1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 254 Subtarget.hasStdExtZbkb()) { 255 if (Subtarget.is64Bit()) { 256 setOperationAction(ISD::ROTL, MVT::i32, Custom); 257 setOperationAction(ISD::ROTR, MVT::i32, Custom); 258 } 259 } else { 260 setOperationAction(ISD::ROTL, XLenVT, Expand); 261 setOperationAction(ISD::ROTR, XLenVT, Expand); 262 } 263 264 if (Subtarget.hasStdExtZbp()) { 265 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 266 // more combining. 267 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 268 setOperationAction(ISD::BSWAP, XLenVT, Custom); 269 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 270 // BSWAP i8 doesn't exist. 271 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 272 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 273 274 if (Subtarget.is64Bit()) { 275 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 276 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 277 } 278 } else { 279 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 280 // pattern match it directly in isel. 281 setOperationAction(ISD::BSWAP, XLenVT, 282 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 283 ? Legal 284 : Expand); 285 // Zbkb can use rev8+brev8 to implement bitreverse. 286 setOperationAction(ISD::BITREVERSE, XLenVT, 287 Subtarget.hasStdExtZbkb() ? Custom : Expand); 288 } 289 290 if (Subtarget.hasStdExtZbb()) { 291 setOperationAction(ISD::SMIN, XLenVT, Legal); 292 setOperationAction(ISD::SMAX, XLenVT, Legal); 293 setOperationAction(ISD::UMIN, XLenVT, Legal); 294 setOperationAction(ISD::UMAX, XLenVT, Legal); 295 296 if (Subtarget.is64Bit()) { 297 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 298 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 299 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 300 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 301 } 302 } else { 303 setOperationAction(ISD::CTTZ, XLenVT, Expand); 304 setOperationAction(ISD::CTLZ, XLenVT, Expand); 305 setOperationAction(ISD::CTPOP, XLenVT, Expand); 306 } 307 308 if (Subtarget.hasStdExtZbt()) { 309 setOperationAction(ISD::FSHL, XLenVT, Custom); 310 setOperationAction(ISD::FSHR, XLenVT, Custom); 311 setOperationAction(ISD::SELECT, XLenVT, Legal); 312 313 if (Subtarget.is64Bit()) { 314 setOperationAction(ISD::FSHL, MVT::i32, Custom); 315 setOperationAction(ISD::FSHR, MVT::i32, Custom); 316 } 317 } else { 318 setOperationAction(ISD::SELECT, XLenVT, Custom); 319 } 320 321 static const ISD::CondCode FPCCToExpand[] = { 322 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 323 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 324 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 325 326 static const ISD::NodeType FPOpToExpand[] = { 327 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 328 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 329 330 if (Subtarget.hasStdExtZfh()) 331 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 332 333 if (Subtarget.hasStdExtZfh()) { 334 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 335 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 336 setOperationAction(ISD::LRINT, MVT::f16, Legal); 337 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 338 setOperationAction(ISD::LROUND, MVT::f16, Legal); 339 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 340 setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal); 341 setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal); 342 setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal); 343 setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal); 344 setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); 345 setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); 346 setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); 348 setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); 349 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 350 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); 352 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal); 353 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal); 354 for (auto CC : FPCCToExpand) 355 setCondCodeAction(CC, MVT::f16, Expand); 356 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 357 setOperationAction(ISD::SELECT, MVT::f16, Custom); 358 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 359 360 setOperationAction(ISD::FREM, MVT::f16, Promote); 361 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 362 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 363 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 364 setOperationAction(ISD::FRINT, MVT::f16, Promote); 365 setOperationAction(ISD::FROUND, MVT::f16, Promote); 366 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 367 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 368 setOperationAction(ISD::FPOW, MVT::f16, Promote); 369 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 370 setOperationAction(ISD::FCOS, MVT::f16, Promote); 371 setOperationAction(ISD::FSIN, MVT::f16, Promote); 372 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 373 setOperationAction(ISD::FEXP, MVT::f16, Promote); 374 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 375 setOperationAction(ISD::FLOG, MVT::f16, Promote); 376 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 377 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 378 379 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 380 // complete support for all operations in LegalizeDAG. 381 382 // We need to custom promote this. 383 if (Subtarget.is64Bit()) 384 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 385 } 386 387 if (Subtarget.hasStdExtF()) { 388 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 389 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 390 setOperationAction(ISD::LRINT, MVT::f32, Legal); 391 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 392 setOperationAction(ISD::LROUND, MVT::f32, Legal); 393 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 394 setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal); 395 setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal); 396 setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal); 397 setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal); 398 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 399 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 400 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 401 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 402 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 403 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 404 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 405 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 406 for (auto CC : FPCCToExpand) 407 setCondCodeAction(CC, MVT::f32, Expand); 408 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 409 setOperationAction(ISD::SELECT, MVT::f32, Custom); 410 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 411 for (auto Op : FPOpToExpand) 412 setOperationAction(Op, MVT::f32, Expand); 413 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 414 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 415 } 416 417 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 418 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 419 420 if (Subtarget.hasStdExtD()) { 421 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 422 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 423 setOperationAction(ISD::LRINT, MVT::f64, Legal); 424 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 425 setOperationAction(ISD::LROUND, MVT::f64, Legal); 426 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 427 setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal); 428 setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal); 429 setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal); 430 setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal); 431 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 432 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 433 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 434 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 435 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 436 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 437 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 438 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 439 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 440 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 441 for (auto CC : FPCCToExpand) 442 setCondCodeAction(CC, MVT::f64, Expand); 443 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 444 setOperationAction(ISD::SELECT, MVT::f64, Custom); 445 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 446 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 447 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 448 for (auto Op : FPOpToExpand) 449 setOperationAction(Op, MVT::f64, Expand); 450 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 451 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 452 } 453 454 if (Subtarget.is64Bit()) { 455 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 456 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 457 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 458 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 459 } 460 461 if (Subtarget.hasStdExtF()) { 462 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 463 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 464 465 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 466 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 467 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 468 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 469 470 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 471 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 472 } 473 474 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 475 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 476 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 477 setOperationAction(ISD::JumpTable, XLenVT, Custom); 478 479 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 480 481 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 482 // Unfortunately this can't be determined just from the ISA naming string. 483 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 484 Subtarget.is64Bit() ? Legal : Custom); 485 486 setOperationAction(ISD::TRAP, MVT::Other, Legal); 487 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 488 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 489 if (Subtarget.is64Bit()) 490 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 491 492 if (Subtarget.hasStdExtA()) { 493 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 494 setMinCmpXchgSizeInBits(32); 495 } else { 496 setMaxAtomicSizeInBitsSupported(0); 497 } 498 499 setBooleanContents(ZeroOrOneBooleanContent); 500 501 if (Subtarget.hasVInstructions()) { 502 setBooleanVectorContents(ZeroOrOneBooleanContent); 503 504 setOperationAction(ISD::VSCALE, XLenVT, Custom); 505 506 // RVV intrinsics may have illegal operands. 507 // We also need to custom legalize vmv.x.s. 508 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 509 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 510 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 511 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 512 if (Subtarget.is64Bit()) { 513 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 514 } else { 515 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 516 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 517 } 518 519 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 520 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 521 522 static const unsigned IntegerVPOps[] = { 523 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 524 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 525 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 526 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 527 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 528 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 529 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 530 ISD::VP_MERGE, ISD::VP_SELECT}; 531 532 static const unsigned FloatingPointVPOps[] = { 533 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 534 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 535 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, 536 ISD::VP_SELECT}; 537 538 if (!Subtarget.is64Bit()) { 539 // We must custom-lower certain vXi64 operations on RV32 due to the vector 540 // element type being illegal. 541 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 542 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 543 544 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 545 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 546 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 547 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 548 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 549 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 550 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 551 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 552 553 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 554 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 555 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 556 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 557 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 558 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 559 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 560 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 561 } 562 563 for (MVT VT : BoolVecVTs) { 564 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 565 566 // Mask VTs are custom-expanded into a series of standard nodes 567 setOperationAction(ISD::TRUNCATE, VT, Custom); 568 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 569 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 570 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 571 572 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 573 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 574 575 setOperationAction(ISD::SELECT, VT, Custom); 576 setOperationAction(ISD::SELECT_CC, VT, Expand); 577 setOperationAction(ISD::VSELECT, VT, Expand); 578 setOperationAction(ISD::VP_MERGE, VT, Expand); 579 setOperationAction(ISD::VP_SELECT, VT, Expand); 580 581 setOperationAction(ISD::VP_AND, VT, Custom); 582 setOperationAction(ISD::VP_OR, VT, Custom); 583 setOperationAction(ISD::VP_XOR, VT, Custom); 584 585 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 586 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 587 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 588 589 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 590 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 591 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 592 593 // RVV has native int->float & float->int conversions where the 594 // element type sizes are within one power-of-two of each other. Any 595 // wider distances between type sizes have to be lowered as sequences 596 // which progressively narrow the gap in stages. 597 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 598 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 599 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 600 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 601 602 // Expand all extending loads to types larger than this, and truncating 603 // stores from types larger than this. 604 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 605 setTruncStoreAction(OtherVT, VT, Expand); 606 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 607 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 608 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 609 } 610 } 611 612 for (MVT VT : IntVecVTs) { 613 if (VT.getVectorElementType() == MVT::i64 && 614 !Subtarget.hasVInstructionsI64()) 615 continue; 616 617 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 618 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 619 620 // Vectors implement MULHS/MULHU. 621 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 622 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 623 624 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 625 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) { 626 setOperationAction(ISD::MULHU, VT, Expand); 627 setOperationAction(ISD::MULHS, VT, Expand); 628 } 629 630 setOperationAction(ISD::SMIN, VT, Legal); 631 setOperationAction(ISD::SMAX, VT, Legal); 632 setOperationAction(ISD::UMIN, VT, Legal); 633 setOperationAction(ISD::UMAX, VT, Legal); 634 635 setOperationAction(ISD::ROTL, VT, Expand); 636 setOperationAction(ISD::ROTR, VT, Expand); 637 638 setOperationAction(ISD::CTTZ, VT, Expand); 639 setOperationAction(ISD::CTLZ, VT, Expand); 640 setOperationAction(ISD::CTPOP, VT, Expand); 641 642 setOperationAction(ISD::BSWAP, VT, Expand); 643 644 // Custom-lower extensions and truncations from/to mask types. 645 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 646 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 647 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 648 649 // RVV has native int->float & float->int conversions where the 650 // element type sizes are within one power-of-two of each other. Any 651 // wider distances between type sizes have to be lowered as sequences 652 // which progressively narrow the gap in stages. 653 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 654 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 655 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 656 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 657 658 setOperationAction(ISD::SADDSAT, VT, Legal); 659 setOperationAction(ISD::UADDSAT, VT, Legal); 660 setOperationAction(ISD::SSUBSAT, VT, Legal); 661 setOperationAction(ISD::USUBSAT, VT, Legal); 662 663 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 664 // nodes which truncate by one power of two at a time. 665 setOperationAction(ISD::TRUNCATE, VT, Custom); 666 667 // Custom-lower insert/extract operations to simplify patterns. 668 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 669 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 670 671 // Custom-lower reduction operations to set up the corresponding custom 672 // nodes' operands. 