); 4832 assert(VL.getValueType() == XLenVT); 4833 ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG); 4834 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4835 } 4836 4837 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4838 SelectionDAG &DAG) const { 4839 unsigned IntNo = Op.getConstantOperandVal(0); 4840 SDLoc DL(Op); 4841 MVT XLenVT = Subtarget.getXLenVT(); 4842 4843 switch (IntNo) { 4844 default: 4845 break; // Don't custom lower most intrinsics. 4846 case Intrinsic::thread_pointer: { 4847 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4848 return DAG.getRegister(RISCV::X4, PtrVT); 4849 } 4850 case Intrinsic::riscv_orc_b: 4851 case Intrinsic::riscv_brev8: { 4852 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4853 unsigned Opc = 4854 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4855 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4856 DAG.getConstant(7, DL, XLenVT)); 4857 } 4858 case Intrinsic::riscv_grev: 4859 case Intrinsic::riscv_gorc: { 4860 unsigned Opc = 4861 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4862 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4863 } 4864 case Intrinsic::riscv_zip: 4865 case Intrinsic::riscv_unzip: { 4866 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4867 // For i32 the immediate is 15. For i64 the immediate is 31. 4868 unsigned Opc = 4869 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4870 unsigned BitWidth = Op.getValueSizeInBits(); 4871 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4872 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4873 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4874 } 4875 case Intrinsic::riscv_shfl: 4876 case Intrinsic::riscv_unshfl: { 4877 unsigned Opc = 4878 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4879 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4880 } 4881 case Intrinsic::riscv_bcompress: 4882 case Intrinsic::riscv_bdecompress: { 4883 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4884 : RISCVISD::BDECOMPRESS; 4885 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4886 } 4887 case Intrinsic::riscv_bfp: 4888 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4889 Op.getOperand(2)); 4890 case Intrinsic::riscv_fsl: 4891 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4892 Op.getOperand(2), Op.getOperand(3)); 4893 case Intrinsic::riscv_fsr: 4894 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4895 Op.getOperand(2), Op.getOperand(3)); 4896 case Intrinsic::riscv_vmv_x_s: 4897 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4898 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4899 Op.getOperand(1)); 4900 case Intrinsic::riscv_vmv_v_x: 4901 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4902 Op.getOperand(3), Op.getSimpleValueType(), DL, DAG, 4903 Subtarget); 4904 case Intrinsic::riscv_vfmv_v_f: 4905 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4906 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4907 case Intrinsic::riscv_vmv_s_x: { 4908 SDValue Scalar = Op.getOperand(2); 4909 4910 if (Scalar.getValueType().bitsLE(XLenVT)) { 4911 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4912 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4913 Op.getOperand(1), Scalar, Op.getOperand(3)); 4914 } 4915 4916 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4917 4918 // This is an i64 value that lives in two scalar registers. We have to 4919 // insert this in a convoluted way. First we build vXi64 splat containing 4920 // the two values that we assemble using some bit math. Next we'll use 4921 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4922 // to merge element 0 from our splat into the source vector. 4923 // FIXME: This is probably not the best way to do this, but it is 4924 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4925 // point. 4926 // sw lo, (a0) 4927 // sw hi, 4(a0) 4928 // vlse vX, (a0) 4929 // 4930 // vid.v vVid 4931 // vmseq.vx mMask, vVid, 0 4932 // vmerge.vvm vDest, vSrc, vVal, mMask 4933 MVT VT = Op.getSimpleValueType(); 4934 SDValue Vec = Op.getOperand(1); 4935 SDValue VL = getVLOperand(Op); 4936 4937 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG); 4938 if (Op.getOperand(1).isUndef()) 4939 return SplattedVal; 4940 SDValue SplattedIdx = 4941 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 4942 DAG.getConstant(0, DL, MVT::i32), VL); 4943 4944 MVT MaskVT = getMaskTypeFor(VT); 4945 SDValue Mask = getAllOnesMask(VT, VL, DL, DAG); 4946 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4947 SDValue SelectCond = 4948 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4949 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4950 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4951 Vec, VL); 4952 } 4953 } 4954 4955 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4956 } 4957 4958 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4959 SelectionDAG &DAG) const { 4960 unsigned IntNo = Op.getConstantOperandVal(1); 4961 switch (IntNo) { 4962 default: 4963 break; 4964 case Intrinsic::riscv_masked_strided_load: { 4965 SDLoc DL(Op); 4966 MVT XLenVT = Subtarget.getXLenVT(); 4967 4968 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4969 // the selection of the masked intrinsics doesn't do this for us. 4970 SDValue Mask = Op.getOperand(5); 4971 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4972 4973 MVT VT = Op->getSimpleValueType(0); 4974 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4975 4976 SDValue PassThru = Op.getOperand(2); 4977 if (!IsUnmasked) { 4978 MVT MaskVT = getMaskTypeFor(ContainerVT); 4979 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4980 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4981 } 4982 4983 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4984 4985 SDValue IntID = DAG.getTargetConstant( 4986 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4987 XLenVT); 4988 4989 auto *Load = cast<MemIntrinsicSDNode>(Op); 4990 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4991 if (IsUnmasked) 4992 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4993 else 4994 Ops.push_back(PassThru); 4995 Ops.push_back(Op.getOperand(3)); // Ptr 4996 Ops.push_back(Op.getOperand(4)); // Stride 4997 if (!IsUnmasked) 4998 Ops.push_back(Mask); 4999 Ops.push_back(VL); 5000 if (!IsUnmasked) { 5001 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 5002 Ops.push_back(Policy); 5003 } 5004 5005 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5006 SDValue Result = 5007 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 5008 Load->getMemoryVT(), Load->getMemOperand()); 5009 SDValue Chain = Result.getValue(1); 5010 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5011 return DAG.getMergeValues({Result, Chain}, DL); 5012 } 5013 case Intrinsic::riscv_seg2_load: 5014 case Intrinsic::riscv_seg3_load: 5015 case Intrinsic::riscv_seg4_load: 5016 case Intrinsic::riscv_seg5_load: 5017 case Intrinsic::riscv_seg6_load: 5018 case Intrinsic::riscv_seg7_load: 5019 case Intrinsic::riscv_seg8_load: { 5020 SDLoc DL(Op); 5021 static const Intrinsic::ID VlsegInts[7] = { 5022 Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, 5023 Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, 5024 Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, 5025 Intrinsic::riscv_vlseg8}; 5026 unsigned NF = Op->getNumValues() - 1; 5027 assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); 5028 MVT XLenVT = Subtarget.getXLenVT(); 5029 MVT VT = Op->getSimpleValueType(0); 5030 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5031 5032 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5033 SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT); 5034 auto *Load = cast<MemIntrinsicSDNode>(Op); 5035 SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT); 5036 ContainerVTs.push_back(MVT::Other); 5037 SDVTList VTs = DAG.getVTList(ContainerVTs); 5038 SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID}; 5039 Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT)); 5040 Ops.push_back(Op.getOperand(2)); 5041 Ops.push_back(VL); 5042 SDValue Result = 5043 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 5044 Load->getMemoryVT(), Load->getMemOperand()); 5045 SmallVector<SDValue, 9> Results; 5046 for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++) 5047 Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx), 5048 DAG, Subtarget)); 5049 Results.push_back(Result.getValue(NF)); 5050 return DAG.getMergeValues(Results, DL); 5051 } 5052 } 5053 5054 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 5055 } 5056 5057 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 5058 SelectionDAG &DAG) const { 5059 unsigned IntNo = Op.getConstantOperandVal(1); 5060 switch (IntNo) { 5061 default: 5062 break; 5063 case Intrinsic::riscv_masked_strided_store: { 5064 SDLoc DL(Op); 5065 MVT XLenVT = Subtarget.getXLenVT(); 5066 5067 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5068 // the selection of the masked intrinsics doesn't do this for us. 5069 SDValue Mask = Op.getOperand(5); 5070 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5071 5072 SDValue Val = Op.getOperand(2); 5073 MVT VT = Val.getSimpleValueType(); 5074 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5075 5076 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5077 if (!IsUnmasked) { 5078 MVT MaskVT = getMaskTypeFor(ContainerVT); 5079 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5080 } 5081 5082 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5083 5084 SDValue IntID = DAG.getTargetConstant( 5085 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 5086 XLenVT); 5087 5088 auto *Store = cast<MemIntrinsicSDNode>(Op); 5089 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 5090 Ops.push_back(Val); 5091 Ops.push_back(Op.getOperand(3)); // Ptr 5092 Ops.push_back(Op.getOperand(4)); // Stride 5093 if (!IsUnmasked) 5094 Ops.push_back(Mask); 5095 Ops.push_back(VL); 5096 5097 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 5098 Ops, Store->getMemoryVT(), 5099 Store->getMemOperand()); 5100 } 5101 } 5102 5103 return SDValue(); 5104 } 5105 5106 static MVT getLMUL1VT(MVT VT) { 5107 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 5108 "Unexpected vector MVT"); 5109 return MVT::getScalableVectorVT( 5110 VT.getVectorElementType(), 5111 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 5112 } 5113 5114 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 5115 switch (ISDOpcode) { 5116 default: 5117 llvm_unreachable("Unhandled reduction"); 5118 case ISD::VECREDUCE_ADD: 5119 return RISCVISD::VECREDUCE_ADD_VL; 5120 case ISD::VECREDUCE_UMAX: 5121 return RISCVISD::VECREDUCE_UMAX_VL; 5122 case ISD::VECREDUCE_SMAX: 5123 return RISCVISD::VECREDUCE_SMAX_VL; 5124 case ISD::VECREDUCE_UMIN: 5125 return RISCVISD::VECREDUCE_UMIN_VL; 5126 case ISD::VECREDUCE_SMIN: 5127 return RISCVISD::VECREDUCE_SMIN_VL; 5128 case ISD::VECREDUCE_AND: 5129 return RISCVISD::VECREDUCE_AND_VL; 5130 case ISD::VECREDUCE_OR: 5131 return RISCVISD::VECREDUCE_OR_VL; 5132 case ISD::VECREDUCE_XOR: 5133 return RISCVISD::VECREDUCE_XOR_VL; 5134 } 5135 } 5136 5137 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 5138 SelectionDAG &DAG, 5139 bool IsVP) const { 5140 SDLoc DL(Op); 5141 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 5142 MVT VecVT = Vec.getSimpleValueType(); 5143 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 5144 Op.getOpcode() == ISD::VECREDUCE_OR || 5145 Op.getOpcode() == ISD::VECREDUCE_XOR || 5146 Op.getOpcode() == ISD::VP_REDUCE_AND || 5147 Op.getOpcode() == ISD::VP_REDUCE_OR || 5148 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 5149 "Unexpected reduction lowering"); 5150 5151 MVT XLenVT = Subtarget.getXLenVT(); 5152 assert(Op.getValueType() == XLenVT && 5153 "Expected reduction output to be legalized to XLenVT"); 5154 5155 MVT ContainerVT = VecVT; 5156 if (VecVT.isFixedLengthVector()) { 5157 ContainerVT = getContainerForFixedLengthVector(VecVT); 5158 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5159 } 5160 5161 SDValue Mask, VL; 5162 if (IsVP) { 5163 Mask = Op.getOperand(2); 5164 VL = Op.getOperand(3); 5165 } else { 5166 std::tie(Mask, VL) = 5167 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5168 } 5169 5170 unsigned BaseOpc; 5171 ISD::CondCode CC; 5172 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 5173 5174 switch (Op.getOpcode()) { 5175 default: 5176 llvm_unreachable("Unhandled reduction"); 5177 case ISD::VECREDUCE_AND: 5178 case ISD::VP_REDUCE_AND: { 5179 // vcpop ~x == 0 5180 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 5181 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 5182 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5183 CC = ISD::SETEQ; 5184 BaseOpc = ISD::AND; 5185 break; 5186 } 5187 case ISD::VECREDUCE_OR: 5188 case ISD::VP_REDUCE_OR: 5189 // vcpop x != 0 5190 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5191 CC = ISD::SETNE; 5192 BaseOpc = ISD::OR; 5193 break; 5194 case ISD::VECREDUCE_XOR: 5195 case ISD::VP_REDUCE_XOR: { 5196 // ((vcpop x) & 1) != 0 5197 SDValue One = DAG.getConstant(1, DL, XLenVT); 5198 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5199 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 5200 CC = ISD::SETNE; 5201 BaseOpc = ISD::XOR; 5202 break; 5203 } 5204 } 5205 5206 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 5207 5208 if (!IsVP) 5209 return SetCC; 5210 5211 // Now include the start value in the operation. 5212 // Note that we must return the start value when no elements are operated 5213 // upon. The vcpop instructions we've emitted in each case above will return 5214 // 0 for an inactive vector, and so we've already received the neutral value: 5215 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 5216 // can simply include the start value. 5217 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 5218 } 5219 5220 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 5221 SelectionDAG &DAG) const { 5222 SDLoc DL(Op); 5223 SDValue Vec = Op.getOperand(0); 5224 EVT VecEVT = Vec.getValueType(); 5225 5226 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 5227 5228 // Due to ordering in legalize types we may have a vector type that needs to 5229 // be split. Do that manually so we can get down to a legal type. 5230 while (getTypeAction(*DAG.getContext(), VecEVT) == 5231 TargetLowering::TypeSplitVector) { 5232 SDValue Lo, Hi; 5233 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 5234 VecEVT = Lo.getValueType(); 5235 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 5236 } 5237 5238 // TODO: The type may need to be widened rather than split. Or widened before 5239 // it can be split. 5240 if (!isTypeLegal(VecEVT)) 5241 return SDValue(); 5242 5243 MVT VecVT = VecEVT.getSimpleVT(); 5244 MVT VecEltVT = VecVT.getVectorElementType(); 5245 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 5246 5247 MVT ContainerVT = VecVT; 5248 if (VecVT.isFixedLengthVector()) { 5249 ContainerVT = getContainerForFixedLengthVector(VecVT); 5250 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5251 } 5252 5253 MVT M1VT = getLMUL1VT(ContainerVT); 5254 MVT XLenVT = Subtarget.getXLenVT(); 5255 5256 SDValue Mask, VL; 5257 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5258 5259 SDValue NeutralElem = 5260 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 5261 SDValue IdentitySplat = 5262 lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT), 5263 M1VT, DL, DAG, Subtarget); 5264 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 5265 IdentitySplat, Mask, VL); 5266 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5267 DAG.getConstant(0, DL, XLenVT)); 5268 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5269 } 5270 5271 // Given a reduction op, this function returns the matching reduction opcode, 5272 // the vector SDValue and the scalar SDValue required to lower this to a 5273 // RISCVISD node. 5274 static std::tuple<unsigned, SDValue, SDValue> 5275 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 5276 SDLoc DL(Op); 5277 auto Flags = Op->getFlags(); 5278 unsigned Opcode = Op.getOpcode(); 5279 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 5280 switch (Opcode) { 5281 default: 5282 llvm_unreachable("Unhandled reduction"); 5283 case ISD::VECREDUCE_FADD: { 5284 // Use positive zero if we can. It is cheaper to materialize. 5285 SDValue Zero = 5286 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 5287 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 5288 } 5289 case ISD::VECREDUCE_SEQ_FADD: 5290 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 5291 Op.getOperand(0)); 5292 case ISD::VECREDUCE_FMIN: 5293 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 5294 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5295 case ISD::VECREDUCE_FMAX: 5296 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 5297 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5298 } 5299 } 5300 5301 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 5302 SelectionDAG &DAG) const { 5303 SDLoc DL(Op); 5304 MVT VecEltVT = Op.getSimpleValueType(); 5305 5306 unsigned RVVOpcode; 5307 SDValue VectorVal, ScalarVal; 5308 std::tie(RVVOpcode, VectorVal, ScalarVal) = 5309 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 5310 MVT VecVT = VectorVal.getSimpleValueType(); 5311 5312 MVT ContainerVT = VecVT; 5313 if (VecVT.isFixedLengthVector()) { 5314 ContainerVT = getContainerForFixedLengthVector(VecVT); 5315 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 5316 } 5317 5318 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 5319 MVT XLenVT = Subtarget.getXLenVT(); 5320 5321 SDValue Mask, VL; 5322 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5323 5324 SDValue ScalarSplat = 5325 lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT), 5326 M1VT, DL, DAG, Subtarget); 5327 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 5328 VectorVal, ScalarSplat, Mask, VL); 5329 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5330 DAG.getConstant(0, DL, XLenVT)); 5331 } 5332 5333 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 5334 switch (ISDOpcode) { 5335 default: 5336 llvm_unreachable("Unhandled reduction"); 5337 case ISD::VP_REDUCE_ADD: 5338 return RISCVISD::VECREDUCE_ADD_VL; 5339 case ISD::VP_REDUCE_UMAX: 5340 return RISCVISD::VECREDUCE_UMAX_VL; 5341 case ISD::VP_REDUCE_SMAX: 5342 return RISCVISD::VECREDUCE_SMAX_VL; 5343 case ISD::VP_REDUCE_UMIN: 5344 return RISCVISD::VECREDUCE_UMIN_VL; 5345 case ISD::VP_REDUCE_SMIN: 5346 return RISCVISD::VECREDUCE_SMIN_VL; 5347 case ISD::VP_REDUCE_AND: 5348 return RISCVISD::VECREDUCE_AND_VL; 5349 case ISD::VP_REDUCE_OR: 5350 return RISCVISD::VECREDUCE_OR_VL; 5351 case ISD::VP_REDUCE_XOR: 5352 return RISCVISD::VECREDUCE_XOR_VL; 5353 case ISD::VP_REDUCE_FADD: 5354 return RISCVISD::VECREDUCE_FADD_VL; 5355 case ISD::VP_REDUCE_SEQ_FADD: 5356 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 5357 case ISD::VP_REDUCE_FMAX: 5358 return RISCVISD::VECREDUCE_FMAX_VL; 5359 case ISD::VP_REDUCE_FMIN: 5360 return RISCVISD::VECREDUCE_FMIN_VL; 5361 } 5362 } 5363 5364 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5365 SelectionDAG &DAG) const { 5366 SDLoc DL(Op); 5367 SDValue Vec = Op.getOperand(1); 5368 EVT VecEVT = Vec.getValueType(); 5369 5370 // TODO: The type may need to be widened rather than split. Or widened before 5371 // it can be split. 5372 if (!isTypeLegal(VecEVT)) 5373 return SDValue(); 5374 5375 MVT VecVT = VecEVT.getSimpleVT(); 5376 MVT VecEltVT = VecVT.getVectorElementType(); 5377 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5378 5379 MVT ContainerVT = VecVT; 5380 if (VecVT.isFixedLengthVector()) { 5381 ContainerVT = getContainerForFixedLengthVector(VecVT); 5382 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5383 } 5384 5385 SDValue VL = Op.getOperand(3); 5386 SDValue Mask = Op.getOperand(2); 5387 5388 MVT M1VT = getLMUL1VT(ContainerVT); 5389 MVT XLenVT = Subtarget.getXLenVT(); 5390 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5391 5392 SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0), 5393 DAG.getConstant(1, DL, XLenVT), M1VT, 5394 DL, DAG, Subtarget); 5395 SDValue Reduction = 5396 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5397 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5398 DAG.getConstant(0, DL, XLenVT)); 5399 if (!VecVT.isInteger()) 5400 return Elt0; 5401 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5402 } 5403 5404 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5405 SelectionDAG &DAG) const { 5406 SDValue Vec = Op.getOperand(0); 5407 SDValue SubVec = Op.getOperand(1); 5408 MVT VecVT = Vec.getSimpleValueType(); 5409 MVT SubVecVT = SubVec.getSimpleValueType(); 5410 5411 SDLoc DL(Op); 5412 MVT XLenVT = Subtarget.getXLenVT(); 5413 unsigned OrigIdx = Op.getConstantOperandVal(2); 5414 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5415 5416 // We don't have the ability to slide mask vectors up indexed by their i1 5417 // elements; the smallest we can do is i8. Often we are able to bitcast to 5418 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5419 // into a scalable one, we might not necessarily have enough scalable 5420 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5421 if (SubVecVT.getVectorElementType() == MVT::i1 && 5422 (OrigIdx != 0 || !Vec.isUndef())) { 5423 if (VecVT.getVectorMinNumElements() >= 8 && 5424 SubVecVT.getVectorMinNumElements() >= 8) { 5425 assert(OrigIdx % 8 == 0 && "Invalid index"); 5426 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5427 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5428 "Unexpected mask vector lowering"); 5429 OrigIdx /= 8; 5430 SubVecVT = 5431 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5432 SubVecVT.isScalableVector()); 5433 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5434 VecVT.isScalableVector()); 5435 Vec = DAG.getBitcast(VecVT, Vec); 5436 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5437 } else { 5438 // We can't slide this mask vector up indexed by its i1 elements. 5439 // This poses a problem when we wish to insert a scalable vector which 5440 // can't be re-expressed as a larger type. Just choose the slow path and 5441 // extend to a larger type, then truncate back down. 5442 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5443 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5444 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5445 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5446 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5447 Op.getOperand(2)); 5448 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5449 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5450 } 5451 } 5452 5453 // If the subvector vector is a fixed-length type, we cannot use subregister 5454 // manipulation to simplify the codegen; we don't know which register of a 5455 // LMUL group contains the specific subvector as we only know the minimum 5456 // register size. Therefore we must slide the vector group up the full 5457 // amount. 5458 if (SubVecVT.isFixedLengthVector()) { 5459 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5460 return Op; 5461 MVT ContainerVT = VecVT; 5462 if (VecVT.isFixedLengthVector()) { 5463 ContainerVT = getContainerForFixedLengthVector(VecVT); 5464 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5465 } 5466 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5467 DAG.getUNDEF(ContainerVT), SubVec, 5468 DAG.getConstant(0, DL, XLenVT)); 5469 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5470 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5471 return DAG.getBitcast(Op.getValueType(), SubVec); 5472 } 5473 SDValue Mask = 5474 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5475 // Set the vector length to only the number of elements we care about. Note 5476 // that for slideup this includes the offset. 5477 SDValue VL = 5478 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5479 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5480 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5481 SubVec, SlideupAmt, Mask, VL); 5482 if (VecVT.isFixedLengthVector()) 5483 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5484 return DAG.getBitcast(Op.getValueType(), Slideup); 5485 } 5486 5487 unsigned SubRegIdx, RemIdx; 5488 std::tie(SubRegIdx, RemIdx) = 5489 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5490 VecVT, SubVecVT, OrigIdx, TRI); 5491 5492 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5493 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5494 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5495 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5496 5497 // 1. If the Idx has been completely eliminated and this subvector's size is 5498 // a vector register or a multiple thereof, or the surrounding elements are 5499 // undef, then this is a subvector insert which naturally aligns to a vector 5500 // register. These can easily be handled using subregister manipulation. 5501 // 2. If the subvector is smaller than a vector register, then the insertion 5502 // must preserve the undisturbed elements of the register. We do this by 5503 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5504 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5505 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5506 // LMUL=1 type back into the larger vector (resolving to another subregister 5507 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5508 // to avoid allocating a large register group to hold our subvector. 5509 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5510 return Op; 5511 5512 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5513 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5514 // (in our case undisturbed). This means we can set up a subvector insertion 5515 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5516 // size of the subvector. 5517 MVT InterSubVT = VecVT; 5518 SDValue AlignedExtract = Vec; 5519 unsigned AlignedIdx = OrigIdx - RemIdx; 5520 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5521 InterSubVT = getLMUL1VT(VecVT); 5522 // Extract a subvector equal to the nearest full vector register type. This 5523 // should resolve to a EXTRACT_SUBREG instruction. 5524 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5525 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5526 } 5527 5528 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5529 // For scalable vectors this must be further multiplied by vscale. 5530 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5531 5532 SDValue Mask, VL; 5533 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5534 5535 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5536 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5537 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5538 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5539 5540 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5541 DAG.getUNDEF(InterSubVT), SubVec, 5542 DAG.getConstant(0, DL, XLenVT)); 5543 5544 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5545 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5546 5547 // If required, insert this subvector back into the correct vector register. 5548 // This should resolve to an INSERT_SUBREG instruction. 5549 if (VecVT.bitsGT(InterSubVT)) 5550 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5551 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5552 5553 // We might have bitcast from a mask type: cast back to the original type if 5554 // required. 5555 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5556 } 5557 5558 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5559 SelectionDAG &DAG) const { 5560 SDValue Vec = Op.getOperand(0); 5561 MVT SubVecVT = Op.getSimpleValueType(); 5562 MVT VecVT = Vec.getSimpleValueType(); 5563 5564 SDLoc DL(Op); 5565 MVT XLenVT = Subtarget.getXLenVT(); 5566 unsigned OrigIdx = Op.getConstantOperandVal(1); 5567 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5568 5569 // We don't have the ability to slide mask vectors down indexed by their i1 5570 // elements; the smallest we can do is i8. Often we are able to bitcast to 5571 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5572 // from a scalable one, we might not necessarily have enough scalable 5573 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5574 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5575 if (VecVT.getVectorMinNumElements() >= 8 && 5576 SubVecVT.getVectorMinNumElements() >= 8) { 5577 assert(OrigIdx % 8 == 0 && "Invalid index"); 5578 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5579 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5580 "Unexpected mask vector lowering"); 5581 OrigIdx /= 8; 5582 SubVecVT = 5583 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5584 SubVecVT.isScalableVector()); 5585 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5586 VecVT.isScalableVector()); 5587 Vec = DAG.getBitcast(VecVT, Vec); 5588 } else { 5589 // We can't slide this mask vector down, indexed by its i1 elements. 5590 // This poses a problem when we wish to extract a scalable vector which 5591 // can't be re-expressed as a larger type. Just choose the slow path and 5592 // extend to a larger type, then truncate back down. 5593 // TODO: We could probably improve this when extracting certain fixed 5594 // from fixed, where we can extract as i8 and shift the correct element 5595 // right to reach the desired subvector? 5596 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5597 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5598 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5599 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5600 Op.getOperand(1)); 5601 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5602 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5603 } 5604 } 5605 5606 // If the subvector vector is a fixed-length type, we cannot use subregister 5607 // manipulation to simplify the codegen; we don't know which register of a 5608 // LMUL group contains the specific subvector as we only know the minimum 5609 // register size. Therefore we must slide the vector group down the full 5610 // amount. 5611 if (SubVecVT.isFixedLengthVector()) { 5612 // With an index of 0 this is a cast-like subvector, which can be performed 5613 // with subregister operations. 5614 if (OrigIdx == 0) 5615 return Op; 5616 MVT ContainerVT = VecVT; 5617 if (VecVT.isFixedLengthVector()) { 5618 ContainerVT = getContainerForFixedLengthVector(VecVT); 5619 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5620 } 5621 SDValue Mask = 5622 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5623 // Set the vector length to only the number of elements we care about. This 5624 // avoids sliding down elements we're going to discard straight away. 5625 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5626 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5627 SDValue Slidedown = 5628 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5629 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5630 // Now we can use a cast-like subvector extract to get the result. 5631 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5632 DAG.getConstant(0, DL, XLenVT)); 5633 return DAG.getBitcast(Op.getValueType(), Slidedown); 5634 } 5635 5636 unsigned SubRegIdx, RemIdx; 5637 std::tie(SubRegIdx, RemIdx) = 5638 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5639 VecVT, SubVecVT, OrigIdx, TRI); 5640 5641 // If the Idx has been completely eliminated then this is a subvector extract 5642 // which naturally aligns to a vector register. These can easily be handled 5643 // using subregister manipulation. 5644 if (RemIdx == 0) 5645 return Op; 5646 5647 // Else we must shift our vector register directly to extract the subvector. 5648 // Do this using VSLIDEDOWN. 5649 5650 // If the vector type is an LMUL-group type, extract a subvector equal to the 5651 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5652 // instruction. 5653 MVT InterSubVT = VecVT; 5654 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5655 InterSubVT = getLMUL1VT(VecVT); 5656 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5657 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5658 } 5659 5660 // Slide this vector register down by the desired number of elements in order 5661 // to place the desired subvector starting at element 0. 5662 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5663 // For scalable vectors this must be further multiplied by vscale. 5664 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5665 5666 SDValue Mask, VL; 5667 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5668 SDValue Slidedown = 5669 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5670 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5671 5672 // Now the vector is in the right position, extract our final subvector. This 5673 // should resolve to a COPY. 5674 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5675 DAG.getConstant(0, DL, XLenVT)); 5676 5677 // We might have bitcast from a mask type: cast back to the original type if 5678 // required. 5679 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5680 } 5681 5682 // Lower step_vector to the vid instruction. Any non-identity step value must 5683 // be accounted for my manual expansion. 5684 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5685 SelectionDAG &DAG) const { 5686 SDLoc DL(Op); 5687 MVT VT = Op.getSimpleValueType(); 5688 MVT XLenVT = Subtarget.getXLenVT(); 5689 SDValue Mask, VL; 5690 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5691 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5692 uint64_t StepValImm = Op.getConstantOperandVal(0); 5693 if (StepValImm != 1) { 5694 if (isPowerOf2_64(StepValImm)) { 5695 SDValue StepVal = 5696 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 5697 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5698 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5699 } else { 5700 SDValue StepVal = lowerScalarSplat( 5701 SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), 5702 VL, VT, DL, DAG, Subtarget); 5703 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5704 } 5705 } 5706 return StepVec; 5707 } 5708 5709 // Implement vector_reverse using vrgather.vv with indices determined by 5710 // subtracting the id of each element from (VLMAX-1). This will convert 5711 // the indices like so: 5712 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5713 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5714 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5715 SelectionDAG &DAG) const { 5716 SDLoc DL(Op); 5717 MVT VecVT = Op.getSimpleValueType(); 5718 if (VecVT.getVectorElementType() == MVT::i1) { 5719 MVT WidenVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 5720 SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, Op.getOperand(0)); 5721 SDValue Op2 = DAG.getNode(ISD::VECTOR_REVERSE, DL, WidenVT, Op1); 5722 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Op2); 5723 } 5724 unsigned EltSize = VecVT.getScalarSizeInBits(); 5725 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5726 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 5727 unsigned MaxVLMAX = 5728 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 5729 5730 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5731 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5732 5733 // If this is SEW=8 and VLMAX is potentially more than 256, we need 5734 // to use vrgatherei16.vv. 5735 // TODO: It's also possible to use vrgatherei16.vv for other types to 5736 // decrease register width for the index calculation. 5737 if (MaxVLMAX > 256 && EltSize == 8) { 5738 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5739 // Reverse each half, then reassemble them in reverse order. 5740 // NOTE: It's also possible that after splitting that VLMAX no longer 5741 // requires vrgatherei16.vv. 5742 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5743 SDValue Lo, Hi; 5744 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5745 EVT LoVT, HiVT; 5746 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5747 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5748 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5749 // Reassemble the low and high pieces reversed. 