xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVISelLowering.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/IntrinsicsRISCV.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "riscv-lower"
44 
45 STATISTIC(NumTailCalls, "Number of tail calls");
46 
47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
48                                          const RISCVSubtarget &STI)
49     : TargetLowering(TM), Subtarget(STI) {
50 
51   if (Subtarget.isRV32E())
52     report_fatal_error("Codegen not yet implemented for RV32E");
53 
54   RISCVABI::ABI ABI = Subtarget.getTargetABI();
55   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
56 
57   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
58       !Subtarget.hasStdExtF()) {
59     errs() << "Hard-float 'f' ABI can't be used for a target that "
60                 "doesn't support the F instruction set extension (ignoring "
61                           "target-abi)\n";
62     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
63   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
64              !Subtarget.hasStdExtD()) {
65     errs() << "Hard-float 'd' ABI can't be used for a target that "
66               "doesn't support the D instruction set extension (ignoring "
67               "target-abi)\n";
68     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
69   }
70 
71   switch (ABI) {
72   default:
73     report_fatal_error("Don't know how to lower this ABI");
74   case RISCVABI::ABI_ILP32:
75   case RISCVABI::ABI_ILP32F:
76   case RISCVABI::ABI_ILP32D:
77   case RISCVABI::ABI_LP64:
78   case RISCVABI::ABI_LP64F:
79   case RISCVABI::ABI_LP64D:
80     break;
81   }
82 
83   MVT XLenVT = Subtarget.getXLenVT();
84 
85   // Set up the register classes.
86   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
87 
88   if (Subtarget.hasStdExtZfh())
89     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
90   if (Subtarget.hasStdExtF())
91     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
92   if (Subtarget.hasStdExtD())
93     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
94 
95   static const MVT::SimpleValueType BoolVecVTs[] = {
96       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
97       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
98   static const MVT::SimpleValueType IntVecVTs[] = {
99       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
100       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
101       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
102       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
103       MVT::nxv4i64, MVT::nxv8i64};
104   static const MVT::SimpleValueType F16VecVTs[] = {
105       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
106       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
107   static const MVT::SimpleValueType F32VecVTs[] = {
108       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
109   static const MVT::SimpleValueType F64VecVTs[] = {
110       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
111 
112   if (Subtarget.hasVInstructions()) {
113     auto addRegClassForRVV = [this](MVT VT) {
114       unsigned Size = VT.getSizeInBits().getKnownMinValue();
115       assert(Size <= 512 && isPowerOf2_32(Size));
116       const TargetRegisterClass *RC;
117       if (Size <= 64)
118         RC = &RISCV::VRRegClass;
119       else if (Size == 128)
120         RC = &RISCV::VRM2RegClass;
121       else if (Size == 256)
122         RC = &RISCV::VRM4RegClass;
123       else
124         RC = &RISCV::VRM8RegClass;
125 
126       addRegisterClass(VT, RC);
127     };
128 
129     for (MVT VT : BoolVecVTs)
130       addRegClassForRVV(VT);
131     for (MVT VT : IntVecVTs) {
132       if (VT.getVectorElementType() == MVT::i64 &&
133           !Subtarget.hasVInstructionsI64())
134         continue;
135       addRegClassForRVV(VT);
136     }
137 
138     if (Subtarget.hasVInstructionsF16())
139       for (MVT VT : F16VecVTs)
140         addRegClassForRVV(VT);
141 
142     if (Subtarget.hasVInstructionsF32())
143       for (MVT VT : F32VecVTs)
144         addRegClassForRVV(VT);
145 
146     if (Subtarget.hasVInstructionsF64())
147       for (MVT VT : F64VecVTs)
148         addRegClassForRVV(VT);
149 
150     if (Subtarget.useRVVForFixedLengthVectors()) {
151       auto addRegClassForFixedVectors = [this](MVT VT) {
152         MVT ContainerVT = getContainerForFixedLengthVector(VT);
153         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
154         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
155         addRegisterClass(VT, TRI.getRegClass(RCID));
156       };
157       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
158         if (useRVVForFixedLengthVectorVT(VT))
159           addRegClassForFixedVectors(VT);
160 
161       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
162         if (useRVVForFixedLengthVectorVT(VT))
163           addRegClassForFixedVectors(VT);
164     }
165   }
166 
167   // Compute derived properties from the register classes.
168   computeRegisterProperties(STI.getRegisterInfo());
169 
170   setStackPointerRegisterToSaveRestore(RISCV::X2);
171 
172   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
173     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
174 
175   // TODO: add all necessary setOperationAction calls.
176   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
177 
178   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
179   setOperationAction(ISD::BR_CC, XLenVT, Expand);
180   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
181   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
182 
183   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
184   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
185 
186   setOperationAction(ISD::VASTART, MVT::Other, Custom);
187   setOperationAction(ISD::VAARG, MVT::Other, Expand);
188   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
189   setOperationAction(ISD::VAEND, MVT::Other, Expand);
190 
191   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
192   if (!Subtarget.hasStdExtZbb()) {
193     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
195   }
196 
197   if (Subtarget.is64Bit()) {
198     setOperationAction(ISD::ADD, MVT::i32, Custom);
199     setOperationAction(ISD::SUB, MVT::i32, Custom);
200     setOperationAction(ISD::SHL, MVT::i32, Custom);
201     setOperationAction(ISD::SRA, MVT::i32, Custom);
202     setOperationAction(ISD::SRL, MVT::i32, Custom);
203 
204     setOperationAction(ISD::UADDO, MVT::i32, Custom);
205     setOperationAction(ISD::USUBO, MVT::i32, Custom);
206     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
207     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
208   } else {
209     setLibcallName(RTLIB::SHL_I128, nullptr);
210     setLibcallName(RTLIB::SRL_I128, nullptr);
211     setLibcallName(RTLIB::SRA_I128, nullptr);
212     setLibcallName(RTLIB::MUL_I128, nullptr);
213     setLibcallName(RTLIB::MULO_I64, nullptr);
214   }
215 
216   if (!Subtarget.hasStdExtM()) {
217     setOperationAction(ISD::MUL, XLenVT, Expand);
218     setOperationAction(ISD::MULHS, XLenVT, Expand);
219     setOperationAction(ISD::MULHU, XLenVT, Expand);
220     setOperationAction(ISD::SDIV, XLenVT, Expand);
221     setOperationAction(ISD::UDIV, XLenVT, Expand);
222     setOperationAction(ISD::SREM, XLenVT, Expand);
223     setOperationAction(ISD::UREM, XLenVT, Expand);
224   } else {
225     if (Subtarget.is64Bit()) {
226       setOperationAction(ISD::MUL, MVT::i32, Custom);
227       setOperationAction(ISD::MUL, MVT::i128, Custom);
228 
229       setOperationAction(ISD::SDIV, MVT::i8, Custom);
230       setOperationAction(ISD::UDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UREM, MVT::i8, Custom);
232       setOperationAction(ISD::SDIV, MVT::i16, Custom);
233       setOperationAction(ISD::UDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UREM, MVT::i16, Custom);
235       setOperationAction(ISD::SDIV, MVT::i32, Custom);
236       setOperationAction(ISD::UDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UREM, MVT::i32, Custom);
238     } else {
239       setOperationAction(ISD::MUL, MVT::i64, Custom);
240     }
241   }
242 
243   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
244   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
246   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
247 
248   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
249   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
251 
252   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
253     if (Subtarget.is64Bit()) {
254       setOperationAction(ISD::ROTL, MVT::i32, Custom);
255       setOperationAction(ISD::ROTR, MVT::i32, Custom);
256     }
257   } else {
258     setOperationAction(ISD::ROTL, XLenVT, Expand);
259     setOperationAction(ISD::ROTR, XLenVT, Expand);
260   }
261 
262   if (Subtarget.hasStdExtZbp()) {
263     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
264     // more combining.
265     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
266     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
267     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
268     // BSWAP i8 doesn't exist.
269     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
270     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
271 
272     if (Subtarget.is64Bit()) {
273       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
274       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
275     }
276   } else {
277     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
278     // pattern match it directly in isel.
279     setOperationAction(ISD::BSWAP, XLenVT,
280                        Subtarget.hasStdExtZbb() ? Legal : Expand);
281   }
282 
283   if (Subtarget.hasStdExtZbb()) {
284     setOperationAction(ISD::SMIN, XLenVT, Legal);
285     setOperationAction(ISD::SMAX, XLenVT, Legal);
286     setOperationAction(ISD::UMIN, XLenVT, Legal);
287     setOperationAction(ISD::UMAX, XLenVT, Legal);
288 
289     if (Subtarget.is64Bit()) {
290       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
291       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
292       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
293       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
294     }
295   } else {
296     setOperationAction(ISD::CTTZ, XLenVT, Expand);
297     setOperationAction(ISD::CTLZ, XLenVT, Expand);
298     setOperationAction(ISD::CTPOP, XLenVT, Expand);
299   }
300 
301   if (Subtarget.hasStdExtZbt()) {
302     setOperationAction(ISD::FSHL, XLenVT, Custom);
303     setOperationAction(ISD::FSHR, XLenVT, Custom);
304     setOperationAction(ISD::SELECT, XLenVT, Legal);
305 
306     if (Subtarget.is64Bit()) {
307       setOperationAction(ISD::FSHL, MVT::i32, Custom);
308       setOperationAction(ISD::FSHR, MVT::i32, Custom);
309     }
310   } else {
311     setOperationAction(ISD::SELECT, XLenVT, Custom);
312   }
313 
314   static const ISD::CondCode FPCCToExpand[] = {
315       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
316       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
317       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
318 
319   static const ISD::NodeType FPOpToExpand[] = {
320       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
321       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
322 
323   if (Subtarget.hasStdExtZfh())
324     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
325 
326   if (Subtarget.hasStdExtZfh()) {
327     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
328     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
329     setOperationAction(ISD::LRINT, MVT::f16, Legal);
330     setOperationAction(ISD::LLRINT, MVT::f16, Legal);
331     setOperationAction(ISD::LROUND, MVT::f16, Legal);
332     setOperationAction(ISD::LLROUND, MVT::f16, Legal);
333     for (auto CC : FPCCToExpand)
334       setCondCodeAction(CC, MVT::f16, Expand);
335     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
336     setOperationAction(ISD::SELECT, MVT::f16, Custom);
337     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
338     for (auto Op : FPOpToExpand)
339       setOperationAction(Op, MVT::f16, Expand);
340 
341     setOperationAction(ISD::FREM,       MVT::f16, Promote);
342     setOperationAction(ISD::FCEIL,      MVT::f16,  Promote);
343     setOperationAction(ISD::FFLOOR,     MVT::f16,  Promote);
344     setOperationAction(ISD::FNEARBYINT, MVT::f16,  Promote);
345     setOperationAction(ISD::FRINT,      MVT::f16,  Promote);
346     setOperationAction(ISD::FROUND,     MVT::f16,  Promote);
347     setOperationAction(ISD::FROUNDEVEN, MVT::f16,  Promote);
348     setOperationAction(ISD::FTRUNC,     MVT::f16,  Promote);
349   }
350 
351   if (Subtarget.hasStdExtF()) {
352     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
353     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
354     setOperationAction(ISD::LRINT, MVT::f32, Legal);
355     setOperationAction(ISD::LLRINT, MVT::f32, Legal);
356     setOperationAction(ISD::LROUND, MVT::f32, Legal);
357     setOperationAction(ISD::LLROUND, MVT::f32, Legal);
358     for (auto CC : FPCCToExpand)
359       setCondCodeAction(CC, MVT::f32, Expand);
360     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
361     setOperationAction(ISD::SELECT, MVT::f32, Custom);
362     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
363     for (auto Op : FPOpToExpand)
364       setOperationAction(Op, MVT::f32, Expand);
365     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
366     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
367   }
368 
369   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
370     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
371 
372   if (Subtarget.hasStdExtD()) {
373     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
374     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
375     setOperationAction(ISD::LRINT, MVT::f64, Legal);
376     setOperationAction(ISD::LLRINT, MVT::f64, Legal);
377     setOperationAction(ISD::LROUND, MVT::f64, Legal);
378     setOperationAction(ISD::LLROUND, MVT::f64, Legal);
379     for (auto CC : FPCCToExpand)
380       setCondCodeAction(CC, MVT::f64, Expand);
381     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
382     setOperationAction(ISD::SELECT, MVT::f64, Custom);
383     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
384     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
385     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
386     for (auto Op : FPOpToExpand)
387       setOperationAction(Op, MVT::f64, Expand);
388     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
389     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
390   }
391 
392   if (Subtarget.is64Bit()) {
393     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
394     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
395     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
396     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
397   }
398 
399   if (Subtarget.hasStdExtF()) {
400     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
401     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
402 
403     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
404     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
405   }
406 
407   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
408   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
409   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
410   setOperationAction(ISD::JumpTable, XLenVT, Custom);
411 
412   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
413 
414   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
415   // Unfortunately this can't be determined just from the ISA naming string.
416   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
417                      Subtarget.is64Bit() ? Legal : Custom);
418 
419   setOperationAction(ISD::TRAP, MVT::Other, Legal);
420   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
421   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
422   if (Subtarget.is64Bit())
423     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
424 
425   if (Subtarget.hasStdExtA()) {
426     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
427     setMinCmpXchgSizeInBits(32);
428   } else {
429     setMaxAtomicSizeInBitsSupported(0);
430   }
431 
432   setBooleanContents(ZeroOrOneBooleanContent);
433 
434   if (Subtarget.hasVInstructions()) {
435     setBooleanVectorContents(ZeroOrOneBooleanContent);
436 
437     setOperationAction(ISD::VSCALE, XLenVT, Custom);
438 
439     // RVV intrinsics may have illegal operands.
440     // We also need to custom legalize vmv.x.s.
441     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
442     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
443     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
444     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
445     if (Subtarget.is64Bit()) {
446       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
447     } else {
448       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
449       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
450     }
451 
452     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
453     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
454 
455     static const unsigned IntegerVPOps[] = {
456         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
457         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
458         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
459         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
460         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
461         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
462         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN};
463 
464     static const unsigned FloatingPointVPOps[] = {
465         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
466         ISD::VP_FDIV,        ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
467         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX};
468 
469     if (!Subtarget.is64Bit()) {
470       // We must custom-lower certain vXi64 operations on RV32 due to the vector
471       // element type being illegal.
472       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
473       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
474 
475       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
476       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
477       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
478       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
479       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
480       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
481       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
482       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
483 
484       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
485       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
486       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
487       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
488       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
489       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
490       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
491       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
492     }
493 
494     for (MVT VT : BoolVecVTs) {
495       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
496 
497       // Mask VTs are custom-expanded into a series of standard nodes
498       setOperationAction(ISD::TRUNCATE, VT, Custom);
499       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
500       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
501       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
502 
503       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
504       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
505 
506       setOperationAction(ISD::SELECT, VT, Custom);
507       setOperationAction(ISD::SELECT_CC, VT, Expand);
508       setOperationAction(ISD::VSELECT, VT, Expand);
509 
510       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
511       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
512       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
513 
514       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
515       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
516       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
517 
518       // RVV has native int->float & float->int conversions where the
519       // element type sizes are within one power-of-two of each other. Any
520       // wider distances between type sizes have to be lowered as sequences
521       // which progressively narrow the gap in stages.
522       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
523       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
524       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
525       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
526 
527       // Expand all extending loads to types larger than this, and truncating
528       // stores from types larger than this.
529       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
530         setTruncStoreAction(OtherVT, VT, Expand);
531         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
532         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
533         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
534       }
535     }
536 
537     for (MVT VT : IntVecVTs) {
538       if (VT.getVectorElementType() == MVT::i64 &&
539           !Subtarget.hasVInstructionsI64())
540         continue;
541 
542       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
543       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
544 
545       // Vectors implement MULHS/MULHU.
546       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
547       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
548 
549       setOperationAction(ISD::SMIN, VT, Legal);
550       setOperationAction(ISD::SMAX, VT, Legal);
551       setOperationAction(ISD::UMIN, VT, Legal);
552       setOperationAction(ISD::UMAX, VT, Legal);
553 
554       setOperationAction(ISD::ROTL, VT, Expand);
555       setOperationAction(ISD::ROTR, VT, Expand);
556 
557       setOperationAction(ISD::CTTZ, VT, Expand);
558       setOperationAction(ISD::CTLZ, VT, Expand);
559       setOperationAction(ISD::CTPOP, VT, Expand);
560 
561       setOperationAction(ISD::BSWAP, VT, Expand);
562 
563       // Custom-lower extensions and truncations from/to mask types.
564       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
565       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
566       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
567 
568       // RVV has native int->float & float->int conversions where the
569       // element type sizes are within one power-of-two of each other. Any
570       // wider distances between type sizes have to be lowered as sequences
571       // which progressively narrow the gap in stages.
572       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
573       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
574       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
575       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
576 
577       setOperationAction(ISD::SADDSAT, VT, Legal);
578       setOperationAction(ISD::UADDSAT, VT, Legal);
579       setOperationAction(ISD::SSUBSAT, VT, Legal);
580       setOperationAction(ISD::USUBSAT, VT, Legal);
581 
582       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
583       // nodes which truncate by one power of two at a time.
584       setOperationAction(ISD::TRUNCATE, VT, Custom);
585 
586       // Custom-lower insert/extract operations to simplify patterns.
587       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
588       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
589 
590       // Custom-lower reduction operations to set up the corresponding custom
591       // nodes' operands.
592       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
593       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
594       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
595       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
596       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
597       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
598       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
599       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
600 
601       for (unsigned VPOpc : IntegerVPOps)
602         setOperationAction(VPOpc, VT, Custom);
603 
604       setOperationAction(ISD::LOAD, VT, Custom);
605       setOperationAction(ISD::STORE, VT, Custom);
606 
607       setOperationAction(ISD::MLOAD, VT, Custom);
608       setOperationAction(ISD::MSTORE, VT, Custom);
609       setOperationAction(ISD::MGATHER, VT, Custom);
610       setOperationAction(ISD::MSCATTER, VT, Custom);
611 
612       setOperationAction(ISD::VP_LOAD, VT, Custom);
613       setOperationAction(ISD::VP_STORE, VT, Custom);
614       setOperationAction(ISD::VP_GATHER, VT, Custom);
615       setOperationAction(ISD::VP_SCATTER, VT, Custom);
616 
617       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
618       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
619       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
620 
621       setOperationAction(ISD::SELECT, VT, Custom);
622       setOperationAction(ISD::SELECT_CC, VT, Expand);
623 
624       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
625       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
626 
627       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
628         setTruncStoreAction(VT, OtherVT, Expand);
629         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
630         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
631         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
632       }
633 
634       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
635       // type that can represent the value exactly.
636       if (VT.getVectorElementType() != MVT::i64) {
637         MVT FloatEltVT =
638             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
639         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
640         if (isTypeLegal(FloatVT)) {
641           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
642           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
643         }
644       }
645     }
646 
647     // Expand various CCs to best match the RVV ISA, which natively supports UNE
648     // but no other unordered comparisons, and supports all ordered comparisons
649     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
650     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
651     // and we pattern-match those back to the "original", swapping operands once
652     // more. This way we catch both operations and both "vf" and "fv" forms with
653     // fewer patterns.
654     static const ISD::CondCode VFPCCToExpand[] = {
655         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
656         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
657         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
658     };
659 
660     // Sets common operation actions on RVV floating-point vector types.
661     const auto SetCommonVFPActions = [&](MVT VT) {
662       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
663       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
664       // sizes are within one power-of-two of each other. Therefore conversions
665       // between vXf16 and vXf64 must be lowered as sequences which convert via
666       // vXf32.
667       setOperationAction(ISD::FP_ROUND, VT, Custom);
668       setOperationAction(ISD::FP_EXTEND, VT, Custom);
669       // Custom-lower insert/extract operations to simplify patterns.
670       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
671       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
672       // Expand various condition codes (explained above).
673       for (auto CC : VFPCCToExpand)
674         setCondCodeAction(CC, VT, Expand);
675 
676       setOperationAction(ISD::FMINNUM, VT, Legal);
677       setOperationAction(ISD::FMAXNUM, VT, Legal);
678 
679       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
680       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
681       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
682       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
683 
684       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
685 
686       setOperationAction(ISD::LOAD, VT, Custom);
687       setOperationAction(ISD::STORE, VT, Custom);
688 
689       setOperationAction(ISD::MLOAD, VT, Custom);
690       setOperationAction(ISD::MSTORE, VT, Custom);
691       setOperationAction(ISD::MGATHER, VT, Custom);
692       setOperationAction(ISD::MSCATTER, VT, Custom);
693 
694       setOperationAction(ISD::VP_LOAD, VT, Custom);
695       setOperationAction(ISD::VP_STORE, VT, Custom);
696       setOperationAction(ISD::VP_GATHER, VT, Custom);
697       setOperationAction(ISD::VP_SCATTER, VT, Custom);
698 
699       setOperationAction(ISD::SELECT, VT, Custom);
700       setOperationAction(ISD::SELECT_CC, VT, Expand);
701 
702       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
703       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
704       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
705 
706       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
707 
708       for (unsigned VPOpc : FloatingPointVPOps)
709         setOperationAction(VPOpc, VT, Custom);
710     };
711 
712     // Sets common extload/truncstore actions on RVV floating-point vector
713     // types.
714     const auto SetCommonVFPExtLoadTruncStoreActions =
715         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
716           for (auto SmallVT : SmallerVTs) {
717             setTruncStoreAction(VT, SmallVT, Expand);
718             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
719           }
720         };
721 
722     if (Subtarget.hasVInstructionsF16())
723       for (MVT VT : F16VecVTs)
724         SetCommonVFPActions(VT);
725 
726     for (MVT VT : F32VecVTs) {
727       if (Subtarget.hasVInstructionsF32())
728         SetCommonVFPActions(VT);
729       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
730     }
731 
732     for (MVT VT : F64VecVTs) {
733       if (Subtarget.hasVInstructionsF64())
734         SetCommonVFPActions(VT);
735       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
736       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
737     }
738 
739     if (Subtarget.useRVVForFixedLengthVectors()) {
740       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
741         if (!useRVVForFixedLengthVectorVT(VT))
742           continue;
743 
744         // By default everything must be expanded.
745         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
746           setOperationAction(Op, VT, Expand);
747         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
748           setTruncStoreAction(VT, OtherVT, Expand);
749           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
750           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
751           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
752         }
753 
754         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
755         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
756         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
757 
758         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
759         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
760 
761         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
762         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
763 
764         setOperationAction(ISD::LOAD, VT, Custom);
765         setOperationAction(ISD::STORE, VT, Custom);
766 
767         setOperationAction(ISD::SETCC, VT, Custom);
768 
769         setOperationAction(ISD::SELECT, VT, Custom);
770 
771         setOperationAction(ISD::TRUNCATE, VT, Custom);
772 
773         setOperationAction(ISD::BITCAST, VT, Custom);
774 
775         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
776         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
777         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
778 
779         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
780         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
781         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
782 
783         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
784         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
785         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
786         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
787 
788         // Operations below are different for between masks and other vectors.
789         if (VT.getVectorElementType() == MVT::i1) {
790           setOperationAction(ISD::AND, VT, Custom);
791           setOperationAction(ISD::OR, VT, Custom);
792           setOperationAction(ISD::XOR, VT, Custom);
793           continue;
794         }
795 
796         // Use SPLAT_VECTOR to prevent type legalization from destroying the
797         // splats when type legalizing i64 scalar on RV32.
798         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
799         // improvements first.
800         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
801           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
802           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
803         }
804 
805         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
806         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
807 
808         setOperationAction(ISD::MLOAD, VT, Custom);
809         setOperationAction(ISD::MSTORE, VT, Custom);
810         setOperationAction(ISD::MGATHER, VT, Custom);
811         setOperationAction(ISD::MSCATTER, VT, Custom);
812 
813         setOperationAction(ISD::VP_LOAD, VT, Custom);
814         setOperationAction(ISD::VP_STORE, VT, Custom);
815         setOperationAction(ISD::VP_GATHER, VT, Custom);
816         setOperationAction(ISD::VP_SCATTER, VT, Custom);
817 
818         setOperationAction(ISD::ADD, VT, Custom);
819         setOperationAction(ISD::MUL, VT, Custom);
820         setOperationAction(ISD::SUB, VT, Custom);
821         setOperationAction(ISD::AND, VT, Custom);
822         setOperationAction(ISD::OR, VT, Custom);
823         setOperationAction(ISD::XOR, VT, Custom);
824         setOperationAction(ISD::SDIV, VT, Custom);
825         setOperationAction(ISD::SREM, VT, Custom);
826         setOperationAction(ISD::UDIV, VT, Custom);
827         setOperationAction(ISD::UREM, VT, Custom);
828         setOperationAction(ISD::SHL, VT, Custom);
829         setOperationAction(ISD::SRA, VT, Custom);
830         setOperationAction(ISD::SRL, VT, Custom);
831 
832         setOperationAction(ISD::SMIN, VT, Custom);
833         setOperationAction(ISD::SMAX, VT, Custom);
834         setOperationAction(ISD::UMIN, VT, Custom);
835         setOperationAction(ISD::UMAX, VT, Custom);
836         setOperationAction(ISD::ABS,  VT, Custom);
837 
838         setOperationAction(ISD::MULHS, VT, Custom);
839         setOperationAction(ISD::MULHU, VT, Custom);
840 
841         setOperationAction(ISD::SADDSAT, VT, Custom);
842         setOperationAction(ISD::UADDSAT, VT, Custom);
843         setOperationAction(ISD::SSUBSAT, VT, Custom);
844         setOperationAction(ISD::USUBSAT, VT, Custom);
845 
846         setOperationAction(ISD::VSELECT, VT, Custom);
847         setOperationAction(ISD::SELECT_CC, VT, Expand);
848 
849         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
850         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
851         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
852 
853         // Custom-lower reduction operations to set up the corresponding custom
854         // nodes' operands.
855         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
856         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
857         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
858         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
859         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
860 
861         for (unsigned VPOpc : IntegerVPOps)
862           setOperationAction(VPOpc, VT, Custom);
863 
864         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
865         // type that can represent the value exactly.
866         if (VT.getVectorElementType() != MVT::i64) {
867           MVT FloatEltVT =
868               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
869           EVT FloatVT =
870               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
871           if (isTypeLegal(FloatVT)) {
872             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
873             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
874           }
875         }
876       }
877 
878       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
879         if (!useRVVForFixedLengthVectorVT(VT))
880           continue;
881 
882         // By default everything must be expanded.
883         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
884           setOperationAction(Op, VT, Expand);
885         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
886           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
887           setTruncStoreAction(VT, OtherVT, Expand);
888         }
889 
890         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
891         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
892         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
893 
894         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
895         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
896         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
897         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
898         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
899 
900         setOperationAction(ISD::LOAD, VT, Custom);
901         setOperationAction(ISD::STORE, VT, Custom);
902         setOperationAction(ISD::MLOAD, VT, Custom);
903         setOperationAction(ISD::MSTORE, VT, Custom);
904         setOperationAction(ISD::MGATHER, VT, Custom);
905         setOperationAction(ISD::MSCATTER, VT, Custom);
906 
907         setOperationAction(ISD::VP_LOAD, VT, Custom);
908         setOperationAction(ISD::VP_STORE, VT, Custom);
909         setOperationAction(ISD::VP_GATHER, VT, Custom);
910         setOperationAction(ISD::VP_SCATTER, VT, Custom);
911 
912         setOperationAction(ISD::FADD, VT, Custom);
913         setOperationAction(ISD::FSUB, VT, Custom);
914         setOperationAction(ISD::FMUL, VT, Custom);
915         setOperationAction(ISD::FDIV, VT, Custom);
916         setOperationAction(ISD::FNEG, VT, Custom);
917         setOperationAction(ISD::FABS, VT, Custom);
918         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
919         setOperationAction(ISD::FSQRT, VT, Custom);
920         setOperationAction(ISD::FMA, VT, Custom);
921         setOperationAction(ISD::FMINNUM, VT, Custom);
922         setOperationAction(ISD::FMAXNUM, VT, Custom);
923 
924         setOperationAction(ISD::FP_ROUND, VT, Custom);
925         setOperationAction(ISD::FP_EXTEND, VT, Custom);
926 
927         for (auto CC : VFPCCToExpand)
928           setCondCodeAction(CC, VT, Expand);
929 
930         setOperationAction(ISD::VSELECT, VT, Custom);
931         setOperationAction(ISD::SELECT, VT, Custom);
932         setOperationAction(ISD::SELECT_CC, VT, Expand);
933 
934         setOperationAction(ISD::BITCAST, VT, Custom);
935 
936         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
937         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
938         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
939         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
940 
941         for (unsigned VPOpc : FloatingPointVPOps)
942           setOperationAction(VPOpc, VT, Custom);
943       }
944 
945       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
946       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
947       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
948       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
949       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
950       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
951       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
952       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
953     }
954   }
955 
956   // Function alignments.
957   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
958   setMinFunctionAlignment(FunctionAlignment);
959   setPrefFunctionAlignment(FunctionAlignment);
960 
961   setMinimumJumpTableEntries(5);
962 
963   // Jumps are expensive, compared to logic
964   setJumpIsExpensive();
965 
966   setTargetDAGCombine(ISD::ADD);
967   setTargetDAGCombine(ISD::SUB);
968   setTargetDAGCombine(ISD::AND);
969   setTargetDAGCombine(ISD::OR);
970   setTargetDAGCombine(ISD::XOR);
971   setTargetDAGCombine(ISD::ANY_EXTEND);
972   setTargetDAGCombine(ISD::ZERO_EXTEND);
973   if (Subtarget.hasVInstructions()) {
974     setTargetDAGCombine(ISD::FCOPYSIGN);
975     setTargetDAGCombine(ISD::MGATHER);
976     setTargetDAGCombine(ISD::MSCATTER);
977     setTargetDAGCombine(ISD::VP_GATHER);
978     setTargetDAGCombine(ISD::VP_SCATTER);
979     setTargetDAGCombine(ISD::SRA);
980     setTargetDAGCombine(ISD::SRL);
981     setTargetDAGCombine(ISD::SHL);
982     setTargetDAGCombine(ISD::STORE);
983   }
984 }
985 
986 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
987                                             LLVMContext &Context,
988                                             EVT VT) const {
989   if (!VT.isVector())
990     return getPointerTy(DL);
991   if (Subtarget.hasVInstructions() &&
992       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
993     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
994   return VT.changeVectorElementTypeToInteger();
995 }
996 
997 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
998   return Subtarget.getXLenVT();
999 }
1000 
1001 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1002                                              const CallInst &I,
1003                                              MachineFunction &MF,
1004                                              unsigned Intrinsic) const {
1005   auto &DL = I.getModule()->getDataLayout();
1006   switch (Intrinsic) {
1007   default:
1008     return false;
1009   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1010   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1011   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1012   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1013   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1014   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1015   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1016   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1017   case Intrinsic::riscv_masked_cmpxchg_i32: {
1018     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
1019     Info.opc = ISD::INTRINSIC_W_CHAIN;
1020     Info.memVT = MVT::getVT(PtrTy->getElementType());
1021     Info.ptrVal = I.getArgOperand(0);
1022     Info.offset = 0;
1023     Info.align = Align(4);
1024     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1025                  MachineMemOperand::MOVolatile;
1026     return true;
1027   }
1028   case Intrinsic::riscv_masked_strided_load:
1029     Info.opc = ISD::INTRINSIC_W_CHAIN;
1030     Info.ptrVal = I.getArgOperand(1);
1031     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1032     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1033     Info.size = MemoryLocation::UnknownSize;
1034     Info.flags |= MachineMemOperand::MOLoad;
1035     return true;
1036   case Intrinsic::riscv_masked_strided_store:
1037     Info.opc = ISD::INTRINSIC_VOID;
1038     Info.ptrVal = I.getArgOperand(1);
1039     Info.memVT =
1040         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1041     Info.align = Align(
1042         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1043         8);
1044     Info.size = MemoryLocation::UnknownSize;
1045     Info.flags |= MachineMemOperand::MOStore;
1046     return true;
1047   }
1048 }
1049 
1050 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1051                                                 const AddrMode &AM, Type *Ty,
1052                                                 unsigned AS,
1053                                                 Instruction *I) const {
1054   // No global is ever allowed as a base.
1055   if (AM.BaseGV)
1056     return false;
1057 
1058   // Require a 12-bit signed offset.
1059   if (!isInt<12>(AM.BaseOffs))
1060     return false;
1061 
1062   switch (AM.Scale) {
1063   case 0: // "r+i" or just "i", depending on HasBaseReg.
1064     break;
1065   case 1:
1066     if (!AM.HasBaseReg) // allow "r+i".
1067       break;
1068     return false; // disallow "r+r" or "r+r+i".
1069   default:
1070     return false;
1071   }
1072 
1073   return true;
1074 }
1075 
1076 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1077   return isInt<12>(Imm);
1078 }
1079 
1080 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1081   return isInt<12>(Imm);
1082 }
1083 
1084 // On RV32, 64-bit integers are split into their high and low parts and held
1085 // in two different registers, so the trunc is free since the low register can
1086 // just be used.
1087 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1088   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1089     return false;
1090   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1091   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1092   return (SrcBits == 64 && DestBits == 32);
1093 }
1094 
1095 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1096   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1097       !SrcVT.isInteger() || !DstVT.isInteger())
1098     return false;
1099   unsigned SrcBits = SrcVT.getSizeInBits();
1100   unsigned DestBits = DstVT.getSizeInBits();
1101   return (SrcBits == 64 && DestBits == 32);
1102 }
1103 
1104 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1105   // Zexts are free if they can be combined with a load.
1106   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1107     EVT MemVT = LD->getMemoryVT();
1108     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
1109          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
1110         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1111          LD->getExtensionType() == ISD::ZEXTLOAD))
1112       return true;
1113   }
1114 
1115   return TargetLowering::isZExtFree(Val, VT2);
1116 }
1117 
1118 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1119   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1120 }
1121 
1122 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1123   return Subtarget.hasStdExtZbb();
1124 }
1125 
1126 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1127   return Subtarget.hasStdExtZbb();
1128 }
1129 
1130 bool RISCVTargetLowering::hasAndNot(SDValue Y) const {
1131   EVT VT = Y.getValueType();
1132 
1133   // FIXME: Support vectors once we have tests.
1134   if (VT.isVector())
1135     return false;
1136 
1137   return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y);
1138 }
1139 
1140 /// Check if sinking \p I's operands to I's basic block is profitable, because
1141 /// the operands can be folded into a target instruction, e.g.
1142 /// splats of scalars can fold into vector instructions.
1143 bool RISCVTargetLowering::shouldSinkOperands(
1144     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1145   using namespace llvm::PatternMatch;
1146 
1147   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1148     return false;
1149 
1150   auto IsSinker = [&](Instruction *I, int Operand) {
1151     switch (I->getOpcode()) {
1152     case Instruction::Add:
1153     case Instruction::Sub:
1154     case Instruction::Mul:
1155     case Instruction::And:
1156     case Instruction::Or:
1157     case Instruction::Xor:
1158     case Instruction::FAdd:
1159     case Instruction::FSub:
1160     case Instruction::FMul:
1161     case Instruction::FDiv:
1162     case Instruction::ICmp:
1163     case Instruction::FCmp:
1164       return true;
1165     case Instruction::Shl:
1166     case Instruction::LShr:
1167     case Instruction::AShr:
1168       return Operand == 1;
1169     case Instruction::Call:
1170       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1171         switch (II->getIntrinsicID()) {
1172         case Intrinsic::fma:
1173           return Operand == 0 || Operand == 1;
1174         default:
1175           return false;
1176         }
1177       }
1178       return false;
1179     default:
1180       return false;
1181     }
1182   };
1183 
1184   for (auto OpIdx : enumerate(I->operands())) {
1185     if (!IsSinker(I, OpIdx.index()))
1186       continue;
1187 
1188     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1189     // Make sure we are not already sinking this operand
1190     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1191       continue;
1192 
1193     // We are looking for a splat that can be sunk.
1194     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1195                              m_Undef(), m_ZeroMask())))
1196       continue;
1197 
1198     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1199     // and vector registers
1200     for (Use &U : Op->uses()) {
1201       Instruction *Insn = cast<Instruction>(U.getUser());
1202       if (!IsSinker(Insn, U.getOperandNo()))
1203         return false;
1204     }
1205 
1206     Ops.push_back(&Op->getOperandUse(0));
1207     Ops.push_back(&OpIdx.value());
1208   }
1209   return true;
1210 }
1211 
1212 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1213                                        bool ForCodeSize) const {
1214   if (VT == MVT::f16 && !Subtarget.hasStdExtZfhmin())
1215     return false;
1216   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1217     return false;
1218   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1219     return false;
1220   if (Imm.isNegZero())
1221     return false;
1222   return Imm.isZero();
1223 }
1224 
1225 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1226   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1227          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1228          (VT == MVT::f64 && Subtarget.hasStdExtD());
1229 }
1230 
1231 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1232                                                       CallingConv::ID CC,
1233                                                       EVT VT) const {
1234   // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled.
1235   // We might still end up using a GPR but that will be decided based on ABI.
1236   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin())
1237     return MVT::f32;
1238 
1239   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1240 }
1241 
1242 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1243                                                            CallingConv::ID CC,
1244                                                            EVT VT) const {
1245   // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled.
1246   // We might still end up using a GPR but that will be decided based on ABI.
1247   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin())
1248     return 1;
1249 
1250   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1251 }
1252 
1253 // Changes the condition code and swaps operands if necessary, so the SetCC
1254 // operation matches one of the comparisons supported directly by branches
1255 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1256 // with 1/-1.
1257 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1258                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1259   // Convert X > -1 to X >= 0.
1260   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1261     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1262     CC = ISD::SETGE;
1263     return;
1264   }
1265   // Convert X < 1 to 0 >= X.
1266   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1267     RHS = LHS;
1268     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1269     CC = ISD::SETGE;
1270     return;
1271   }
1272 
1273   switch (CC) {
1274   default:
1275     break;
1276   case ISD::SETGT:
1277   case ISD::SETLE:
1278   case ISD::SETUGT:
1279   case ISD::SETULE:
1280     CC = ISD::getSetCCSwappedOperands(CC);
1281     std::swap(LHS, RHS);
1282     break;
1283   }
1284 }
1285 
1286 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1287   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1288   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1289   if (VT.getVectorElementType() == MVT::i1)
1290     KnownSize *= 8;
1291 
1292   switch (KnownSize) {
1293   default:
1294     llvm_unreachable("Invalid LMUL.");
1295   case 8:
1296     return RISCVII::VLMUL::LMUL_F8;
1297   case 16:
1298     return RISCVII::VLMUL::LMUL_F4;
1299   case 32:
1300     return RISCVII::VLMUL::LMUL_F2;
1301   case 64:
1302     return RISCVII::VLMUL::LMUL_1;
1303   case 128:
1304     return RISCVII::VLMUL::LMUL_2;
1305   case 256:
1306     return RISCVII::VLMUL::LMUL_4;
1307   case 512:
1308     return RISCVII::VLMUL::LMUL_8;
1309   }
1310 }
1311 
1312 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1313   switch (LMul) {
1314   default:
1315     llvm_unreachable("Invalid LMUL.");
1316   case RISCVII::VLMUL::LMUL_F8:
1317   case RISCVII::VLMUL::LMUL_F4:
1318   case RISCVII::VLMUL::LMUL_F2:
1319   case RISCVII::VLMUL::LMUL_1:
1320     return RISCV::VRRegClassID;
1321   case RISCVII::VLMUL::LMUL_2:
1322     return RISCV::VRM2RegClassID;
1323   case RISCVII::VLMUL::LMUL_4:
1324     return RISCV::VRM4RegClassID;
1325   case RISCVII::VLMUL::LMUL_8:
1326     return RISCV::VRM8RegClassID;
1327   }
1328 }
1329 
1330 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1331   RISCVII::VLMUL LMUL = getLMUL(VT);
1332   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1333       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1334       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1335       LMUL == RISCVII::VLMUL::LMUL_1) {
1336     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1337                   "Unexpected subreg numbering");
1338     return RISCV::sub_vrm1_0 + Index;
1339   }
1340   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1341     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1342                   "Unexpected subreg numbering");
1343     return RISCV::sub_vrm2_0 + Index;
1344   }
1345   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1346     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1347                   "Unexpected subreg numbering");
1348     return RISCV::sub_vrm4_0 + Index;
1349   }
1350   llvm_unreachable("Invalid vector type.");
1351 }
1352 
1353 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1354   if (VT.getVectorElementType() == MVT::i1)
1355     return RISCV::VRRegClassID;
1356   return getRegClassIDForLMUL(getLMUL(VT));
1357 }
1358 
1359 // Attempt to decompose a subvector insert/extract between VecVT and
1360 // SubVecVT via subregister indices. Returns the subregister index that
1361 // can perform the subvector insert/extract with the given element index, as
1362 // well as the index corresponding to any leftover subvectors that must be
1363 // further inserted/extracted within the register class for SubVecVT.