673 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 674 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 675 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 676 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 677 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 678 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 679 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 680 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 681 682 for (unsigned VPOpc : IntegerVPOps) 683 setOperationAction(VPOpc, VT, Custom); 684 685 setOperationAction(ISD::LOAD, VT, Custom); 686 setOperationAction(ISD::STORE, VT, Custom); 687 688 setOperationAction(ISD::MLOAD, VT, Custom); 689 setOperationAction(ISD::MSTORE, VT, Custom); 690 setOperationAction(ISD::MGATHER, VT, Custom); 691 setOperationAction(ISD::MSCATTER, VT, Custom); 692 693 setOperationAction(ISD::VP_LOAD, VT, Custom); 694 setOperationAction(ISD::VP_STORE, VT, Custom); 695 setOperationAction(ISD::VP_GATHER, VT, Custom); 696 setOperationAction(ISD::VP_SCATTER, VT, Custom); 697 698 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 699 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 700 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 701 702 setOperationAction(ISD::SELECT, VT, Custom); 703 setOperationAction(ISD::SELECT_CC, VT, Expand); 704 705 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 706 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 707 708 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 709 setTruncStoreAction(VT, OtherVT, Expand); 710 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 711 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 712 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 713 } 714 715 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 716 // type that can represent the value exactly. 717 if (VT.getVectorElementType() != MVT::i64) { 718 MVT FloatEltVT = 719 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 720 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 721 if (isTypeLegal(FloatVT)) { 722 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 723 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 724 } 725 } 726 } 727 728 // Expand various CCs to best match the RVV ISA, which natively supports UNE 729 // but no other unordered comparisons, and supports all ordered comparisons 730 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 731 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 732 // and we pattern-match those back to the "original", swapping operands once 733 // more. This way we catch both operations and both "vf" and "fv" forms with 734 // fewer patterns. 735 static const ISD::CondCode VFPCCToExpand[] = { 736 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 737 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 738 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 739 }; 740 741 // Sets common operation actions on RVV floating-point vector types. 742 const auto SetCommonVFPActions = [&](MVT VT) { 743 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 744 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 745 // sizes are within one power-of-two of each other. Therefore conversions 746 // between vXf16 and vXf64 must be lowered as sequences which convert via 747 // vXf32. 748 setOperationAction(ISD::FP_ROUND, VT, Custom); 749 setOperationAction(ISD::FP_EXTEND, VT, Custom); 750 // Custom-lower insert/extract operations to simplify patterns. 751 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 752 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 753 // Expand various condition codes (explained above). 754 for (auto CC : VFPCCToExpand) 755 setCondCodeAction(CC, VT, Expand); 756 757 setOperationAction(ISD::FMINNUM, VT, Legal); 758 setOperationAction(ISD::FMAXNUM, VT, Legal); 759 760 setOperationAction(ISD::FTRUNC, VT, Custom); 761 setOperationAction(ISD::FCEIL, VT, Custom); 762 setOperationAction(ISD::FFLOOR, VT, Custom); 763 764 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 765 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 766 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 767 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 768 769 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 770 771 setOperationAction(ISD::LOAD, VT, Custom); 772 setOperationAction(ISD::STORE, VT, Custom); 773 774 setOperationAction(ISD::MLOAD, VT, Custom); 775 setOperationAction(ISD::MSTORE, VT, Custom); 776 setOperationAction(ISD::MGATHER, VT, Custom); 777 setOperationAction(ISD::MSCATTER, VT, Custom); 778 779 setOperationAction(ISD::VP_LOAD, VT, Custom); 780 setOperationAction(ISD::VP_STORE, VT, Custom); 781 setOperationAction(ISD::VP_GATHER, VT, Custom); 782 setOperationAction(ISD::VP_SCATTER, VT, Custom); 783 784 setOperationAction(ISD::SELECT, VT, Custom); 785 setOperationAction(ISD::SELECT_CC, VT, Expand); 786 787 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 788 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 789 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 790 791 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 792 793 for (unsigned VPOpc : FloatingPointVPOps) 794 setOperationAction(VPOpc, VT, Custom); 795 }; 796 797 // Sets common extload/truncstore actions on RVV floating-point vector 798 // types. 799 const auto SetCommonVFPExtLoadTruncStoreActions = 800 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 801 for (auto SmallVT : SmallerVTs) { 802 setTruncStoreAction(VT, SmallVT, Expand); 803 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 804 } 805 }; 806 807 if (Subtarget.hasVInstructionsF16()) 808 for (MVT VT : F16VecVTs) 809 SetCommonVFPActions(VT); 810 811 for (MVT VT : F32VecVTs) { 812 if (Subtarget.hasVInstructionsF32()) 813 SetCommonVFPActions(VT); 814 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 815 } 816 817 for (MVT VT : F64VecVTs) { 818 if (Subtarget.hasVInstructionsF64()) 819 SetCommonVFPActions(VT); 820 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 821 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 822 } 823 824 if (Subtarget.useRVVForFixedLengthVectors()) { 825 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 826 if (!useRVVForFixedLengthVectorVT(VT)) 827 continue; 828 829 // By default everything must be expanded. 830 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 831 setOperationAction(Op, VT, Expand); 832 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 833 setTruncStoreAction(VT, OtherVT, Expand); 834 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 835 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 836 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 837 } 838 839 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 840 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 841 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 842 843 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 844 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 845 846 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 847 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 848 849 setOperationAction(ISD::LOAD, VT, Custom); 850 setOperationAction(ISD::STORE, VT, Custom); 851 852 setOperationAction(ISD::SETCC, VT, Custom); 853 854 setOperationAction(ISD::SELECT, VT, Custom); 855 856 setOperationAction(ISD::TRUNCATE, VT, Custom); 857 858 setOperationAction(ISD::BITCAST, VT, Custom); 859 860 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 861 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 862 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 863 864 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 865 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 866 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 867 868 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 869 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 870 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 871 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 872 873 // Operations below are different for between masks and other vectors. 874 if (VT.getVectorElementType() == MVT::i1) { 875 setOperationAction(ISD::VP_AND, VT, Custom); 876 setOperationAction(ISD::VP_OR, VT, Custom); 877 setOperationAction(ISD::VP_XOR, VT, Custom); 878 setOperationAction(ISD::AND, VT, Custom); 879 setOperationAction(ISD::OR, VT, Custom); 880 setOperationAction(ISD::XOR, VT, Custom); 881 continue; 882 } 883 884 // Use SPLAT_VECTOR to prevent type legalization from destroying the 885 // splats when type legalizing i64 scalar on RV32. 886 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 887 // improvements first. 888 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 889 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 890 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 891 } 892 893 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 894 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 895 896 setOperationAction(ISD::MLOAD, VT, Custom); 897 setOperationAction(ISD::MSTORE, VT, Custom); 898 setOperationAction(ISD::MGATHER, VT, Custom); 899 setOperationAction(ISD::MSCATTER, VT, Custom); 900 901 setOperationAction(ISD::VP_LOAD, VT, Custom); 902 setOperationAction(ISD::VP_STORE, VT, Custom); 903 setOperationAction(ISD::VP_GATHER, VT, Custom); 904 setOperationAction(ISD::VP_SCATTER, VT, Custom); 905 906 setOperationAction(ISD::ADD, VT, Custom); 907 setOperationAction(ISD::MUL, VT, Custom); 908 setOperationAction(ISD::SUB, VT, Custom); 909 setOperationAction(ISD::AND, VT, Custom); 910 setOperationAction(ISD::OR, VT, Custom); 911 setOperationAction(ISD::XOR, VT, Custom); 912 setOperationAction(ISD::SDIV, VT, Custom); 913 setOperationAction(ISD::SREM, VT, Custom); 914 setOperationAction(ISD::UDIV, VT, Custom); 915 setOperationAction(ISD::UREM, VT, Custom); 916 setOperationAction(ISD::SHL, VT, Custom); 917 setOperationAction(ISD::SRA, VT, Custom); 918 setOperationAction(ISD::SRL, VT, Custom); 919 920 setOperationAction(ISD::SMIN, VT, Custom); 921 setOperationAction(ISD::SMAX, VT, Custom); 922 setOperationAction(ISD::UMIN, VT, Custom); 923 setOperationAction(ISD::UMAX, VT, Custom); 924 setOperationAction(ISD::ABS, VT, Custom); 925 926 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 927 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) { 928 setOperationAction(ISD::MULHS, VT, Custom); 929 setOperationAction(ISD::MULHU, VT, Custom); 930 } 931 932 setOperationAction(ISD::SADDSAT, VT, Custom); 933 setOperationAction(ISD::UADDSAT, VT, Custom); 934 setOperationAction(ISD::SSUBSAT, VT, Custom); 935 setOperationAction(ISD::USUBSAT, VT, Custom); 936 937 setOperationAction(ISD::VSELECT, VT, Custom); 938 setOperationAction(ISD::SELECT_CC, VT, Expand); 939 940 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 941 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 942 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 943 944 // Custom-lower reduction operations to set up the corresponding custom 945 // nodes' operands. 946 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 947 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 948 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 949 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 950 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 951 952 for (unsigned VPOpc : IntegerVPOps) 953 setOperationAction(VPOpc, VT, Custom); 954 955 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 956 // type that can represent the value exactly. 957 if (VT.getVectorElementType() != MVT::i64) { 958 MVT FloatEltVT = 959 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 960 EVT FloatVT = 961 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 962 if (isTypeLegal(FloatVT)) { 963 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 964 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 965 } 966 } 967 } 968 969 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 970 if (!useRVVForFixedLengthVectorVT(VT)) 971 continue; 972 973 // By default everything must be expanded. 974 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 975 setOperationAction(Op, VT, Expand); 976 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 977 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 978 setTruncStoreAction(VT, OtherVT, Expand); 979 } 980 981 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 982 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 983 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 984 985 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 986 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 987 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 988 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 989 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 990 991 setOperationAction(ISD::LOAD, VT, Custom); 992 setOperationAction(ISD::STORE, VT, Custom); 993 setOperationAction(ISD::MLOAD, VT, Custom); 994 setOperationAction(ISD::MSTORE, VT, Custom); 995 setOperationAction(ISD::MGATHER, VT, Custom); 996 setOperationAction(ISD::MSCATTER, VT, Custom); 997 998 setOperationAction(ISD::VP_LOAD, VT, Custom); 999 setOperationAction(ISD::VP_STORE, VT, Custom); 1000 setOperationAction(ISD::VP_GATHER, VT, Custom); 1001 setOperationAction(ISD::VP_SCATTER, VT, Custom); 1002 1003 setOperationAction(ISD::FADD, VT, Custom); 1004 setOperationAction(ISD::FSUB, VT, Custom); 1005 setOperationAction(ISD::FMUL, VT, Custom); 1006 setOperationAction(ISD::FDIV, VT, Custom); 1007 setOperationAction(ISD::FNEG, VT, Custom); 1008 setOperationAction(ISD::FABS, VT, Custom); 1009 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 1010 setOperationAction(ISD::FSQRT, VT, Custom); 1011 setOperationAction(ISD::FMA, VT, Custom); 1012 setOperationAction(ISD::FMINNUM, VT, Custom); 1013 setOperationAction(ISD::FMAXNUM, VT, Custom); 1014 1015 setOperationAction(ISD::FP_ROUND, VT, Custom); 1016 setOperationAction(ISD::FP_EXTEND, VT, Custom); 1017 1018 setOperationAction(ISD::FTRUNC, VT, Custom); 1019 setOperationAction(ISD::FCEIL, VT, Custom); 1020 setOperationAction(ISD::FFLOOR, VT, Custom); 1021 1022 for (auto CC : VFPCCToExpand) 1023 setCondCodeAction(CC, VT, Expand); 1024 1025 setOperationAction(ISD::VSELECT, VT, Custom); 1026 setOperationAction(ISD::SELECT, VT, Custom); 1027 setOperationAction(ISD::SELECT_CC, VT, Expand); 1028 1029 setOperationAction(ISD::BITCAST, VT, Custom); 1030 1031 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1032 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1033 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1034 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1035 1036 for (unsigned VPOpc : FloatingPointVPOps) 1037 setOperationAction(VPOpc, VT, Custom); 1038 } 1039 1040 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1041 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1042 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1043 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1044 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1045 if (Subtarget.hasStdExtZfh()) 1046 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1047 if (Subtarget.hasStdExtF()) 1048 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1049 if (Subtarget.hasStdExtD()) 1050 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1051 } 1052 } 1053 1054 // Function alignments. 1055 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1056 setMinFunctionAlignment(FunctionAlignment); 1057 setPrefFunctionAlignment(FunctionAlignment); 1058 1059 setMinimumJumpTableEntries(5); 1060 1061 // Jumps are expensive, compared to logic 1062 setJumpIsExpensive(); 1063 1064 setTargetDAGCombine(ISD::ADD); 1065 setTargetDAGCombine(ISD::SUB); 1066 setTargetDAGCombine(ISD::AND); 1067 setTargetDAGCombine(ISD::OR); 1068 setTargetDAGCombine(ISD::XOR); 1069 setTargetDAGCombine(ISD::ANY_EXTEND); 1070 if (Subtarget.hasStdExtF()) { 1071 setTargetDAGCombine(ISD::ZERO_EXTEND); 1072 setTargetDAGCombine(ISD::FP_TO_SINT); 1073 setTargetDAGCombine(ISD::FP_TO_UINT); 1074 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 1075 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 1076 } 1077 if (Subtarget.hasVInstructions()) { 1078 setTargetDAGCombine(ISD::FCOPYSIGN); 1079 setTargetDAGCombine(ISD::MGATHER); 1080 setTargetDAGCombine(ISD::MSCATTER); 1081 setTargetDAGCombine(ISD::VP_GATHER); 1082 setTargetDAGCombine(ISD::VP_SCATTER); 1083 setTargetDAGCombine(ISD::SRA); 1084 setTargetDAGCombine(ISD::SRL); 1085 setTargetDAGCombine(ISD::SHL); 1086 setTargetDAGCombine(ISD::STORE); 1087 } 1088 1089 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 1090 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 1091 } 1092 1093 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1094 LLVMContext &Context, 1095 EVT VT) const { 1096 if (!VT.isVector()) 1097 return getPointerTy(DL); 1098 if (Subtarget.hasVInstructions() && 1099 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1100 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1101 return VT.changeVectorElementTypeToInteger(); 1102 } 1103 1104 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1105 return Subtarget.getXLenVT(); 1106 } 1107 1108 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1109 const CallInst &I, 1110 MachineFunction &MF, 1111 unsigned Intrinsic) const { 1112 auto &DL = I.getModule()->getDataLayout(); 1113 switch (Intrinsic) { 1114 default: 1115 return false; 1116 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1117 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1118 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1119 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1120 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1121 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1122 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1123 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1124 case Intrinsic::riscv_masked_cmpxchg_i32: 1125 Info.opc = ISD::INTRINSIC_W_CHAIN; 1126 Info.memVT = MVT::i32; 1127 Info.ptrVal = I.getArgOperand(0); 1128 Info.offset = 0; 1129 Info.align = Align(4); 1130 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1131 MachineMemOperand::MOVolatile; 1132 return true; 1133 case Intrinsic::riscv_masked_strided_load: 1134 Info.opc = ISD::INTRINSIC_W_CHAIN; 1135 Info.ptrVal = I.getArgOperand(1); 1136 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1137 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1138 Info.size = MemoryLocation::UnknownSize; 1139 Info.flags |= MachineMemOperand::MOLoad; 1140 return true; 1141 case Intrinsic::riscv_masked_strided_store: 1142 Info.opc = ISD::INTRINSIC_VOID; 1143 Info.ptrVal = I.getArgOperand(1); 1144 Info.memVT = 1145 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1146 Info.align = Align( 1147 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1148 8); 1149 Info.size = MemoryLocation::UnknownSize; 1150 Info.flags |= MachineMemOperand::MOStore; 1151 return true; 1152 } 1153 } 1154 1155 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1156 const AddrMode &AM, Type *Ty, 1157 unsigned AS, 1158 Instruction *I) const { 1159 // No global is ever allowed as a base. 1160 if (AM.BaseGV) 1161 return false; 1162 1163 // Require a 12-bit signed offset. 