5750 // FIXME: This is a CONCAT_VECTORS. 5751 SDValue Res = 5752 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5753 DAG.getIntPtrConstant(0, DL)); 5754 return DAG.getNode( 5755 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5756 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5757 } 5758 5759 // Just promote the int type to i16 which will double the LMUL. 5760 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5761 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5762 } 5763 5764 MVT XLenVT = Subtarget.getXLenVT(); 5765 SDValue Mask, VL; 5766 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5767 5768 // Calculate VLMAX-1 for the desired SEW. 5769 unsigned MinElts = VecVT.getVectorMinNumElements(); 5770 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5771 DAG.getConstant(MinElts, DL, XLenVT)); 5772 SDValue VLMinus1 = 5773 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5774 5775 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5776 bool IsRV32E64 = 5777 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5778 SDValue SplatVL; 5779 if (!IsRV32E64) 5780 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5781 else 5782 SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), 5783 VLMinus1, DAG.getRegister(RISCV::X0, XLenVT)); 5784 5785 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5786 SDValue Indices = 5787 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5788 5789 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, 5790 DAG.getUNDEF(VecVT), VL); 5791 } 5792 5793 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op, 5794 SelectionDAG &DAG) const { 5795 SDLoc DL(Op); 5796 SDValue V1 = Op.getOperand(0); 5797 SDValue V2 = Op.getOperand(1); 5798 MVT XLenVT = Subtarget.getXLenVT(); 5799 MVT VecVT = Op.getSimpleValueType(); 5800 5801 unsigned MinElts = VecVT.getVectorMinNumElements(); 5802 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5803 DAG.getConstant(MinElts, DL, XLenVT)); 5804 5805 int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue(); 5806 SDValue DownOffset, UpOffset; 5807 if (ImmValue >= 0) { 5808 // The operand is a TargetConstant, we need to rebuild it as a regular 5809 // constant. 5810 DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); 5811 UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset); 5812 } else { 5813 // The operand is a TargetConstant, we need to rebuild it as a regular 5814 // constant rather than negating the original operand. 5815 UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); 5816 DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset); 5817 } 5818 5819 SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG); 5820 5821 SDValue SlideDown = 5822 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1, 5823 DownOffset, TrueMask, UpOffset); 5824 return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset, 5825 TrueMask, DAG.getRegister(RISCV::X0, XLenVT)); 5826 } 5827 5828 SDValue 5829 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5830 SelectionDAG &DAG) const { 5831 SDLoc DL(Op); 5832 auto *Load = cast<LoadSDNode>(Op); 5833 5834 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5835 Load->getMemoryVT(), 5836 *Load->getMemOperand()) && 5837 "Expecting a correctly-aligned load"); 5838 5839 MVT VT = Op.getSimpleValueType(); 5840 MVT XLenVT = Subtarget.getXLenVT(); 5841 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5842 5843 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5844 5845 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5846 SDValue IntID = DAG.getTargetConstant( 5847 IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT); 5848 SmallVector<SDValue, 4> Ops{Load->getChain(), IntID}; 5849 if (!IsMaskOp) 5850 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5851 Ops.push_back(Load->getBasePtr()); 5852 Ops.push_back(VL); 5853 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5854 SDValue NewLoad = 5855 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 5856 Load->getMemoryVT(), Load->getMemOperand()); 5857 5858 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5859 return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL); 5860 } 5861 5862 SDValue 5863 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5864 SelectionDAG &DAG) const { 5865 SDLoc DL(Op); 5866 auto *Store = cast<StoreSDNode>(Op); 5867 5868 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5869 Store->getMemoryVT(), 5870 *Store->getMemOperand()) && 5871 "Expecting a correctly-aligned store"); 5872 5873 SDValue StoreVal = Store->getValue(); 5874 MVT VT = StoreVal.getSimpleValueType(); 5875 MVT XLenVT = Subtarget.getXLenVT(); 5876 5877 // If the size less than a byte, we need to pad with zeros to make a byte. 5878 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5879 VT = MVT::v8i1; 5880 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5881 DAG.getConstant(0, DL, VT), StoreVal, 5882 DAG.getIntPtrConstant(0, DL)); 5883 } 5884 5885 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5886 5887 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5888 5889 SDValue NewValue = 5890 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5891 5892 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5893 SDValue IntID = DAG.getTargetConstant( 5894 IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT); 5895 return DAG.getMemIntrinsicNode( 5896 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 5897 {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL}, 5898 Store->getMemoryVT(), Store->getMemOperand()); 5899 } 5900 5901 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5902 SelectionDAG &DAG) const { 5903 SDLoc DL(Op); 5904 MVT VT = Op.getSimpleValueType(); 5905 5906 const auto *MemSD = cast<MemSDNode>(Op); 5907 EVT MemVT = MemSD->getMemoryVT(); 5908 MachineMemOperand *MMO = MemSD->getMemOperand(); 5909 SDValue Chain = MemSD->getChain(); 5910 SDValue BasePtr = MemSD->getBasePtr(); 5911 5912 SDValue Mask, PassThru, VL; 5913 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5914 Mask = VPLoad->getMask(); 5915 PassThru = DAG.getUNDEF(VT); 5916 VL = VPLoad->getVectorLength(); 5917 } else { 5918 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5919 Mask = MLoad->getMask(); 5920 PassThru = MLoad->getPassThru(); 5921 } 5922 5923 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5924 5925 MVT XLenVT = Subtarget.getXLenVT(); 5926 5927 MVT ContainerVT = VT; 5928 if (VT.isFixedLengthVector()) { 5929 ContainerVT = getContainerForFixedLengthVector(VT); 5930 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5931 if (!IsUnmasked) { 5932 MVT MaskVT = getMaskTypeFor(ContainerVT); 5933 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5934 } 5935 } 5936 5937 if (!VL) 5938 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5939 5940 unsigned IntID = 5941 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5942 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5943 if (IsUnmasked) 5944 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5945 else 5946 Ops.push_back(PassThru); 5947 Ops.push_back(BasePtr); 5948 if (!IsUnmasked) 5949 Ops.push_back(Mask); 5950 Ops.push_back(VL); 5951 if (!IsUnmasked) 5952 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5953 5954 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5955 5956 SDValue Result = 5957 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5958 Chain = Result.getValue(1); 5959 5960 if (VT.isFixedLengthVector()) 5961 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5962 5963 return DAG.getMergeValues({Result, Chain}, DL); 5964 } 5965 5966 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5967 SelectionDAG &DAG) const { 5968 SDLoc DL(Op); 5969 5970 const auto *MemSD = cast<MemSDNode>(Op); 5971 EVT MemVT = MemSD->getMemoryVT(); 5972 MachineMemOperand *MMO = MemSD->getMemOperand(); 5973 SDValue Chain = MemSD->getChain(); 5974 SDValue BasePtr = MemSD->getBasePtr(); 5975 SDValue Val, Mask, VL; 5976 5977 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5978 Val = VPStore->getValue(); 5979 Mask = VPStore->getMask(); 5980 VL = VPStore->getVectorLength(); 5981 } else { 5982 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5983 Val = MStore->getValue(); 5984 Mask = MStore->getMask(); 5985 } 5986 5987 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5988 5989 MVT VT = Val.getSimpleValueType(); 5990 MVT XLenVT = Subtarget.getXLenVT(); 5991 5992 MVT ContainerVT = VT; 5993 if (VT.isFixedLengthVector()) { 5994 ContainerVT = getContainerForFixedLengthVector(VT); 5995 5996 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5997 if (!IsUnmasked) { 5998 MVT MaskVT = getMaskTypeFor(ContainerVT); 5999 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6000 } 6001 } 6002 6003 if (!VL) 6004 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6005 6006 unsigned IntID = 6007 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 6008 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6009 Ops.push_back(Val); 6010 Ops.push_back(BasePtr); 6011 if (!IsUnmasked) 6012 Ops.push_back(Mask); 6013 Ops.push_back(VL); 6014 6015 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6016 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6017 } 6018 6019 SDValue 6020 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 6021 SelectionDAG &DAG) const { 6022 MVT InVT = Op.getOperand(0).getSimpleValueType(); 6023 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 6024 6025 MVT VT = Op.getSimpleValueType(); 6026 6027 SDValue Op1 = 6028 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 6029 SDValue Op2 = 6030 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 6031 6032 SDLoc DL(Op); 6033 SDValue VL = 6034 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 6035 6036 MVT MaskVT = getMaskTypeFor(ContainerVT); 6037 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 6038 6039 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 6040 Op.getOperand(2), Mask, VL); 6041 6042 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 6043 } 6044 6045 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 6046 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 6047 MVT VT = Op.getSimpleValueType(); 6048 6049 if (VT.getVectorElementType() == MVT::i1) 6050 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 6051 6052 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 6053 } 6054 6055 SDValue 6056 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 6057 SelectionDAG &DAG) const { 6058 unsigned Opc; 6059 switch (Op.getOpcode()) { 6060 default: llvm_unreachable("Unexpected opcode!"); 6061 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 6062 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 6063 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 6064 } 6065 6066 return lowerToScalableOp(Op, DAG, Opc); 6067 } 6068 6069 // Lower vector ABS to smax(X, sub(0, X)). 6070 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 6071 SDLoc DL(Op); 6072 MVT VT = Op.getSimpleValueType(); 6073 SDValue X = Op.getOperand(0); 6074 6075 assert(VT.isFixedLengthVector() && "Unexpected type"); 6076 6077 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6078 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 6079 6080 SDValue Mask, VL; 6081 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6082 6083 SDValue SplatZero = DAG.getNode( 6084 RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 6085 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 6086 SDValue NegX = 6087 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 6088 SDValue Max = 6089 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 6090 6091 return convertFromScalableVector(VT, Max, DAG, Subtarget); 6092 } 6093 6094 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 6095 SDValue Op, SelectionDAG &DAG) const { 6096 SDLoc DL(Op); 6097 MVT VT = Op.getSimpleValueType(); 6098 SDValue Mag = Op.getOperand(0); 6099 SDValue Sign = Op.getOperand(1); 6100 assert(Mag.getValueType() == Sign.getValueType() && 6101 "Can only handle COPYSIGN with matching types."); 6102 6103 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6104 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 6105 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 6106 6107 SDValue Mask, VL; 6108 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6109 6110 SDValue CopySign = 6111 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 6112 6113 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 6114 } 6115 6116 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 6117 SDValue Op, SelectionDAG &DAG) const { 6118 MVT VT = Op.getSimpleValueType(); 6119 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6120 6121 MVT I1ContainerVT = 6122 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6123 6124 SDValue CC = 6125 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 6126 SDValue Op1 = 6127 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 6128 SDValue Op2 = 6129 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 6130 6131 SDLoc DL(Op); 6132 SDValue Mask, VL; 6133 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6134 6135 SDValue Select = 6136 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 6137 6138 return convertFromScalableVector(VT, Select, DAG, Subtarget); 6139 } 6140 6141 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 6142 unsigned NewOpc, 6143 bool HasMask) const { 6144 MVT VT = Op.getSimpleValueType(); 6145 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6146 6147 // Create list of operands by converting existing ones to scalable types. 6148 SmallVector<SDValue, 6> Ops; 6149 for (const SDValue &V : Op->op_values()) { 6150 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6151 6152 // Pass through non-vector operands. 6153 if (!V.getValueType().isVector()) { 6154 Ops.push_back(V); 6155 continue; 6156 } 6157 6158 // "cast" fixed length vector to a scalable vector. 6159 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 6160 "Only fixed length vectors are supported!"); 6161 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6162 } 6163 6164 SDLoc DL(Op); 6165 SDValue Mask, VL; 6166 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6167 if (HasMask) 6168 Ops.push_back(Mask); 6169 Ops.push_back(VL); 6170 6171 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 6172 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 6173 } 6174 6175 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 6176 // * Operands of each node are assumed to be in the same order. 6177 // * The EVL operand is promoted from i32 to i64 on RV64. 6178 // * Fixed-length vectors are converted to their scalable-vector container 6179 // types. 6180 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 6181 unsigned RISCVISDOpc) const { 6182 SDLoc DL(Op); 6183 MVT VT = Op.getSimpleValueType(); 6184 SmallVector<SDValue, 4> Ops; 6185 6186 for (const auto &OpIdx : enumerate(Op->ops())) { 6187 SDValue V = OpIdx.value(); 6188 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6189 // Pass through operands which aren't fixed-length vectors. 6190 if (!V.getValueType().isFixedLengthVector()) { 6191 Ops.push_back(V); 6192 continue; 6193 } 6194 // "cast" fixed length vector to a scalable vector. 6195 MVT OpVT = V.getSimpleValueType(); 6196 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 6197 assert(useRVVForFixedLengthVectorVT(OpVT) && 6198 "Only fixed length vectors are supported!"); 6199 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6200 } 6201 6202 if (!VT.isFixedLengthVector()) 6203 return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags()); 6204 6205 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6206 6207 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags()); 6208 6209 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 6210 } 6211 6212 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op, 6213 SelectionDAG &DAG) const { 6214 SDLoc DL(Op); 6215 MVT VT = Op.getSimpleValueType(); 6216 6217 SDValue Src = Op.getOperand(0); 6218 // NOTE: Mask is dropped. 6219 SDValue VL = Op.getOperand(2); 6220 6221 MVT ContainerVT = VT; 6222 if (VT.isFixedLengthVector()) { 6223 ContainerVT = getContainerForFixedLengthVector(VT); 6224 MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6225 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 6226 } 6227 6228 MVT XLenVT = Subtarget.getXLenVT(); 6229 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 6230 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6231 DAG.getUNDEF(ContainerVT), Zero, VL); 6232 6233 SDValue SplatValue = DAG.getConstant( 6234 Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT); 6235 SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6236 DAG.getUNDEF(ContainerVT), SplatValue, VL); 6237 6238 SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src, 6239 Splat, ZeroSplat, VL); 6240 if (!VT.isFixedLengthVector()) 6241 return Result; 6242 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6243 } 6244 6245 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op, 6246 SelectionDAG &DAG) const { 6247 SDLoc DL(Op); 6248 MVT VT = Op.getSimpleValueType(); 6249 6250 SDValue Op1 = Op.getOperand(0); 6251 SDValue Op2 = Op.getOperand(1); 6252 ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 6253 // NOTE: Mask is dropped. 6254 SDValue VL = Op.getOperand(4); 6255 6256 MVT ContainerVT = VT; 6257 if (VT.isFixedLengthVector()) { 6258 ContainerVT = getContainerForFixedLengthVector(VT); 6259 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6260 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6261 } 6262 6263 SDValue Result; 6264 SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 6265 6266 switch (Condition) { 6267 default: 6268 break; 6269 // X != Y --> (X^Y) 6270 case ISD::SETNE: 6271 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL); 6272 break; 6273 // X == Y --> ~(X^Y) 6274 case ISD::SETEQ: { 6275 SDValue Temp = 6276 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL); 6277 Result = 6278 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL); 6279 break; 6280 } 6281 // X >s Y --> X == 0 & Y == 1 --> ~X & Y 6282 // X <u Y --> X == 0 & Y == 1 --> ~X & Y 6283 case ISD::SETGT: 6284 case ISD::SETULT: { 6285 SDValue Temp = 6286 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL); 6287 Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL); 6288 break; 6289 } 6290 // X <s Y --> X == 1 & Y == 0 --> ~Y & X 6291 // X >u Y --> X == 1 & Y == 0 --> ~Y & X 6292 case ISD::SETLT: 6293 case ISD::SETUGT: { 6294 SDValue Temp = 6295 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL); 6296 Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL); 6297 break; 6298 } 6299 // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 6300 // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 6301 case ISD::SETGE: 6302 case ISD::SETULE: { 6303 SDValue Temp = 6304 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL); 6305 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL); 6306 break; 6307 } 6308 // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 6309 // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 6310 case ISD::SETLE: 6311 case ISD::SETUGE: { 6312 SDValue Temp = 6313 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL); 6314 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL); 6315 break; 6316 } 6317 } 6318 6319 if (!VT.isFixedLengthVector()) 6320 return Result; 6321 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6322 } 6323 6324 // Lower Floating-Point/Integer Type-Convert VP SDNodes 6325 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG, 6326 unsigned RISCVISDOpc) const { 6327 SDLoc DL(Op); 6328 6329 SDValue Src = Op.getOperand(0); 6330 SDValue Mask = Op.getOperand(1); 6331 SDValue VL = Op.getOperand(2); 6332 6333 MVT DstVT = Op.getSimpleValueType(); 6334 MVT SrcVT = Src.getSimpleValueType(); 6335 if (DstVT.isFixedLengthVector()) { 6336 DstVT = getContainerForFixedLengthVector(DstVT); 6337 SrcVT = getContainerForFixedLengthVector(SrcVT); 6338 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 6339 MVT MaskVT = getMaskTypeFor(DstVT); 6340 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6341 } 6342 6343 unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL || 6344 RISCVISDOpc == RISCVISD::FP_TO_SINT_VL) 6345 ? RISCVISD::VSEXT_VL 6346 : RISCVISD::VZEXT_VL; 6347 6348 unsigned DstEltSize = DstVT.getScalarSizeInBits(); 6349 unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); 6350 6351 SDValue Result; 6352 if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion. 6353 if (SrcVT.isInteger()) { 6354 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6355 6356 // Do we need to do any pre-widening before converting? 6357 if (SrcEltSize == 1) { 6358 MVT IntVT = DstVT.changeVectorElementTypeToInteger(); 6359 MVT XLenVT = Subtarget.getXLenVT(); 6360 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 6361 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6362 DAG.getUNDEF(IntVT), Zero, VL); 6363 SDValue One = DAG.getConstant( 6364 RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT); 6365 SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6366 DAG.getUNDEF(IntVT), One, VL); 6367 Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat, 6368 ZeroSplat, VL); 6369 } else if (DstEltSize > (2 * SrcEltSize)) { 6370 // Widen before converting. 6371 MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2), 6372 DstVT.getVectorElementCount()); 6373 Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL); 6374 } 6375 6376 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 6377 } else { 6378 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6379 "Wrong input/output vector types"); 6380 6381 // Convert f16 to f32 then convert f32 to i64. 6382 if (DstEltSize > (2 * SrcEltSize)) { 6383 assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6384 MVT InterimFVT = 6385 MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6386 Src = 6387 DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL); 6388 } 6389 6390 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 6391 } 6392 } else { // Narrowing + Conversion 6393 if (SrcVT.isInteger()) { 6394 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6395 // First do a narrowing convert to an FP type half the size, then round 6396 // the FP type to a small FP type if needed. 6397 6398 MVT InterimFVT = DstVT; 6399 if (SrcEltSize > (2 * DstEltSize)) { 6400 assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!"); 6401 assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6402 InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6403 } 6404 6405 Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL); 6406 6407 if (InterimFVT != DstVT) { 6408 Src = Result; 6409 Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL); 6410 } 6411 } else { 6412 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6413 "Wrong input/output vector types"); 6414 // First do a narrowing conversion to an integer half the size, then 6415 // truncate if needed. 6416 6417 if (DstEltSize == 1) { 6418 // First convert to the same size integer, then convert to mask using 6419 // setcc. 6420 assert(SrcEltSize >= 16 && "Unexpected FP type!"); 6421 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize), 6422 DstVT.getVectorElementCount()); 6423 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 6424 6425 // Compare the integer result to 0. The integer should be 0 or 1/-1, 6426 // otherwise the conversion was undefined. 6427 MVT XLenVT = Subtarget.getXLenVT(); 6428 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 6429 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT, 6430 DAG.getUNDEF(InterimIVT), SplatZero); 6431 Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero, 6432 DAG.getCondCode(ISD::SETNE), Mask, VL); 6433 } else { 6434 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6435 DstVT.getVectorElementCount()); 6436 6437 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 6438 6439 while (InterimIVT != DstVT) { 6440 SrcEltSize /= 2; 6441 Src = Result; 6442 InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6443 DstVT.getVectorElementCount()); 6444 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT, 6445 Src, Mask, VL); 6446 } 6447 } 6448 } 6449 } 6450 6451 MVT VT = Op.getSimpleValueType(); 6452 if (!VT.isFixedLengthVector()) 6453 return Result; 6454 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6455 } 6456 6457 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 6458 unsigned MaskOpc, 6459 unsigned VecOpc) const { 6460 MVT VT = Op.getSimpleValueType(); 6461 if (VT.getVectorElementType() != MVT::i1) 6462 return lowerVPOp(Op, DAG, VecOpc); 6463 6464 // It is safe to drop mask parameter as masked-off elements are undef. 6465 SDValue Op1 = Op->getOperand(0); 6466 SDValue Op2 = Op->getOperand(1); 6467 SDValue VL = Op->getOperand(3); 6468 6469 MVT ContainerVT = VT; 6470 const bool IsFixed = VT.isFixedLengthVector(); 6471 if (IsFixed) { 6472 ContainerVT = getContainerForFixedLengthVector(VT); 6473 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6474 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6475 } 6476 6477 SDLoc DL(Op); 6478 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 6479 if (!IsFixed) 6480 return Val; 6481 return convertFromScalableVector(VT, Val, DAG, Subtarget); 6482 } 6483 6484 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 6485 // matched to a RVV indexed load. The RVV indexed load instructions only 6486 // support the "unsigned unscaled" addressing mode; indices are implicitly 6487 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6488 // signed or scaled indexing is extended to the XLEN value type and scaled 6489 // accordingly. 6490 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 6491 SelectionDAG &DAG) const { 6492 SDLoc DL(Op); 6493 MVT VT = Op.getSimpleValueType(); 6494 6495 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6496 EVT MemVT = MemSD->getMemoryVT(); 6497 MachineMemOperand *MMO = MemSD->getMemOperand(); 6498 SDValue Chain = MemSD->getChain(); 6499 SDValue BasePtr = MemSD->getBasePtr(); 6500 6501 ISD::LoadExtType LoadExtType; 6502 SDValue Index, Mask, PassThru, VL; 6503 6504 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 6505 Index = VPGN->getIndex(); 6506 Mask = VPGN->getMask(); 6507 PassThru = DAG.getUNDEF(VT); 6508 VL = VPGN->getVectorLength(); 6509 // VP doesn't support extending loads. 6510 LoadExtType = ISD::NON_EXTLOAD; 6511 } else { 6512 // Else it must be a MGATHER. 6513 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 6514 Index = MGN->getIndex(); 6515 Mask = MGN->getMask(); 6516 PassThru = MGN->getPassThru(); 6517 LoadExtType = MGN->getExtensionType(); 6518 } 6519 6520 MVT IndexVT = Index.getSimpleValueType(); 6521 MVT XLenVT = Subtarget.getXLenVT(); 6522 6523 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6524 "Unexpected VTs!"); 6525 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6526 // Targets have to explicitly opt-in for extending vector loads. 6527 assert(LoadExtType == ISD::NON_EXTLOAD && 6528 "Unexpected extending MGATHER/VP_GATHER"); 6529 (void)LoadExtType; 6530 6531 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6532 // the selection of the masked intrinsics doesn't do this for us. 6533 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6534 6535 MVT ContainerVT = VT; 6536 if (VT.isFixedLengthVector()) { 6537 ContainerVT = getContainerForFixedLengthVector(VT); 6538 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6539 ContainerVT.getVectorElementCount()); 6540 6541 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6542 6543 if (!IsUnmasked) { 6544 MVT MaskVT = getMaskTypeFor(ContainerVT); 6545 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6546 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 6547 } 6548 } 6549 6550 if (!VL) 6551 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6552 6553 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6554 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6555 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6556 VL); 6557 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6558 TrueMask, VL); 6559 } 6560 6561 unsigned IntID = 6562 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 6563 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6564 if (IsUnmasked) 6565 Ops.push_back(DAG.getUNDEF(ContainerVT)); 6566 else 6567 Ops.push_back(PassThru); 6568 Ops.push_back(BasePtr); 6569 Ops.push_back(Index); 6570 if (!IsUnmasked) 6571 Ops.push_back(Mask); 6572 Ops.push_back(VL); 6573 if (!IsUnmasked) 6574 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 6575 6576 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 6577 SDValue Result = 6578 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 6579 Chain = Result.getValue(1); 6580 6581 if (VT.isFixedLengthVector()) 6582 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 6583 6584 return DAG.getMergeValues({Result, Chain}, DL); 6585 } 6586 6587 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 6588 // matched to a RVV indexed store. The RVV indexed store instructions only 6589 // support the "unsigned unscaled" addressing mode; indices are implicitly 6590 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6591 // signed or scaled indexing is extended to the XLEN value type and scaled 6592 // accordingly. 6593 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 6594 SelectionDAG &DAG) const { 6595 SDLoc DL(Op); 6596 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6597 EVT MemVT = MemSD->getMemoryVT(); 6598 MachineMemOperand *MMO = MemSD->getMemOperand(); 6599 SDValue Chain = MemSD->getChain(); 6600 SDValue BasePtr = MemSD->getBasePtr(); 6601 6602 bool IsTruncatingStore = false; 6603 SDValue Index, Mask, Val, VL; 6604 6605 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 6606 Index = VPSN->getIndex(); 6607 Mask = VPSN->getMask(); 6608 Val = VPSN->getValue(); 6609 VL = VPSN->getVectorLength(); 6610 // VP doesn't support truncating stores. 6611 IsTruncatingStore = false; 6612 } else { 6613 // Else it must be a MSCATTER. 6614 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 6615 Index = MSN->getIndex(); 6616 Mask = MSN->getMask(); 6617 Val = MSN->getValue(); 6618 IsTruncatingStore = MSN->isTruncatingStore(); 6619 } 6620 6621 MVT VT = Val.getSimpleValueType(); 6622 MVT IndexVT = Index.getSimpleValueType(); 6623 MVT XLenVT = Subtarget.getXLenVT(); 6624 6625 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6626 "Unexpected VTs!"); 6627 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6628 // Targets have to explicitly opt-in for extending vector loads and 6629 // truncating vector stores. 6630 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 6631 (void)IsTruncatingStore; 6632 6633 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6634 // the selection of the masked intrinsics doesn't do this for us. 6635 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6636 6637 MVT ContainerVT = VT; 6638 if (VT.isFixedLengthVector()) { 6639 ContainerVT = getContainerForFixedLengthVector(VT); 6640 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6641 ContainerVT.getVectorElementCount()); 6642 6643 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6644 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6645 6646 if (!IsUnmasked) { 6647 MVT MaskVT = getMaskTypeFor(ContainerVT); 6648 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6649 } 6650 } 6651 6652 if (!VL) 6653 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6654 6655 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6656 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6657 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6658 VL); 6659 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6660 TrueMask, VL); 6661 } 6662 6663 unsigned IntID = 6664 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6665 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6666 Ops.push_back(Val); 6667 Ops.push_back(BasePtr); 6668 Ops.push_back(Index); 6669 if (!IsUnmasked) 6670 Ops.push_back(Mask); 6671 Ops.push_back(VL); 6672 6673 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6674 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6675 } 6676 6677 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6678 SelectionDAG &DAG) const { 6679 const MVT XLenVT = Subtarget.getXLenVT(); 6680 SDLoc DL(Op); 6681 SDValue Chain = Op->getOperand(0); 6682 SDValue SysRegNo = DAG.getTargetConstant( 6683 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6684 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6685 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6686 6687 // Encoding used for rounding mode in RISCV differs from that used in 6688 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6689 // table, which consists of a sequence of 4-bit fields, each representing 6690 // corresponding FLT_ROUNDS mode. 6691 static const int Table = 6692 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6693 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6694 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6695 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6696 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6697 6698 SDValue Shift = 6699 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6700 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6701 DAG.getConstant(Table, DL, XLenVT), Shift); 6702 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6703 DAG.getConstant(7, DL, XLenVT)); 6704 6705 return DAG.getMergeValues({Masked, Chain}, DL); 6706 } 6707 6708 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6709 SelectionDAG &DAG) const { 6710 const MVT XLenVT = Subtarget.getXLenVT(); 6711 SDLoc DL(Op); 6712 SDValue Chain = Op->getOperand(0); 6713 SDValue RMValue = Op->getOperand(1); 6714 SDValue SysRegNo = DAG.getTargetConstant( 6715 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6716 6717 // Encoding used for rounding mode in RISCV differs from that used in 6718 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6719 // a table, which consists of a sequence of 4-bit fields, each representing 6720 // corresponding RISCV mode. 6721 static const unsigned Table = 6722 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6723 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6724 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6725 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6726 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6727 6728 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6729 DAG.getConstant(2, DL, XLenVT)); 6730 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6731 DAG.getConstant(Table, DL, XLenVT), Shift); 6732 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6733 DAG.getConstant(0x7, DL, XLenVT)); 6734 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6735 RMValue); 6736 } 6737 6738 SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op, 6739 SelectionDAG &DAG) const { 6740 MachineFunction &MF = DAG.getMachineFunction(); 6741 6742 bool isRISCV64 = Subtarget.is64Bit(); 6743 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6744 6745 int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false); 6746 return DAG.getFrameIndex(FI, PtrVT); 6747 } 6748 6749 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6750 switch (IntNo) { 6751 default: 6752 llvm_unreachable("Unexpected Intrinsic"); 6753 case Intrinsic::riscv_bcompress: 6754 return RISCVISD::BCOMPRESSW; 6755 case Intrinsic::riscv_bdecompress: 6756 return RISCVISD::BDECOMPRESSW; 6757 case Intrinsic::riscv_bfp: 6758 return RISCVISD::BFPW; 6759 case Intrinsic::riscv_fsl: 6760 return RISCVISD::FSLW; 6761 case Intrinsic::riscv_fsr: 6762 return RISCVISD::FSRW; 6763 } 6764 } 6765 6766 // Converts the given intrinsic to a i64 operation with any extension. 6767 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6768 unsigned IntNo) { 6769 SDLoc DL(N); 6770 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6771 // Deal with the Instruction Operands 6772 SmallVector<SDValue, 3> NewOps; 6773 for (SDValue Op : drop_begin(N->ops())) 6774 // Promote the operand to i64 type 6775 NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op)); 6776 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps); 6777 // ReplaceNodeResults requires we maintain the same type for the return value. 