1364 std::pair<unsigned, unsigned>
1365 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1366     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1367     const RISCVRegisterInfo *TRI) {
1368   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1369                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1370                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1371                 "Register classes not ordered");
1372   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1373   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1374   // Try to compose a subregister index that takes us from the incoming
1375   // LMUL>1 register class down to the outgoing one. At each step we half
1376   // the LMUL:
1377   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1378   // Note that this is not guaranteed to find a subregister index, such as
1379   // when we are extracting from one VR type to another.
1380   unsigned SubRegIdx = RISCV::NoSubRegister;
1381   for (const unsigned RCID :
1382        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1383     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1384       VecVT = VecVT.getHalfNumVectorElementsVT();
1385       bool IsHi =
1386           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1387       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1388                                             getSubregIndexByMVT(VecVT, IsHi));
1389       if (IsHi)
1390         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1391     }
1392   return {SubRegIdx, InsertExtractIdx};
1393 }
1394 
1395 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1396 // stores for those types.
1397 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1398   return !Subtarget.useRVVForFixedLengthVectors() ||
1399          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1400 }
1401 
1402 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1403   if (ScalarTy->isPointerTy())
1404     return true;
1405 
1406   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1407       ScalarTy->isIntegerTy(32))
1408     return true;
1409 
1410   if (ScalarTy->isIntegerTy(64))
1411     return Subtarget.hasVInstructionsI64();
1412 
1413   if (ScalarTy->isHalfTy())
1414     return Subtarget.hasVInstructionsF16();
1415   if (ScalarTy->isFloatTy())
1416     return Subtarget.hasVInstructionsF32();
1417   if (ScalarTy->isDoubleTy())
1418     return Subtarget.hasVInstructionsF64();
1419 
1420   return false;
1421 }
1422 
1423 static bool useRVVForFixedLengthVectorVT(MVT VT,
1424                                          const RISCVSubtarget &Subtarget) {
1425   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1426   if (!Subtarget.useRVVForFixedLengthVectors())
1427     return false;
1428 
1429   // We only support a set of vector types with a consistent maximum fixed size
1430   // across all supported vector element types to avoid legalization issues.
1431   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1432   // fixed-length vector type we support is 1024 bytes.
1433   if (VT.getFixedSizeInBits() > 1024 * 8)
1434     return false;
1435 
1436   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1437 
1438   MVT EltVT = VT.getVectorElementType();
1439 
1440   // Don't use RVV for vectors we cannot scalarize if required.
1441   switch (EltVT.SimpleTy) {
1442   // i1 is supported but has different rules.
1443   default:
1444     return false;
1445   case MVT::i1:
1446     // Masks can only use a single register.
1447     if (VT.getVectorNumElements() > MinVLen)
1448       return false;
1449     MinVLen /= 8;
1450     break;
1451   case MVT::i8:
1452   case MVT::i16:
1453   case MVT::i32:
1454     break;
1455   case MVT::i64:
1456     if (!Subtarget.hasVInstructionsI64())
1457       return false;
1458     break;
1459   case MVT::f16:
1460     if (!Subtarget.hasVInstructionsF16())
1461       return false;
1462     break;
1463   case MVT::f32:
1464     if (!Subtarget.hasVInstructionsF32())
1465       return false;
1466     break;
1467   case MVT::f64:
1468     if (!Subtarget.hasVInstructionsF64())
1469       return false;
1470     break;
1471   }
1472 
1473   // Reject elements larger than ELEN.
1474   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1475     return false;
1476 
1477   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1478   // Don't use RVV for types that don't fit.
1479   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1480     return false;
1481 
1482   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1483   // the base fixed length RVV support in place.
1484   if (!VT.isPow2VectorType())
1485     return false;
1486 
1487   return true;
1488 }
1489 
1490 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1491   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1492 }
1493 
1494 // Return the largest legal scalable vector type that matches VT's element type.
1495 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1496                                             const RISCVSubtarget &Subtarget) {
1497   // This may be called before legal types are setup.
1498   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1499           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1500          "Expected legal fixed length vector!");
1501 
1502   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1503   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1504 
1505   MVT EltVT = VT.getVectorElementType();
1506   switch (EltVT.SimpleTy) {
1507   default:
1508     llvm_unreachable("unexpected element type for RVV container");
1509   case MVT::i1:
1510   case MVT::i8:
1511   case MVT::i16:
1512   case MVT::i32:
1513   case MVT::i64:
1514   case MVT::f16:
1515   case MVT::f32:
1516   case MVT::f64: {
1517     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1518     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1519     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1520     unsigned NumElts =
1521         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1522     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1523     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1524     return MVT::getScalableVectorVT(EltVT, NumElts);
1525   }
1526   }
1527 }
1528 
1529 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1530                                             const RISCVSubtarget &Subtarget) {
1531   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1532                                           Subtarget);
1533 }
1534 
1535 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1536   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1537 }
1538 
1539 // Grow V to consume an entire RVV register.
1540 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1541                                        const RISCVSubtarget &Subtarget) {
1542   assert(VT.isScalableVector() &&
1543          "Expected to convert into a scalable vector!");
1544   assert(V.getValueType().isFixedLengthVector() &&
1545          "Expected a fixed length vector operand!");
1546   SDLoc DL(V);
1547   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1548   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1549 }
1550 
1551 // Shrink V so it's just big enough to maintain a VT's worth of data.
1552 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1553                                          const RISCVSubtarget &Subtarget) {
1554   assert(VT.isFixedLengthVector() &&
1555          "Expected to convert into a fixed length vector!");
1556   assert(V.getValueType().isScalableVector() &&
1557          "Expected a scalable vector operand!");
1558   SDLoc DL(V);
1559   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1560   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1561 }
1562 
1563 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1564 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1565 // the vector type that it is contained in.
1566 static std::pair<SDValue, SDValue>
1567 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1568                 const RISCVSubtarget &Subtarget) {
1569   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1570   MVT XLenVT = Subtarget.getXLenVT();
1571   SDValue VL = VecVT.isFixedLengthVector()
1572                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1573                    : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT);
1574   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1575   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1576   return {Mask, VL};
1577 }
1578 
1579 // As above but assuming the given type is a scalable vector type.
1580 static std::pair<SDValue, SDValue>
1581 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1582                         const RISCVSubtarget &Subtarget) {
1583   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1584   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1585 }
1586 
1587 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1588 // of either is (currently) supported. This can get us into an infinite loop
1589 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1590 // as a ..., etc.
1591 // Until either (or both) of these can reliably lower any node, reporting that
1592 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1593 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1594 // which is not desirable.
1595 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1596     EVT VT, unsigned DefinedValues) const {
1597   return false;
1598 }
1599 
1600 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1601   // Only splats are currently supported.
1602   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1603     return true;
1604 
1605   return false;
1606 }
1607 
1608 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) {
1609   // RISCV FP-to-int conversions saturate to the destination register size, but
1610   // don't produce 0 for nan. We can use a conversion instruction and fix the
1611   // nan case with a compare and a select.
1612   SDValue Src = Op.getOperand(0);
1613 
1614   EVT DstVT = Op.getValueType();
1615   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1616 
1617   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1618   unsigned Opc;
1619   if (SatVT == DstVT)
1620     Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ;
1621   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1622     Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
1623   else
1624     return SDValue();
1625   // FIXME: Support other SatVTs by clamping before or after the conversion.
1626 
1627   SDLoc DL(Op);
1628   SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src);
1629 
1630   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1631   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1632 }
1633 
1634 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1635                                  const RISCVSubtarget &Subtarget) {
1636   MVT VT = Op.getSimpleValueType();
1637   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1638 
1639   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1640 
1641   SDLoc DL(Op);
1642   SDValue Mask, VL;
1643   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1644 
1645   unsigned Opc =
1646       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1647   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1648   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1649 }
1650 
1651 struct VIDSequence {
1652   int64_t StepNumerator;
1653   unsigned StepDenominator;
1654   int64_t Addend;
1655 };
1656 
1657 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1658 // to the (non-zero) step S and start value X. This can be then lowered as the
1659 // RVV sequence (VID * S) + X, for example.
1660 // The step S is represented as an integer numerator divided by a positive
1661 // denominator. Note that the implementation currently only identifies
1662 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1663 // cannot detect 2/3, for example.
1664 // Note that this method will also match potentially unappealing index
1665 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1666 // determine whether this is worth generating code for.
1667 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1668   unsigned NumElts = Op.getNumOperands();
1669   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1670   if (!Op.getValueType().isInteger())
1671     return None;
1672 
1673   Optional<unsigned> SeqStepDenom;
1674   Optional<int64_t> SeqStepNum, SeqAddend;
1675   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1676   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1677   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1678     // Assume undef elements match the sequence; we just have to be careful
1679     // when interpolating across them.
1680     if (Op.getOperand(Idx).isUndef())
1681       continue;
1682     // The BUILD_VECTOR must be all constants.
1683     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1684       return None;
1685 
1686     uint64_t Val = Op.getConstantOperandVal(Idx) &
1687                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1688 
1689     if (PrevElt) {
1690       // Calculate the step since the last non-undef element, and ensure
1691       // it's consistent across the entire sequence.
1692       unsigned IdxDiff = Idx - PrevElt->second;
1693       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1694 
1695       // A zero-value value difference means that we're somewhere in the middle
1696       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1697       // step change before evaluating the sequence.
1698       if (ValDiff != 0) {
1699         int64_t Remainder = ValDiff % IdxDiff;
1700         // Normalize the step if it's greater than 1.
1701         if (Remainder != ValDiff) {
1702           // The difference must cleanly divide the element span.
1703           if (Remainder != 0)
1704             return None;
1705           ValDiff /= IdxDiff;
1706           IdxDiff = 1;
1707         }
1708 
1709         if (!SeqStepNum)
1710           SeqStepNum = ValDiff;
1711         else if (ValDiff != SeqStepNum)
1712           return None;
1713 
1714         if (!SeqStepDenom)
1715           SeqStepDenom = IdxDiff;
1716         else if (IdxDiff != *SeqStepDenom)
1717           return None;
1718       }
1719     }
1720 
1721     // Record and/or check any addend.
1722     if (SeqStepNum && SeqStepDenom) {
1723       uint64_t ExpectedVal =
1724           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1725       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1726       if (!SeqAddend)
1727         SeqAddend = Addend;
1728       else if (SeqAddend != Addend)
1729         return None;
1730     }
1731 
1732     // Record this non-undef element for later.
1733     if (!PrevElt || PrevElt->first != Val)
1734       PrevElt = std::make_pair(Val, Idx);
1735   }
1736   // We need to have logged both a step and an addend for this to count as
1737   // a legal index sequence.
1738   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1739     return None;
1740 
1741   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1742 }
1743 
1744 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1745                                  const RISCVSubtarget &Subtarget) {
1746   MVT VT = Op.getSimpleValueType();
1747   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1748 
1749   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1750 
1751   SDLoc DL(Op);
1752   SDValue Mask, VL;
1753   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1754 
1755   MVT XLenVT = Subtarget.getXLenVT();
1756   unsigned NumElts = Op.getNumOperands();
1757 
1758   if (VT.getVectorElementType() == MVT::i1) {
1759     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1760       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1761       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1762     }
1763 
1764     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1765       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1766       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1767     }
1768 
1769     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1770     // scalar integer chunks whose bit-width depends on the number of mask
1771     // bits and XLEN.
1772     // First, determine the most appropriate scalar integer type to use. This
1773     // is at most XLenVT, but may be shrunk to a smaller vector element type
1774     // according to the size of the final vector - use i8 chunks rather than
1775     // XLenVT if we're producing a v8i1. This results in more consistent
1776     // codegen across RV32 and RV64.
1777     unsigned NumViaIntegerBits =
1778         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1779     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1780       // If we have to use more than one INSERT_VECTOR_ELT then this
1781       // optimization is likely to increase code size; avoid peforming it in
1782       // such a case. We can use a load from a constant pool in this case.
1783       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1784         return SDValue();
1785       // Now we can create our integer vector type. Note that it may be larger
1786       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1787       MVT IntegerViaVecVT =
1788           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1789                            divideCeil(NumElts, NumViaIntegerBits));
1790 
1791       uint64_t Bits = 0;
1792       unsigned BitPos = 0, IntegerEltIdx = 0;
1793       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1794 
1795       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1796         // Once we accumulate enough bits to fill our scalar type, insert into
1797         // our vector and clear our accumulated data.
1798         if (I != 0 && I % NumViaIntegerBits == 0) {
1799           if (NumViaIntegerBits <= 32)
1800             Bits = SignExtend64(Bits, 32);
1801           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1802           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1803                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1804           Bits = 0;
1805           BitPos = 0;
1806           IntegerEltIdx++;
1807         }
1808         SDValue V = Op.getOperand(I);
1809         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1810         Bits |= ((uint64_t)BitValue << BitPos);
1811       }
1812 
1813       // Insert the (remaining) scalar value into position in our integer
1814       // vector type.
1815       if (NumViaIntegerBits <= 32)
1816         Bits = SignExtend64(Bits, 32);
1817       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1818       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1819                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1820 
1821       if (NumElts < NumViaIntegerBits) {
1822         // If we're producing a smaller vector than our minimum legal integer
1823         // type, bitcast to the equivalent (known-legal) mask type, and extract
1824         // our final mask.
1825         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1826         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1827         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1828                           DAG.getConstant(0, DL, XLenVT));
1829       } else {
1830         // Else we must have produced an integer type with the same size as the
1831         // mask type; bitcast for the final result.
1832         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1833         Vec = DAG.getBitcast(VT, Vec);
1834       }
1835 
1836       return Vec;
1837     }
1838 
1839     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1840     // vector type, we have a legal equivalently-sized i8 type, so we can use
1841     // that.
1842     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
1843     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
1844 
1845     SDValue WideVec;
1846     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1847       // For a splat, perform a scalar truncate before creating the wider
1848       // vector.
1849       assert(Splat.getValueType() == XLenVT &&
1850              "Unexpected type for i1 splat value");
1851       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
1852                           DAG.getConstant(1, DL, XLenVT));
1853       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
1854     } else {
1855       SmallVector<SDValue, 8> Ops(Op->op_values());
1856       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
1857       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
1858       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
1859     }
1860 
1861     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
1862   }
1863 
1864   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1865     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1866                                         : RISCVISD::VMV_V_X_VL;
1867     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1868     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1869   }
1870 
1871   // Try and match index sequences, which we can lower to the vid instruction
1872   // with optional modifications. An all-undef vector is matched by
1873   // getSplatValue, above.
1874   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
1875     int64_t StepNumerator = SimpleVID->StepNumerator;
1876     unsigned StepDenominator = SimpleVID->StepDenominator;
1877     int64_t Addend = SimpleVID->Addend;
1878     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
1879     // threshold since it's the immediate value many RVV instructions accept.
1880     if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) &&
1881         isInt<5>(Addend)) {
1882       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1883       // Convert right out of the scalable type so we can use standard ISD
1884       // nodes for the rest of the computation. If we used scalable types with
1885       // these, we'd lose the fixed-length vector info and generate worse
1886       // vsetvli code.
1887       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
1888       assert(StepNumerator != 0 && "Invalid step");
1889       bool Negate = false;
1890       if (StepNumerator != 1) {
1891         int64_t SplatStepVal = StepNumerator;
1892         unsigned Opcode = ISD::MUL;
1893         if (isPowerOf2_64(std::abs(StepNumerator))) {
1894           Negate = StepNumerator < 0;
1895           Opcode = ISD::SHL;
1896           SplatStepVal = Log2_64(std::abs(StepNumerator));
1897         }
1898         SDValue SplatStep = DAG.getSplatVector(
1899             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
1900         VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep);
1901       }
1902       if (StepDenominator != 1) {
1903         SDValue SplatStep = DAG.getSplatVector(
1904             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
1905         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
1906       }
1907       if (Addend != 0 || Negate) {
1908         SDValue SplatAddend =
1909             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
1910         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
1911       }
1912       return VID;
1913     }
1914   }
1915 
1916   // Attempt to detect "hidden" splats, which only reveal themselves as splats
1917   // when re-interpreted as a vector with a larger element type. For example,
1918   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
1919   // could be instead splat as
1920   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
1921   // TODO: This optimization could also work on non-constant splats, but it
1922   // would require bit-manipulation instructions to construct the splat value.
1923   SmallVector<SDValue> Sequence;
1924   unsigned EltBitSize = VT.getScalarSizeInBits();
1925   const auto *BV = cast<BuildVectorSDNode>(Op);
1926   if (VT.isInteger() && EltBitSize < 64 &&
1927       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1928       BV->getRepeatedSequence(Sequence) &&
1929       (Sequence.size() * EltBitSize) <= 64) {
1930     unsigned SeqLen = Sequence.size();
1931     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
1932     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
1933     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
1934             ViaIntVT == MVT::i64) &&
1935            "Unexpected sequence type");
1936 
1937     unsigned EltIdx = 0;
1938     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
1939     uint64_t SplatValue = 0;
1940     // Construct the amalgamated value which can be splatted as this larger
1941     // vector type.
1942     for (const auto &SeqV : Sequence) {
1943       if (!SeqV.isUndef())
1944         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
1945                        << (EltIdx * EltBitSize));
1946       EltIdx++;
1947     }
1948 
1949     // On RV64, sign-extend from 32 to 64 bits where possible in order to
1950     // achieve better constant materializion.
1951     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
1952       SplatValue = SignExtend64(SplatValue, 32);
1953 
1954     // Since we can't introduce illegal i64 types at this stage, we can only
1955     // perform an i64 splat on RV32 if it is its own sign-extended value. That
1956     // way we can use RVV instructions to splat.
1957     assert((ViaIntVT.bitsLE(XLenVT) ||
1958             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
1959            "Unexpected bitcast sequence");
1960     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
1961       SDValue ViaVL =
1962           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
1963       MVT ViaContainerVT =
1964           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
1965       SDValue Splat =
1966           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
1967                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
1968       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
1969       return DAG.getBitcast(VT, Splat);
1970     }
1971   }
1972 
1973   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1974   // which constitute a large proportion of the elements. In such cases we can
1975   // splat a vector with the dominant element and make up the shortfall with
1976   // INSERT_VECTOR_ELTs.
1977   // Note that this includes vectors of 2 elements by association. The
1978   // upper-most element is the "dominant" one, allowing us to use a splat to
1979   // "insert" the upper element, and an insert of the lower element at position
1980   // 0, which improves codegen.
1981   SDValue DominantValue;
1982   unsigned MostCommonCount = 0;
1983   DenseMap<SDValue, unsigned> ValueCounts;
1984   unsigned NumUndefElts =
1985       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
1986 
1987   // Track the number of scalar loads we know we'd be inserting, estimated as
1988   // any non-zero floating-point constant. Other kinds of element are either
1989   // already in registers or are materialized on demand. The threshold at which
1990   // a vector load is more desirable than several scalar materializion and
1991   // vector-insertion instructions is not known.
1992   unsigned NumScalarLoads = 0;
1993 
1994   for (SDValue V : Op->op_values()) {
1995     if (V.isUndef())
1996       continue;
1997 
1998     ValueCounts.insert(std::make_pair(V, 0));
1999     unsigned &Count = ValueCounts[V];
2000 
2001     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2002       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2003 
2004     // Is this value dominant? In case of a tie, prefer the highest element as
2005     // it's cheaper to insert near the beginning of a vector than it is at the
2006     // end.
2007     if (++Count >= MostCommonCount) {
2008       DominantValue = V;
2009       MostCommonCount = Count;
2010     }
2011   }
2012 
2013   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2014   unsigned NumDefElts = NumElts - NumUndefElts;
2015   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2016 
2017   // Don't perform this optimization when optimizing for size, since
2018   // materializing elements and inserting them tends to cause code bloat.
2019   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2020       ((MostCommonCount > DominantValueCountThreshold) ||
2021        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2022     // Start by splatting the most common element.
2023     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2024 
2025     DenseSet<SDValue> Processed{DominantValue};
2026     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2027     for (const auto &OpIdx : enumerate(Op->ops())) {
2028       const SDValue &V = OpIdx.value();
2029       if (V.isUndef() || !Processed.insert(V).second)
2030         continue;
2031       if (ValueCounts[V] == 1) {
2032         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2033                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2034       } else {
2035         // Blend in all instances of this value using a VSELECT, using a
2036         // mask where each bit signals whether that element is the one
2037         // we're after.
2038         SmallVector<SDValue> Ops;
2039         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2040           return DAG.getConstant(V == V1, DL, XLenVT);
2041         });
2042         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2043                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2044                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2045       }
2046     }
2047 
2048     return Vec;
2049   }
2050 
2051   return SDValue();
2052 }
2053 
2054 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
2055                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
2056   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2057     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2058     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2059     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2060     // node in order to try and match RVV vector/scalar instructions.
2061     if ((LoC >> 31) == HiC)
2062       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
2063   }
2064 
2065   // Fall back to a stack store and stride x0 vector load.
2066   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
2067 }
2068 
2069 // Called by type legalization to handle splat of i64 on RV32.
2070 // FIXME: We can optimize this when the type has sign or zero bits in one
2071 // of the halves.
2072 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
2073                                    SDValue VL, SelectionDAG &DAG) {
2074   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2075   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2076                            DAG.getConstant(0, DL, MVT::i32));
2077   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2078                            DAG.getConstant(1, DL, MVT::i32));
2079   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
2080 }
2081 
2082 // This function lowers a splat of a scalar operand Splat with the vector
2083 // length VL. It ensures the final sequence is type legal, which is useful when
2084 // lowering a splat after type legalization.
2085 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
2086                                 SelectionDAG &DAG,
2087                                 const RISCVSubtarget &Subtarget) {
2088   if (VT.isFloatingPoint())
2089     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
2090 
2091   MVT XLenVT = Subtarget.getXLenVT();
2092 
2093   // Simplest case is that the operand needs to be promoted to XLenVT.
2094   if (Scalar.getValueType().bitsLE(XLenVT)) {
2095     // If the operand is a constant, sign extend to increase our chances
2096     // of being able to use a .vi instruction. ANY_EXTEND would become a
2097     // a zero extend and the simm5 check in isel would fail.
2098     // FIXME: Should we ignore the upper bits in isel instead?
2099     unsigned ExtOpc =
2100         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2101     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2102     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
2103   }
2104 
2105   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2106          "Unexpected scalar for splat lowering!");
2107 
2108   // Otherwise use the more complicated splatting algorithm.
2109   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
2110 }
2111 
2112 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2113                                    const RISCVSubtarget &Subtarget) {
2114   SDValue V1 = Op.getOperand(0);
2115   SDValue V2 = Op.getOperand(1);
2116   SDLoc DL(Op);
2117   MVT XLenVT = Subtarget.getXLenVT();
2118   MVT VT = Op.getSimpleValueType();
2119   unsigned NumElts = VT.getVectorNumElements();
2120   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2121 
2122   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2123 
2124   SDValue TrueMask, VL;
2125   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2126 
2127   if (SVN->isSplat()) {
2128     const int Lane = SVN->getSplatIndex();
2129     if (Lane >= 0) {
2130       MVT SVT = VT.getVectorElementType();
2131 
2132       // Turn splatted vector load into a strided load with an X0 stride.
2133       SDValue V = V1;
2134       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2135       // with undef.
2136       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2137       int Offset = Lane;
2138       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2139         int OpElements =
2140             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2141         V = V.getOperand(Offset / OpElements);
2142         Offset %= OpElements;
2143       }
2144 
2145       // We need to ensure the load isn't atomic or volatile.
2146       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2147         auto *Ld = cast<LoadSDNode>(V);
2148         Offset *= SVT.getStoreSize();
2149         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2150                                                    TypeSize::Fixed(Offset), DL);
2151 
2152         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2153         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2154           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2155           SDValue IntID =
2156               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2157           SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
2158                            DAG.getRegister(RISCV::X0, XLenVT), VL};
2159           SDValue NewLoad = DAG.getMemIntrinsicNode(
2160               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2161               DAG.getMachineFunction().getMachineMemOperand(
2162                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2163           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2164           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2165         }
2166 
2167         // Otherwise use a scalar load and splat. This will give the best
2168         // opportunity to fold a splat into the operation. ISel can turn it into
2169         // the x0 strided load if we aren't able to fold away the select.
2170         if (SVT.isFloatingPoint())
2171           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2172                           Ld->getPointerInfo().getWithOffset(Offset),
2173                           Ld->getOriginalAlign(),
2174                           Ld->getMemOperand()->getFlags());
2175         else
2176           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2177                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2178                              Ld->getOriginalAlign(),
2179                              Ld->getMemOperand()->getFlags());
2180         DAG.makeEquivalentMemoryOrdering(Ld, V);
2181 
2182         unsigned Opc =
2183             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2184         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
2185         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2186       }
2187 
2188       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2189       assert(Lane < (int)NumElts && "Unexpected lane!");
2190       SDValue Gather =
2191           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2192                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2193       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2194     }
2195   }
2196 
2197   // Detect shuffles which can be re-expressed as vector selects; these are
2198   // shuffles in which each element in the destination is taken from an element
2199   // at the corresponding index in either source vectors.
2200   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
2201     int MaskIndex = MaskIdx.value();
2202     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2203   });
2204 
2205   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2206 
2207   SmallVector<SDValue> MaskVals;
2208   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2209   // merged with a second vrgather.
2210   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2211 
2212   // By default we preserve the original operand order, and use a mask to
2213   // select LHS as true and RHS as false. However, since RVV vector selects may
2214   // feature splats but only on the LHS, we may choose to invert our mask and
2215   // instead select between RHS and LHS.
2216   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2217   bool InvertMask = IsSelect == SwapOps;
2218 
2219   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2220   // half.
2221   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2222 
2223   // Now construct the mask that will be used by the vselect or blended
2224   // vrgather operation. For vrgathers, construct the appropriate indices into
2225   // each vector.
2226   for (int MaskIndex : SVN->getMask()) {
2227     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2228     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2229     if (!IsSelect) {
2230       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2231       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2232                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2233                                      : DAG.getUNDEF(XLenVT));
2234       GatherIndicesRHS.push_back(
2235           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2236                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2237       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2238         ++LHSIndexCounts[MaskIndex];
2239       if (!IsLHSOrUndefIndex)
2240         ++RHSIndexCounts[MaskIndex - NumElts];
2241     }
2242   }
2243 
2244   if (SwapOps) {
2245     std::swap(V1, V2);
2246     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2247   }
2248 
2249   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2250   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2251   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2252 
2253   if (IsSelect)
2254     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2255 
2256   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2257     // On such a large vector we're unable to use i8 as the index type.
2258     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2259     // may involve vector splitting if we're already at LMUL=8, or our
2260     // user-supplied maximum fixed-length LMUL.
2261     return SDValue();
2262   }
2263 
2264   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2265   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2266   MVT IndexVT = VT.changeTypeToInteger();
2267   // Since we can't introduce illegal index types at this stage, use i16 and
2268   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2269   // than XLenVT.
2270   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2271     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2272     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2273   }
2274 
2275   MVT IndexContainerVT =
2276       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2277 
2278   SDValue Gather;
2279   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2280   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2281   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2282     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
2283   } else {
2284     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2285     // If only one index is used, we can use a "splat" vrgather.
2286     // TODO: We can splat the most-common index and fix-up any stragglers, if
2287     // that's beneficial.
2288     if (LHSIndexCounts.size() == 1) {
2289       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2290       Gather =
2291           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2292                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2293     } else {
2294       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2295       LHSIndices =
2296           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2297 
2298       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2299                            TrueMask, VL);
2300     }
2301   }
2302 
2303   // If a second vector operand is used by this shuffle, blend it in with an
2304   // additional vrgather.
2305   if (!V2.isUndef()) {
2306     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2307     // If only one index is used, we can use a "splat" vrgather.
2308     // TODO: We can splat the most-common index and fix-up any stragglers, if
2309     // that's beneficial.
2310     if (RHSIndexCounts.size() == 1) {
2311       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2312       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2313                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2314     } else {
2315       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2316       RHSIndices =
2317           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2318       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2319                        VL);
2320     }
2321 
2322     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2323     SelectMask =
2324         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2325 
2326     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2327                          Gather, VL);
2328   }
2329 
2330   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2331 }
2332 
2333 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2334                                      SDLoc DL, SelectionDAG &DAG,
2335                                      const RISCVSubtarget &Subtarget) {
2336   if (VT.isScalableVector())
2337     return DAG.getFPExtendOrRound(Op, DL, VT);
2338   assert(VT.isFixedLengthVector() &&
2339          "Unexpected value type for RVV FP extend/round lowering");
2340   SDValue Mask, VL;
2341   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2342   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2343                         ? RISCVISD::FP_EXTEND_VL
2344                         : RISCVISD::FP_ROUND_VL;
2345   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2346 }
2347 
2348 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2349 // the exponent.
2350 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2351   MVT VT = Op.getSimpleValueType();
2352   unsigned EltSize = VT.getScalarSizeInBits();
2353   SDValue Src = Op.getOperand(0);
2354   SDLoc DL(Op);
2355 
2356   // We need a FP type that can represent the value.
2357   // TODO: Use f16 for i8 when possible?
2358   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2359   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2360 
2361   // Legal types should have been checked in the RISCVTargetLowering
2362   // constructor.
2363   // TODO: Splitting may make sense in some cases.
2364   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2365          "Expected legal float type!");
2366 
2367   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2368   // The trailing zero count is equal to log2 of this single bit value.
2369   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2370     SDValue Neg =
2371         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2372     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2373   }
2374 
2375   // We have a legal FP type, convert to it.
2376   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2377   // Bitcast to integer and shift the exponent to the LSB.
2378   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2379   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2380   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2381   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2382                               DAG.getConstant(ShiftAmt, DL, IntVT));
2383   // Truncate back to original type to allow vnsrl.
2384   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2385   // The exponent contains log2 of the value in biased form.
2386   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2387 
2388   // For trailing zeros, we just need to subtract the bias.
2389   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2390     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2391                        DAG.getConstant(ExponentBias, DL, VT));
2392 
2393   // For leading zeros, we need to remove the bias and convert from log2 to
2394   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2395   unsigned Adjust = ExponentBias + (EltSize - 1);
2396   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2397 }
2398 
2399 // While RVV has alignment restrictions, we should always be able to load as a
2400 // legal equivalently-sized byte-typed vector instead. This method is
2401 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2402 // the load is already correctly-aligned, it returns SDValue().
2403 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2404                                                     SelectionDAG &DAG) const {
2405   auto *Load = cast<LoadSDNode>(Op);
2406   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2407 
2408   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2409                                      Load->getMemoryVT(),
2410                                      *Load->getMemOperand()))
2411     return SDValue();
2412 
2413   SDLoc DL(Op);
2414   MVT VT = Op.getSimpleValueType();
2415   unsigned EltSizeBits = VT.getScalarSizeInBits();
2416   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2417          "Unexpected unaligned RVV load type");
2418   MVT NewVT =
2419       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2420   assert(NewVT.isValid() &&
2421          "Expecting equally-sized RVV vector types to be legal");
2422   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2423                           Load->getPointerInfo(), Load->getOriginalAlign(),
2424                           Load->getMemOperand()->getFlags());
2425   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2426 }
2427 
2428 // While RVV has alignment restrictions, we should always be able to store as a
2429 // legal equivalently-sized byte-typed vector instead. This method is
2430 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2431 // returns SDValue() if the store is already correctly aligned.
2432 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2433                                                      SelectionDAG &DAG) const {
2434   auto *Store = cast<StoreSDNode>(Op);
2435   assert(Store && Store->getValue().getValueType().isVector() &&
2436          "Expected vector store");
2437 
2438   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2439                                      Store->getMemoryVT(),
2440                                      *Store->getMemOperand()))
2441     return SDValue();
2442 
2443   SDLoc DL(Op);
2444   SDValue StoredVal = Store->getValue();
2445   MVT VT = StoredVal.getSimpleValueType();
2446   unsigned EltSizeBits = VT.getScalarSizeInBits();
2447   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2448          "Unexpected unaligned RVV store type");
2449   MVT NewVT =
2450       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2451   assert(NewVT.isValid() &&
2452          "Expecting equally-sized RVV vector types to be legal");
2453   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2454   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2455                       Store->getPointerInfo(), Store->getOriginalAlign(),
2456                       Store->getMemOperand()->getFlags());
2457 }
2458 
2459 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2460                                             SelectionDAG &DAG) const {
2461   switch (Op.getOpcode()) {
2462   default:
2463     report_fatal_error("unimplemented operand");
2464   case ISD::GlobalAddress:
2465     return lowerGlobalAddress(Op, DAG);
2466   case ISD::BlockAddress:
2467     return lowerBlockAddress(Op, DAG);
2468   case ISD::ConstantPool:
2469     return lowerConstantPool(Op, DAG);
2470   case ISD::JumpTable:
2471     return lowerJumpTable(Op, DAG);
2472   case ISD::GlobalTLSAddress:
2473     return lowerGlobalTLSAddress(Op, DAG);
2474   case ISD::SELECT:
2475     return lowerSELECT(Op, DAG);
2476   case ISD::BRCOND:
2477     return lowerBRCOND(Op, DAG);
2478   case ISD::VASTART:
2479     return lowerVASTART(Op, DAG);
2480   case ISD::FRAMEADDR:
2481     return lowerFRAMEADDR(Op, DAG);
2482   case ISD::RETURNADDR:
2483     return lowerRETURNADDR(Op, DAG);
2484   case ISD::SHL_PARTS:
2485     return lowerShiftLeftParts(Op, DAG);
2486   case ISD::SRA_PARTS:
2487     return lowerShiftRightParts(Op, DAG, true);
2488   case ISD::SRL_PARTS:
2489     return lowerShiftRightParts(Op, DAG, false);
2490   case ISD::BITCAST: {
2491     SDLoc DL(Op);
2492     EVT VT = Op.getValueType();
2493     SDValue Op0 = Op.getOperand(0);
2494     EVT Op0VT = Op0.getValueType();
2495     MVT XLenVT = Subtarget.getXLenVT();
2496     if (VT.isFixedLengthVector()) {
2497       // We can handle fixed length vector bitcasts with a simple replacement
2498       // in isel.
2499       if (Op0VT.isFixedLengthVector())
2500         return Op;
2501       // When bitcasting from scalar to fixed-length vector, insert the scalar
2502       // into a one-element vector of the result type, and perform a vector
2503       // bitcast.
2504       if (!Op0VT.isVector()) {
2505         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2506         if (!isTypeLegal(BVT))
2507           return SDValue();
2508         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2509                                               DAG.getUNDEF(BVT), Op0,
2510                                               DAG.getConstant(0, DL, XLenVT)));
2511       }
2512       return SDValue();
2513     }
2514     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2515     // thus: bitcast the vector to a one-element vector type whose element type
2516     // is the same as the result type, and extract the first element.
2517     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2518       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
2519       if (!isTypeLegal(BVT))
2520         return SDValue();
2521       SDValue BVec = DAG.getBitcast(BVT, Op0);
2522       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2523                          DAG.getConstant(0, DL, XLenVT));
2524     }
2525     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2526       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2527       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2528       return FPConv;
2529     }
2530     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2531         Subtarget.hasStdExtF()) {
2532       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2533       SDValue FPConv =
2534           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2535       return FPConv;
2536     }
2537     return SDValue();
2538   }
2539   case ISD::INTRINSIC_WO_CHAIN:
2540     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2541   case ISD::INTRINSIC_W_CHAIN:
2542     return LowerINTRINSIC_W_CHAIN(Op, DAG);
2543   case ISD::INTRINSIC_VOID:
2544     return LowerINTRINSIC_VOID(Op, DAG);
2545   case ISD::BSWAP:
2546   case ISD::BITREVERSE: {
2547     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
2548     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
2549     MVT VT = Op.getSimpleValueType();
2550     SDLoc DL(Op);
2551     // Start with the maximum immediate value which is the bitwidth - 1.
2552     unsigned Imm = VT.getSizeInBits() - 1;
2553     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2554     if (Op.getOpcode() == ISD::BSWAP)
2555       Imm &= ~0x7U;
2556     return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
2557                        DAG.getConstant(Imm, DL, VT));
2558   }
2559   case ISD::FSHL:
2560   case ISD::FSHR: {
2561     MVT VT = Op.getSimpleValueType();
2562     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
2563     SDLoc DL(Op);
2564     if (Op.getOperand(2).getOpcode() == ISD::Constant)
2565       return Op;
2566     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2567     // use log(XLen) bits. Mask the shift amount accordingly.
2568     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
2569     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
2570                                 DAG.getConstant(ShAmtWidth, DL, VT));
2571     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
2572     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
2573   }
2574   case ISD::TRUNCATE: {
2575     SDLoc DL(Op);
2576     MVT VT = Op.getSimpleValueType();
2577     // Only custom-lower vector truncates
2578     if (!VT.isVector())
2579       return Op;
2580 
2581     // Truncates to mask types are handled differently
2582     if (VT.getVectorElementType() == MVT::i1)
2583       return lowerVectorMaskTrunc(Op, DAG);
2584 
2585     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2586     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2587     // truncate by one power of two at a time.
2588     MVT DstEltVT = VT.getVectorElementType();
2589 
2590     SDValue Src = Op.getOperand(0);
2591     MVT SrcVT = Src.getSimpleValueType();
2592     MVT SrcEltVT = SrcVT.getVectorElementType();
2593 
2594     assert(DstEltVT.bitsLT(SrcEltVT) &&
2595            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
2596            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
2597            "Unexpected vector truncate lowering");
2598 
2599     MVT ContainerVT = SrcVT;
2600     if (SrcVT.isFixedLengthVector()) {
2601       ContainerVT = getContainerForFixedLengthVector(SrcVT);
2602       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2603     }
2604 
2605     SDValue Result = Src;
2606     SDValue Mask, VL;
2607     std::tie(Mask, VL) =
2608         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
2609     LLVMContext &Context = *DAG.getContext();
2610     const ElementCount Count = ContainerVT.getVectorElementCount();
2611     do {
2612       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
2613       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
2614       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
2615                            Mask, VL);
2616     } while (SrcEltVT != DstEltVT);
2617 
2618     if (SrcVT.isFixedLengthVector())
2619       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
2620 
2621     return Result;
2622   }
2623   case ISD::ANY_EXTEND:
2624   case ISD::ZERO_EXTEND:
2625     if (Op.getOperand(0).getValueType().isVector() &&
2626         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2627       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2628     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2629   case ISD::SIGN_EXTEND:
2630     if (Op.getOperand(0).getValueType().isVector() &&
2631         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2632       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2633     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2634   case ISD::SPLAT_VECTOR_PARTS:
2635     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2636   case ISD::INSERT_VECTOR_ELT:
2637     return lowerINSERT_VECTOR_ELT(Op, DAG);
2638   case ISD::EXTRACT_VECTOR_ELT:
2639     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2640   case ISD::VSCALE: {
2641     MVT VT = Op.getSimpleValueType();
2642     SDLoc DL(Op);
2643     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2644     // We define our scalable vector types for lmul=1 to use a 64 bit known
2645     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2646     // vscale as VLENB / 8.