1164 if (!isInt<12>(AM.BaseOffs)) 1165 return false; 1166 1167 switch (AM.Scale) { 1168 case 0: // "r+i" or just "i", depending on HasBaseReg. 1169 break; 1170 case 1: 1171 if (!AM.HasBaseReg) // allow "r+i". 1172 break; 1173 return false; // disallow "r+r" or "r+r+i". 1174 default: 1175 return false; 1176 } 1177 1178 return true; 1179 } 1180 1181 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1182 return isInt<12>(Imm); 1183 } 1184 1185 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1186 return isInt<12>(Imm); 1187 } 1188 1189 // On RV32, 64-bit integers are split into their high and low parts and held 1190 // in two different registers, so the trunc is free since the low register can 1191 // just be used. 1192 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1193 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1194 return false; 1195 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1196 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1197 return (SrcBits == 64 && DestBits == 32); 1198 } 1199 1200 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1201 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1202 !SrcVT.isInteger() || !DstVT.isInteger()) 1203 return false; 1204 unsigned SrcBits = SrcVT.getSizeInBits(); 1205 unsigned DestBits = DstVT.getSizeInBits(); 1206 return (SrcBits == 64 && DestBits == 32); 1207 } 1208 1209 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1210 // Zexts are free if they can be combined with a load. 1211 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1212 // poorly with type legalization of compares preferring sext. 1213 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1214 EVT MemVT = LD->getMemoryVT(); 1215 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1216 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1217 LD->getExtensionType() == ISD::ZEXTLOAD)) 1218 return true; 1219 } 1220 1221 return TargetLowering::isZExtFree(Val, VT2); 1222 } 1223 1224 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1225 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1226 } 1227 1228 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1229 return Subtarget.hasStdExtZbb(); 1230 } 1231 1232 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1233 return Subtarget.hasStdExtZbb(); 1234 } 1235 1236 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1237 EVT VT = Y.getValueType(); 1238 1239 // FIXME: Support vectors once we have tests. 1240 if (VT.isVector()) 1241 return false; 1242 1243 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1244 Subtarget.hasStdExtZbkb()) && 1245 !isa<ConstantSDNode>(Y); 1246 } 1247 1248 /// Check if sinking \p I's operands to I's basic block is profitable, because 1249 /// the operands can be folded into a target instruction, e.g. 1250 /// splats of scalars can fold into vector instructions. 1251 bool RISCVTargetLowering::shouldSinkOperands( 1252 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1253 using namespace llvm::PatternMatch; 1254 1255 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1256 return false; 1257 1258 auto IsSinker = [&](Instruction *I, int Operand) { 1259 switch (I->getOpcode()) { 1260 case Instruction::Add: 1261 case Instruction::Sub: 1262 case Instruction::Mul: 1263 case Instruction::And: 1264 case Instruction::Or: 1265 case Instruction::Xor: 1266 case Instruction::FAdd: 1267 case Instruction::FSub: 1268 case Instruction::FMul: 1269 case Instruction::FDiv: 1270 case Instruction::ICmp: 1271 case Instruction::FCmp: 1272 return true; 1273 case Instruction::Shl: 1274 case Instruction::LShr: 1275 case Instruction::AShr: 1276 case Instruction::UDiv: 1277 case Instruction::SDiv: 1278 case Instruction::URem: 1279 case Instruction::SRem: 1280 return Operand == 1; 1281 case Instruction::Call: 1282 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1283 switch (II->getIntrinsicID()) { 1284 case Intrinsic::fma: 1285 return Operand == 0 || Operand == 1; 1286 // FIXME: Our patterns can only match vx/vf instructions when the splat 1287 // it on the RHS, because TableGen doesn't recognize our VP operations 1288 // as commutative. 1289 case Intrinsic::vp_add: 1290 case Intrinsic::vp_mul: 1291 case Intrinsic::vp_and: 1292 case Intrinsic::vp_or: 1293 case Intrinsic::vp_xor: 1294 case Intrinsic::vp_fadd: 1295 case Intrinsic::vp_fmul: 1296 case Intrinsic::vp_shl: 1297 case Intrinsic::vp_lshr: 1298 case Intrinsic::vp_ashr: 1299 case Intrinsic::vp_udiv: 1300 case Intrinsic::vp_sdiv: 1301 case Intrinsic::vp_urem: 1302 case Intrinsic::vp_srem: 1303 return Operand == 1; 1304 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1305 // explicit patterns for both LHS and RHS (as 'vr' versions). 1306 case Intrinsic::vp_sub: 1307 case Intrinsic::vp_fsub: 1308 case Intrinsic::vp_fdiv: 1309 return Operand == 0 || Operand == 1; 1310 default: 1311 return false; 1312 } 1313 } 1314 return false; 1315 default: 1316 return false; 1317 } 1318 }; 1319 1320 for (auto OpIdx : enumerate(I->operands())) { 1321 if (!IsSinker(I, OpIdx.index())) 1322 continue; 1323 1324 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1325 // Make sure we are not already sinking this operand 1326 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1327 continue; 1328 1329 // We are looking for a splat that can be sunk. 1330 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1331 m_Undef(), m_ZeroMask()))) 1332 continue; 1333 1334 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1335 // and vector registers 1336 for (Use &U : Op->uses()) { 1337 Instruction *Insn = cast<Instruction>(U.getUser()); 1338 if (!IsSinker(Insn, U.getOperandNo())) 1339 return false; 1340 } 1341 1342 Ops.push_back(&Op->getOperandUse(0)); 1343 Ops.push_back(&OpIdx.value()); 1344 } 1345 return true; 1346 } 1347 1348 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1349 bool ForCodeSize) const { 1350 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1351 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1352 return false; 1353 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1354 return false; 1355 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1356 return false; 1357 return Imm.isZero(); 1358 } 1359 1360 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1361 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1362 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1363 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1364 } 1365 1366 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1367 CallingConv::ID CC, 1368 EVT VT) const { 1369 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1370 // We might still end up using a GPR but that will be decided based on ABI. 1371 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1372 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1373 return MVT::f32; 1374 1375 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1376 } 1377 1378 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1379 CallingConv::ID CC, 1380 EVT VT) const { 1381 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1382 // We might still end up using a GPR but that will be decided based on ABI. 1383 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1384 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1385 return 1; 1386 1387 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1388 } 1389 1390 // Changes the condition code and swaps operands if necessary, so the SetCC 1391 // operation matches one of the comparisons supported directly by branches 1392 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1393 // with 1/-1. 1394 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1395 ISD::CondCode &CC, SelectionDAG &DAG) { 1396 // Convert X > -1 to X >= 0. 1397 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1398 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1399 CC = ISD::SETGE; 1400 return; 1401 } 1402 // Convert X < 1 to 0 >= X. 1403 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1404 RHS = LHS; 1405 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1406 CC = ISD::SETGE; 1407 return; 1408 } 1409 1410 switch (CC) { 1411 default: 1412 break; 1413 case ISD::SETGT: 1414 case ISD::SETLE: 1415 case ISD::SETUGT: 1416 case ISD::SETULE: 1417 CC = ISD::getSetCCSwappedOperands(CC); 1418 std::swap(LHS, RHS); 1419 break; 1420 } 1421 } 1422 1423 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1424 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1425 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1426 if (VT.getVectorElementType() == MVT::i1) 1427 KnownSize *= 8; 1428 1429 switch (KnownSize) { 1430 default: 1431 llvm_unreachable("Invalid LMUL."); 1432 case 8: 1433 return RISCVII::VLMUL::LMUL_F8; 1434 case 16: 1435 return RISCVII::VLMUL::LMUL_F4; 1436 case 32: 1437 return RISCVII::VLMUL::LMUL_F2; 1438 case 64: 1439 return RISCVII::VLMUL::LMUL_1; 1440 case 128: 1441 return RISCVII::VLMUL::LMUL_2; 1442 case 256: 1443 return RISCVII::VLMUL::LMUL_4; 1444 case 512: 1445 return RISCVII::VLMUL::LMUL_8; 1446 } 1447 } 1448 1449 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1450 switch (LMul) { 1451 default: 1452 llvm_unreachable("Invalid LMUL."); 1453 case RISCVII::VLMUL::LMUL_F8: 1454 case RISCVII::VLMUL::LMUL_F4: 1455 case RISCVII::VLMUL::LMUL_F2: 1456 case RISCVII::VLMUL::LMUL_1: 1457 return RISCV::VRRegClassID; 1458 case RISCVII::VLMUL::LMUL_2: 1459 return RISCV::VRM2RegClassID; 1460 case RISCVII::VLMUL::LMUL_4: 1461 return RISCV::VRM4RegClassID; 1462 case RISCVII::VLMUL::LMUL_8: 1463 return RISCV::VRM8RegClassID; 1464 } 1465 } 1466 1467 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1468 RISCVII::VLMUL LMUL = getLMUL(VT); 1469 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1470 LMUL == RISCVII::VLMUL::LMUL_F4 || 1471 LMUL == RISCVII::VLMUL::LMUL_F2 || 1472 LMUL == RISCVII::VLMUL::LMUL_1) { 1473 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1474 "Unexpected subreg numbering"); 1475 return RISCV::sub_vrm1_0 + Index; 1476 } 1477 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1478 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1479 "Unexpected subreg numbering"); 1480 return RISCV::sub_vrm2_0 + Index; 1481 } 1482 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1483 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1484 "Unexpected subreg numbering"); 1485 return RISCV::sub_vrm4_0 + Index; 1486 } 1487 llvm_unreachable("Invalid vector type."); 1488 } 1489 1490 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1491 if (VT.getVectorElementType() == MVT::i1) 1492 return RISCV::VRRegClassID; 1493 return getRegClassIDForLMUL(getLMUL(VT)); 1494 } 1495 1496 // Attempt to decompose a subvector insert/extract between VecVT and 1497 // SubVecVT via subregister indices. Returns the subregister index that 1498 // can perform the subvector insert/extract with the given element index, as 1499 // well as the index corresponding to any leftover subvectors that must be 1500 // further inserted/extracted within the register class for SubVecVT. 1501 std::pair<unsigned, unsigned> 1502 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1503 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1504 const RISCVRegisterInfo *TRI) { 1505 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1506 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1507 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1508 "Register classes not ordered"); 1509 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1510 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1511 // Try to compose a subregister index that takes us from the incoming 1512 // LMUL>1 register class down to the outgoing one. At each step we half 1513 // the LMUL: 1514 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1515 // Note that this is not guaranteed to find a subregister index, such as 1516 // when we are extracting from one VR type to another. 1517 unsigned SubRegIdx = RISCV::NoSubRegister; 1518 for (const unsigned RCID : 1519 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1520 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1521 VecVT = VecVT.getHalfNumVectorElementsVT(); 1522 bool IsHi = 1523 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1524 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1525 getSubregIndexByMVT(VecVT, IsHi)); 1526 if (IsHi) 1527 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1528 } 1529 return {SubRegIdx, InsertExtractIdx}; 1530 } 1531 1532 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1533 // stores for those types. 1534 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1535 return !Subtarget.useRVVForFixedLengthVectors() || 1536 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1537 } 1538 1539 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1540 if (ScalarTy->isPointerTy()) 1541 return true; 1542 1543 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1544 ScalarTy->isIntegerTy(32)) 1545 return true; 1546 1547 if (ScalarTy->isIntegerTy(64)) 1548 return Subtarget.hasVInstructionsI64(); 1549 1550 if (ScalarTy->isHalfTy()) 1551 return Subtarget.hasVInstructionsF16(); 1552 if (ScalarTy->isFloatTy()) 1553 return Subtarget.hasVInstructionsF32(); 1554 if (ScalarTy->isDoubleTy()) 1555 return Subtarget.hasVInstructionsF64(); 1556 1557 return false; 1558 } 1559 1560 static SDValue getVLOperand(SDValue Op) { 1561 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1562 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1563 "Unexpected opcode"); 1564 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1565 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1566 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1567 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1568 if (!II) 1569 return SDValue(); 1570 return Op.getOperand(II->VLOperand + 1 + HasChain); 1571 } 1572 1573 static bool useRVVForFixedLengthVectorVT(MVT VT, 1574 const RISCVSubtarget &Subtarget) { 1575 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1576 if (!Subtarget.useRVVForFixedLengthVectors()) 1577 return false; 1578 1579 // We only support a set of vector types with a consistent maximum fixed size 1580 // across all supported vector element types to avoid legalization issues. 1581 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1582 // fixed-length vector type we support is 1024 bytes. 1583 if (VT.getFixedSizeInBits() > 1024 * 8) 1584 return false; 1585 1586 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1587 1588 MVT EltVT = VT.getVectorElementType(); 1589 1590 // Don't use RVV for vectors we cannot scalarize if required. 1591 switch (EltVT.SimpleTy) { 1592 // i1 is supported but has different rules. 1593 default: 1594 return false; 1595 case MVT::i1: 1596 // Masks can only use a single register. 1597 if (VT.getVectorNumElements() > MinVLen) 1598 return false; 1599 MinVLen /= 8; 1600 break; 1601 case MVT::i8: 1602 case MVT::i16: 1603 case MVT::i32: 1604 break; 1605 case MVT::i64: 1606 if (!Subtarget.hasVInstructionsI64()) 1607 return false; 1608 break; 1609 case MVT::f16: 1610 if (!Subtarget.hasVInstructionsF16()) 1611 return false; 1612 break; 1613 case MVT::f32: 1614 if (!Subtarget.hasVInstructionsF32()) 1615 return false; 1616 break; 1617 case MVT::f64: 1618 if (!Subtarget.hasVInstructionsF64()) 1619 return false; 1620 break; 1621 } 1622 1623 // Reject elements larger than ELEN. 1624 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1625 return false; 1626 1627 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1628 // Don't use RVV for types that don't fit. 1629 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1630 return false; 1631 1632 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1633 // the base fixed length RVV support in place. 1634 if (!VT.isPow2VectorType()) 1635 return false; 1636 1637 return true; 1638 } 1639 1640 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1641 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1642 } 1643 1644 // Return the largest legal scalable vector type that matches VT's element type. 1645 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1646 const RISCVSubtarget &Subtarget) { 1647 // This may be called before legal types are setup. 1648 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1649 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1650 "Expected legal fixed length vector!"); 1651 1652 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1653 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1654 1655 MVT EltVT = VT.getVectorElementType(); 1656 switch (EltVT.SimpleTy) { 1657 default: 1658 llvm_unreachable("unexpected element type for RVV container"); 1659 case MVT::i1: 1660 case MVT::i8: 1661 case MVT::i16: 1662 case MVT::i32: 1663 case MVT::i64: 1664 case MVT::f16: 1665 case MVT::f32: 1666 case MVT::f64: { 1667 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1668 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1669 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1670 unsigned NumElts = 1671 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1672 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1673 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1674 return MVT::getScalableVectorVT(EltVT, NumElts); 1675 } 1676 } 1677 } 1678 1679 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1680 const RISCVSubtarget &Subtarget) { 1681 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1682 Subtarget); 1683 } 1684 1685 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1686 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1687 } 1688 1689 // Grow V to consume an entire RVV register. 