6778 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6779 } 6780 6781 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6782 // form of the given Opcode. 6783 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6784 switch (Opcode) { 6785 default: 6786 llvm_unreachable("Unexpected opcode"); 6787 case ISD::SHL: 6788 return RISCVISD::SLLW; 6789 case ISD::SRA: 6790 return RISCVISD::SRAW; 6791 case ISD::SRL: 6792 return RISCVISD::SRLW; 6793 case ISD::SDIV: 6794 return RISCVISD::DIVW; 6795 case ISD::UDIV: 6796 return RISCVISD::DIVUW; 6797 case ISD::UREM: 6798 return RISCVISD::REMUW; 6799 case ISD::ROTL: 6800 return RISCVISD::ROLW; 6801 case ISD::ROTR: 6802 return RISCVISD::RORW; 6803 } 6804 } 6805 6806 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6807 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6808 // otherwise be promoted to i64, making it difficult to select the 6809 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6810 // type i8/i16/i32 is lost. 6811 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6812 unsigned ExtOpc = ISD::ANY_EXTEND) { 6813 SDLoc DL(N); 6814 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6815 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6816 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6817 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6818 // ReplaceNodeResults requires we maintain the same type for the return value. 6819 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6820 } 6821 6822 // Converts the given 32-bit operation to a i64 operation with signed extension 6823 // semantic to reduce the signed extension instructions. 6824 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6825 SDLoc DL(N); 6826 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6827 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6828 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6829 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6830 DAG.getValueType(MVT::i32)); 6831 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6832 } 6833 6834 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6835 SmallVectorImpl<SDValue> &Results, 6836 SelectionDAG &DAG) const { 6837 SDLoc DL(N); 6838 switch (N->getOpcode()) { 6839 default: 6840 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6841 case ISD::STRICT_FP_TO_SINT: 6842 case ISD::STRICT_FP_TO_UINT: 6843 case ISD::FP_TO_SINT: 6844 case ISD::FP_TO_UINT: { 6845 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6846 "Unexpected custom legalisation"); 6847 bool IsStrict = N->isStrictFPOpcode(); 6848 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6849 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6850 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6851 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6852 TargetLowering::TypeSoftenFloat) { 6853 if (!isTypeLegal(Op0.getValueType())) 6854 return; 6855 if (IsStrict) { 6856 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6857 : RISCVISD::STRICT_FCVT_WU_RV64; 6858 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6859 SDValue Res = DAG.getNode( 6860 Opc, DL, VTs, N->getOperand(0), Op0, 6861 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6862 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6863 Results.push_back(Res.getValue(1)); 6864 return; 6865 } 6866 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6867 SDValue Res = 6868 DAG.getNode(Opc, DL, MVT::i64, Op0, 6869 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6870 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6871 return; 6872 } 6873 // If the FP type needs to be softened, emit a library call using the 'si' 6874 // version. If we left it to default legalization we'd end up with 'di'. If 6875 // the FP type doesn't need to be softened just let generic type 6876 // legalization promote the result type. 6877 RTLIB::Libcall LC; 6878 if (IsSigned) 6879 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6880 else 6881 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6882 MakeLibCallOptions CallOptions; 6883 EVT OpVT = Op0.getValueType(); 6884 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6885 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6886 SDValue Result; 6887 std::tie(Result, Chain) = 6888 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6889 Results.push_back(Result); 6890 if (IsStrict) 6891 Results.push_back(Chain); 6892 break; 6893 } 6894 case ISD::READCYCLECOUNTER: { 6895 assert(!Subtarget.is64Bit() && 6896 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6897 6898 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6899 SDValue RCW = 6900 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6901 6902 Results.push_back( 6903 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6904 Results.push_back(RCW.getValue(2)); 6905 break; 6906 } 6907 case ISD::MUL: { 6908 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6909 unsigned XLen = Subtarget.getXLen(); 6910 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6911 if (Size > XLen) { 6912 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6913 SDValue LHS = N->getOperand(0); 6914 SDValue RHS = N->getOperand(1); 6915 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6916 6917 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6918 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6919 // We need exactly one side to be unsigned. 6920 if (LHSIsU == RHSIsU) 6921 return; 6922 6923 auto MakeMULPair = [&](SDValue S, SDValue U) { 6924 MVT XLenVT = Subtarget.getXLenVT(); 6925 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6926 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6927 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6928 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6929 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6930 }; 6931 6932 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6933 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6934 6935 // The other operand should be signed, but still prefer MULH when 6936 // possible. 6937 if (RHSIsU && LHSIsS && !RHSIsS) 6938 Results.push_back(MakeMULPair(LHS, RHS)); 6939 else if (LHSIsU && RHSIsS && !LHSIsS) 6940 Results.push_back(MakeMULPair(RHS, LHS)); 6941 6942 return; 6943 } 6944 LLVM_FALLTHROUGH; 6945 } 6946 case ISD::ADD: 6947 case ISD::SUB: 6948 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6949 "Unexpected custom legalisation"); 6950 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6951 break; 6952 case ISD::SHL: 6953 case ISD::SRA: 6954 case ISD::SRL: 6955 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6956 "Unexpected custom legalisation"); 6957 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6958 // If we can use a BSET instruction, allow default promotion to apply. 6959 if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() && 6960 isOneConstant(N->getOperand(0))) 6961 break; 6962 Results.push_back(customLegalizeToWOp(N, DAG)); 6963 break; 6964 } 6965 6966 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6967 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6968 // shift amount. 6969 if (N->getOpcode() == ISD::SHL) { 6970 SDLoc DL(N); 6971 SDValue NewOp0 = 6972 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6973 SDValue NewOp1 = 6974 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6975 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6976 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6977 DAG.getValueType(MVT::i32)); 6978 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6979 } 6980 6981 break; 6982 case ISD::ROTL: 6983 case ISD::ROTR: 6984 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6985 "Unexpected custom legalisation"); 6986 Results.push_back(customLegalizeToWOp(N, DAG)); 6987 break; 6988 case ISD::CTTZ: 6989 case ISD::CTTZ_ZERO_UNDEF: 6990 case ISD::CTLZ: 6991 case ISD::CTLZ_ZERO_UNDEF: { 6992 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6993 "Unexpected custom legalisation"); 6994 6995 SDValue NewOp0 = 6996 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6997 bool IsCTZ = 6998 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6999 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 7000 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 7001 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7002 return; 7003 } 7004 case ISD::SDIV: 7005 case ISD::UDIV: 7006 case ISD::UREM: { 7007 MVT VT = N->getSimpleValueType(0); 7008 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 7009 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 7010 "Unexpected custom legalisation"); 7011 // Don't promote division/remainder by constant since we should expand those 7012 // to multiply by magic constant. 7013 // FIXME: What if the expansion is disabled for minsize. 7014 if (N->getOperand(1).getOpcode() == ISD::Constant) 7015 return; 7016 7017 // If the input is i32, use ANY_EXTEND since the W instructions don't read 7018 // the upper 32 bits. For other types we need to sign or zero extend 7019 // based on the opcode. 7020 unsigned ExtOpc = ISD::ANY_EXTEND; 7021 if (VT != MVT::i32) 7022 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 7023 : ISD::ZERO_EXTEND; 7024 7025 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 7026 break; 7027 } 7028 case ISD::UADDO: 7029 case ISD::USUBO: { 7030 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7031 "Unexpected custom legalisation"); 7032 bool IsAdd = N->getOpcode() == ISD::UADDO; 7033 // Create an ADDW or SUBW. 7034 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 7035 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7036 SDValue Res = 7037 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 7038 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 7039 DAG.getValueType(MVT::i32)); 7040 7041 SDValue Overflow; 7042 if (IsAdd && isOneConstant(RHS)) { 7043 // Special case uaddo X, 1 overflowed if the addition result is 0. 7044 // The general case (X + C) < C is not necessarily beneficial. Although we 7045 // reduce the live range of X, we may introduce the materialization of 7046 // constant C, especially when the setcc result is used by branch. We have 7047 // no compare with constant and branch instructions. 7048 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, 7049 DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ); 7050 } else { 7051 // Sign extend the LHS and perform an unsigned compare with the ADDW 7052 // result. Since the inputs are sign extended from i32, this is equivalent 7053 // to comparing the lower 32 bits. 7054 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 7055 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 7056 IsAdd ? ISD::SETULT : ISD::SETUGT); 7057 } 7058 7059 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7060 Results.push_back(Overflow); 7061 return; 7062 } 7063 case ISD::UADDSAT: 7064 case ISD::USUBSAT: { 7065 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7066 "Unexpected custom legalisation"); 7067 if (Subtarget.hasStdExtZbb()) { 7068 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 7069 // sign extend allows overflow of the lower 32 bits to be detected on 7070 // the promoted size. 7071 SDValue LHS = 7072 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 7073 SDValue RHS = 7074 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 7075 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 7076 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7077 return; 7078 } 7079 7080 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 7081 // promotion for UADDO/USUBO. 7082 Results.push_back(expandAddSubSat(N, DAG)); 7083 return; 7084 } 7085 case ISD::ABS: { 7086 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7087 "Unexpected custom legalisation"); 7088 7089 // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y) 7090 7091 SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 7092 7093 // Freeze the source so we can increase it's use count. 7094 Src = DAG.getFreeze(Src); 7095 7096 // Copy sign bit to all bits using the sraiw pattern. 7097 SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src, 7098 DAG.getValueType(MVT::i32)); 7099 SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill, 7100 DAG.getConstant(31, DL, MVT::i64)); 7101 7102 SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill); 7103 NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill); 7104 7105 // NOTE: The result is only required to be anyextended, but sext is 7106 // consistent with type legalization of sub. 7107 NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes, 7108 DAG.getValueType(MVT::i32)); 7109 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 7110 return; 7111 } 7112 case ISD::BITCAST: { 7113 EVT VT = N->getValueType(0); 7114 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 7115 SDValue Op0 = N->getOperand(0); 7116 EVT Op0VT = Op0.getValueType(); 7117 MVT XLenVT = Subtarget.getXLenVT(); 7118 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 7119 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 7120 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 7121 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 7122 Subtarget.hasStdExtF()) { 7123 SDValue FPConv = 7124 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 7125 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 7126 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 7127 isTypeLegal(Op0VT)) { 7128 // Custom-legalize bitcasts from fixed-length vector types to illegal 7129 // scalar types in order to improve codegen. Bitcast the vector to a 7130 // one-element vector type whose element type is the same as the result 7131 // type, and extract the first element. 7132 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 7133 if (isTypeLegal(BVT)) { 7134 SDValue BVec = DAG.getBitcast(BVT, Op0); 7135 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 7136 DAG.getConstant(0, DL, XLenVT))); 7137 } 7138 } 7139 break; 7140 } 7141 case RISCVISD::GREV: 7142 case RISCVISD::GORC: 7143 case RISCVISD::SHFL: { 7144 MVT VT = N->getSimpleValueType(0); 7145 MVT XLenVT = Subtarget.getXLenVT(); 7146 assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) && 7147 "Unexpected custom legalisation"); 7148 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 7149 assert((Subtarget.hasStdExtZbp() || 7150 (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV && 7151 N->getConstantOperandVal(1) == 7)) && 7152 "Unexpected extension"); 7153 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 7154 SDValue NewOp1 = 7155 DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1)); 7156 SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1); 7157 // ReplaceNodeResults requires we maintain the same type for the return 7158 // value. 7159 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes)); 7160 break; 7161 } 7162 case ISD::BSWAP: 7163 case ISD::BITREVERSE: { 7164 MVT VT = N->getSimpleValueType(0); 7165 MVT XLenVT = Subtarget.getXLenVT(); 7166 assert((VT == MVT::i8 || VT == MVT::i16 || 7167 (VT == MVT::i32 && Subtarget.is64Bit())) && 7168 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 7169 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 7170 unsigned Imm = VT.getSizeInBits() - 1; 7171 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 7172 if (N->getOpcode() == ISD::BSWAP) 7173 Imm &= ~0x7U; 7174 SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0, 7175 DAG.getConstant(Imm, DL, XLenVT)); 7176 // ReplaceNodeResults requires we maintain the same type for the return 7177 // value. 7178 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 7179 break; 7180 } 7181 case ISD::FSHL: 7182 case ISD::FSHR: { 7183 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7184 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 7185 SDValue NewOp0 = 7186 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 7187 SDValue NewOp1 = 7188 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7189 SDValue NewShAmt = 7190 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7191 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 7192 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 7193 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 7194 DAG.getConstant(0x1f, DL, MVT::i64)); 7195 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 7196 // instruction use different orders. fshl will return its first operand for 7197 // shift of zero, fshr will return its second operand. fsl and fsr both 7198 // return rs1 so the ISD nodes need to have different operand orders. 7199 // Shift amount is in rs2. 7200 unsigned Opc = RISCVISD::FSLW; 7201 if (N->getOpcode() == ISD::FSHR) { 7202 std::swap(NewOp0, NewOp1); 7203 Opc = RISCVISD::FSRW; 7204 } 7205 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 7206 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 7207 break; 7208 } 7209 case ISD::EXTRACT_VECTOR_ELT: { 7210 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 7211 // type is illegal (currently only vXi64 RV32). 7212 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 7213 // transferred to the destination register. We issue two of these from the 7214 // upper- and lower- halves of the SEW-bit vector element, slid down to the 7215 // first element. 7216 SDValue Vec = N->getOperand(0); 7217 SDValue Idx = N->getOperand(1); 7218 7219 // The vector type hasn't been legalized yet so we can't issue target 7220 // specific nodes if it needs legalization. 7221 // FIXME: We would manually legalize if it's important. 7222 if (!isTypeLegal(Vec.getValueType())) 7223 return; 7224 7225 MVT VecVT = Vec.getSimpleValueType(); 7226 7227 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 7228 VecVT.getVectorElementType() == MVT::i64 && 7229 "Unexpected EXTRACT_VECTOR_ELT legalization"); 7230 7231 // If this is a fixed vector, we need to convert it to a scalable vector. 7232 MVT ContainerVT = VecVT; 7233 if (VecVT.isFixedLengthVector()) { 7234 ContainerVT = getContainerForFixedLengthVector(VecVT); 7235 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 7236 } 7237 7238 MVT XLenVT = Subtarget.getXLenVT(); 7239 7240 // Use a VL of 1 to avoid processing more elements than we need. 7241 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7242 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 7243 7244 // Unless the index is known to be 0, we must slide the vector down to get 7245 // the desired element into index 0. 7246 if (!isNullConstant(Idx)) { 7247 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 7248 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 7249 } 7250 7251 // Extract the lower XLEN bits of the correct vector element. 7252 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7253 7254 // To extract the upper XLEN bits of the vector element, shift the first 7255 // element right by 32 bits and re-extract the lower XLEN bits. 7256 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 7257 DAG.getUNDEF(ContainerVT), 7258 DAG.getConstant(32, DL, XLenVT), VL); 7259 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 7260 ThirtyTwoV, Mask, VL); 7261 7262 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7263 7264 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7265 break; 7266 } 7267 case ISD::INTRINSIC_WO_CHAIN: { 7268 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 7269 switch (IntNo) { 7270 default: 7271 llvm_unreachable( 7272 "Don't know how to custom type legalize this intrinsic!"); 7273 case Intrinsic::riscv_grev: 7274 case Intrinsic::riscv_gorc: { 7275 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7276 "Unexpected custom legalisation"); 7277 SDValue NewOp1 = 7278 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7279 SDValue NewOp2 = 7280 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7281 unsigned Opc = 7282 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 7283 // If the control is a constant, promote the node by clearing any extra 7284 // bits bits in the control. isel will form greviw/gorciw if the result is 7285 // sign extended. 7286 if (isa<ConstantSDNode>(NewOp2)) { 7287 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7288 DAG.getConstant(0x1f, DL, MVT::i64)); 7289 Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 7290 } 7291 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7292 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7293 break; 7294 } 7295 case Intrinsic::riscv_bcompress: 7296 case Intrinsic::riscv_bdecompress: 7297 case Intrinsic::riscv_bfp: 7298 case Intrinsic::riscv_fsl: 7299 case Intrinsic::riscv_fsr: { 7300 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7301 "Unexpected custom legalisation"); 7302 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 7303 break; 7304 } 7305 case Intrinsic::riscv_orc_b: { 7306 // Lower to the GORCI encoding for orc.b with the operand extended. 7307 SDValue NewOp = 7308 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7309 SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp, 7310 DAG.getConstant(7, DL, MVT::i64)); 7311 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7312 return; 7313 } 7314 case Intrinsic::riscv_shfl: 7315 case Intrinsic::riscv_unshfl: { 7316 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7317 "Unexpected custom legalisation"); 7318 SDValue NewOp1 = 7319 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7320 SDValue NewOp2 = 7321 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7322 unsigned Opc = 7323 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 7324 // There is no (UN)SHFLIW. If the control word is a constant, we can use 7325 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 7326 // will be shuffled the same way as the lower 32 bit half, but the two 7327 // halves won't cross. 7328 if (isa<ConstantSDNode>(NewOp2)) { 7329 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7330 DAG.getConstant(0xf, DL, MVT::i64)); 7331 Opc = 7332 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 7333 } 7334 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7335 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7336 break; 7337 } 7338 case Intrinsic::riscv_vmv_x_s: { 7339 EVT VT = N->getValueType(0); 7340 MVT XLenVT = Subtarget.getXLenVT(); 7341 if (VT.bitsLT(XLenVT)) { 7342 // Simple case just extract using vmv.x.s and truncate. 7343 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 7344 Subtarget.getXLenVT(), N->getOperand(1)); 7345 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 7346 return; 7347 } 7348 7349 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 7350 "Unexpected custom legalization"); 7351 7352 // We need to do the move in two steps. 7353 SDValue Vec = N->getOperand(1); 7354 MVT VecVT = Vec.getSimpleValueType(); 7355 7356 // First extract the lower XLEN bits of the element. 7357 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7358 7359 // To extract the upper XLEN bits of the vector element, shift the first 7360 // element right by 32 bits and re-extract the lower XLEN bits. 7361 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7362 SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG); 7363 7364 SDValue ThirtyTwoV = 7365 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 7366 DAG.getConstant(32, DL, XLenVT), VL); 7367 SDValue LShr32 = 7368 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 7369 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7370 7371 Results.push_back( 7372 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7373 break; 7374 } 7375 } 7376 break; 7377 } 7378 case ISD::VECREDUCE_ADD: 7379 case ISD::VECREDUCE_AND: 7380 case ISD::VECREDUCE_OR: 7381 case ISD::VECREDUCE_XOR: 7382 case ISD::VECREDUCE_SMAX: 7383 case ISD::VECREDUCE_UMAX: 7384 case ISD::VECREDUCE_SMIN: 7385 case ISD::VECREDUCE_UMIN: 7386 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 7387 Results.push_back(V); 7388 break; 7389 case ISD::VP_REDUCE_ADD: 7390 case ISD::VP_REDUCE_AND: 7391 case ISD::VP_REDUCE_OR: 7392 case ISD::VP_REDUCE_XOR: 7393 case ISD::VP_REDUCE_SMAX: 7394 case ISD::VP_REDUCE_UMAX: 7395 case ISD::VP_REDUCE_SMIN: 7396 case ISD::VP_REDUCE_UMIN: 7397 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 7398 Results.push_back(V); 7399 break; 7400 case ISD::FLT_ROUNDS_: { 7401 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 7402 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 7403 Results.push_back(Res.getValue(0)); 7404 Results.push_back(Res.getValue(1)); 7405 break; 7406 } 7407 } 7408 } 7409 7410 // A structure to hold one of the bit-manipulation patterns below. Together, a 7411 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 7412 // (or (and (shl x, 1), 0xAAAAAAAA), 7413 // (and (srl x, 1), 0x55555555)) 7414 struct RISCVBitmanipPat { 7415 SDValue Op; 7416 unsigned ShAmt; 7417 bool IsSHL; 7418 7419 bool formsPairWith(const RISCVBitmanipPat &Other) const { 7420 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 7421 } 7422 }; 7423 7424 // Matches patterns of the form 7425 // (and (shl x, C2), (C1 << C2)) 7426 // (and (srl x, C2), C1) 7427 // (shl (and x, C1), C2) 7428 // (srl (and x, (C1 << C2)), C2) 7429 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 7430 // The expected masks for each shift amount are specified in BitmanipMasks where 7431 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 7432 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 7433 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 7434 // XLen is 64. 7435 static Optional<RISCVBitmanipPat> 7436 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 7437 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 7438 "Unexpected number of masks"); 7439 Optional<uint64_t> Mask; 7440 // Optionally consume a mask around the shift operation. 7441 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 7442 Mask = Op.getConstantOperandVal(1); 7443 Op = Op.getOperand(0); 7444 } 7445 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 7446 return None; 7447 bool IsSHL = Op.getOpcode() == ISD::SHL; 7448 7449 if (!isa<ConstantSDNode>(Op.getOperand(1))) 7450 return None; 7451 uint64_t ShAmt = Op.getConstantOperandVal(1); 7452 7453 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7454 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 7455 return None; 7456 // If we don't have enough masks for 64 bit, then we must be trying to 7457 // match SHFL so we're only allowed to shift 1/4 of the width. 7458 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 7459 return None; 7460 7461 SDValue Src = Op.getOperand(0); 7462 7463 // The expected mask is shifted left when the AND is found around SHL 7464 // patterns. 7465 // ((x >> 1) & 0x55555555) 7466 // ((x << 1) & 0xAAAAAAAA) 7467 bool SHLExpMask = IsSHL; 7468 7469 if (!Mask) { 7470 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 7471 // the mask is all ones: consume that now. 7472 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 7473 Mask = Src.getConstantOperandVal(1); 7474 Src = Src.getOperand(0); 7475 // The expected mask is now in fact shifted left for SRL, so reverse the 7476 // decision. 7477 // ((x & 0xAAAAAAAA) >> 1) 7478 // ((x & 0x55555555) << 1) 7479 SHLExpMask = !SHLExpMask; 7480 } else { 7481 // Use a default shifted mask of all-ones if there's no AND, truncated 7482 // down to the expected width. This simplifies the logic later on. 7483 Mask = maskTrailingOnes<uint64_t>(Width); 7484 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 7485 } 7486 } 7487 7488 unsigned MaskIdx = Log2_32(ShAmt); 7489 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7490 7491 if (SHLExpMask) 7492 ExpMask <<= ShAmt; 7493 7494 if (Mask != ExpMask) 7495 return None; 7496 7497 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 7498 } 7499 7500 // Matches any of the following bit-manipulation patterns: 7501 // (and (shl x, 1), (0x55555555 << 1)) 7502 // (and (srl x, 1), 0x55555555) 7503 // (shl (and x, 0x55555555), 1) 7504 // (srl (and x, (0x55555555 << 1)), 1) 7505 // where the shift amount and mask may vary thus: 7506 // [1] = 0x55555555 / 0xAAAAAAAA 7507 // [2] = 0x33333333 / 0xCCCCCCCC 7508 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 7509 // [8] = 0x00FF00FF / 0xFF00FF00 7510 // [16] = 0x0000FFFF / 0xFFFFFFFF 7511 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 7512 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 7513 // These are the unshifted masks which we use to match bit-manipulation 7514 // patterns. They may be shifted left in certain circumstances. 7515 static const uint64_t BitmanipMasks[] = { 7516 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 7517 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 7518 7519 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7520 } 7521 7522 // Try to fold (<bop> x, (reduction.<bop> vec, start)) 7523 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG) { 7524 auto BinOpToRVVReduce = [](unsigned Opc) { 7525 switch (Opc) { 7526 default: 7527 llvm_unreachable("Unhandled binary to transfrom reduction"); 7528 case ISD::ADD: 7529 return RISCVISD::VECREDUCE_ADD_VL; 7530 case ISD::UMAX: 7531 return RISCVISD::VECREDUCE_UMAX_VL; 7532 case ISD::SMAX: 7533 return RISCVISD::VECREDUCE_SMAX_VL; 7534 case ISD::UMIN: 7535 return RISCVISD::VECREDUCE_UMIN_VL; 7536 case ISD::SMIN: 7537 return RISCVISD::VECREDUCE_SMIN_VL; 7538 case ISD::AND: 7539 return RISCVISD::VECREDUCE_AND_VL; 7540 case ISD::OR: 7541 return RISCVISD::VECREDUCE_OR_VL; 7542 case ISD::XOR: 7543 return RISCVISD::VECREDUCE_XOR_VL; 7544 case ISD::FADD: 7545 return RISCVISD::VECREDUCE_FADD_VL; 7546 case ISD::FMAXNUM: 7547 return RISCVISD::VECREDUCE_FMAX_VL; 7548 case ISD::FMINNUM: 7549 return RISCVISD::VECREDUCE_FMIN_VL; 7550 } 7551 }; 7552 7553 auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) { 7554 return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7555 isNullConstant(V.getOperand(1)) && 7556 V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc); 7557 }; 7558 7559 unsigned Opc = N->getOpcode(); 7560 unsigned ReduceIdx; 7561 if (IsReduction(N->getOperand(0), Opc)) 7562 ReduceIdx = 0; 7563 else if (IsReduction(N->getOperand(1), Opc)) 7564 ReduceIdx = 1; 7565 else 7566 return SDValue(); 7567 7568 // Skip if FADD disallows reassociation but the combiner needs. 7569 if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation()) 7570 return SDValue(); 7571 7572 SDValue Extract = N->getOperand(ReduceIdx); 7573 SDValue Reduce = Extract.getOperand(0); 7574 if (!Reduce.hasOneUse()) 7575 return SDValue(); 7576 7577 SDValue ScalarV = Reduce.getOperand(2); 7578 7579 // Make sure that ScalarV is a splat with VL=1. 7580 if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL && 7581 ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL && 7582 ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL) 7583 return SDValue(); 7584 7585 if (!isOneConstant(ScalarV.getOperand(2))) 7586 return SDValue(); 7587 7588 // TODO: Deal with value other than neutral element. 7589 auto IsRVVNeutralElement = [Opc, &DAG](SDNode *N, SDValue V) { 7590 if (Opc == ISD::FADD && N->getFlags().hasNoSignedZeros() && 7591 isNullFPConstant(V)) 7592 return true; 7593 return DAG.getNeutralElement(Opc, SDLoc(V), V.getSimpleValueType(), 7594 N->getFlags()) == V; 7595 }; 7596 7597 // Check the scalar of ScalarV is neutral element 7598 if (!IsRVVNeutralElement(N, ScalarV.getOperand(1))) 7599 return SDValue(); 7600 7601 if (!ScalarV.hasOneUse()) 7602 return SDValue(); 7603 7604 EVT SplatVT = ScalarV.getValueType(); 7605 SDValue NewStart = N->getOperand(1 - ReduceIdx); 7606 unsigned SplatOpc = RISCVISD::VFMV_S_F_VL; 7607 if (SplatVT.isInteger()) { 7608 auto *C = dyn_cast<ConstantSDNode>(NewStart.getNode()); 7609 if (!C || C->isZero() || !isInt<5>(C->getSExtValue())) 7610 SplatOpc = RISCVISD::VMV_S_X_VL; 7611 else 7612 SplatOpc = RISCVISD::VMV_V_X_VL; 7613 } 7614 7615 SDValue NewScalarV = 7616 DAG.getNode(SplatOpc, SDLoc(N), SplatVT, ScalarV.getOperand(0), NewStart, 7617 ScalarV.getOperand(2)); 7618 SDValue NewReduce = 7619 DAG.getNode(Reduce.getOpcode(), SDLoc(Reduce), Reduce.getValueType(), 7620 Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV, 7621 Reduce.getOperand(3), Reduce.getOperand(4)); 7622 return DAG.getNode(Extract.getOpcode(), SDLoc(Extract), 7623 Extract.getValueType(), NewReduce, Extract.getOperand(1)); 7624 } 7625 7626 // Match the following pattern as a GREVI(W) operation 7627 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 7628 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 7629 const RISCVSubtarget &Subtarget) { 7630 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7631 EVT VT = Op.getValueType(); 7632 7633 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7634 auto LHS = matchGREVIPat(Op.getOperand(0)); 7635 auto RHS = matchGREVIPat(Op.getOperand(1)); 7636 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 7637 SDLoc DL(Op); 7638 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 7639 DAG.getConstant(LHS->ShAmt, DL, VT)); 7640 } 7641 } 7642 return SDValue(); 7643 } 7644 7645 // Matches any the following pattern as a GORCI(W) operation 7646 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 7647 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 7648 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 7649 // Note that with the variant of 3., 7650 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 7651 // the inner pattern will first be matched as GREVI and then the outer 7652 // pattern will be matched to GORC via the first rule above. 7653 // 4. (or (rotl/rotr x, bitwidth/2), x) 7654 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 7655 const RISCVSubtarget &Subtarget) { 7656 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7657 EVT VT = Op.getValueType(); 7658 7659 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7660 SDLoc DL(Op); 7661 SDValue Op0 = Op.getOperand(0); 7662 SDValue Op1 = Op.getOperand(1); 7663 7664 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 7665 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 7666 isa<ConstantSDNode>(Reverse.getOperand(1)) && 7667 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 7668 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 7669 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 7670 if ((Reverse.getOpcode() == ISD::ROTL || 7671 Reverse.getOpcode() == ISD::ROTR) && 7672 Reverse.getOperand(0) == X && 7673 isa<ConstantSDNode>(Reverse.getOperand(1))) { 7674 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 7675 if (RotAmt == (VT.getSizeInBits() / 2)) 7676 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 7677 DAG.getConstant(RotAmt, DL, VT)); 7678 } 7679 return SDValue(); 7680 }; 7681 7682 // Check for either commutable permutation of (or (GREVI x, shamt), x) 7683 if (SDValue V = MatchOROfReverse(Op0, Op1)) 7684 return V; 7685 if (SDValue V = MatchOROfReverse(Op1, Op0)) 7686 return V; 7687 7688 // OR is commutable so canonicalize its OR operand to the left 7689 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 7690 std::swap(Op0, Op1); 7691 if (Op0.getOpcode() != ISD::OR) 7692 return SDValue(); 7693 SDValue OrOp0 = Op0.getOperand(0); 7694 SDValue OrOp1 = Op0.getOperand(1); 7695 auto LHS = matchGREVIPat(OrOp0); 7696 // OR is commutable so swap the operands and try again: x might have been 7697 // on the left 7698 if (!LHS) { 7699 std::swap(OrOp0, OrOp1); 7700 LHS = matchGREVIPat(OrOp0); 7701 } 7702 auto RHS = matchGREVIPat(Op1); 7703 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 7704 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 7705 DAG.getConstant(LHS->ShAmt, DL, VT)); 7706 } 7707 } 7708 return SDValue(); 7709 } 7710 7711 // Matches any of the following bit-manipulation patterns: 7712 // (and (shl x, 1), (0x22222222 << 1)) 7713 // (and (srl x, 1), 0x22222222) 7714 // (shl (and x, 0x22222222), 1) 7715 // (srl (and x, (0x22222222 << 1)), 1) 7716 // where the shift amount and mask may vary thus: 7717 // [1] = 0x22222222 / 0x44444444 7718 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 7719 // [4] = 0x00F000F0 / 0x0F000F00 7720 // [8] = 0x0000FF00 / 0x00FF0000 7721 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 7722 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 7723 // These are the unshifted masks which we use to match bit-manipulation 7724 // patterns. They may be shifted left in certain circumstances. 