2647     assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!");
2648     if (isa<ConstantSDNode>(Op.getOperand(0))) {
2649       // We assume VLENB is a multiple of 8. We manually choose the best shift
2650       // here because SimplifyDemandedBits isn't always able to simplify it.
2651       uint64_t Val = Op.getConstantOperandVal(0);
2652       if (isPowerOf2_64(Val)) {
2653         uint64_t Log2 = Log2_64(Val);
2654         if (Log2 < 3)
2655           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
2656                              DAG.getConstant(3 - Log2, DL, VT));
2657         if (Log2 > 3)
2658           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
2659                              DAG.getConstant(Log2 - 3, DL, VT));
2660         return VLENB;
2661       }
2662       // If the multiplier is a multiple of 8, scale it down to avoid needing
2663       // to shift the VLENB value.
2664       if ((Val % 8) == 0)
2665         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
2666                            DAG.getConstant(Val / 8, DL, VT));
2667     }
2668 
2669     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2670                                  DAG.getConstant(3, DL, VT));
2671     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2672   }
2673   case ISD::FP_EXTEND: {
2674     // RVV can only do fp_extend to types double the size as the source. We
2675     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2676     // via f32.
2677     SDLoc DL(Op);
2678     MVT VT = Op.getSimpleValueType();
2679     SDValue Src = Op.getOperand(0);
2680     MVT SrcVT = Src.getSimpleValueType();
2681 
2682     // Prepare any fixed-length vector operands.
2683     MVT ContainerVT = VT;
2684     if (SrcVT.isFixedLengthVector()) {
2685       ContainerVT = getContainerForFixedLengthVector(VT);
2686       MVT SrcContainerVT =
2687           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2688       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2689     }
2690 
2691     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2692         SrcVT.getVectorElementType() != MVT::f16) {
2693       // For scalable vectors, we only need to close the gap between
2694       // vXf16->vXf64.
2695       if (!VT.isFixedLengthVector())
2696         return Op;
2697       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2698       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2699       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2700     }
2701 
2702     MVT InterVT = VT.changeVectorElementType(MVT::f32);
2703     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2704     SDValue IntermediateExtend = getRVVFPExtendOrRound(
2705         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2706 
2707     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2708                                            DL, DAG, Subtarget);
2709     if (VT.isFixedLengthVector())
2710       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2711     return Extend;
2712   }
2713   case ISD::FP_ROUND: {
2714     // RVV can only do fp_round to types half the size as the source. We
2715     // custom-lower f64->f16 rounds via RVV's round-to-odd float
2716     // conversion instruction.
2717     SDLoc DL(Op);
2718     MVT VT = Op.getSimpleValueType();
2719     SDValue Src = Op.getOperand(0);
2720     MVT SrcVT = Src.getSimpleValueType();
2721 
2722     // Prepare any fixed-length vector operands.
2723     MVT ContainerVT = VT;
2724     if (VT.isFixedLengthVector()) {
2725       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2726       ContainerVT =
2727           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2728       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2729     }
2730 
2731     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2732         SrcVT.getVectorElementType() != MVT::f64) {
2733       // For scalable vectors, we only need to close the gap between
2734       // vXf64<->vXf16.
2735       if (!VT.isFixedLengthVector())
2736         return Op;
2737       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2738       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2739       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2740     }
2741 
2742     SDValue Mask, VL;
2743     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2744 
2745     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2746     SDValue IntermediateRound =
2747         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2748     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2749                                           DL, DAG, Subtarget);
2750 
2751     if (VT.isFixedLengthVector())
2752       return convertFromScalableVector(VT, Round, DAG, Subtarget);
2753     return Round;
2754   }
2755   case ISD::FP_TO_SINT:
2756   case ISD::FP_TO_UINT:
2757   case ISD::SINT_TO_FP:
2758   case ISD::UINT_TO_FP: {
2759     // RVV can only do fp<->int conversions to types half/double the size as
2760     // the source. We custom-lower any conversions that do two hops into
2761     // sequences.
2762     MVT VT = Op.getSimpleValueType();
2763     if (!VT.isVector())
2764       return Op;
2765     SDLoc DL(Op);
2766     SDValue Src = Op.getOperand(0);
2767     MVT EltVT = VT.getVectorElementType();
2768     MVT SrcVT = Src.getSimpleValueType();
2769     MVT SrcEltVT = SrcVT.getVectorElementType();
2770     unsigned EltSize = EltVT.getSizeInBits();
2771     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2772     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2773            "Unexpected vector element types");
2774 
2775     bool IsInt2FP = SrcEltVT.isInteger();
2776     // Widening conversions
2777     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2778       if (IsInt2FP) {
2779         // Do a regular integer sign/zero extension then convert to float.
2780         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2781                                       VT.getVectorElementCount());
2782         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2783                                  ? ISD::ZERO_EXTEND
2784                                  : ISD::SIGN_EXTEND;
2785         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2786         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2787       }
2788       // FP2Int
2789       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2790       // Do one doubling fp_extend then complete the operation by converting
2791       // to int.
2792       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2793       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2794       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2795     }
2796 
2797     // Narrowing conversions
2798     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2799       if (IsInt2FP) {
2800         // One narrowing int_to_fp, then an fp_round.
2801         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2802         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2803         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2804         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2805       }
2806       // FP2Int
2807       // One narrowing fp_to_int, then truncate the integer. If the float isn't
2808       // representable by the integer, the result is poison.
2809       MVT IVecVT =
2810           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
2811                            VT.getVectorElementCount());
2812       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
2813       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
2814     }
2815 
2816     // Scalable vectors can exit here. Patterns will handle equally-sized
2817     // conversions halving/doubling ones.
2818     if (!VT.isFixedLengthVector())
2819       return Op;
2820 
2821     // For fixed-length vectors we lower to a custom "VL" node.
2822     unsigned RVVOpc = 0;
2823     switch (Op.getOpcode()) {
2824     default:
2825       llvm_unreachable("Impossible opcode");
2826     case ISD::FP_TO_SINT:
2827       RVVOpc = RISCVISD::FP_TO_SINT_VL;
2828       break;
2829     case ISD::FP_TO_UINT:
2830       RVVOpc = RISCVISD::FP_TO_UINT_VL;
2831       break;
2832     case ISD::SINT_TO_FP:
2833       RVVOpc = RISCVISD::SINT_TO_FP_VL;
2834       break;
2835     case ISD::UINT_TO_FP:
2836       RVVOpc = RISCVISD::UINT_TO_FP_VL;
2837       break;
2838     }
2839 
2840     MVT ContainerVT, SrcContainerVT;
2841     // Derive the reference container type from the larger vector type.
2842     if (SrcEltSize > EltSize) {
2843       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2844       ContainerVT =
2845           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2846     } else {
2847       ContainerVT = getContainerForFixedLengthVector(VT);
2848       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
2849     }
2850 
2851     SDValue Mask, VL;
2852     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2853 
2854     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2855     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
2856     return convertFromScalableVector(VT, Src, DAG, Subtarget);
2857   }
2858   case ISD::FP_TO_SINT_SAT:
2859   case ISD::FP_TO_UINT_SAT:
2860     return lowerFP_TO_INT_SAT(Op, DAG);
2861   case ISD::VECREDUCE_ADD:
2862   case ISD::VECREDUCE_UMAX:
2863   case ISD::VECREDUCE_SMAX:
2864   case ISD::VECREDUCE_UMIN:
2865   case ISD::VECREDUCE_SMIN:
2866     return lowerVECREDUCE(Op, DAG);
2867   case ISD::VECREDUCE_AND:
2868   case ISD::VECREDUCE_OR:
2869   case ISD::VECREDUCE_XOR:
2870     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2871       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
2872     return lowerVECREDUCE(Op, DAG);
2873   case ISD::VECREDUCE_FADD:
2874   case ISD::VECREDUCE_SEQ_FADD:
2875   case ISD::VECREDUCE_FMIN:
2876   case ISD::VECREDUCE_FMAX:
2877     return lowerFPVECREDUCE(Op, DAG);
2878   case ISD::VP_REDUCE_ADD:
2879   case ISD::VP_REDUCE_UMAX:
2880   case ISD::VP_REDUCE_SMAX:
2881   case ISD::VP_REDUCE_UMIN:
2882   case ISD::VP_REDUCE_SMIN:
2883   case ISD::VP_REDUCE_FADD:
2884   case ISD::VP_REDUCE_SEQ_FADD:
2885   case ISD::VP_REDUCE_FMIN:
2886   case ISD::VP_REDUCE_FMAX:
2887     return lowerVPREDUCE(Op, DAG);
2888   case ISD::VP_REDUCE_AND:
2889   case ISD::VP_REDUCE_OR:
2890   case ISD::VP_REDUCE_XOR:
2891     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
2892       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
2893     return lowerVPREDUCE(Op, DAG);
2894   case ISD::INSERT_SUBVECTOR:
2895     return lowerINSERT_SUBVECTOR(Op, DAG);
2896   case ISD::EXTRACT_SUBVECTOR:
2897     return lowerEXTRACT_SUBVECTOR(Op, DAG);
2898   case ISD::STEP_VECTOR:
2899     return lowerSTEP_VECTOR(Op, DAG);
2900   case ISD::VECTOR_REVERSE:
2901     return lowerVECTOR_REVERSE(Op, DAG);
2902   case ISD::BUILD_VECTOR:
2903     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
2904   case ISD::SPLAT_VECTOR:
2905     if (Op.getValueType().getVectorElementType() == MVT::i1)
2906       return lowerVectorMaskSplat(Op, DAG);
2907     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
2908   case ISD::VECTOR_SHUFFLE:
2909     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
2910   case ISD::CONCAT_VECTORS: {
2911     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
2912     // better than going through the stack, as the default expansion does.
2913     SDLoc DL(Op);
2914     MVT VT = Op.getSimpleValueType();
2915     unsigned NumOpElts =
2916         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
2917     SDValue Vec = DAG.getUNDEF(VT);
2918     for (const auto &OpIdx : enumerate(Op->ops()))
2919       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
2920                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
2921     return Vec;
2922   }
2923   case ISD::LOAD:
2924     if (auto V = expandUnalignedRVVLoad(Op, DAG))
2925       return V;
2926     if (Op.getValueType().isFixedLengthVector())
2927       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
2928     return Op;
2929   case ISD::STORE:
2930     if (auto V = expandUnalignedRVVStore(Op, DAG))
2931       return V;
2932     if (Op.getOperand(1).getValueType().isFixedLengthVector())
2933       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
2934     return Op;
2935   case ISD::MLOAD:
2936   case ISD::VP_LOAD:
2937     return lowerMaskedLoad(Op, DAG);
2938   case ISD::MSTORE:
2939   case ISD::VP_STORE:
2940     return lowerMaskedStore(Op, DAG);
2941   case ISD::SETCC:
2942     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
2943   case ISD::ADD:
2944     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
2945   case ISD::SUB:
2946     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
2947   case ISD::MUL:
2948     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
2949   case ISD::MULHS:
2950     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
2951   case ISD::MULHU:
2952     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
2953   case ISD::AND:
2954     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
2955                                               RISCVISD::AND_VL);
2956   case ISD::OR:
2957     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
2958                                               RISCVISD::OR_VL);
2959   case ISD::XOR:
2960     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
2961                                               RISCVISD::XOR_VL);
2962   case ISD::SDIV:
2963     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
2964   case ISD::SREM:
2965     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
2966   case ISD::UDIV:
2967     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
2968   case ISD::UREM:
2969     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
2970   case ISD::SHL:
2971   case ISD::SRA:
2972   case ISD::SRL:
2973     if (Op.getSimpleValueType().isFixedLengthVector())
2974       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
2975     // This can be called for an i32 shift amount that needs to be promoted.
2976     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
2977            "Unexpected custom legalisation");
2978     return SDValue();
2979   case ISD::SADDSAT:
2980     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
2981   case ISD::UADDSAT:
2982     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
2983   case ISD::SSUBSAT:
2984     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
2985   case ISD::USUBSAT:
2986     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
2987   case ISD::FADD:
2988     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
2989   case ISD::FSUB:
2990     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
2991   case ISD::FMUL:
2992     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
2993   case ISD::FDIV:
2994     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
2995   case ISD::FNEG:
2996     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
2997   case ISD::FABS:
2998     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
2999   case ISD::FSQRT:
3000     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3001   case ISD::FMA:
3002     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3003   case ISD::SMIN:
3004     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3005   case ISD::SMAX:
3006     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3007   case ISD::UMIN:
3008     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3009   case ISD::UMAX:
3010     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3011   case ISD::FMINNUM:
3012     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3013   case ISD::FMAXNUM:
3014     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3015   case ISD::ABS:
3016     return lowerABS(Op, DAG);
3017   case ISD::CTLZ_ZERO_UNDEF:
3018   case ISD::CTTZ_ZERO_UNDEF:
3019     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3020   case ISD::VSELECT:
3021     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3022   case ISD::FCOPYSIGN:
3023     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3024   case ISD::MGATHER:
3025   case ISD::VP_GATHER:
3026     return lowerMaskedGather(Op, DAG);
3027   case ISD::MSCATTER:
3028   case ISD::VP_SCATTER:
3029     return lowerMaskedScatter(Op, DAG);
3030   case ISD::FLT_ROUNDS_:
3031     return lowerGET_ROUNDING(Op, DAG);
3032   case ISD::SET_ROUNDING:
3033     return lowerSET_ROUNDING(Op, DAG);
3034   case ISD::VP_ADD:
3035     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3036   case ISD::VP_SUB:
3037     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3038   case ISD::VP_MUL:
3039     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3040   case ISD::VP_SDIV:
3041     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3042   case ISD::VP_UDIV:
3043     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3044   case ISD::VP_SREM:
3045     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3046   case ISD::VP_UREM:
3047     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3048   case ISD::VP_AND:
3049     return lowerVPOp(Op, DAG, RISCVISD::AND_VL);
3050   case ISD::VP_OR:
3051     return lowerVPOp(Op, DAG, RISCVISD::OR_VL);
3052   case ISD::VP_XOR:
3053     return lowerVPOp(Op, DAG, RISCVISD::XOR_VL);
3054   case ISD::VP_ASHR:
3055     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3056   case ISD::VP_LSHR:
3057     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3058   case ISD::VP_SHL:
3059     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3060   case ISD::VP_FADD:
3061     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3062   case ISD::VP_FSUB:
3063     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3064   case ISD::VP_FMUL:
3065     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3066   case ISD::VP_FDIV:
3067     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3068   }
3069 }
3070 
3071 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3072                              SelectionDAG &DAG, unsigned Flags) {
3073   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3074 }
3075 
3076 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3077                              SelectionDAG &DAG, unsigned Flags) {
3078   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3079                                    Flags);
3080 }
3081 
3082 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3083                              SelectionDAG &DAG, unsigned Flags) {
3084   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3085                                    N->getOffset(), Flags);
3086 }
3087 
3088 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3089                              SelectionDAG &DAG, unsigned Flags) {
3090   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3091 }
3092 
3093 template <class NodeTy>
3094 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3095                                      bool IsLocal) const {
3096   SDLoc DL(N);
3097   EVT Ty = getPointerTy(DAG.getDataLayout());
3098 
3099   if (isPositionIndependent()) {
3100     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3101     if (IsLocal)
3102       // Use PC-relative addressing to access the symbol. This generates the
3103       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3104       // %pcrel_lo(auipc)).
3105       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3106 
3107     // Use PC-relative addressing to access the GOT for this symbol, then load
3108     // the address from the GOT. This generates the pattern (PseudoLA sym),
3109     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3110     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3111   }
3112 
3113   switch (getTargetMachine().getCodeModel()) {
3114   default:
3115     report_fatal_error("Unsupported code model for lowering");
3116   case CodeModel::Small: {
3117     // Generate a sequence for accessing addresses within the first 2 GiB of
3118     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3119     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3120     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3121     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3122     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3123   }
3124   case CodeModel::Medium: {
3125     // Generate a sequence for accessing addresses within any 2GiB range within
3126     // the address space. This generates the pattern (PseudoLLA sym), which
3127     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3128     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3129     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3130   }
3131   }
3132 }
3133 
3134 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3135                                                 SelectionDAG &DAG) const {
3136   SDLoc DL(Op);
3137   EVT Ty = Op.getValueType();
3138   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3139   int64_t Offset = N->getOffset();
3140   MVT XLenVT = Subtarget.getXLenVT();
3141 
3142   const GlobalValue *GV = N->getGlobal();
3143   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3144   SDValue Addr = getAddr(N, DAG, IsLocal);
3145 
3146   // In order to maximise the opportunity for common subexpression elimination,
3147   // emit a separate ADD node for the global address offset instead of folding
3148   // it in the global address node. Later peephole optimisations may choose to
3149   // fold it back in when profitable.
3150   if (Offset != 0)
3151     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3152                        DAG.getConstant(Offset, DL, XLenVT));
3153   return Addr;
3154 }
3155 
3156 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3157                                                SelectionDAG &DAG) const {
3158   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3159 
3160   return getAddr(N, DAG);
3161 }
3162 
3163 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3164                                                SelectionDAG &DAG) const {
3165   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3166 
3167   return getAddr(N, DAG);
3168 }
3169 
3170 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3171                                             SelectionDAG &DAG) const {
3172   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3173 
3174   return getAddr(N, DAG);
3175 }
3176 
3177 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3178                                               SelectionDAG &DAG,
3179                                               bool UseGOT) const {
3180   SDLoc DL(N);
3181   EVT Ty = getPointerTy(DAG.getDataLayout());
3182   const GlobalValue *GV = N->getGlobal();
3183   MVT XLenVT = Subtarget.getXLenVT();
3184 
3185   if (UseGOT) {
3186     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3187     // load the address from the GOT and add the thread pointer. This generates
3188     // the pattern (PseudoLA_TLS_IE sym), which expands to
3189     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3190     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3191     SDValue Load =
3192         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3193 
3194     // Add the thread pointer.
3195     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3196     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3197   }
3198 
3199   // Generate a sequence for accessing the address relative to the thread
3200   // pointer, with the appropriate adjustment for the thread pointer offset.
3201   // This generates the pattern
3202   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3203   SDValue AddrHi =
3204       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3205   SDValue AddrAdd =
3206       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3207   SDValue AddrLo =
3208       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3209 
3210   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3211   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3212   SDValue MNAdd = SDValue(
3213       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3214       0);
3215   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3216 }
3217 
3218 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3219                                                SelectionDAG &DAG) const {
3220   SDLoc DL(N);
3221   EVT Ty = getPointerTy(DAG.getDataLayout());
3222   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3223   const GlobalValue *GV = N->getGlobal();
3224 
3225   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3226   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3227   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3228   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3229   SDValue Load =
3230       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3231 
3232   // Prepare argument list to generate call.
3233   ArgListTy Args;
3234   ArgListEntry Entry;
3235   Entry.Node = Load;
3236   Entry.Ty = CallTy;
3237   Args.push_back(Entry);
3238 
3239   // Setup call to __tls_get_addr.
3240   TargetLowering::CallLoweringInfo CLI(DAG);
3241   CLI.setDebugLoc(DL)
3242       .setChain(DAG.getEntryNode())
3243       .setLibCallee(CallingConv::C, CallTy,
3244                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3245                     std::move(Args));
3246 
3247   return LowerCallTo(CLI).first;
3248 }
3249 
3250 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3251                                                    SelectionDAG &DAG) const {
3252   SDLoc DL(Op);
3253   EVT Ty = Op.getValueType();
3254   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3255   int64_t Offset = N->getOffset();
3256   MVT XLenVT = Subtarget.getXLenVT();
3257 
3258   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3259 
3260   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3261       CallingConv::GHC)
3262     report_fatal_error("In GHC calling convention TLS is not supported");
3263 
3264   SDValue Addr;
3265   switch (Model) {
3266   case TLSModel::LocalExec:
3267     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3268     break;
3269   case TLSModel::InitialExec:
3270     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3271     break;
3272   case TLSModel::LocalDynamic:
3273   case TLSModel::GeneralDynamic:
3274     Addr = getDynamicTLSAddr(N, DAG);
3275     break;
3276   }
3277 
3278   // In order to maximise the opportunity for common subexpression elimination,
3279   // emit a separate ADD node for the global address offset instead of folding
3280   // it in the global address node. Later peephole optimisations may choose to
3281   // fold it back in when profitable.
3282   if (Offset != 0)
3283     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3284                        DAG.getConstant(Offset, DL, XLenVT));
3285   return Addr;
3286 }
3287 
3288 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3289   SDValue CondV = Op.getOperand(0);
3290   SDValue TrueV = Op.getOperand(1);
3291   SDValue FalseV = Op.getOperand(2);
3292   SDLoc DL(Op);
3293   MVT VT = Op.getSimpleValueType();
3294   MVT XLenVT = Subtarget.getXLenVT();
3295 
3296   // Lower vector SELECTs to VSELECTs by splatting the condition.
3297   if (VT.isVector()) {
3298     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3299     SDValue CondSplat = VT.isScalableVector()
3300                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3301                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3302     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3303   }
3304 
3305   // If the result type is XLenVT and CondV is the output of a SETCC node
3306   // which also operated on XLenVT inputs, then merge the SETCC node into the
3307   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3308   // compare+branch instructions. i.e.:
3309   // (select (setcc lhs, rhs, cc), truev, falsev)
3310   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3311   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3312       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3313     SDValue LHS = CondV.getOperand(0);
3314     SDValue RHS = CondV.getOperand(1);
3315     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3316     ISD::CondCode CCVal = CC->get();
3317 
3318     // Special case for a select of 2 constants that have a diffence of 1.
3319     // Normally this is done by DAGCombine, but if the select is introduced by
3320     // type legalization or op legalization, we miss it. Restricting to SETLT
3321     // case for now because that is what signed saturating add/sub need.
3322     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3323     // but we would probably want to swap the true/false values if the condition
3324     // is SETGE/SETLE to avoid an XORI.
3325     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3326         CCVal == ISD::SETLT) {
3327       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3328       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3329       if (TrueVal - 1 == FalseVal)
3330         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3331       if (TrueVal + 1 == FalseVal)
3332         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3333     }
3334 
3335     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3336 
3337     SDValue TargetCC = DAG.getCondCode(CCVal);
3338     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3339     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3340   }
3341 
3342   // Otherwise:
3343   // (select condv, truev, falsev)
3344   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3345   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3346   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3347 
3348   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3349 
3350   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3351 }
3352 
3353 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3354   SDValue CondV = Op.getOperand(1);
3355   SDLoc DL(Op);
3356   MVT XLenVT = Subtarget.getXLenVT();
3357 
3358   if (CondV.getOpcode() == ISD::SETCC &&
3359       CondV.getOperand(0).getValueType() == XLenVT) {
3360     SDValue LHS = CondV.getOperand(0);
3361     SDValue RHS = CondV.getOperand(1);
3362     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3363 
3364     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3365 
3366     SDValue TargetCC = DAG.getCondCode(CCVal);
3367     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3368                        LHS, RHS, TargetCC, Op.getOperand(2));
3369   }
3370 
3371   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3372                      CondV, DAG.getConstant(0, DL, XLenVT),
3373                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3374 }
3375 
3376 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3377   MachineFunction &MF = DAG.getMachineFunction();
3378   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3379 
3380   SDLoc DL(Op);
3381   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3382                                  getPointerTy(MF.getDataLayout()));
3383 
3384   // vastart just stores the address of the VarArgsFrameIndex slot into the
3385   // memory location argument.
3386   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3387   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3388                       MachinePointerInfo(SV));
3389 }
3390 
3391 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3392                                             SelectionDAG &DAG) const {
3393   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3394   MachineFunction &MF = DAG.getMachineFunction();
3395   MachineFrameInfo &MFI = MF.getFrameInfo();
3396   MFI.setFrameAddressIsTaken(true);
3397   Register FrameReg = RI.getFrameRegister(MF);
3398   int XLenInBytes = Subtarget.getXLen() / 8;
3399 
3400   EVT VT = Op.getValueType();
3401   SDLoc DL(Op);
3402   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3403   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3404   while (Depth--) {
3405     int Offset = -(XLenInBytes * 2);
3406     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3407                               DAG.getIntPtrConstant(Offset, DL));
3408     FrameAddr =
3409         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3410   }
3411   return FrameAddr;
3412 }
3413 
3414 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3415                                              SelectionDAG &DAG) const {
3416   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3417   MachineFunction &MF = DAG.getMachineFunction();
3418   MachineFrameInfo &MFI = MF.getFrameInfo();
3419   MFI.setReturnAddressIsTaken(true);
3420   MVT XLenVT = Subtarget.getXLenVT();
3421   int XLenInBytes = Subtarget.getXLen() / 8;
3422 
3423   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3424     return SDValue();
3425 
3426   EVT VT = Op.getValueType();
3427   SDLoc DL(Op);
3428   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3429   if (Depth) {
3430     int Off = -XLenInBytes;
3431     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3432     SDValue Offset = DAG.getConstant(Off, DL, VT);
3433     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3434                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3435                        MachinePointerInfo());
3436   }
3437 
3438   // Return the value of the return address register, marking it an implicit
3439   // live-in.
3440   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3441   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3442 }
3443 
3444 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3445                                                  SelectionDAG &DAG) const {
3446   SDLoc DL(Op);
3447   SDValue Lo = Op.getOperand(0);
3448   SDValue Hi = Op.getOperand(1);
3449   SDValue Shamt = Op.getOperand(2);
3450   EVT VT = Lo.getValueType();
3451 
3452   // if Shamt-XLEN < 0: // Shamt < XLEN
3453   //   Lo = Lo << Shamt
3454   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
3455   // else:
3456   //   Lo = 0
3457   //   Hi = Lo << (Shamt-XLEN)
3458 
3459   SDValue Zero = DAG.getConstant(0, DL, VT);
3460   SDValue One = DAG.getConstant(1, DL, VT);
3461   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3462   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3463   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3464   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3465 
3466   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3467   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3468   SDValue ShiftRightLo =
3469       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3470   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3471   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3472   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3473 
3474   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3475 
3476   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3477   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3478 
3479   SDValue Parts[2] = {Lo, Hi};
3480   return DAG.getMergeValues(Parts, DL);
3481 }
3482 
3483 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3484                                                   bool IsSRA) const {
3485   SDLoc DL(Op);
3486   SDValue Lo = Op.getOperand(0);
3487   SDValue Hi = Op.getOperand(1);
3488   SDValue Shamt = Op.getOperand(2);
3489   EVT VT = Lo.getValueType();
3490 
3491   // SRA expansion:
3492   //   if Shamt-XLEN < 0: // Shamt < XLEN
3493   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3494   //     Hi = Hi >>s Shamt
3495   //   else:
3496   //     Lo = Hi >>s (Shamt-XLEN);
3497   //     Hi = Hi >>s (XLEN-1)
3498   //
3499   // SRL expansion:
3500   //   if Shamt-XLEN < 0: // Shamt < XLEN
3501   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3502   //     Hi = Hi >>u Shamt
3503   //   else:
3504   //     Lo = Hi >>u (Shamt-XLEN);
3505   //     Hi = 0;
3506 
3507   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3508 
3509   SDValue Zero = DAG.getConstant(0, DL, VT);
3510   SDValue One = DAG.getConstant(1, DL, VT);
3511   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3512   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3513   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3514   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3515 
3516   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3517   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3518   SDValue ShiftLeftHi =
3519       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3520   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3521   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3522   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3523   SDValue HiFalse =
3524       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3525 
3526   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3527 
3528   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3529   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3530 
3531   SDValue Parts[2] = {Lo, Hi};
3532   return DAG.getMergeValues(Parts, DL);
3533 }
3534 
3535 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3536 // legal equivalently-sized i8 type, so we can use that as a go-between.
3537 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3538                                                   SelectionDAG &DAG) const {
3539   SDLoc DL(Op);
3540   MVT VT = Op.getSimpleValueType();
3541   SDValue SplatVal = Op.getOperand(0);
3542   // All-zeros or all-ones splats are handled specially.
3543   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
3544     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3545     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
3546   }
3547   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
3548     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3549     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
3550   }
3551   MVT XLenVT = Subtarget.getXLenVT();
3552   assert(SplatVal.getValueType() == XLenVT &&
3553          "Unexpected type for i1 splat value");
3554   MVT InterVT = VT.changeVectorElementType(MVT::i8);
3555   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
3556                          DAG.getConstant(1, DL, XLenVT));
3557   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
3558   SDValue Zero = DAG.getConstant(0, DL, InterVT);
3559   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
3560 }
3561 
3562 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
3563 // illegal (currently only vXi64 RV32).
3564 // FIXME: We could also catch non-constant sign-extended i32 values and lower
3565 // them to SPLAT_VECTOR_I64
3566 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
3567                                                      SelectionDAG &DAG) const {
3568   SDLoc DL(Op);
3569   MVT VecVT = Op.getSimpleValueType();
3570   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
3571          "Unexpected SPLAT_VECTOR_PARTS lowering");
3572 
3573   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
3574   SDValue Lo = Op.getOperand(0);
3575   SDValue Hi = Op.getOperand(1);
3576 
3577   if (VecVT.isFixedLengthVector()) {
3578     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3579     SDLoc DL(Op);
3580     SDValue Mask, VL;
3581     std::tie(Mask, VL) =
3582         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3583 
3584     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
3585     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
3586   }
3587 
3588   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
3589     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
3590     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
3591     // If Hi constant is all the same sign bit as Lo, lower this as a custom
3592     // node in order to try and match RVV vector/scalar instructions.
3593     if ((LoC >> 31) == HiC)
3594       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3595   }
3596 
3597   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
3598   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
3599       isa<ConstantSDNode>(Hi.getOperand(1)) &&
3600       Hi.getConstantOperandVal(1) == 31)
3601     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3602 
3603   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
3604   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
3605                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64));
3606 }
3607 
3608 // Custom-lower extensions from mask vectors by using a vselect either with 1
3609 // for zero/any-extension or -1 for sign-extension:
3610 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
3611 // Note that any-extension is lowered identically to zero-extension.
3612 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
3613                                                 int64_t ExtTrueVal) const {
3614   SDLoc DL(Op);
3615   MVT VecVT = Op.getSimpleValueType();
3616   SDValue Src = Op.getOperand(0);
3617   // Only custom-lower extensions from mask types
3618   assert(Src.getValueType().isVector() &&
3619          Src.getValueType().getVectorElementType() == MVT::i1);
3620 
3621   MVT XLenVT = Subtarget.getXLenVT();
3622   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
3623   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
3624 
3625   if (VecVT.isScalableVector()) {
3626     // Be careful not to introduce illegal scalar types at this stage, and be
3627     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
3628     // illegal and must be expanded. Since we know that the constants are
3629     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
3630     bool IsRV32E64 =
3631         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
3632 
3633     if (!IsRV32E64) {
3634       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
3635       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
3636     } else {
3637       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
3638       SplatTrueVal =
3639           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
3640     }
3641 
3642     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
3643   }
3644 
3645   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3646   MVT I1ContainerVT =
3647       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3648 
3649   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
3650 
3651   SDValue Mask, VL;
3652   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3653 
3654   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
3655   SplatTrueVal =
3656       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
3657   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
3658                                SplatTrueVal, SplatZero, VL);
3659 
3660   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
3661 }
3662 
3663 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3664     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
3665   MVT ExtVT = Op.getSimpleValueType();
3666   // Only custom-lower extensions from fixed-length vector types.
3667   if (!ExtVT.isFixedLengthVector())
3668     return Op;
3669   MVT VT = Op.getOperand(0).getSimpleValueType();
3670   // Grab the canonical container type for the extended type. Infer the smaller
3671   // type from that to ensure the same number of vector elements, as we know
3672   // the LMUL will be sufficient to hold the smaller type.
3673   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
3674   // Get the extended container type manually to ensure the same number of
3675   // vector elements between source and dest.
3676   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
3677                                      ContainerExtVT.getVectorElementCount());
3678 
3679   SDValue Op1 =
3680       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3681 
3682   SDLoc DL(Op);
3683   SDValue Mask, VL;
3684   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3685 
3686   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
3687 
3688   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
3689 }
3690 
3691 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3692 // setcc operation:
3693 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
3694 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
3695                                                   SelectionDAG &DAG) const {
3696   SDLoc DL(Op);
3697   EVT MaskVT = Op.getValueType();
3698   // Only expect to custom-lower truncations to mask types
3699   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
3700          "Unexpected type for vector mask lowering");
3701   SDValue Src = Op.getOperand(0);
3702   MVT VecVT = Src.getSimpleValueType();
3703 
3704   // If this is a fixed vector, we need to convert it to a scalable vector.
3705   MVT ContainerVT = VecVT;
3706   if (VecVT.isFixedLengthVector()) {
3707     ContainerVT = getContainerForFixedLengthVector(VecVT);
3708     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3709   }
3710 
3711   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
3712   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
3713 
3714   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
3715   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
3716 
3717   if (VecVT.isScalableVector()) {
3718     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
3719     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
3720   }
3721 
3722   SDValue Mask, VL;
3723   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3724 
3725   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3726   SDValue Trunc =
3727       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
3728   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
3729                       DAG.getCondCode(ISD::SETNE), Mask, VL);
3730   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
3731 }
3732 
3733 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3734 // first position of a vector, and that vector is slid up to the insert index.
3735 // By limiting the active vector length to index+1 and merging with the
3736 // original vector (with an undisturbed tail policy for elements >= VL), we
3737 // achieve the desired result of leaving all elements untouched except the one
3738 // at VL-1, which is replaced with the desired value.
3739 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3740                                                     SelectionDAG &DAG) const {
3741   SDLoc DL(Op);
3742   MVT VecVT = Op.getSimpleValueType();
3743   SDValue Vec = Op.getOperand(0);
3744   SDValue Val = Op.getOperand(1);
3745   SDValue Idx = Op.getOperand(2);
3746 
3747   if (VecVT.getVectorElementType() == MVT::i1) {
3748     // FIXME: For now we just promote to an i8 vector and insert into that,
3749     // but this is probably not optimal.
3750     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3751     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3752     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
3753     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
3754   }
3755 
3756   MVT ContainerVT = VecVT;
3757   // If the operand is a fixed-length vector, convert to a scalable one.
3758   if (VecVT.isFixedLengthVector()) {
3759     ContainerVT = getContainerForFixedLengthVector(VecVT);
3760     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3761   }
3762 
3763   MVT XLenVT = Subtarget.getXLenVT();
3764 
3765   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3766   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
3767   // Even i64-element vectors on RV32 can be lowered without scalar
3768   // legalization if the most-significant 32 bits of the value are not affected
3769   // by the sign-extension of the lower 32 bits.
3770   // TODO: We could also catch sign extensions of a 32-bit value.
3771   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
3772     const auto *CVal = cast<ConstantSDNode>(Val);
3773     if (isInt<32>(CVal->getSExtValue())) {
3774       IsLegalInsert = true;
3775       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3776     }
3777   }
3778 
3779   SDValue Mask, VL;
3780   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3781 
3782   SDValue ValInVec;
3783 
3784   if (IsLegalInsert) {
3785     unsigned Opc =
3786         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
3787     if (isNullConstant(Idx)) {
3788       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
3789       if (!VecVT.isFixedLengthVector())
3790         return Vec;
3791       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
3792     }
3793     ValInVec =
3794         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
3795   } else {
3796     // On RV32, i64-element vectors must be specially handled to place the
3797     // value at element 0, by using two vslide1up instructions in sequence on
3798     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3799     // this.
3800     SDValue One = DAG.getConstant(1, DL, XLenVT);
3801     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
3802     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
3803     MVT I32ContainerVT =
3804         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
3805     SDValue I32Mask =
3806         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
3807     // Limit the active VL to two.
3808     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
3809     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
3810     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
3811     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
3812                            InsertI64VL);
3813     // First slide in the hi value, then the lo in underneath it.
3814     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3815                            ValHi, I32Mask, InsertI64VL);
3816     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3817                            ValLo, I32Mask, InsertI64VL);
3818     // Bitcast back to the right container type.
3819     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
3820   }
3821 
3822   // Now that the value is in a vector, slide it into position.
3823   SDValue InsertVL =
3824       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
3825   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3826                                 ValInVec, Idx, Mask, InsertVL);
3827   if (!VecVT.isFixedLengthVector())
3828     return Slideup;
3829   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3830 }
3831 
3832 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
3833 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
3834 // types this is done using VMV_X_S to allow us to glean information about the
3835 // sign bits of the result.
3836 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
3837                                                      SelectionDAG &DAG) const {
3838   SDLoc DL(Op);
3839   SDValue Idx = Op.getOperand(1);
3840   SDValue Vec = Op.getOperand(0);
3841   EVT EltVT = Op.getValueType();
3842   MVT VecVT = Vec.getSimpleValueType();
3843   MVT XLenVT = Subtarget.getXLenVT();
3844 
3845   if (VecVT.getVectorElementType() == MVT::i1) {
3846     // FIXME: For now we just promote to an i8 vector and extract from that,
3847     // but this is probably not optimal.
3848     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3849     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3850     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
3851   }
3852 
3853   // If this is a fixed vector, we need to convert it to a scalable vector.
3854   MVT ContainerVT = VecVT;
3855   if (VecVT.isFixedLengthVector()) {
3856     ContainerVT = getContainerForFixedLengthVector(VecVT);
3857     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3858   }
3859 
3860   // If the index is 0, the vector is already in the right position.
3861   if (!isNullConstant(Idx)) {
3862     // Use a VL of 1 to avoid processing more elements than we need.
3863     SDValue VL = DAG.getConstant(1, DL, XLenVT);
3864     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3865     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3866     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3867                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
3868   }
3869 
3870   if (!EltVT.isInteger()) {
3871     // Floating-point extracts are handled in TableGen.
3872     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
3873                        DAG.getConstant(0, DL, XLenVT));
3874   }
3875 
3876   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3877   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
3878 }
3879 
3880 // Some RVV intrinsics may claim that they want an integer operand to be
3881 // promoted or expanded.
3882 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
3883                                           const RISCVSubtarget &Subtarget) {
3884   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3885           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
3886          "Unexpected opcode");
3887 
3888   if (!Subtarget.hasVInstructions())
3889     return SDValue();
3890 
3891   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
3892   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
3893   SDLoc DL(Op);
3894 
3895   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
3896       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
3897   if (!II || !II->SplatOperand)
3898     return SDValue();
3899 
3900   unsigned SplatOp = II->SplatOperand + HasChain;
3901   assert(SplatOp < Op.getNumOperands());
3902 
3903   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
3904   SDValue &ScalarOp = Operands[SplatOp];
3905   MVT OpVT = ScalarOp.getSimpleValueType();
3906   MVT XLenVT = Subtarget.getXLenVT();
3907 
3908   // If this isn't a scalar, or its type is XLenVT we're done.
3909   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
3910     return SDValue();
3911 
3912   // Simplest case is that the operand needs to be promoted to XLenVT.