1690 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1691 const RISCVSubtarget &Subtarget) { 1692 assert(VT.isScalableVector() && 1693 "Expected to convert into a scalable vector!"); 1694 assert(V.getValueType().isFixedLengthVector() && 1695 "Expected a fixed length vector operand!"); 1696 SDLoc DL(V); 1697 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1698 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1699 } 1700 1701 // Shrink V so it's just big enough to maintain a VT's worth of data. 1702 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1703 const RISCVSubtarget &Subtarget) { 1704 assert(VT.isFixedLengthVector() && 1705 "Expected to convert into a fixed length vector!"); 1706 assert(V.getValueType().isScalableVector() && 1707 "Expected a scalable vector operand!"); 1708 SDLoc DL(V); 1709 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1710 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1711 } 1712 1713 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1714 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1715 // the vector type that it is contained in. 1716 static std::pair<SDValue, SDValue> 1717 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1718 const RISCVSubtarget &Subtarget) { 1719 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1720 MVT XLenVT = Subtarget.getXLenVT(); 1721 SDValue VL = VecVT.isFixedLengthVector() 1722 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1723 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1724 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1725 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1726 return {Mask, VL}; 1727 } 1728 1729 // As above but assuming the given type is a scalable vector type. 1730 static std::pair<SDValue, SDValue> 1731 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1732 const RISCVSubtarget &Subtarget) { 1733 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1734 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1735 } 1736 1737 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1738 // of either is (currently) supported. This can get us into an infinite loop 1739 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1740 // as a ..., etc. 1741 // Until either (or both) of these can reliably lower any node, reporting that 1742 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1743 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1744 // which is not desirable. 1745 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1746 EVT VT, unsigned DefinedValues) const { 1747 return false; 1748 } 1749 1750 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1751 // Only splats are currently supported. 1752 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1753 return true; 1754 1755 return false; 1756 } 1757 1758 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1759 const RISCVSubtarget &Subtarget) { 1760 // RISCV FP-to-int conversions saturate to the destination register size, but 1761 // don't produce 0 for nan. We can use a conversion instruction and fix the 1762 // nan case with a compare and a select. 1763 SDValue Src = Op.getOperand(0); 1764 1765 EVT DstVT = Op.getValueType(); 1766 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1767 1768 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1769 unsigned Opc; 1770 if (SatVT == DstVT) 1771 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1772 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1773 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1774 else 1775 return SDValue(); 1776 // FIXME: Support other SatVTs by clamping before or after the conversion. 1777 1778 SDLoc DL(Op); 1779 SDValue FpToInt = DAG.getNode( 1780 Opc, DL, DstVT, Src, 1781 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1782 1783 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1784 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1785 } 1786 1787 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1788 // and back. Taking care to avoid converting values that are nan or already 1789 // correct. 1790 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1791 // have FRM dependencies modeled yet. 1792 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1793 MVT VT = Op.getSimpleValueType(); 1794 assert(VT.isVector() && "Unexpected type"); 1795 1796 SDLoc DL(Op); 1797 1798 // Freeze the source since we are increasing the number of uses. 1799 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1800 1801 // Truncate to integer and convert back to FP. 1802 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1803 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1804 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1805 1806 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1807 1808 if (Op.getOpcode() == ISD::FCEIL) { 1809 // If the truncated value is the greater than or equal to the original 1810 // value, we've computed the ceil. Otherwise, we went the wrong way and 1811 // need to increase by 1. 1812 // FIXME: This should use a masked operation. Handle here or in isel? 1813 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1814 DAG.getConstantFP(1.0, DL, VT)); 1815 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1816 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1817 } else if (Op.getOpcode() == ISD::FFLOOR) { 1818 // If the truncated value is the less than or equal to the original value, 1819 // we've computed the floor. Otherwise, we went the wrong way and need to 1820 // decrease by 1. 1821 // FIXME: This should use a masked operation. Handle here or in isel? 1822 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1823 DAG.getConstantFP(1.0, DL, VT)); 1824 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1825 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1826 } 1827 1828 // Restore the original sign so that -0.0 is preserved. 1829 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1830 1831 // Determine the largest integer that can be represented exactly. This and 1832 // values larger than it don't have any fractional bits so don't need to 1833 // be converted. 1834 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1835 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1836 APFloat MaxVal = APFloat(FltSem); 1837 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1838 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1839 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1840 1841 // If abs(Src) was larger than MaxVal or nan, keep it. 1842 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1843 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1844 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1845 } 1846 1847 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1848 const RISCVSubtarget &Subtarget) { 1849 MVT VT = Op.getSimpleValueType(); 1850 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1851 1852 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1853 1854 SDLoc DL(Op); 1855 SDValue Mask, VL; 1856 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1857 1858 unsigned Opc = 1859 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1860 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1861 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1862 } 1863 1864 struct VIDSequence { 1865 int64_t StepNumerator; 1866 unsigned StepDenominator; 1867 int64_t Addend; 1868 }; 1869 1870 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1871 // to the (non-zero) step S and start value X. This can be then lowered as the 1872 // RVV sequence (VID * S) + X, for example. 1873 // The step S is represented as an integer numerator divided by a positive 1874 // denominator. Note that the implementation currently only identifies 1875 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1876 // cannot detect 2/3, for example. 1877 // Note that this method will also match potentially unappealing index 1878 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1879 // determine whether this is worth generating code for. 1880 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1881 unsigned NumElts = Op.getNumOperands(); 1882 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1883 if (!Op.getValueType().isInteger()) 1884 return None; 1885 1886 Optional<unsigned> SeqStepDenom; 1887 Optional<int64_t> SeqStepNum, SeqAddend; 1888 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1889 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1890 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1891 // Assume undef elements match the sequence; we just have to be careful 1892 // when interpolating across them. 1893 if (Op.getOperand(Idx).isUndef()) 1894 continue; 1895 // The BUILD_VECTOR must be all constants. 1896 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1897 return None; 1898 1899 uint64_t Val = Op.getConstantOperandVal(Idx) & 1900 maskTrailingOnes<uint64_t>(EltSizeInBits); 1901 1902 if (PrevElt) { 1903 // Calculate the step since the last non-undef element, and ensure 1904 // it's consistent across the entire sequence. 1905 unsigned IdxDiff = Idx - PrevElt->second; 1906 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1907 1908 // A zero-value value difference means that we're somewhere in the middle 1909 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1910 // step change before evaluating the sequence. 1911 if (ValDiff == 0) 1912 continue; 1913 1914 int64_t Remainder = ValDiff % IdxDiff; 1915 // Normalize the step if it's greater than 1. 1916 if (Remainder != ValDiff) { 1917 // The difference must cleanly divide the element span. 1918 if (Remainder != 0) 1919 return None; 1920 ValDiff /= IdxDiff; 1921 IdxDiff = 1; 1922 } 1923 1924 if (!SeqStepNum) 1925 SeqStepNum = ValDiff; 1926 else if (ValDiff != SeqStepNum) 1927 return None; 1928 1929 if (!SeqStepDenom) 1930 SeqStepDenom = IdxDiff; 1931 else if (IdxDiff != *SeqStepDenom) 1932 return None; 1933 } 1934 1935 // Record this non-undef element for later. 1936 if (!PrevElt || PrevElt->first != Val) 1937 PrevElt = std::make_pair(Val, Idx); 1938 } 1939 1940 // We need to have logged a step for this to count as a legal index sequence. 1941 if (!SeqStepNum || !SeqStepDenom) 1942 return None; 1943 1944 // Loop back through the sequence and validate elements we might have skipped 1945 // while waiting for a valid step. While doing this, log any sequence addend. 1946 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1947 if (Op.getOperand(Idx).isUndef()) 1948 continue; 1949 uint64_t Val = Op.getConstantOperandVal(Idx) & 1950 maskTrailingOnes<uint64_t>(EltSizeInBits); 1951 uint64_t ExpectedVal = 1952 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1953 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1954 if (!SeqAddend) 1955 SeqAddend = Addend; 1956 else if (Addend != SeqAddend) 1957 return None; 1958 } 1959 1960 assert(SeqAddend && "Must have an addend if we have a step"); 1961 1962 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1963 } 1964 1965 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1966 const RISCVSubtarget &Subtarget) { 1967 MVT VT = Op.getSimpleValueType(); 1968 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1969 1970 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1971 1972 SDLoc DL(Op); 1973 SDValue Mask, VL; 1974 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1975 1976 MVT XLenVT = Subtarget.getXLenVT(); 1977 unsigned NumElts = Op.getNumOperands(); 1978 1979 if (VT.getVectorElementType() == MVT::i1) { 1980 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1981 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1982 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1983 } 1984 1985 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1986 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1987 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1988 } 1989 1990 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1991 // scalar integer chunks whose bit-width depends on the number of mask 1992 // bits and XLEN. 1993 // First, determine the most appropriate scalar integer type to use. This 1994 // is at most XLenVT, but may be shrunk to a smaller vector element type 1995 // according to the size of the final vector - use i8 chunks rather than 1996 // XLenVT if we're producing a v8i1. This results in more consistent 1997 // codegen across RV32 and RV64. 1998 unsigned NumViaIntegerBits = 1999 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 2000 NumViaIntegerBits = std::min(NumViaIntegerBits, 2001 Subtarget.getMaxELENForFixedLengthVectors()); 2002 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 2003 // If we have to use more than one INSERT_VECTOR_ELT then this 2004 // optimization is likely to increase code size; avoid peforming it in 2005 // such a case. We can use a load from a constant pool in this case. 2006 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 2007 return SDValue(); 2008 // Now we can create our integer vector type. Note that it may be larger 2009 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2010 MVT IntegerViaVecVT = 2011 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2012 divideCeil(NumElts, NumViaIntegerBits)); 2013 2014 uint64_t Bits = 0; 2015 unsigned BitPos = 0, IntegerEltIdx = 0; 2016 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2017 2018 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2019 // Once we accumulate enough bits to fill our scalar type, insert into 2020 // our vector and clear our accumulated data. 2021 if (I != 0 && I % NumViaIntegerBits == 0) { 2022 if (NumViaIntegerBits <= 32) 2023 Bits = SignExtend64(Bits, 32); 2024 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2025 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2026 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2027 Bits = 0; 2028 BitPos = 0; 2029 IntegerEltIdx++; 2030 } 2031 SDValue V = Op.getOperand(I); 2032 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2033 Bits |= ((uint64_t)BitValue << BitPos); 2034 } 2035 2036 // Insert the (remaining) scalar value into position in our integer 2037 // vector type. 2038 if (NumViaIntegerBits <= 32) 2039 Bits = SignExtend64(Bits, 32); 2040 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2041 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2042 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2043 2044 if (NumElts < NumViaIntegerBits) { 2045 // If we're producing a smaller vector than our minimum legal integer 2046 // type, bitcast to the equivalent (known-legal) mask type, and extract 2047 // our final mask. 2048 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2049 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2050 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2051 DAG.getConstant(0, DL, XLenVT)); 2052 } else { 2053 // Else we must have produced an integer type with the same size as the 2054 // mask type; bitcast for the final result. 2055 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2056 Vec = DAG.getBitcast(VT, Vec); 2057 } 2058 2059 return Vec; 2060 } 2061 2062 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2063 // vector type, we have a legal equivalently-sized i8 type, so we can use 2064 // that. 2065 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2066 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2067 2068 SDValue WideVec; 2069 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2070 // For a splat, perform a scalar truncate before creating the wider 2071 // vector. 2072 assert(Splat.getValueType() == XLenVT && 2073 "Unexpected type for i1 splat value"); 2074 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2075 DAG.getConstant(1, DL, XLenVT)); 2076 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2077 } else { 2078 SmallVector<SDValue, 8> Ops(Op->op_values()); 2079 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2080 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2081 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2082 } 2083 2084 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2085 } 2086 2087 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2088 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2089 : RISCVISD::VMV_V_X_VL; 2090 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 2091 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2092 } 2093 2094 // Try and match index sequences, which we can lower to the vid instruction 2095 // with optional modifications. An all-undef vector is matched by 2096 // getSplatValue, above. 2097 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2098 int64_t StepNumerator = SimpleVID->StepNumerator; 2099 unsigned StepDenominator = SimpleVID->StepDenominator; 2100 int64_t Addend = SimpleVID->Addend; 2101 2102 assert(StepNumerator != 0 && "Invalid step"); 2103 bool Negate = false; 2104 int64_t SplatStepVal = StepNumerator; 2105 unsigned StepOpcode = ISD::MUL; 2106 if (StepNumerator != 1) { 2107 if (isPowerOf2_64(std::abs(StepNumerator))) { 2108 Negate = StepNumerator < 0; 2109 StepOpcode = ISD::SHL; 2110 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2111 } 2112 } 2113 2114 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2115 // threshold since it's the immediate value many RVV instructions accept. 2116 // There is no vmul.vi instruction so ensure multiply constant can fit in 2117 // a single addi instruction. 2118 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2119 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2120 isPowerOf2_32(StepDenominator) && 2121 (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) { 2122 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2123 // Convert right out of the scalable type so we can use standard ISD 2124 // nodes for the rest of the computation. If we used scalable types with 2125 // these, we'd lose the fixed-length vector info and generate worse 2126 // vsetvli code. 2127 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2128 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2129 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2130 SDValue SplatStep = DAG.getSplatVector( 2131 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2132 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2133 } 2134 if (StepDenominator != 1) { 2135 SDValue SplatStep = DAG.getSplatVector( 2136 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2137 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2138 } 2139 if (Addend != 0 || Negate) { 2140 SDValue SplatAddend = 2141 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2142 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2143 } 2144 return VID; 2145 } 2146 } 2147 2148 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2149 // when re-interpreted as a vector with a larger element type. For example, 2150 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2151 // could be instead splat as 2152 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2153 // TODO: This optimization could also work on non-constant splats, but it 2154 // would require bit-manipulation instructions to construct the splat value. 