7725 static const uint64_t BitmanipMasks[] = { 7726 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 7727 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 7728 7729 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7730 } 7731 7732 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 7733 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 7734 const RISCVSubtarget &Subtarget) { 7735 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7736 EVT VT = Op.getValueType(); 7737 7738 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 7739 return SDValue(); 7740 7741 SDValue Op0 = Op.getOperand(0); 7742 SDValue Op1 = Op.getOperand(1); 7743 7744 // Or is commutable so canonicalize the second OR to the LHS. 7745 if (Op0.getOpcode() != ISD::OR) 7746 std::swap(Op0, Op1); 7747 if (Op0.getOpcode() != ISD::OR) 7748 return SDValue(); 7749 7750 // We found an inner OR, so our operands are the operands of the inner OR 7751 // and the other operand of the outer OR. 7752 SDValue A = Op0.getOperand(0); 7753 SDValue B = Op0.getOperand(1); 7754 SDValue C = Op1; 7755 7756 auto Match1 = matchSHFLPat(A); 7757 auto Match2 = matchSHFLPat(B); 7758 7759 // If neither matched, we failed. 7760 if (!Match1 && !Match2) 7761 return SDValue(); 7762 7763 // We had at least one match. if one failed, try the remaining C operand. 7764 if (!Match1) { 7765 std::swap(A, C); 7766 Match1 = matchSHFLPat(A); 7767 if (!Match1) 7768 return SDValue(); 7769 } else if (!Match2) { 7770 std::swap(B, C); 7771 Match2 = matchSHFLPat(B); 7772 if (!Match2) 7773 return SDValue(); 7774 } 7775 assert(Match1 && Match2); 7776 7777 // Make sure our matches pair up. 7778 if (!Match1->formsPairWith(*Match2)) 7779 return SDValue(); 7780 7781 // All the remains is to make sure C is an AND with the same input, that masks 7782 // out the bits that are being shuffled. 7783 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7784 C.getOperand(0) != Match1->Op) 7785 return SDValue(); 7786 7787 uint64_t Mask = C.getConstantOperandVal(1); 7788 7789 static const uint64_t BitmanipMasks[] = { 7790 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7791 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7792 }; 7793 7794 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7795 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7796 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7797 7798 if (Mask != ExpMask) 7799 return SDValue(); 7800 7801 SDLoc DL(Op); 7802 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7803 DAG.getConstant(Match1->ShAmt, DL, VT)); 7804 } 7805 7806 // Optimize (add (shl x, c0), (shl y, c1)) -> 7807 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7808 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7809 const RISCVSubtarget &Subtarget) { 7810 // Perform this optimization only in the zba extension. 7811 if (!Subtarget.hasStdExtZba()) 7812 return SDValue(); 7813 7814 // Skip for vector types and larger types. 7815 EVT VT = N->getValueType(0); 7816 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7817 return SDValue(); 7818 7819 // The two operand nodes must be SHL and have no other use. 7820 SDValue N0 = N->getOperand(0); 7821 SDValue N1 = N->getOperand(1); 7822 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7823 !N0->hasOneUse() || !N1->hasOneUse()) 7824 return SDValue(); 7825 7826 // Check c0 and c1. 7827 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7828 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7829 if (!N0C || !N1C) 7830 return SDValue(); 7831 int64_t C0 = N0C->getSExtValue(); 7832 int64_t C1 = N1C->getSExtValue(); 7833 if (C0 <= 0 || C1 <= 0) 7834 return SDValue(); 7835 7836 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7837 int64_t Bits = std::min(C0, C1); 7838 int64_t Diff = std::abs(C0 - C1); 7839 if (Diff != 1 && Diff != 2 && Diff != 3) 7840 return SDValue(); 7841 7842 // Build nodes. 7843 SDLoc DL(N); 7844 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7845 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7846 SDValue NA0 = 7847 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7848 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7849 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7850 } 7851 7852 // Combine 7853 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7854 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7855 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7856 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7857 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7858 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7859 // The grev patterns represents BSWAP. 7860 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB 7861 // off the grev. 7862 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG, 7863 const RISCVSubtarget &Subtarget) { 7864 bool IsWInstruction = 7865 N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW; 7866 assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL || 7867 IsWInstruction) && 7868 "Unexpected opcode!"); 7869 SDValue Src = N->getOperand(0); 7870 EVT VT = N->getValueType(0); 7871 SDLoc DL(N); 7872 7873 if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV) 7874 return SDValue(); 7875 7876 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7877 !isa<ConstantSDNode>(Src.getOperand(1))) 7878 return SDValue(); 7879 7880 unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits(); 7881 assert(isPowerOf2_32(BitWidth) && "Expected a power of 2"); 7882 7883 // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for 7884 // RORW/ROLW. And the grev should be the encoding for bswap for this width. 7885 unsigned ShAmt1 = N->getConstantOperandVal(1); 7886 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7887 if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8)) 7888 return SDValue(); 7889 7890 Src = Src.getOperand(0); 7891 7892 // Toggle bit the MSB of the shift. 7893 unsigned CombinedShAmt = ShAmt1 ^ ShAmt2; 7894 if (CombinedShAmt == 0) 7895 return Src; 7896 7897 SDValue Res = DAG.getNode( 7898 RISCVISD::GREV, DL, VT, Src, 7899 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7900 if (!IsWInstruction) 7901 return Res; 7902 7903 // Sign extend the result to match the behavior of the rotate. This will be 7904 // selected to GREVIW in isel. 7905 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res, 7906 DAG.getValueType(MVT::i32)); 7907 } 7908 7909 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7910 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7911 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7912 // not undo itself, but they are redundant. 7913 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7914 bool IsGORC = N->getOpcode() == RISCVISD::GORC; 7915 assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode"); 7916 SDValue Src = N->getOperand(0); 7917 7918 if (Src.getOpcode() != N->getOpcode()) 7919 return SDValue(); 7920 7921 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7922 !isa<ConstantSDNode>(Src.getOperand(1))) 7923 return SDValue(); 7924 7925 unsigned ShAmt1 = N->getConstantOperandVal(1); 7926 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7927 Src = Src.getOperand(0); 7928 7929 unsigned CombinedShAmt; 7930 if (IsGORC) 7931 CombinedShAmt = ShAmt1 | ShAmt2; 7932 else 7933 CombinedShAmt = ShAmt1 ^ ShAmt2; 7934 7935 if (CombinedShAmt == 0) 7936 return Src; 7937 7938 SDLoc DL(N); 7939 return DAG.getNode( 7940 N->getOpcode(), DL, N->getValueType(0), Src, 7941 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7942 } 7943 7944 // Combine a constant select operand into its use: 7945 // 7946 // (and (select cond, -1, c), x) 7947 // -> (select cond, x, (and x, c)) [AllOnes=1] 7948 // (or (select cond, 0, c), x) 7949 // -> (select cond, x, (or x, c)) [AllOnes=0] 7950 // (xor (select cond, 0, c), x) 7951 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7952 // (add (select cond, 0, c), x) 7953 // -> (select cond, x, (add x, c)) [AllOnes=0] 7954 // (sub x, (select cond, 0, c)) 7955 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7956 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7957 SelectionDAG &DAG, bool AllOnes) { 7958 EVT VT = N->getValueType(0); 7959 7960 // Skip vectors. 7961 if (VT.isVector()) 7962 return SDValue(); 7963 7964 if ((Slct.getOpcode() != ISD::SELECT && 7965 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7966 !Slct.hasOneUse()) 7967 return SDValue(); 7968 7969 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7970 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7971 }; 7972 7973 bool SwapSelectOps; 7974 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7975 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7976 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7977 SDValue NonConstantVal; 7978 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7979 SwapSelectOps = false; 7980 NonConstantVal = FalseVal; 7981 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7982 SwapSelectOps = true; 7983 NonConstantVal = TrueVal; 7984 } else 7985 return SDValue(); 7986 7987 // Slct is now know to be the desired identity constant when CC is true. 7988 TrueVal = OtherOp; 7989 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7990 // Unless SwapSelectOps says the condition should be false. 7991 if (SwapSelectOps) 7992 std::swap(TrueVal, FalseVal); 7993 7994 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7995 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7996 {Slct.getOperand(0), Slct.getOperand(1), 7997 Slct.getOperand(2), TrueVal, FalseVal}); 7998 7999 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 8000 {Slct.getOperand(0), TrueVal, FalseVal}); 8001 } 8002 8003 // Attempt combineSelectAndUse on each operand of a commutative operator N. 8004 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 8005 bool AllOnes) { 8006 SDValue N0 = N->getOperand(0); 8007 SDValue N1 = N->getOperand(1); 8008 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 8009 return Result; 8010 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 8011 return Result; 8012 return SDValue(); 8013 } 8014 8015 // Transform (add (mul x, c0), c1) -> 8016 // (add (mul (add x, c1/c0), c0), c1%c0). 8017 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 8018 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 8019 // to an infinite loop in DAGCombine if transformed. 8020 // Or transform (add (mul x, c0), c1) -> 8021 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 8022 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 8023 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 8024 // lead to an infinite loop in DAGCombine if transformed. 8025 // Or transform (add (mul x, c0), c1) -> 8026 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 8027 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 8028 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 8029 // lead to an infinite loop in DAGCombine if transformed. 8030 // Or transform (add (mul x, c0), c1) -> 8031 // (mul (add x, c1/c0), c0). 8032 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 8033 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 8034 const RISCVSubtarget &Subtarget) { 8035 // Skip for vector types and larger types. 8036 EVT VT = N->getValueType(0); 8037 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 8038 return SDValue(); 8039 // The first operand node must be a MUL and has no other use. 8040 SDValue N0 = N->getOperand(0); 8041 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 8042 return SDValue(); 8043 // Check if c0 and c1 match above conditions. 8044 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 8045 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8046 if (!N0C || !N1C) 8047 return SDValue(); 8048 // If N0C has multiple uses it's possible one of the cases in 8049 // DAGCombiner::isMulAddWithConstProfitable will be true, which would result 8050 // in an infinite loop. 8051 if (!N0C->hasOneUse()) 8052 return SDValue(); 8053 int64_t C0 = N0C->getSExtValue(); 8054 int64_t C1 = N1C->getSExtValue(); 8055 int64_t CA, CB; 8056 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 8057 return SDValue(); 8058 // Search for proper CA (non-zero) and CB that both are simm12. 8059 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 8060 !isInt<12>(C0 * (C1 / C0))) { 8061 CA = C1 / C0; 8062 CB = C1 % C0; 8063 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 8064 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 8065 CA = C1 / C0 + 1; 8066 CB = C1 % C0 - C0; 8067 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 8068 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 8069 CA = C1 / C0 - 1; 8070 CB = C1 % C0 + C0; 8071 } else 8072 return SDValue(); 8073 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 8074 SDLoc DL(N); 8075 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 8076 DAG.getConstant(CA, DL, VT)); 8077 SDValue New1 = 8078 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 8079 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 8080 } 8081 8082 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 8083 const RISCVSubtarget &Subtarget) { 8084 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 8085 return V; 8086 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 8087 return V; 8088 if (SDValue V = combineBinOpToReduce(N, DAG)) 8089 return V; 8090 // fold (add (select lhs, rhs, cc, 0, y), x) -> 8091 // (select lhs, rhs, cc, x, (add x, y)) 8092 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 8093 } 8094 8095 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 8096 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 8097 // (select lhs, rhs, cc, x, (sub x, y)) 8098 SDValue N0 = N->getOperand(0); 8099 SDValue N1 = N->getOperand(1); 8100 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 8101 } 8102 8103 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, 8104 const RISCVSubtarget &Subtarget) { 8105 SDValue N0 = N->getOperand(0); 8106 // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero 8107 // extending X. This is safe since we only need the LSB after the shift and 8108 // shift amounts larger than 31 would produce poison. If we wait until 8109 // type legalization, we'll create RISCVISD::SRLW and we can't recover it 8110 // to use a BEXT instruction. 8111 if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() && 8112 N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) && 8113 N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) && 8114 N0.hasOneUse()) { 8115 SDLoc DL(N); 8116 SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0)); 8117 SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1)); 8118 SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1); 8119 SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl, 8120 DAG.getConstant(1, DL, MVT::i64)); 8121 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And); 8122 } 8123 8124 if (SDValue V = combineBinOpToReduce(N, DAG)) 8125 return V; 8126 8127 // fold (and (select lhs, rhs, cc, -1, y), x) -> 8128 // (select lhs, rhs, cc, x, (and x, y)) 8129 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 8130 } 8131 8132 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 8133 const RISCVSubtarget &Subtarget) { 8134 if (Subtarget.hasStdExtZbp()) { 8135 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 8136 return GREV; 8137 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 8138 return GORC; 8139 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 8140 return SHFL; 8141 } 8142 8143 if (SDValue V = combineBinOpToReduce(N, DAG)) 8144 return V; 8145 // fold (or (select cond, 0, y), x) -> 8146 // (select cond, x, (or x, y)) 8147 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 8148 } 8149 8150 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 8151 SDValue N0 = N->getOperand(0); 8152 SDValue N1 = N->getOperand(1); 8153 8154 // fold (xor (sllw 1, x), -1) -> (rolw ~1, x) 8155 // NOTE: Assumes ROL being legal means ROLW is legal. 8156 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8157 if (N0.getOpcode() == RISCVISD::SLLW && 8158 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) && 8159 TLI.isOperationLegal(ISD::ROTL, MVT::i64)) { 8160 SDLoc DL(N); 8161 return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64, 8162 DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1)); 8163 } 8164 8165 if (SDValue V = combineBinOpToReduce(N, DAG)) 8166 return V; 8167 // fold (xor (select cond, 0, y), x) -> 8168 // (select cond, x, (xor x, y)) 8169 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 8170 } 8171 8172 // Replace (seteq (i64 (and X, 0xffffffff)), C1) with 8173 // (seteq (i64 (sext_inreg (X, i32)), C1')) where C1' is C1 sign extended from 8174 // bit 31. Same for setne. C1' may be cheaper to materialize and the sext_inreg 8175 // can become a sext.w instead of a shift pair. 8176 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG, 8177 const RISCVSubtarget &Subtarget) { 8178 SDValue N0 = N->getOperand(0); 8179 SDValue N1 = N->getOperand(1); 8180 EVT VT = N->getValueType(0); 8181 EVT OpVT = N0.getValueType(); 8182 8183 if (OpVT != MVT::i64 || !Subtarget.is64Bit()) 8184 return SDValue(); 8185 8186 // RHS needs to be a constant. 8187 auto *N1C = dyn_cast<ConstantSDNode>(N1); 8188 if (!N1C) 8189 return SDValue(); 8190 8191 // LHS needs to be (and X, 0xffffffff). 8192 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse() || 8193 !isa<ConstantSDNode>(N0.getOperand(1)) || 8194 N0.getConstantOperandVal(1) != UINT64_C(0xffffffff)) 8195 return SDValue(); 8196 8197 // Looking for an equality compare. 8198 ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get(); 8199 if (!isIntEqualitySetCC(Cond)) 8200 return SDValue(); 8201 8202 const APInt &C1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 8203 8204 SDLoc dl(N); 8205 // If the constant is larger than 2^32 - 1 it is impossible for both sides 8206 // to be equal. 8207 if (C1.getActiveBits() > 32) 8208 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 8209 8210 SDValue SExtOp = DAG.getNode(ISD::SIGN_EXTEND_INREG, N, OpVT, 8211 N0.getOperand(0), DAG.getValueType(MVT::i32)); 8212 return DAG.getSetCC(dl, VT, SExtOp, DAG.getConstant(C1.trunc(32).sext(64), 8213 dl, OpVT), Cond); 8214 } 8215 8216 static SDValue 8217 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, 8218 const RISCVSubtarget &Subtarget) { 8219 SDValue Src = N->getOperand(0); 8220 EVT VT = N->getValueType(0); 8221 8222 // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X) 8223 if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8224 cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16)) 8225 return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT, 8226 Src.getOperand(0)); 8227 8228 // Fold (i64 (sext_inreg (abs X), i32)) -> 8229 // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits. 8230 // The (sext_inreg (neg X), i32) will be selected to negw by isel. This 8231 // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user 8232 // of the (i32 (abs X)) is a sext or setcc or something else that causes type 8233 // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have 8234 // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg 8235 // may get combined into an earlier operation so we need to use 8236 // ComputeNumSignBits. 8237 // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for 8238 // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so 8239 // we can't assume that X has 33 sign bits. We must check. 8240 if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() && 8241 Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 && 8242 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 && 8243 DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) { 8244 SDLoc DL(N); 8245 SDValue Freeze = DAG.getFreeze(Src.getOperand(0)); 8246 SDValue Neg = 8247 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze); 8248 Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg, 8249 DAG.getValueType(MVT::i32)); 8250 return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg); 8251 } 8252 8253 return SDValue(); 8254 } 8255 8256 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to 8257 // vwadd(u).vv/vx or vwsub(u).vv/vx. 8258 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG, 8259 bool Commute = false) { 8260 assert((N->getOpcode() == RISCVISD::ADD_VL || 8261 N->getOpcode() == RISCVISD::SUB_VL) && 8262 "Unexpected opcode"); 8263 bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL; 8264 SDValue Op0 = N->getOperand(0); 8265 SDValue Op1 = N->getOperand(1); 8266 if (Commute) 8267 std::swap(Op0, Op1); 8268 8269 MVT VT = N->getSimpleValueType(0); 8270 8271 // Determine the narrow size for a widening add/sub. 8272 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 8273 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 8274 VT.getVectorElementCount()); 8275 8276 SDValue Mask = N->getOperand(2); 8277 SDValue VL = N->getOperand(3); 8278 8279 SDLoc DL(N); 8280 8281 // If the RHS is a sext or zext, we can form a widening op. 8282 if ((Op1.getOpcode() == RISCVISD::VZEXT_VL || 8283 Op1.getOpcode() == RISCVISD::VSEXT_VL) && 8284 Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) { 8285 unsigned ExtOpc = Op1.getOpcode(); 8286 Op1 = Op1.getOperand(0); 8287 // Re-introduce narrower extends if needed. 8288 if (Op1.getValueType() != NarrowVT) 8289 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 8290 8291 unsigned WOpc; 8292 if (ExtOpc == RISCVISD::VSEXT_VL) 8293 WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL; 8294 else 8295 WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL; 8296 8297 return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL); 8298 } 8299 8300 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar 8301 // sext/zext? 8302 8303 return SDValue(); 8304 } 8305 8306 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or 8307 // vwsub(u).vv/vx. 8308 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) { 8309 SDValue Op0 = N->getOperand(0); 8310 SDValue Op1 = N->getOperand(1); 8311 SDValue Mask = N->getOperand(2); 8312 SDValue VL = N->getOperand(3); 8313 8314 MVT VT = N->getSimpleValueType(0); 8315 MVT NarrowVT = Op1.getSimpleValueType(); 8316 unsigned NarrowSize = NarrowVT.getScalarSizeInBits(); 8317 8318 unsigned VOpc; 8319 switch (N->getOpcode()) { 8320 default: llvm_unreachable("Unexpected opcode"); 8321 case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break; 8322 case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break; 8323 case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break; 8324 case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break; 8325 } 8326 8327 bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL || 8328 N->getOpcode() == RISCVISD::VWSUB_W_VL; 8329 8330 SDLoc DL(N); 8331 8332 // If the LHS is a sext or zext, we can narrow this op to the same size as 8333 // the RHS. 8334 if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) || 8335 (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) && 8336 Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) { 8337 unsigned ExtOpc = Op0.getOpcode(); 8338 Op0 = Op0.getOperand(0); 8339 // Re-introduce narrower extends if needed. 8340 if (Op0.getValueType() != NarrowVT) 8341 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 8342 return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL); 8343 } 8344 8345 bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL || 8346 N->getOpcode() == RISCVISD::VWADDU_W_VL; 8347 8348 // Look for splats on the left hand side of a vwadd(u).wv. We might be able 8349 // to commute and use a vwadd(u).vx instead. 8350 if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL && 8351 Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) { 8352 Op0 = Op0.getOperand(1); 8353 8354 // See if have enough sign bits or zero bits in the scalar to use a 8355 // widening add/sub by splatting to smaller element size. 8356 unsigned EltBits = VT.getScalarSizeInBits(); 8357 unsigned ScalarBits = Op0.getValueSizeInBits(); 8358 // Make sure we're getting all element bits from the scalar register. 8359 // FIXME: Support implicit sign extension of vmv.v.x? 8360 if (ScalarBits < EltBits) 8361 return SDValue(); 8362 8363 if (IsSigned) { 8364 if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize)) 8365 return SDValue(); 8366 } else { 8367 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 8368 if (!DAG.MaskedValueIsZero(Op0, Mask)) 8369 return SDValue(); 8370 } 8371 8372 Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 8373 DAG.getUNDEF(NarrowVT), Op0, VL); 8374 return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL); 8375 } 8376 8377 return SDValue(); 8378 } 8379 8380 // Try to form VWMUL, VWMULU or VWMULSU. 8381 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 8382 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 8383 bool Commute) { 8384 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 8385 SDValue Op0 = N->getOperand(0); 8386 SDValue Op1 = N->getOperand(1); 8387 if (Commute) 8388 std::swap(Op0, Op1); 8389 8390 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 8391 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 8392 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 8393 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 8394 return SDValue(); 8395 8396 SDValue Mask = N->getOperand(2); 8397 SDValue VL = N->getOperand(3); 8398 8399 // Make sure the mask and VL match. 8400 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 8401 return SDValue(); 8402 8403 MVT VT = N->getSimpleValueType(0); 8404 8405 // Determine the narrow size for a widening multiply. 8406 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 8407 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 8408 VT.getVectorElementCount()); 8409 8410 SDLoc DL(N); 8411 8412 // See if the other operand is the same opcode. 8413 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 8414 if (!Op1.hasOneUse()) 8415 return SDValue(); 8416 8417 // Make sure the mask and VL match. 8418 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 8419 return SDValue(); 8420 8421 Op1 = Op1.getOperand(0); 8422 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 8423 // The operand is a splat of a scalar. 8424 8425 // The pasthru must be undef for tail agnostic 8426 if (!Op1.getOperand(0).isUndef()) 8427 return SDValue(); 8428 // The VL must be the same. 8429 if (Op1.getOperand(2) != VL) 8430 return SDValue(); 8431 8432 // Get the scalar value. 8433 Op1 = Op1.getOperand(1); 8434 8435 // See if have enough sign bits or zero bits in the scalar to use a 8436 // widening multiply by splatting to smaller element size. 8437 unsigned EltBits = VT.getScalarSizeInBits(); 8438 unsigned ScalarBits = Op1.getValueSizeInBits(); 8439 // Make sure we're getting all element bits from the scalar register. 8440 // FIXME: Support implicit sign extension of vmv.v.x? 8441 if (ScalarBits < EltBits) 8442 return SDValue(); 8443 8444 // If the LHS is a sign extend, try to use vwmul. 8445 if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) { 8446 // Can use vwmul. 8447 } else { 8448 // Otherwise try to use vwmulu or vwmulsu. 8449 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 8450 if (DAG.MaskedValueIsZero(Op1, Mask)) 8451 IsVWMULSU = IsSignExt; 8452 else 8453 return SDValue(); 8454 } 8455 8456 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 8457 DAG.getUNDEF(NarrowVT), Op1, VL); 8458 } else 8459 return SDValue(); 8460 8461 Op0 = Op0.getOperand(0); 8462 8463 // Re-introduce narrower extends if needed. 8464 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 8465 if (Op0.getValueType() != NarrowVT) 8466 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 8467 // vwmulsu requires second operand to be zero extended. 8468 ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc; 8469 if (Op1.getValueType() != NarrowVT) 8470 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 8471 8472 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 8473 if (!IsVWMULSU) 8474 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 8475 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 8476 } 8477 8478 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 8479 switch (Op.getOpcode()) { 8480 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 8481 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 8482 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 8483 case ISD::FCEIL: return RISCVFPRndMode::RUP; 8484 case ISD::FROUND: return RISCVFPRndMode::RMM; 8485 } 8486 8487 return RISCVFPRndMode::Invalid; 8488 } 8489 8490 // Fold 8491 // (fp_to_int (froundeven X)) -> fcvt X, rne 8492 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 8493 // (fp_to_int (ffloor X)) -> fcvt X, rdn 8494 // (fp_to_int (fceil X)) -> fcvt X, rup 8495 // (fp_to_int (fround X)) -> fcvt X, rmm 8496 static SDValue performFP_TO_INTCombine(SDNode *N, 8497 TargetLowering::DAGCombinerInfo &DCI, 8498 const RISCVSubtarget &Subtarget) { 8499 SelectionDAG &DAG = DCI.DAG; 8500 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8501 MVT XLenVT = Subtarget.getXLenVT(); 8502 8503 // Only handle XLen or i32 types. Other types narrower than XLen will 8504 // eventually be legalized to XLenVT. 8505 EVT VT = N->getValueType(0); 8506 if (VT != MVT::i32 && VT != XLenVT) 8507 return SDValue(); 8508 8509 SDValue Src = N->getOperand(0); 8510 8511 // Ensure the FP type is also legal. 8512 if (!TLI.isTypeLegal(Src.getValueType())) 8513 return SDValue(); 8514 8515 // Don't do this for f16 with Zfhmin and not Zfh. 8516 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8517 return SDValue(); 8518 8519 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8520 if (FRM == RISCVFPRndMode::Invalid) 8521 return SDValue(); 8522 8523 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 8524 8525 unsigned Opc; 8526 if (VT == XLenVT) 8527 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8528 else 8529 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8530 8531 SDLoc DL(N); 8532 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 8533 DAG.getTargetConstant(FRM, DL, XLenVT)); 8534 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 8535 } 8536 8537 // Fold 8538 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 8539 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 8540 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 8541 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 8542 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 8543 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 8544 TargetLowering::DAGCombinerInfo &DCI, 8545 const RISCVSubtarget &Subtarget) { 8546 SelectionDAG &DAG = DCI.DAG; 8547 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8548 MVT XLenVT = Subtarget.getXLenVT(); 8549 8550 // Only handle XLen types. Other types narrower than XLen will eventually be 8551 // legalized to XLenVT. 8552 EVT DstVT = N->getValueType(0); 8553 if (DstVT != XLenVT) 8554 return SDValue(); 8555 8556 SDValue Src = N->getOperand(0); 8557 8558 // Ensure the FP type is also legal. 8559 if (!TLI.isTypeLegal(Src.getValueType())) 8560 return SDValue(); 8561 8562 // Don't do this for f16 with Zfhmin and not Zfh. 8563 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8564 return SDValue(); 8565 8566 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 8567 8568 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8569 if (FRM == RISCVFPRndMode::Invalid) 8570 return SDValue(); 8571 8572 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 8573 8574 unsigned Opc; 8575 if (SatVT == DstVT) 8576 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8577 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 8578 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8579 else 8580 return SDValue(); 8581 // FIXME: Support other SatVTs by clamping before or after the conversion. 8582 8583 Src = Src.getOperand(0); 8584 8585 SDLoc DL(N); 8586 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 8587 DAG.getTargetConstant(FRM, DL, XLenVT)); 8588 8589 // RISCV FP-to-int conversions saturate to the destination register size, but 8590 // don't produce 0 for nan. 8591 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 8592 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 8593 } 8594 8595 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is 8596 // smaller than XLenVT. 8597 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG, 8598 const RISCVSubtarget &Subtarget) { 8599 assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); 8600 8601 SDValue Src = N->getOperand(0); 8602 if (Src.getOpcode() != ISD::BSWAP) 8603 return SDValue(); 8604 8605 EVT VT = N->getValueType(0); 8606 if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() || 8607 !isPowerOf2_32(VT.getSizeInBits())) 8608 return SDValue(); 8609 8610 SDLoc DL(N); 8611 return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0), 8612 DAG.getConstant(7, DL, VT)); 8613 } 8614 8615 // Convert from one FMA opcode to another based on whether we are negating the 8616 // multiply result and/or the accumulator. 8617 // NOTE: Only supports RVV operations with VL. 8618 static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc) { 8619 assert((NegMul || NegAcc) && "Not negating anything?"); 8620 8621 // Negating the multiply result changes ADD<->SUB and toggles 'N'. 8622 if (NegMul) { 8623 // clang-format off 8624 switch (Opcode) { 8625 default: llvm_unreachable("Unexpected opcode"); 8626 case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break; 8627 case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break; 8628 case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break; 8629 case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break; 8630 } 8631 // clang-format on 8632 } 8633 8634 // Negating the accumulator changes ADD<->SUB. 8635 if (NegAcc) { 8636 // clang-format off 8637 switch (Opcode) { 8638 default: llvm_unreachable("Unexpected opcode"); 8639 case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break; 8640 case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break; 8641 case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break; 8642 case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break; 8643 } 8644 // clang-format on 8645 } 8646 8647 return Opcode; 8648 } 8649 8650 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG, 8651 const RISCVSubtarget &Subtarget) { 8652 assert(N->getOpcode() == ISD::SRA && "Unexpected opcode"); 8653 8654 if (N->getValueType(0) != MVT::i64 || !Subtarget.is64Bit()) 8655 return SDValue(); 8656 8657 if (!isa<ConstantSDNode>(N->getOperand(1))) 8658 return SDValue(); 8659 uint64_t ShAmt = N->getConstantOperandVal(1); 8660 if (ShAmt > 32) 8661 return SDValue(); 8662 8663 SDValue N0 = N->getOperand(0); 8664 8665 // Combine (sra (sext_inreg (shl X, C1), i32), C2) -> 8666 // (sra (shl X, C1+32), C2+32) so it gets selected as SLLI+SRAI instead of 8667 // SLLIW+SRAIW. SLLI+SRAI have compressed forms. 8668 if (ShAmt < 32 && 8669 N0.getOpcode() == ISD::SIGN_EXTEND_INREG && N0.hasOneUse() && 8670 cast<VTSDNode>(N0.getOperand(1))->getVT() == MVT::i32 && 8671 N0.getOperand(0).getOpcode() == ISD::SHL && N0.getOperand(0).hasOneUse() && 8672 isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) { 8673 uint64_t LShAmt = N0.getOperand(0).getConstantOperandVal(1); 8674 if (LShAmt < 32) { 8675 SDLoc ShlDL(N0.getOperand(0)); 8676 SDValue Shl = DAG.getNode(ISD::SHL, ShlDL, MVT::i64, 8677 N0.getOperand(0).getOperand(0), 8678 DAG.getConstant(LShAmt + 32, ShlDL, MVT::i64)); 8679 SDLoc DL(N); 8680 return DAG.getNode(ISD::SRA, DL, MVT::i64, Shl, 8681 DAG.getConstant(ShAmt + 32, DL, MVT::i64)); 8682 } 8683 } 8684 8685 // Combine (sra (shl X, 32), 32 - C) -> (shl (sext_inreg X, i32), C) 8686 // FIXME: Should this be a generic combine? There's a similar combine on X86. 8687 // 8688 // Also try these folds where an add or sub is in the middle. 