3913   if (OpVT.bitsLT(XLenVT)) {
3914     // If the operand is a constant, sign extend to increase our chances
3915     // of being able to use a .vi instruction. ANY_EXTEND would become a
3916     // a zero extend and the simm5 check in isel would fail.
3917     // FIXME: Should we ignore the upper bits in isel instead?
3918     unsigned ExtOpc =
3919         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
3920     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
3921     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3922   }
3923 
3924   // Use the previous operand to get the vXi64 VT. The result might be a mask
3925   // VT for compares. Using the previous operand assumes that the previous
3926   // operand will never have a smaller element size than a scalar operand and
3927   // that a widening operation never uses SEW=64.
3928   // NOTE: If this fails the below assert, we can probably just find the
3929   // element count from any operand or result and use it to construct the VT.
3930   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
3931   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
3932 
3933   // The more complex case is when the scalar is larger than XLenVT.
3934   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
3935          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
3936 
3937   // If this is a sign-extended 32-bit constant, we can truncate it and rely
3938   // on the instruction to sign-extend since SEW>XLEN.
3939   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
3940     if (isInt<32>(CVal->getSExtValue())) {
3941       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3942       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3943     }
3944   }
3945 
3946   // We need to convert the scalar to a splat vector.
3947   // FIXME: Can we implicitly truncate the scalar if it is known to
3948   // be sign extended?
3949   // VL should be the last operand.
3950   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
3951   assert(VL.getValueType() == XLenVT);
3952   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
3953   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3954 }
3955 
3956 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3957                                                      SelectionDAG &DAG) const {
3958   unsigned IntNo = Op.getConstantOperandVal(0);
3959   SDLoc DL(Op);
3960   MVT XLenVT = Subtarget.getXLenVT();
3961 
3962   switch (IntNo) {
3963   default:
3964     break; // Don't custom lower most intrinsics.
3965   case Intrinsic::thread_pointer: {
3966     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3967     return DAG.getRegister(RISCV::X4, PtrVT);
3968   }
3969   case Intrinsic::riscv_orc_b:
3970     // Lower to the GORCI encoding for orc.b.
3971     return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
3972                        DAG.getConstant(7, DL, XLenVT));
3973   case Intrinsic::riscv_grev:
3974   case Intrinsic::riscv_gorc: {
3975     unsigned Opc =
3976         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
3977     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3978   }
3979   case Intrinsic::riscv_shfl:
3980   case Intrinsic::riscv_unshfl: {
3981     unsigned Opc =
3982         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
3983     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3984   }
3985   case Intrinsic::riscv_bcompress:
3986   case Intrinsic::riscv_bdecompress: {
3987     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
3988                                                        : RISCVISD::BDECOMPRESS;
3989     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3990   }
3991   case Intrinsic::riscv_vmv_x_s:
3992     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
3993     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
3994                        Op.getOperand(1));
3995   case Intrinsic::riscv_vmv_v_x:
3996     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
3997                             Op.getSimpleValueType(), DL, DAG, Subtarget);
3998   case Intrinsic::riscv_vfmv_v_f:
3999     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4000                        Op.getOperand(1), Op.getOperand(2));
4001   case Intrinsic::riscv_vmv_s_x: {
4002     SDValue Scalar = Op.getOperand(2);
4003 
4004     if (Scalar.getValueType().bitsLE(XLenVT)) {
4005       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4006       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4007                          Op.getOperand(1), Scalar, Op.getOperand(3));
4008     }
4009 
4010     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4011 
4012     // This is an i64 value that lives in two scalar registers. We have to
4013     // insert this in a convoluted way. First we build vXi64 splat containing
4014     // the/ two values that we assemble using some bit math. Next we'll use
4015     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4016     // to merge element 0 from our splat into the source vector.
4017     // FIXME: This is probably not the best way to do this, but it is
4018     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4019     // point.
4020     //   sw lo, (a0)
4021     //   sw hi, 4(a0)
4022     //   vlse vX, (a0)
4023     //
4024     //   vid.v      vVid
4025     //   vmseq.vx   mMask, vVid, 0
4026     //   vmerge.vvm vDest, vSrc, vVal, mMask
4027     MVT VT = Op.getSimpleValueType();
4028     SDValue Vec = Op.getOperand(1);
4029     SDValue VL = Op.getOperand(3);
4030 
4031     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
4032     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4033                                       DAG.getConstant(0, DL, MVT::i32), VL);
4034 
4035     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4036     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4037     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4038     SDValue SelectCond =
4039         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4040                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4041     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4042                        Vec, VL);
4043   }
4044   case Intrinsic::riscv_vslide1up:
4045   case Intrinsic::riscv_vslide1down:
4046   case Intrinsic::riscv_vslide1up_mask:
4047   case Intrinsic::riscv_vslide1down_mask: {
4048     // We need to special case these when the scalar is larger than XLen.
4049     unsigned NumOps = Op.getNumOperands();
4050     bool IsMasked = NumOps == 7;
4051     unsigned OpOffset = IsMasked ? 1 : 0;
4052     SDValue Scalar = Op.getOperand(2 + OpOffset);
4053     if (Scalar.getValueType().bitsLE(XLenVT))
4054       break;
4055 
4056     // Splatting a sign extended constant is fine.
4057     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
4058       if (isInt<32>(CVal->getSExtValue()))
4059         break;
4060 
4061     MVT VT = Op.getSimpleValueType();
4062     assert(VT.getVectorElementType() == MVT::i64 &&
4063            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
4064 
4065     // Convert the vector source to the equivalent nxvXi32 vector.
4066     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4067     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
4068 
4069     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4070                                    DAG.getConstant(0, DL, XLenVT));
4071     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4072                                    DAG.getConstant(1, DL, XLenVT));
4073 
4074     // Double the VL since we halved SEW.
4075     SDValue VL = Op.getOperand(NumOps - (1 + OpOffset));
4076     SDValue I32VL =
4077         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4078 
4079     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4080     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
4081 
4082     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4083     // instructions.
4084     if (IntNo == Intrinsic::riscv_vslide1up ||
4085         IntNo == Intrinsic::riscv_vslide1up_mask) {
4086       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
4087                         I32Mask, I32VL);
4088       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
4089                         I32Mask, I32VL);
4090     } else {
4091       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
4092                         I32Mask, I32VL);
4093       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
4094                         I32Mask, I32VL);
4095     }
4096 
4097     // Convert back to nxvXi64.
4098     Vec = DAG.getBitcast(VT, Vec);
4099 
4100     if (!IsMasked)
4101       return Vec;
4102 
4103     // Apply mask after the operation.
4104     SDValue Mask = Op.getOperand(NumOps - 3);
4105     SDValue MaskedOff = Op.getOperand(1);
4106     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
4107   }
4108   }
4109 
4110   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4111 }
4112 
4113 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4114                                                     SelectionDAG &DAG) const {
4115   unsigned IntNo = Op.getConstantOperandVal(1);
4116   switch (IntNo) {
4117   default:
4118     break;
4119   case Intrinsic::riscv_masked_strided_load: {
4120     SDLoc DL(Op);
4121     MVT XLenVT = Subtarget.getXLenVT();
4122 
4123     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4124     // the selection of the masked intrinsics doesn't do this for us.
4125     SDValue Mask = Op.getOperand(5);
4126     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4127 
4128     MVT VT = Op->getSimpleValueType(0);
4129     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4130 
4131     SDValue PassThru = Op.getOperand(2);
4132     if (!IsUnmasked) {
4133       MVT MaskVT =
4134           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4135       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4136       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4137     }
4138 
4139     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4140 
4141     SDValue IntID = DAG.getTargetConstant(
4142         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4143         XLenVT);
4144 
4145     auto *Load = cast<MemIntrinsicSDNode>(Op);
4146     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4147     if (!IsUnmasked)
4148       Ops.push_back(PassThru);
4149     Ops.push_back(Op.getOperand(3)); // Ptr
4150     Ops.push_back(Op.getOperand(4)); // Stride
4151     if (!IsUnmasked)
4152       Ops.push_back(Mask);
4153     Ops.push_back(VL);
4154     if (!IsUnmasked) {
4155       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4156       Ops.push_back(Policy);
4157     }
4158 
4159     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4160     SDValue Result =
4161         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4162                                 Load->getMemoryVT(), Load->getMemOperand());
4163     SDValue Chain = Result.getValue(1);
4164     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4165     return DAG.getMergeValues({Result, Chain}, DL);
4166   }
4167   }
4168 
4169   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4170 }
4171 
4172 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4173                                                  SelectionDAG &DAG) const {
4174   unsigned IntNo = Op.getConstantOperandVal(1);
4175   switch (IntNo) {
4176   default:
4177     break;
4178   case Intrinsic::riscv_masked_strided_store: {
4179     SDLoc DL(Op);
4180     MVT XLenVT = Subtarget.getXLenVT();
4181 
4182     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4183     // the selection of the masked intrinsics doesn't do this for us.
4184     SDValue Mask = Op.getOperand(5);
4185     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4186 
4187     SDValue Val = Op.getOperand(2);
4188     MVT VT = Val.getSimpleValueType();
4189     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4190 
4191     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4192     if (!IsUnmasked) {
4193       MVT MaskVT =
4194           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4195       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4196     }
4197 
4198     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4199 
4200     SDValue IntID = DAG.getTargetConstant(
4201         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4202         XLenVT);
4203 
4204     auto *Store = cast<MemIntrinsicSDNode>(Op);
4205     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4206     Ops.push_back(Val);
4207     Ops.push_back(Op.getOperand(3)); // Ptr
4208     Ops.push_back(Op.getOperand(4)); // Stride
4209     if (!IsUnmasked)
4210       Ops.push_back(Mask);
4211     Ops.push_back(VL);
4212 
4213     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4214                                    Ops, Store->getMemoryVT(),
4215                                    Store->getMemOperand());
4216   }
4217   }
4218 
4219   return SDValue();
4220 }
4221 
4222 static MVT getLMUL1VT(MVT VT) {
4223   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4224          "Unexpected vector MVT");
4225   return MVT::getScalableVectorVT(
4226       VT.getVectorElementType(),
4227       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4228 }
4229 
4230 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4231   switch (ISDOpcode) {
4232   default:
4233     llvm_unreachable("Unhandled reduction");
4234   case ISD::VECREDUCE_ADD:
4235     return RISCVISD::VECREDUCE_ADD_VL;
4236   case ISD::VECREDUCE_UMAX:
4237     return RISCVISD::VECREDUCE_UMAX_VL;
4238   case ISD::VECREDUCE_SMAX:
4239     return RISCVISD::VECREDUCE_SMAX_VL;
4240   case ISD::VECREDUCE_UMIN:
4241     return RISCVISD::VECREDUCE_UMIN_VL;
4242   case ISD::VECREDUCE_SMIN:
4243     return RISCVISD::VECREDUCE_SMIN_VL;
4244   case ISD::VECREDUCE_AND:
4245     return RISCVISD::VECREDUCE_AND_VL;
4246   case ISD::VECREDUCE_OR:
4247     return RISCVISD::VECREDUCE_OR_VL;
4248   case ISD::VECREDUCE_XOR:
4249     return RISCVISD::VECREDUCE_XOR_VL;
4250   }
4251 }
4252 
4253 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
4254                                                          SelectionDAG &DAG,
4255                                                          bool IsVP) const {
4256   SDLoc DL(Op);
4257   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
4258   MVT VecVT = Vec.getSimpleValueType();
4259   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
4260           Op.getOpcode() == ISD::VECREDUCE_OR ||
4261           Op.getOpcode() == ISD::VECREDUCE_XOR ||
4262           Op.getOpcode() == ISD::VP_REDUCE_AND ||
4263           Op.getOpcode() == ISD::VP_REDUCE_OR ||
4264           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
4265          "Unexpected reduction lowering");
4266 
4267   MVT XLenVT = Subtarget.getXLenVT();
4268   assert(Op.getValueType() == XLenVT &&
4269          "Expected reduction output to be legalized to XLenVT");
4270 
4271   MVT ContainerVT = VecVT;
4272   if (VecVT.isFixedLengthVector()) {
4273     ContainerVT = getContainerForFixedLengthVector(VecVT);
4274     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4275   }
4276 
4277   SDValue Mask, VL;
4278   if (IsVP) {
4279     Mask = Op.getOperand(2);
4280     VL = Op.getOperand(3);
4281   } else {
4282     std::tie(Mask, VL) =
4283         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4284   }
4285 
4286   unsigned BaseOpc;
4287   ISD::CondCode CC;
4288   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4289 
4290   switch (Op.getOpcode()) {
4291   default:
4292     llvm_unreachable("Unhandled reduction");
4293   case ISD::VECREDUCE_AND:
4294   case ISD::VP_REDUCE_AND: {
4295     // vcpop ~x == 0
4296     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
4297     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
4298     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4299     CC = ISD::SETEQ;
4300     BaseOpc = ISD::AND;
4301     break;
4302   }
4303   case ISD::VECREDUCE_OR:
4304   case ISD::VP_REDUCE_OR:
4305     // vcpop x != 0
4306     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4307     CC = ISD::SETNE;
4308     BaseOpc = ISD::OR;
4309     break;
4310   case ISD::VECREDUCE_XOR:
4311   case ISD::VP_REDUCE_XOR: {
4312     // ((vcpop x) & 1) != 0
4313     SDValue One = DAG.getConstant(1, DL, XLenVT);
4314     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4315     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
4316     CC = ISD::SETNE;
4317     BaseOpc = ISD::XOR;
4318     break;
4319   }
4320   }
4321 
4322   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
4323 
4324   if (!IsVP)
4325     return SetCC;
4326 
4327   // Now include the start value in the operation.
4328   // Note that we must return the start value when no elements are operated
4329   // upon. The vcpop instructions we've emitted in each case above will return
4330   // 0 for an inactive vector, and so we've already received the neutral value:
4331   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
4332   // can simply include the start value.
4333   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
4334 }
4335 
4336 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
4337                                             SelectionDAG &DAG) const {
4338   SDLoc DL(Op);
4339   SDValue Vec = Op.getOperand(0);
4340   EVT VecEVT = Vec.getValueType();
4341 
4342   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
4343 
4344   // Due to ordering in legalize types we may have a vector type that needs to
4345   // be split. Do that manually so we can get down to a legal type.
4346   while (getTypeAction(*DAG.getContext(), VecEVT) ==
4347          TargetLowering::TypeSplitVector) {
4348     SDValue Lo, Hi;
4349     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
4350     VecEVT = Lo.getValueType();
4351     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
4352   }
4353 
4354   // TODO: The type may need to be widened rather than split. Or widened before
4355   // it can be split.
4356   if (!isTypeLegal(VecEVT))
4357     return SDValue();
4358 
4359   MVT VecVT = VecEVT.getSimpleVT();
4360   MVT VecEltVT = VecVT.getVectorElementType();
4361   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
4362 
4363   MVT ContainerVT = VecVT;
4364   if (VecVT.isFixedLengthVector()) {
4365     ContainerVT = getContainerForFixedLengthVector(VecVT);
4366     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4367   }
4368 
4369   MVT M1VT = getLMUL1VT(ContainerVT);
4370 
4371   SDValue Mask, VL;
4372   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4373 
4374   // FIXME: This is a VLMAX splat which might be too large and can prevent
4375   // vsetvli removal.
4376   SDValue NeutralElem =
4377       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
4378   SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
4379   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
4380                                   IdentitySplat, Mask, VL);
4381   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4382                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4383   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4384 }
4385 
4386 // Given a reduction op, this function returns the matching reduction opcode,
4387 // the vector SDValue and the scalar SDValue required to lower this to a
4388 // RISCVISD node.
4389 static std::tuple<unsigned, SDValue, SDValue>
4390 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
4391   SDLoc DL(Op);
4392   auto Flags = Op->getFlags();
4393   unsigned Opcode = Op.getOpcode();
4394   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
4395   switch (Opcode) {
4396   default:
4397     llvm_unreachable("Unhandled reduction");
4398   case ISD::VECREDUCE_FADD:
4399     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
4400                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4401   case ISD::VECREDUCE_SEQ_FADD:
4402     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
4403                            Op.getOperand(0));
4404   case ISD::VECREDUCE_FMIN:
4405     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
4406                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4407   case ISD::VECREDUCE_FMAX:
4408     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
4409                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4410   }
4411 }
4412 
4413 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
4414                                               SelectionDAG &DAG) const {
4415   SDLoc DL(Op);
4416   MVT VecEltVT = Op.getSimpleValueType();
4417 
4418   unsigned RVVOpcode;
4419   SDValue VectorVal, ScalarVal;
4420   std::tie(RVVOpcode, VectorVal, ScalarVal) =
4421       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
4422   MVT VecVT = VectorVal.getSimpleValueType();
4423 
4424   MVT ContainerVT = VecVT;
4425   if (VecVT.isFixedLengthVector()) {
4426     ContainerVT = getContainerForFixedLengthVector(VecVT);
4427     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
4428   }
4429 
4430   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
4431 
4432   SDValue Mask, VL;
4433   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4434 
4435   // FIXME: This is a VLMAX splat which might be too large and can prevent
4436   // vsetvli removal.
4437   SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
4438   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
4439                                   VectorVal, ScalarSplat, Mask, VL);
4440   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4441                      DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4442 }
4443 
4444 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
4445   switch (ISDOpcode) {
4446   default:
4447     llvm_unreachable("Unhandled reduction");
4448   case ISD::VP_REDUCE_ADD:
4449     return RISCVISD::VECREDUCE_ADD_VL;
4450   case ISD::VP_REDUCE_UMAX:
4451     return RISCVISD::VECREDUCE_UMAX_VL;
4452   case ISD::VP_REDUCE_SMAX:
4453     return RISCVISD::VECREDUCE_SMAX_VL;
4454   case ISD::VP_REDUCE_UMIN:
4455     return RISCVISD::VECREDUCE_UMIN_VL;
4456   case ISD::VP_REDUCE_SMIN:
4457     return RISCVISD::VECREDUCE_SMIN_VL;
4458   case ISD::VP_REDUCE_AND:
4459     return RISCVISD::VECREDUCE_AND_VL;
4460   case ISD::VP_REDUCE_OR:
4461     return RISCVISD::VECREDUCE_OR_VL;
4462   case ISD::VP_REDUCE_XOR:
4463     return RISCVISD::VECREDUCE_XOR_VL;
4464   case ISD::VP_REDUCE_FADD:
4465     return RISCVISD::VECREDUCE_FADD_VL;
4466   case ISD::VP_REDUCE_SEQ_FADD:
4467     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
4468   case ISD::VP_REDUCE_FMAX:
4469     return RISCVISD::VECREDUCE_FMAX_VL;
4470   case ISD::VP_REDUCE_FMIN:
4471     return RISCVISD::VECREDUCE_FMIN_VL;
4472   }
4473 }
4474 
4475 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
4476                                            SelectionDAG &DAG) const {
4477   SDLoc DL(Op);
4478   SDValue Vec = Op.getOperand(1);
4479   EVT VecEVT = Vec.getValueType();
4480 
4481   // TODO: The type may need to be widened rather than split. Or widened before
4482   // it can be split.
4483   if (!isTypeLegal(VecEVT))
4484     return SDValue();
4485 
4486   MVT VecVT = VecEVT.getSimpleVT();
4487   MVT VecEltVT = VecVT.getVectorElementType();
4488   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
4489 
4490   MVT ContainerVT = VecVT;
4491   if (VecVT.isFixedLengthVector()) {
4492     ContainerVT = getContainerForFixedLengthVector(VecVT);
4493     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4494   }
4495 
4496   SDValue VL = Op.getOperand(3);
4497   SDValue Mask = Op.getOperand(2);
4498 
4499   MVT M1VT = getLMUL1VT(ContainerVT);
4500   MVT XLenVT = Subtarget.getXLenVT();
4501   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
4502 
4503   // FIXME: This is a VLMAX splat which might be too large and can prevent
4504   // vsetvli removal.
4505   SDValue StartSplat = DAG.getSplatVector(M1VT, DL, Op.getOperand(0));
4506   SDValue Reduction =
4507       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
4508   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
4509                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4510   if (!VecVT.isInteger())
4511     return Elt0;
4512   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4513 }
4514 
4515 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
4516                                                    SelectionDAG &DAG) const {
4517   SDValue Vec = Op.getOperand(0);
4518   SDValue SubVec = Op.getOperand(1);
4519   MVT VecVT = Vec.getSimpleValueType();
4520   MVT SubVecVT = SubVec.getSimpleValueType();
4521 
4522   SDLoc DL(Op);
4523   MVT XLenVT = Subtarget.getXLenVT();
4524   unsigned OrigIdx = Op.getConstantOperandVal(2);
4525   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4526 
4527   // We don't have the ability to slide mask vectors up indexed by their i1
4528   // elements; the smallest we can do is i8. Often we are able to bitcast to
4529   // equivalent i8 vectors. Note that when inserting a fixed-length vector
4530   // into a scalable one, we might not necessarily have enough scalable
4531   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
4532   if (SubVecVT.getVectorElementType() == MVT::i1 &&
4533       (OrigIdx != 0 || !Vec.isUndef())) {
4534     if (VecVT.getVectorMinNumElements() >= 8 &&
4535         SubVecVT.getVectorMinNumElements() >= 8) {
4536       assert(OrigIdx % 8 == 0 && "Invalid index");
4537       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4538              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4539              "Unexpected mask vector lowering");
4540       OrigIdx /= 8;
4541       SubVecVT =
4542           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4543                            SubVecVT.isScalableVector());
4544       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4545                                VecVT.isScalableVector());
4546       Vec = DAG.getBitcast(VecVT, Vec);
4547       SubVec = DAG.getBitcast(SubVecVT, SubVec);
4548     } else {
4549       // We can't slide this mask vector up indexed by its i1 elements.
4550       // This poses a problem when we wish to insert a scalable vector which
4551       // can't be re-expressed as a larger type. Just choose the slow path and
4552       // extend to a larger type, then truncate back down.
4553       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4554       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4555       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4556       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
4557       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
4558                         Op.getOperand(2));
4559       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
4560       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
4561     }
4562   }
4563 
4564   // If the subvector vector is a fixed-length type, we cannot use subregister
4565   // manipulation to simplify the codegen; we don't know which register of a
4566   // LMUL group contains the specific subvector as we only know the minimum
4567   // register size. Therefore we must slide the vector group up the full
4568   // amount.
4569   if (SubVecVT.isFixedLengthVector()) {
4570     if (OrigIdx == 0 && Vec.isUndef())
4571       return Op;
4572     MVT ContainerVT = VecVT;
4573     if (VecVT.isFixedLengthVector()) {
4574       ContainerVT = getContainerForFixedLengthVector(VecVT);
4575       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4576     }
4577     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
4578                          DAG.getUNDEF(ContainerVT), SubVec,
4579                          DAG.getConstant(0, DL, XLenVT));
4580     SDValue Mask =
4581         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4582     // Set the vector length to only the number of elements we care about. Note
4583     // that for slideup this includes the offset.
4584     SDValue VL =
4585         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
4586     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4587     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4588                                   SubVec, SlideupAmt, Mask, VL);
4589     if (VecVT.isFixedLengthVector())
4590       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4591     return DAG.getBitcast(Op.getValueType(), Slideup);
4592   }
4593 
4594   unsigned SubRegIdx, RemIdx;
4595   std::tie(SubRegIdx, RemIdx) =
4596       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4597           VecVT, SubVecVT, OrigIdx, TRI);
4598 
4599   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
4600   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
4601                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
4602                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
4603 
4604   // 1. If the Idx has been completely eliminated and this subvector's size is
4605   // a vector register or a multiple thereof, or the surrounding elements are
4606   // undef, then this is a subvector insert which naturally aligns to a vector
4607   // register. These can easily be handled using subregister manipulation.
4608   // 2. If the subvector is smaller than a vector register, then the insertion
4609   // must preserve the undisturbed elements of the register. We do this by
4610   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
4611   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
4612   // subvector within the vector register, and an INSERT_SUBVECTOR of that
4613   // LMUL=1 type back into the larger vector (resolving to another subregister
4614   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
4615   // to avoid allocating a large register group to hold our subvector.
4616   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
4617     return Op;
4618 
4619   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
4620   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
4621   // (in our case undisturbed). This means we can set up a subvector insertion
4622   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
4623   // size of the subvector.
4624   MVT InterSubVT = VecVT;
4625   SDValue AlignedExtract = Vec;
4626   unsigned AlignedIdx = OrigIdx - RemIdx;
4627   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4628     InterSubVT = getLMUL1VT(VecVT);
4629     // Extract a subvector equal to the nearest full vector register type. This
4630     // should resolve to a EXTRACT_SUBREG instruction.
4631     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4632                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
4633   }
4634 
4635   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4636   // For scalable vectors this must be further multiplied by vscale.
4637   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
4638 
4639   SDValue Mask, VL;
4640   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4641 
4642   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
4643   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
4644   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
4645   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
4646 
4647   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
4648                        DAG.getUNDEF(InterSubVT), SubVec,
4649                        DAG.getConstant(0, DL, XLenVT));
4650 
4651   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
4652                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
4653 
4654   // If required, insert this subvector back into the correct vector register.
4655   // This should resolve to an INSERT_SUBREG instruction.
4656   if (VecVT.bitsGT(InterSubVT))
4657     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
4658                           DAG.getConstant(AlignedIdx, DL, XLenVT));
4659 
4660   // We might have bitcast from a mask type: cast back to the original type if
4661   // required.
4662   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
4663 }
4664 
4665 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
4666                                                     SelectionDAG &DAG) const {
4667   SDValue Vec = Op.getOperand(0);
4668   MVT SubVecVT = Op.getSimpleValueType();
4669   MVT VecVT = Vec.getSimpleValueType();
4670 
4671   SDLoc DL(Op);
4672   MVT XLenVT = Subtarget.getXLenVT();
4673   unsigned OrigIdx = Op.getConstantOperandVal(1);
4674   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4675 
4676   // We don't have the ability to slide mask vectors down indexed by their i1
4677   // elements; the smallest we can do is i8. Often we are able to bitcast to
4678   // equivalent i8 vectors. Note that when extracting a fixed-length vector
4679   // from a scalable one, we might not necessarily have enough scalable
4680   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
4681   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
4682     if (VecVT.getVectorMinNumElements() >= 8 &&
4683         SubVecVT.getVectorMinNumElements() >= 8) {
4684       assert(OrigIdx % 8 == 0 && "Invalid index");
4685       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4686              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4687              "Unexpected mask vector lowering");
4688       OrigIdx /= 8;
4689       SubVecVT =
4690           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4691                            SubVecVT.isScalableVector());
4692       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4693                                VecVT.isScalableVector());
4694       Vec = DAG.getBitcast(VecVT, Vec);
4695     } else {
4696       // We can't slide this mask vector down, indexed by its i1 elements.
4697       // This poses a problem when we wish to extract a scalable vector which
4698       // can't be re-expressed as a larger type. Just choose the slow path and
4699       // extend to a larger type, then truncate back down.
4700       // TODO: We could probably improve this when extracting certain fixed
4701       // from fixed, where we can extract as i8 and shift the correct element
4702       // right to reach the desired subvector?
4703       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4704       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4705       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4706       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
4707                         Op.getOperand(1));
4708       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
4709       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
4710     }
4711   }
4712 
4713   // If the subvector vector is a fixed-length type, we cannot use subregister
4714   // manipulation to simplify the codegen; we don't know which register of a
4715   // LMUL group contains the specific subvector as we only know the minimum
4716   // register size. Therefore we must slide the vector group down the full
4717   // amount.
4718   if (SubVecVT.isFixedLengthVector()) {
4719     // With an index of 0 this is a cast-like subvector, which can be performed
4720     // with subregister operations.
4721     if (OrigIdx == 0)
4722       return Op;
4723     MVT ContainerVT = VecVT;
4724     if (VecVT.isFixedLengthVector()) {
4725       ContainerVT = getContainerForFixedLengthVector(VecVT);
4726       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4727     }
4728     SDValue Mask =
4729         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4730     // Set the vector length to only the number of elements we care about. This
4731     // avoids sliding down elements we're going to discard straight away.
4732     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
4733     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4734     SDValue Slidedown =
4735         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4736                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
4737     // Now we can use a cast-like subvector extract to get the result.
4738     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4739                             DAG.getConstant(0, DL, XLenVT));
4740     return DAG.getBitcast(Op.getValueType(), Slidedown);
4741   }
4742 
4743   unsigned SubRegIdx, RemIdx;
4744   std::tie(SubRegIdx, RemIdx) =
4745       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4746           VecVT, SubVecVT, OrigIdx, TRI);
4747 
4748   // If the Idx has been completely eliminated then this is a subvector extract
4749   // which naturally aligns to a vector register. These can easily be handled
4750   // using subregister manipulation.
4751   if (RemIdx == 0)
4752     return Op;
4753 
4754   // Else we must shift our vector register directly to extract the subvector.
4755   // Do this using VSLIDEDOWN.
4756 
4757   // If the vector type is an LMUL-group type, extract a subvector equal to the
4758   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
4759   // instruction.
4760   MVT InterSubVT = VecVT;
4761   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4762     InterSubVT = getLMUL1VT(VecVT);
4763     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4764                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
4765   }
4766 
4767   // Slide this vector register down by the desired number of elements in order
4768   // to place the desired subvector starting at element 0.
4769   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4770   // For scalable vectors this must be further multiplied by vscale.
4771   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
4772 
4773   SDValue Mask, VL;
4774   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
4775   SDValue Slidedown =
4776       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
4777                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
4778 
4779   // Now the vector is in the right position, extract our final subvector. This
4780   // should resolve to a COPY.
4781   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4782                           DAG.getConstant(0, DL, XLenVT));
4783 
4784   // We might have bitcast from a mask type: cast back to the original type if
4785   // required.
4786   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
4787 }
4788 
4789 // Lower step_vector to the vid instruction. Any non-identity step value must
4790 // be accounted for my manual expansion.
4791 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
4792                                               SelectionDAG &DAG) const {
4793   SDLoc DL(Op);
4794   MVT VT = Op.getSimpleValueType();
4795   MVT XLenVT = Subtarget.getXLenVT();
4796   SDValue Mask, VL;
4797   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
4798   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4799   uint64_t StepValImm = Op.getConstantOperandVal(0);
4800   if (StepValImm != 1) {
4801     if (isPowerOf2_64(StepValImm)) {
4802       SDValue StepVal =
4803           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4804                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
4805       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
4806     } else {
4807       SDValue StepVal = lowerScalarSplat(
4808           DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT,
4809           DL, DAG, Subtarget);
4810       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
4811     }
4812   }
4813   return StepVec;
4814 }
4815 
4816 // Implement vector_reverse using vrgather.vv with indices determined by
4817 // subtracting the id of each element from (VLMAX-1). This will convert
4818 // the indices like so:
4819 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
4820 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
4821 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
4822                                                  SelectionDAG &DAG) const {
4823   SDLoc DL(Op);
4824   MVT VecVT = Op.getSimpleValueType();
4825   unsigned EltSize = VecVT.getScalarSizeInBits();
4826   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
4827 
4828   unsigned MaxVLMAX = 0;
4829   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
4830   if (VectorBitsMax != 0)
4831     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
4832 
4833   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
4834   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
4835 
4836   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
4837   // to use vrgatherei16.vv.
4838   // TODO: It's also possible to use vrgatherei16.vv for other types to
4839   // decrease register width for the index calculation.
4840   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
4841     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
4842     // Reverse each half, then reassemble them in reverse order.
4843     // NOTE: It's also possible that after splitting that VLMAX no longer
4844     // requires vrgatherei16.vv.
4845     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
4846       SDValue Lo, Hi;
4847       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4848       EVT LoVT, HiVT;
4849       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
4850       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
4851       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
4852       // Reassemble the low and high pieces reversed.
4853       // FIXME: This is a CONCAT_VECTORS.
4854       SDValue Res =
4855           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
4856                       DAG.getIntPtrConstant(0, DL));
4857       return DAG.getNode(
4858           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
4859           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
4860     }
4861 
4862     // Just promote the int type to i16 which will double the LMUL.
4863     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
4864     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
4865   }
4866 
4867   MVT XLenVT = Subtarget.getXLenVT();
4868   SDValue Mask, VL;
4869   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4870 
4871   // Calculate VLMAX-1 for the desired SEW.
4872   unsigned MinElts = VecVT.getVectorMinNumElements();
4873   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
4874                               DAG.getConstant(MinElts, DL, XLenVT));
4875   SDValue VLMinus1 =
4876       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
4877 
4878   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
4879   bool IsRV32E64 =
4880       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
4881   SDValue SplatVL;
4882   if (!IsRV32E64)
4883     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
4884   else
4885     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
4886 
4887   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
4888   SDValue Indices =
4889       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
4890 
4891   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
4892 }
4893 
4894 SDValue
4895 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
4896                                                      SelectionDAG &DAG) const {
4897   SDLoc DL(Op);
4898   auto *Load = cast<LoadSDNode>(Op);
4899 
4900   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4901                                         Load->getMemoryVT(),
4902                                         *Load->getMemOperand()) &&
4903          "Expecting a correctly-aligned load");
4904 
4905   MVT VT = Op.getSimpleValueType();
4906   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4907 
4908   SDValue VL =
4909       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4910 
4911   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4912   SDValue NewLoad = DAG.getMemIntrinsicNode(
4913       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
4914       Load->getMemoryVT(), Load->getMemOperand());
4915 
4916   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
4917   return DAG.getMergeValues({Result, Load->getChain()}, DL);
4918 }
4919 
4920 SDValue
4921 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
4922                                                       SelectionDAG &DAG) const {
4923   SDLoc DL(Op);
4924   auto *Store = cast<StoreSDNode>(Op);
4925 
4926   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4927                                         Store->getMemoryVT(),
4928                                         *Store->getMemOperand()) &&
4929          "Expecting a correctly-aligned store");
4930 
4931   SDValue StoreVal = Store->getValue();
4932   MVT VT = StoreVal.getSimpleValueType();
4933 
4934   // If the size less than a byte, we need to pad with zeros to make a byte.
4935   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
4936     VT = MVT::v8i1;
4937     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
4938                            DAG.getConstant(0, DL, VT), StoreVal,
4939                            DAG.getIntPtrConstant(0, DL));
4940   }
4941 
4942   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4943 
4944   SDValue VL =
4945       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4946 
4947   SDValue NewValue =
4948       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
4949   return DAG.getMemIntrinsicNode(
4950       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
4951       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
4952       Store->getMemoryVT(), Store->getMemOperand());
4953 }
4954 
4955 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
4956                                              SelectionDAG &DAG) const {
4957   SDLoc DL(Op);
4958   MVT VT = Op.getSimpleValueType();
4959 
4960   const auto *MemSD = cast<MemSDNode>(Op);
4961   EVT MemVT = MemSD->getMemoryVT();
4962   MachineMemOperand *MMO = MemSD->getMemOperand();
4963   SDValue Chain = MemSD->getChain();
4964   SDValue BasePtr = MemSD->getBasePtr();
4965 
4966   SDValue Mask, PassThru, VL;
4967   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
4968     Mask = VPLoad->getMask();
4969     PassThru = DAG.getUNDEF(VT);
4970     VL = VPLoad->getVectorLength();
4971   } else {
4972     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
4973     Mask = MLoad->getMask();
4974     PassThru = MLoad->getPassThru();
4975   }
4976 
4977   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4978 
4979   MVT XLenVT = Subtarget.getXLenVT();
4980 
4981   MVT ContainerVT = VT;
4982   if (VT.isFixedLengthVector()) {
4983     ContainerVT = getContainerForFixedLengthVector(VT);
4984     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4985     if (!IsUnmasked) {
4986       MVT MaskVT =
4987           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4988       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4989     }
4990   }
4991 
4992   if (!VL)
4993     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
4994 
4995   unsigned IntID =
4996       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
4997   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
4998   if (!IsUnmasked)
4999     Ops.push_back(PassThru);
5000   Ops.push_back(BasePtr);
5001   if (!IsUnmasked)
5002     Ops.push_back(Mask);
5003   Ops.push_back(VL);
5004   if (!IsUnmasked)
5005     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5006 
5007   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5008 
5009   SDValue Result =
5010       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5011   Chain = Result.getValue(1);
5012 
5013   if (VT.isFixedLengthVector())
5014     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5015 
5016   return DAG.getMergeValues({Result, Chain}, DL);
5017 }
5018 
5019 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5020                                               SelectionDAG &DAG) const {
5021   SDLoc DL(Op);
5022 
5023   const auto *MemSD = cast<MemSDNode>(Op);
5024   EVT MemVT = MemSD->getMemoryVT();
5025   MachineMemOperand *MMO = MemSD->getMemOperand();
5026   SDValue Chain = MemSD->getChain();
5027   SDValue BasePtr = MemSD->getBasePtr();
5028   SDValue Val, Mask, VL;
5029 
5030   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5031     Val = VPStore->getValue();
5032     Mask = VPStore->getMask();
5033     VL = VPStore->getVectorLength();
5034   } else {
5035     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5036     Val = MStore->getValue();
5037     Mask = MStore->getMask();
5038   }
5039 
5040   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5041 
5042   MVT VT = Val.getSimpleValueType();
5043   MVT XLenVT = Subtarget.getXLenVT();
5044 
5045   MVT ContainerVT = VT;
5046   if (VT.isFixedLengthVector()) {
5047     ContainerVT = getContainerForFixedLengthVector(VT);
5048 
5049     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5050     if (!IsUnmasked) {
5051       MVT MaskVT =
5052           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5053       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5054     }
5055   }
5056 
5057   if (!VL)
5058     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5059 
5060   unsigned IntID =
5061       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5062   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5063   Ops.push_back(Val);
5064   Ops.push_back(BasePtr);
5065   if (!IsUnmasked)
5066     Ops.push_back(Mask);
5067   Ops.push_back(VL);
5068 
5069   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5070                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5071 }
5072 
5073 SDValue
5074 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5075                                                       SelectionDAG &DAG) const {
5076   MVT InVT = Op.getOperand(0).getSimpleValueType();
5077   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5078 
5079   MVT VT = Op.getSimpleValueType();
5080 
5081   SDValue Op1 =
5082       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5083   SDValue Op2 =
5084       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5085 
5086   SDLoc DL(Op);
5087   SDValue VL =
5088       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5089 
5090   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5091   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5092 
5093   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5094                             Op.getOperand(2), Mask, VL);
5095 
5096   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5097 }
5098 
5099 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5100     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5101   MVT VT = Op.getSimpleValueType();
5102 
5103   if (VT.getVectorElementType() == MVT::i1)
5104     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5105 
5106   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5107 }
5108 
5109 SDValue
5110 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5111                                                       SelectionDAG &DAG) const {
5112   unsigned Opc;
5113   switch (Op.getOpcode()) {
5114   default: llvm_unreachable("Unexpected opcode!");
5115   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5116   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5117   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5118   }
5119 
5120   return lowerToScalableOp(Op, DAG, Opc);
5121 }
5122 
5123 // Lower vector ABS to smax(X, sub(0, X)).