2155 SmallVector<SDValue> Sequence; 2156 unsigned EltBitSize = VT.getScalarSizeInBits(); 2157 const auto *BV = cast<BuildVectorSDNode>(Op); 2158 if (VT.isInteger() && EltBitSize < 64 && 2159 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2160 BV->getRepeatedSequence(Sequence) && 2161 (Sequence.size() * EltBitSize) <= 64) { 2162 unsigned SeqLen = Sequence.size(); 2163 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2164 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2165 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2166 ViaIntVT == MVT::i64) && 2167 "Unexpected sequence type"); 2168 2169 unsigned EltIdx = 0; 2170 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2171 uint64_t SplatValue = 0; 2172 // Construct the amalgamated value which can be splatted as this larger 2173 // vector type. 2174 for (const auto &SeqV : Sequence) { 2175 if (!SeqV.isUndef()) 2176 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2177 << (EltIdx * EltBitSize)); 2178 EltIdx++; 2179 } 2180 2181 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2182 // achieve better constant materializion. 2183 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2184 SplatValue = SignExtend64(SplatValue, 32); 2185 2186 // Since we can't introduce illegal i64 types at this stage, we can only 2187 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2188 // way we can use RVV instructions to splat. 2189 assert((ViaIntVT.bitsLE(XLenVT) || 2190 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2191 "Unexpected bitcast sequence"); 2192 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2193 SDValue ViaVL = 2194 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2195 MVT ViaContainerVT = 2196 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2197 SDValue Splat = 2198 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2199 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2200 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2201 return DAG.getBitcast(VT, Splat); 2202 } 2203 } 2204 2205 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2206 // which constitute a large proportion of the elements. In such cases we can 2207 // splat a vector with the dominant element and make up the shortfall with 2208 // INSERT_VECTOR_ELTs. 2209 // Note that this includes vectors of 2 elements by association. The 2210 // upper-most element is the "dominant" one, allowing us to use a splat to 2211 // "insert" the upper element, and an insert of the lower element at position 2212 // 0, which improves codegen. 2213 SDValue DominantValue; 2214 unsigned MostCommonCount = 0; 2215 DenseMap<SDValue, unsigned> ValueCounts; 2216 unsigned NumUndefElts = 2217 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2218 2219 // Track the number of scalar loads we know we'd be inserting, estimated as 2220 // any non-zero floating-point constant. Other kinds of element are either 2221 // already in registers or are materialized on demand. The threshold at which 2222 // a vector load is more desirable than several scalar materializion and 2223 // vector-insertion instructions is not known. 2224 unsigned NumScalarLoads = 0; 2225 2226 for (SDValue V : Op->op_values()) { 2227 if (V.isUndef()) 2228 continue; 2229 2230 ValueCounts.insert(std::make_pair(V, 0)); 2231 unsigned &Count = ValueCounts[V]; 2232 2233 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2234 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2235 2236 // Is this value dominant? In case of a tie, prefer the highest element as 2237 // it's cheaper to insert near the beginning of a vector than it is at the 2238 // end. 2239 if (++Count >= MostCommonCount) { 2240 DominantValue = V; 2241 MostCommonCount = Count; 2242 } 2243 } 2244 2245 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2246 unsigned NumDefElts = NumElts - NumUndefElts; 2247 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2248 2249 // Don't perform this optimization when optimizing for size, since 2250 // materializing elements and inserting them tends to cause code bloat. 2251 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2252 ((MostCommonCount > DominantValueCountThreshold) || 2253 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2254 // Start by splatting the most common element. 2255 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2256 2257 DenseSet<SDValue> Processed{DominantValue}; 2258 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2259 for (const auto &OpIdx : enumerate(Op->ops())) { 2260 const SDValue &V = OpIdx.value(); 2261 if (V.isUndef() || !Processed.insert(V).second) 2262 continue; 2263 if (ValueCounts[V] == 1) { 2264 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2265 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2266 } else { 2267 // Blend in all instances of this value using a VSELECT, using a 2268 // mask where each bit signals whether that element is the one 2269 // we're after. 2270 SmallVector<SDValue> Ops; 2271 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2272 return DAG.getConstant(V == V1, DL, XLenVT); 2273 }); 2274 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2275 DAG.getBuildVector(SelMaskTy, DL, Ops), 2276 DAG.getSplatBuildVector(VT, DL, V), Vec); 2277 } 2278 } 2279 2280 return Vec; 2281 } 2282 2283 return SDValue(); 2284 } 2285 2286 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2287 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2288 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2289 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2290 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2291 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2292 // node in order to try and match RVV vector/scalar instructions. 2293 if ((LoC >> 31) == HiC) 2294 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2295 2296 // If vl is equal to VLMax and Hi constant is equal to Lo, we could use 2297 // vmv.v.x whose EEW = 32 to lower it. 2298 auto *Const = dyn_cast<ConstantSDNode>(VL); 2299 if (LoC == HiC && Const && Const->getSExtValue() == RISCV::VLMaxSentinel) { 2300 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2301 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2302 // access the subtarget here now. 2303 auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT, Lo, VL); 2304 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2305 } 2306 } 2307 2308 // Fall back to a stack store and stride x0 vector load. 2309 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2310 } 2311 2312 // Called by type legalization to handle splat of i64 on RV32. 2313 // FIXME: We can optimize this when the type has sign or zero bits in one 2314 // of the halves. 2315 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2316 SDValue VL, SelectionDAG &DAG) { 2317 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2318 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2319 DAG.getConstant(0, DL, MVT::i32)); 2320 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2321 DAG.getConstant(1, DL, MVT::i32)); 2322 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2323 } 2324 2325 // This function lowers a splat of a scalar operand Splat with the vector 2326 // length VL. It ensures the final sequence is type legal, which is useful when 2327 // lowering a splat after type legalization. 2328 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2329 SelectionDAG &DAG, 2330 const RISCVSubtarget &Subtarget) { 2331 if (VT.isFloatingPoint()) { 2332 // If VL is 1, we could use vfmv.s.f. 2333 if (isOneConstant(VL)) 2334 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT), 2335 Scalar, VL); 2336 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2337 } 2338 2339 MVT XLenVT = Subtarget.getXLenVT(); 2340 2341 // Simplest case is that the operand needs to be promoted to XLenVT. 2342 if (Scalar.getValueType().bitsLE(XLenVT)) { 2343 // If the operand is a constant, sign extend to increase our chances 2344 // of being able to use a .vi instruction. ANY_EXTEND would become a 2345 // a zero extend and the simm5 check in isel would fail. 2346 // FIXME: Should we ignore the upper bits in isel instead? 2347 unsigned ExtOpc = 2348 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2349 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2350 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2351 // If VL is 1 and the scalar value won't benefit from immediate, we could 2352 // use vmv.s.x. 2353 if (isOneConstant(VL) && 2354 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2355 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar, 2356 VL); 2357 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2358 } 2359 2360 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2361 "Unexpected scalar for splat lowering!"); 2362 2363 if (isOneConstant(VL) && isNullConstant(Scalar)) 2364 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), 2365 DAG.getConstant(0, DL, XLenVT), VL); 2366 2367 // Otherwise use the more complicated splatting algorithm. 2368 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2369 } 2370 2371 // Is the mask a slidedown that shifts in undefs. 2372 static int matchShuffleAsSlideDown(ArrayRef<int> Mask) { 2373 int Size = Mask.size(); 2374 2375 // Elements shifted in should be undef. 2376 auto CheckUndefs = [&](int Shift) { 2377 for (int i = Size - Shift; i != Size; ++i) 2378 if (Mask[i] >= 0) 2379 return false; 2380 return true; 2381 }; 2382 2383 // Elements should be shifted or undef. 2384 auto MatchShift = [&](int Shift) { 2385 for (int i = 0; i != Size - Shift; ++i) 2386 if (Mask[i] >= 0 && Mask[i] != Shift + i) 2387 return false; 2388 return true; 2389 }; 2390 2391 // Try all possible shifts. 2392 for (int Shift = 1; Shift != Size; ++Shift) 2393 if (CheckUndefs(Shift) && MatchShift(Shift)) 2394 return Shift; 2395 2396 // No match. 2397 return -1; 2398 } 2399 2400 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2401 const RISCVSubtarget &Subtarget) { 2402 // We need to be able to widen elements to the next larger integer type. 2403 if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors()) 2404 return false; 2405 2406 int Size = Mask.size(); 2407 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2408 2409 int Srcs[] = {-1, -1}; 2410 for (int i = 0; i != Size; ++i) { 2411 // Ignore undef elements. 2412 if (Mask[i] < 0) 2413 continue; 2414 2415 // Is this an even or odd element. 2416 int Pol = i % 2; 2417 2418 // Ensure we consistently use the same source for this element polarity. 2419 int Src = Mask[i] / Size; 2420 if (Srcs[Pol] < 0) 2421 Srcs[Pol] = Src; 2422 if (Srcs[Pol] != Src) 2423 return false; 2424 2425 // Make sure the element within the source is appropriate for this element 2426 // in the destination. 2427 int Elt = Mask[i] % Size; 2428 if (Elt != i / 2) 2429 return false; 2430 } 2431 2432 // We need to find a source for each polarity and they can't be the same. 2433 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2434 return false; 2435 2436 // Swap the sources if the second source was in the even polarity. 2437 SwapSources = Srcs[0] > Srcs[1]; 2438 2439 return true; 2440 } 2441 2442 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2443 const RISCVSubtarget &Subtarget) { 2444 SDValue V1 = Op.getOperand(0); 2445 SDValue V2 = Op.getOperand(1); 2446 SDLoc DL(Op); 2447 MVT XLenVT = Subtarget.getXLenVT(); 2448 MVT VT = Op.getSimpleValueType(); 2449 unsigned NumElts = VT.getVectorNumElements(); 2450 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2451 2452 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2453 2454 SDValue TrueMask, VL; 2455 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2456 2457 if (SVN->isSplat()) { 2458 const int Lane = SVN->getSplatIndex(); 2459 if (Lane >= 0) { 2460 MVT SVT = VT.getVectorElementType(); 2461 2462 // Turn splatted vector load into a strided load with an X0 stride. 2463 SDValue V = V1; 2464 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2465 // with undef. 2466 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2467 int Offset = Lane; 2468 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2469 int OpElements = 2470 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2471 V = V.getOperand(Offset / OpElements); 2472 Offset %= OpElements; 2473 } 2474 2475 // We need to ensure the load isn't atomic or volatile. 2476 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2477 auto *Ld = cast<LoadSDNode>(V); 2478 Offset *= SVT.getStoreSize(); 2479 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2480 TypeSize::Fixed(Offset), DL); 2481 2482 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2483 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2484 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2485 SDValue IntID = 2486 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2487 SDValue Ops[] = {Ld->getChain(), 2488 IntID, 2489 DAG.getUNDEF(ContainerVT), 2490 NewAddr, 2491 DAG.getRegister(RISCV::X0, XLenVT), 2492 VL}; 2493 SDValue NewLoad = DAG.getMemIntrinsicNode( 2494 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2495 DAG.getMachineFunction().getMachineMemOperand( 2496 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2497 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2498 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2499 } 2500 2501 // Otherwise use a scalar load and splat. This will give the best 2502 // opportunity to fold a splat into the operation. ISel can turn it into 2503 // the x0 strided load if we aren't able to fold away the select. 2504 if (SVT.isFloatingPoint()) 2505 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2506 Ld->getPointerInfo().getWithOffset(Offset), 2507 Ld->getOriginalAlign(), 2508 Ld->getMemOperand()->getFlags()); 2509 else 2510 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2511 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2512 Ld->getOriginalAlign(), 2513 Ld->getMemOperand()->getFlags()); 2514 DAG.makeEquivalentMemoryOrdering(Ld, V); 2515 2516 unsigned Opc = 2517 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2518 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2519 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2520 } 2521 2522 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2523 assert(Lane < (int)NumElts && "Unexpected lane!"); 2524 SDValue Gather = 2525 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2526 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2527 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2528 } 2529 } 2530 2531 ArrayRef<int> Mask = SVN->getMask(); 2532 2533 // Try to match as a slidedown. 2534 int SlideAmt = matchShuffleAsSlideDown(Mask); 2535 if (SlideAmt >= 0) { 2536 // TODO: Should we reduce the VL to account for the upper undef elements? 2537 // Requires additional vsetvlis, but might be faster to execute. 2538 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2539 SDValue SlideDown = 2540 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2541 DAG.getUNDEF(ContainerVT), V1, 2542 DAG.getConstant(SlideAmt, DL, XLenVT), 2543 TrueMask, VL); 2544 return convertFromScalableVector(VT, SlideDown, DAG, Subtarget); 2545 } 2546 2547 // Detect an interleave shuffle and lower to 2548 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2549 bool SwapSources; 2550 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2551 // Swap sources if needed. 2552 if (SwapSources) 2553 std::swap(V1, V2); 2554 2555 // Extract the lower half of the vectors. 2556 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2557 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2558 DAG.getConstant(0, DL, XLenVT)); 2559 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2560 DAG.getConstant(0, DL, XLenVT)); 2561 2562 // Double the element width and halve the number of elements in an int type. 2563 unsigned EltBits = VT.getScalarSizeInBits(); 2564 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2565 MVT WideIntVT = 2566 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2567 // Convert this to a scalable vector. We need to base this on the 2568 // destination size to ensure there's always a type with a smaller LMUL. 2569 MVT WideIntContainerVT = 2570 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2571 2572 // Convert sources to scalable vectors with the same element count as the 2573 // larger type. 2574 MVT HalfContainerVT = MVT::getVectorVT( 2575 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2576 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2577 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2578 2579 // Cast sources to integer. 2580 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2581 MVT IntHalfVT = 2582 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2583 V1 = DAG.getBitcast(IntHalfVT, V1); 2584 V2 = DAG.getBitcast(IntHalfVT, V2); 2585 2586 // Freeze V2 since we use it twice and we need to be sure that the add and 2587 // multiply see the same value. 2588 V2 = DAG.getNode(ISD::FREEZE, DL, IntHalfVT, V2); 2589 2590 // Recreate TrueMask using the widened type's element count. 2591 MVT MaskVT = 2592 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2593 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2594 2595 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2596 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2597 V2, TrueMask, VL); 2598 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2599 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2600 DAG.getAllOnesConstant(DL, XLenVT)); 2601 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2602 V2, Multiplier, TrueMask, VL); 2603 // Add the new copies to our previous addition giving us 2^eltbits copies of 2604 // V2. This is equivalent to shifting V2 left by eltbits. This should 2605 // combine with the vwmulu.vv above to form vwmaccu.vv. 2606 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2607 TrueMask, VL); 2608 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2609 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2610 // vector VT. 2611 ContainerVT = 2612 MVT::getVectorVT(VT.getVectorElementType(), 2613 WideIntContainerVT.getVectorElementCount() * 2); 2614 Add = DAG.getBitcast(ContainerVT, Add); 2615 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2616 } 2617 2618 // Detect shuffles which can be re-expressed as vector selects; these are 2619 // shuffles in which each element in the destination is taken from an element 2620 // at the corresponding index in either source vectors. 