8689 // (sra (add (shl X, 32), C1), 32 - C) -> (shl (sext_inreg (add X, C1), C) 8690 // (sra (sub C1, (shl X, 32)), 32 - C) -> (shl (sext_inreg (sub C1, X), C) 8691 SDValue Shl; 8692 ConstantSDNode *AddC = nullptr; 8693 8694 // We might have an ADD or SUB between the SRA and SHL. 8695 bool IsAdd = N0.getOpcode() == ISD::ADD; 8696 if ((IsAdd || N0.getOpcode() == ISD::SUB)) { 8697 if (!N0.hasOneUse()) 8698 return SDValue(); 8699 // Other operand needs to be a constant we can modify. 8700 AddC = dyn_cast<ConstantSDNode>(N0.getOperand(IsAdd ? 1 : 0)); 8701 if (!AddC) 8702 return SDValue(); 8703 8704 // AddC needs to have at least 32 trailing zeros. 8705 if (AddC->getAPIntValue().countTrailingZeros() < 32) 8706 return SDValue(); 8707 8708 Shl = N0.getOperand(IsAdd ? 0 : 1); 8709 } else { 8710 // Not an ADD or SUB. 8711 Shl = N0; 8712 } 8713 8714 // Look for a shift left by 32. 8715 if (Shl.getOpcode() != ISD::SHL || !Shl.hasOneUse() || 8716 !isa<ConstantSDNode>(Shl.getOperand(1)) || 8717 Shl.getConstantOperandVal(1) != 32) 8718 return SDValue(); 8719 8720 SDLoc DL(N); 8721 SDValue In = Shl.getOperand(0); 8722 8723 // If we looked through an ADD or SUB, we need to rebuild it with the shifted 8724 // constant. 8725 if (AddC) { 8726 SDValue ShiftedAddC = 8727 DAG.getConstant(AddC->getAPIntValue().lshr(32), DL, MVT::i64); 8728 if (IsAdd) 8729 In = DAG.getNode(ISD::ADD, DL, MVT::i64, In, ShiftedAddC); 8730 else 8731 In = DAG.getNode(ISD::SUB, DL, MVT::i64, ShiftedAddC, In); 8732 } 8733 8734 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, In, 8735 DAG.getValueType(MVT::i32)); 8736 if (ShAmt == 32) 8737 return SExt; 8738 8739 return DAG.getNode( 8740 ISD::SHL, DL, MVT::i64, SExt, 8741 DAG.getConstant(32 - ShAmt, DL, MVT::i64)); 8742 } 8743 8744 // Perform common combines for BR_CC and SELECT_CC condtions. 8745 static bool combine_CC(SDValue &LHS, SDValue &RHS, SDValue &CC, const SDLoc &DL, 8746 SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { 8747 ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get(); 8748 if (!ISD::isIntEqualitySetCC(CCVal)) 8749 return false; 8750 8751 // Fold ((setlt X, Y), 0, ne) -> (X, Y, lt) 8752 // Sometimes the setcc is introduced after br_cc/select_cc has been formed. 8753 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8754 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8755 // If we're looking for eq 0 instead of ne 0, we need to invert the 8756 // condition. 8757 bool Invert = CCVal == ISD::SETEQ; 8758 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8759 if (Invert) 8760 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8761 8762 RHS = LHS.getOperand(1); 8763 LHS = LHS.getOperand(0); 8764 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8765 8766 CC = DAG.getCondCode(CCVal); 8767 return true; 8768 } 8769 8770 // Fold ((xor X, Y), 0, eq/ne) -> (X, Y, eq/ne) 8771 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) { 8772 RHS = LHS.getOperand(1); 8773 LHS = LHS.getOperand(0); 8774 return true; 8775 } 8776 8777 // Fold ((srl (and X, 1<<C), C), 0, eq/ne) -> ((shl X, XLen-1-C), 0, ge/lt) 8778 if (isNullConstant(RHS) && LHS.getOpcode() == ISD::SRL && LHS.hasOneUse() && 8779 LHS.getOperand(1).getOpcode() == ISD::Constant) { 8780 SDValue LHS0 = LHS.getOperand(0); 8781 if (LHS0.getOpcode() == ISD::AND && 8782 LHS0.getOperand(1).getOpcode() == ISD::Constant) { 8783 uint64_t Mask = LHS0.getConstantOperandVal(1); 8784 uint64_t ShAmt = LHS.getConstantOperandVal(1); 8785 if (isPowerOf2_64(Mask) && Log2_64(Mask) == ShAmt) { 8786 CCVal = CCVal == ISD::SETEQ ? ISD::SETGE : ISD::SETLT; 8787 CC = DAG.getCondCode(CCVal); 8788 8789 ShAmt = LHS.getValueSizeInBits() - 1 - ShAmt; 8790 LHS = LHS0.getOperand(0); 8791 if (ShAmt != 0) 8792 LHS = 8793 DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS0.getOperand(0), 8794 DAG.getConstant(ShAmt, DL, LHS.getValueType())); 8795 return true; 8796 } 8797 } 8798 } 8799 8800 // (X, 1, setne) -> // (X, 0, seteq) if we can prove X is 0/1. 8801 // This can occur when legalizing some floating point comparisons. 8802 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8803 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8804 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8805 CC = DAG.getCondCode(CCVal); 8806 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8807 return true; 8808 } 8809 8810 return false; 8811 } 8812 8813 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 8814 DAGCombinerInfo &DCI) const { 8815 SelectionDAG &DAG = DCI.DAG; 8816 8817 // Helper to call SimplifyDemandedBits on an operand of N where only some low 8818 // bits are demanded. N will be added to the Worklist if it was not deleted. 8819 // Caller should return SDValue(N, 0) if this returns true. 8820 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 8821 SDValue Op = N->getOperand(OpNo); 8822 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 8823 if (!SimplifyDemandedBits(Op, Mask, DCI)) 8824 return false; 8825 8826 if (N->getOpcode() != ISD::DELETED_NODE) 8827 DCI.AddToWorklist(N); 8828 return true; 8829 }; 8830 8831 switch (N->getOpcode()) { 8832 default: 8833 break; 8834 case RISCVISD::SplitF64: { 8835 SDValue Op0 = N->getOperand(0); 8836 // If the input to SplitF64 is just BuildPairF64 then the operation is 8837 // redundant. Instead, use BuildPairF64's operands directly. 8838 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 8839 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 8840 8841 if (Op0->isUndef()) { 8842 SDValue Lo = DAG.getUNDEF(MVT::i32); 8843 SDValue Hi = DAG.getUNDEF(MVT::i32); 8844 return DCI.CombineTo(N, Lo, Hi); 8845 } 8846 8847 SDLoc DL(N); 8848 8849 // It's cheaper to materialise two 32-bit integers than to load a double 8850 // from the constant pool and transfer it to integer registers through the 8851 // stack. 8852 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 8853 APInt V = C->getValueAPF().bitcastToAPInt(); 8854 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 8855 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 8856 return DCI.CombineTo(N, Lo, Hi); 8857 } 8858 8859 // This is a target-specific version of a DAGCombine performed in 8860 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8861 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8862 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8863 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8864 !Op0.getNode()->hasOneUse()) 8865 break; 8866 SDValue NewSplitF64 = 8867 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 8868 Op0.getOperand(0)); 8869 SDValue Lo = NewSplitF64.getValue(0); 8870 SDValue Hi = NewSplitF64.getValue(1); 8871 APInt SignBit = APInt::getSignMask(32); 8872 if (Op0.getOpcode() == ISD::FNEG) { 8873 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 8874 DAG.getConstant(SignBit, DL, MVT::i32)); 8875 return DCI.CombineTo(N, Lo, NewHi); 8876 } 8877 assert(Op0.getOpcode() == ISD::FABS); 8878 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 8879 DAG.getConstant(~SignBit, DL, MVT::i32)); 8880 return DCI.CombineTo(N, Lo, NewHi); 8881 } 8882 case RISCVISD::SLLW: 8883 case RISCVISD::SRAW: 8884 case RISCVISD::SRLW: { 8885 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8886 if (SimplifyDemandedLowBitsHelper(0, 32) || 8887 SimplifyDemandedLowBitsHelper(1, 5)) 8888 return SDValue(N, 0); 8889 8890 break; 8891 } 8892 case ISD::ROTR: 8893 case ISD::ROTL: 8894 case RISCVISD::RORW: 8895 case RISCVISD::ROLW: { 8896 if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) { 8897 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8898 if (SimplifyDemandedLowBitsHelper(0, 32) || 8899 SimplifyDemandedLowBitsHelper(1, 5)) 8900 return SDValue(N, 0); 8901 } 8902 8903 return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget); 8904 } 8905 case RISCVISD::CLZW: 8906 case RISCVISD::CTZW: { 8907 // Only the lower 32 bits of the first operand are read 8908 if (SimplifyDemandedLowBitsHelper(0, 32)) 8909 return SDValue(N, 0); 8910 break; 8911 } 8912 case RISCVISD::GREV: 8913 case RISCVISD::GORC: { 8914 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 8915 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8916 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8917 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 8918 return SDValue(N, 0); 8919 8920 return combineGREVI_GORCI(N, DAG); 8921 } 8922 case RISCVISD::GREVW: 8923 case RISCVISD::GORCW: { 8924 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8925 if (SimplifyDemandedLowBitsHelper(0, 32) || 8926 SimplifyDemandedLowBitsHelper(1, 5)) 8927 return SDValue(N, 0); 8928 8929 break; 8930 } 8931 case RISCVISD::SHFL: 8932 case RISCVISD::UNSHFL: { 8933 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 8934 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8935 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8936 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 8937 return SDValue(N, 0); 8938 8939 break; 8940 } 8941 case RISCVISD::SHFLW: 8942 case RISCVISD::UNSHFLW: { 8943 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 8944 if (SimplifyDemandedLowBitsHelper(0, 32) || 8945 SimplifyDemandedLowBitsHelper(1, 4)) 8946 return SDValue(N, 0); 8947 8948 break; 8949 } 8950 case RISCVISD::BCOMPRESSW: 8951 case RISCVISD::BDECOMPRESSW: { 8952 // Only the lower 32 bits of LHS and RHS are read. 8953 if (SimplifyDemandedLowBitsHelper(0, 32) || 8954 SimplifyDemandedLowBitsHelper(1, 32)) 8955 return SDValue(N, 0); 8956 8957 break; 8958 } 8959 case RISCVISD::FSR: 8960 case RISCVISD::FSL: 8961 case RISCVISD::FSRW: 8962 case RISCVISD::FSLW: { 8963 bool IsWInstruction = 8964 N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW; 8965 unsigned BitWidth = 8966 IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits(); 8967 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8968 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 8969 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1)) 8970 return SDValue(N, 0); 8971 8972 break; 8973 } 8974 case RISCVISD::FMV_X_ANYEXTH: 8975 case RISCVISD::FMV_X_ANYEXTW_RV64: { 8976 SDLoc DL(N); 8977 SDValue Op0 = N->getOperand(0); 8978 MVT VT = N->getSimpleValueType(0); 8979 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 8980 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 8981 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 8982 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 8983 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 8984 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8985 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 8986 assert(Op0.getOperand(0).getValueType() == VT && 8987 "Unexpected value type!"); 8988 return Op0.getOperand(0); 8989 } 8990 8991 // This is a target-specific version of a DAGCombine performed in 8992 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8993 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8994 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8995 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8996 !Op0.getNode()->hasOneUse()) 8997 break; 8998 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 8999 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 9000 APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits()); 9001 if (Op0.getOpcode() == ISD::FNEG) 9002 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 9003 DAG.getConstant(SignBit, DL, VT)); 9004 9005 assert(Op0.getOpcode() == ISD::FABS); 9006 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 9007 DAG.getConstant(~SignBit, DL, VT)); 9008 } 9009 case ISD::ADD: 9010 return performADDCombine(N, DAG, Subtarget); 9011 case ISD::SUB: 9012 return performSUBCombine(N, DAG); 9013 case ISD::AND: 9014 return performANDCombine(N, DAG, Subtarget); 9015 case ISD::OR: 9016 return performORCombine(N, DAG, Subtarget); 9017 case ISD::XOR: 9018 return performXORCombine(N, DAG); 9019 case ISD::FADD: 9020 case ISD::UMAX: 9021 case ISD::UMIN: 9022 case ISD::SMAX: 9023 case ISD::SMIN: 9024 case ISD::FMAXNUM: 9025 case ISD::FMINNUM: 9026 return combineBinOpToReduce(N, DAG); 9027 case ISD::SETCC: 9028 return performSETCCCombine(N, DAG, Subtarget); 9029 case ISD::SIGN_EXTEND_INREG: 9030 return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); 9031 case ISD::ZERO_EXTEND: 9032 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 9033 // type legalization. This is safe because fp_to_uint produces poison if 9034 // it overflows. 9035 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 9036 SDValue Src = N->getOperand(0); 9037 if (Src.getOpcode() == ISD::FP_TO_UINT && 9038 isTypeLegal(Src.getOperand(0).getValueType())) 9039 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 9040 Src.getOperand(0)); 9041 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 9042 isTypeLegal(Src.getOperand(1).getValueType())) { 9043 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 9044 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 9045 Src.getOperand(0), Src.getOperand(1)); 9046 DCI.CombineTo(N, Res); 9047 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 9048 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 9049 return SDValue(N, 0); // Return N so it doesn't get rechecked. 9050 } 9051 } 9052 return SDValue(); 9053 case RISCVISD::SELECT_CC: { 9054 // Transform 9055 SDValue LHS = N->getOperand(0); 9056 SDValue RHS = N->getOperand(1); 9057 SDValue CC = N->getOperand(2); 9058 SDValue TrueV = N->getOperand(3); 9059 SDValue FalseV = N->getOperand(4); 9060 SDLoc DL(N); 9061 9062 // If the True and False values are the same, we don't need a select_cc. 9063 if (TrueV == FalseV) 9064 return TrueV; 9065 9066 if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget)) 9067 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 9068 {LHS, RHS, CC, TrueV, FalseV}); 9069 9070 return SDValue(); 9071 } 9072 case RISCVISD::BR_CC: { 9073 SDValue LHS = N->getOperand(1); 9074 SDValue RHS = N->getOperand(2); 9075 SDValue CC = N->getOperand(3); 9076 SDLoc DL(N); 9077 9078 if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget)) 9079 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 9080 N->getOperand(0), LHS, RHS, CC, N->getOperand(4)); 9081 9082 return SDValue(); 9083 } 9084 case ISD::BITREVERSE: 9085 return performBITREVERSECombine(N, DAG, Subtarget); 9086 case ISD::FP_TO_SINT: 9087 case ISD::FP_TO_UINT: 9088 return performFP_TO_INTCombine(N, DCI, Subtarget); 9089 case ISD::FP_TO_SINT_SAT: 9090 case ISD::FP_TO_UINT_SAT: 9091 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 9092 case ISD::FCOPYSIGN: { 9093 EVT VT = N->getValueType(0); 9094 if (!VT.isVector()) 9095 break; 9096 // There is a form of VFSGNJ which injects the negated sign of its second 9097 // operand. Try and bubble any FNEG up after the extend/round to produce 9098 // this optimized pattern. Avoid modifying cases where FP_ROUND and 9099 // TRUNC=1. 9100 SDValue In2 = N->getOperand(1); 9101 // Avoid cases where the extend/round has multiple uses, as duplicating 9102 // those is typically more expensive than removing a fneg. 9103 if (!In2.hasOneUse()) 9104 break; 9105 if (In2.getOpcode() != ISD::FP_EXTEND && 9106 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 9107 break; 9108 In2 = In2.getOperand(0); 9109 if (In2.getOpcode() != ISD::FNEG) 9110 break; 9111 SDLoc DL(N); 9112 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 9113 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 9114 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 9115 } 9116 case ISD::MGATHER: 9117 case ISD::MSCATTER: 9118 case ISD::VP_GATHER: 9119 case ISD::VP_SCATTER: { 9120 if (!DCI.isBeforeLegalize()) 9121 break; 9122 SDValue Index, ScaleOp; 9123 bool IsIndexScaled = false; 9124 bool IsIndexSigned = false; 9125 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 9126 Index = VPGSN->getIndex(); 9127 ScaleOp = VPGSN->getScale(); 9128 IsIndexScaled = VPGSN->isIndexScaled(); 9129 IsIndexSigned = VPGSN->isIndexSigned(); 9130 } else { 9131 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 9132 Index = MGSN->getIndex(); 9133 ScaleOp = MGSN->getScale(); 9134 IsIndexScaled = MGSN->isIndexScaled(); 9135 IsIndexSigned = MGSN->isIndexSigned(); 9136 } 9137 EVT IndexVT = Index.getValueType(); 9138 MVT XLenVT = Subtarget.getXLenVT(); 9139 // RISCV indexed loads only support the "unsigned unscaled" addressing 9140 // mode, so anything else must be manually legalized. 9141 bool NeedsIdxLegalization = 9142 IsIndexScaled || 9143 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 9144 if (!NeedsIdxLegalization) 9145 break; 9146 9147 SDLoc DL(N); 9148 9149 // Any index legalization should first promote to XLenVT, so we don't lose 9150 // bits when scaling. This may create an illegal index type so we let 9151 // LLVM's legalization take care of the splitting. 9152 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 9153 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 9154 IndexVT = IndexVT.changeVectorElementType(XLenVT); 9155 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 9156 DL, IndexVT, Index); 9157 } 9158 9159 if (IsIndexScaled) { 9160 // Manually scale the indices. 9161 // TODO: Sanitize the scale operand here? 9162 // TODO: For VP nodes, should we use VP_SHL here? 9163 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 9164 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 9165 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 9166 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 9167 ScaleOp = DAG.getTargetConstant(1, DL, ScaleOp.getValueType()); 9168 } 9169 9170 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_SCALED; 9171 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 9172 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 9173 {VPGN->getChain(), VPGN->getBasePtr(), Index, 9174 ScaleOp, VPGN->getMask(), 9175 VPGN->getVectorLength()}, 9176 VPGN->getMemOperand(), NewIndexTy); 9177 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 9178 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 9179 {VPSN->getChain(), VPSN->getValue(), 9180 VPSN->getBasePtr(), Index, ScaleOp, 9181 VPSN->getMask(), VPSN->getVectorLength()}, 9182 VPSN->getMemOperand(), NewIndexTy); 9183 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 9184 return DAG.getMaskedGather( 9185 N->getVTList(), MGN->getMemoryVT(), DL, 9186 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 9187 MGN->getBasePtr(), Index, ScaleOp}, 9188 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 9189 const auto *MSN = cast<MaskedScatterSDNode>(N); 9190 return DAG.getMaskedScatter( 9191 N->getVTList(), MSN->getMemoryVT(), DL, 9192 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 9193 Index, ScaleOp}, 9194 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 9195 } 9196 case RISCVISD::SRA_VL: 9197 case RISCVISD::SRL_VL: 9198 case RISCVISD::SHL_VL: { 9199 SDValue ShAmt = N->getOperand(1); 9200 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 9201 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 9202 SDLoc DL(N); 9203 SDValue VL = N->getOperand(3); 9204 EVT VT = N->getValueType(0); 9205 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 9206 ShAmt.getOperand(1), VL); 9207 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 9208 N->getOperand(2), N->getOperand(3)); 9209 } 9210 break; 9211 } 9212 case ISD::SRA: 9213 if (SDValue V = performSRACombine(N, DAG, Subtarget)) 9214 return V; 9215 LLVM_FALLTHROUGH; 9216 case ISD::SRL: 9217 case ISD::SHL: { 9218 SDValue ShAmt = N->getOperand(1); 9219 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 9220 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 9221 SDLoc DL(N); 9222 EVT VT = N->getValueType(0); 9223 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 9224 ShAmt.getOperand(1), 9225 DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); 9226 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 9227 } 9228 break; 9229 } 9230 case RISCVISD::ADD_VL: 9231 if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false)) 9232 return V; 9233 return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true); 9234 case RISCVISD::SUB_VL: 9235 return combineADDSUB_VLToVWADDSUB_VL(N, DAG); 9236 case RISCVISD::VWADD_W_VL: 9237 case RISCVISD::VWADDU_W_VL: 9238 case RISCVISD::VWSUB_W_VL: 9239 case RISCVISD::VWSUBU_W_VL: 9240 return combineVWADD_W_VL_VWSUB_W_VL(N, DAG); 9241 case RISCVISD::MUL_VL: 9242 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 9243 return V; 9244 // Mul is commutative. 9245 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 9246 case RISCVISD::VFMADD_VL: 9247 case RISCVISD::VFNMADD_VL: 9248 case RISCVISD::VFMSUB_VL: 9249 case RISCVISD::VFNMSUB_VL: { 9250 // Fold FNEG_VL into FMA opcodes. 9251 SDValue A = N->getOperand(0); 9252 SDValue B = N->getOperand(1); 9253 SDValue C = N->getOperand(2); 9254 SDValue Mask = N->getOperand(3); 9255 SDValue VL = N->getOperand(4); 9256 9257 auto invertIfNegative = [&Mask, &VL](SDValue &V) { 9258 if (V.getOpcode() == RISCVISD::FNEG_VL && V.getOperand(1) == Mask && 9259 V.getOperand(2) == VL) { 9260 // Return the negated input. 9261 V = V.getOperand(0); 9262 return true; 9263 } 9264 9265 return false; 9266 }; 9267 9268 bool NegA = invertIfNegative(A); 9269 bool NegB = invertIfNegative(B); 9270 bool NegC = invertIfNegative(C); 9271 9272 // If no operands are negated, we're done. 9273 if (!NegA && !NegB && !NegC) 9274 return SDValue(); 9275 9276 unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC); 9277 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), A, B, C, Mask, 9278 VL); 9279 } 9280 case ISD::STORE: { 9281 auto *Store = cast<StoreSDNode>(N); 9282 SDValue Val = Store->getValue(); 9283 // Combine store of vmv.x.s to vse with VL of 1. 9284 // FIXME: Support FP. 9285 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 9286 SDValue Src = Val.getOperand(0); 9287 MVT VecVT = Src.getSimpleValueType(); 9288 EVT MemVT = Store->getMemoryVT(); 9289 // The memory VT and the element type must match. 9290 if (MemVT == VecVT.getVectorElementType()) { 9291 SDLoc DL(N); 9292 MVT MaskVT = getMaskTypeFor(VecVT); 9293 return DAG.getStoreVP( 9294 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 9295 DAG.getConstant(1, DL, MaskVT), 9296 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 9297 Store->getMemOperand(), Store->getAddressingMode(), 9298 Store->isTruncatingStore(), /*IsCompress*/ false); 9299 } 9300 } 9301 9302 break; 9303 } 9304 case ISD::SPLAT_VECTOR: { 9305 EVT VT = N->getValueType(0); 9306 // Only perform this combine on legal MVT types. 9307 if (!isTypeLegal(VT)) 9308 break; 9309 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, 9310 DAG, Subtarget)) 9311 return Gather; 9312 break; 9313 } 9314 case RISCVISD::VMV_V_X_VL: { 9315 // Tail agnostic VMV.V.X only demands the vector element bitwidth from the 9316 // scalar input. 9317 unsigned ScalarSize = N->getOperand(1).getValueSizeInBits(); 9318 unsigned EltWidth = N->getValueType(0).getScalarSizeInBits(); 9319 if (ScalarSize > EltWidth && N->getOperand(0).isUndef()) 9320 if (SimplifyDemandedLowBitsHelper(1, EltWidth)) 9321 return SDValue(N, 0); 9322 9323 break; 9324 } 9325 case ISD::INTRINSIC_WO_CHAIN: { 9326 unsigned IntNo = N->getConstantOperandVal(0); 9327 switch (IntNo) { 9328 // By default we do not combine any intrinsic. 9329 default: 9330 return SDValue(); 9331 case Intrinsic::riscv_vcpop: 9332 case Intrinsic::riscv_vcpop_mask: 9333 case Intrinsic::riscv_vfirst: 9334 case Intrinsic::riscv_vfirst_mask: { 9335 SDValue VL = N->getOperand(2); 9336 if (IntNo == Intrinsic::riscv_vcpop_mask || 9337 IntNo == Intrinsic::riscv_vfirst_mask) 9338 VL = N->getOperand(3); 9339 if (!isNullConstant(VL)) 9340 return SDValue(); 9341 // If VL is 0, vcpop -> li 0, vfirst -> li -1. 9342 SDLoc DL(N); 9343 EVT VT = N->getValueType(0); 9344 if (IntNo == Intrinsic::riscv_vfirst || 9345 IntNo == Intrinsic::riscv_vfirst_mask) 9346 return DAG.getConstant(-1, DL, VT); 9347 return DAG.getConstant(0, DL, VT); 9348 } 9349 } 9350 } 9351 case ISD::BITCAST: { 9352 assert(Subtarget.useRVVForFixedLengthVectors()); 9353 SDValue N0 = N->getOperand(0); 9354 EVT VT = N->getValueType(0); 9355 EVT SrcVT = N0.getValueType(); 9356 // If this is a bitcast between a MVT::v4i1/v2i1/v1i1 and an illegal integer 9357 // type, widen both sides to avoid a trip through memory. 9358 if ((SrcVT == MVT::v1i1 || SrcVT == MVT::v2i1 || SrcVT == MVT::v4i1) && 9359 VT.isScalarInteger()) { 9360 unsigned NumConcats = 8 / SrcVT.getVectorNumElements(); 9361 SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT)); 9362 Ops[0] = N0; 9363 SDLoc DL(N); 9364 N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i1, Ops); 9365 N0 = DAG.getBitcast(MVT::i8, N0); 9366 return DAG.getNode(ISD::TRUNCATE, DL, VT, N0); 9367 } 9368 9369 return SDValue(); 9370 } 9371 } 9372 9373 return SDValue(); 9374 } 9375 9376 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 9377 const SDNode *N, CombineLevel Level) const { 9378 assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA || 9379 N->getOpcode() == ISD::SRL) && 9380 "Expected shift op"); 9381 9382 // The following folds are only desirable if `(OP _, c1 << c2)` can be 9383 // materialised in fewer instructions than `(OP _, c1)`: 9384 // 9385 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 9386 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 9387 SDValue N0 = N->getOperand(0); 9388 EVT Ty = N0.getValueType(); 9389 if (Ty.isScalarInteger() && 9390 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 9391 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 9392 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9393 if (C1 && C2) { 9394 const APInt &C1Int = C1->getAPIntValue(); 9395 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 9396 9397 // We can materialise `c1 << c2` into an add immediate, so it's "free", 9398 // and the combine should happen, to potentially allow further combines 9399 // later. 9400 if (ShiftedC1Int.getMinSignedBits() <= 64 && 9401 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 9402 return true; 9403 9404 // We can materialise `c1` in an add immediate, so it's "free", and the 9405 // combine should be prevented. 9406 if (C1Int.getMinSignedBits() <= 64 && 9407 isLegalAddImmediate(C1Int.getSExtValue())) 9408 return false; 9409 9410 // Neither constant will fit into an immediate, so find materialisation 9411 // costs. 9412 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 9413 Subtarget.getFeatureBits(), 9414 /*CompressionCost*/true); 9415 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 9416 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 9417 /*CompressionCost*/true); 9418 9419 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 9420 // combine should be prevented. 9421 if (C1Cost < ShiftedC1Cost) 9422 return false; 9423 } 9424 } 9425 return true; 9426 } 9427 9428 bool RISCVTargetLowering::targetShrinkDemandedConstant( 9429 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 9430 TargetLoweringOpt &TLO) const { 9431 // Delay this optimization as late as possible. 9432 if (!TLO.LegalOps) 9433 return false; 9434 9435 EVT VT = Op.getValueType(); 9436 if (VT.isVector()) 9437 return false; 9438 9439 // Only handle AND for now. 9440 unsigned Opcode = Op.getOpcode(); 9441 if (Opcode != ISD::AND && Opcode != ISD::OR && Opcode != ISD::XOR) 9442 return false; 9443 9444 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 9445 if (!C) 9446 return false; 9447 9448 const APInt &Mask = C->getAPIntValue(); 9449 9450 // Clear all non-demanded bits initially. 9451 APInt ShrunkMask = Mask & DemandedBits; 9452 9453 // Try to make a smaller immediate by setting undemanded bits. 9454 9455 APInt ExpandedMask = Mask | ~DemandedBits; 9456 9457 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 9458 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 9459 }; 9460 auto UseMask = [Mask, Op, &TLO](const APInt &NewMask) -> bool { 9461 if (NewMask == Mask) 9462 return true; 9463 SDLoc DL(Op); 9464 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, Op.getValueType()); 9465 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), DL, Op.getValueType(), 9466 Op.getOperand(0), NewC); 9467 return TLO.CombineTo(Op, NewOp); 9468 }; 9469 9470 // If the shrunk mask fits in sign extended 12 bits, let the target 9471 // independent code apply it. 9472 if (ShrunkMask.isSignedIntN(12)) 9473 return false; 9474 9475 // And has a few special cases for zext. 9476 if (Opcode == ISD::AND) { 9477 // Preserve (and X, 0xffff) when zext.h is supported. 9478 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 9479 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 9480 if (IsLegalMask(NewMask)) 9481 return UseMask(NewMask); 9482 } 9483 9484 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 9485 if (VT == MVT::i64) { 9486 APInt NewMask = APInt(64, 0xffffffff); 9487 if (IsLegalMask(NewMask)) 9488 return UseMask(NewMask); 9489 } 9490 } 9491 9492 // For the remaining optimizations, we need to be able to make a negative 9493 // number through a combination of mask and undemanded bits. 9494 if (!ExpandedMask.isNegative()) 9495 return false; 9496 9497 // What is the fewest number of bits we need to represent the negative number. 9498 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 9499 9500 // Try to make a 12 bit negative immediate. If that fails try to make a 32 9501 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 9502 // If we can't create a simm12, we shouldn't change opaque constants. 9503 APInt NewMask = ShrunkMask; 9504 if (MinSignedBits <= 12) 9505 NewMask.setBitsFrom(11); 9506 else if (!C->isOpaque() && MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 9507 NewMask.setBitsFrom(31); 9508 else 9509 return false; 9510 9511 // Check that our new mask is a subset of the demanded mask. 9512 assert(IsLegalMask(NewMask)); 9513 return UseMask(NewMask); 9514 } 9515 9516 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) { 9517 static const uint64_t GREVMasks[] = { 9518 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 9519 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 9520 9521 for (unsigned Stage = 0; Stage != 6; ++Stage) { 9522 unsigned Shift = 1 << Stage; 9523 if (ShAmt & Shift) { 9524 uint64_t Mask = GREVMasks[Stage]; 9525 uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask); 9526 if (IsGORC) 9527 Res |= x; 9528 x = Res; 9529 } 9530 } 9531 9532 return x; 9533 } 9534 9535 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 9536 KnownBits &Known, 9537 const APInt &DemandedElts, 9538 const SelectionDAG &DAG, 9539 unsigned Depth) const { 9540 unsigned BitWidth = Known.getBitWidth(); 9541 unsigned Opc = Op.getOpcode(); 9542 assert((Opc >= ISD::BUILTIN_OP_END || 9543 Opc == ISD::INTRINSIC_WO_CHAIN || 9544 Opc == ISD::INTRINSIC_W_CHAIN || 9545 Opc == ISD::INTRINSIC_VOID) && 9546 "Should use MaskedValueIsZero if you don't know whether Op" 9547 " is a target node!"); 9548 9549 Known.resetAll(); 9550 switch (Opc) { 9551 default: break; 9552 case RISCVISD::SELECT_CC: { 9553 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 9554 // If we don't know any bits, early out. 9555 if (Known.isUnknown()) 9556 break; 9557 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 9558 9559 // Only known if known in both the LHS and RHS. 9560 Known = KnownBits::commonBits(Known, Known2); 9561 break; 9562 } 9563 case RISCVISD::REMUW: { 9564 KnownBits Known2; 9565 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 9566 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 9567 // We only care about the lower 32 bits. 9568 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 9569 // Restore the original width by sign extending. 9570 Known = Known.sext(BitWidth); 9571 break; 9572 } 9573 case RISCVISD::DIVUW: { 9574 KnownBits Known2; 9575 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 9576 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 9577 // We only care about the lower 32 bits. 9578 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 9579 // Restore the original width by sign extending. 9580 Known = Known.sext(BitWidth); 9581 break; 9582 } 9583 case RISCVISD::CTZW: { 9584 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9585 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 9586 unsigned LowBits = Log2_32(PossibleTZ) + 1; 9587 Known.Zero.setBitsFrom(LowBits); 9588 break; 9589 } 9590 case RISCVISD::CLZW: { 9591 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9592 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 9593 unsigned LowBits = Log2_32(PossibleLZ) + 1; 9594 Known.Zero.setBitsFrom(LowBits); 9595 break; 9596 } 9597 case RISCVISD::GREV: 9598 case RISCVISD::GORC: { 9599 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 9600 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9601 unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1); 9602 bool IsGORC = Op.getOpcode() == RISCVISD::GORC; 9603 // To compute zeros, we need to invert the value and invert it back after. 9604 Known.Zero = 9605 ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC); 9606 Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC); 9607 } 9608 break; 9609 } 9610 case RISCVISD::READ_VLENB: { 9611 // We can use the minimum and maximum VLEN values to bound VLENB. We 9612 // know VLEN must be a power of two. 9613 const unsigned MinVLenB = Subtarget.getRealMinVLen() / 8; 9614 const unsigned MaxVLenB = Subtarget.getRealMaxVLen() / 8; 9615 assert(MinVLenB > 0 && "READ_VLENB without vector extension enabled?"); 9616 Known.Zero.setLowBits(Log2_32(MinVLenB)); 9617 Known.Zero.setBitsFrom(Log2_32(MaxVLenB)+1); 9618 if (MaxVLenB == MinVLenB) 9619 Known.One.setBit(Log2_32(MinVLenB)); 9620 break; 9621 } 9622 case ISD::INTRINSIC_W_CHAIN: 9623 case ISD::INTRINSIC_WO_CHAIN: { 9624 unsigned IntNo = 9625 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 9626 switch (IntNo) { 9627 default: 9628 // We can't do anything for most intrinsics. 9629 break; 9630 case Intrinsic::riscv_vsetvli: 9631 case Intrinsic::riscv_vsetvlimax: 9632 case Intrinsic::riscv_vsetvli_opt: 9633 case Intrinsic::riscv_vsetvlimax_opt: 9634 // Assume that VL output is positive and would fit in an int32_t. 9635 // TODO: VLEN might be capped at 16 bits in a future V spec update. 9636 if (BitWidth >= 32) 9637 Known.Zero.setBitsFrom(31); 9638 break; 9639 } 9640 break; 9641 } 9642 } 9643 } 9644 9645 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 9646 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 9647 unsigned Depth) const { 9648 switch (Op.getOpcode()) { 9649 default: 9650 break; 9651 case RISCVISD::SELECT_CC: { 9652 unsigned Tmp = 9653 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 9654 if (Tmp == 1) return 1; // Early out. 9655 unsigned Tmp2 = 9656 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 9657 return std::min(Tmp, Tmp2); 9658 } 9659 case RISCVISD::SLLW: 9660 case RISCVISD::SRAW: 9661 case RISCVISD::SRLW: 9662 case RISCVISD::DIVW: 9663 case RISCVISD::DIVUW: 9664 case RISCVISD::REMUW: 9665 case RISCVISD::ROLW: 9666 case RISCVISD::RORW: 9667 case RISCVISD::GREVW: 9668 case RISCVISD::GORCW: 9669 case RISCVISD::FSLW: 9670 case RISCVISD::FSRW: 9671 case RISCVISD::SHFLW: 9672 case RISCVISD::UNSHFLW: 9673 case RISCVISD::BCOMPRESSW: 9674 case RISCVISD::BDECOMPRESSW: 9675 case RISCVISD::BFPW: 9676 case RISCVISD::FCVT_W_RV64: 9677 case RISCVISD::FCVT_WU_RV64: 9678 case RISCVISD::STRICT_FCVT_W_RV64: 9679 case RISCVISD::STRICT_FCVT_WU_RV64: 9680 // TODO: As the result is sign-extended, this is conservatively correct. A 9681 // more precise answer could be calculated for SRAW depending on known 9682 // bits in the shift amount. 9683 return 33; 9684 case RISCVISD::SHFL: 9685 case RISCVISD::UNSHFL: { 9686 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 9687 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 9688 // will stay within the upper 32 bits. If there were more than 32 sign bits 9689 // before there will be at least 33 sign bits after. 9690 if (Op.getValueType() == MVT::i64 && 9691 isa<ConstantSDNode>(Op.getOperand(1)) && 9692 (Op.getConstantOperandVal(1) & 0x10) == 0) { 9693 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 9694 if (Tmp > 32) 9695 return 33; 9696 } 9697 break; 9698 } 9699 case RISCVISD::VMV_X_S: { 9700 // The number of sign bits of the scalar result is computed by obtaining the 9701 // element type of the input vector operand, subtracting its width from the 9702 // XLEN, and then adding one (sign bit within the element type). If the 9703 // element type is wider than XLen, the least-significant XLEN bits are 9704 // taken. 