5124 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5125   SDLoc DL(Op);
5126   MVT VT = Op.getSimpleValueType();
5127   SDValue X = Op.getOperand(0);
5128 
5129   assert(VT.isFixedLengthVector() && "Unexpected type");
5130 
5131   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5132   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5133 
5134   SDValue Mask, VL;
5135   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5136 
5137   SDValue SplatZero =
5138       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5139                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5140   SDValue NegX =
5141       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5142   SDValue Max =
5143       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5144 
5145   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5146 }
5147 
5148 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5149     SDValue Op, SelectionDAG &DAG) const {
5150   SDLoc DL(Op);
5151   MVT VT = Op.getSimpleValueType();
5152   SDValue Mag = Op.getOperand(0);
5153   SDValue Sign = Op.getOperand(1);
5154   assert(Mag.getValueType() == Sign.getValueType() &&
5155          "Can only handle COPYSIGN with matching types.");
5156 
5157   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5158   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5159   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5160 
5161   SDValue Mask, VL;
5162   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5163 
5164   SDValue CopySign =
5165       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5166 
5167   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5168 }
5169 
5170 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5171     SDValue Op, SelectionDAG &DAG) const {
5172   MVT VT = Op.getSimpleValueType();
5173   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5174 
5175   MVT I1ContainerVT =
5176       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5177 
5178   SDValue CC =
5179       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5180   SDValue Op1 =
5181       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5182   SDValue Op2 =
5183       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5184 
5185   SDLoc DL(Op);
5186   SDValue Mask, VL;
5187   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5188 
5189   SDValue Select =
5190       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5191 
5192   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5193 }
5194 
5195 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5196                                                unsigned NewOpc,
5197                                                bool HasMask) const {
5198   MVT VT = Op.getSimpleValueType();
5199   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5200 
5201   // Create list of operands by converting existing ones to scalable types.
5202   SmallVector<SDValue, 6> Ops;
5203   for (const SDValue &V : Op->op_values()) {
5204     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5205 
5206     // Pass through non-vector operands.
5207     if (!V.getValueType().isVector()) {
5208       Ops.push_back(V);
5209       continue;
5210     }
5211 
5212     // "cast" fixed length vector to a scalable vector.
5213     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
5214            "Only fixed length vectors are supported!");
5215     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5216   }
5217 
5218   SDLoc DL(Op);
5219   SDValue Mask, VL;
5220   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5221   if (HasMask)
5222     Ops.push_back(Mask);
5223   Ops.push_back(VL);
5224 
5225   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
5226   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
5227 }
5228 
5229 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
5230 // * Operands of each node are assumed to be in the same order.
5231 // * The EVL operand is promoted from i32 to i64 on RV64.
5232 // * Fixed-length vectors are converted to their scalable-vector container
5233 //   types.
5234 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
5235                                        unsigned RISCVISDOpc) const {
5236   SDLoc DL(Op);
5237   MVT VT = Op.getSimpleValueType();
5238   SmallVector<SDValue, 4> Ops;
5239 
5240   for (const auto &OpIdx : enumerate(Op->ops())) {
5241     SDValue V = OpIdx.value();
5242     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5243     // Pass through operands which aren't fixed-length vectors.
5244     if (!V.getValueType().isFixedLengthVector()) {
5245       Ops.push_back(V);
5246       continue;
5247     }
5248     // "cast" fixed length vector to a scalable vector.
5249     MVT OpVT = V.getSimpleValueType();
5250     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
5251     assert(useRVVForFixedLengthVectorVT(OpVT) &&
5252            "Only fixed length vectors are supported!");
5253     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5254   }
5255 
5256   if (!VT.isFixedLengthVector())
5257     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
5258 
5259   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5260 
5261   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
5262 
5263   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
5264 }
5265 
5266 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
5267 // matched to a RVV indexed load. The RVV indexed load instructions only
5268 // support the "unsigned unscaled" addressing mode; indices are implicitly
5269 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5270 // signed or scaled indexing is extended to the XLEN value type and scaled
5271 // accordingly.
5272 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
5273                                                SelectionDAG &DAG) const {
5274   SDLoc DL(Op);
5275   MVT VT = Op.getSimpleValueType();
5276 
5277   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5278   EVT MemVT = MemSD->getMemoryVT();
5279   MachineMemOperand *MMO = MemSD->getMemOperand();
5280   SDValue Chain = MemSD->getChain();
5281   SDValue BasePtr = MemSD->getBasePtr();
5282 
5283   ISD::LoadExtType LoadExtType;
5284   SDValue Index, Mask, PassThru, VL;
5285 
5286   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
5287     Index = VPGN->getIndex();
5288     Mask = VPGN->getMask();
5289     PassThru = DAG.getUNDEF(VT);
5290     VL = VPGN->getVectorLength();
5291     // VP doesn't support extending loads.
5292     LoadExtType = ISD::NON_EXTLOAD;
5293   } else {
5294     // Else it must be a MGATHER.
5295     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
5296     Index = MGN->getIndex();
5297     Mask = MGN->getMask();
5298     PassThru = MGN->getPassThru();
5299     LoadExtType = MGN->getExtensionType();
5300   }
5301 
5302   MVT IndexVT = Index.getSimpleValueType();
5303   MVT XLenVT = Subtarget.getXLenVT();
5304 
5305   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5306          "Unexpected VTs!");
5307   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5308   // Targets have to explicitly opt-in for extending vector loads.
5309   assert(LoadExtType == ISD::NON_EXTLOAD &&
5310          "Unexpected extending MGATHER/VP_GATHER");
5311   (void)LoadExtType;
5312 
5313   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5314   // the selection of the masked intrinsics doesn't do this for us.
5315   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5316 
5317   MVT ContainerVT = VT;
5318   if (VT.isFixedLengthVector()) {
5319     // We need to use the larger of the result and index type to determine the
5320     // scalable type to use so we don't increase LMUL for any operand/result.
5321     if (VT.bitsGE(IndexVT)) {
5322       ContainerVT = getContainerForFixedLengthVector(VT);
5323       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5324                                  ContainerVT.getVectorElementCount());
5325     } else {
5326       IndexVT = getContainerForFixedLengthVector(IndexVT);
5327       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
5328                                      IndexVT.getVectorElementCount());
5329     }
5330 
5331     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5332 
5333     if (!IsUnmasked) {
5334       MVT MaskVT =
5335           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5336       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5337       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5338     }
5339   }
5340 
5341   if (!VL)
5342     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5343 
5344   unsigned IntID =
5345       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
5346   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5347   if (!IsUnmasked)
5348     Ops.push_back(PassThru);
5349   Ops.push_back(BasePtr);
5350   Ops.push_back(Index);
5351   if (!IsUnmasked)
5352     Ops.push_back(Mask);
5353   Ops.push_back(VL);
5354   if (!IsUnmasked)
5355     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5356 
5357   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5358   SDValue Result =
5359       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5360   Chain = Result.getValue(1);
5361 
5362   if (VT.isFixedLengthVector())
5363     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5364 
5365   return DAG.getMergeValues({Result, Chain}, DL);
5366 }
5367 
5368 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
5369 // matched to a RVV indexed store. The RVV indexed store instructions only
5370 // support the "unsigned unscaled" addressing mode; indices are implicitly
5371 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5372 // signed or scaled indexing is extended to the XLEN value type and scaled
5373 // accordingly.
5374 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
5375                                                 SelectionDAG &DAG) const {
5376   SDLoc DL(Op);
5377   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5378   EVT MemVT = MemSD->getMemoryVT();
5379   MachineMemOperand *MMO = MemSD->getMemOperand();
5380   SDValue Chain = MemSD->getChain();
5381   SDValue BasePtr = MemSD->getBasePtr();
5382 
5383   bool IsTruncatingStore = false;
5384   SDValue Index, Mask, Val, VL;
5385 
5386   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
5387     Index = VPSN->getIndex();
5388     Mask = VPSN->getMask();
5389     Val = VPSN->getValue();
5390     VL = VPSN->getVectorLength();
5391     // VP doesn't support truncating stores.
5392     IsTruncatingStore = false;
5393   } else {
5394     // Else it must be a MSCATTER.
5395     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
5396     Index = MSN->getIndex();
5397     Mask = MSN->getMask();
5398     Val = MSN->getValue();
5399     IsTruncatingStore = MSN->isTruncatingStore();
5400   }
5401 
5402   MVT VT = Val.getSimpleValueType();
5403   MVT IndexVT = Index.getSimpleValueType();
5404   MVT XLenVT = Subtarget.getXLenVT();
5405 
5406   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5407          "Unexpected VTs!");
5408   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5409   // Targets have to explicitly opt-in for extending vector loads and
5410   // truncating vector stores.
5411   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
5412   (void)IsTruncatingStore;
5413 
5414   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5415   // the selection of the masked intrinsics doesn't do this for us.
5416   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5417 
5418   MVT ContainerVT = VT;
5419   if (VT.isFixedLengthVector()) {
5420     // We need to use the larger of the value and index type to determine the
5421     // scalable type to use so we don't increase LMUL for any operand/result.
5422     if (VT.bitsGE(IndexVT)) {
5423       ContainerVT = getContainerForFixedLengthVector(VT);
5424       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5425                                  ContainerVT.getVectorElementCount());
5426     } else {
5427       IndexVT = getContainerForFixedLengthVector(IndexVT);
5428       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
5429                                      IndexVT.getVectorElementCount());
5430     }
5431 
5432     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5433     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5434 
5435     if (!IsUnmasked) {
5436       MVT MaskVT =
5437           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5438       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5439     }
5440   }
5441 
5442   if (!VL)
5443     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5444 
5445   unsigned IntID =
5446       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
5447   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5448   Ops.push_back(Val);
5449   Ops.push_back(BasePtr);
5450   Ops.push_back(Index);
5451   if (!IsUnmasked)
5452     Ops.push_back(Mask);
5453   Ops.push_back(VL);
5454 
5455   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5456                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5457 }
5458 
5459 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
5460                                                SelectionDAG &DAG) const {
5461   const MVT XLenVT = Subtarget.getXLenVT();
5462   SDLoc DL(Op);
5463   SDValue Chain = Op->getOperand(0);
5464   SDValue SysRegNo = DAG.getTargetConstant(
5465       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5466   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
5467   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
5468 
5469   // Encoding used for rounding mode in RISCV differs from that used in
5470   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
5471   // table, which consists of a sequence of 4-bit fields, each representing
5472   // corresponding FLT_ROUNDS mode.
5473   static const int Table =
5474       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
5475       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
5476       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
5477       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
5478       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
5479 
5480   SDValue Shift =
5481       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
5482   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5483                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5484   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5485                                DAG.getConstant(7, DL, XLenVT));
5486 
5487   return DAG.getMergeValues({Masked, Chain}, DL);
5488 }
5489 
5490 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
5491                                                SelectionDAG &DAG) const {
5492   const MVT XLenVT = Subtarget.getXLenVT();
5493   SDLoc DL(Op);
5494   SDValue Chain = Op->getOperand(0);
5495   SDValue RMValue = Op->getOperand(1);
5496   SDValue SysRegNo = DAG.getTargetConstant(
5497       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5498 
5499   // Encoding used for rounding mode in RISCV differs from that used in
5500   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
5501   // a table, which consists of a sequence of 4-bit fields, each representing
5502   // corresponding RISCV mode.
5503   static const unsigned Table =
5504       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
5505       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
5506       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
5507       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
5508       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
5509 
5510   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
5511                               DAG.getConstant(2, DL, XLenVT));
5512   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5513                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5514   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5515                         DAG.getConstant(0x7, DL, XLenVT));
5516   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
5517                      RMValue);
5518 }
5519 
5520 // Returns the opcode of the target-specific SDNode that implements the 32-bit
5521 // form of the given Opcode.
5522 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
5523   switch (Opcode) {
5524   default:
5525     llvm_unreachable("Unexpected opcode");
5526   case ISD::SHL:
5527     return RISCVISD::SLLW;
5528   case ISD::SRA:
5529     return RISCVISD::SRAW;
5530   case ISD::SRL:
5531     return RISCVISD::SRLW;
5532   case ISD::SDIV:
5533     return RISCVISD::DIVW;
5534   case ISD::UDIV:
5535     return RISCVISD::DIVUW;
5536   case ISD::UREM:
5537     return RISCVISD::REMUW;
5538   case ISD::ROTL:
5539     return RISCVISD::ROLW;
5540   case ISD::ROTR:
5541     return RISCVISD::RORW;
5542   case RISCVISD::GREV:
5543     return RISCVISD::GREVW;
5544   case RISCVISD::GORC:
5545     return RISCVISD::GORCW;
5546   }
5547 }
5548 
5549 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
5550 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
5551 // otherwise be promoted to i64, making it difficult to select the
5552 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
5553 // type i8/i16/i32 is lost.
5554 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
5555                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
5556   SDLoc DL(N);
5557   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5558   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
5559   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
5560   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5561   // ReplaceNodeResults requires we maintain the same type for the return value.
5562   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
5563 }
5564 
5565 // Converts the given 32-bit operation to a i64 operation with signed extension
5566 // semantic to reduce the signed extension instructions.
5567 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
5568   SDLoc DL(N);
5569   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5570   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5571   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
5572   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5573                                DAG.getValueType(MVT::i32));
5574   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
5575 }
5576 
5577 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
5578                                              SmallVectorImpl<SDValue> &Results,
5579                                              SelectionDAG &DAG) const {
5580   SDLoc DL(N);
5581   switch (N->getOpcode()) {
5582   default:
5583     llvm_unreachable("Don't know how to custom type legalize this operation!");
5584   case ISD::STRICT_FP_TO_SINT:
5585   case ISD::STRICT_FP_TO_UINT:
5586   case ISD::FP_TO_SINT:
5587   case ISD::FP_TO_UINT: {
5588     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5589            "Unexpected custom legalisation");
5590     bool IsStrict = N->isStrictFPOpcode();
5591     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
5592                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
5593     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
5594     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
5595         TargetLowering::TypeSoftenFloat) {
5596       // FIXME: Support strict FP.
5597       if (IsStrict)
5598         return;
5599       if (!isTypeLegal(Op0.getValueType()))
5600         return;
5601       unsigned Opc =
5602           IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
5603       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0);
5604       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5605       return;
5606     }
5607     // If the FP type needs to be softened, emit a library call using the 'si'
5608     // version. If we left it to default legalization we'd end up with 'di'. If
5609     // the FP type doesn't need to be softened just let generic type
5610     // legalization promote the result type.
5611     RTLIB::Libcall LC;
5612     if (IsSigned)
5613       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
5614     else
5615       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
5616     MakeLibCallOptions CallOptions;
5617     EVT OpVT = Op0.getValueType();
5618     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
5619     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
5620     SDValue Result;
5621     std::tie(Result, Chain) =
5622         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
5623     Results.push_back(Result);
5624     if (IsStrict)
5625       Results.push_back(Chain);
5626     break;
5627   }
5628   case ISD::READCYCLECOUNTER: {
5629     assert(!Subtarget.is64Bit() &&
5630            "READCYCLECOUNTER only has custom type legalization on riscv32");
5631 
5632     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5633     SDValue RCW =
5634         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
5635 
5636     Results.push_back(
5637         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
5638     Results.push_back(RCW.getValue(2));
5639     break;
5640   }
5641   case ISD::MUL: {
5642     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
5643     unsigned XLen = Subtarget.getXLen();
5644     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
5645     if (Size > XLen) {
5646       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
5647       SDValue LHS = N->getOperand(0);
5648       SDValue RHS = N->getOperand(1);
5649       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
5650 
5651       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
5652       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
5653       // We need exactly one side to be unsigned.
5654       if (LHSIsU == RHSIsU)
5655         return;
5656 
5657       auto MakeMULPair = [&](SDValue S, SDValue U) {
5658         MVT XLenVT = Subtarget.getXLenVT();
5659         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
5660         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
5661         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
5662         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
5663         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
5664       };
5665 
5666       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
5667       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
5668 
5669       // The other operand should be signed, but still prefer MULH when
5670       // possible.
5671       if (RHSIsU && LHSIsS && !RHSIsS)
5672         Results.push_back(MakeMULPair(LHS, RHS));
5673       else if (LHSIsU && RHSIsS && !LHSIsS)
5674         Results.push_back(MakeMULPair(RHS, LHS));
5675 
5676       return;
5677     }
5678     LLVM_FALLTHROUGH;
5679   }
5680   case ISD::ADD:
5681   case ISD::SUB:
5682     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5683            "Unexpected custom legalisation");
5684     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
5685     break;
5686   case ISD::SHL:
5687   case ISD::SRA:
5688   case ISD::SRL:
5689     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5690            "Unexpected custom legalisation");
5691     if (N->getOperand(1).getOpcode() != ISD::Constant) {
5692       Results.push_back(customLegalizeToWOp(N, DAG));
5693       break;
5694     }
5695 
5696     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
5697     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
5698     // shift amount.
5699     if (N->getOpcode() == ISD::SHL) {
5700       SDLoc DL(N);
5701       SDValue NewOp0 =
5702           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5703       SDValue NewOp1 =
5704           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
5705       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
5706       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5707                                    DAG.getValueType(MVT::i32));
5708       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5709     }
5710 
5711     break;
5712   case ISD::ROTL:
5713   case ISD::ROTR:
5714     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5715            "Unexpected custom legalisation");
5716     Results.push_back(customLegalizeToWOp(N, DAG));
5717     break;
5718   case ISD::CTTZ:
5719   case ISD::CTTZ_ZERO_UNDEF:
5720   case ISD::CTLZ:
5721   case ISD::CTLZ_ZERO_UNDEF: {
5722     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5723            "Unexpected custom legalisation");
5724 
5725     SDValue NewOp0 =
5726         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5727     bool IsCTZ =
5728         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
5729     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
5730     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
5731     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5732     return;
5733   }
5734   case ISD::SDIV:
5735   case ISD::UDIV:
5736   case ISD::UREM: {
5737     MVT VT = N->getSimpleValueType(0);
5738     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
5739            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
5740            "Unexpected custom legalisation");
5741     // Don't promote division/remainder by constant since we should expand those
5742     // to multiply by magic constant.
5743     // FIXME: What if the expansion is disabled for minsize.
5744     if (N->getOperand(1).getOpcode() == ISD::Constant)
5745       return;
5746 
5747     // If the input is i32, use ANY_EXTEND since the W instructions don't read
5748     // the upper 32 bits. For other types we need to sign or zero extend
5749     // based on the opcode.
5750     unsigned ExtOpc = ISD::ANY_EXTEND;
5751     if (VT != MVT::i32)
5752       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
5753                                            : ISD::ZERO_EXTEND;
5754 
5755     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
5756     break;
5757   }
5758   case ISD::UADDO:
5759   case ISD::USUBO: {
5760     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5761            "Unexpected custom legalisation");
5762     bool IsAdd = N->getOpcode() == ISD::UADDO;
5763     // Create an ADDW or SUBW.
5764     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5765     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5766     SDValue Res =
5767         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
5768     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
5769                       DAG.getValueType(MVT::i32));
5770 
5771     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
5772     // Since the inputs are sign extended from i32, this is equivalent to
5773     // comparing the lower 32 bits.
5774     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5775     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
5776                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
5777 
5778     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5779     Results.push_back(Overflow);
5780     return;
5781   }
5782   case ISD::UADDSAT:
5783   case ISD::USUBSAT: {
5784     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5785            "Unexpected custom legalisation");
5786     if (Subtarget.hasStdExtZbb()) {
5787       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
5788       // sign extend allows overflow of the lower 32 bits to be detected on
5789       // the promoted size.
5790       SDValue LHS =
5791           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5792       SDValue RHS =
5793           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
5794       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
5795       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5796       return;
5797     }
5798 
5799     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
5800     // promotion for UADDO/USUBO.
5801     Results.push_back(expandAddSubSat(N, DAG));
5802     return;
5803   }
5804   case ISD::BITCAST: {
5805     EVT VT = N->getValueType(0);
5806     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
5807     SDValue Op0 = N->getOperand(0);
5808     EVT Op0VT = Op0.getValueType();
5809     MVT XLenVT = Subtarget.getXLenVT();
5810     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
5811       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
5812       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
5813     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
5814                Subtarget.hasStdExtF()) {
5815       SDValue FPConv =
5816           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
5817       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
5818     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
5819                isTypeLegal(Op0VT)) {
5820       // Custom-legalize bitcasts from fixed-length vector types to illegal
5821       // scalar types in order to improve codegen. Bitcast the vector to a
5822       // one-element vector type whose element type is the same as the result
5823       // type, and extract the first element.
5824       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
5825       if (isTypeLegal(BVT)) {
5826         SDValue BVec = DAG.getBitcast(BVT, Op0);
5827         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
5828                                       DAG.getConstant(0, DL, XLenVT)));
5829       }
5830     }
5831     break;
5832   }
5833   case RISCVISD::GREV:
5834   case RISCVISD::GORC: {
5835     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5836            "Unexpected custom legalisation");
5837     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5838     // This is similar to customLegalizeToWOp, except that we pass the second
5839     // operand (a TargetConstant) straight through: it is already of type
5840     // XLenVT.
5841     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5842     SDValue NewOp0 =
5843         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5844     SDValue NewOp1 =
5845         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5846     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5847     // ReplaceNodeResults requires we maintain the same type for the return
5848     // value.
5849     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5850     break;
5851   }
5852   case RISCVISD::SHFL: {
5853     // There is no SHFLIW instruction, but we can just promote the operation.
5854     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5855            "Unexpected custom legalisation");
5856     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5857     SDValue NewOp0 =
5858         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5859     SDValue NewOp1 =
5860         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5861     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
5862     // ReplaceNodeResults requires we maintain the same type for the return
5863     // value.
5864     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5865     break;
5866   }
5867   case ISD::BSWAP:
5868   case ISD::BITREVERSE: {
5869     MVT VT = N->getSimpleValueType(0);
5870     MVT XLenVT = Subtarget.getXLenVT();
5871     assert((VT == MVT::i8 || VT == MVT::i16 ||
5872             (VT == MVT::i32 && Subtarget.is64Bit())) &&
5873            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
5874     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
5875     unsigned Imm = VT.getSizeInBits() - 1;
5876     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
5877     if (N->getOpcode() == ISD::BSWAP)
5878       Imm &= ~0x7U;
5879     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
5880     SDValue GREVI =
5881         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
5882     // ReplaceNodeResults requires we maintain the same type for the return
5883     // value.
5884     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
5885     break;
5886   }
5887   case ISD::FSHL:
5888   case ISD::FSHR: {
5889     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5890            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
5891     SDValue NewOp0 =
5892         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5893     SDValue NewOp1 =
5894         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5895     SDValue NewOp2 =
5896         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5897     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
5898     // Mask the shift amount to 5 bits.
5899     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5900                          DAG.getConstant(0x1f, DL, MVT::i64));
5901     unsigned Opc =
5902         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
5903     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
5904     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
5905     break;
5906   }
5907   case ISD::EXTRACT_VECTOR_ELT: {
5908     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
5909     // type is illegal (currently only vXi64 RV32).
5910     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
5911     // transferred to the destination register. We issue two of these from the
5912     // upper- and lower- halves of the SEW-bit vector element, slid down to the
5913     // first element.
5914     SDValue Vec = N->getOperand(0);
5915     SDValue Idx = N->getOperand(1);
5916 
5917     // The vector type hasn't been legalized yet so we can't issue target
5918     // specific nodes if it needs legalization.
5919     // FIXME: We would manually legalize if it's important.
5920     if (!isTypeLegal(Vec.getValueType()))
5921       return;
5922 
5923     MVT VecVT = Vec.getSimpleValueType();
5924 
5925     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
5926            VecVT.getVectorElementType() == MVT::i64 &&
5927            "Unexpected EXTRACT_VECTOR_ELT legalization");
5928 
5929     // If this is a fixed vector, we need to convert it to a scalable vector.
5930     MVT ContainerVT = VecVT;
5931     if (VecVT.isFixedLengthVector()) {
5932       ContainerVT = getContainerForFixedLengthVector(VecVT);
5933       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5934     }
5935 
5936     MVT XLenVT = Subtarget.getXLenVT();
5937 
5938     // Use a VL of 1 to avoid processing more elements than we need.
5939     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5940     SDValue VL = DAG.getConstant(1, DL, XLenVT);
5941     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5942 
5943     // Unless the index is known to be 0, we must slide the vector down to get
5944     // the desired element into index 0.
5945     if (!isNullConstant(Idx)) {
5946       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5947                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
5948     }
5949 
5950     // Extract the lower XLEN bits of the correct vector element.
5951     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5952 
5953     // To extract the upper XLEN bits of the vector element, shift the first
5954     // element right by 32 bits and re-extract the lower XLEN bits.
5955     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5956                                      DAG.getConstant(32, DL, XLenVT), VL);
5957     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
5958                                  ThirtyTwoV, Mask, VL);
5959 
5960     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5961 
5962     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5963     break;
5964   }
5965   case ISD::INTRINSIC_WO_CHAIN: {
5966     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5967     switch (IntNo) {
5968     default:
5969       llvm_unreachable(
5970           "Don't know how to custom type legalize this intrinsic!");
5971     case Intrinsic::riscv_orc_b: {
5972       // Lower to the GORCI encoding for orc.b with the operand extended.
5973       SDValue NewOp =
5974           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5975       // If Zbp is enabled, use GORCIW which will sign extend the result.
5976       unsigned Opc =
5977           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
5978       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
5979                                 DAG.getConstant(7, DL, MVT::i64));
5980       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5981       return;
5982     }
5983     case Intrinsic::riscv_grev:
5984     case Intrinsic::riscv_gorc: {
5985       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5986              "Unexpected custom legalisation");
5987       SDValue NewOp1 =
5988           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5989       SDValue NewOp2 =
5990           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5991       unsigned Opc =
5992           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
5993       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5994       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5995       break;
5996     }
5997     case Intrinsic::riscv_shfl:
5998     case Intrinsic::riscv_unshfl: {
5999       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6000              "Unexpected custom legalisation");
6001       SDValue NewOp1 =
6002           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6003       SDValue NewOp2 =
6004           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6005       unsigned Opc =
6006           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
6007       if (isa<ConstantSDNode>(N->getOperand(2))) {
6008         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6009                              DAG.getConstant(0xf, DL, MVT::i64));
6010         Opc =
6011             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
6012       }
6013       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6014       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6015       break;
6016     }
6017     case Intrinsic::riscv_bcompress:
6018     case Intrinsic::riscv_bdecompress: {
6019       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6020              "Unexpected custom legalisation");
6021       SDValue NewOp1 =
6022           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6023       SDValue NewOp2 =
6024           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6025       unsigned Opc = IntNo == Intrinsic::riscv_bcompress
6026                          ? RISCVISD::BCOMPRESSW
6027                          : RISCVISD::BDECOMPRESSW;
6028       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6029       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6030       break;
6031     }
6032     case Intrinsic::riscv_vmv_x_s: {
6033       EVT VT = N->getValueType(0);
6034       MVT XLenVT = Subtarget.getXLenVT();
6035       if (VT.bitsLT(XLenVT)) {
6036         // Simple case just extract using vmv.x.s and truncate.
6037         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
6038                                       Subtarget.getXLenVT(), N->getOperand(1));
6039         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
6040         return;
6041       }
6042 
6043       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
6044              "Unexpected custom legalization");
6045 
6046       // We need to do the move in two steps.
6047       SDValue Vec = N->getOperand(1);
6048       MVT VecVT = Vec.getSimpleValueType();
6049 
6050       // First extract the lower XLEN bits of the element.
6051       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6052 
6053       // To extract the upper XLEN bits of the vector element, shift the first
6054       // element right by 32 bits and re-extract the lower XLEN bits.
6055       SDValue VL = DAG.getConstant(1, DL, XLenVT);
6056       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
6057       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6058       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
6059                                        DAG.getConstant(32, DL, XLenVT), VL);
6060       SDValue LShr32 =
6061           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
6062       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6063 
6064       Results.push_back(
6065           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6066       break;
6067     }
6068     }
6069     break;
6070   }
6071   case ISD::VECREDUCE_ADD:
6072   case ISD::VECREDUCE_AND:
6073   case ISD::VECREDUCE_OR:
6074   case ISD::VECREDUCE_XOR:
6075   case ISD::VECREDUCE_SMAX:
6076   case ISD::VECREDUCE_UMAX:
6077   case ISD::VECREDUCE_SMIN:
6078   case ISD::VECREDUCE_UMIN:
6079     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
6080       Results.push_back(V);
6081     break;
6082   case ISD::VP_REDUCE_ADD:
6083   case ISD::VP_REDUCE_AND:
6084   case ISD::VP_REDUCE_OR:
6085   case ISD::VP_REDUCE_XOR:
6086   case ISD::VP_REDUCE_SMAX:
6087   case ISD::VP_REDUCE_UMAX:
6088   case ISD::VP_REDUCE_SMIN:
6089   case ISD::VP_REDUCE_UMIN:
6090     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
6091       Results.push_back(V);
6092     break;
6093   case ISD::FLT_ROUNDS_: {
6094     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
6095     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
6096     Results.push_back(Res.getValue(0));
6097     Results.push_back(Res.getValue(1));
6098     break;
6099   }
6100   }
6101 }
6102 
6103 // A structure to hold one of the bit-manipulation patterns below. Together, a
6104 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
6105 //   (or (and (shl x, 1), 0xAAAAAAAA),
6106 //       (and (srl x, 1), 0x55555555))
6107 struct RISCVBitmanipPat {
6108   SDValue Op;
6109   unsigned ShAmt;
6110   bool IsSHL;
6111 
6112   bool formsPairWith(const RISCVBitmanipPat &Other) const {
6113     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
6114   }
6115 };
6116 
6117 // Matches patterns of the form
6118 //   (and (shl x, C2), (C1 << C2))
6119 //   (and (srl x, C2), C1)
6120 //   (shl (and x, C1), C2)
6121 //   (srl (and x, (C1 << C2)), C2)
6122 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
6123 // The expected masks for each shift amount are specified in BitmanipMasks where
6124 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
6125 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
6126 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
6127 // XLen is 64.
6128 static Optional<RISCVBitmanipPat>
6129 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
6130   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
6131          "Unexpected number of masks");
6132   Optional<uint64_t> Mask;
6133   // Optionally consume a mask around the shift operation.
6134   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
6135     Mask = Op.getConstantOperandVal(1);
6136     Op = Op.getOperand(0);
6137   }
6138   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
6139     return None;
6140   bool IsSHL = Op.getOpcode() == ISD::SHL;
6141 
6142   if (!isa<ConstantSDNode>(Op.getOperand(1)))
6143     return None;
6144   uint64_t ShAmt = Op.getConstantOperandVal(1);
6145 
6146   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6147   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
6148     return None;
6149   // If we don't have enough masks for 64 bit, then we must be trying to
6150   // match SHFL so we're only allowed to shift 1/4 of the width.
6151   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
6152     return None;
6153 
6154   SDValue Src = Op.getOperand(0);
6155 
6156   // The expected mask is shifted left when the AND is found around SHL
6157   // patterns.
6158   //   ((x >> 1) & 0x55555555)
6159   //   ((x << 1) & 0xAAAAAAAA)
6160   bool SHLExpMask = IsSHL;
6161 
6162   if (!Mask) {
6163     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
6164     // the mask is all ones: consume that now.
6165     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
6166       Mask = Src.getConstantOperandVal(1);
6167       Src = Src.getOperand(0);
6168       // The expected mask is now in fact shifted left for SRL, so reverse the
6169       // decision.
6170       //   ((x & 0xAAAAAAAA) >> 1)
6171       //   ((x & 0x55555555) << 1)
6172       SHLExpMask = !SHLExpMask;
6173     } else {
6174       // Use a default shifted mask of all-ones if there's no AND, truncated
6175       // down to the expected width. This simplifies the logic later on.
6176       Mask = maskTrailingOnes<uint64_t>(Width);
6177       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
6178     }
6179   }
6180 
6181   unsigned MaskIdx = Log2_32(ShAmt);
6182   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6183 
6184   if (SHLExpMask)
6185     ExpMask <<= ShAmt;
6186 
6187   if (Mask != ExpMask)
6188     return None;
6189 
6190   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
6191 }
6192 
6193 // Matches any of the following bit-manipulation patterns:
6194 //   (and (shl x, 1), (0x55555555 << 1))
6195 //   (and (srl x, 1), 0x55555555)
6196 //   (shl (and x, 0x55555555), 1)
6197 //   (srl (and x, (0x55555555 << 1)), 1)
6198 // where the shift amount and mask may vary thus:
6199 //   [1]  = 0x55555555 / 0xAAAAAAAA
6200 //   [2]  = 0x33333333 / 0xCCCCCCCC
6201 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
6202 //   [8]  = 0x00FF00FF / 0xFF00FF00
6203 //   [16] = 0x0000FFFF / 0xFFFFFFFF
6204 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
6205 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
6206   // These are the unshifted masks which we use to match bit-manipulation
6207   // patterns. They may be shifted left in certain circumstances.
6208   static const uint64_t BitmanipMasks[] = {
6209       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
6210       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
6211 
6212   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6213 }
6214 
6215 // Match the following pattern as a GREVI(W) operation
6216 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
6217 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
6218                                const RISCVSubtarget &Subtarget) {
6219   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6220   EVT VT = Op.getValueType();
6221 
6222   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6223     auto LHS = matchGREVIPat(Op.getOperand(0));
6224     auto RHS = matchGREVIPat(Op.getOperand(1));
6225     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
6226       SDLoc DL(Op);
6227       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
6228                          DAG.getConstant(LHS->ShAmt, DL, VT));
6229     }
6230   }
6231   return SDValue();
6232 }
6233 
6234 // Matches any the following pattern as a GORCI(W) operation
6235 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
6236 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
6237 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
6238 // Note that with the variant of 3.,
6239 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
6240 // the inner pattern will first be matched as GREVI and then the outer
6241 // pattern will be matched to GORC via the first rule above.
6242 // 4.  (or (rotl/rotr x, bitwidth/2), x)
6243 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
6244                                const RISCVSubtarget &Subtarget) {
6245   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6246   EVT VT = Op.getValueType();
6247 
6248   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6249     SDLoc DL(Op);
6250     SDValue Op0 = Op.getOperand(0);
6251     SDValue Op1 = Op.getOperand(1);
6252 
6253     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
6254       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
6255           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
6256           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
6257         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
6258       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
6259       if ((Reverse.getOpcode() == ISD::ROTL ||
6260            Reverse.getOpcode() == ISD::ROTR) &&
6261           Reverse.getOperand(0) == X &&
6262           isa<ConstantSDNode>(Reverse.getOperand(1))) {
6263         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
6264         if (RotAmt == (VT.getSizeInBits() / 2))
6265           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
6266                              DAG.getConstant(RotAmt, DL, VT));
6267       }
6268       return SDValue();
6269     };
6270 
6271     // Check for either commutable permutation of (or (GREVI x, shamt), x)
6272     if (SDValue V = MatchOROfReverse(Op0, Op1))
6273       return V;
6274     if (SDValue V = MatchOROfReverse(Op1, Op0))
6275       return V;
6276 
6277     // OR is commutable so canonicalize its OR operand to the left
6278     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
6279       std::swap(Op0, Op1);
6280     if (Op0.getOpcode() != ISD::OR)
6281       return SDValue();
6282     SDValue OrOp0 = Op0.getOperand(0);
6283     SDValue OrOp1 = Op0.getOperand(1);
6284     auto LHS = matchGREVIPat(OrOp0);
6285     // OR is commutable so swap the operands and try again: x might have been
6286     // on the left
6287     if (!LHS) {
6288       std::swap(OrOp0, OrOp1);
6289       LHS = matchGREVIPat(OrOp0);
6290     }
6291     auto RHS = matchGREVIPat(Op1);
6292     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
6293       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
6294                          DAG.getConstant(LHS->ShAmt, DL, VT));
6295     }
6296   }
6297   return SDValue();
6298 }
6299 
6300 // Matches any of the following bit-manipulation patterns:
6301 //   (and (shl x, 1), (0x22222222 << 1))
6302 //   (and (srl x, 1), 0x22222222)
6303 //   (shl (and x, 0x22222222), 1)
6304 //   (srl (and x, (0x22222222 << 1)), 1)
6305 // where the shift amount and mask may vary thus:
6306 //   [1]  = 0x22222222 / 0x44444444
6307 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
6308 //   [4]  = 0x00F000F0 / 0x0F000F00
6309 //   [8]  = 0x0000FF00 / 0x00FF0000
6310 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
6311 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
6312   // These are the unshifted masks which we use to match bit-manipulation
6313   // patterns. They may be shifted left in certain circumstances.
6314   static const uint64_t BitmanipMasks[] = {
6315       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
6316       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
6317 
6318   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6319 }
6320 
6321 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
6322 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
6323                                const RISCVSubtarget &Subtarget) {
6324   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6325   EVT VT = Op.getValueType();
6326 
6327   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
6328     return SDValue();
6329 
6330   SDValue Op0 = Op.getOperand(0);
6331   SDValue Op1 = Op.getOperand(1);
6332 
6333   // Or is commutable so canonicalize the second OR to the LHS.
6334   if (Op0.getOpcode() != ISD::OR)
6335     std::swap(Op0, Op1);
6336   if (Op0.getOpcode() != ISD::OR)
6337     return SDValue();
6338 
6339   // We found an inner OR, so our operands are the operands of the inner OR
6340   // and the other operand of the outer OR.
6341   SDValue A = Op0.getOperand(0);
6342   SDValue B = Op0.getOperand(1);
6343   SDValue C = Op1;
6344 
6345   auto Match1 = matchSHFLPat(A);
6346   auto Match2 = matchSHFLPat(B);
6347 
6348   // If neither matched, we failed.
6349   if (!Match1 && !Match2)
6350     return SDValue();
6351 
6352   // We had at least one match. if one failed, try the remaining C operand.
6353   if (!Match1) {
6354     std::swap(A, C);
6355     Match1 = matchSHFLPat(A);
6356     if (!Match1)
6357       return SDValue();
6358   } else if (!Match2) {
6359     std::swap(B, C);
6360     Match2 = matchSHFLPat(B);
6361     if (!Match2)
6362       return SDValue();
6363   }
6364   assert(Match1 && Match2);
6365 
6366   // Make sure our matches pair up.
6367   if (!Match1->formsPairWith(*Match2))
6368     return SDValue();
6369 
6370   // All the remains is to make sure C is an AND with the same input, that masks
6371   // out the bits that are being shuffled.
6372   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
6373       C.getOperand(0) != Match1->Op)
6374     return SDValue();
6375 
6376   uint64_t Mask = C.getConstantOperandVal(1);
6377 
6378   static const uint64_t BitmanipMasks[] = {
6379       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
6380       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
6381   };
6382 
6383   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6384   unsigned MaskIdx = Log2_32(Match1->ShAmt);
6385   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6386 
6387   if (Mask != ExpMask)
6388     return SDValue();
6389 
6390   SDLoc DL(Op);
6391   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
6392                      DAG.getConstant(Match1->ShAmt, DL, VT));
6393 }
6394 
6395 // Optimize (add (shl x, c0), (shl y, c1)) ->
6396 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
6397 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
6398                                   const RISCVSubtarget &Subtarget) {
6399   // Perform this optimization only in the zba extension.
6400   if (!Subtarget.hasStdExtZba())
6401     return SDValue();
6402 
6403   // Skip for vector types and larger types.
6404   EVT VT = N->getValueType(0);
6405   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6406     return SDValue();
6407 
6408   // The two operand nodes must be SHL and have no other use.
6409   SDValue N0 = N->getOperand(0);
6410   SDValue N1 = N->getOperand(1);
6411   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
6412       !N0->hasOneUse() || !N1->hasOneUse())
6413     return SDValue();
6414 
6415   // Check c0 and c1.
6416   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6417   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
6418   if (!N0C || !N1C)
6419     return SDValue();
6420   int64_t C0 = N0C->getSExtValue();
6421   int64_t C1 = N1C->getSExtValue();
6422   if (C0 <= 0 || C1 <= 0)
6423     return SDValue();
6424 
6425   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
6426   int64_t Bits = std::min(C0, C1);
6427   int64_t Diff = std::abs(C0 - C1);
6428   if (Diff != 1 && Diff != 2 && Diff != 3)
6429     return SDValue();
6430 
6431   // Build nodes.