2621 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2622 int MaskIndex = MaskIdx.value(); 2623 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2624 }); 2625 2626 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2627 2628 SmallVector<SDValue> MaskVals; 2629 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2630 // merged with a second vrgather. 2631 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2632 2633 // By default we preserve the original operand order, and use a mask to 2634 // select LHS as true and RHS as false. However, since RVV vector selects may 2635 // feature splats but only on the LHS, we may choose to invert our mask and 2636 // instead select between RHS and LHS. 2637 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2638 bool InvertMask = IsSelect == SwapOps; 2639 2640 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2641 // half. 2642 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2643 2644 // Now construct the mask that will be used by the vselect or blended 2645 // vrgather operation. For vrgathers, construct the appropriate indices into 2646 // each vector. 2647 for (int MaskIndex : Mask) { 2648 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2649 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2650 if (!IsSelect) { 2651 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2652 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2653 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2654 : DAG.getUNDEF(XLenVT)); 2655 GatherIndicesRHS.push_back( 2656 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2657 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2658 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2659 ++LHSIndexCounts[MaskIndex]; 2660 if (!IsLHSOrUndefIndex) 2661 ++RHSIndexCounts[MaskIndex - NumElts]; 2662 } 2663 } 2664 2665 if (SwapOps) { 2666 std::swap(V1, V2); 2667 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2668 } 2669 2670 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2671 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2672 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2673 2674 if (IsSelect) 2675 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2676 2677 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2678 // On such a large vector we're unable to use i8 as the index type. 2679 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2680 // may involve vector splitting if we're already at LMUL=8, or our 2681 // user-supplied maximum fixed-length LMUL. 2682 return SDValue(); 2683 } 2684 2685 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2686 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2687 MVT IndexVT = VT.changeTypeToInteger(); 2688 // Since we can't introduce illegal index types at this stage, use i16 and 2689 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2690 // than XLenVT. 2691 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2692 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2693 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2694 } 2695 2696 MVT IndexContainerVT = 2697 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2698 2699 SDValue Gather; 2700 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2701 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2702 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2703 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2704 } else { 2705 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2706 // If only one index is used, we can use a "splat" vrgather. 2707 // TODO: We can splat the most-common index and fix-up any stragglers, if 2708 // that's beneficial. 2709 if (LHSIndexCounts.size() == 1) { 2710 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2711 Gather = 2712 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2713 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2714 } else { 2715 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2716 LHSIndices = 2717 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2718 2719 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2720 TrueMask, VL); 2721 } 2722 } 2723 2724 // If a second vector operand is used by this shuffle, blend it in with an 2725 // additional vrgather. 2726 if (!V2.isUndef()) { 2727 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2728 // If only one index is used, we can use a "splat" vrgather. 2729 // TODO: We can splat the most-common index and fix-up any stragglers, if 2730 // that's beneficial. 2731 if (RHSIndexCounts.size() == 1) { 2732 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2733 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2734 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2735 } else { 2736 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2737 RHSIndices = 2738 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2739 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2740 VL); 2741 } 2742 2743 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2744 SelectMask = 2745 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2746 2747 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2748 Gather, VL); 2749 } 2750 2751 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2752 } 2753 2754 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2755 SDLoc DL, SelectionDAG &DAG, 2756 const RISCVSubtarget &Subtarget) { 2757 if (VT.isScalableVector()) 2758 return DAG.getFPExtendOrRound(Op, DL, VT); 2759 assert(VT.isFixedLengthVector() && 2760 "Unexpected value type for RVV FP extend/round lowering"); 2761 SDValue Mask, VL; 2762 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2763 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2764 ? RISCVISD::FP_EXTEND_VL 2765 : RISCVISD::FP_ROUND_VL; 2766 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2767 } 2768 2769 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2770 // the exponent. 2771 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2772 MVT VT = Op.getSimpleValueType(); 2773 unsigned EltSize = VT.getScalarSizeInBits(); 2774 SDValue Src = Op.getOperand(0); 2775 SDLoc DL(Op); 2776 2777 // We need a FP type that can represent the value. 2778 // TODO: Use f16 for i8 when possible? 2779 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2780 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2781 2782 // Legal types should have been checked in the RISCVTargetLowering 2783 // constructor. 2784 // TODO: Splitting may make sense in some cases. 2785 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2786 "Expected legal float type!"); 2787 2788 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2789 // The trailing zero count is equal to log2 of this single bit value. 2790 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2791 SDValue Neg = 2792 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2793 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2794 } 2795 2796 // We have a legal FP type, convert to it. 2797 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2798 // Bitcast to integer and shift the exponent to the LSB. 2799 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2800 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2801 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2802 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2803 DAG.getConstant(ShiftAmt, DL, IntVT)); 2804 // Truncate back to original type to allow vnsrl. 2805 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2806 // The exponent contains log2 of the value in biased form. 2807 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2808 2809 // For trailing zeros, we just need to subtract the bias. 2810 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2811 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2812 DAG.getConstant(ExponentBias, DL, VT)); 2813 2814 // For leading zeros, we need to remove the bias and convert from log2 to 2815 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2816 unsigned Adjust = ExponentBias + (EltSize - 1); 2817 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2818 } 2819 2820 // While RVV has alignment restrictions, we should always be able to load as a 2821 // legal equivalently-sized byte-typed vector instead. This method is 2822 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2823 // the load is already correctly-aligned, it returns SDValue(). 2824 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2825 SelectionDAG &DAG) const { 2826 auto *Load = cast<LoadSDNode>(Op); 2827 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2828 2829 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2830 Load->getMemoryVT(), 2831 *Load->getMemOperand())) 2832 return SDValue(); 2833 2834 SDLoc DL(Op); 2835 MVT VT = Op.getSimpleValueType(); 2836 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2837 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2838 "Unexpected unaligned RVV load type"); 2839 MVT NewVT = 2840 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2841 assert(NewVT.isValid() && 2842 "Expecting equally-sized RVV vector types to be legal"); 2843 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2844 Load->getPointerInfo(), Load->getOriginalAlign(), 2845 Load->getMemOperand()->getFlags()); 2846 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2847 } 2848 2849 // While RVV has alignment restrictions, we should always be able to store as a 2850 // legal equivalently-sized byte-typed vector instead. This method is 2851 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2852 // returns SDValue() if the store is already correctly aligned. 2853 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2854 SelectionDAG &DAG) const { 2855 auto *Store = cast<StoreSDNode>(Op); 2856 assert(Store && Store->getValue().getValueType().isVector() && 2857 "Expected vector store"); 2858 2859 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2860 Store->getMemoryVT(), 2861 *Store->getMemOperand())) 2862 return SDValue(); 2863 2864 SDLoc DL(Op); 2865 SDValue StoredVal = Store->getValue(); 2866 MVT VT = StoredVal.getSimpleValueType(); 2867 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2868 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2869 "Unexpected unaligned RVV store type"); 2870 MVT NewVT = 2871 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2872 assert(NewVT.isValid() && 2873 "Expecting equally-sized RVV vector types to be legal"); 2874 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2875 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2876 Store->getPointerInfo(), Store->getOriginalAlign(), 2877 Store->getMemOperand()->getFlags()); 2878 } 2879 2880 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2881 SelectionDAG &DAG) const { 2882 switch (Op.getOpcode()) { 2883 default: 2884 report_fatal_error("unimplemented operand"); 2885 case ISD::GlobalAddress: 2886 return lowerGlobalAddress(Op, DAG); 2887 case ISD::BlockAddress: 2888 return lowerBlockAddress(Op, DAG); 2889 case ISD::ConstantPool: 2890 return lowerConstantPool(Op, DAG); 2891 case ISD::JumpTable: 2892 return lowerJumpTable(Op, DAG); 2893 case ISD::GlobalTLSAddress: 2894 return lowerGlobalTLSAddress(Op, DAG); 2895 case ISD::SELECT: 2896 return lowerSELECT(Op, DAG); 2897 case ISD::BRCOND: 2898 return lowerBRCOND(Op, DAG); 2899 case ISD::VASTART: 2900 return lowerVASTART(Op, DAG); 2901 case ISD::FRAMEADDR: 2902 return lowerFRAMEADDR(Op, DAG); 2903 case ISD::RETURNADDR: 2904 return lowerRETURNADDR(Op, DAG); 2905 case ISD::SHL_PARTS: 2906 return lowerShiftLeftParts(Op, DAG); 2907 case ISD::SRA_PARTS: 2908 return lowerShiftRightParts(Op, DAG, true); 2909 case ISD::SRL_PARTS: 2910 return lowerShiftRightParts(Op, DAG, false); 2911 case ISD::BITCAST: { 2912 SDLoc DL(Op); 2913 EVT VT = Op.getValueType(); 2914 SDValue Op0 = Op.getOperand(0); 2915 EVT Op0VT = Op0.getValueType(); 2916 MVT XLenVT = Subtarget.getXLenVT(); 2917 if (VT.isFixedLengthVector()) { 2918 // We can handle fixed length vector bitcasts with a simple replacement 2919 // in isel. 2920 if (Op0VT.isFixedLengthVector()) 2921 return Op; 2922 // When bitcasting from scalar to fixed-length vector, insert the scalar 2923 // into a one-element vector of the result type, and perform a vector 2924 // bitcast. 2925 if (!Op0VT.isVector()) { 2926 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2927 if (!isTypeLegal(BVT)) 2928 return SDValue(); 2929 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2930 DAG.getUNDEF(BVT), Op0, 2931 DAG.getConstant(0, DL, XLenVT))); 2932 } 2933 return SDValue(); 2934 } 2935 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2936 // thus: bitcast the vector to a one-element vector type whose element type 2937 // is the same as the result type, and extract the first element. 2938 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2939 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2940 if (!isTypeLegal(BVT)) 2941 return SDValue(); 2942 SDValue BVec = DAG.getBitcast(BVT, Op0); 2943 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2944 DAG.getConstant(0, DL, XLenVT)); 2945 } 2946 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2947 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2948 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2949 return FPConv; 2950 } 2951 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2952 Subtarget.hasStdExtF()) { 2953 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2954 SDValue FPConv = 2955 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2956 return FPConv; 2957 } 2958 return SDValue(); 2959 } 2960 case ISD::INTRINSIC_WO_CHAIN: 2961 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2962 case ISD::INTRINSIC_W_CHAIN: 2963 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2964 case ISD::INTRINSIC_VOID: 2965 return LowerINTRINSIC_VOID(Op, DAG); 2966 case ISD::BSWAP: 2967 case ISD::BITREVERSE: { 2968 MVT VT = Op.getSimpleValueType(); 2969 SDLoc DL(Op); 2970 if (Subtarget.hasStdExtZbp()) { 2971 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2972 // Start with the maximum immediate value which is the bitwidth - 1. 2973 unsigned Imm = VT.getSizeInBits() - 1; 2974 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2975 if (Op.getOpcode() == ISD::BSWAP) 2976 Imm &= ~0x7U; 2977 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2978 DAG.getConstant(Imm, DL, VT)); 2979 } 2980 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 2981 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 2982 // Expand bitreverse to a bswap(rev8) followed by brev8. 2983 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 2984 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 2985 // as brev8 by an isel pattern. 2986 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 2987 DAG.getConstant(7, DL, VT)); 2988 } 2989 case ISD::FSHL: 2990 case ISD::FSHR: { 2991 MVT VT = Op.getSimpleValueType(); 2992 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2993 SDLoc DL(Op); 2994 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2995 // use log(XLen) bits. Mask the shift amount accordingly to prevent 2996 // accidentally setting the extra bit. 2997 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2998 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2999 DAG.getConstant(ShAmtWidth, DL, VT)); 3000 // fshl and fshr concatenate their operands in the same order. fsr and fsl 3001 // instruction use different orders. fshl will return its first operand for 3002 // shift of zero, fshr will return its second operand. fsl and fsr both 3003 // return rs1 so the ISD nodes need to have different operand orders. 3004 // Shift amount is in rs2. 3005 SDValue Op0 = Op.getOperand(0); 3006 SDValue Op1 = Op.getOperand(1); 3007 unsigned Opc = RISCVISD::FSL; 3008 if (Op.getOpcode() == ISD::FSHR) { 3009 std::swap(Op0, Op1); 3010 Opc = RISCVISD::FSR; 3011 } 3012 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3013 } 3014 case ISD::TRUNCATE: { 3015 SDLoc DL(Op); 3016 MVT VT = Op.getSimpleValueType(); 3017 // Only custom-lower vector truncates 3018 if (!VT.isVector()) 3019 return Op; 3020 3021 // Truncates to mask types are handled differently 3022 if (VT.getVectorElementType() == MVT::i1) 3023 return lowerVectorMaskTrunc(Op, DAG); 3024 3025 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 3026 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 3027 // truncate by one power of two at a time. 3028 MVT DstEltVT = VT.getVectorElementType(); 3029 3030 SDValue Src = Op.getOperand(0); 3031 MVT SrcVT = Src.getSimpleValueType(); 3032 MVT SrcEltVT = SrcVT.getVectorElementType(); 3033 3034 assert(DstEltVT.bitsLT(SrcEltVT) && 3035 isPowerOf2_64(DstEltVT.getSizeInBits()) && 3036 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 3037 "Unexpected vector truncate lowering"); 3038 3039 MVT ContainerVT = SrcVT; 3040 if (SrcVT.isFixedLengthVector()) { 3041 ContainerVT = getContainerForFixedLengthVector(SrcVT); 3042 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3043 } 3044 3045 SDValue Result = Src; 3046 SDValue Mask, VL; 3047 std::tie(Mask, VL) = 3048 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 3049 LLVMContext &Context = *DAG.getContext(); 3050 const ElementCount Count = ContainerVT.getVectorElementCount(); 3051 do { 3052 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 3053 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 3054 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 3055 Mask, VL); 3056 } while (SrcEltVT != DstEltVT); 3057 3058 if (SrcVT.isFixedLengthVector()) 3059 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3060 3061 return Result; 3062 } 3063 case ISD::ANY_EXTEND: 3064 case ISD::ZERO_EXTEND: 3065 if (Op.getOperand(0).getValueType().isVector() && 3066 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3067 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3068 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3069 case ISD::SIGN_EXTEND: 3070 if (Op.getOperand(0).getValueType().isVector() && 3071 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3072 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3073 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3074 case ISD::SPLAT_VECTOR_PARTS: 3075 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3076 case ISD::INSERT_VECTOR_ELT: 3077 return lowerINSERT_VECTOR_ELT(Op, DAG); 3078 case ISD::EXTRACT_VECTOR_ELT: 3079 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3080 case ISD::VSCALE: { 3081 MVT VT = Op.getSimpleValueType(); 3082 SDLoc DL(Op); 3083 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3084 // We define our scalable vector types for lmul=1 to use a 64 bit known 3085 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3086 // vscale as VLENB / 8. 