9705 unsigned XLen = Subtarget.getXLen(); 9706 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 9707 if (EltBits <= XLen) 9708 return XLen - EltBits + 1; 9709 break; 9710 } 9711 } 9712 9713 return 1; 9714 } 9715 9716 const Constant * 9717 RISCVTargetLowering::getTargetConstantFromLoad(LoadSDNode *Ld) const { 9718 assert(Ld && "Unexpected null LoadSDNode"); 9719 if (!ISD::isNormalLoad(Ld)) 9720 return nullptr; 9721 9722 SDValue Ptr = Ld->getBasePtr(); 9723 9724 // Only constant pools with no offset are supported. 9725 auto GetSupportedConstantPool = [](SDValue Ptr) -> ConstantPoolSDNode * { 9726 auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr); 9727 if (!CNode || CNode->isMachineConstantPoolEntry() || 9728 CNode->getOffset() != 0) 9729 return nullptr; 9730 9731 return CNode; 9732 }; 9733 9734 // Simple case, LLA. 9735 if (Ptr.getOpcode() == RISCVISD::LLA) { 9736 auto *CNode = GetSupportedConstantPool(Ptr); 9737 if (!CNode || CNode->getTargetFlags() != 0) 9738 return nullptr; 9739 9740 return CNode->getConstVal(); 9741 } 9742 9743 // Look for a HI and ADD_LO pair. 9744 if (Ptr.getOpcode() != RISCVISD::ADD_LO || 9745 Ptr.getOperand(0).getOpcode() != RISCVISD::HI) 9746 return nullptr; 9747 9748 auto *CNodeLo = GetSupportedConstantPool(Ptr.getOperand(1)); 9749 auto *CNodeHi = GetSupportedConstantPool(Ptr.getOperand(0).getOperand(0)); 9750 9751 if (!CNodeLo || CNodeLo->getTargetFlags() != RISCVII::MO_LO || 9752 !CNodeHi || CNodeHi->getTargetFlags() != RISCVII::MO_HI) 9753 return nullptr; 9754 9755 if (CNodeLo->getConstVal() != CNodeHi->getConstVal()) 9756 return nullptr; 9757 9758 return CNodeLo->getConstVal(); 9759 } 9760 9761 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 9762 MachineBasicBlock *BB) { 9763 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 9764 9765 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 9766 // Should the count have wrapped while it was being read, we need to try 9767 // again. 9768 // ... 9769 // read: 9770 // rdcycleh x3 # load high word of cycle 9771 // rdcycle x2 # load low word of cycle 9772 // rdcycleh x4 # load high word of cycle 9773 // bne x3, x4, read # check if high word reads match, otherwise try again 9774 // ... 9775 9776 MachineFunction &MF = *BB->getParent(); 9777 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9778 MachineFunction::iterator It = ++BB->getIterator(); 9779 9780 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9781 MF.insert(It, LoopMBB); 9782 9783 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9784 MF.insert(It, DoneMBB); 9785 9786 // Transfer the remainder of BB and its successor edges to DoneMBB. 9787 DoneMBB->splice(DoneMBB->begin(), BB, 9788 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9789 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 9790 9791 BB->addSuccessor(LoopMBB); 9792 9793 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9794 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9795 Register LoReg = MI.getOperand(0).getReg(); 9796 Register HiReg = MI.getOperand(1).getReg(); 9797 DebugLoc DL = MI.getDebugLoc(); 9798 9799 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 9800 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 9801 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9802 .addReg(RISCV::X0); 9803 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 9804 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 9805 .addReg(RISCV::X0); 9806 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 9807 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9808 .addReg(RISCV::X0); 9809 9810 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 9811 .addReg(HiReg) 9812 .addReg(ReadAgainReg) 9813 .addMBB(LoopMBB); 9814 9815 LoopMBB->addSuccessor(LoopMBB); 9816 LoopMBB->addSuccessor(DoneMBB); 9817 9818 MI.eraseFromParent(); 9819 9820 return DoneMBB; 9821 } 9822 9823 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 9824 MachineBasicBlock *BB) { 9825 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 9826 9827 MachineFunction &MF = *BB->getParent(); 9828 DebugLoc DL = MI.getDebugLoc(); 9829 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9830 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9831 Register LoReg = MI.getOperand(0).getReg(); 9832 Register HiReg = MI.getOperand(1).getReg(); 9833 Register SrcReg = MI.getOperand(2).getReg(); 9834 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 9835 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9836 9837 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 9838 RI); 9839 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9840 MachineMemOperand *MMOLo = 9841 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 9842 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9843 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 9844 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 9845 .addFrameIndex(FI) 9846 .addImm(0) 9847 .addMemOperand(MMOLo); 9848 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 9849 .addFrameIndex(FI) 9850 .addImm(4) 9851 .addMemOperand(MMOHi); 9852 MI.eraseFromParent(); // The pseudo instruction is gone now. 9853 return BB; 9854 } 9855 9856 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 9857 MachineBasicBlock *BB) { 9858 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 9859 "Unexpected instruction"); 9860 9861 MachineFunction &MF = *BB->getParent(); 9862 DebugLoc DL = MI.getDebugLoc(); 9863 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9864 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9865 Register DstReg = MI.getOperand(0).getReg(); 9866 Register LoReg = MI.getOperand(1).getReg(); 9867 Register HiReg = MI.getOperand(2).getReg(); 9868 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 9869 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9870 9871 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9872 MachineMemOperand *MMOLo = 9873 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 9874 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9875 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 9876 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9877 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 9878 .addFrameIndex(FI) 9879 .addImm(0) 9880 .addMemOperand(MMOLo); 9881 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9882 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 9883 .addFrameIndex(FI) 9884 .addImm(4) 9885 .addMemOperand(MMOHi); 9886 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 9887 MI.eraseFromParent(); // The pseudo instruction is gone now. 9888 return BB; 9889 } 9890 9891 static bool isSelectPseudo(MachineInstr &MI) { 9892 switch (MI.getOpcode()) { 9893 default: 9894 return false; 9895 case RISCV::Select_GPR_Using_CC_GPR: 9896 case RISCV::Select_FPR16_Using_CC_GPR: 9897 case RISCV::Select_FPR32_Using_CC_GPR: 9898 case RISCV::Select_FPR64_Using_CC_GPR: 9899 return true; 9900 } 9901 } 9902 9903 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 9904 unsigned RelOpcode, unsigned EqOpcode, 9905 const RISCVSubtarget &Subtarget) { 9906 DebugLoc DL = MI.getDebugLoc(); 9907 Register DstReg = MI.getOperand(0).getReg(); 9908 Register Src1Reg = MI.getOperand(1).getReg(); 9909 Register Src2Reg = MI.getOperand(2).getReg(); 9910 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 9911 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 9912 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 9913 9914 // Save the current FFLAGS. 9915 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 9916 9917 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 9918 .addReg(Src1Reg) 9919 .addReg(Src2Reg); 9920 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9921 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 9922 9923 // Restore the FFLAGS. 9924 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 9925 .addReg(SavedFFlags, RegState::Kill); 9926 9927 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 9928 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 9929 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 9930 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 9931 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9932 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 9933 9934 // Erase the pseudoinstruction. 9935 MI.eraseFromParent(); 9936 return BB; 9937 } 9938 9939 static MachineBasicBlock * 9940 EmitLoweredCascadedSelect(MachineInstr &First, MachineInstr &Second, 9941 MachineBasicBlock *ThisMBB, 9942 const RISCVSubtarget &Subtarget) { 9943 // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5) 9944 // Without this, custom-inserter would have generated: 9945 // 9946 // A 9947 // | \ 9948 // | B 9949 // | / 9950 // C 9951 // | \ 9952 // | D 9953 // | / 9954 // E 9955 // 9956 // A: X = ...; Y = ... 9957 // B: empty 9958 // C: Z = PHI [X, A], [Y, B] 9959 // D: empty 9960 // E: PHI [X, C], [Z, D] 9961 // 9962 // If we lower both Select_FPRX_ in a single step, we can instead generate: 9963 // 9964 // A 9965 // | \ 9966 // | C 9967 // | /| 9968 // |/ | 9969 // | | 9970 // | D 9971 // | / 9972 // E 9973 // 9974 // A: X = ...; Y = ... 9975 // D: empty 9976 // E: PHI [X, A], [X, C], [Y, D] 9977 9978 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 9979 const DebugLoc &DL = First.getDebugLoc(); 9980 const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock(); 9981 MachineFunction *F = ThisMBB->getParent(); 9982 MachineBasicBlock *FirstMBB = F->CreateMachineBasicBlock(LLVM_BB); 9983 MachineBasicBlock *SecondMBB = F->CreateMachineBasicBlock(LLVM_BB); 9984 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 9985 MachineFunction::iterator It = ++ThisMBB->getIterator(); 9986 F->insert(It, FirstMBB); 9987 F->insert(It, SecondMBB); 9988 F->insert(It, SinkMBB); 9989 9990 // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. 9991 SinkMBB->splice(SinkMBB->begin(), ThisMBB, 9992 std::next(MachineBasicBlock::iterator(First)), 9993 ThisMBB->end()); 9994 SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); 9995 9996 // Fallthrough block for ThisMBB. 9997 ThisMBB->addSuccessor(FirstMBB); 9998 // Fallthrough block for FirstMBB. 9999 FirstMBB->addSuccessor(SecondMBB); 10000 ThisMBB->addSuccessor(SinkMBB); 10001 FirstMBB->addSuccessor(SinkMBB); 10002 // This is fallthrough. 10003 SecondMBB->addSuccessor(SinkMBB); 10004 10005 auto FirstCC = static_cast<RISCVCC::CondCode>(First.getOperand(3).getImm()); 10006 Register FLHS = First.getOperand(1).getReg(); 10007 Register FRHS = First.getOperand(2).getReg(); 10008 // Insert appropriate branch. 10009 BuildMI(FirstMBB, DL, TII.getBrCond(FirstCC)) 10010 .addReg(FLHS) 10011 .addReg(FRHS) 10012 .addMBB(SinkMBB); 10013 10014 Register SLHS = Second.getOperand(1).getReg(); 10015 Register SRHS = Second.getOperand(2).getReg(); 10016 Register Op1Reg4 = First.getOperand(4).getReg(); 10017 Register Op1Reg5 = First.getOperand(5).getReg(); 10018 10019 auto SecondCC = static_cast<RISCVCC::CondCode>(Second.getOperand(3).getImm()); 10020 // Insert appropriate branch. 10021 BuildMI(ThisMBB, DL, TII.getBrCond(SecondCC)) 10022 .addReg(SLHS) 10023 .addReg(SRHS) 10024 .addMBB(SinkMBB); 10025 10026 Register DestReg = Second.getOperand(0).getReg(); 10027 Register Op2Reg4 = Second.getOperand(4).getReg(); 10028 BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII.get(RISCV::PHI), DestReg) 10029 .addReg(Op2Reg4) 10030 .addMBB(ThisMBB) 10031 .addReg(Op1Reg4) 10032 .addMBB(FirstMBB) 10033 .addReg(Op1Reg5) 10034 .addMBB(SecondMBB); 10035 10036 // Now remove the Select_FPRX_s. 10037 First.eraseFromParent(); 10038 Second.eraseFromParent(); 10039 return SinkMBB; 10040 } 10041 10042 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 10043 MachineBasicBlock *BB, 10044 const RISCVSubtarget &Subtarget) { 10045 // To "insert" Select_* instructions, we actually have to insert the triangle 10046 // control-flow pattern. The incoming instructions know the destination vreg 10047 // to set, the condition code register to branch on, the true/false values to 10048 // select between, and the condcode to use to select the appropriate branch. 10049 // 10050 // We produce the following control flow: 10051 // HeadMBB 10052 // | \ 10053 // | IfFalseMBB 10054 // | / 10055 // TailMBB 10056 // 10057 // When we find a sequence of selects we attempt to optimize their emission 10058 // by sharing the control flow. Currently we only handle cases where we have 10059 // multiple selects with the exact same condition (same LHS, RHS and CC). 10060 // The selects may be interleaved with other instructions if the other 10061 // instructions meet some requirements we deem safe: 10062 // - They are debug instructions. Otherwise, 10063 // - They do not have side-effects, do not access memory and their inputs do 10064 // not depend on the results of the select pseudo-instructions. 10065 // The TrueV/FalseV operands of the selects cannot depend on the result of 10066 // previous selects in the sequence. 10067 // These conditions could be further relaxed. See the X86 target for a 10068 // related approach and more information. 10069 // 10070 // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5)) 10071 // is checked here and handled by a separate function - 10072 // EmitLoweredCascadedSelect. 10073 Register LHS = MI.getOperand(1).getReg(); 10074 Register RHS = MI.getOperand(2).getReg(); 10075 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 10076 10077 SmallVector<MachineInstr *, 4> SelectDebugValues; 10078 SmallSet<Register, 4> SelectDests; 10079 SelectDests.insert(MI.getOperand(0).getReg()); 10080 10081 MachineInstr *LastSelectPseudo = &MI; 10082 auto Next = next_nodbg(MI.getIterator(), BB->instr_end()); 10083 if (MI.getOpcode() != RISCV::Select_GPR_Using_CC_GPR && Next != BB->end() && 10084 Next->getOpcode() == MI.getOpcode() && 10085 Next->getOperand(5).getReg() == MI.getOperand(0).getReg() && 10086 Next->getOperand(5).isKill()) { 10087 return EmitLoweredCascadedSelect(MI, *Next, BB, Subtarget); 10088 } 10089 10090 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 10091 SequenceMBBI != E; ++SequenceMBBI) { 10092 if (SequenceMBBI->isDebugInstr()) 10093 continue; 10094 if (isSelectPseudo(*SequenceMBBI)) { 10095 if (SequenceMBBI->getOperand(1).getReg() != LHS || 10096 SequenceMBBI->getOperand(2).getReg() != RHS || 10097 SequenceMBBI->getOperand(3).getImm() != CC || 10098 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 10099 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 10100 break; 10101 LastSelectPseudo = &*SequenceMBBI; 10102 SequenceMBBI->collectDebugValues(SelectDebugValues); 10103 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 10104 continue; 10105 } 10106 if (SequenceMBBI->hasUnmodeledSideEffects() || 10107 SequenceMBBI->mayLoadOrStore()) 10108 break; 10109 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 10110 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 10111 })) 10112 break; 10113 } 10114 10115 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 10116 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10117 DebugLoc DL = MI.getDebugLoc(); 10118 MachineFunction::iterator I = ++BB->getIterator(); 10119 10120 MachineBasicBlock *HeadMBB = BB; 10121 MachineFunction *F = BB->getParent(); 10122 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 10123 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 10124 10125 F->insert(I, IfFalseMBB); 10126 F->insert(I, TailMBB); 10127 10128 // Transfer debug instructions associated with the selects to TailMBB. 10129 for (MachineInstr *DebugInstr : SelectDebugValues) { 10130 TailMBB->push_back(DebugInstr->removeFromParent()); 10131 } 10132 10133 // Move all instructions after the sequence to TailMBB. 10134 TailMBB->splice(TailMBB->end(), HeadMBB, 10135 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 10136 // Update machine-CFG edges by transferring all successors of the current 10137 // block to the new block which will contain the Phi nodes for the selects. 10138 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 10139 // Set the successors for HeadMBB. 10140 HeadMBB->addSuccessor(IfFalseMBB); 10141 HeadMBB->addSuccessor(TailMBB); 10142 10143 // Insert appropriate branch. 10144 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 10145 .addReg(LHS) 10146 .addReg(RHS) 10147 .addMBB(TailMBB); 10148 10149 // IfFalseMBB just falls through to TailMBB. 10150 IfFalseMBB->addSuccessor(TailMBB); 10151 10152 // Create PHIs for all of the select pseudo-instructions. 10153 auto SelectMBBI = MI.getIterator(); 10154 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 10155 auto InsertionPoint = TailMBB->begin(); 10156 while (SelectMBBI != SelectEnd) { 10157 auto Next = std::next(SelectMBBI); 10158 if (isSelectPseudo(*SelectMBBI)) { 10159 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 10160 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 10161 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 10162 .addReg(SelectMBBI->getOperand(4).getReg()) 10163 .addMBB(HeadMBB) 10164 .addReg(SelectMBBI->getOperand(5).getReg()) 10165 .addMBB(IfFalseMBB); 10166 SelectMBBI->eraseFromParent(); 10167 } 10168 SelectMBBI = Next; 10169 } 10170 10171 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 10172 return TailMBB; 10173 } 10174 10175 MachineBasicBlock * 10176 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 10177 MachineBasicBlock *BB) const { 10178 switch (MI.getOpcode()) { 10179 default: 10180 llvm_unreachable("Unexpected instr type to insert"); 10181 case RISCV::ReadCycleWide: 10182 assert(!Subtarget.is64Bit() && 10183 "ReadCycleWrite is only to be used on riscv32"); 10184 return emitReadCycleWidePseudo(MI, BB); 10185 case RISCV::Select_GPR_Using_CC_GPR: 10186 case RISCV::Select_FPR16_Using_CC_GPR: 10187 case RISCV::Select_FPR32_Using_CC_GPR: 10188 case RISCV::Select_FPR64_Using_CC_GPR: 10189 return emitSelectPseudo(MI, BB, Subtarget); 10190 case RISCV::BuildPairF64Pseudo: 10191 return emitBuildPairF64Pseudo(MI, BB); 10192 case RISCV::SplitF64Pseudo: 10193 return emitSplitF64Pseudo(MI, BB); 10194 case RISCV::PseudoQuietFLE_H: 10195 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 10196 case RISCV::PseudoQuietFLT_H: 10197 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 10198 case RISCV::PseudoQuietFLE_S: 10199 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 10200 case RISCV::PseudoQuietFLT_S: 10201 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 10202 case RISCV::PseudoQuietFLE_D: 10203 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 10204 case RISCV::PseudoQuietFLT_D: 10205 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 10206 } 10207 } 10208 10209 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 10210 SDNode *Node) const { 10211 // Add FRM dependency to any instructions with dynamic rounding mode. 10212 unsigned Opc = MI.getOpcode(); 10213 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 10214 if (Idx < 0) 10215 return; 10216 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 10217 return; 10218 // If the instruction already reads FRM, don't add another read. 10219 if (MI.readsRegister(RISCV::FRM)) 10220 return; 10221 MI.addOperand( 10222 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 10223 } 10224 10225 // Calling Convention Implementation. 10226 // The expectations for frontend ABI lowering vary from target to target. 10227 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 10228 // details, but this is a longer term goal. For now, we simply try to keep the 10229 // role of the frontend as simple and well-defined as possible. The rules can 10230 // be summarised as: 10231 // * Never split up large scalar arguments. We handle them here. 10232 // * If a hardfloat calling convention is being used, and the struct may be 10233 // passed in a pair of registers (fp+fp, int+fp), and both registers are 10234 // available, then pass as two separate arguments. If either the GPRs or FPRs 10235 // are exhausted, then pass according to the rule below. 10236 // * If a struct could never be passed in registers or directly in a stack 10237 // slot (as it is larger than 2*XLEN and the floating point rules don't 10238 // apply), then pass it using a pointer with the byval attribute. 10239 // * If a struct is less than 2*XLEN, then coerce to either a two-element 10240 // word-sized array or a 2*XLEN scalar (depending on alignment). 10241 // * The frontend can determine whether a struct is returned by reference or 10242 // not based on its size and fields. If it will be returned by reference, the 10243 // frontend must modify the prototype so a pointer with the sret annotation is 10244 // passed as the first argument. This is not necessary for large scalar 10245 // returns. 10246 // * Struct return values and varargs should be coerced to structs containing 10247 // register-size fields in the same situations they would be for fixed 10248 // arguments. 10249 10250 static const MCPhysReg ArgGPRs[] = { 10251 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 10252 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 10253 }; 10254 static const MCPhysReg ArgFPR16s[] = { 10255 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 10256 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 10257 }; 10258 static const MCPhysReg ArgFPR32s[] = { 10259 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 10260 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 10261 }; 10262 static const MCPhysReg ArgFPR64s[] = { 10263 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 10264 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 10265 }; 10266 // This is an interim calling convention and it may be changed in the future. 10267 static const MCPhysReg ArgVRs[] = { 10268 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 10269 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 10270 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 10271 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 10272 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 10273 RISCV::V20M2, RISCV::V22M2}; 10274 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 10275 RISCV::V20M4}; 10276 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 10277 10278 // Pass a 2*XLEN argument that has been split into two XLEN values through 10279 // registers or the stack as necessary. 10280 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 10281 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 10282 MVT ValVT2, MVT LocVT2, 10283 ISD::ArgFlagsTy ArgFlags2) { 10284 unsigned XLenInBytes = XLen / 8; 10285 if (Register Reg = State.AllocateReg(ArgGPRs)) { 10286 // At least one half can be passed via register. 10287 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 10288 VA1.getLocVT(), CCValAssign::Full)); 10289 } else { 10290 // Both halves must be passed on the stack, with proper alignment. 10291 Align StackAlign = 10292 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 10293 State.addLoc( 10294 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 10295 State.AllocateStack(XLenInBytes, StackAlign), 10296 VA1.getLocVT(), CCValAssign::Full)); 10297 State.addLoc(CCValAssign::getMem( 10298 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 10299 LocVT2, CCValAssign::Full)); 10300 return false; 10301 } 10302 10303 if (Register Reg = State.AllocateReg(ArgGPRs)) { 10304 // The second half can also be passed via register. 10305 State.addLoc( 10306 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 10307 } else { 10308 // The second half is passed via the stack, without additional alignment. 10309 State.addLoc(CCValAssign::getMem( 10310 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 10311 LocVT2, CCValAssign::Full)); 10312 } 10313 10314 return false; 10315 } 10316 10317 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 10318 Optional<unsigned> FirstMaskArgument, 10319 CCState &State, const RISCVTargetLowering &TLI) { 10320 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 10321 if (RC == &RISCV::VRRegClass) { 10322 // Assign the first mask argument to V0. 10323 // This is an interim calling convention and it may be changed in the 10324 // future. 10325 if (FirstMaskArgument && ValNo == *FirstMaskArgument) 10326 return State.AllocateReg(RISCV::V0); 10327 return State.AllocateReg(ArgVRs); 10328 } 10329 if (RC == &RISCV::VRM2RegClass) 10330 return State.AllocateReg(ArgVRM2s); 10331 if (RC == &RISCV::VRM4RegClass) 10332 return State.AllocateReg(ArgVRM4s); 10333 if (RC == &RISCV::VRM8RegClass) 10334 return State.AllocateReg(ArgVRM8s); 10335 llvm_unreachable("Unhandled register class for ValueType"); 10336 } 10337 10338 // Implements the RISC-V calling convention. Returns true upon failure. 10339 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 10340 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 10341 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 10342 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 10343 Optional<unsigned> FirstMaskArgument) { 10344 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 10345 assert(XLen == 32 || XLen == 64); 10346 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 10347 10348 // Any return value split in to more than two values can't be returned 10349 // directly. Vectors are returned via the available vector registers. 10350 if (!LocVT.isVector() && IsRet && ValNo > 1) 10351 return true; 10352 10353 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 10354 // variadic argument, or if no F16/F32 argument registers are available. 10355 bool UseGPRForF16_F32 = true; 10356 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 10357 // variadic argument, or if no F64 argument registers are available. 10358 bool UseGPRForF64 = true; 10359 10360 switch (ABI) { 10361 default: 10362 llvm_unreachable("Unexpected ABI"); 10363 case RISCVABI::ABI_ILP32: 10364 case RISCVABI::ABI_LP64: 10365 break; 10366 case RISCVABI::ABI_ILP32F: 10367 case RISCVABI::ABI_LP64F: 10368 UseGPRForF16_F32 = !IsFixed; 10369 break; 10370 case RISCVABI::ABI_ILP32D: 10371 case RISCVABI::ABI_LP64D: 10372 UseGPRForF16_F32 = !IsFixed; 10373 UseGPRForF64 = !IsFixed; 10374 break; 10375 } 10376 10377 // FPR16, FPR32, and FPR64 alias each other. 10378 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 10379 UseGPRForF16_F32 = true; 10380 UseGPRForF64 = true; 10381 } 10382 10383 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 10384 // similar local variables rather than directly checking against the target 10385 // ABI. 10386 10387 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 10388 LocVT = XLenVT; 10389 LocInfo = CCValAssign::BCvt; 10390 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 10391 LocVT = MVT::i64; 10392 LocInfo = CCValAssign::BCvt; 10393 } 10394 10395 // If this is a variadic argument, the RISC-V calling convention requires 10396 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 10397 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 10398 // be used regardless of whether the original argument was split during 10399 // legalisation or not. The argument will not be passed by registers if the 10400 // original type is larger than 2*XLEN, so the register alignment rule does 10401 // not apply. 10402 unsigned TwoXLenInBytes = (2 * XLen) / 8; 10403 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 10404 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 10405 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 10406 // Skip 'odd' register if necessary. 10407 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 10408 State.AllocateReg(ArgGPRs); 10409 } 10410 10411 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 10412 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 10413 State.getPendingArgFlags(); 10414 10415 assert(PendingLocs.size() == PendingArgFlags.size() && 10416 "PendingLocs and PendingArgFlags out of sync"); 10417 10418 // Handle passing f64 on RV32D with a soft float ABI or when floating point 10419 // registers are exhausted. 10420 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 10421 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 10422 "Can't lower f64 if it is split"); 10423 // Depending on available argument GPRS, f64 may be passed in a pair of 10424 // GPRs, split between a GPR and the stack, or passed completely on the 10425 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 10426 // cases. 10427 Register Reg = State.AllocateReg(ArgGPRs); 10428 LocVT = MVT::i32; 10429 if (!Reg) { 10430 unsigned StackOffset = State.AllocateStack(8, Align(8)); 10431 State.addLoc( 10432 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10433 return false; 10434 } 10435 if (!State.AllocateReg(ArgGPRs)) 10436 State.AllocateStack(4, Align(4)); 10437 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10438 return false; 10439 } 10440 10441 // Fixed-length vectors are located in the corresponding scalable-vector 10442 // container types. 10443 if (ValVT.isFixedLengthVector()) 10444 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 10445 10446 // Split arguments might be passed indirectly, so keep track of the pending 10447 // values. Split vectors are passed via a mix of registers and indirectly, so 10448 // treat them as we would any other argument. 10449 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 10450 LocVT = XLenVT; 10451 LocInfo = CCValAssign::Indirect; 10452 PendingLocs.push_back( 10453 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 10454 PendingArgFlags.push_back(ArgFlags); 10455 if (!ArgFlags.isSplitEnd()) { 10456 return false; 10457 } 10458 } 10459 10460 // If the split argument only had two elements, it should be passed directly 10461 // in registers or on the stack. 10462 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 10463 PendingLocs.size() <= 2) { 10464 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 10465 // Apply the normal calling convention rules to the first half of the 10466 // split argument. 10467 CCValAssign VA = PendingLocs[0]; 10468 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 10469 PendingLocs.clear(); 10470 PendingArgFlags.clear(); 10471 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 10472 ArgFlags); 10473 } 10474 10475 // Allocate to a register if possible, or else a stack slot. 10476 Register Reg; 10477 unsigned StoreSizeBytes = XLen / 8; 10478 Align StackAlign = Align(XLen / 8); 10479 10480 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 10481 Reg = State.AllocateReg(ArgFPR16s); 10482 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 10483 Reg = State.AllocateReg(ArgFPR32s); 10484 else if (ValVT == MVT::f64 && !UseGPRForF64) 10485 Reg = State.AllocateReg(ArgFPR64s); 10486 else if (ValVT.isVector()) { 10487 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 10488 if (!Reg) { 10489 // For return values, the vector must be passed fully via registers or 10490 // via the stack. 10491 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 10492 // but we're using all of them. 10493 if (IsRet) 10494 return true; 10495 // Try using a GPR to pass the address 10496 if ((Reg = State.AllocateReg(ArgGPRs))) { 10497 LocVT = XLenVT; 10498 LocInfo = CCValAssign::Indirect; 10499 } else if (ValVT.isScalableVector()) { 10500 LocVT = XLenVT; 10501 LocInfo = CCValAssign::Indirect; 10502 } else { 10503 // Pass fixed-length vectors on the stack. 10504 LocVT = ValVT; 10505 StoreSizeBytes = ValVT.getStoreSize(); 10506 // Align vectors to their element sizes, being careful for vXi1 10507 // vectors. 10508 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 10509 } 10510 } 10511 } else { 10512 Reg = State.AllocateReg(ArgGPRs); 10513 } 10514 10515 unsigned StackOffset = 10516 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 10517 10518 // If we reach this point and PendingLocs is non-empty, we must be at the 10519 // end of a split argument that must be passed indirectly. 10520 if (!PendingLocs.empty()) { 10521 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 10522 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 10523 10524 for (auto &It : PendingLocs) { 10525 if (Reg) 10526 It.convertToReg(Reg); 10527 else 10528 It.convertToMem(StackOffset); 10529 State.addLoc(It); 10530 } 10531 PendingLocs.clear(); 10532 PendingArgFlags.clear(); 10533 return false; 10534 } 10535 10536 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 10537 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 10538 "Expected an XLenVT or vector types at this stage"); 10539 10540 if (Reg) { 10541 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10542 return false; 10543 } 10544 10545 // When a floating-point value is passed on the stack, no bit-conversion is 10546 // needed. 10547 if (ValVT.isFloatingPoint()) { 10548 LocVT = ValVT; 10549 LocInfo = CCValAssign::Full; 10550 } 10551 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10552 return false; 10553 } 10554 10555 template <typename ArgTy> 10556 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 10557 for (const auto &ArgIdx : enumerate(Args)) { 10558 MVT ArgVT = ArgIdx.value().VT; 10559 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 10560 return ArgIdx.index(); 10561 } 10562 return None; 10563 } 10564 10565 void RISCVTargetLowering::analyzeInputArgs( 10566 MachineFunction &MF, CCState &CCInfo, 10567 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 10568 RISCVCCAssignFn Fn) const { 10569 unsigned NumArgs = Ins.size(); 10570 FunctionType *FType = MF.getFunction().getFunctionType(); 10571 10572 Optional<unsigned> FirstMaskArgument; 10573 if (Subtarget.hasVInstructions()) 10574 FirstMaskArgument = preAssignMask(Ins); 10575 10576 for (unsigned i = 0; i != NumArgs; ++i) { 10577 MVT ArgVT = Ins[i].VT; 10578 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 10579 10580 Type *ArgTy = nullptr; 10581 if (IsRet) 10582 ArgTy = FType->getReturnType(); 10583 else if (Ins[i].isOrigArg()) 10584 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 10585 10586 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10587 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 10588 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 10589 FirstMaskArgument)) { 10590 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 10591 << EVT(ArgVT).getEVTString() << '\n'); 10592 llvm_unreachable(nullptr); 10593 } 10594 } 10595 } 10596 10597 void RISCVTargetLowering::analyzeOutputArgs( 10598 MachineFunction &MF, CCState &CCInfo, 10599 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 10600 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 10601 unsigned NumArgs = Outs.size(); 10602 10603 Optional<unsigned> FirstMaskArgument; 10604 if (Subtarget.hasVInstructions()) 10605 FirstMaskArgument = preAssignMask(Outs); 10606 10607 for (unsigned i = 0; i != NumArgs; i++) { 10608 MVT ArgVT = Outs[i].VT; 10609 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10610 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 10611 10612 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10613 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 10614 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 10615 FirstMaskArgument)) { 10616 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 10617 << EVT(ArgVT).getEVTString() << "\n"); 10618 llvm_unreachable(nullptr); 10619 } 10620 } 10621 } 10622 10623 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 10624 // values. 10625 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 10626 const CCValAssign &VA, const SDLoc &DL, 10627 const RISCVSubtarget &Subtarget) { 10628 switch (VA.getLocInfo()) { 10629 default: 10630 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10631 case CCValAssign::Full: 10632 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 10633 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 10634 break; 10635 case CCValAssign::BCvt: 10636 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 10637 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 10638 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 10639 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 10640 else 10641 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 10642 break; 10643 } 10644 return Val; 10645 } 10646 10647 // The caller is responsible for loading the full value if the argument is 10648 // passed with CCValAssign::Indirect. 