6432   SDLoc DL(N);
6433   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
6434   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
6435   SDValue NA0 =
6436       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
6437   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
6438   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
6439 }
6440 
6441 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
6442 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
6443 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
6444 // not undo itself, but they are redundant.
6445 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
6446   SDValue Src = N->getOperand(0);
6447 
6448   if (Src.getOpcode() != N->getOpcode())
6449     return SDValue();
6450 
6451   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
6452       !isa<ConstantSDNode>(Src.getOperand(1)))
6453     return SDValue();
6454 
6455   unsigned ShAmt1 = N->getConstantOperandVal(1);
6456   unsigned ShAmt2 = Src.getConstantOperandVal(1);
6457   Src = Src.getOperand(0);
6458 
6459   unsigned CombinedShAmt;
6460   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
6461     CombinedShAmt = ShAmt1 | ShAmt2;
6462   else
6463     CombinedShAmt = ShAmt1 ^ ShAmt2;
6464 
6465   if (CombinedShAmt == 0)
6466     return Src;
6467 
6468   SDLoc DL(N);
6469   return DAG.getNode(
6470       N->getOpcode(), DL, N->getValueType(0), Src,
6471       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
6472 }
6473 
6474 // Combine a constant select operand into its use:
6475 //
6476 // (and (select cond, -1, c), x)
6477 //   -> (select cond, x, (and x, c))  [AllOnes=1]
6478 // (or  (select cond, 0, c), x)
6479 //   -> (select cond, x, (or x, c))  [AllOnes=0]
6480 // (xor (select cond, 0, c), x)
6481 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
6482 // (add (select cond, 0, c), x)
6483 //   -> (select cond, x, (add x, c))  [AllOnes=0]
6484 // (sub x, (select cond, 0, c))
6485 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
6486 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6487                                    SelectionDAG &DAG, bool AllOnes) {
6488   EVT VT = N->getValueType(0);
6489 
6490   // Skip vectors.
6491   if (VT.isVector())
6492     return SDValue();
6493 
6494   if ((Slct.getOpcode() != ISD::SELECT &&
6495        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
6496       !Slct.hasOneUse())
6497     return SDValue();
6498 
6499   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
6500     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
6501   };
6502 
6503   bool SwapSelectOps;
6504   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
6505   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
6506   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
6507   SDValue NonConstantVal;
6508   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
6509     SwapSelectOps = false;
6510     NonConstantVal = FalseVal;
6511   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
6512     SwapSelectOps = true;
6513     NonConstantVal = TrueVal;
6514   } else
6515     return SDValue();
6516 
6517   // Slct is now know to be the desired identity constant when CC is true.
6518   TrueVal = OtherOp;
6519   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
6520   // Unless SwapSelectOps says the condition should be false.
6521   if (SwapSelectOps)
6522     std::swap(TrueVal, FalseVal);
6523 
6524   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
6525     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
6526                        {Slct.getOperand(0), Slct.getOperand(1),
6527                         Slct.getOperand(2), TrueVal, FalseVal});
6528 
6529   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
6530                      {Slct.getOperand(0), TrueVal, FalseVal});
6531 }
6532 
6533 // Attempt combineSelectAndUse on each operand of a commutative operator N.
6534 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
6535                                               bool AllOnes) {
6536   SDValue N0 = N->getOperand(0);
6537   SDValue N1 = N->getOperand(1);
6538   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
6539     return Result;
6540   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
6541     return Result;
6542   return SDValue();
6543 }
6544 
6545 // Transform (add (mul x, c0), c1) ->
6546 //           (add (mul (add x, c1/c0), c0), c1%c0).
6547 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
6548 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
6549 // to an infinite loop in DAGCombine if transformed.
6550 // Or transform (add (mul x, c0), c1) ->
6551 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
6552 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
6553 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
6554 // lead to an infinite loop in DAGCombine if transformed.
6555 // Or transform (add (mul x, c0), c1) ->
6556 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
6557 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
6558 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
6559 // lead to an infinite loop in DAGCombine if transformed.
6560 // Or transform (add (mul x, c0), c1) ->
6561 //              (mul (add x, c1/c0), c0).
6562 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
6563 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
6564                                      const RISCVSubtarget &Subtarget) {
6565   // Skip for vector types and larger types.
6566   EVT VT = N->getValueType(0);
6567   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6568     return SDValue();
6569   // The first operand node must be a MUL and has no other use.
6570   SDValue N0 = N->getOperand(0);
6571   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
6572     return SDValue();
6573   // Check if c0 and c1 match above conditions.
6574   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6575   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6576   if (!N0C || !N1C)
6577     return SDValue();
6578   int64_t C0 = N0C->getSExtValue();
6579   int64_t C1 = N1C->getSExtValue();
6580   int64_t CA, CB;
6581   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
6582     return SDValue();
6583   // Search for proper CA (non-zero) and CB that both are simm12.
6584   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
6585       !isInt<12>(C0 * (C1 / C0))) {
6586     CA = C1 / C0;
6587     CB = C1 % C0;
6588   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
6589              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
6590     CA = C1 / C0 + 1;
6591     CB = C1 % C0 - C0;
6592   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
6593              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
6594     CA = C1 / C0 - 1;
6595     CB = C1 % C0 + C0;
6596   } else
6597     return SDValue();
6598   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
6599   SDLoc DL(N);
6600   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
6601                              DAG.getConstant(CA, DL, VT));
6602   SDValue New1 =
6603       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
6604   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
6605 }
6606 
6607 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
6608                                  const RISCVSubtarget &Subtarget) {
6609   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
6610     return V;
6611   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
6612     return V;
6613   // fold (add (select lhs, rhs, cc, 0, y), x) ->
6614   //      (select lhs, rhs, cc, x, (add x, y))
6615   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6616 }
6617 
6618 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
6619   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
6620   //      (select lhs, rhs, cc, x, (sub x, y))
6621   SDValue N0 = N->getOperand(0);
6622   SDValue N1 = N->getOperand(1);
6623   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
6624 }
6625 
6626 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
6627   // fold (and (select lhs, rhs, cc, -1, y), x) ->
6628   //      (select lhs, rhs, cc, x, (and x, y))
6629   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
6630 }
6631 
6632 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
6633                                 const RISCVSubtarget &Subtarget) {
6634   if (Subtarget.hasStdExtZbp()) {
6635     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
6636       return GREV;
6637     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
6638       return GORC;
6639     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
6640       return SHFL;
6641   }
6642 
6643   // fold (or (select cond, 0, y), x) ->
6644   //      (select cond, x, (or x, y))
6645   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6646 }
6647 
6648 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
6649   // fold (xor (select cond, 0, y), x) ->
6650   //      (select cond, x, (xor x, y))
6651   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6652 }
6653 
6654 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
6655 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
6656 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
6657 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
6658 // ADDW/SUBW/MULW.
6659 static SDValue performANY_EXTENDCombine(SDNode *N,
6660                                         TargetLowering::DAGCombinerInfo &DCI,
6661                                         const RISCVSubtarget &Subtarget) {
6662   if (!Subtarget.is64Bit())
6663     return SDValue();
6664 
6665   SelectionDAG &DAG = DCI.DAG;
6666 
6667   SDValue Src = N->getOperand(0);
6668   EVT VT = N->getValueType(0);
6669   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
6670     return SDValue();
6671 
6672   // The opcode must be one that can implicitly sign_extend.
6673   // FIXME: Additional opcodes.
6674   switch (Src.getOpcode()) {
6675   default:
6676     return SDValue();
6677   case ISD::MUL:
6678     if (!Subtarget.hasStdExtM())
6679       return SDValue();
6680     LLVM_FALLTHROUGH;
6681   case ISD::ADD:
6682   case ISD::SUB:
6683     break;
6684   }
6685 
6686   // Only handle cases where the result is used by a CopyToReg. That likely
6687   // means the value is a liveout of the basic block. This helps prevent
6688   // infinite combine loops like PR51206.
6689   if (none_of(N->uses(),
6690               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
6691     return SDValue();
6692 
6693   SmallVector<SDNode *, 4> SetCCs;
6694   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
6695                             UE = Src.getNode()->use_end();
6696        UI != UE; ++UI) {
6697     SDNode *User = *UI;
6698     if (User == N)
6699       continue;
6700     if (UI.getUse().getResNo() != Src.getResNo())
6701       continue;
6702     // All i32 setccs are legalized by sign extending operands.
6703     if (User->getOpcode() == ISD::SETCC) {
6704       SetCCs.push_back(User);
6705       continue;
6706     }
6707     // We don't know if we can extend this user.
6708     break;
6709   }
6710 
6711   // If we don't have any SetCCs, this isn't worthwhile.
6712   if (SetCCs.empty())
6713     return SDValue();
6714 
6715   SDLoc DL(N);
6716   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
6717   DCI.CombineTo(N, SExt);
6718 
6719   // Promote all the setccs.
6720   for (SDNode *SetCC : SetCCs) {
6721     SmallVector<SDValue, 4> Ops;
6722 
6723     for (unsigned j = 0; j != 2; ++j) {
6724       SDValue SOp = SetCC->getOperand(j);
6725       if (SOp == Src)
6726         Ops.push_back(SExt);
6727       else
6728         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
6729     }
6730 
6731     Ops.push_back(SetCC->getOperand(2));
6732     DCI.CombineTo(SetCC,
6733                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
6734   }
6735   return SDValue(N, 0);
6736 }
6737 
6738 // Try to form VWMUL or VWMULU.
6739 // FIXME: Support VWMULSU.
6740 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1,
6741                                     SelectionDAG &DAG) {
6742   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
6743   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
6744   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
6745   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
6746     return SDValue();
6747 
6748   SDValue Mask = N->getOperand(2);
6749   SDValue VL = N->getOperand(3);
6750 
6751   // Make sure the mask and VL match.
6752   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
6753     return SDValue();
6754 
6755   MVT VT = N->getSimpleValueType(0);
6756 
6757   // Determine the narrow size for a widening multiply.
6758   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
6759   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
6760                                   VT.getVectorElementCount());
6761 
6762   SDLoc DL(N);
6763 
6764   // See if the other operand is the same opcode.
6765   if (Op0.getOpcode() == Op1.getOpcode()) {
6766     if (!Op1.hasOneUse())
6767       return SDValue();
6768 
6769     // Make sure the mask and VL match.
6770     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
6771       return SDValue();
6772 
6773     Op1 = Op1.getOperand(0);
6774   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
6775     // The operand is a splat of a scalar.
6776 
6777     // The VL must be the same.
6778     if (Op1.getOperand(1) != VL)
6779       return SDValue();
6780 
6781     // Get the scalar value.
6782     Op1 = Op1.getOperand(0);
6783 
6784     // See if have enough sign bits or zero bits in the scalar to use a
6785     // widening multiply by splatting to smaller element size.
6786     unsigned EltBits = VT.getScalarSizeInBits();
6787     unsigned ScalarBits = Op1.getValueSizeInBits();
6788     // Make sure we're getting all element bits from the scalar register.
6789     // FIXME: Support implicit sign extension of vmv.v.x?
6790     if (ScalarBits < EltBits)
6791       return SDValue();
6792 
6793     if (IsSignExt) {
6794       if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize))
6795         return SDValue();
6796     } else {
6797       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
6798       if (!DAG.MaskedValueIsZero(Op1, Mask))
6799         return SDValue();
6800     }
6801 
6802     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL);
6803   } else
6804     return SDValue();
6805 
6806   Op0 = Op0.getOperand(0);
6807 
6808   // Re-introduce narrower extends if needed.
6809   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
6810   if (Op0.getValueType() != NarrowVT)
6811     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
6812   if (Op1.getValueType() != NarrowVT)
6813     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
6814 
6815   unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
6816   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
6817 }
6818 
6819 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
6820                                                DAGCombinerInfo &DCI) const {
6821   SelectionDAG &DAG = DCI.DAG;
6822 
6823   // Helper to call SimplifyDemandedBits on an operand of N where only some low
6824   // bits are demanded. N will be added to the Worklist if it was not deleted.
6825   // Caller should return SDValue(N, 0) if this returns true.
6826   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
6827     SDValue Op = N->getOperand(OpNo);
6828     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
6829     if (!SimplifyDemandedBits(Op, Mask, DCI))
6830       return false;
6831 
6832     if (N->getOpcode() != ISD::DELETED_NODE)
6833       DCI.AddToWorklist(N);
6834     return true;
6835   };
6836 
6837   switch (N->getOpcode()) {
6838   default:
6839     break;
6840   case RISCVISD::SplitF64: {
6841     SDValue Op0 = N->getOperand(0);
6842     // If the input to SplitF64 is just BuildPairF64 then the operation is
6843     // redundant. Instead, use BuildPairF64's operands directly.
6844     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
6845       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
6846 
6847     SDLoc DL(N);
6848 
6849     // It's cheaper to materialise two 32-bit integers than to load a double
6850     // from the constant pool and transfer it to integer registers through the
6851     // stack.
6852     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
6853       APInt V = C->getValueAPF().bitcastToAPInt();
6854       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
6855       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
6856       return DCI.CombineTo(N, Lo, Hi);
6857     }
6858 
6859     // This is a target-specific version of a DAGCombine performed in
6860     // DAGCombiner::visitBITCAST. It performs the equivalent of:
6861     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6862     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6863     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
6864         !Op0.getNode()->hasOneUse())
6865       break;
6866     SDValue NewSplitF64 =
6867         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
6868                     Op0.getOperand(0));
6869     SDValue Lo = NewSplitF64.getValue(0);
6870     SDValue Hi = NewSplitF64.getValue(1);
6871     APInt SignBit = APInt::getSignMask(32);
6872     if (Op0.getOpcode() == ISD::FNEG) {
6873       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
6874                                   DAG.getConstant(SignBit, DL, MVT::i32));
6875       return DCI.CombineTo(N, Lo, NewHi);
6876     }
6877     assert(Op0.getOpcode() == ISD::FABS);
6878     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
6879                                 DAG.getConstant(~SignBit, DL, MVT::i32));
6880     return DCI.CombineTo(N, Lo, NewHi);
6881   }
6882   case RISCVISD::SLLW:
6883   case RISCVISD::SRAW:
6884   case RISCVISD::SRLW:
6885   case RISCVISD::ROLW:
6886   case RISCVISD::RORW: {
6887     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6888     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6889         SimplifyDemandedLowBitsHelper(1, 5))
6890       return SDValue(N, 0);
6891     break;
6892   }
6893   case RISCVISD::CLZW:
6894   case RISCVISD::CTZW: {
6895     // Only the lower 32 bits of the first operand are read
6896     if (SimplifyDemandedLowBitsHelper(0, 32))
6897       return SDValue(N, 0);
6898     break;
6899   }
6900   case RISCVISD::FSL:
6901   case RISCVISD::FSR: {
6902     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
6903     unsigned BitWidth = N->getOperand(2).getValueSizeInBits();
6904     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6905     if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1))
6906       return SDValue(N, 0);
6907     break;
6908   }
6909   case RISCVISD::FSLW:
6910   case RISCVISD::FSRW: {
6911     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
6912     // read.
6913     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6914         SimplifyDemandedLowBitsHelper(1, 32) ||
6915         SimplifyDemandedLowBitsHelper(2, 6))
6916       return SDValue(N, 0);
6917     break;
6918   }
6919   case RISCVISD::GREV:
6920   case RISCVISD::GORC: {
6921     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
6922     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
6923     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6924     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
6925       return SDValue(N, 0);
6926 
6927     return combineGREVI_GORCI(N, DCI.DAG);
6928   }
6929   case RISCVISD::GREVW:
6930   case RISCVISD::GORCW: {
6931     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6932     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6933         SimplifyDemandedLowBitsHelper(1, 5))
6934       return SDValue(N, 0);
6935 
6936     return combineGREVI_GORCI(N, DCI.DAG);
6937   }
6938   case RISCVISD::SHFL:
6939   case RISCVISD::UNSHFL: {
6940     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
6941     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
6942     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6943     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
6944       return SDValue(N, 0);
6945 
6946     break;
6947   }
6948   case RISCVISD::SHFLW:
6949   case RISCVISD::UNSHFLW: {
6950     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
6951     SDValue LHS = N->getOperand(0);
6952     SDValue RHS = N->getOperand(1);
6953     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
6954     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
6955     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6956         SimplifyDemandedLowBitsHelper(1, 4))
6957       return SDValue(N, 0);
6958 
6959     break;
6960   }
6961   case RISCVISD::BCOMPRESSW:
6962   case RISCVISD::BDECOMPRESSW: {
6963     // Only the lower 32 bits of LHS and RHS are read.
6964     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6965         SimplifyDemandedLowBitsHelper(1, 32))
6966       return SDValue(N, 0);
6967 
6968     break;
6969   }
6970   case RISCVISD::FMV_X_ANYEXTH:
6971   case RISCVISD::FMV_X_ANYEXTW_RV64: {
6972     SDLoc DL(N);
6973     SDValue Op0 = N->getOperand(0);
6974     MVT VT = N->getSimpleValueType(0);
6975     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
6976     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
6977     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
6978     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
6979          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
6980         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
6981          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
6982       assert(Op0.getOperand(0).getValueType() == VT &&
6983              "Unexpected value type!");
6984       return Op0.getOperand(0);
6985     }
6986 
6987     // This is a target-specific version of a DAGCombine performed in
6988     // DAGCombiner::visitBITCAST. It performs the equivalent of:
6989     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6990     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6991     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
6992         !Op0.getNode()->hasOneUse())
6993       break;
6994     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
6995     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
6996     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
6997     if (Op0.getOpcode() == ISD::FNEG)
6998       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
6999                          DAG.getConstant(SignBit, DL, VT));
7000 
7001     assert(Op0.getOpcode() == ISD::FABS);
7002     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
7003                        DAG.getConstant(~SignBit, DL, VT));
7004   }
7005   case ISD::ADD:
7006     return performADDCombine(N, DAG, Subtarget);
7007   case ISD::SUB:
7008     return performSUBCombine(N, DAG);
7009   case ISD::AND:
7010     return performANDCombine(N, DAG);
7011   case ISD::OR:
7012     return performORCombine(N, DAG, Subtarget);
7013   case ISD::XOR:
7014     return performXORCombine(N, DAG);
7015   case ISD::ANY_EXTEND:
7016     return performANY_EXTENDCombine(N, DCI, Subtarget);
7017   case ISD::ZERO_EXTEND:
7018     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
7019     // type legalization. This is safe because fp_to_uint produces poison if
7020     // it overflows.
7021     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() &&
7022         N->getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
7023         isTypeLegal(N->getOperand(0).getOperand(0).getValueType()))
7024       return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
7025                          N->getOperand(0).getOperand(0));
7026     return SDValue();
7027   case RISCVISD::SELECT_CC: {
7028     // Transform
7029     SDValue LHS = N->getOperand(0);
7030     SDValue RHS = N->getOperand(1);
7031     SDValue TrueV = N->getOperand(3);
7032     SDValue FalseV = N->getOperand(4);
7033 
7034     // If the True and False values are the same, we don't need a select_cc.
7035     if (TrueV == FalseV)
7036       return TrueV;
7037 
7038     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
7039     if (!ISD::isIntEqualitySetCC(CCVal))
7040       break;
7041 
7042     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
7043     //      (select_cc X, Y, lt, trueV, falseV)
7044     // Sometimes the setcc is introduced after select_cc has been formed.
7045     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7046         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7047       // If we're looking for eq 0 instead of ne 0, we need to invert the
7048       // condition.
7049       bool Invert = CCVal == ISD::SETEQ;
7050       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7051       if (Invert)
7052         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7053 
7054       SDLoc DL(N);
7055       RHS = LHS.getOperand(1);
7056       LHS = LHS.getOperand(0);
7057       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7058 
7059       SDValue TargetCC = DAG.getCondCode(CCVal);
7060       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7061                          {LHS, RHS, TargetCC, TrueV, FalseV});
7062     }
7063 
7064     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
7065     //      (select_cc X, Y, eq/ne, trueV, falseV)
7066     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7067       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
7068                          {LHS.getOperand(0), LHS.getOperand(1),
7069                           N->getOperand(2), TrueV, FalseV});
7070     // (select_cc X, 1, setne, trueV, falseV) ->
7071     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
7072     // This can occur when legalizing some floating point comparisons.
7073     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7074     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7075       SDLoc DL(N);
7076       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7077       SDValue TargetCC = DAG.getCondCode(CCVal);
7078       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7079       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7080                          {LHS, RHS, TargetCC, TrueV, FalseV});
7081     }
7082 
7083     break;
7084   }
7085   case RISCVISD::BR_CC: {
7086     SDValue LHS = N->getOperand(1);
7087     SDValue RHS = N->getOperand(2);
7088     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
7089     if (!ISD::isIntEqualitySetCC(CCVal))
7090       break;
7091 
7092     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
7093     //      (br_cc X, Y, lt, dest)
7094     // Sometimes the setcc is introduced after br_cc has been formed.
7095     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7096         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7097       // If we're looking for eq 0 instead of ne 0, we need to invert the
7098       // condition.
7099       bool Invert = CCVal == ISD::SETEQ;
7100       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7101       if (Invert)
7102         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7103 
7104       SDLoc DL(N);
7105       RHS = LHS.getOperand(1);
7106       LHS = LHS.getOperand(0);
7107       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7108 
7109       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7110                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
7111                          N->getOperand(4));
7112     }
7113 
7114     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
7115     //      (br_cc X, Y, eq/ne, trueV, falseV)
7116     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7117       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
7118                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
7119                          N->getOperand(3), N->getOperand(4));
7120 
7121     // (br_cc X, 1, setne, br_cc) ->
7122     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
7123     // This can occur when legalizing some floating point comparisons.
7124     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7125     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7126       SDLoc DL(N);
7127       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7128       SDValue TargetCC = DAG.getCondCode(CCVal);
7129       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7130       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7131                          N->getOperand(0), LHS, RHS, TargetCC,
7132                          N->getOperand(4));
7133     }
7134     break;
7135   }
7136   case ISD::FCOPYSIGN: {
7137     EVT VT = N->getValueType(0);
7138     if (!VT.isVector())
7139       break;
7140     // There is a form of VFSGNJ which injects the negated sign of its second
7141     // operand. Try and bubble any FNEG up after the extend/round to produce
7142     // this optimized pattern. Avoid modifying cases where FP_ROUND and
7143     // TRUNC=1.
7144     SDValue In2 = N->getOperand(1);
7145     // Avoid cases where the extend/round has multiple uses, as duplicating
7146     // those is typically more expensive than removing a fneg.
7147     if (!In2.hasOneUse())
7148       break;
7149     if (In2.getOpcode() != ISD::FP_EXTEND &&
7150         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
7151       break;
7152     In2 = In2.getOperand(0);
7153     if (In2.getOpcode() != ISD::FNEG)
7154       break;
7155     SDLoc DL(N);
7156     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
7157     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
7158                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
7159   }
7160   case ISD::MGATHER:
7161   case ISD::MSCATTER:
7162   case ISD::VP_GATHER:
7163   case ISD::VP_SCATTER: {
7164     if (!DCI.isBeforeLegalize())
7165       break;
7166     SDValue Index, ScaleOp;
7167     bool IsIndexScaled = false;
7168     bool IsIndexSigned = false;
7169     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
7170       Index = VPGSN->getIndex();
7171       ScaleOp = VPGSN->getScale();
7172       IsIndexScaled = VPGSN->isIndexScaled();
7173       IsIndexSigned = VPGSN->isIndexSigned();
7174     } else {
7175       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
7176       Index = MGSN->getIndex();
7177       ScaleOp = MGSN->getScale();
7178       IsIndexScaled = MGSN->isIndexScaled();
7179       IsIndexSigned = MGSN->isIndexSigned();
7180     }
7181     EVT IndexVT = Index.getValueType();
7182     MVT XLenVT = Subtarget.getXLenVT();
7183     // RISCV indexed loads only support the "unsigned unscaled" addressing
7184     // mode, so anything else must be manually legalized.
7185     bool NeedsIdxLegalization =
7186         IsIndexScaled ||
7187         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
7188     if (!NeedsIdxLegalization)
7189       break;
7190 
7191     SDLoc DL(N);
7192 
7193     // Any index legalization should first promote to XLenVT, so we don't lose
7194     // bits when scaling. This may create an illegal index type so we let
7195     // LLVM's legalization take care of the splitting.
7196     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
7197     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
7198       IndexVT = IndexVT.changeVectorElementType(XLenVT);
7199       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
7200                           DL, IndexVT, Index);
7201     }
7202 
7203     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
7204     if (IsIndexScaled && Scale != 1) {
7205       // Manually scale the indices by the element size.
7206       // TODO: Sanitize the scale operand here?
7207       // TODO: For VP nodes, should we use VP_SHL here?
7208       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
7209       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
7210       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
7211     }
7212 
7213     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
7214     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
7215       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
7216                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
7217                               VPGN->getScale(), VPGN->getMask(),
7218                               VPGN->getVectorLength()},
7219                              VPGN->getMemOperand(), NewIndexTy);
7220     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
7221       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
7222                               {VPSN->getChain(), VPSN->getValue(),
7223                                VPSN->getBasePtr(), Index, VPSN->getScale(),
7224                                VPSN->getMask(), VPSN->getVectorLength()},
7225                               VPSN->getMemOperand(), NewIndexTy);
7226     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
7227       return DAG.getMaskedGather(
7228           N->getVTList(), MGN->getMemoryVT(), DL,
7229           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
7230            MGN->getBasePtr(), Index, MGN->getScale()},
7231           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
7232     const auto *MSN = cast<MaskedScatterSDNode>(N);
7233     return DAG.getMaskedScatter(
7234         N->getVTList(), MSN->getMemoryVT(), DL,
7235         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
7236          Index, MSN->getScale()},
7237         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
7238   }
7239   case RISCVISD::SRA_VL:
7240   case RISCVISD::SRL_VL:
7241   case RISCVISD::SHL_VL: {
7242     SDValue ShAmt = N->getOperand(1);
7243     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7244       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7245       SDLoc DL(N);
7246       SDValue VL = N->getOperand(3);
7247       EVT VT = N->getValueType(0);
7248       ShAmt =
7249           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
7250       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
7251                          N->getOperand(2), N->getOperand(3));
7252     }
7253     break;
7254   }
7255   case ISD::SRA:
7256   case ISD::SRL:
7257   case ISD::SHL: {
7258     SDValue ShAmt = N->getOperand(1);
7259     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7260       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7261       SDLoc DL(N);
7262       EVT VT = N->getValueType(0);
7263       ShAmt =
7264           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0));
7265       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
7266     }
7267     break;
7268   }
7269   case RISCVISD::MUL_VL: {
7270     SDValue Op0 = N->getOperand(0);
7271     SDValue Op1 = N->getOperand(1);
7272     if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG))
7273       return V;
7274     if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG))
7275       return V;
7276     return SDValue();
7277   }
7278   case ISD::STORE: {
7279     auto *Store = cast<StoreSDNode>(N);
7280     SDValue Val = Store->getValue();
7281     // Combine store of vmv.x.s to vse with VL of 1.
7282     // FIXME: Support FP.
7283     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
7284       SDValue Src = Val.getOperand(0);
7285       EVT VecVT = Src.getValueType();
7286       EVT MemVT = Store->getMemoryVT();
7287       // The memory VT and the element type must match.
7288       if (VecVT.getVectorElementType() == MemVT) {
7289         SDLoc DL(N);
7290         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7291         return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(),
7292                               DAG.getConstant(1, DL, MaskVT),
7293                               DAG.getConstant(1, DL, Subtarget.getXLenVT()),
7294                               Store->getPointerInfo(),
7295                               Store->getOriginalAlign(),
7296                               Store->getMemOperand()->getFlags());
7297       }
7298     }
7299 
7300     break;
7301   }
7302   }
7303 
7304   return SDValue();
7305 }
7306 
7307 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
7308     const SDNode *N, CombineLevel Level) const {
7309   // The following folds are only desirable if `(OP _, c1 << c2)` can be
7310   // materialised in fewer instructions than `(OP _, c1)`:
7311   //
7312   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
7313   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
7314   SDValue N0 = N->getOperand(0);
7315   EVT Ty = N0.getValueType();
7316   if (Ty.isScalarInteger() &&
7317       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
7318     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7319     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
7320     if (C1 && C2) {
7321       const APInt &C1Int = C1->getAPIntValue();
7322       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
7323 
7324       // We can materialise `c1 << c2` into an add immediate, so it's "free",
7325       // and the combine should happen, to potentially allow further combines
7326       // later.
7327       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
7328           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
7329         return true;
7330 
7331       // We can materialise `c1` in an add immediate, so it's "free", and the
7332       // combine should be prevented.
7333       if (C1Int.getMinSignedBits() <= 64 &&
7334           isLegalAddImmediate(C1Int.getSExtValue()))
7335         return false;
7336 
7337       // Neither constant will fit into an immediate, so find materialisation
7338       // costs.
7339       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
7340                                               Subtarget.getFeatureBits(),
7341                                               /*CompressionCost*/true);
7342       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
7343           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
7344           /*CompressionCost*/true);
7345 
7346       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
7347       // combine should be prevented.
7348       if (C1Cost < ShiftedC1Cost)
7349         return false;
7350     }
7351   }
7352   return true;
7353 }
7354 
7355 bool RISCVTargetLowering::targetShrinkDemandedConstant(
7356     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
7357     TargetLoweringOpt &TLO) const {
7358   // Delay this optimization as late as possible.
7359   if (!TLO.LegalOps)
7360     return false;
7361 
7362   EVT VT = Op.getValueType();
7363   if (VT.isVector())
7364     return false;
7365 
7366   // Only handle AND for now.
7367   if (Op.getOpcode() != ISD::AND)
7368     return false;
7369 
7370   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7371   if (!C)
7372     return false;
7373 
7374   const APInt &Mask = C->getAPIntValue();
7375 
7376   // Clear all non-demanded bits initially.
7377   APInt ShrunkMask = Mask & DemandedBits;
7378 
7379   // Try to make a smaller immediate by setting undemanded bits.
7380 
7381   APInt ExpandedMask = Mask | ~DemandedBits;
7382 
7383   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
7384     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
7385   };
7386   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
7387     if (NewMask == Mask)
7388       return true;
7389     SDLoc DL(Op);
7390     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
7391     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
7392     return TLO.CombineTo(Op, NewOp);
7393   };
7394 
7395   // If the shrunk mask fits in sign extended 12 bits, let the target
7396   // independent code apply it.
7397   if (ShrunkMask.isSignedIntN(12))
7398     return false;
7399 
7400   // Preserve (and X, 0xffff) when zext.h is supported.
7401   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
7402     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
7403     if (IsLegalMask(NewMask))
7404       return UseMask(NewMask);
7405   }
7406 
7407   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
7408   if (VT == MVT::i64) {
7409     APInt NewMask = APInt(64, 0xffffffff);
7410     if (IsLegalMask(NewMask))
7411       return UseMask(NewMask);
7412   }
7413 
7414   // For the remaining optimizations, we need to be able to make a negative
7415   // number through a combination of mask and undemanded bits.
7416   if (!ExpandedMask.isNegative())
7417     return false;
7418 
7419   // What is the fewest number of bits we need to represent the negative number.
7420   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
7421 
7422   // Try to make a 12 bit negative immediate. If that fails try to make a 32
7423   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
7424   APInt NewMask = ShrunkMask;
7425   if (MinSignedBits <= 12)
7426     NewMask.setBitsFrom(11);
7427   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
7428     NewMask.setBitsFrom(31);
7429   else
7430     return false;
7431 
7432   // Check that our new mask is a subset of the demanded mask.
7433   assert(IsLegalMask(NewMask));
7434   return UseMask(NewMask);
7435 }
7436 
7437 static void computeGREV(APInt &Src, unsigned ShAmt) {
7438   ShAmt &= Src.getBitWidth() - 1;
7439   uint64_t x = Src.getZExtValue();
7440   if (ShAmt & 1)
7441     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
7442   if (ShAmt & 2)
7443     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
7444   if (ShAmt & 4)
7445     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
7446   if (ShAmt & 8)
7447     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
7448   if (ShAmt & 16)
7449     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
7450   if (ShAmt & 32)
7451     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
7452   Src = x;
7453 }
7454 
7455 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7456                                                         KnownBits &Known,
7457                                                         const APInt &DemandedElts,
7458                                                         const SelectionDAG &DAG,
7459                                                         unsigned Depth) const {
7460   unsigned BitWidth = Known.getBitWidth();
7461   unsigned Opc = Op.getOpcode();
7462   assert((Opc >= ISD::BUILTIN_OP_END ||
7463           Opc == ISD::INTRINSIC_WO_CHAIN ||
7464           Opc == ISD::INTRINSIC_W_CHAIN ||
7465           Opc == ISD::INTRINSIC_VOID) &&
7466          "Should use MaskedValueIsZero if you don't know whether Op"
7467          " is a target node!");
7468 
7469   Known.resetAll();
7470   switch (Opc) {
7471   default: break;
7472   case RISCVISD::SELECT_CC: {
7473     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
7474     // If we don't know any bits, early out.
7475     if (Known.isUnknown())
7476       break;
7477     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
7478 
7479     // Only known if known in both the LHS and RHS.
7480     Known = KnownBits::commonBits(Known, Known2);
7481     break;
7482   }
7483   case RISCVISD::REMUW: {
7484     KnownBits Known2;
7485     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7486     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7487     // We only care about the lower 32 bits.
7488     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
7489     // Restore the original width by sign extending.
7490     Known = Known.sext(BitWidth);
7491     break;
7492   }
7493   case RISCVISD::DIVUW: {
7494     KnownBits Known2;
7495     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7496     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7497     // We only care about the lower 32 bits.
7498     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
7499     // Restore the original width by sign extending.
7500     Known = Known.sext(BitWidth);
7501     break;
7502   }
7503   case RISCVISD::CTZW: {
7504     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7505     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
7506     unsigned LowBits = Log2_32(PossibleTZ) + 1;
7507     Known.Zero.setBitsFrom(LowBits);
7508     break;
7509   }
7510   case RISCVISD::CLZW: {
7511     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7512     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
7513     unsigned LowBits = Log2_32(PossibleLZ) + 1;
7514     Known.Zero.setBitsFrom(LowBits);
7515     break;
7516   }
7517   case RISCVISD::GREV:
7518   case RISCVISD::GREVW: {
7519     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7520       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7521       if (Opc == RISCVISD::GREVW)
7522         Known = Known.trunc(32);
7523       unsigned ShAmt = C->getZExtValue();
7524       computeGREV(Known.Zero, ShAmt);
7525       computeGREV(Known.One, ShAmt);
7526       if (Opc == RISCVISD::GREVW)
7527         Known = Known.sext(BitWidth);
7528     }
7529     break;
7530   }
7531   case RISCVISD::READ_VLENB:
7532     // We assume VLENB is at least 16 bytes.
7533     Known.Zero.setLowBits(4);
7534     // We assume VLENB is no more than 65536 / 8 bytes.
7535     Known.Zero.setBitsFrom(14);
7536     break;
7537   case ISD::INTRINSIC_W_CHAIN: {
7538     unsigned IntNo = Op.getConstantOperandVal(1);
7539     switch (IntNo) {
7540     default:
7541       // We can't do anything for most intrinsics.
7542       break;
7543     case Intrinsic::riscv_vsetvli:
7544     case Intrinsic::riscv_vsetvlimax:
7545       // Assume that VL output is positive and would fit in an int32_t.
7546       // TODO: VLEN might be capped at 16 bits in a future V spec update.
7547       if (BitWidth >= 32)
7548         Known.Zero.setBitsFrom(31);
7549       break;
7550     }
7551     break;
7552   }
7553   }
7554 }
7555 
7556 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
7557     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7558     unsigned Depth) const {
7559   switch (Op.getOpcode()) {
7560   default:
7561     break;
7562   case RISCVISD::SELECT_CC: {
7563     unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
7564     if (Tmp == 1) return 1;  // Early out.
7565     unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
7566     return std::min(Tmp, Tmp2);
7567   }
7568   case RISCVISD::SLLW:
7569   case RISCVISD::SRAW:
7570   case RISCVISD::SRLW:
7571   case RISCVISD::DIVW:
7572   case RISCVISD::DIVUW:
7573   case RISCVISD::REMUW:
7574   case RISCVISD::ROLW:
7575   case RISCVISD::RORW:
7576   case RISCVISD::GREVW:
7577   case RISCVISD::GORCW:
7578   case RISCVISD::FSLW:
7579   case RISCVISD::FSRW:
7580   case RISCVISD::SHFLW:
7581   case RISCVISD::UNSHFLW:
7582   case RISCVISD::BCOMPRESSW:
7583   case RISCVISD::BDECOMPRESSW:
7584   case RISCVISD::FCVT_W_RTZ_RV64:
7585   case RISCVISD::FCVT_WU_RTZ_RV64:
7586     // TODO: As the result is sign-extended, this is conservatively correct. A
7587     // more precise answer could be calculated for SRAW depending on known
7588     // bits in the shift amount.
7589     return 33;
7590   case RISCVISD::SHFL:
7591   case RISCVISD::UNSHFL: {
7592     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
7593     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
7594     // will stay within the upper 32 bits. If there were more than 32 sign bits
7595     // before there will be at least 33 sign bits after.
7596     if (Op.getValueType() == MVT::i64 &&
7597         isa<ConstantSDNode>(Op.getOperand(1)) &&
7598         (Op.getConstantOperandVal(1) & 0x10) == 0) {
7599       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
7600       if (Tmp > 32)
7601         return 33;
7602     }
7603     break;
7604   }
7605   case RISCVISD::VMV_X_S:
7606     // The number of sign bits of the scalar result is computed by obtaining the
7607     // element type of the input vector operand, subtracting its width from the
7608     // XLEN, and then adding one (sign bit within the element type). If the
7609     // element type is wider than XLen, the least-significant XLEN bits are
7610     // taken.
7611     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
7612       return 1;
7613     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
7614   }
7615 
7616   return 1;
7617 }
7618 
7619 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
7620                                                   MachineBasicBlock *BB) {
7621   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
7622 
7623   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
7624   // Should the count have wrapped while it was being read, we need to try
7625   // again.
7626   // ...
7627   // read:
7628   // rdcycleh x3 # load high word of cycle
7629   // rdcycle  x2 # load low word of cycle
7630   // rdcycleh x4 # load high word of cycle
7631   // bne x3, x4, read # check if high word reads match, otherwise try again
7632   // ...
7633 
7634   MachineFunction &MF = *BB->getParent();
7635   const BasicBlock *LLVM_BB = BB->getBasicBlock();
7636   MachineFunction::iterator It = ++BB->getIterator();
7637 
7638   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7639   MF.insert(It, LoopMBB);
7640 
7641   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7642   MF.insert(It, DoneMBB);
7643 
7644   // Transfer the remainder of BB and its successor edges to DoneMBB.