3087 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3088 if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock) 3089 report_fatal_error("Support for VLEN==32 is incomplete."); 3090 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3091 // We assume VLENB is a multiple of 8. We manually choose the best shift 3092 // here because SimplifyDemandedBits isn't always able to simplify it. 3093 uint64_t Val = Op.getConstantOperandVal(0); 3094 if (isPowerOf2_64(Val)) { 3095 uint64_t Log2 = Log2_64(Val); 3096 if (Log2 < 3) 3097 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3098 DAG.getConstant(3 - Log2, DL, VT)); 3099 if (Log2 > 3) 3100 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3101 DAG.getConstant(Log2 - 3, DL, VT)); 3102 return VLENB; 3103 } 3104 // If the multiplier is a multiple of 8, scale it down to avoid needing 3105 // to shift the VLENB value. 3106 if ((Val % 8) == 0) 3107 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3108 DAG.getConstant(Val / 8, DL, VT)); 3109 } 3110 3111 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3112 DAG.getConstant(3, DL, VT)); 3113 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3114 } 3115 case ISD::FPOWI: { 3116 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3117 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3118 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3119 Op.getOperand(1).getValueType() == MVT::i32) { 3120 SDLoc DL(Op); 3121 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3122 SDValue Powi = 3123 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3124 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3125 DAG.getIntPtrConstant(0, DL)); 3126 } 3127 return SDValue(); 3128 } 3129 case ISD::FP_EXTEND: { 3130 // RVV can only do fp_extend to types double the size as the source. We 3131 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3132 // via f32. 3133 SDLoc DL(Op); 3134 MVT VT = Op.getSimpleValueType(); 3135 SDValue Src = Op.getOperand(0); 3136 MVT SrcVT = Src.getSimpleValueType(); 3137 3138 // Prepare any fixed-length vector operands. 3139 MVT ContainerVT = VT; 3140 if (SrcVT.isFixedLengthVector()) { 3141 ContainerVT = getContainerForFixedLengthVector(VT); 3142 MVT SrcContainerVT = 3143 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3144 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3145 } 3146 3147 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3148 SrcVT.getVectorElementType() != MVT::f16) { 3149 // For scalable vectors, we only need to close the gap between 3150 // vXf16->vXf64. 3151 if (!VT.isFixedLengthVector()) 3152 return Op; 3153 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3154 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3155 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3156 } 3157 3158 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3159 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3160 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3161 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3162 3163 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3164 DL, DAG, Subtarget); 3165 if (VT.isFixedLengthVector()) 3166 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3167 return Extend; 3168 } 3169 case ISD::FP_ROUND: { 3170 // RVV can only do fp_round to types half the size as the source. We 3171 // custom-lower f64->f16 rounds via RVV's round-to-odd float 3172 // conversion instruction. 3173 SDLoc DL(Op); 3174 MVT VT = Op.getSimpleValueType(); 3175 SDValue Src = Op.getOperand(0); 3176 MVT SrcVT = Src.getSimpleValueType(); 3177 3178 // Prepare any fixed-length vector operands. 3179 MVT ContainerVT = VT; 3180 if (VT.isFixedLengthVector()) { 3181 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3182 ContainerVT = 3183 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3184 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3185 } 3186 3187 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 3188 SrcVT.getVectorElementType() != MVT::f64) { 3189 // For scalable vectors, we only need to close the gap between 3190 // vXf64<->vXf16. 3191 if (!VT.isFixedLengthVector()) 3192 return Op; 3193 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 3194 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3195 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3196 } 3197 3198 SDValue Mask, VL; 3199 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3200 3201 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3202 SDValue IntermediateRound = 3203 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3204 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3205 DL, DAG, Subtarget); 3206 3207 if (VT.isFixedLengthVector()) 3208 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3209 return Round; 3210 } 3211 case ISD::FP_TO_SINT: 3212 case ISD::FP_TO_UINT: 3213 case ISD::SINT_TO_FP: 3214 case ISD::UINT_TO_FP: { 3215 // RVV can only do fp<->int conversions to types half/double the size as 3216 // the source. We custom-lower any conversions that do two hops into 3217 // sequences. 3218 MVT VT = Op.getSimpleValueType(); 3219 if (!VT.isVector()) 3220 return Op; 3221 SDLoc DL(Op); 3222 SDValue Src = Op.getOperand(0); 3223 MVT EltVT = VT.getVectorElementType(); 3224 MVT SrcVT = Src.getSimpleValueType(); 3225 MVT SrcEltVT = SrcVT.getVectorElementType(); 3226 unsigned EltSize = EltVT.getSizeInBits(); 3227 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3228 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3229 "Unexpected vector element types"); 3230 3231 bool IsInt2FP = SrcEltVT.isInteger(); 3232 // Widening conversions 3233 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 3234 if (IsInt2FP) { 3235 // Do a regular integer sign/zero extension then convert to float. 3236 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 3237 VT.getVectorElementCount()); 3238 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3239 ? ISD::ZERO_EXTEND 3240 : ISD::SIGN_EXTEND; 3241 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3242 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3243 } 3244 // FP2Int 3245 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3246 // Do one doubling fp_extend then complete the operation by converting 3247 // to int. 3248 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3249 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3250 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3251 } 3252 3253 // Narrowing conversions 3254 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 3255 if (IsInt2FP) { 3256 // One narrowing int_to_fp, then an fp_round. 3257 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3258 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3259 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3260 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3261 } 3262 // FP2Int 3263 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3264 // representable by the integer, the result is poison. 3265 MVT IVecVT = 3266 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 3267 VT.getVectorElementCount()); 3268 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3269 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3270 } 3271 3272 // Scalable vectors can exit here. Patterns will handle equally-sized 3273 // conversions halving/doubling ones. 3274 if (!VT.isFixedLengthVector()) 3275 return Op; 3276 3277 // For fixed-length vectors we lower to a custom "VL" node. 3278 unsigned RVVOpc = 0; 3279 switch (Op.getOpcode()) { 3280 default: 3281 llvm_unreachable("Impossible opcode"); 3282 case ISD::FP_TO_SINT: 3283 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3284 break; 3285 case ISD::FP_TO_UINT: 3286 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3287 break; 3288 case ISD::SINT_TO_FP: 3289 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3290 break; 3291 case ISD::UINT_TO_FP: 3292 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3293 break; 3294 } 3295 3296 MVT ContainerVT, SrcContainerVT; 3297 // Derive the reference container type from the larger vector type. 3298 if (SrcEltSize > EltSize) { 3299 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3300 ContainerVT = 3301 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3302 } else { 3303 ContainerVT = getContainerForFixedLengthVector(VT); 3304 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3305 } 3306 3307 SDValue Mask, VL; 3308 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3309 3310 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3311 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3312 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3313 } 3314 case ISD::FP_TO_SINT_SAT: 3315 case ISD::FP_TO_UINT_SAT: 3316 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3317 case ISD::FTRUNC: 3318 case ISD::FCEIL: 3319 case ISD::FFLOOR: 3320 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3321 case ISD::VECREDUCE_ADD: 3322 case ISD::VECREDUCE_UMAX: 3323 case ISD::VECREDUCE_SMAX: 3324 case ISD::VECREDUCE_UMIN: 3325 case ISD::VECREDUCE_SMIN: 3326 return lowerVECREDUCE(Op, DAG); 3327 case ISD::VECREDUCE_AND: 3328 case ISD::VECREDUCE_OR: 3329 case ISD::VECREDUCE_XOR: 3330 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3331 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3332 return lowerVECREDUCE(Op, DAG); 3333 case ISD::VECREDUCE_FADD: 3334 case ISD::VECREDUCE_SEQ_FADD: 3335 case ISD::VECREDUCE_FMIN: 3336 case ISD::VECREDUCE_FMAX: 3337 return lowerFPVECREDUCE(Op, DAG); 3338 case ISD::VP_REDUCE_ADD: 3339 case ISD::VP_REDUCE_UMAX: 3340 case ISD::VP_REDUCE_SMAX: 3341 case ISD::VP_REDUCE_UMIN: 3342 case ISD::VP_REDUCE_SMIN: 3343 case ISD::VP_REDUCE_FADD: 3344 case ISD::VP_REDUCE_SEQ_FADD: 3345 case ISD::VP_REDUCE_FMIN: 3346 case ISD::VP_REDUCE_FMAX: 3347 return lowerVPREDUCE(Op, DAG); 3348 case ISD::VP_REDUCE_AND: 3349 case ISD::VP_REDUCE_OR: 3350 case ISD::VP_REDUCE_XOR: 3351 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3352 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3353 return lowerVPREDUCE(Op, DAG); 3354 case ISD::INSERT_SUBVECTOR: 3355 return lowerINSERT_SUBVECTOR(Op, DAG); 3356 case ISD::EXTRACT_SUBVECTOR: 3357 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3358 case ISD::STEP_VECTOR: 3359 return lowerSTEP_VECTOR(Op, DAG); 3360 case ISD::VECTOR_REVERSE: 3361 return lowerVECTOR_REVERSE(Op, DAG); 3362 case ISD::BUILD_VECTOR: 3363 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3364 case ISD::SPLAT_VECTOR: 3365 if (Op.getValueType().getVectorElementType() == MVT::i1) 3366 return lowerVectorMaskSplat(Op, DAG); 3367 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3368 case ISD::VECTOR_SHUFFLE: 3369 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3370 case ISD::CONCAT_VECTORS: { 3371 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3372 // better than going through the stack, as the default expansion does. 3373 SDLoc DL(Op); 3374 MVT VT = Op.getSimpleValueType(); 3375 unsigned NumOpElts = 3376 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3377 SDValue Vec = DAG.getUNDEF(VT); 3378 for (const auto &OpIdx : enumerate(Op->ops())) { 3379 SDValue SubVec = OpIdx.value(); 3380 // Don't insert undef subvectors. 3381 if (SubVec.isUndef()) 3382 continue; 3383 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3384 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3385 } 3386 return Vec; 3387 } 3388 case ISD::LOAD: 3389 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3390 return V; 3391 if (Op.getValueType().isFixedLengthVector()) 3392 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3393 return Op; 3394 case ISD::STORE: 3395 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3396 return V; 3397 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3398 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3399 return Op; 3400 case ISD::MLOAD: 3401 case ISD::VP_LOAD: 3402 return lowerMaskedLoad(Op, DAG); 3403 case ISD::MSTORE: 3404 case ISD::VP_STORE: 3405 return lowerMaskedStore(Op, DAG); 3406 case ISD::SETCC: 3407 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3408 case ISD::ADD: 3409 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3410 case ISD::SUB: 3411 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3412 case ISD::MUL: 3413 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3414 case ISD::MULHS: 3415 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3416 case ISD::MULHU: 3417 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3418 case ISD::AND: 3419 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3420 RISCVISD::AND_VL); 3421 case ISD::OR: 3422 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3423 RISCVISD::OR_VL); 3424 case ISD::XOR: 3425 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3426 RISCVISD::XOR_VL); 3427 case ISD::SDIV: 3428 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3429 case ISD::SREM: 3430 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3431 case ISD::UDIV: 3432 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3433 case ISD::UREM: 3434 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3435 case ISD::SHL: 3436 case ISD::SRA: 3437 case ISD::SRL: 3438 if (Op.getSimpleValueType().isFixedLengthVector()) 3439 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3440 // This can be called for an i32 shift amount that needs to be promoted. 3441 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3442 "Unexpected custom legalisation"); 3443 return SDValue(); 3444 case ISD::SADDSAT: 3445 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3446 case ISD::UADDSAT: 3447 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3448 case ISD::SSUBSAT: 3449 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3450 case ISD::USUBSAT: 3451 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3452 case ISD::FADD: 3453 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3454 case ISD::FSUB: 3455 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3456 case ISD::FMUL: 3457 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3458 case ISD::FDIV: 3459 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3460 case ISD::FNEG: 3461 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3462 case ISD::FABS: 3463 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3464 case ISD::FSQRT: 3465 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3466 case ISD::FMA: 3467 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3468 case ISD::SMIN: 3469 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3470 case ISD::SMAX: 3471 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3472 case ISD::UMIN: 3473 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3474 case ISD::UMAX: 3475 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3476 case ISD::FMINNUM: 3477 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3478 case ISD::FMAXNUM: 3479 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3480 case ISD::ABS: 3481 return lowerABS(Op, DAG); 3482 case ISD::CTLZ_ZERO_UNDEF: 3483 case ISD::CTTZ_ZERO_UNDEF: 3484 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3485 case ISD::VSELECT: 3486 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3487 case ISD::FCOPYSIGN: 3488 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3489 case ISD::MGATHER: 3490 case ISD::VP_GATHER: 3491 return lowerMaskedGather(Op, DAG); 3492 case ISD::MSCATTER: 3493 case ISD::VP_SCATTER: 3494 return lowerMaskedScatter(Op, DAG); 3495 case ISD::FLT_ROUNDS_: 3496 return lowerGET_ROUNDING(Op, DAG); 3497 case ISD::SET_ROUNDING: 3498 return lowerSET_ROUNDING(Op, DAG); 3499 case ISD::VP_SELECT: 3500 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3501 case ISD::VP_MERGE: 3502 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3503 case ISD::VP_ADD: 3504 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3505 case ISD::VP_SUB: 3506 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3507 case ISD::VP_MUL: 3508 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3509 case ISD::VP_SDIV: 3510 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3511 case ISD::VP_UDIV: 3512 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3513 case ISD::VP_SREM: 3514 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3515 case ISD::VP_UREM: 3516 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3517 case ISD::VP_AND: 3518 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3519 case ISD::VP_OR: 3520 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3521 case ISD::VP_XOR: 3522 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3523 case ISD::VP_ASHR: 3524 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3525 case ISD::VP_LSHR: 3526 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3527 case ISD::VP_SHL: 3528 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3529 case ISD::VP_FADD: 3530 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3531 case ISD::VP_FSUB: 3532 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3533 case ISD::VP_FMUL: 3534 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3535 case ISD::VP_FDIV: 3536 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3537 } 3538 } 3539 3540 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3541 SelectionDAG &DAG, unsigned Flags) { 3542 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3543 } 3544 3545 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3546 SelectionDAG &DAG, unsigned Flags) { 3547 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3548 Flags); 3549 } 3550 3551 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3552 SelectionDAG &DAG, unsigned Flags) { 3553 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3554 N->getOffset(), Flags); 3555 } 3556 3557 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3558 SelectionDAG &DAG, unsigned Flags) { 3559 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3560 } 3561 3562 template <class NodeTy> 3563 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3564 bool IsLocal) const { 3565 SDLoc DL(N); 3566 EVT Ty = getPointerTy(DAG.getDataLayout()); 3567 3568 if (isPositionIndependent()) { 3569 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3570 if (IsLocal) 3571 // Use PC-relative addressing to access the symbol. This generates the 3572 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3573 // %pcrel_lo(auipc)). 