10649 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 10650 const CCValAssign &VA, const SDLoc &DL, 10651 const RISCVTargetLowering &TLI) { 10652 MachineFunction &MF = DAG.getMachineFunction(); 10653 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10654 EVT LocVT = VA.getLocVT(); 10655 SDValue Val; 10656 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 10657 Register VReg = RegInfo.createVirtualRegister(RC); 10658 RegInfo.addLiveIn(VA.getLocReg(), VReg); 10659 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 10660 10661 if (VA.getLocInfo() == CCValAssign::Indirect) 10662 return Val; 10663 10664 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 10665 } 10666 10667 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 10668 const CCValAssign &VA, const SDLoc &DL, 10669 const RISCVSubtarget &Subtarget) { 10670 EVT LocVT = VA.getLocVT(); 10671 10672 switch (VA.getLocInfo()) { 10673 default: 10674 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10675 case CCValAssign::Full: 10676 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 10677 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 10678 break; 10679 case CCValAssign::BCvt: 10680 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 10681 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 10682 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 10683 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 10684 else 10685 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 10686 break; 10687 } 10688 return Val; 10689 } 10690 10691 // The caller is responsible for loading the full value if the argument is 10692 // passed with CCValAssign::Indirect. 10693 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 10694 const CCValAssign &VA, const SDLoc &DL) { 10695 MachineFunction &MF = DAG.getMachineFunction(); 10696 MachineFrameInfo &MFI = MF.getFrameInfo(); 10697 EVT LocVT = VA.getLocVT(); 10698 EVT ValVT = VA.getValVT(); 10699 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 10700 if (ValVT.isScalableVector()) { 10701 // When the value is a scalable vector, we save the pointer which points to 10702 // the scalable vector value in the stack. The ValVT will be the pointer 10703 // type, instead of the scalable vector type. 10704 ValVT = LocVT; 10705 } 10706 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 10707 /*IsImmutable=*/true); 10708 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 10709 SDValue Val; 10710 10711 ISD::LoadExtType ExtType; 10712 switch (VA.getLocInfo()) { 10713 default: 10714 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10715 case CCValAssign::Full: 10716 case CCValAssign::Indirect: 10717 case CCValAssign::BCvt: 10718 ExtType = ISD::NON_EXTLOAD; 10719 break; 10720 } 10721 Val = DAG.getExtLoad( 10722 ExtType, DL, LocVT, Chain, FIN, 10723 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 10724 return Val; 10725 } 10726 10727 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 10728 const CCValAssign &VA, const SDLoc &DL) { 10729 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 10730 "Unexpected VA"); 10731 MachineFunction &MF = DAG.getMachineFunction(); 10732 MachineFrameInfo &MFI = MF.getFrameInfo(); 10733 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10734 10735 if (VA.isMemLoc()) { 10736 // f64 is passed on the stack. 10737 int FI = 10738 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 10739 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 10740 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 10741 MachinePointerInfo::getFixedStack(MF, FI)); 10742 } 10743 10744 assert(VA.isRegLoc() && "Expected register VA assignment"); 10745 10746 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 10747 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 10748 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 10749 SDValue Hi; 10750 if (VA.getLocReg() == RISCV::X17) { 10751 // Second half of f64 is passed on the stack. 10752 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 10753 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 10754 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 10755 MachinePointerInfo::getFixedStack(MF, FI)); 10756 } else { 10757 // Second half of f64 is passed in another GPR. 10758 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 10759 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 10760 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 10761 } 10762 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 10763 } 10764 10765 // FastCC has less than 1% performance improvement for some particular 10766 // benchmark. But theoretically, it may has benenfit for some cases. 10767 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 10768 unsigned ValNo, MVT ValVT, MVT LocVT, 10769 CCValAssign::LocInfo LocInfo, 10770 ISD::ArgFlagsTy ArgFlags, CCState &State, 10771 bool IsFixed, bool IsRet, Type *OrigTy, 10772 const RISCVTargetLowering &TLI, 10773 Optional<unsigned> FirstMaskArgument) { 10774 10775 // X5 and X6 might be used for save-restore libcall. 10776 static const MCPhysReg GPRList[] = { 10777 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 10778 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 10779 RISCV::X29, RISCV::X30, RISCV::X31}; 10780 10781 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10782 if (unsigned Reg = State.AllocateReg(GPRList)) { 10783 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10784 return false; 10785 } 10786 } 10787 10788 if (LocVT == MVT::f16) { 10789 static const MCPhysReg FPR16List[] = { 10790 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 10791 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 10792 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 10793 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 10794 if (unsigned Reg = State.AllocateReg(FPR16List)) { 10795 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10796 return false; 10797 } 10798 } 10799 10800 if (LocVT == MVT::f32) { 10801 static const MCPhysReg FPR32List[] = { 10802 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 10803 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 10804 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 10805 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 10806 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10807 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10808 return false; 10809 } 10810 } 10811 10812 if (LocVT == MVT::f64) { 10813 static const MCPhysReg FPR64List[] = { 10814 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 10815 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 10816 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 10817 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 10818 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10819 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10820 return false; 10821 } 10822 } 10823 10824 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 10825 unsigned Offset4 = State.AllocateStack(4, Align(4)); 10826 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 10827 return false; 10828 } 10829 10830 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 10831 unsigned Offset5 = State.AllocateStack(8, Align(8)); 10832 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 10833 return false; 10834 } 10835 10836 if (LocVT.isVector()) { 10837 if (unsigned Reg = 10838 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 10839 // Fixed-length vectors are located in the corresponding scalable-vector 10840 // container types. 10841 if (ValVT.isFixedLengthVector()) 10842 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 10843 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10844 } else { 10845 // Try and pass the address via a "fast" GPR. 10846 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 10847 LocInfo = CCValAssign::Indirect; 10848 LocVT = TLI.getSubtarget().getXLenVT(); 10849 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 10850 } else if (ValVT.isFixedLengthVector()) { 10851 auto StackAlign = 10852 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 10853 unsigned StackOffset = 10854 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 10855 State.addLoc( 10856 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10857 } else { 10858 // Can't pass scalable vectors on the stack. 10859 return true; 10860 } 10861 } 10862 10863 return false; 10864 } 10865 10866 return true; // CC didn't match. 10867 } 10868 10869 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 10870 CCValAssign::LocInfo LocInfo, 10871 ISD::ArgFlagsTy ArgFlags, CCState &State) { 10872 10873 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10874 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 10875 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 10876 static const MCPhysReg GPRList[] = { 10877 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 10878 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 10879 if (unsigned Reg = State.AllocateReg(GPRList)) { 10880 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10881 return false; 10882 } 10883 } 10884 10885 if (LocVT == MVT::f32) { 10886 // Pass in STG registers: F1, ..., F6 10887 // fs0 ... fs5 10888 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 10889 RISCV::F18_F, RISCV::F19_F, 10890 RISCV::F20_F, RISCV::F21_F}; 10891 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10892 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10893 return false; 10894 } 10895 } 10896 10897 if (LocVT == MVT::f64) { 10898 // Pass in STG registers: D1, ..., D6 10899 // fs6 ... fs11 10900 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 10901 RISCV::F24_D, RISCV::F25_D, 10902 RISCV::F26_D, RISCV::F27_D}; 10903 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10904 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10905 return false; 10906 } 10907 } 10908 10909 report_fatal_error("No registers left in GHC calling convention"); 10910 return true; 10911 } 10912 10913 // Transform physical registers into virtual registers. 10914 SDValue RISCVTargetLowering::LowerFormalArguments( 10915 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 10916 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 10917 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 10918 10919 MachineFunction &MF = DAG.getMachineFunction(); 10920 10921 switch (CallConv) { 10922 default: 10923 report_fatal_error("Unsupported calling convention"); 10924 case CallingConv::C: 10925 case CallingConv::Fast: 10926 break; 10927 case CallingConv::GHC: 10928 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 10929 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 10930 report_fatal_error( 10931 "GHC calling convention requires the F and D instruction set extensions"); 10932 } 10933 10934 const Function &Func = MF.getFunction(); 10935 if (Func.hasFnAttribute("interrupt")) { 10936 if (!Func.arg_empty()) 10937 report_fatal_error( 10938 "Functions with the interrupt attribute cannot have arguments!"); 10939 10940 StringRef Kind = 10941 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10942 10943 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 10944 report_fatal_error( 10945 "Function interrupt attribute argument not supported!"); 10946 } 10947 10948 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10949 MVT XLenVT = Subtarget.getXLenVT(); 10950 unsigned XLenInBytes = Subtarget.getXLen() / 8; 10951 // Used with vargs to acumulate store chains. 10952 std::vector<SDValue> OutChains; 10953 10954 // Assign locations to all of the incoming arguments. 10955 SmallVector<CCValAssign, 16> ArgLocs; 10956 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10957 10958 if (CallConv == CallingConv::GHC) 10959 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 10960 else 10961 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 10962 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10963 : CC_RISCV); 10964 10965 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 10966 CCValAssign &VA = ArgLocs[i]; 10967 SDValue ArgValue; 10968 // Passing f64 on RV32D with a soft float ABI must be handled as a special 10969 // case. 10970 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 10971 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 10972 else if (VA.isRegLoc()) 10973 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 10974 else 10975 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 10976 10977 if (VA.getLocInfo() == CCValAssign::Indirect) { 10978 // If the original argument was split and passed by reference (e.g. i128 10979 // on RV32), we need to load all parts of it here (using the same 10980 // address). Vectors may be partly split to registers and partly to the 10981 // stack, in which case the base address is partly offset and subsequent 10982 // stores are relative to that. 10983 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 10984 MachinePointerInfo())); 10985 unsigned ArgIndex = Ins[i].OrigArgIndex; 10986 unsigned ArgPartOffset = Ins[i].PartOffset; 10987 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10988 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 10989 CCValAssign &PartVA = ArgLocs[i + 1]; 10990 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 10991 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10992 if (PartVA.getValVT().isScalableVector()) 10993 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10994 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 10995 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 10996 MachinePointerInfo())); 10997 ++i; 10998 } 10999 continue; 11000 } 11001 InVals.push_back(ArgValue); 11002 } 11003 11004 if (IsVarArg) { 11005 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 11006 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 11007 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 11008 MachineFrameInfo &MFI = MF.getFrameInfo(); 11009 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 11010 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 11011 11012 // Offset of the first variable argument from stack pointer, and size of 11013 // the vararg save area. For now, the varargs save area is either zero or 11014 // large enough to hold a0-a7. 11015 int VaArgOffset, VarArgsSaveSize; 11016 11017 // If all registers are allocated, then all varargs must be passed on the 11018 // stack and we don't need to save any argregs. 11019 if (ArgRegs.size() == Idx) { 11020 VaArgOffset = CCInfo.getNextStackOffset(); 11021 VarArgsSaveSize = 0; 11022 } else { 11023 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 11024 VaArgOffset = -VarArgsSaveSize; 11025 } 11026 11027 // Record the frame index of the first variable argument 11028 // which is a value necessary to VASTART. 11029 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 11030 RVFI->setVarArgsFrameIndex(FI); 11031 11032 // If saving an odd number of registers then create an extra stack slot to 11033 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 11034 // offsets to even-numbered registered remain 2*XLEN-aligned. 11035 if (Idx % 2) { 11036 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 11037 VarArgsSaveSize += XLenInBytes; 11038 } 11039 11040 // Copy the integer registers that may have been used for passing varargs 11041 // to the vararg save area. 11042 for (unsigned I = Idx; I < ArgRegs.size(); 11043 ++I, VaArgOffset += XLenInBytes) { 11044 const Register Reg = RegInfo.createVirtualRegister(RC); 11045 RegInfo.addLiveIn(ArgRegs[I], Reg); 11046 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 11047 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 11048 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 11049 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 11050 MachinePointerInfo::getFixedStack(MF, FI)); 11051 cast<StoreSDNode>(Store.getNode()) 11052 ->getMemOperand() 11053 ->setValue((Value *)nullptr); 11054 OutChains.push_back(Store); 11055 } 11056 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 11057 } 11058 11059 // All stores are grouped in one node to allow the matching between 11060 // the size of Ins and InVals. This only happens for vararg functions. 11061 if (!OutChains.empty()) { 11062 OutChains.push_back(Chain); 11063 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 11064 } 11065 11066 return Chain; 11067 } 11068 11069 /// isEligibleForTailCallOptimization - Check whether the call is eligible 11070 /// for tail call optimization. 11071 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 11072 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 11073 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 11074 const SmallVector<CCValAssign, 16> &ArgLocs) const { 11075 11076 auto &Callee = CLI.Callee; 11077 auto CalleeCC = CLI.CallConv; 11078 auto &Outs = CLI.Outs; 11079 auto &Caller = MF.getFunction(); 11080 auto CallerCC = Caller.getCallingConv(); 11081 11082 // Exception-handling functions need a special set of instructions to 11083 // indicate a return to the hardware. Tail-calling another function would 11084 // probably break this. 11085 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 11086 // should be expanded as new function attributes are introduced. 11087 if (Caller.hasFnAttribute("interrupt")) 11088 return false; 11089 11090 // Do not tail call opt if the stack is used to pass parameters. 11091 if (CCInfo.getNextStackOffset() != 0) 11092 return false; 11093 11094 // Do not tail call opt if any parameters need to be passed indirectly. 11095 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 11096 // passed indirectly. So the address of the value will be passed in a 11097 // register, or if not available, then the address is put on the stack. In 11098 // order to pass indirectly, space on the stack often needs to be allocated 11099 // in order to store the value. In this case the CCInfo.getNextStackOffset() 11100 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 11101 // are passed CCValAssign::Indirect. 11102 for (auto &VA : ArgLocs) 11103 if (VA.getLocInfo() == CCValAssign::Indirect) 11104 return false; 11105 11106 // Do not tail call opt if either caller or callee uses struct return 11107 // semantics. 11108 auto IsCallerStructRet = Caller.hasStructRetAttr(); 11109 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 11110 if (IsCallerStructRet || IsCalleeStructRet) 11111 return false; 11112 11113 // Externally-defined functions with weak linkage should not be 11114 // tail-called. The behaviour of branch instructions in this situation (as 11115 // used for tail calls) is implementation-defined, so we cannot rely on the 11116 // linker replacing the tail call with a return. 11117 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 11118 const GlobalValue *GV = G->getGlobal(); 11119 if (GV->hasExternalWeakLinkage()) 11120 return false; 11121 } 11122 11123 // The callee has to preserve all registers the caller needs to preserve. 11124 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11125 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 11126 if (CalleeCC != CallerCC) { 11127 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 11128 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 11129 return false; 11130 } 11131 11132 // Byval parameters hand the function a pointer directly into the stack area 11133 // we want to reuse during a tail call. Working around this *is* possible 11134 // but less efficient and uglier in LowerCall. 11135 for (auto &Arg : Outs) 11136 if (Arg.Flags.isByVal()) 11137 return false; 11138 11139 return true; 11140 } 11141 11142 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 11143 return DAG.getDataLayout().getPrefTypeAlign( 11144 VT.getTypeForEVT(*DAG.getContext())); 11145 } 11146 11147 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 11148 // and output parameter nodes. 11149 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 11150 SmallVectorImpl<SDValue> &InVals) const { 11151 SelectionDAG &DAG = CLI.DAG; 11152 SDLoc &DL = CLI.DL; 11153 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 11154 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 11155 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 11156 SDValue Chain = CLI.Chain; 11157 SDValue Callee = CLI.Callee; 11158 bool &IsTailCall = CLI.IsTailCall; 11159 CallingConv::ID CallConv = CLI.CallConv; 11160 bool IsVarArg = CLI.IsVarArg; 11161 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 11162 MVT XLenVT = Subtarget.getXLenVT(); 11163 11164 MachineFunction &MF = DAG.getMachineFunction(); 11165 11166 // Analyze the operands of the call, assigning locations to each operand. 11167 SmallVector<CCValAssign, 16> ArgLocs; 11168 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 11169 11170 if (CallConv == CallingConv::GHC) 11171 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 11172 else 11173 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 11174 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 11175 : CC_RISCV); 11176 11177 // Check if it's really possible to do a tail call. 11178 if (IsTailCall) 11179 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 11180 11181 if (IsTailCall) 11182 ++NumTailCalls; 11183 else if (CLI.CB && CLI.CB->isMustTailCall()) 11184 report_fatal_error("failed to perform tail call elimination on a call " 11185 "site marked musttail"); 11186 11187 // Get a count of how many bytes are to be pushed on the stack. 11188 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 11189 11190 // Create local copies for byval args 11191 SmallVector<SDValue, 8> ByValArgs; 11192 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 11193 ISD::ArgFlagsTy Flags = Outs[i].Flags; 11194 if (!Flags.isByVal()) 11195 continue; 11196 11197 SDValue Arg = OutVals[i]; 11198 unsigned Size = Flags.getByValSize(); 11199 Align Alignment = Flags.getNonZeroByValAlign(); 11200 11201 int FI = 11202 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 11203 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 11204 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 11205 11206 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 11207 /*IsVolatile=*/false, 11208 /*AlwaysInline=*/false, IsTailCall, 11209 MachinePointerInfo(), MachinePointerInfo()); 11210 ByValArgs.push_back(FIPtr); 11211 } 11212 11213 if (!IsTailCall) 11214 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 11215 11216 // Copy argument values to their designated locations. 11217 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 11218 SmallVector<SDValue, 8> MemOpChains; 11219 SDValue StackPtr; 11220 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 11221 CCValAssign &VA = ArgLocs[i]; 11222 SDValue ArgValue = OutVals[i]; 11223 ISD::ArgFlagsTy Flags = Outs[i].Flags; 11224 11225 // Handle passing f64 on RV32D with a soft float ABI as a special case. 11226 bool IsF64OnRV32DSoftABI = 11227 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 11228 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 11229 SDValue SplitF64 = DAG.getNode( 11230 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 11231 SDValue Lo = SplitF64.getValue(0); 11232 SDValue Hi = SplitF64.getValue(1); 11233 11234 Register RegLo = VA.getLocReg(); 11235 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 11236 11237 if (RegLo == RISCV::X17) { 11238 // Second half of f64 is passed on the stack. 11239 // Work out the address of the stack slot. 11240 if (!StackPtr.getNode()) 11241 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 11242 // Emit the store. 11243 MemOpChains.push_back( 11244 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 11245 } else { 11246 // Second half of f64 is passed in another GPR. 11247 assert(RegLo < RISCV::X31 && "Invalid register pair"); 11248 Register RegHigh = RegLo + 1; 11249 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 11250 } 11251 continue; 11252 } 11253 11254 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 11255 // as any other MemLoc. 11256 11257 // Promote the value if needed. 11258 // For now, only handle fully promoted and indirect arguments. 11259 if (VA.getLocInfo() == CCValAssign::Indirect) { 11260 // Store the argument in a stack slot and pass its address. 11261 Align StackAlign = 11262 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 11263 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 11264 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 11265 // If the original argument was split (e.g. i128), we need 11266 // to store the required parts of it here (and pass just one address). 11267 // Vectors may be partly split to registers and partly to the stack, in 11268 // which case the base address is partly offset and subsequent stores are 11269 // relative to that. 11270 unsigned ArgIndex = Outs[i].OrigArgIndex; 11271 unsigned ArgPartOffset = Outs[i].PartOffset; 11272 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 11273 // Calculate the total size to store. We don't have access to what we're 11274 // actually storing other than performing the loop and collecting the 11275 // info. 11276 SmallVector<std::pair<SDValue, SDValue>> Parts; 11277 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 11278 SDValue PartValue = OutVals[i + 1]; 11279 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 11280 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 11281 EVT PartVT = PartValue.getValueType(); 11282 if (PartVT.isScalableVector()) 11283 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 11284 StoredSize += PartVT.getStoreSize(); 11285 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 11286 Parts.push_back(std::make_pair(PartValue, Offset)); 11287 ++i; 11288 } 11289 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 11290 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 11291 MemOpChains.push_back( 11292 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 11293 MachinePointerInfo::getFixedStack(MF, FI))); 11294 for (const auto &Part : Parts) { 11295 SDValue PartValue = Part.first; 11296 SDValue PartOffset = Part.second; 11297 SDValue Address = 11298 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 11299 MemOpChains.push_back( 11300 DAG.getStore(Chain, DL, PartValue, Address, 11301 MachinePointerInfo::getFixedStack(MF, FI))); 11302 } 11303 ArgValue = SpillSlot; 11304 } else { 11305 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 11306 } 11307 11308 // Use local copy if it is a byval arg. 11309 if (Flags.isByVal()) 11310 ArgValue = ByValArgs[j++]; 11311 11312 if (VA.isRegLoc()) { 11313 // Queue up the argument copies and emit them at the end. 11314 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 11315 } else { 11316 assert(VA.isMemLoc() && "Argument not register or memory"); 11317 assert(!IsTailCall && "Tail call not allowed if stack is used " 11318 "for passing parameters"); 11319 11320 // Work out the address of the stack slot. 11321 if (!StackPtr.getNode()) 11322 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 11323 SDValue Address = 11324 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 11325 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 11326 11327 // Emit the store. 11328 MemOpChains.push_back( 11329 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 11330 } 11331 } 11332 11333 // Join the stores, which are independent of one another. 11334 if (!MemOpChains.empty()) 11335 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 11336 11337 SDValue Glue; 11338 11339 // Build a sequence of copy-to-reg nodes, chained and glued together. 11340 for (auto &Reg : RegsToPass) { 11341 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 11342 Glue = Chain.getValue(1); 11343 } 11344 11345 // Validate that none of the argument registers have been marked as 11346 // reserved, if so report an error. Do the same for the return address if this 11347 // is not a tailcall. 11348 validateCCReservedRegs(RegsToPass, MF); 11349 if (!IsTailCall && 11350 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 11351 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 11352 MF.getFunction(), 11353 "Return address register required, but has been reserved."}); 11354 11355 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 11356 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 11357 // split it and then direct call can be matched by PseudoCALL. 11358 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 11359 const GlobalValue *GV = S->getGlobal(); 11360 11361 unsigned OpFlags = RISCVII::MO_CALL; 11362 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 11363 OpFlags = RISCVII::MO_PLT; 11364 11365 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 11366 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 11367 unsigned OpFlags = RISCVII::MO_CALL; 11368 11369 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 11370 nullptr)) 11371 OpFlags = RISCVII::MO_PLT; 11372 11373 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 11374 } 11375 11376 // The first call operand is the chain and the second is the target address. 11377 SmallVector<SDValue, 8> Ops; 11378 Ops.push_back(Chain); 11379 Ops.push_back(Callee); 11380 11381 // Add argument registers to the end of the list so that they are 11382 // known live into the call. 11383 for (auto &Reg : RegsToPass) 11384 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 11385 11386 if (!IsTailCall) { 11387 // Add a register mask operand representing the call-preserved registers. 11388 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11389 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 11390 assert(Mask && "Missing call preserved mask for calling convention"); 11391 Ops.push_back(DAG.getRegisterMask(Mask)); 11392 } 11393 11394 // Glue the call to the argument copies, if any. 11395 if (Glue.getNode()) 11396 Ops.push_back(Glue); 11397 11398 // Emit the call. 11399 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 11400 11401 if (IsTailCall) { 11402 MF.getFrameInfo().setHasTailCall(); 11403 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 11404 } 11405 11406 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 11407 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 11408 Glue = Chain.getValue(1); 11409 11410 // Mark the end of the call, which is glued to the call itself. 11411 Chain = DAG.getCALLSEQ_END(Chain, 11412 DAG.getConstant(NumBytes, DL, PtrVT, true), 11413 DAG.getConstant(0, DL, PtrVT, true), 11414 Glue, DL); 11415 Glue = Chain.getValue(1); 11416 11417 // Assign locations to each value returned by this call. 11418 SmallVector<CCValAssign, 16> RVLocs; 11419 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 11420 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 11421 11422 // Copy all of the result registers out of their specified physreg. 11423 for (auto &VA : RVLocs) { 11424 // Copy the value out 11425 SDValue RetValue = 11426 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 11427 // Glue the RetValue to the end of the call sequence 11428 Chain = RetValue.getValue(1); 11429 Glue = RetValue.getValue(2); 11430 11431 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 11432 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 11433 SDValue RetValue2 = 11434 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 11435 Chain = RetValue2.getValue(1); 11436 Glue = RetValue2.getValue(2); 11437 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 11438 RetValue2); 11439 } 11440 11441 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 11442 11443 InVals.push_back(RetValue); 11444 } 11445 11446 return Chain; 11447 } 11448 11449 bool RISCVTargetLowering::CanLowerReturn( 11450 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 11451 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 11452 SmallVector<CCValAssign, 16> RVLocs; 11453 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 11454 11455 Optional<unsigned> FirstMaskArgument; 11456 if (Subtarget.hasVInstructions()) 11457 FirstMaskArgument = preAssignMask(Outs); 11458 11459 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 11460 MVT VT = Outs[i].VT; 11461 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 11462 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 11463 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 11464 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 11465 *this, FirstMaskArgument)) 11466 return false; 11467 } 11468 return true; 11469 } 11470 11471 SDValue 11472 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 11473 bool IsVarArg, 11474 const SmallVectorImpl<ISD::OutputArg> &Outs, 11475 const SmallVectorImpl<SDValue> &OutVals, 11476 const SDLoc &DL, SelectionDAG &DAG) const { 11477 const MachineFunction &MF = DAG.getMachineFunction(); 11478 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 11479 11480 // Stores the assignment of the return value to a location. 11481 SmallVector<CCValAssign, 16> RVLocs; 11482 11483 // Info about the registers and stack slot. 11484 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 11485 *DAG.getContext()); 11486 11487 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 11488 nullptr, CC_RISCV); 11489 11490 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 11491 report_fatal_error("GHC functions return void only"); 11492 11493 SDValue Glue; 11494 SmallVector<SDValue, 4> RetOps(1, Chain); 11495 11496 // Copy the result values into the output registers. 11497 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 11498 SDValue Val = OutVals[i]; 11499 CCValAssign &VA = RVLocs[i]; 11500 assert(VA.isRegLoc() && "Can only return in registers!"); 11501 11502 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 11503 // Handle returning f64 on RV32D with a soft float ABI. 11504 assert(VA.isRegLoc() && "Expected return via registers"); 11505 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 11506 DAG.getVTList(MVT::i32, MVT::i32), Val); 11507 SDValue Lo = SplitF64.getValue(0); 11508 SDValue Hi = SplitF64.getValue(1); 11509 Register RegLo = VA.getLocReg(); 11510 assert(RegLo < RISCV::X31 && "Invalid register pair"); 11511 Register RegHi = RegLo + 1; 11512 11513 if (STI.isRegisterReservedByUser(RegLo) || 11514 STI.isRegisterReservedByUser(RegHi)) 11515 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 11516 MF.getFunction(), 11517 "Return value register required, but has been reserved."}); 11518 11519 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 11520 Glue = Chain.getValue(1); 11521 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 11522 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 11523 Glue = Chain.getValue(1); 11524 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 11525 } else { 11526 // Handle a 'normal' return. 11527 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 11528 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 11529 11530 if (STI.isRegisterReservedByUser(VA.getLocReg())) 11531 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 11532 MF.getFunction(), 11533 "Return value register required, but has been reserved."}); 11534 11535 // Guarantee that all emitted copies are stuck together. 11536 Glue = Chain.getValue(1); 11537 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 11538 } 11539 } 11540 11541 RetOps[0] = Chain; // Update chain. 11542 11543 // Add the glue node if we have it. 11544 if (Glue.getNode()) { 11545 RetOps.push_back(Glue); 11546 } 11547 11548 unsigned RetOpc = RISCVISD::RET_FLAG; 11549 // Interrupt service routines use different return instructions. 