7645   DoneMBB->splice(DoneMBB->begin(), BB,
7646                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
7647   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
7648 
7649   BB->addSuccessor(LoopMBB);
7650 
7651   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7652   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7653   Register LoReg = MI.getOperand(0).getReg();
7654   Register HiReg = MI.getOperand(1).getReg();
7655   DebugLoc DL = MI.getDebugLoc();
7656 
7657   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
7658   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
7659       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7660       .addReg(RISCV::X0);
7661   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
7662       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
7663       .addReg(RISCV::X0);
7664   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
7665       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7666       .addReg(RISCV::X0);
7667 
7668   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
7669       .addReg(HiReg)
7670       .addReg(ReadAgainReg)
7671       .addMBB(LoopMBB);
7672 
7673   LoopMBB->addSuccessor(LoopMBB);
7674   LoopMBB->addSuccessor(DoneMBB);
7675 
7676   MI.eraseFromParent();
7677 
7678   return DoneMBB;
7679 }
7680 
7681 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
7682                                              MachineBasicBlock *BB) {
7683   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
7684 
7685   MachineFunction &MF = *BB->getParent();
7686   DebugLoc DL = MI.getDebugLoc();
7687   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
7688   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
7689   Register LoReg = MI.getOperand(0).getReg();
7690   Register HiReg = MI.getOperand(1).getReg();
7691   Register SrcReg = MI.getOperand(2).getReg();
7692   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
7693   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
7694 
7695   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
7696                           RI);
7697   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
7698   MachineMemOperand *MMOLo =
7699       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
7700   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
7701       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
7702   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
7703       .addFrameIndex(FI)
7704       .addImm(0)
7705       .addMemOperand(MMOLo);
7706   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
7707       .addFrameIndex(FI)
7708       .addImm(4)
7709       .addMemOperand(MMOHi);
7710   MI.eraseFromParent(); // The pseudo instruction is gone now.
7711   return BB;
7712 }
7713 
7714 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
7715                                                  MachineBasicBlock *BB) {
7716   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
7717          "Unexpected instruction");
7718 
7719   MachineFunction &MF = *BB->getParent();
7720   DebugLoc DL = MI.getDebugLoc();
7721   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
7722   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
7723   Register DstReg = MI.getOperand(0).getReg();
7724   Register LoReg = MI.getOperand(1).getReg();
7725   Register HiReg = MI.getOperand(2).getReg();
7726   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
7727   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
7728 
7729   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
7730   MachineMemOperand *MMOLo =
7731       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
7732   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
7733       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
7734   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
7735       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
7736       .addFrameIndex(FI)
7737       .addImm(0)
7738       .addMemOperand(MMOLo);
7739   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
7740       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
7741       .addFrameIndex(FI)
7742       .addImm(4)
7743       .addMemOperand(MMOHi);
7744   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
7745   MI.eraseFromParent(); // The pseudo instruction is gone now.
7746   return BB;
7747 }
7748 
7749 static bool isSelectPseudo(MachineInstr &MI) {
7750   switch (MI.getOpcode()) {
7751   default:
7752     return false;
7753   case RISCV::Select_GPR_Using_CC_GPR:
7754   case RISCV::Select_FPR16_Using_CC_GPR:
7755   case RISCV::Select_FPR32_Using_CC_GPR:
7756   case RISCV::Select_FPR64_Using_CC_GPR:
7757     return true;
7758   }
7759 }
7760 
7761 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
7762                                            MachineBasicBlock *BB,
7763                                            const RISCVSubtarget &Subtarget) {
7764   // To "insert" Select_* instructions, we actually have to insert the triangle
7765   // control-flow pattern.  The incoming instructions know the destination vreg
7766   // to set, the condition code register to branch on, the true/false values to
7767   // select between, and the condcode to use to select the appropriate branch.
7768   //
7769   // We produce the following control flow:
7770   //     HeadMBB
7771   //     |  \
7772   //     |  IfFalseMBB
7773   //     | /
7774   //    TailMBB
7775   //
7776   // When we find a sequence of selects we attempt to optimize their emission
7777   // by sharing the control flow. Currently we only handle cases where we have
7778   // multiple selects with the exact same condition (same LHS, RHS and CC).
7779   // The selects may be interleaved with other instructions if the other
7780   // instructions meet some requirements we deem safe:
7781   // - They are debug instructions. Otherwise,
7782   // - They do not have side-effects, do not access memory and their inputs do
7783   //   not depend on the results of the select pseudo-instructions.
7784   // The TrueV/FalseV operands of the selects cannot depend on the result of
7785   // previous selects in the sequence.
7786   // These conditions could be further relaxed. See the X86 target for a
7787   // related approach and more information.
7788   Register LHS = MI.getOperand(1).getReg();
7789   Register RHS = MI.getOperand(2).getReg();
7790   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
7791 
7792   SmallVector<MachineInstr *, 4> SelectDebugValues;
7793   SmallSet<Register, 4> SelectDests;
7794   SelectDests.insert(MI.getOperand(0).getReg());
7795 
7796   MachineInstr *LastSelectPseudo = &MI;
7797 
7798   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
7799        SequenceMBBI != E; ++SequenceMBBI) {
7800     if (SequenceMBBI->isDebugInstr())
7801       continue;
7802     else if (isSelectPseudo(*SequenceMBBI)) {
7803       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
7804           SequenceMBBI->getOperand(2).getReg() != RHS ||
7805           SequenceMBBI->getOperand(3).getImm() != CC ||
7806           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
7807           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
7808         break;
7809       LastSelectPseudo = &*SequenceMBBI;
7810       SequenceMBBI->collectDebugValues(SelectDebugValues);
7811       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
7812     } else {
7813       if (SequenceMBBI->hasUnmodeledSideEffects() ||
7814           SequenceMBBI->mayLoadOrStore())
7815         break;
7816       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
7817             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
7818           }))
7819         break;
7820     }
7821   }
7822 
7823   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
7824   const BasicBlock *LLVM_BB = BB->getBasicBlock();
7825   DebugLoc DL = MI.getDebugLoc();
7826   MachineFunction::iterator I = ++BB->getIterator();
7827 
7828   MachineBasicBlock *HeadMBB = BB;
7829   MachineFunction *F = BB->getParent();
7830   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
7831   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
7832 
7833   F->insert(I, IfFalseMBB);
7834   F->insert(I, TailMBB);
7835 
7836   // Transfer debug instructions associated with the selects to TailMBB.
7837   for (MachineInstr *DebugInstr : SelectDebugValues) {
7838     TailMBB->push_back(DebugInstr->removeFromParent());
7839   }
7840 
7841   // Move all instructions after the sequence to TailMBB.
7842   TailMBB->splice(TailMBB->end(), HeadMBB,
7843                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
7844   // Update machine-CFG edges by transferring all successors of the current
7845   // block to the new block which will contain the Phi nodes for the selects.
7846   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
7847   // Set the successors for HeadMBB.
7848   HeadMBB->addSuccessor(IfFalseMBB);
7849   HeadMBB->addSuccessor(TailMBB);
7850 
7851   // Insert appropriate branch.
7852   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
7853     .addReg(LHS)
7854     .addReg(RHS)
7855     .addMBB(TailMBB);
7856 
7857   // IfFalseMBB just falls through to TailMBB.
7858   IfFalseMBB->addSuccessor(TailMBB);
7859 
7860   // Create PHIs for all of the select pseudo-instructions.
7861   auto SelectMBBI = MI.getIterator();
7862   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
7863   auto InsertionPoint = TailMBB->begin();
7864   while (SelectMBBI != SelectEnd) {
7865     auto Next = std::next(SelectMBBI);
7866     if (isSelectPseudo(*SelectMBBI)) {
7867       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
7868       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
7869               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
7870           .addReg(SelectMBBI->getOperand(4).getReg())
7871           .addMBB(HeadMBB)
7872           .addReg(SelectMBBI->getOperand(5).getReg())
7873           .addMBB(IfFalseMBB);
7874       SelectMBBI->eraseFromParent();
7875     }
7876     SelectMBBI = Next;
7877   }
7878 
7879   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7880   return TailMBB;
7881 }
7882 
7883 MachineBasicBlock *
7884 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
7885                                                  MachineBasicBlock *BB) const {
7886   switch (MI.getOpcode()) {
7887   default:
7888     llvm_unreachable("Unexpected instr type to insert");
7889   case RISCV::ReadCycleWide:
7890     assert(!Subtarget.is64Bit() &&
7891            "ReadCycleWrite is only to be used on riscv32");
7892     return emitReadCycleWidePseudo(MI, BB);
7893   case RISCV::Select_GPR_Using_CC_GPR:
7894   case RISCV::Select_FPR16_Using_CC_GPR:
7895   case RISCV::Select_FPR32_Using_CC_GPR:
7896   case RISCV::Select_FPR64_Using_CC_GPR:
7897     return emitSelectPseudo(MI, BB, Subtarget);
7898   case RISCV::BuildPairF64Pseudo:
7899     return emitBuildPairF64Pseudo(MI, BB);
7900   case RISCV::SplitF64Pseudo:
7901     return emitSplitF64Pseudo(MI, BB);
7902   }
7903 }
7904 
7905 // Calling Convention Implementation.
7906 // The expectations for frontend ABI lowering vary from target to target.
7907 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
7908 // details, but this is a longer term goal. For now, we simply try to keep the
7909 // role of the frontend as simple and well-defined as possible. The rules can
7910 // be summarised as:
7911 // * Never split up large scalar arguments. We handle them here.
7912 // * If a hardfloat calling convention is being used, and the struct may be
7913 // passed in a pair of registers (fp+fp, int+fp), and both registers are
7914 // available, then pass as two separate arguments. If either the GPRs or FPRs
7915 // are exhausted, then pass according to the rule below.
7916 // * If a struct could never be passed in registers or directly in a stack
7917 // slot (as it is larger than 2*XLEN and the floating point rules don't
7918 // apply), then pass it using a pointer with the byval attribute.
7919 // * If a struct is less than 2*XLEN, then coerce to either a two-element
7920 // word-sized array or a 2*XLEN scalar (depending on alignment).
7921 // * The frontend can determine whether a struct is returned by reference or
7922 // not based on its size and fields. If it will be returned by reference, the
7923 // frontend must modify the prototype so a pointer with the sret annotation is
7924 // passed as the first argument. This is not necessary for large scalar
7925 // returns.
7926 // * Struct return values and varargs should be coerced to structs containing
7927 // register-size fields in the same situations they would be for fixed
7928 // arguments.
7929 
7930 static const MCPhysReg ArgGPRs[] = {
7931   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
7932   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
7933 };
7934 static const MCPhysReg ArgFPR16s[] = {
7935   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
7936   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
7937 };
7938 static const MCPhysReg ArgFPR32s[] = {
7939   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
7940   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
7941 };
7942 static const MCPhysReg ArgFPR64s[] = {
7943   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
7944   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
7945 };
7946 // This is an interim calling convention and it may be changed in the future.
7947 static const MCPhysReg ArgVRs[] = {
7948     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
7949     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
7950     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
7951 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
7952                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
7953                                      RISCV::V20M2, RISCV::V22M2};
7954 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
7955                                      RISCV::V20M4};
7956 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
7957 
7958 // Pass a 2*XLEN argument that has been split into two XLEN values through
7959 // registers or the stack as necessary.
7960 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
7961                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
7962                                 MVT ValVT2, MVT LocVT2,
7963                                 ISD::ArgFlagsTy ArgFlags2) {
7964   unsigned XLenInBytes = XLen / 8;
7965   if (Register Reg = State.AllocateReg(ArgGPRs)) {
7966     // At least one half can be passed via register.
7967     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
7968                                      VA1.getLocVT(), CCValAssign::Full));
7969   } else {
7970     // Both halves must be passed on the stack, with proper alignment.
7971     Align StackAlign =
7972         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
7973     State.addLoc(
7974         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
7975                             State.AllocateStack(XLenInBytes, StackAlign),
7976                             VA1.getLocVT(), CCValAssign::Full));
7977     State.addLoc(CCValAssign::getMem(
7978         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7979         LocVT2, CCValAssign::Full));
7980     return false;
7981   }
7982 
7983   if (Register Reg = State.AllocateReg(ArgGPRs)) {
7984     // The second half can also be passed via register.
7985     State.addLoc(
7986         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
7987   } else {
7988     // The second half is passed via the stack, without additional alignment.
7989     State.addLoc(CCValAssign::getMem(
7990         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7991         LocVT2, CCValAssign::Full));
7992   }
7993 
7994   return false;
7995 }
7996 
7997 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
7998                                Optional<unsigned> FirstMaskArgument,
7999                                CCState &State, const RISCVTargetLowering &TLI) {
8000   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
8001   if (RC == &RISCV::VRRegClass) {
8002     // Assign the first mask argument to V0.
8003     // This is an interim calling convention and it may be changed in the
8004     // future.
8005     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
8006       return State.AllocateReg(RISCV::V0);
8007     return State.AllocateReg(ArgVRs);
8008   }
8009   if (RC == &RISCV::VRM2RegClass)
8010     return State.AllocateReg(ArgVRM2s);
8011   if (RC == &RISCV::VRM4RegClass)
8012     return State.AllocateReg(ArgVRM4s);
8013   if (RC == &RISCV::VRM8RegClass)
8014     return State.AllocateReg(ArgVRM8s);
8015   llvm_unreachable("Unhandled register class for ValueType");
8016 }
8017 
8018 // Implements the RISC-V calling convention. Returns true upon failure.
8019 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
8020                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
8021                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
8022                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
8023                      Optional<unsigned> FirstMaskArgument) {
8024   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
8025   assert(XLen == 32 || XLen == 64);
8026   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
8027 
8028   // Any return value split in to more than two values can't be returned
8029   // directly. Vectors are returned via the available vector registers.
8030   if (!LocVT.isVector() && IsRet && ValNo > 1)
8031     return true;
8032 
8033   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
8034   // variadic argument, or if no F16/F32 argument registers are available.
8035   bool UseGPRForF16_F32 = true;
8036   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
8037   // variadic argument, or if no F64 argument registers are available.
8038   bool UseGPRForF64 = true;
8039 
8040   switch (ABI) {
8041   default:
8042     llvm_unreachable("Unexpected ABI");
8043   case RISCVABI::ABI_ILP32:
8044   case RISCVABI::ABI_LP64:
8045     break;
8046   case RISCVABI::ABI_ILP32F:
8047   case RISCVABI::ABI_LP64F:
8048     UseGPRForF16_F32 = !IsFixed;
8049     break;
8050   case RISCVABI::ABI_ILP32D:
8051   case RISCVABI::ABI_LP64D:
8052     UseGPRForF16_F32 = !IsFixed;
8053     UseGPRForF64 = !IsFixed;
8054     break;
8055   }
8056 
8057   // FPR16, FPR32, and FPR64 alias each other.
8058   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
8059     UseGPRForF16_F32 = true;
8060     UseGPRForF64 = true;
8061   }
8062 
8063   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
8064   // similar local variables rather than directly checking against the target
8065   // ABI.
8066 
8067   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
8068     LocVT = XLenVT;
8069     LocInfo = CCValAssign::BCvt;
8070   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
8071     LocVT = MVT::i64;
8072     LocInfo = CCValAssign::BCvt;
8073   }
8074 
8075   // If this is a variadic argument, the RISC-V calling convention requires
8076   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
8077   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
8078   // be used regardless of whether the original argument was split during
8079   // legalisation or not. The argument will not be passed by registers if the
8080   // original type is larger than 2*XLEN, so the register alignment rule does
8081   // not apply.
8082   unsigned TwoXLenInBytes = (2 * XLen) / 8;
8083   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
8084       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
8085     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
8086     // Skip 'odd' register if necessary.
8087     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
8088       State.AllocateReg(ArgGPRs);
8089   }
8090 
8091   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
8092   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
8093       State.getPendingArgFlags();
8094 
8095   assert(PendingLocs.size() == PendingArgFlags.size() &&
8096          "PendingLocs and PendingArgFlags out of sync");
8097 
8098   // Handle passing f64 on RV32D with a soft float ABI or when floating point
8099   // registers are exhausted.
8100   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
8101     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
8102            "Can't lower f64 if it is split");
8103     // Depending on available argument GPRS, f64 may be passed in a pair of
8104     // GPRs, split between a GPR and the stack, or passed completely on the
8105     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
8106     // cases.
8107     Register Reg = State.AllocateReg(ArgGPRs);
8108     LocVT = MVT::i32;
8109     if (!Reg) {
8110       unsigned StackOffset = State.AllocateStack(8, Align(8));
8111       State.addLoc(
8112           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8113       return false;
8114     }
8115     if (!State.AllocateReg(ArgGPRs))
8116       State.AllocateStack(4, Align(4));
8117     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8118     return false;
8119   }
8120 
8121   // Fixed-length vectors are located in the corresponding scalable-vector
8122   // container types.
8123   if (ValVT.isFixedLengthVector())
8124     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8125 
8126   // Split arguments might be passed indirectly, so keep track of the pending
8127   // values. Split vectors are passed via a mix of registers and indirectly, so
8128   // treat them as we would any other argument.
8129   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
8130     LocVT = XLenVT;
8131     LocInfo = CCValAssign::Indirect;
8132     PendingLocs.push_back(
8133         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
8134     PendingArgFlags.push_back(ArgFlags);
8135     if (!ArgFlags.isSplitEnd()) {
8136       return false;
8137     }
8138   }
8139 
8140   // If the split argument only had two elements, it should be passed directly
8141   // in registers or on the stack.
8142   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
8143       PendingLocs.size() <= 2) {
8144     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
8145     // Apply the normal calling convention rules to the first half of the
8146     // split argument.
8147     CCValAssign VA = PendingLocs[0];
8148     ISD::ArgFlagsTy AF = PendingArgFlags[0];
8149     PendingLocs.clear();
8150     PendingArgFlags.clear();
8151     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
8152                                ArgFlags);
8153   }
8154 
8155   // Allocate to a register if possible, or else a stack slot.
8156   Register Reg;
8157   unsigned StoreSizeBytes = XLen / 8;
8158   Align StackAlign = Align(XLen / 8);
8159 
8160   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
8161     Reg = State.AllocateReg(ArgFPR16s);
8162   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
8163     Reg = State.AllocateReg(ArgFPR32s);
8164   else if (ValVT == MVT::f64 && !UseGPRForF64)
8165     Reg = State.AllocateReg(ArgFPR64s);
8166   else if (ValVT.isVector()) {
8167     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
8168     if (!Reg) {
8169       // For return values, the vector must be passed fully via registers or
8170       // via the stack.
8171       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
8172       // but we're using all of them.
8173       if (IsRet)
8174         return true;
8175       // Try using a GPR to pass the address
8176       if ((Reg = State.AllocateReg(ArgGPRs))) {
8177         LocVT = XLenVT;
8178         LocInfo = CCValAssign::Indirect;
8179       } else if (ValVT.isScalableVector()) {
8180         report_fatal_error("Unable to pass scalable vector types on the stack");
8181       } else {
8182         // Pass fixed-length vectors on the stack.
8183         LocVT = ValVT;
8184         StoreSizeBytes = ValVT.getStoreSize();
8185         // Align vectors to their element sizes, being careful for vXi1
8186         // vectors.
8187         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8188       }
8189     }
8190   } else {
8191     Reg = State.AllocateReg(ArgGPRs);
8192   }
8193 
8194   unsigned StackOffset =
8195       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
8196 
8197   // If we reach this point and PendingLocs is non-empty, we must be at the
8198   // end of a split argument that must be passed indirectly.
8199   if (!PendingLocs.empty()) {
8200     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
8201     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
8202 
8203     for (auto &It : PendingLocs) {
8204       if (Reg)
8205         It.convertToReg(Reg);
8206       else
8207         It.convertToMem(StackOffset);
8208       State.addLoc(It);
8209     }
8210     PendingLocs.clear();
8211     PendingArgFlags.clear();
8212     return false;
8213   }
8214 
8215   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
8216           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
8217          "Expected an XLenVT or vector types at this stage");
8218 
8219   if (Reg) {
8220     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8221     return false;
8222   }
8223 
8224   // When a floating-point value is passed on the stack, no bit-conversion is
8225   // needed.
8226   if (ValVT.isFloatingPoint()) {
8227     LocVT = ValVT;
8228     LocInfo = CCValAssign::Full;
8229   }
8230   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8231   return false;
8232 }
8233 
8234 template <typename ArgTy>
8235 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
8236   for (const auto &ArgIdx : enumerate(Args)) {
8237     MVT ArgVT = ArgIdx.value().VT;
8238     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
8239       return ArgIdx.index();
8240   }
8241   return None;
8242 }
8243 
8244 void RISCVTargetLowering::analyzeInputArgs(
8245     MachineFunction &MF, CCState &CCInfo,
8246     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
8247     RISCVCCAssignFn Fn) const {
8248   unsigned NumArgs = Ins.size();
8249   FunctionType *FType = MF.getFunction().getFunctionType();
8250 
8251   Optional<unsigned> FirstMaskArgument;
8252   if (Subtarget.hasVInstructions())
8253     FirstMaskArgument = preAssignMask(Ins);
8254 
8255   for (unsigned i = 0; i != NumArgs; ++i) {
8256     MVT ArgVT = Ins[i].VT;
8257     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
8258 
8259     Type *ArgTy = nullptr;
8260     if (IsRet)
8261       ArgTy = FType->getReturnType();
8262     else if (Ins[i].isOrigArg())
8263       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
8264 
8265     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8266     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8267            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
8268            FirstMaskArgument)) {
8269       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
8270                         << EVT(ArgVT).getEVTString() << '\n');
8271       llvm_unreachable(nullptr);
8272     }
8273   }
8274 }
8275 
8276 void RISCVTargetLowering::analyzeOutputArgs(
8277     MachineFunction &MF, CCState &CCInfo,
8278     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
8279     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
8280   unsigned NumArgs = Outs.size();
8281 
8282   Optional<unsigned> FirstMaskArgument;
8283   if (Subtarget.hasVInstructions())
8284     FirstMaskArgument = preAssignMask(Outs);
8285 
8286   for (unsigned i = 0; i != NumArgs; i++) {
8287     MVT ArgVT = Outs[i].VT;
8288     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
8289     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
8290 
8291     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8292     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8293            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
8294            FirstMaskArgument)) {
8295       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
8296                         << EVT(ArgVT).getEVTString() << "\n");
8297       llvm_unreachable(nullptr);
8298     }
8299   }
8300 }
8301 
8302 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
8303 // values.
8304 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
8305                                    const CCValAssign &VA, const SDLoc &DL,
8306                                    const RISCVSubtarget &Subtarget) {
8307   switch (VA.getLocInfo()) {
8308   default:
8309     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8310   case CCValAssign::Full:
8311     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
8312       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
8313     break;
8314   case CCValAssign::BCvt:
8315     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8316       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
8317     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8318       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
8319     else
8320       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
8321     break;
8322   }
8323   return Val;
8324 }
8325 
8326 // The caller is responsible for loading the full value if the argument is
8327 // passed with CCValAssign::Indirect.
8328 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
8329                                 const CCValAssign &VA, const SDLoc &DL,
8330                                 const RISCVTargetLowering &TLI) {
8331   MachineFunction &MF = DAG.getMachineFunction();
8332   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8333   EVT LocVT = VA.getLocVT();
8334   SDValue Val;
8335   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
8336   Register VReg = RegInfo.createVirtualRegister(RC);
8337   RegInfo.addLiveIn(VA.getLocReg(), VReg);
8338   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
8339 
8340   if (VA.getLocInfo() == CCValAssign::Indirect)
8341     return Val;
8342 
8343   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
8344 }
8345 
8346 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
8347                                    const CCValAssign &VA, const SDLoc &DL,
8348                                    const RISCVSubtarget &Subtarget) {
8349   EVT LocVT = VA.getLocVT();
8350 
8351   switch (VA.getLocInfo()) {
8352   default:
8353     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8354   case CCValAssign::Full:
8355     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
8356       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
8357     break;
8358   case CCValAssign::BCvt:
8359     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8360       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
8361     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8362       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
8363     else
8364       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
8365     break;
8366   }
8367   return Val;
8368 }
8369 
8370 // The caller is responsible for loading the full value if the argument is
8371 // passed with CCValAssign::Indirect.
8372 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
8373                                 const CCValAssign &VA, const SDLoc &DL) {
8374   MachineFunction &MF = DAG.getMachineFunction();
8375   MachineFrameInfo &MFI = MF.getFrameInfo();
8376   EVT LocVT = VA.getLocVT();
8377   EVT ValVT = VA.getValVT();
8378   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
8379   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
8380                                  /*Immutable=*/true);
8381   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
8382   SDValue Val;
8383 
8384   ISD::LoadExtType ExtType;
8385   switch (VA.getLocInfo()) {
8386   default:
8387     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8388   case CCValAssign::Full:
8389   case CCValAssign::Indirect:
8390   case CCValAssign::BCvt:
8391     ExtType = ISD::NON_EXTLOAD;
8392     break;
8393   }
8394   Val = DAG.getExtLoad(
8395       ExtType, DL, LocVT, Chain, FIN,
8396       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
8397   return Val;
8398 }
8399 
8400 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
8401                                        const CCValAssign &VA, const SDLoc &DL) {
8402   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
8403          "Unexpected VA");
8404   MachineFunction &MF = DAG.getMachineFunction();
8405   MachineFrameInfo &MFI = MF.getFrameInfo();
8406   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8407 
8408   if (VA.isMemLoc()) {
8409     // f64 is passed on the stack.
8410     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
8411     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8412     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
8413                        MachinePointerInfo::getFixedStack(MF, FI));
8414   }
8415 
8416   assert(VA.isRegLoc() && "Expected register VA assignment");
8417 
8418   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8419   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
8420   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
8421   SDValue Hi;
8422   if (VA.getLocReg() == RISCV::X17) {
8423     // Second half of f64 is passed on the stack.
8424     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
8425     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8426     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
8427                      MachinePointerInfo::getFixedStack(MF, FI));
8428   } else {
8429     // Second half of f64 is passed in another GPR.
8430     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8431     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
8432     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
8433   }
8434   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
8435 }
8436 
8437 // FastCC has less than 1% performance improvement for some particular
8438 // benchmark. But theoretically, it may has benenfit for some cases.
8439 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
8440                             unsigned ValNo, MVT ValVT, MVT LocVT,
8441                             CCValAssign::LocInfo LocInfo,
8442                             ISD::ArgFlagsTy ArgFlags, CCState &State,
8443                             bool IsFixed, bool IsRet, Type *OrigTy,
8444                             const RISCVTargetLowering &TLI,
8445                             Optional<unsigned> FirstMaskArgument) {
8446 
8447   // X5 and X6 might be used for save-restore libcall.
8448   static const MCPhysReg GPRList[] = {
8449       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
8450       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
8451       RISCV::X29, RISCV::X30, RISCV::X31};
8452 
8453   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8454     if (unsigned Reg = State.AllocateReg(GPRList)) {
8455       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8456       return false;
8457     }
8458   }
8459 
8460   if (LocVT == MVT::f16) {
8461     static const MCPhysReg FPR16List[] = {
8462         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
8463         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
8464         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
8465         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
8466     if (unsigned Reg = State.AllocateReg(FPR16List)) {
8467       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8468       return false;
8469     }
8470   }
8471 
8472   if (LocVT == MVT::f32) {
8473     static const MCPhysReg FPR32List[] = {
8474         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
8475         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
8476         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
8477         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
8478     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8479       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8480       return false;
8481     }
8482   }
8483 
8484   if (LocVT == MVT::f64) {
8485     static const MCPhysReg FPR64List[] = {
8486         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
8487         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
8488         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
8489         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
8490     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8491       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8492       return false;
8493     }
8494   }
8495 
8496   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
8497     unsigned Offset4 = State.AllocateStack(4, Align(4));
8498     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
8499     return false;
8500   }
8501 
8502   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
8503     unsigned Offset5 = State.AllocateStack(8, Align(8));
8504     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
8505     return false;
8506   }
8507 
8508   if (LocVT.isVector()) {
8509     if (unsigned Reg =
8510             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
8511       // Fixed-length vectors are located in the corresponding scalable-vector
8512       // container types.
8513       if (ValVT.isFixedLengthVector())
8514         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8515       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8516     } else {
8517       // Try and pass the address via a "fast" GPR.
8518       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
8519         LocInfo = CCValAssign::Indirect;
8520         LocVT = TLI.getSubtarget().getXLenVT();
8521         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
8522       } else if (ValVT.isFixedLengthVector()) {
8523         auto StackAlign =
8524             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8525         unsigned StackOffset =
8526             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
8527         State.addLoc(
8528             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8529       } else {
8530         // Can't pass scalable vectors on the stack.
8531         return true;
8532       }
8533     }
8534 
8535     return false;
8536   }
8537 
8538   return true; // CC didn't match.
8539 }
8540 
8541 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
8542                          CCValAssign::LocInfo LocInfo,
8543                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
8544 
8545   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8546     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
8547     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
8548     static const MCPhysReg GPRList[] = {
8549         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
8550         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
8551     if (unsigned Reg = State.AllocateReg(GPRList)) {
8552       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8553       return false;
8554     }
8555   }
8556 
8557   if (LocVT == MVT::f32) {
8558     // Pass in STG registers: F1, ..., F6
8559     //                        fs0 ... fs5
8560     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
8561                                           RISCV::F18_F, RISCV::F19_F,
8562                                           RISCV::F20_F, RISCV::F21_F};
8563     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8564       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8565       return false;
8566     }
8567   }
8568 
8569   if (LocVT == MVT::f64) {
8570     // Pass in STG registers: D1, ..., D6
8571     //                        fs6 ... fs11
8572     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
8573                                           RISCV::F24_D, RISCV::F25_D,
8574                                           RISCV::F26_D, RISCV::F27_D};
8575     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8576       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8577       return false;
8578     }
8579   }
8580 
8581   report_fatal_error("No registers left in GHC calling convention");
8582   return true;
8583 }
8584 
8585 // Transform physical registers into virtual registers.
8586 SDValue RISCVTargetLowering::LowerFormalArguments(
8587     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
8588     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
8589     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
8590 
8591   MachineFunction &MF = DAG.getMachineFunction();
8592 
8593   switch (CallConv) {
8594   default:
8595     report_fatal_error("Unsupported calling convention");
8596   case CallingConv::C:
8597   case CallingConv::Fast:
8598     break;
8599   case CallingConv::GHC:
8600     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
8601         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
8602       report_fatal_error(
8603         "GHC calling convention requires the F and D instruction set extensions");
8604   }
8605 
8606   const Function &Func = MF.getFunction();
8607   if (Func.hasFnAttribute("interrupt")) {
8608     if (!Func.arg_empty())
8609       report_fatal_error(
8610         "Functions with the interrupt attribute cannot have arguments!");
8611 
8612     StringRef Kind =
8613       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
8614 
8615     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
8616       report_fatal_error(
8617         "Function interrupt attribute argument not supported!");
8618   }
8619 
8620   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8621   MVT XLenVT = Subtarget.getXLenVT();
8622   unsigned XLenInBytes = Subtarget.getXLen() / 8;
8623   // Used with vargs to acumulate store chains.
8624   std::vector<SDValue> OutChains;
8625 
8626   // Assign locations to all of the incoming arguments.
8627   SmallVector<CCValAssign, 16> ArgLocs;
8628   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
8629 
8630   if (CallConv == CallingConv::GHC)
8631     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
8632   else
8633     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
8634                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
8635                                                    : CC_RISCV);
8636 
8637   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
8638     CCValAssign &VA = ArgLocs[i];
8639     SDValue ArgValue;
8640     // Passing f64 on RV32D with a soft float ABI must be handled as a special
8641     // case.
8642     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
8643       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
8644     else if (VA.isRegLoc())
8645       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
8646     else
8647       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
8648 
8649     if (VA.getLocInfo() == CCValAssign::Indirect) {
8650       // If the original argument was split and passed by reference (e.g. i128
8651       // on RV32), we need to load all parts of it here (using the same
8652       // address). Vectors may be partly split to registers and partly to the
8653       // stack, in which case the base address is partly offset and subsequent
8654       // stores are relative to that.
8655       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
8656                                    MachinePointerInfo()));
8657       unsigned ArgIndex = Ins[i].OrigArgIndex;
8658       unsigned ArgPartOffset = Ins[i].PartOffset;
8659       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
8660       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
8661         CCValAssign &PartVA = ArgLocs[i + 1];
8662         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
8663         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
8664         if (PartVA.getValVT().isScalableVector())
8665           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
8666         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
8667         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
8668                                      MachinePointerInfo()));
8669         ++i;
8670       }
8671       continue;
8672     }
8673     InVals.push_back(ArgValue);
8674   }
8675 
8676   if (IsVarArg) {
8677     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
8678     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
8679     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
8680     MachineFrameInfo &MFI = MF.getFrameInfo();
8681     MachineRegisterInfo &RegInfo = MF.getRegInfo();
8682     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
8683 
8684     // Offset of the first variable argument from stack pointer, and size of
8685     // the vararg save area. For now, the varargs save area is either zero or
8686     // large enough to hold a0-a7.
8687     int VaArgOffset, VarArgsSaveSize;
8688 
8689     // If all registers are allocated, then all varargs must be passed on the
8690     // stack and we don't need to save any argregs.
8691     if (ArgRegs.size() == Idx) {
8692       VaArgOffset = CCInfo.getNextStackOffset();
8693       VarArgsSaveSize = 0;
8694     } else {
8695       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
8696       VaArgOffset = -VarArgsSaveSize;
8697     }
8698 
8699     // Record the frame index of the first variable argument
8700     // which is a value necessary to VASTART.
8701     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
8702     RVFI->setVarArgsFrameIndex(FI);
8703 
8704     // If saving an odd number of registers then create an extra stack slot to
8705     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
8706     // offsets to even-numbered registered remain 2*XLEN-aligned.
8707     if (Idx % 2) {
8708       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
8709       VarArgsSaveSize += XLenInBytes;
8710     }
8711 
8712     // Copy the integer registers that may have been used for passing varargs
8713     // to the vararg save area.
8714     for (unsigned I = Idx; I < ArgRegs.size();
8715          ++I, VaArgOffset += XLenInBytes) {
8716       const Register Reg = RegInfo.createVirtualRegister(RC);
8717       RegInfo.addLiveIn(ArgRegs[I], Reg);
8718       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
8719       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
8720       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
8721       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
8722                                    MachinePointerInfo::getFixedStack(MF, FI));
8723       cast<StoreSDNode>(Store.getNode())
8724           ->getMemOperand()
8725           ->setValue((Value *)nullptr);
8726       OutChains.push_back(Store);
8727     }
8728     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
8729   }
8730 
8731   // All stores are grouped in one node to allow the matching between
8732   // the size of Ins and InVals. This only happens for vararg functions.
8733   if (!OutChains.empty()) {
8734     OutChains.push_back(Chain);
8735     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
8736   }
8737 
8738   return Chain;
8739 }
8740 
8741 /// isEligibleForTailCallOptimization - Check whether the call is eligible
8742 /// for tail call optimization.
8743 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
8744 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
8745     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
8746     const SmallVector<CCValAssign, 16> &ArgLocs) const {
8747 
8748   auto &Callee = CLI.Callee;
8749   auto CalleeCC = CLI.CallConv;
8750   auto &Outs = CLI.Outs;
8751   auto &Caller = MF.getFunction();
8752   auto CallerCC = Caller.getCallingConv();
8753 
8754   // Exception-handling functions need a special set of instructions to
8755   // indicate a return to the hardware. Tail-calling another function would
8756   // probably break this.
8757   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
8758   // should be expanded as new function attributes are introduced.
8759   if (Caller.hasFnAttribute("interrupt"))
8760     return false;
8761 
8762   // Do not tail call opt if the stack is used to pass parameters.
8763   if (CCInfo.getNextStackOffset() != 0)
8764     return false;
8765 
8766   // Do not tail call opt if any parameters need to be passed indirectly.
8767   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
8768   // passed indirectly. So the address of the value will be passed in a
8769   // register, or if not available, then the address is put on the stack. In
8770   // order to pass indirectly, space on the stack often needs to be allocated
8771   // in order to store the value. In this case the CCInfo.getNextStackOffset()
8772   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
8773   // are passed CCValAssign::Indirect.
8774   for (auto &VA : ArgLocs)
8775     if (VA.getLocInfo() == CCValAssign::Indirect)
8776       return false;
8777 
8778   // Do not tail call opt if either caller or callee uses struct return
8779   // semantics.
8780   auto IsCallerStructRet = Caller.hasStructRetAttr();
8781   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
8782   if (IsCallerStructRet || IsCalleeStructRet)
8783     return false;
8784 
8785   // Externally-defined functions with weak linkage should not be
8786   // tail-called. The behaviour of branch instructions in this situation (as
8787   // used for tail calls) is implementation-defined, so we cannot rely on the
8788   // linker replacing the tail call with a return.
8789   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
8790     const GlobalValue *GV = G->getGlobal();
8791     if (GV->hasExternalWeakLinkage())
8792       return false;
8793   }
8794 
8795   // The callee has to preserve all registers the caller needs to preserve.
8796   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
8797   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
8798   if (CalleeCC != CallerCC) {
8799     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
8800     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
8801       return false;
8802   }
8803 
8804   // Byval parameters hand the function a pointer directly into the stack area
8805   // we want to reuse during a tail call. Working around this *is* possible
8806   // but less efficient and uglier in LowerCall.
8807   for (auto &Arg : Outs)
8808     if (Arg.Flags.isByVal())
8809       return false;
8810 
8811   return true;
8812 }
8813 
8814 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
8815   return DAG.getDataLayout().getPrefTypeAlign(
8816       VT.getTypeForEVT(*DAG.getContext()));
8817 }
8818 
8819 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
8820 // and output parameter nodes.
8821 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
8822                                        SmallVectorImpl<SDValue> &InVals) const {
8823   SelectionDAG &DAG = CLI.DAG;
8824   SDLoc &DL = CLI.DL;
8825   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
8826   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
8827   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
8828   SDValue Chain = CLI.Chain;
8829   SDValue Callee = CLI.Callee;
8830   bool &IsTailCall = CLI.IsTailCall;
8831   CallingConv::ID CallConv = CLI.CallConv;
8832   bool IsVarArg = CLI.IsVarArg;
8833   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8834   MVT XLenVT = Subtarget.getXLenVT();
8835 
8836   MachineFunction &MF = DAG.getMachineFunction();
8837 
8838   // Analyze the operands of the call, assigning locations to each operand.
8839   SmallVector<CCValAssign, 16> ArgLocs;
8840   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
8841 
8842   if (CallConv == CallingConv::GHC)
8843     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
8844   else
8845     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
8846                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
8847                                                     : CC_RISCV);
8848 
8849   // Check if it's really possible to do a tail call.
8850   if (IsTailCall)
8851     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
8852 
8853   if (IsTailCall)
8854     ++NumTailCalls;
8855   else if (CLI.CB && CLI.CB->isMustTailCall())
8856     report_fatal_error("failed to perform tail call elimination on a call "
8857                        "site marked musttail");
8858 
8859   // Get a count of how many bytes are to be pushed on the stack.
8860   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
8861 
8862   // Create local copies for byval args
8863   SmallVector<SDValue, 8> ByValArgs;
8864   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
8865     ISD::ArgFlagsTy Flags = Outs[i].Flags;
8866     if (!Flags.isByVal())
8867       continue;
8868 
8869     SDValue Arg = OutVals[i];
8870     unsigned Size = Flags.getByValSize();
8871     Align Alignment = Flags.getNonZeroByValAlign();
8872 
8873     int FI =
8874         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
8875     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
8876     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
8877 
8878     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
8879                           /*IsVolatile=*/false,
8880                           /*AlwaysInline=*/false, IsTailCall,
8881                           MachinePointerInfo(), MachinePointerInfo());
8882     ByValArgs.push_back(FIPtr);
8883   }
8884 
8885   if (!IsTailCall)
8886     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
8887 
8888   // Copy argument values to their designated locations.
8889   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
8890   SmallVector<SDValue, 8> MemOpChains;
8891   SDValue StackPtr;
8892   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
8893     CCValAssign &VA = ArgLocs[i];
8894     SDValue ArgValue = OutVals[i];
8895     ISD::ArgFlagsTy Flags = Outs[i].Flags;
8896 
8897     // Handle passing f64 on RV32D with a soft float ABI as a special case.
8898     bool IsF64OnRV32DSoftABI =
8899         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
8900     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
8901       SDValue SplitF64 = DAG.getNode(
8902           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
8903       SDValue Lo = SplitF64.getValue(0);
8904       SDValue Hi = SplitF64.getValue(1);
8905 
8906       Register RegLo = VA.getLocReg();
8907       RegsToPass.push_back(std::make_pair(RegLo, Lo));
8908 
8909       if (RegLo == RISCV::X17) {
8910         // Second half of f64 is passed on the stack.
8911         // Work out the address of the stack slot.
8912         if (!StackPtr.getNode())
8913           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
8914         // Emit the store.
8915         MemOpChains.push_back(
8916             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
8917       } else {
8918         // Second half of f64 is passed in another GPR.
8919         assert(RegLo < RISCV::X31 && "Invalid register pair");
8920         Register RegHigh = RegLo + 1;
8921         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
8922       }
8923       continue;
8924     }
8925 
8926     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
8927     // as any other MemLoc.
8928 
8929     // Promote the value if needed.
8930     // For now, only handle fully promoted and indirect arguments.
8931     if (VA.getLocInfo() == CCValAssign::Indirect) {
8932       // Store the argument in a stack slot and pass its address.
8933       Align StackAlign =
8934           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
8935                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
8936       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
8937       // If the original argument was split (e.g. i128), we need
8938       // to store the required parts of it here (and pass just one address).
8939       // Vectors may be partly split to registers and partly to the stack, in
8940       // which case the base address is partly offset and subsequent stores are
8941       // relative to that.
8942       unsigned ArgIndex = Outs[i].OrigArgIndex;
8943       unsigned ArgPartOffset = Outs[i].PartOffset;
8944       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
8945       // Calculate the total size to store. We don't have access to what we're
8946       // actually storing other than performing the loop and collecting the
8947       // info.
8948       SmallVector<std::pair<SDValue, SDValue>> Parts;
8949       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
8950         SDValue PartValue = OutVals[i + 1];
8951         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
8952         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
8953         EVT PartVT = PartValue.getValueType();
8954         if (PartVT.isScalableVector())
8955           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
8956         StoredSize += PartVT.getStoreSize();
8957         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
8958         Parts.push_back(std::make_pair(PartValue, Offset));
8959         ++i;
8960       }
8961       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
8962       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
8963       MemOpChains.push_back(
8964           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
8965                        MachinePointerInfo::getFixedStack(MF, FI)));
8966       for (const auto &Part : Parts) {
8967         SDValue PartValue = Part.first;
8968         SDValue PartOffset = Part.second;
8969         SDValue Address =
8970             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
8971         MemOpChains.push_back(
8972             DAG.getStore(Chain, DL, PartValue, Address,
8973                          MachinePointerInfo::getFixedStack(MF, FI)));
8974       }
8975       ArgValue = SpillSlot;
8976     } else {
8977       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
8978     }
8979 
8980     // Use local copy if it is a byval arg.
8981     if (Flags.isByVal())
8982       ArgValue = ByValArgs[j++];
8983 
8984     if (VA.isRegLoc()) {
8985       // Queue up the argument copies and emit them at the end.
8986       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
8987     } else {
8988       assert(VA.isMemLoc() && "Argument not register or memory");
8989       assert(!IsTailCall && "Tail call not allowed if stack is used "
8990                             "for passing parameters");
8991 
8992       // Work out the address of the stack slot.
8993       if (!StackPtr.getNode())
8994         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
8995       SDValue Address =
8996           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
8997                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
8998 
8999       // Emit the store.
9000       MemOpChains.push_back(
9001           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
9002     }
9003   }
9004 
9005   // Join the stores, which are independent of one another.
9006   if (!MemOpChains.empty())
9007     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
9008 
9009   SDValue Glue;
9010 
9011   // Build a sequence of copy-to-reg nodes, chained and glued together.
9012   for (auto &Reg : RegsToPass) {
9013     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
9014     Glue = Chain.getValue(1);
9015   }
9016 
9017   // Validate that none of the argument registers have been marked as
9018   // reserved, if so report an error. Do the same for the return address if this
9019   // is not a tailcall.
9020   validateCCReservedRegs(RegsToPass, MF);
9021   if (!IsTailCall &&
9022       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
9023     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9024         MF.getFunction(),
9025         "Return address register required, but has been reserved."});
9026 
9027   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
9028   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
9029   // split it and then direct call can be matched by PseudoCALL.
9030   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
9031     const GlobalValue *GV = S->getGlobal();
9032 
9033     unsigned OpFlags = RISCVII::MO_CALL;
9034     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
9035       OpFlags = RISCVII::MO_PLT;
9036 
9037     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
9038   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
9039     unsigned OpFlags = RISCVII::MO_CALL;
9040 
9041     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
9042                                                  nullptr))
9043       OpFlags = RISCVII::MO_PLT;
9044 
9045     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
9046   }
9047 
9048   // The first call operand is the chain and the second is the target address.
9049   SmallVector<SDValue, 8> Ops;
9050   Ops.push_back(Chain);
9051   Ops.push_back(Callee);
9052 
9053   // Add argument registers to the end of the list so that they are
9054   // known live into the call.
9055   for (auto &Reg : RegsToPass)
9056     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
9057 
9058   if (!IsTailCall) {
9059     // Add a register mask operand representing the call-preserved registers.
9060     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
9061     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
9062     assert(Mask && "Missing call preserved mask for calling convention");
9063     Ops.push_back(DAG.getRegisterMask(Mask));
9064   }
9065 
9066   // Glue the call to the argument copies, if any.
9067   if (Glue.getNode())
9068     Ops.push_back(Glue);
9069 
9070   // Emit the call.
9071   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9072 
9073   if (IsTailCall) {
9074     MF.getFrameInfo().setHasTailCall();
9075     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
9076   }
9077 
9078   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
9079   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
9080   Glue = Chain.getValue(1);
9081 
9082   // Mark the end of the call, which is glued to the call itself.
9083   Chain = DAG.getCALLSEQ_END(Chain,
9084                              DAG.getConstant(NumBytes, DL, PtrVT, true),
9085                              DAG.getConstant(0, DL, PtrVT, true),
9086                              Glue, DL);
9087   Glue = Chain.getValue(1);
9088 
9089   // Assign locations to each value returned by this call.
9090   SmallVector<CCValAssign, 16> RVLocs;
9091   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
9092   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
9093 
9094   // Copy all of the result registers out of their specified physreg.
9095   for (auto &VA : RVLocs) {
9096     // Copy the value out
9097     SDValue RetValue =
9098         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
9099     // Glue the RetValue to the end of the call sequence
9100     Chain = RetValue.getValue(1);
9101     Glue = RetValue.getValue(2);
9102 
9103     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9104       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
9105       SDValue RetValue2 =
9106           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
9107       Chain = RetValue2.getValue(1);
9108       Glue = RetValue2.getValue(2);
9109       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
9110                              RetValue2);
9111     }
9112 
9113     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
9114 
9115     InVals.push_back(RetValue);
9116   }
9117 
9118   return Chain;
9119 }
9120 
9121 bool RISCVTargetLowering::CanLowerReturn(
9122     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
9123     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
9124   SmallVector<CCValAssign, 16> RVLocs;
9125   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
9126 
9127   Optional<unsigned> FirstMaskArgument;
9128   if (Subtarget.hasVInstructions())
9129     FirstMaskArgument = preAssignMask(Outs);
9130 
9131   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
9132     MVT VT = Outs[i].VT;
9133     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9134     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9135     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
9136                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
9137                  *this, FirstMaskArgument))
9138       return false;
9139   }
9140   return true;
9141 }
9142 
9143 SDValue
9144 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
9145                                  bool IsVarArg,
9146                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
9147                                  const SmallVectorImpl<SDValue> &OutVals,
9148                                  const SDLoc &DL, SelectionDAG &DAG) const {
9149   const MachineFunction &MF = DAG.getMachineFunction();
9150   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9151 
9152   // Stores the assignment of the return value to a location.
9153   SmallVector<CCValAssign, 16> RVLocs;
9154 
9155   // Info about the registers and stack slot.
9156   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
9157                  *DAG.getContext());
9158 
9159   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
9160                     nullptr, CC_RISCV);
9161 
9162   if (CallConv == CallingConv::GHC && !RVLocs.empty())
9163     report_fatal_error("GHC functions return void only");
9164 
9165   SDValue Glue;
9166   SmallVector<SDValue, 4> RetOps(1, Chain);
9167 
9168   // Copy the result values into the output registers.
9169   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
9170     SDValue Val = OutVals[i];
9171     CCValAssign &VA = RVLocs[i];
9172     assert(VA.isRegLoc() && "Can only return in registers!");
9173 
9174     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9175       // Handle returning f64 on RV32D with a soft float ABI.
9176       assert(VA.isRegLoc() && "Expected return via registers");
9177       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
9178                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
9179       SDValue Lo = SplitF64.getValue(0);
9180       SDValue Hi = SplitF64.getValue(1);
9181       Register RegLo = VA.getLocReg();
9182       assert(RegLo < RISCV::X31 && "Invalid register pair");
9183       Register RegHi = RegLo + 1;
9184 
9185       if (STI.isRegisterReservedByUser(RegLo) ||
9186           STI.isRegisterReservedByUser(RegHi))
9187         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9188             MF.getFunction(),
9189             "Return value register required, but has been reserved."});
9190 
9191       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
9192       Glue = Chain.getValue(1);
9193       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
9194       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
9195       Glue = Chain.getValue(1);
9196       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
9197     } else {
9198       // Handle a 'normal' return.
9199       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
9200       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
9201 
9202       if (STI.isRegisterReservedByUser(VA.getLocReg()))
9203         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9204             MF.getFunction(),
9205             "Return value register required, but has been reserved."});
9206 
9207       // Guarantee that all emitted copies are stuck together.
9208       Glue = Chain.getValue(1);
9209       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
9210     }
9211   }
9212 
9213   RetOps[0] = Chain; // Update chain.
9214 
9215   // Add the glue node if we have it.
9216   if (Glue.getNode()) {
9217     RetOps.push_back(Glue);
9218   }
9219 
9220   unsigned RetOpc = RISCVISD::RET_FLAG;
9221   // Interrupt service routines use different return instructions.
9222   const Function &Func = DAG.getMachineFunction().getFunction();
9223   if (Func.hasFnAttribute("interrupt")) {
9224     if (!Func.getReturnType()->isVoidTy())
9225       report_fatal_error(
9226           "Functions with the interrupt attribute must have void return type!");
9227 
9228     MachineFunction &MF = DAG.getMachineFunction();
9229     StringRef Kind =
9230       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9231 
9232     if (Kind == "user")
9233       RetOpc = RISCVISD::URET_FLAG;
9234     else if (Kind == "supervisor")
9235       RetOpc = RISCVISD::SRET_FLAG;
9236     else
9237       RetOpc = RISCVISD::MRET_FLAG;
9238   }
9239 
9240   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
9241 }
9242 
9243 void RISCVTargetLowering::validateCCReservedRegs(
9244     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
9245     MachineFunction &MF) const {
9246   const Function &F = MF.getFunction();
9247   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9248 
9249   if (llvm::any_of(Regs, [&STI](auto Reg) {
9250         return STI.isRegisterReservedByUser(Reg.first);
9251       }))
9252     F.getContext().diagnose(DiagnosticInfoUnsupported{
9253         F, "Argument register required, but has been reserved."});
9254 }
9255 
9256 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
9257   return CI->isTailCall();
9258 }
9259 
9260 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
9261 #define NODE_NAME_CASE(NODE)                                                   \
9262   case RISCVISD::NODE:                                                         \
9263     return "RISCVISD::" #NODE;
9264   // clang-format off
9265   switch ((RISCVISD::NodeType)Opcode) {
9266   case RISCVISD::FIRST_NUMBER:
9267     break;
9268   NODE_NAME_CASE(RET_FLAG)
9269   NODE_NAME_CASE(URET_FLAG)
9270   NODE_NAME_CASE(SRET_FLAG)
9271   NODE_NAME_CASE(MRET_FLAG)
9272   NODE_NAME_CASE(CALL)
9273   NODE_NAME_CASE(SELECT_CC)
9274   NODE_NAME_CASE(BR_CC)
9275   NODE_NAME_CASE(BuildPairF64)
9276   NODE_NAME_CASE(SplitF64)
9277   NODE_NAME_CASE(TAIL)
9278   NODE_NAME_CASE(MULHSU)
9279   NODE_NAME_CASE(SLLW)
9280   NODE_NAME_CASE(SRAW)
9281   NODE_NAME_CASE(SRLW)
9282   NODE_NAME_CASE(DIVW)
9283   NODE_NAME_CASE(DIVUW)
9284   NODE_NAME_CASE(REMUW)
9285   NODE_NAME_CASE(ROLW)
9286   NODE_NAME_CASE(RORW)
9287   NODE_NAME_CASE(CLZW)
9288   NODE_NAME_CASE(CTZW)
9289   NODE_NAME_CASE(FSLW)
9290   NODE_NAME_CASE(FSRW)
9291   NODE_NAME_CASE(FSL)
9292   NODE_NAME_CASE(FSR)
9293   NODE_NAME_CASE(FMV_H_X)
9294   NODE_NAME_CASE(FMV_X_ANYEXTH)
9295   NODE_NAME_CASE(FMV_W_X_RV64)
9296   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
9297   NODE_NAME_CASE(FCVT_X_RTZ)
9298   NODE_NAME_CASE(FCVT_XU_RTZ)
9299   NODE_NAME_CASE(FCVT_W_RTZ_RV64)
9300   NODE_NAME_CASE(FCVT_WU_RTZ_RV64)
9301   NODE_NAME_CASE(READ_CYCLE_WIDE)
9302   NODE_NAME_CASE(GREV)
9303   NODE_NAME_CASE(GREVW)
9304   NODE_NAME_CASE(GORC)
9305   NODE_NAME_CASE(GORCW)
9306   NODE_NAME_CASE(SHFL)
9307   NODE_NAME_CASE(SHFLW)
9308   NODE_NAME_CASE(UNSHFL)
9309   NODE_NAME_CASE(UNSHFLW)
9310   NODE_NAME_CASE(BCOMPRESS)
9311   NODE_NAME_CASE(BCOMPRESSW)
9312   NODE_NAME_CASE(BDECOMPRESS)
9313   NODE_NAME_CASE(BDECOMPRESSW)
9314   NODE_NAME_CASE(VMV_V_X_VL)
9315   NODE_NAME_CASE(VFMV_V_F_VL)
9316   NODE_NAME_CASE(VMV_X_S)
9317   NODE_NAME_CASE(VMV_S_X_VL)
9318   NODE_NAME_CASE(VFMV_S_F_VL)
9319   NODE_NAME_CASE(SPLAT_VECTOR_I64)
9320   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
9321   NODE_NAME_CASE(READ_VLENB)
9322   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
9323   NODE_NAME_CASE(VSLIDEUP_VL)
9324   NODE_NAME_CASE(VSLIDE1UP_VL)
9325   NODE_NAME_CASE(VSLIDEDOWN_VL)
9326   NODE_NAME_CASE(VSLIDE1DOWN_VL)
9327   NODE_NAME_CASE(VID_VL)
9328   NODE_NAME_CASE(VFNCVT_ROD_VL)
9329   NODE_NAME_CASE(VECREDUCE_ADD_VL)
9330   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
9331   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
9332   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
9333   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
9334   NODE_NAME_CASE(VECREDUCE_AND_VL)
9335   NODE_NAME_CASE(VECREDUCE_OR_VL)
9336   NODE_NAME_CASE(VECREDUCE_XOR_VL)
9337   NODE_NAME_CASE(VECREDUCE_FADD_VL)
9338   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
9339   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
9340   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
9341   NODE_NAME_CASE(ADD_VL)
9342   NODE_NAME_CASE(AND_VL)
9343   NODE_NAME_CASE(MUL_VL)
9344   NODE_NAME_CASE(OR_VL)
9345   NODE_NAME_CASE(SDIV_VL)
9346   NODE_NAME_CASE(SHL_VL)
9347   NODE_NAME_CASE(SREM_VL)
9348   NODE_NAME_CASE(SRA_VL)
9349   NODE_NAME_CASE(SRL_VL)
9350   NODE_NAME_CASE(SUB_VL)
9351   NODE_NAME_CASE(UDIV_VL)
9352   NODE_NAME_CASE(UREM_VL)
9353   NODE_NAME_CASE(XOR_VL)
9354   NODE_NAME_CASE(SADDSAT_VL)
9355   NODE_NAME_CASE(UADDSAT_VL)
9356   NODE_NAME_CASE(SSUBSAT_VL)
9357   NODE_NAME_CASE(USUBSAT_VL)
9358   NODE_NAME_CASE(FADD_VL)
9359   NODE_NAME_CASE(FSUB_VL)
9360   NODE_NAME_CASE(FMUL_VL)
9361   NODE_NAME_CASE(FDIV_VL)
9362   NODE_NAME_CASE(FNEG_VL)
9363   NODE_NAME_CASE(FABS_VL)
9364   NODE_NAME_CASE(FSQRT_VL)
9365   NODE_NAME_CASE(FMA_VL)
9366   NODE_NAME_CASE(FCOPYSIGN_VL)
9367   NODE_NAME_CASE(SMIN_VL)
9368   NODE_NAME_CASE(SMAX_VL)
9369   NODE_NAME_CASE(UMIN_VL)
9370   NODE_NAME_CASE(UMAX_VL)
9371   NODE_NAME_CASE(FMINNUM_VL)
9372   NODE_NAME_CASE(FMAXNUM_VL)
9373   NODE_NAME_CASE(MULHS_VL)
9374   NODE_NAME_CASE(MULHU_VL)
9375   NODE_NAME_CASE(FP_TO_SINT_VL)
9376   NODE_NAME_CASE(FP_TO_UINT_VL)
9377   NODE_NAME_CASE(SINT_TO_FP_VL)
9378   NODE_NAME_CASE(UINT_TO_FP_VL)
9379   NODE_NAME_CASE(FP_EXTEND_VL)
9380   NODE_NAME_CASE(FP_ROUND_VL)
9381   NODE_NAME_CASE(VWMUL_VL)
9382   NODE_NAME_CASE(VWMULU_VL)
9383   NODE_NAME_CASE(SETCC_VL)
9384   NODE_NAME_CASE(VSELECT_VL)
9385   NODE_NAME_CASE(VMAND_VL)
9386   NODE_NAME_CASE(VMOR_VL)
9387   NODE_NAME_CASE(VMXOR_VL)
9388   NODE_NAME_CASE(VMCLR_VL)
9389   NODE_NAME_CASE(VMSET_VL)
9390   NODE_NAME_CASE(VRGATHER_VX_VL)
9391   NODE_NAME_CASE(VRGATHER_VV_VL)
9392   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
9393   NODE_NAME_CASE(VSEXT_VL)
9394   NODE_NAME_CASE(VZEXT_VL)
9395   NODE_NAME_CASE(VCPOP_VL)
9396   NODE_NAME_CASE(VLE_VL)
9397   NODE_NAME_CASE(VSE_VL)
9398   NODE_NAME_CASE(READ_CSR)
9399   NODE_NAME_CASE(WRITE_CSR)
9400   NODE_NAME_CASE(SWAP_CSR)
9401   }
9402   // clang-format on
9403   return nullptr;
9404 #undef NODE_NAME_CASE
9405 }
9406 
9407 /// getConstraintType - Given a constraint letter, return the type of
9408 /// constraint it is for this target.
9409 RISCVTargetLowering::ConstraintType
9410 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
9411   if (Constraint.size() == 1) {
9412     switch (Constraint[0]) {
9413     default:
9414       break;
9415     case 'f':
9416       return C_RegisterClass;
9417     case 'I':
9418     case 'J':
9419     case 'K':
9420       return C_Immediate;
9421     case 'A':
9422       return C_Memory;
9423     case 'S': // A symbolic address
9424       return C_Other;
9425     }
9426   } else {
9427     if (Constraint == "vr" || Constraint == "vm")
9428       return C_RegisterClass;
9429   }
9430   return TargetLowering::getConstraintType(Constraint);
9431 }
9432 
9433 std::pair<unsigned, const TargetRegisterClass *>
9434 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
9435                                                   StringRef Constraint,
9436                                                   MVT VT) const {
9437   // First, see if this is a constraint that directly corresponds to a
9438   // RISCV register class.
9439   if (Constraint.size() == 1) {
9440     switch (Constraint[0]) {
9441     case 'r':
9442       return std::make_pair(0U, &RISCV::GPRRegClass);
9443     case 'f':
9444       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
9445         return std::make_pair(0U, &RISCV::FPR16RegClass);
9446       if (Subtarget.hasStdExtF() && VT == MVT::f32)
9447         return std::make_pair(0U, &RISCV::FPR32RegClass);
9448       if (Subtarget.hasStdExtD() && VT == MVT::f64)
9449         return std::make_pair(0U, &RISCV::FPR64RegClass);
9450       break;
9451     default:
9452       break;
9453     }
9454   } else {
9455     if (Constraint == "vr") {
9456       for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
9457                              &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9458         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
9459           return std::make_pair(0U, RC);
9460       }
9461     } else if (Constraint == "vm") {
9462       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
9463         return std::make_pair(0U, &RISCV::VMRegClass);
9464     }
9465   }
9466 
9467   // Clang will correctly decode the usage of register name aliases into their
9468   // official names. However, other frontends like `rustc` do not. This allows
9469   // users of these frontends to use the ABI names for registers in LLVM-style
9470   // register constraints.
9471   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
9472                                .Case("{zero}", RISCV::X0)
9473                                .Case("{ra}", RISCV::X1)
9474                                .Case("{sp}", RISCV::X2)
9475                                .Case("{gp}", RISCV::X3)
9476                                .Case("{tp}", RISCV::X4)
9477                                .Case("{t0}", RISCV::X5)
9478                                .Case("{t1}", RISCV::X6)
9479                                .Case("{t2}", RISCV::X7)
9480                                .Cases("{s0}", "{fp}", RISCV::X8)
9481                                .Case("{s1}", RISCV::X9)
9482                                .Case("{a0}", RISCV::X10)
9483                                .Case("{a1}", RISCV::X11)
9484                                .Case("{a2}", RISCV::X12)
9485                                .Case("{a3}", RISCV::X13)
9486                                .Case("{a4}", RISCV::X14)
9487                                .Case("{a5}", RISCV::X15)
9488                                .Case("{a6}", RISCV::X16)
9489                                .Case("{a7}", RISCV::X17)
9490                                .Case("{s2}", RISCV::X18)
9491                                .Case("{s3}", RISCV::X19)
9492                                .Case("{s4}", RISCV::X20)
9493                                .Case("{s5}", RISCV::X21)
9494                                .Case("{s6}", RISCV::X22)
9495                                .Case("{s7}", RISCV::X23)
9496                                .Case("{s8}", RISCV::X24)
9497                                .Case("{s9}", RISCV::X25)
9498                                .Case("{s10}", RISCV::X26)
9499                                .Case("{s11}", RISCV::X27)
9500                                .Case("{t3}", RISCV::X28)
9501                                .Case("{t4}", RISCV::X29)
9502                                .Case("{t5}", RISCV::X30)
9503                                .Case("{t6}", RISCV::X31)
9504                                .Default(RISCV::NoRegister);
9505   if (XRegFromAlias != RISCV::NoRegister)
9506     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
9507 
9508   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
9509   // TableGen record rather than the AsmName to choose registers for InlineAsm
9510   // constraints, plus we want to match those names to the widest floating point
9511   // register type available, manually select floating point registers here.
9512   //
9513   // The second case is the ABI name of the register, so that frontends can also
9514   // use the ABI names in register constraint lists.
9515   if (Subtarget.hasStdExtF()) {
9516     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
9517                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
9518                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
9519                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
9520                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
9521                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
9522                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
9523                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
9524                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
9525                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
9526                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
9527                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
9528                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
9529                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
9530                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
9531                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
9532                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
9533                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
9534                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
9535                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
9536                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
9537                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
9538                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
9539                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
9540                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
9541                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
9542                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
9543                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
9544                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
9545                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
9546                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
9547                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
9548                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
9549                         .Default(RISCV::NoRegister);
9550     if (FReg != RISCV::NoRegister) {
9551       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
9552       if (Subtarget.hasStdExtD()) {
9553         unsigned RegNo = FReg - RISCV::F0_F;
9554         unsigned DReg = RISCV::F0_D + RegNo;
9555         return std::make_pair(DReg, &RISCV::FPR64RegClass);
9556       }
9557       return std::make_pair(FReg, &RISCV::FPR32RegClass);
9558     }
9559   }
9560 
9561   if (Subtarget.hasVInstructions()) {
9562     Register VReg = StringSwitch<Register>(Constraint.lower())
9563                         .Case("{v0}", RISCV::V0)
9564                         .Case("{v1}", RISCV::V1)
9565                         .Case("{v2}", RISCV::V2)
9566                         .Case("{v3}", RISCV::V3)
9567                         .Case("{v4}", RISCV::V4)
9568                         .Case("{v5}", RISCV::V5)
9569                         .Case("{v6}", RISCV::V6)
9570                         .Case("{v7}", RISCV::V7)
9571                         .Case("{v8}", RISCV::V8)
9572                         .Case("{v9}", RISCV::V9)
9573                         .Case("{v10}", RISCV::V10)
9574                         .Case("{v11}", RISCV::V11)
9575                         .Case("{v12}", RISCV::V12)
9576                         .Case("{v13}", RISCV::V13)
9577                         .Case("{v14}", RISCV::V14)
9578                         .Case("{v15}", RISCV::V15)
9579                         .Case("{v16}", RISCV::V16)
9580                         .Case("{v17}", RISCV::V17)
9581                         .Case("{v18}", RISCV::V18)
9582                         .Case("{v19}", RISCV::V19)
9583                         .Case("{v20}", RISCV::V20)
9584                         .Case("{v21}", RISCV::V21)
9585                         .Case("{v22}", RISCV::V22)
9586                         .Case("{v23}", RISCV::V23)
9587                         .Case("{v24}", RISCV::V24)
9588                         .Case("{v25}", RISCV::V25)
9589                         .Case("{v26}", RISCV::V26)
9590                         .Case("{v27}", RISCV::V27)
9591                         .Case("{v28}", RISCV::V28)
9592                         .Case("{v29}", RISCV::V29)
9593                         .Case("{v30}", RISCV::V30)
9594                         .Case("{v31}", RISCV::V31)
9595                         .Default(RISCV::NoRegister);
9596     if (VReg != RISCV::NoRegister) {
9597       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
9598         return std::make_pair(VReg, &RISCV::VMRegClass);
9599       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
9600         return std::make_pair(VReg, &RISCV::VRRegClass);
9601       for (const auto *RC :
9602            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9603         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
9604           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
9605           return std::make_pair(VReg, RC);
9606         }
9607       }
9608     }
9609   }
9610 
9611   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
9612 }
9613 
9614 unsigned
9615 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
9616   // Currently only support length 1 constraints.
9617   if (ConstraintCode.size() == 1) {
9618     switch (ConstraintCode[0]) {
9619     case 'A':
9620       return InlineAsm::Constraint_A;
9621     default:
9622       break;
9623     }
9624   }
9625 
9626   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
9627 }
9628 
9629 void RISCVTargetLowering::LowerAsmOperandForConstraint(
9630     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
9631     SelectionDAG &DAG) const {
9632   // Currently only support length 1 constraints.
9633   if (Constraint.length() == 1) {
9634     switch (Constraint[0]) {
9635     case 'I':
9636       // Validate & create a 12-bit signed immediate operand.
9637       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
9638         uint64_t CVal = C->getSExtValue();
9639         if (isInt<12>(CVal))
9640           Ops.push_back(
9641               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
9642       }
9643       return;
9644     case 'J':
9645       // Validate & create an integer zero operand.
9646       if (auto *C = dyn_cast<ConstantSDNode>(Op))
9647         if (C->getZExtValue() == 0)
9648           Ops.push_back(
9649               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
9650       return;
9651     case 'K':
9652       // Validate & create a 5-bit unsigned immediate operand.
9653       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
9654         uint64_t CVal = C->getZExtValue();
9655         if (isUInt<5>(CVal))
9656           Ops.push_back(
9657               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
9658       }
9659       return;
9660     case 'S':
9661       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9662         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
9663                                                  GA->getValueType(0)));
9664       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
9665         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
9666                                                 BA->getValueType(0)));
9667       }
9668       return;
9669     default:
9670       break;
9671     }
9672   }
9673   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
9674 }
9675 
9676 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
9677                                                    Instruction *Inst,
9678                                                    AtomicOrdering Ord) const {
9679   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
9680     return Builder.CreateFence(Ord);
9681   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
9682     return Builder.CreateFence(AtomicOrdering::Release);
9683   return nullptr;
9684 }
9685 
9686 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
9687                                                     Instruction *Inst,
9688                                                     AtomicOrdering Ord) const {
9689   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
9690     return Builder.CreateFence(AtomicOrdering::Acquire);
9691   return nullptr;
9692 }
9693 
9694 TargetLowering::AtomicExpansionKind
9695 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
9696   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
9697   // point operations can't be used in an lr/sc sequence without breaking the
9698   // forward-progress guarantee.
9699   if (AI->isFloatingPointOperation())
9700     return AtomicExpansionKind::CmpXChg;
9701 
9702   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
9703   if (Size == 8 || Size == 16)
9704     return AtomicExpansionKind::MaskedIntrinsic;
9705   return AtomicExpansionKind::None;
9706 }
9707 
9708 static Intrinsic::ID
9709 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
9710   if (XLen == 32) {
9711     switch (BinOp) {
9712     default:
9713       llvm_unreachable("Unexpected AtomicRMW BinOp");
9714     case AtomicRMWInst::Xchg:
9715       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
9716     case AtomicRMWInst::Add:
9717       return Intrinsic::riscv_masked_atomicrmw_add_i32;
9718     case AtomicRMWInst::Sub:
9719       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
9720     case AtomicRMWInst::Nand:
9721       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
9722     case AtomicRMWInst::Max:
9723       return Intrinsic::riscv_masked_atomicrmw_max_i32;
9724     case AtomicRMWInst::Min:
9725       return Intrinsic::riscv_masked_atomicrmw_min_i32;
9726     case AtomicRMWInst::UMax:
9727       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
9728     case AtomicRMWInst::UMin:
9729       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
9730     }
9731   }
9732 
9733   if (XLen == 64) {
9734     switch (BinOp) {
9735     default:
9736       llvm_unreachable("Unexpected AtomicRMW BinOp");
9737     case AtomicRMWInst::Xchg:
9738       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
9739     case AtomicRMWInst::Add:
9740       return Intrinsic::riscv_masked_atomicrmw_add_i64;
9741     case AtomicRMWInst::Sub:
9742       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
9743     case AtomicRMWInst::Nand:
9744       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
9745     case AtomicRMWInst::Max:
9746       return Intrinsic::riscv_masked_atomicrmw_max_i64;
9747     case AtomicRMWInst::Min:
9748       return Intrinsic::riscv_masked_atomicrmw_min_i64;
9749     case AtomicRMWInst::UMax:
9750       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
9751     case AtomicRMWInst::UMin:
9752       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
9753     }
9754   }
9755 
9756   llvm_unreachable("Unexpected XLen\n");
9757 }
9758 
9759 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
9760     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
9761     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
9762   unsigned XLen = Subtarget.getXLen();
9763   Value *Ordering =
9764       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
9765   Type *Tys[] = {AlignedAddr->getType()};
9766   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
9767       AI->getModule(),
9768       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
9769 
9770   if (XLen == 64) {
9771     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
9772     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
9773     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
9774   }
9775 
9776   Value *Result;
9777 
9778   // Must pass the shift amount needed to sign extend the loaded value prior
9779   // to performing a signed comparison for min/max. ShiftAmt is the number of
9780   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
9781   // is the number of bits to left+right shift the value in order to
9782   // sign-extend.
9783   if (AI->getOperation() == AtomicRMWInst::Min ||
9784       AI->getOperation() == AtomicRMWInst::Max) {
9785     const DataLayout &DL = AI->getModule()->getDataLayout();
9786     unsigned ValWidth =
9787         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
9788     Value *SextShamt =
9789         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
9790     Result = Builder.CreateCall(LrwOpScwLoop,
9791                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
9792   } else {
9793     Result =
9794         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
9795   }
9796 
9797   if (XLen == 64)
9798     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
9799   return Result;
9800 }
9801 
9802 TargetLowering::AtomicExpansionKind
9803 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
9804     AtomicCmpXchgInst *CI) const {
9805   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
9806   if (Size == 8 || Size == 16)
9807     return AtomicExpansionKind::MaskedIntrinsic;
9808   return AtomicExpansionKind::None;
9809 }
9810 
9811 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
9812     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
9813     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
9814   unsigned XLen = Subtarget.getXLen();
9815   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
9816   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
9817   if (XLen == 64) {
9818     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
9819     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
9820     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
9821     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
9822   }
9823   Type *Tys[] = {AlignedAddr->getType()};
9824   Function *MaskedCmpXchg =
9825       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
9826   Value *Result = Builder.CreateCall(
9827       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
9828   if (XLen == 64)
9829     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
9830   return Result;
9831 }
9832 
9833 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
9834   return false;
9835 }
9836 
9837 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
9838                                                      EVT VT) const {
9839   VT = VT.getScalarType();
9840 
9841   if (!VT.isSimple())
9842     return false;
9843 
9844   switch (VT.getSimpleVT().SimpleTy) {
9845   case MVT::f16:
9846     return Subtarget.hasStdExtZfh();
9847   case MVT::f32:
9848     return Subtarget.hasStdExtF();
9849   case MVT::f64:
9850     return Subtarget.hasStdExtD();
9851   default:
9852     break;
9853   }
9854 
9855   return false;
9856 }
9857 
9858 Register RISCVTargetLowering::getExceptionPointerRegister(
9859     const Constant *PersonalityFn) const {
9860   return RISCV::X10;
9861 }
9862 
9863 Register RISCVTargetLowering::getExceptionSelectorRegister(
9864     const Constant *PersonalityFn) const {
9865   return RISCV::X11;
9866 }
9867 
9868 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
9869   // Return false to suppress the unnecessary extensions if the LibCall
9870   // arguments or return value is f32 type for LP64 ABI.
9871   RISCVABI::ABI ABI = Subtarget.getTargetABI();
9872   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
9873     return false;
9874 
9875   return true;
9876 }
9877 
9878 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
9879   if (Subtarget.is64Bit() && Type == MVT::i32)
9880     return true;
9881 
9882   return IsSigned;
9883 }
9884 
9885 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
9886                                                  SDValue C) const {
9887   // Check integral scalar types.
9888   if (VT.isScalarInteger()) {
9889     // Omit the optimization if the sub target has the M extension and the data
9890     // size exceeds XLen.
9891     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
9892       return false;
9893     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
9894       // Break the MUL to a SLLI and an ADD/SUB.
9895       const APInt &Imm = ConstNode->getAPIntValue();
9896       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
9897           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
9898         return true;
9899       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
9900       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
9901           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
9902            (Imm - 8).isPowerOf2()))
9903         return true;
9904       // Omit the following optimization if the sub target has the M extension
9905       // and the data size >= XLen.
9906       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
9907         return false;
9908       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
9909       // a pair of LUI/ADDI.
9910       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
9911         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
9912         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
9913             (1 - ImmS).isPowerOf2())
9914         return true;
9915       }
9916     }
9917   }
9918 
9919   return false;
9920 }
9921 
9922 bool RISCVTargetLowering::isMulAddWithConstProfitable(
9923     const SDValue &AddNode, const SDValue &ConstNode) const {
9924   // Let the DAGCombiner decide for vectors.
9925   EVT VT = AddNode.getValueType();
9926   if (VT.isVector())
9927     return true;
9928 
9929   // Let the DAGCombiner decide for larger types.
9930   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
9931     return true;
9932 
9933   // It is worse if c1 is simm12 while c1*c2 is not.
9934   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
9935   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
9936   const APInt &C1 = C1Node->getAPIntValue();
9937   const APInt &C2 = C2Node->getAPIntValue();
9938   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
9939     return false;
9940 
9941   // Default to true and let the DAGCombiner decide.
9942   return true;
9943 }
9944 
9945 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
9946     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
9947     bool *Fast) const {
9948   if (!VT.isVector())
9949     return false;
9950 
9951   EVT ElemVT = VT.getVectorElementType();
9952   if (Alignment >= ElemVT.getStoreSize()) {
9953     if (Fast)
9954       *Fast = true;
9955     return true;
9956   }
9957 
9958   return false;
9959 }
9960 
9961 bool RISCVTargetLowering::splitValueIntoRegisterParts(
9962     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
9963     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
9964   bool IsABIRegCopy = CC.hasValue();
9965   EVT ValueVT = Val.getValueType();
9966   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
9967     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
9968     // and cast to f32.
9969     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
9970     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
9971     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
9972                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
9973     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
9974     Parts[0] = Val;
9975     return true;
9976   }
9977 
9978   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
9979     LLVMContext &Context = *DAG.getContext();
9980     EVT ValueEltVT = ValueVT.getVectorElementType();
9981     EVT PartEltVT = PartVT.getVectorElementType();
9982     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
9983     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
9984     if (PartVTBitSize % ValueVTBitSize == 0) {
9985       // If the element types are different, bitcast to the same element type of
9986       // PartVT first.
9987       if (ValueEltVT != PartEltVT) {
9988         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
9989         assert(Count != 0 && "The number of element should not be zero.");
9990         EVT SameEltTypeVT =
9991             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
9992         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
9993       }
9994       Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
9995                         Val, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
9996       Parts[0] = Val;
9997       return true;
9998     }
9999   }
10000   return false;
10001 }
10002 
10003 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
10004     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
10005     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
10006   bool IsABIRegCopy = CC.hasValue();
10007   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
10008     SDValue Val = Parts[0];
10009 
10010     // Cast the f32 to i32, truncate to i16, and cast back to f16.
10011     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
10012     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
10013     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
10014     return Val;
10015   }
10016 
10017   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
10018     LLVMContext &Context = *DAG.getContext();
10019     SDValue Val = Parts[0];
10020     EVT ValueEltVT = ValueVT.getVectorElementType();
10021     EVT PartEltVT = PartVT.getVectorElementType();
10022     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
10023     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
10024     if (PartVTBitSize % ValueVTBitSize == 0) {
10025       EVT SameEltTypeVT = ValueVT;
10026       // If the element types are different, convert it to the same element type
10027       // of PartVT.
10028       if (ValueEltVT != PartEltVT) {
10029         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
10030         assert(Count != 0 && "The number of element should not be zero.");
10031         SameEltTypeVT =
10032             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
10033       }
10034       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val,
10035                         DAG.getConstant(0, DL, Subtarget.getXLenVT()));
10036       if (ValueEltVT != PartEltVT)
10037         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
10038       return Val;
10039     }
10040   }
10041   return SDValue();
10042 }
10043 
10044 #define GET_REGISTER_MATCHER
10045 #include "RISCVGenAsmMatcher.inc"
10046 
10047 Register
10048 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
10049                                        const MachineFunction &MF) const {
10050   Register Reg = MatchRegisterAltName(RegName);
10051   if (Reg == RISCV::NoRegister)
10052     Reg = MatchRegisterName(RegName);
10053   if (Reg == RISCV::NoRegister)
10054     report_fatal_error(
10055         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
10056   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
10057   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
10058     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
10059                              StringRef(RegName) + "\"."));
10060   return Reg;
10061 }
10062 
10063 namespace llvm {
10064 namespace RISCVVIntrinsicsTable {
10065 
10066 #define GET_RISCVVIntrinsicsTable_IMPL
10067 #include "RISCVGenSearchableTables.inc"
10068 
10069 } // namespace RISCVVIntrinsicsTable
10070 
10071 } // namespace llvm
10072