11550 const Function &Func = DAG.getMachineFunction().getFunction(); 11551 if (Func.hasFnAttribute("interrupt")) { 11552 if (!Func.getReturnType()->isVoidTy()) 11553 report_fatal_error( 11554 "Functions with the interrupt attribute must have void return type!"); 11555 11556 MachineFunction &MF = DAG.getMachineFunction(); 11557 StringRef Kind = 11558 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 11559 11560 if (Kind == "user") 11561 RetOpc = RISCVISD::URET_FLAG; 11562 else if (Kind == "supervisor") 11563 RetOpc = RISCVISD::SRET_FLAG; 11564 else 11565 RetOpc = RISCVISD::MRET_FLAG; 11566 } 11567 11568 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 11569 } 11570 11571 void RISCVTargetLowering::validateCCReservedRegs( 11572 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 11573 MachineFunction &MF) const { 11574 const Function &F = MF.getFunction(); 11575 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 11576 11577 if (llvm::any_of(Regs, [&STI](auto Reg) { 11578 return STI.isRegisterReservedByUser(Reg.first); 11579 })) 11580 F.getContext().diagnose(DiagnosticInfoUnsupported{ 11581 F, "Argument register required, but has been reserved."}); 11582 } 11583 11584 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 11585 return CI->isTailCall(); 11586 } 11587 11588 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 11589 #define NODE_NAME_CASE(NODE) \ 11590 case RISCVISD::NODE: \ 11591 return "RISCVISD::" #NODE; 11592 // clang-format off 11593 switch ((RISCVISD::NodeType)Opcode) { 11594 case RISCVISD::FIRST_NUMBER: 11595 break; 11596 NODE_NAME_CASE(RET_FLAG) 11597 NODE_NAME_CASE(URET_FLAG) 11598 NODE_NAME_CASE(SRET_FLAG) 11599 NODE_NAME_CASE(MRET_FLAG) 11600 NODE_NAME_CASE(CALL) 11601 NODE_NAME_CASE(SELECT_CC) 11602 NODE_NAME_CASE(BR_CC) 11603 NODE_NAME_CASE(BuildPairF64) 11604 NODE_NAME_CASE(SplitF64) 11605 NODE_NAME_CASE(TAIL) 11606 NODE_NAME_CASE(ADD_LO) 11607 NODE_NAME_CASE(HI) 11608 NODE_NAME_CASE(LLA) 11609 NODE_NAME_CASE(ADD_TPREL) 11610 NODE_NAME_CASE(LA) 11611 NODE_NAME_CASE(LA_TLS_IE) 11612 NODE_NAME_CASE(LA_TLS_GD) 11613 NODE_NAME_CASE(MULHSU) 11614 NODE_NAME_CASE(SLLW) 11615 NODE_NAME_CASE(SRAW) 11616 NODE_NAME_CASE(SRLW) 11617 NODE_NAME_CASE(DIVW) 11618 NODE_NAME_CASE(DIVUW) 11619 NODE_NAME_CASE(REMUW) 11620 NODE_NAME_CASE(ROLW) 11621 NODE_NAME_CASE(RORW) 11622 NODE_NAME_CASE(CLZW) 11623 NODE_NAME_CASE(CTZW) 11624 NODE_NAME_CASE(FSLW) 11625 NODE_NAME_CASE(FSRW) 11626 NODE_NAME_CASE(FSL) 11627 NODE_NAME_CASE(FSR) 11628 NODE_NAME_CASE(FMV_H_X) 11629 NODE_NAME_CASE(FMV_X_ANYEXTH) 11630 NODE_NAME_CASE(FMV_X_SIGNEXTH) 11631 NODE_NAME_CASE(FMV_W_X_RV64) 11632 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 11633 NODE_NAME_CASE(FCVT_X) 11634 NODE_NAME_CASE(FCVT_XU) 11635 NODE_NAME_CASE(FCVT_W_RV64) 11636 NODE_NAME_CASE(FCVT_WU_RV64) 11637 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 11638 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 11639 NODE_NAME_CASE(READ_CYCLE_WIDE) 11640 NODE_NAME_CASE(GREV) 11641 NODE_NAME_CASE(GREVW) 11642 NODE_NAME_CASE(GORC) 11643 NODE_NAME_CASE(GORCW) 11644 NODE_NAME_CASE(SHFL) 11645 NODE_NAME_CASE(SHFLW) 11646 NODE_NAME_CASE(UNSHFL) 11647 NODE_NAME_CASE(UNSHFLW) 11648 NODE_NAME_CASE(BFP) 11649 NODE_NAME_CASE(BFPW) 11650 NODE_NAME_CASE(BCOMPRESS) 11651 NODE_NAME_CASE(BCOMPRESSW) 11652 NODE_NAME_CASE(BDECOMPRESS) 11653 NODE_NAME_CASE(BDECOMPRESSW) 11654 NODE_NAME_CASE(VMV_V_X_VL) 11655 NODE_NAME_CASE(VFMV_V_F_VL) 11656 NODE_NAME_CASE(VMV_X_S) 11657 NODE_NAME_CASE(VMV_S_X_VL) 11658 NODE_NAME_CASE(VFMV_S_F_VL) 11659 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 11660 NODE_NAME_CASE(READ_VLENB) 11661 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 11662 NODE_NAME_CASE(VSLIDEUP_VL) 11663 NODE_NAME_CASE(VSLIDE1UP_VL) 11664 NODE_NAME_CASE(VSLIDEDOWN_VL) 11665 NODE_NAME_CASE(VSLIDE1DOWN_VL) 11666 NODE_NAME_CASE(VID_VL) 11667 NODE_NAME_CASE(VFNCVT_ROD_VL) 11668 NODE_NAME_CASE(VECREDUCE_ADD_VL) 11669 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 11670 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 11671 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 11672 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 11673 NODE_NAME_CASE(VECREDUCE_AND_VL) 11674 NODE_NAME_CASE(VECREDUCE_OR_VL) 11675 NODE_NAME_CASE(VECREDUCE_XOR_VL) 11676 NODE_NAME_CASE(VECREDUCE_FADD_VL) 11677 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 11678 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 11679 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 11680 NODE_NAME_CASE(ADD_VL) 11681 NODE_NAME_CASE(AND_VL) 11682 NODE_NAME_CASE(MUL_VL) 11683 NODE_NAME_CASE(OR_VL) 11684 NODE_NAME_CASE(SDIV_VL) 11685 NODE_NAME_CASE(SHL_VL) 11686 NODE_NAME_CASE(SREM_VL) 11687 NODE_NAME_CASE(SRA_VL) 11688 NODE_NAME_CASE(SRL_VL) 11689 NODE_NAME_CASE(SUB_VL) 11690 NODE_NAME_CASE(UDIV_VL) 11691 NODE_NAME_CASE(UREM_VL) 11692 NODE_NAME_CASE(XOR_VL) 11693 NODE_NAME_CASE(SADDSAT_VL) 11694 NODE_NAME_CASE(UADDSAT_VL) 11695 NODE_NAME_CASE(SSUBSAT_VL) 11696 NODE_NAME_CASE(USUBSAT_VL) 11697 NODE_NAME_CASE(FADD_VL) 11698 NODE_NAME_CASE(FSUB_VL) 11699 NODE_NAME_CASE(FMUL_VL) 11700 NODE_NAME_CASE(FDIV_VL) 11701 NODE_NAME_CASE(FNEG_VL) 11702 NODE_NAME_CASE(FABS_VL) 11703 NODE_NAME_CASE(FSQRT_VL) 11704 NODE_NAME_CASE(VFMADD_VL) 11705 NODE_NAME_CASE(VFNMADD_VL) 11706 NODE_NAME_CASE(VFMSUB_VL) 11707 NODE_NAME_CASE(VFNMSUB_VL) 11708 NODE_NAME_CASE(FCOPYSIGN_VL) 11709 NODE_NAME_CASE(SMIN_VL) 11710 NODE_NAME_CASE(SMAX_VL) 11711 NODE_NAME_CASE(UMIN_VL) 11712 NODE_NAME_CASE(UMAX_VL) 11713 NODE_NAME_CASE(FMINNUM_VL) 11714 NODE_NAME_CASE(FMAXNUM_VL) 11715 NODE_NAME_CASE(MULHS_VL) 11716 NODE_NAME_CASE(MULHU_VL) 11717 NODE_NAME_CASE(FP_TO_SINT_VL) 11718 NODE_NAME_CASE(FP_TO_UINT_VL) 11719 NODE_NAME_CASE(SINT_TO_FP_VL) 11720 NODE_NAME_CASE(UINT_TO_FP_VL) 11721 NODE_NAME_CASE(FP_EXTEND_VL) 11722 NODE_NAME_CASE(FP_ROUND_VL) 11723 NODE_NAME_CASE(VWMUL_VL) 11724 NODE_NAME_CASE(VWMULU_VL) 11725 NODE_NAME_CASE(VWMULSU_VL) 11726 NODE_NAME_CASE(VWADD_VL) 11727 NODE_NAME_CASE(VWADDU_VL) 11728 NODE_NAME_CASE(VWSUB_VL) 11729 NODE_NAME_CASE(VWSUBU_VL) 11730 NODE_NAME_CASE(VWADD_W_VL) 11731 NODE_NAME_CASE(VWADDU_W_VL) 11732 NODE_NAME_CASE(VWSUB_W_VL) 11733 NODE_NAME_CASE(VWSUBU_W_VL) 11734 NODE_NAME_CASE(SETCC_VL) 11735 NODE_NAME_CASE(VSELECT_VL) 11736 NODE_NAME_CASE(VP_MERGE_VL) 11737 NODE_NAME_CASE(VMAND_VL) 11738 NODE_NAME_CASE(VMOR_VL) 11739 NODE_NAME_CASE(VMXOR_VL) 11740 NODE_NAME_CASE(VMCLR_VL) 11741 NODE_NAME_CASE(VMSET_VL) 11742 NODE_NAME_CASE(VRGATHER_VX_VL) 11743 NODE_NAME_CASE(VRGATHER_VV_VL) 11744 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 11745 NODE_NAME_CASE(VSEXT_VL) 11746 NODE_NAME_CASE(VZEXT_VL) 11747 NODE_NAME_CASE(VCPOP_VL) 11748 NODE_NAME_CASE(READ_CSR) 11749 NODE_NAME_CASE(WRITE_CSR) 11750 NODE_NAME_CASE(SWAP_CSR) 11751 } 11752 // clang-format on 11753 return nullptr; 11754 #undef NODE_NAME_CASE 11755 } 11756 11757 /// getConstraintType - Given a constraint letter, return the type of 11758 /// constraint it is for this target. 11759 RISCVTargetLowering::ConstraintType 11760 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 11761 if (Constraint.size() == 1) { 11762 switch (Constraint[0]) { 11763 default: 11764 break; 11765 case 'f': 11766 return C_RegisterClass; 11767 case 'I': 11768 case 'J': 11769 case 'K': 11770 return C_Immediate; 11771 case 'A': 11772 return C_Memory; 11773 case 'S': // A symbolic address 11774 return C_Other; 11775 } 11776 } else { 11777 if (Constraint == "vr" || Constraint == "vm") 11778 return C_RegisterClass; 11779 } 11780 return TargetLowering::getConstraintType(Constraint); 11781 } 11782 11783 std::pair<unsigned, const TargetRegisterClass *> 11784 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11785 StringRef Constraint, 11786 MVT VT) const { 11787 // First, see if this is a constraint that directly corresponds to a 11788 // RISCV register class. 11789 if (Constraint.size() == 1) { 11790 switch (Constraint[0]) { 11791 case 'r': 11792 // TODO: Support fixed vectors up to XLen for P extension? 11793 if (VT.isVector()) 11794 break; 11795 return std::make_pair(0U, &RISCV::GPRRegClass); 11796 case 'f': 11797 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 11798 return std::make_pair(0U, &RISCV::FPR16RegClass); 11799 if (Subtarget.hasStdExtF() && VT == MVT::f32) 11800 return std::make_pair(0U, &RISCV::FPR32RegClass); 11801 if (Subtarget.hasStdExtD() && VT == MVT::f64) 11802 return std::make_pair(0U, &RISCV::FPR64RegClass); 11803 break; 11804 default: 11805 break; 11806 } 11807 } else if (Constraint == "vr") { 11808 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 11809 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11810 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 11811 return std::make_pair(0U, RC); 11812 } 11813 } else if (Constraint == "vm") { 11814 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 11815 return std::make_pair(0U, &RISCV::VMV0RegClass); 11816 } 11817 11818 // Clang will correctly decode the usage of register name aliases into their 11819 // official names. However, other frontends like `rustc` do not. This allows 11820 // users of these frontends to use the ABI names for registers in LLVM-style 11821 // register constraints. 11822 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 11823 .Case("{zero}", RISCV::X0) 11824 .Case("{ra}", RISCV::X1) 11825 .Case("{sp}", RISCV::X2) 11826 .Case("{gp}", RISCV::X3) 11827 .Case("{tp}", RISCV::X4) 11828 .Case("{t0}", RISCV::X5) 11829 .Case("{t1}", RISCV::X6) 11830 .Case("{t2}", RISCV::X7) 11831 .Cases("{s0}", "{fp}", RISCV::X8) 11832 .Case("{s1}", RISCV::X9) 11833 .Case("{a0}", RISCV::X10) 11834 .Case("{a1}", RISCV::X11) 11835 .Case("{a2}", RISCV::X12) 11836 .Case("{a3}", RISCV::X13) 11837 .Case("{a4}", RISCV::X14) 11838 .Case("{a5}", RISCV::X15) 11839 .Case("{a6}", RISCV::X16) 11840 .Case("{a7}", RISCV::X17) 11841 .Case("{s2}", RISCV::X18) 11842 .Case("{s3}", RISCV::X19) 11843 .Case("{s4}", RISCV::X20) 11844 .Case("{s5}", RISCV::X21) 11845 .Case("{s6}", RISCV::X22) 11846 .Case("{s7}", RISCV::X23) 11847 .Case("{s8}", RISCV::X24) 11848 .Case("{s9}", RISCV::X25) 11849 .Case("{s10}", RISCV::X26) 11850 .Case("{s11}", RISCV::X27) 11851 .Case("{t3}", RISCV::X28) 11852 .Case("{t4}", RISCV::X29) 11853 .Case("{t5}", RISCV::X30) 11854 .Case("{t6}", RISCV::X31) 11855 .Default(RISCV::NoRegister); 11856 if (XRegFromAlias != RISCV::NoRegister) 11857 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 11858 11859 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 11860 // TableGen record rather than the AsmName to choose registers for InlineAsm 11861 // constraints, plus we want to match those names to the widest floating point 11862 // register type available, manually select floating point registers here. 11863 // 11864 // The second case is the ABI name of the register, so that frontends can also 11865 // use the ABI names in register constraint lists. 11866 if (Subtarget.hasStdExtF()) { 11867 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 11868 .Cases("{f0}", "{ft0}", RISCV::F0_F) 11869 .Cases("{f1}", "{ft1}", RISCV::F1_F) 11870 .Cases("{f2}", "{ft2}", RISCV::F2_F) 11871 .Cases("{f3}", "{ft3}", RISCV::F3_F) 11872 .Cases("{f4}", "{ft4}", RISCV::F4_F) 11873 .Cases("{f5}", "{ft5}", RISCV::F5_F) 11874 .Cases("{f6}", "{ft6}", RISCV::F6_F) 11875 .Cases("{f7}", "{ft7}", RISCV::F7_F) 11876 .Cases("{f8}", "{fs0}", RISCV::F8_F) 11877 .Cases("{f9}", "{fs1}", RISCV::F9_F) 11878 .Cases("{f10}", "{fa0}", RISCV::F10_F) 11879 .Cases("{f11}", "{fa1}", RISCV::F11_F) 11880 .Cases("{f12}", "{fa2}", RISCV::F12_F) 11881 .Cases("{f13}", "{fa3}", RISCV::F13_F) 11882 .Cases("{f14}", "{fa4}", RISCV::F14_F) 11883 .Cases("{f15}", "{fa5}", RISCV::F15_F) 11884 .Cases("{f16}", "{fa6}", RISCV::F16_F) 11885 .Cases("{f17}", "{fa7}", RISCV::F17_F) 11886 .Cases("{f18}", "{fs2}", RISCV::F18_F) 11887 .Cases("{f19}", "{fs3}", RISCV::F19_F) 11888 .Cases("{f20}", "{fs4}", RISCV::F20_F) 11889 .Cases("{f21}", "{fs5}", RISCV::F21_F) 11890 .Cases("{f22}", "{fs6}", RISCV::F22_F) 11891 .Cases("{f23}", "{fs7}", RISCV::F23_F) 11892 .Cases("{f24}", "{fs8}", RISCV::F24_F) 11893 .Cases("{f25}", "{fs9}", RISCV::F25_F) 11894 .Cases("{f26}", "{fs10}", RISCV::F26_F) 11895 .Cases("{f27}", "{fs11}", RISCV::F27_F) 11896 .Cases("{f28}", "{ft8}", RISCV::F28_F) 11897 .Cases("{f29}", "{ft9}", RISCV::F29_F) 11898 .Cases("{f30}", "{ft10}", RISCV::F30_F) 11899 .Cases("{f31}", "{ft11}", RISCV::F31_F) 11900 .Default(RISCV::NoRegister); 11901 if (FReg != RISCV::NoRegister) { 11902 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 11903 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 11904 unsigned RegNo = FReg - RISCV::F0_F; 11905 unsigned DReg = RISCV::F0_D + RegNo; 11906 return std::make_pair(DReg, &RISCV::FPR64RegClass); 11907 } 11908 if (VT == MVT::f32 || VT == MVT::Other) 11909 return std::make_pair(FReg, &RISCV::FPR32RegClass); 11910 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 11911 unsigned RegNo = FReg - RISCV::F0_F; 11912 unsigned HReg = RISCV::F0_H + RegNo; 11913 return std::make_pair(HReg, &RISCV::FPR16RegClass); 11914 } 11915 } 11916 } 11917 11918 if (Subtarget.hasVInstructions()) { 11919 Register VReg = StringSwitch<Register>(Constraint.lower()) 11920 .Case("{v0}", RISCV::V0) 11921 .Case("{v1}", RISCV::V1) 11922 .Case("{v2}", RISCV::V2) 11923 .Case("{v3}", RISCV::V3) 11924 .Case("{v4}", RISCV::V4) 11925 .Case("{v5}", RISCV::V5) 11926 .Case("{v6}", RISCV::V6) 11927 .Case("{v7}", RISCV::V7) 11928 .Case("{v8}", RISCV::V8) 11929 .Case("{v9}", RISCV::V9) 11930 .Case("{v10}", RISCV::V10) 11931 .Case("{v11}", RISCV::V11) 11932 .Case("{v12}", RISCV::V12) 11933 .Case("{v13}", RISCV::V13) 11934 .Case("{v14}", RISCV::V14) 11935 .Case("{v15}", RISCV::V15) 11936 .Case("{v16}", RISCV::V16) 11937 .Case("{v17}", RISCV::V17) 11938 .Case("{v18}", RISCV::V18) 11939 .Case("{v19}", RISCV::V19) 11940 .Case("{v20}", RISCV::V20) 11941 .Case("{v21}", RISCV::V21) 11942 .Case("{v22}", RISCV::V22) 11943 .Case("{v23}", RISCV::V23) 11944 .Case("{v24}", RISCV::V24) 11945 .Case("{v25}", RISCV::V25) 11946 .Case("{v26}", RISCV::V26) 11947 .Case("{v27}", RISCV::V27) 11948 .Case("{v28}", RISCV::V28) 11949 .Case("{v29}", RISCV::V29) 11950 .Case("{v30}", RISCV::V30) 11951 .Case("{v31}", RISCV::V31) 11952 .Default(RISCV::NoRegister); 11953 if (VReg != RISCV::NoRegister) { 11954 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 11955 return std::make_pair(VReg, &RISCV::VMRegClass); 11956 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 11957 return std::make_pair(VReg, &RISCV::VRRegClass); 11958 for (const auto *RC : 11959 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11960 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 11961 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 11962 return std::make_pair(VReg, RC); 11963 } 11964 } 11965 } 11966 } 11967 11968 std::pair<Register, const TargetRegisterClass *> Res = 11969 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11970 11971 // If we picked one of the Zfinx register classes, remap it to the GPR class. 11972 // FIXME: When Zfinx is supported in CodeGen this will need to take the 11973 // Subtarget into account. 11974 if (Res.second == &RISCV::GPRF16RegClass || 11975 Res.second == &RISCV::GPRF32RegClass || 11976 Res.second == &RISCV::GPRF64RegClass) 11977 return std::make_pair(Res.first, &RISCV::GPRRegClass); 11978 11979 return Res; 11980 } 11981 11982 unsigned 11983 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 11984 // Currently only support length 1 constraints. 11985 if (ConstraintCode.size() == 1) { 11986 switch (ConstraintCode[0]) { 11987 case 'A': 11988 return InlineAsm::Constraint_A; 11989 default: 11990 break; 11991 } 11992 } 11993 11994 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 11995 } 11996 11997 void RISCVTargetLowering::LowerAsmOperandForConstraint( 11998 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 11999 SelectionDAG &DAG) const { 12000 // Currently only support length 1 constraints. 12001 if (Constraint.length() == 1) { 12002 switch (Constraint[0]) { 12003 case 'I': 12004 // Validate & create a 12-bit signed immediate operand. 12005 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 12006 uint64_t CVal = C->getSExtValue(); 12007 if (isInt<12>(CVal)) 12008 Ops.push_back( 12009 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 12010 } 12011 return; 12012 case 'J': 12013 // Validate & create an integer zero operand. 12014 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 12015 if (C->getZExtValue() == 0) 12016 Ops.push_back( 12017 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 12018 return; 12019 case 'K': 12020 // Validate & create a 5-bit unsigned immediate operand. 12021 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 12022 uint64_t CVal = C->getZExtValue(); 12023 if (isUInt<5>(CVal)) 12024 Ops.push_back( 12025 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 12026 } 12027 return; 12028 case 'S': 12029 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 12030 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 12031 GA->getValueType(0))); 12032 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 12033 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 12034 BA->getValueType(0))); 12035 } 12036 return; 12037 default: 12038 break; 12039 } 12040 } 12041 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 12042 } 12043 12044 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 12045 Instruction *Inst, 12046 AtomicOrdering Ord) const { 12047 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 12048 return Builder.CreateFence(Ord); 12049 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 12050 return Builder.CreateFence(AtomicOrdering::Release); 12051 return nullptr; 12052 } 12053 12054 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 12055 Instruction *Inst, 12056 AtomicOrdering Ord) const { 12057 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 12058 return Builder.CreateFence(AtomicOrdering::Acquire); 12059 return nullptr; 12060 } 12061 12062 TargetLowering::AtomicExpansionKind 12063 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 12064 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 12065 // point operations can't be used in an lr/sc sequence without breaking the 12066 // forward-progress guarantee. 12067 if (AI->isFloatingPointOperation()) 12068 return AtomicExpansionKind::CmpXChg; 12069 12070 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 12071 if (Size == 8 || Size == 16) 12072 return AtomicExpansionKind::MaskedIntrinsic; 12073 return AtomicExpansionKind::None; 12074 } 12075 12076 static Intrinsic::ID 12077 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 12078 if (XLen == 32) { 12079 switch (BinOp) { 12080 default: 12081 llvm_unreachable("Unexpected AtomicRMW BinOp"); 12082 case AtomicRMWInst::Xchg: 12083 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 12084 case AtomicRMWInst::Add: 12085 return Intrinsic::riscv_masked_atomicrmw_add_i32; 12086 case AtomicRMWInst::Sub: 12087 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 12088 case AtomicRMWInst::Nand: 12089 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 12090 case AtomicRMWInst::Max: 12091 return Intrinsic::riscv_masked_atomicrmw_max_i32; 12092 case AtomicRMWInst::Min: 12093 return Intrinsic::riscv_masked_atomicrmw_min_i32; 12094 case AtomicRMWInst::UMax: 12095 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 12096 case AtomicRMWInst::UMin: 12097 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 12098 } 12099 } 12100 12101 if (XLen == 64) { 12102 switch (BinOp) { 12103 default: 12104 llvm_unreachable("Unexpected AtomicRMW BinOp"); 12105 case AtomicRMWInst::Xchg: 12106 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 12107 case AtomicRMWInst::Add: 12108 return Intrinsic::riscv_masked_atomicrmw_add_i64; 12109 case AtomicRMWInst::Sub: 12110 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 12111 case AtomicRMWInst::Nand: 12112 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 12113 case AtomicRMWInst::Max: 12114 return Intrinsic::riscv_masked_atomicrmw_max_i64; 12115 case AtomicRMWInst::Min: 12116 return Intrinsic::riscv_masked_atomicrmw_min_i64; 12117 case AtomicRMWInst::UMax: 12118 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 12119 case AtomicRMWInst::UMin: 12120 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 12121 } 12122 } 12123 12124 llvm_unreachable("Unexpected XLen\n"); 12125 } 12126 12127 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 12128 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 12129 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 12130 unsigned XLen = Subtarget.getXLen(); 12131 Value *Ordering = 12132 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 12133 Type *Tys[] = {AlignedAddr->getType()}; 12134 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 12135 AI->getModule(), 12136 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 12137 12138 if (XLen == 64) { 12139 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 12140 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 12141 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 12142 } 12143 12144 Value *Result; 12145 12146 // Must pass the shift amount needed to sign extend the loaded value prior 12147 // to performing a signed comparison for min/max. ShiftAmt is the number of 12148 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 12149 // is the number of bits to left+right shift the value in order to 12150 // sign-extend. 12151 if (AI->getOperation() == AtomicRMWInst::Min || 12152 AI->getOperation() == AtomicRMWInst::Max) { 12153 const DataLayout &DL = AI->getModule()->getDataLayout(); 12154 unsigned ValWidth = 12155 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 12156 Value *SextShamt = 12157 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 12158 Result = Builder.CreateCall(LrwOpScwLoop, 12159 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 12160 } else { 12161 Result = 12162 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 12163 } 12164 12165 if (XLen == 64) 12166 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 12167 return Result; 12168 } 12169 12170 TargetLowering::AtomicExpansionKind 12171 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 12172 AtomicCmpXchgInst *CI) const { 12173 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 12174 if (Size == 8 || Size == 16) 12175 return AtomicExpansionKind::MaskedIntrinsic; 12176 return AtomicExpansionKind::None; 12177 } 12178 12179 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 12180 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 12181 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 12182 unsigned XLen = Subtarget.getXLen(); 12183 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 12184 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 12185 if (XLen == 64) { 12186 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 12187 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 12188 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 12189 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 12190 } 12191 Type *Tys[] = {AlignedAddr->getType()}; 12192 Function *MaskedCmpXchg = 12193 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 12194 Value *Result = Builder.CreateCall( 12195 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 12196 if (XLen == 64) 12197 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 12198 return Result; 12199 } 12200 12201 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT, 12202 EVT DataVT) const { 12203 return false; 12204 } 12205 12206 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 12207 EVT VT) const { 12208 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 12209 return false; 12210 12211 switch (FPVT.getSimpleVT().SimpleTy) { 12212 case MVT::f16: 12213 return Subtarget.hasStdExtZfh(); 12214 case MVT::f32: 12215 return Subtarget.hasStdExtF(); 12216 case MVT::f64: 12217 return Subtarget.hasStdExtD(); 12218 default: 12219 return false; 12220 } 12221 } 12222 12223 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 12224 // If we are using the small code model, we can reduce size of jump table 12225 // entry to 4 bytes. 12226 if (Subtarget.is64Bit() && !isPositionIndependent() && 12227 getTargetMachine().getCodeModel() == CodeModel::Small) { 12228 return MachineJumpTableInfo::EK_Custom32; 12229 } 12230 return TargetLowering::getJumpTableEncoding(); 12231 } 12232 12233 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 12234 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 12235 unsigned uid, MCContext &Ctx) const { 12236 assert(Subtarget.is64Bit() && !isPositionIndependent() && 12237 getTargetMachine().getCodeModel() == CodeModel::Small); 12238 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 12239 } 12240 12241 bool RISCVTargetLowering::isVScaleKnownToBeAPowerOfTwo() const { 12242 // We define vscale to be VLEN/RVVBitsPerBlock. VLEN is always a power 12243 // of two >= 64, and RVVBitsPerBlock is 64. Thus, vscale must be 12244 // a power of two as well. 12245 // FIXME: This doesn't work for zve32, but that's already broken 12246 // elsewhere for the same reason. 12247 assert(Subtarget.getRealMinVLen() >= 64 && "zve32* unsupported"); 12248 static_assert(RISCV::RVVBitsPerBlock == 64, 12249 "RVVBitsPerBlock changed, audit needed"); 12250 return true; 12251 } 12252 12253 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 12254 EVT VT) const { 12255 VT = VT.getScalarType(); 12256 12257 if (!VT.isSimple()) 12258 return false; 12259 12260 switch (VT.getSimpleVT().SimpleTy) { 12261 case MVT::f16: 12262 return Subtarget.hasStdExtZfh(); 12263 case MVT::f32: 12264 return Subtarget.hasStdExtF(); 12265 case MVT::f64: 12266 return Subtarget.hasStdExtD(); 12267 default: 12268 break; 12269 } 12270 12271 return false; 12272 } 12273 12274 Register RISCVTargetLowering::getExceptionPointerRegister( 12275 const Constant *PersonalityFn) const { 12276 return RISCV::X10; 12277 } 12278 12279 Register RISCVTargetLowering::getExceptionSelectorRegister( 12280 const Constant *PersonalityFn) const { 12281 return RISCV::X11; 12282 } 12283 12284 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 12285 // Return false to suppress the unnecessary extensions if the LibCall 12286 // arguments or return value is f32 type for LP64 ABI. 12287 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 12288 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 12289 return false; 12290 12291 return true; 12292 } 12293 12294 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 12295 if (Subtarget.is64Bit() && Type == MVT::i32) 12296 return true; 12297 12298 return IsSigned; 12299 } 12300 12301 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 12302 SDValue C) const { 12303 // Check integral scalar types. 12304 const bool HasExtMOrZmmul = 12305 Subtarget.hasStdExtM() || Subtarget.hasStdExtZmmul(); 12306 if (VT.isScalarInteger()) { 12307 // Omit the optimization if the sub target has the M extension and the data 12308 // size exceeds XLen. 12309 if (HasExtMOrZmmul && VT.getSizeInBits() > Subtarget.getXLen()) 12310 return false; 12311 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 12312 // Break the MUL to a SLLI and an ADD/SUB. 12313 const APInt &Imm = ConstNode->getAPIntValue(); 12314 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 12315 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 12316 return true; 12317 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 12318 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 12319 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 12320 (Imm - 8).isPowerOf2())) 12321 return true; 12322 // Omit the following optimization if the sub target has the M extension 12323 // and the data size >= XLen. 12324 if (HasExtMOrZmmul && VT.getSizeInBits() >= Subtarget.getXLen()) 12325 return false; 12326 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 12327 // a pair of LUI/ADDI. 12328 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 12329 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 12330 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 12331 (1 - ImmS).isPowerOf2()) 12332 return true; 12333 } 12334 } 12335 } 12336 12337 return false; 12338 } 12339 12340 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode, 12341 SDValue ConstNode) const { 12342 // Let the DAGCombiner decide for vectors. 12343 EVT VT = AddNode.getValueType(); 12344 if (VT.isVector()) 12345 return true; 12346 12347 // Let the DAGCombiner decide for larger types. 12348 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 12349 return true; 12350 12351 // It is worse if c1 is simm12 while c1*c2 is not. 12352 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 12353 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 12354 const APInt &C1 = C1Node->getAPIntValue(); 12355 const APInt &C2 = C2Node->getAPIntValue(); 12356 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 12357 return false; 12358 12359 // Default to true and let the DAGCombiner decide. 12360 return true; 12361 } 12362 12363 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 12364 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 12365 bool *Fast) const { 12366 if (!VT.isVector()) { 12367 if (Fast) 12368 *Fast = false; 12369 return Subtarget.enableUnalignedScalarMem(); 12370 } 12371 12372 // All vector implementations must support element alignment 12373 EVT ElemVT = VT.getVectorElementType(); 12374 if (Alignment >= ElemVT.getStoreSize()) { 12375 if (Fast) 12376 *Fast = true; 12377 return true; 12378 } 12379 12380 return false; 12381 } 12382 12383 bool RISCVTargetLowering::splitValueIntoRegisterParts( 12384 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 12385 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 12386 bool IsABIRegCopy = CC.has_value(); 12387 EVT ValueVT = Val.getValueType(); 12388 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 12389 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 12390 // and cast to f32. 12391 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 12392 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 12393 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 12394 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 12395 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 12396 Parts[0] = Val; 12397 return true; 12398 } 12399 12400 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 12401 LLVMContext &Context = *DAG.getContext(); 12402 EVT ValueEltVT = ValueVT.getVectorElementType(); 12403 EVT PartEltVT = PartVT.getVectorElementType(); 12404 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 12405 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 12406 if (PartVTBitSize % ValueVTBitSize == 0) { 12407 assert(PartVTBitSize >= ValueVTBitSize); 12408 // If the element types are different, bitcast to the same element type of 12409 // PartVT first. 12410 // Give an example here, we want copy a <vscale x 1 x i8> value to 12411 // <vscale x 4 x i16>. 12412 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 12413 // subvector, then we can bitcast to <vscale x 4 x i16>. 12414 if (ValueEltVT != PartEltVT) { 12415 if (PartVTBitSize > ValueVTBitSize) { 12416 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 12417 assert(Count != 0 && "The number of element should not be zero."); 12418 EVT SameEltTypeVT = 12419 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 12420 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 12421 DAG.getUNDEF(SameEltTypeVT), Val, 12422 DAG.getVectorIdxConstant(0, DL)); 12423 } 12424 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 12425 } else { 12426 Val = 12427 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 12428 Val, DAG.getVectorIdxConstant(0, DL)); 12429 } 12430 Parts[0] = Val; 12431 return true; 12432 } 12433 } 12434 return false; 12435 } 12436 12437 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 12438 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 12439 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 12440 bool IsABIRegCopy = CC.has_value(); 12441 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 12442 SDValue Val = Parts[0]; 12443 12444 // Cast the f32 to i32, truncate to i16, and cast back to f16. 12445 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 12446 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 12447 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 12448 return Val; 12449 } 12450 12451 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 12452 LLVMContext &Context = *DAG.getContext(); 12453 SDValue Val = Parts[0]; 12454 EVT ValueEltVT = ValueVT.getVectorElementType(); 12455 EVT PartEltVT = PartVT.getVectorElementType(); 12456 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 12457 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 12458 if (PartVTBitSize % ValueVTBitSize == 0) { 12459 assert(PartVTBitSize >= ValueVTBitSize); 12460 EVT SameEltTypeVT = ValueVT; 12461 // If the element types are different, convert it to the same element type 12462 // of PartVT. 12463 // Give an example here, we want copy a <vscale x 1 x i8> value from 12464 // <vscale x 4 x i16>. 12465 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 12466 // then we can extract <vscale x 1 x i8>. 12467 if (ValueEltVT != PartEltVT) { 12468 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 12469 assert(Count != 0 && "The number of element should not be zero."); 12470 SameEltTypeVT = 12471 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 12472 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 12473 } 12474 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 12475 DAG.getVectorIdxConstant(0, DL)); 12476 return Val; 12477 } 12478 } 12479 return SDValue(); 12480 } 12481 12482 SDValue 12483 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 12484 SelectionDAG &DAG, 12485 SmallVectorImpl<SDNode *> &Created) const { 12486 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 12487 if (isIntDivCheap(N->getValueType(0), Attr)) 12488 return SDValue(N, 0); // Lower SDIV as SDIV 12489 12490 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 12491 "Unexpected divisor!"); 12492 12493 // Conditional move is needed, so do the transformation iff Zbt is enabled. 12494 if (!Subtarget.hasStdExtZbt()) 12495 return SDValue(); 12496 12497 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 12498 // Besides, more critical path instructions will be generated when dividing 12499 // by 2. So we keep using the original DAGs for these cases. 12500 unsigned Lg2 = Divisor.countTrailingZeros(); 12501 if (Lg2 == 1 || Lg2 >= 12) 12502 return SDValue(); 12503 12504 // fold (sdiv X, pow2) 12505 EVT VT = N->getValueType(0); 12506 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 12507 return SDValue(); 12508 12509 SDLoc DL(N); 12510 SDValue N0 = N->getOperand(0); 12511 SDValue Zero = DAG.getConstant(0, DL, VT); 12512 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 12513 12514 // Add (N0 < 0) ? Pow2 - 1 : 0; 12515 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 12516 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 12517 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 12518 12519 Created.push_back(Cmp.getNode()); 12520 Created.push_back(Add.getNode()); 12521 Created.push_back(Sel.getNode()); 12522 12523 // Divide by pow2. 12524 SDValue SRA = 12525 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 12526 12527 // If we're dividing by a positive value, we're done. Otherwise, we must 12528 // negate the result. 12529 if (Divisor.isNonNegative()) 12530 return SRA; 12531 12532 Created.push_back(SRA.getNode()); 12533 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 12534 } 12535 12536 #define GET_REGISTER_MATCHER 12537 #include "RISCVGenAsmMatcher.inc" 12538 12539 Register 12540 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 12541 const MachineFunction &MF) const { 12542 Register Reg = MatchRegisterAltName(RegName); 12543 if (Reg == RISCV::NoRegister) 12544 Reg = MatchRegisterName(RegName); 12545 if (Reg == RISCV::NoRegister) 12546 report_fatal_error( 12547 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 12548 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 12549 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 12550 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 12551 StringRef(RegName) + "\".")); 12552 return Reg; 12553 } 12554 12555 namespace llvm { 12556 namespace RISCVVIntrinsicsTable { 12557 12558 #define GET_RISCVVIntrinsicsTable_IMPL 12559 #include "RISCVGenSearchableTables.inc" 12560 12561 } // namespace RISCVVIntrinsicsTable 12562 12563 } // namespace llvm 12564