3574 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3575 3576 // Use PC-relative addressing to access the GOT for this symbol, then load 3577 // the address from the GOT. This generates the pattern (PseudoLA sym), 3578 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3579 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3580 } 3581 3582 switch (getTargetMachine().getCodeModel()) { 3583 default: 3584 report_fatal_error("Unsupported code model for lowering"); 3585 case CodeModel::Small: { 3586 // Generate a sequence for accessing addresses within the first 2 GiB of 3587 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3588 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3589 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3590 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3591 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3592 } 3593 case CodeModel::Medium: { 3594 // Generate a sequence for accessing addresses within any 2GiB range within 3595 // the address space. This generates the pattern (PseudoLLA sym), which 3596 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3597 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3598 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3599 } 3600 } 3601 } 3602 3603 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3604 SelectionDAG &DAG) const { 3605 SDLoc DL(Op); 3606 EVT Ty = Op.getValueType(); 3607 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3608 int64_t Offset = N->getOffset(); 3609 MVT XLenVT = Subtarget.getXLenVT(); 3610 3611 const GlobalValue *GV = N->getGlobal(); 3612 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3613 SDValue Addr = getAddr(N, DAG, IsLocal); 3614 3615 // In order to maximise the opportunity for common subexpression elimination, 3616 // emit a separate ADD node for the global address offset instead of folding 3617 // it in the global address node. Later peephole optimisations may choose to 3618 // fold it back in when profitable. 3619 if (Offset != 0) 3620 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3621 DAG.getConstant(Offset, DL, XLenVT)); 3622 return Addr; 3623 } 3624 3625 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3626 SelectionDAG &DAG) const { 3627 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3628 3629 return getAddr(N, DAG); 3630 } 3631 3632 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3633 SelectionDAG &DAG) const { 3634 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3635 3636 return getAddr(N, DAG); 3637 } 3638 3639 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3640 SelectionDAG &DAG) const { 3641 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3642 3643 return getAddr(N, DAG); 3644 } 3645 3646 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3647 SelectionDAG &DAG, 3648 bool UseGOT) const { 3649 SDLoc DL(N); 3650 EVT Ty = getPointerTy(DAG.getDataLayout()); 3651 const GlobalValue *GV = N->getGlobal(); 3652 MVT XLenVT = Subtarget.getXLenVT(); 3653 3654 if (UseGOT) { 3655 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3656 // load the address from the GOT and add the thread pointer. This generates 3657 // the pattern (PseudoLA_TLS_IE sym), which expands to 3658 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3659 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3660 SDValue Load = 3661 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3662 3663 // Add the thread pointer. 3664 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3665 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3666 } 3667 3668 // Generate a sequence for accessing the address relative to the thread 3669 // pointer, with the appropriate adjustment for the thread pointer offset. 3670 // This generates the pattern 3671 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3672 SDValue AddrHi = 3673 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3674 SDValue AddrAdd = 3675 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3676 SDValue AddrLo = 3677 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3678 3679 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3680 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3681 SDValue MNAdd = SDValue( 3682 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3683 0); 3684 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3685 } 3686 3687 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3688 SelectionDAG &DAG) const { 3689 SDLoc DL(N); 3690 EVT Ty = getPointerTy(DAG.getDataLayout()); 3691 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3692 const GlobalValue *GV = N->getGlobal(); 3693 3694 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3695 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3696 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3697 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3698 SDValue Load = 3699 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3700 3701 // Prepare argument list to generate call. 3702 ArgListTy Args; 3703 ArgListEntry Entry; 3704 Entry.Node = Load; 3705 Entry.Ty = CallTy; 3706 Args.push_back(Entry); 3707 3708 // Setup call to __tls_get_addr. 3709 TargetLowering::CallLoweringInfo CLI(DAG); 3710 CLI.setDebugLoc(DL) 3711 .setChain(DAG.getEntryNode()) 3712 .setLibCallee(CallingConv::C, CallTy, 3713 DAG.getExternalSymbol("__tls_get_addr", Ty), 3714 std::move(Args)); 3715 3716 return LowerCallTo(CLI).first; 3717 } 3718 3719 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3720 SelectionDAG &DAG) const { 3721 SDLoc DL(Op); 3722 EVT Ty = Op.getValueType(); 3723 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3724 int64_t Offset = N->getOffset(); 3725 MVT XLenVT = Subtarget.getXLenVT(); 3726 3727 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3728 3729 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3730 CallingConv::GHC) 3731 report_fatal_error("In GHC calling convention TLS is not supported"); 3732 3733 SDValue Addr; 3734 switch (Model) { 3735 case TLSModel::LocalExec: 3736 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3737 break; 3738 case TLSModel::InitialExec: 3739 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3740 break; 3741 case TLSModel::LocalDynamic: 3742 case TLSModel::GeneralDynamic: 3743 Addr = getDynamicTLSAddr(N, DAG); 3744 break; 3745 } 3746 3747 // In order to maximise the opportunity for common subexpression elimination, 3748 // emit a separate ADD node for the global address offset instead of folding 3749 // it in the global address node. Later peephole optimisations may choose to 3750 // fold it back in when profitable. 3751 if (Offset != 0) 3752 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3753 DAG.getConstant(Offset, DL, XLenVT)); 3754 return Addr; 3755 } 3756 3757 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3758 SDValue CondV = Op.getOperand(0); 3759 SDValue TrueV = Op.getOperand(1); 3760 SDValue FalseV = Op.getOperand(2); 3761 SDLoc DL(Op); 3762 MVT VT = Op.getSimpleValueType(); 3763 MVT XLenVT = Subtarget.getXLenVT(); 3764 3765 // Lower vector SELECTs to VSELECTs by splatting the condition. 3766 if (VT.isVector()) { 3767 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3768 SDValue CondSplat = VT.isScalableVector() 3769 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3770 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3771 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3772 } 3773 3774 // If the result type is XLenVT and CondV is the output of a SETCC node 3775 // which also operated on XLenVT inputs, then merge the SETCC node into the 3776 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3777 // compare+branch instructions. i.e.: 3778 // (select (setcc lhs, rhs, cc), truev, falsev) 3779 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3780 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3781 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3782 SDValue LHS = CondV.getOperand(0); 3783 SDValue RHS = CondV.getOperand(1); 3784 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3785 ISD::CondCode CCVal = CC->get(); 3786 3787 // Special case for a select of 2 constants that have a diffence of 1. 3788 // Normally this is done by DAGCombine, but if the select is introduced by 3789 // type legalization or op legalization, we miss it. Restricting to SETLT 3790 // case for now because that is what signed saturating add/sub need. 3791 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3792 // but we would probably want to swap the true/false values if the condition 3793 // is SETGE/SETLE to avoid an XORI. 3794 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3795 CCVal == ISD::SETLT) { 3796 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3797 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3798 if (TrueVal - 1 == FalseVal) 3799 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3800 if (TrueVal + 1 == FalseVal) 3801 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3802 } 3803 3804 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3805 3806 SDValue TargetCC = DAG.getCondCode(CCVal); 3807 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3808 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3809 } 3810 3811 // Otherwise: 3812 // (select condv, truev, falsev) 3813 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3814 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3815 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3816 3817 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3818 3819 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3820 } 3821 3822 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3823 SDValue CondV = Op.getOperand(1); 3824 SDLoc DL(Op); 3825 MVT XLenVT = Subtarget.getXLenVT(); 3826 3827 if (CondV.getOpcode() == ISD::SETCC && 3828 CondV.getOperand(0).getValueType() == XLenVT) { 3829 SDValue LHS = CondV.getOperand(0); 3830 SDValue RHS = CondV.getOperand(1); 3831 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3832 3833 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3834 3835 SDValue TargetCC = DAG.getCondCode(CCVal); 3836 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3837 LHS, RHS, TargetCC, Op.getOperand(2)); 3838 } 3839 3840 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3841 CondV, DAG.getConstant(0, DL, XLenVT), 3842 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3843 } 3844 3845 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3846 MachineFunction &MF = DAG.getMachineFunction(); 3847 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3848 3849 SDLoc DL(Op); 3850 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3851 getPointerTy(MF.getDataLayout())); 3852 3853 // vastart just stores the address of the VarArgsFrameIndex slot into the 3854 // memory location argument. 3855 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3856 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3857 MachinePointerInfo(SV)); 3858 } 3859 3860 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3861 SelectionDAG &DAG) const { 3862 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3863 MachineFunction &MF = DAG.getMachineFunction(); 3864 MachineFrameInfo &MFI = MF.getFrameInfo(); 3865 MFI.setFrameAddressIsTaken(true); 3866 Register FrameReg = RI.getFrameRegister(MF); 3867 int XLenInBytes = Subtarget.getXLen() / 8; 3868 3869 EVT VT = Op.getValueType(); 3870 SDLoc DL(Op); 3871 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3872 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3873 while (Depth--) { 3874 int Offset = -(XLenInBytes * 2); 3875 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3876 DAG.getIntPtrConstant(Offset, DL)); 3877 FrameAddr = 3878 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3879 } 3880 return FrameAddr; 3881 } 3882 3883 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3884 SelectionDAG &DAG) const { 3885 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3886 MachineFunction &MF = DAG.getMachineFunction(); 3887 MachineFrameInfo &MFI = MF.getFrameInfo(); 3888 MFI.setReturnAddressIsTaken(true); 3889 MVT XLenVT = Subtarget.getXLenVT(); 3890 int XLenInBytes = Subtarget.getXLen() / 8; 3891 3892 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3893 return SDValue(); 3894 3895 EVT VT = Op.getValueType(); 3896 SDLoc DL(Op); 3897 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3898 if (Depth) { 3899 int Off = -XLenInBytes; 3900 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3901 SDValue Offset = DAG.getConstant(Off, DL, VT); 3902 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3903 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3904 MachinePointerInfo()); 3905 } 3906 3907 // Return the value of the return address register, marking it an implicit 3908 // live-in. 3909 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3910 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3911 } 3912 3913 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3914 SelectionDAG &DAG) const { 3915 SDLoc DL(Op); 3916 SDValue Lo = Op.getOperand(0); 3917 SDValue Hi = Op.getOperand(1); 3918 SDValue Shamt = Op.getOperand(2); 3919 EVT VT = Lo.getValueType(); 3920 3921 // if Shamt-XLEN < 0: // Shamt < XLEN 3922 // Lo = Lo << Shamt 3923 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3924 // else: 3925 // Lo = 0 3926 // Hi = Lo << (Shamt-XLEN) 3927 3928 SDValue Zero = DAG.getConstant(0, DL, VT); 3929 SDValue One = DAG.getConstant(1, DL, VT); 3930 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3931 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3932 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3933 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3934 3935 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3936 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3937 SDValue ShiftRightLo = 3938 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3939 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3940 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3941 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3942 3943 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3944 3945 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3946 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3947 3948 SDValue Parts[2] = {Lo, Hi}; 3949 return DAG.getMergeValues(Parts, DL); 3950 } 3951 3952 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3953 bool IsSRA) const { 3954 SDLoc DL(Op); 3955 SDValue Lo = Op.getOperand(0); 3956 SDValue Hi = Op.getOperand(1); 3957 SDValue Shamt = Op.getOperand(2); 3958 EVT VT = Lo.getValueType(); 3959 3960 // SRA expansion: 3961 // if Shamt-XLEN < 0: // Shamt < XLEN 3962 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3963 // Hi = Hi >>s Shamt 3964 // else: 3965 // Lo = Hi >>s (Shamt-XLEN); 3966 // Hi = Hi >>s (XLEN-1) 3967 // 3968 // SRL expansion: 3969 // if Shamt-XLEN < 0: // Shamt < XLEN 3970 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3971 // Hi = Hi >>u Shamt 3972 // else: 3973 // Lo = Hi >>u (Shamt-XLEN); 3974 // Hi = 0; 3975 3976 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3977 3978 SDValue Zero = DAG.getConstant(0, DL, VT); 3979 SDValue One = DAG.getConstant(1, DL, VT); 3980 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3981 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3982 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3983 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3984 3985 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3986 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3987 SDValue ShiftLeftHi = 3988 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3989 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3990 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3991 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3992 SDValue HiFalse = 3993 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3994 3995 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3996 3997 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3998 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3999 4000 SDValue Parts[2] = {Lo, Hi}; 4001 return DAG.getMergeValues(Parts, DL); 4002 } 4003 4004 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 4005 // legal equivalently-sized i8 type, so we can use that as a go-between. 4006 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 4007 SelectionDAG &DAG) const { 4008 SDLoc DL(Op); 4009 MVT VT = Op.getSimpleValueType(); 4010 SDValue SplatVal = Op.getOperand(0); 4011 // All-zeros or all-ones splats are handled specially. 4012 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4013 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4014 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4015 } 4016 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4017 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4018 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4019 } 4020 MVT XLenVT = Subtarget.getXLenVT(); 4021 assert(SplatVal.getValueType() == XLenVT && 4022 "Unexpected type for i1 splat value"); 4023 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4024 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4025 DAG.getConstant(1, DL, XLenVT)); 4026 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4027 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4028 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4029 } 4030 4031 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4032 // illegal (currently only vXi64 RV32). 4033 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4034 // them to SPLAT_VECTOR_I64 4035 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4036 SelectionDAG &DAG) const { 4037 SDLoc DL(Op); 4038 MVT VecVT = Op.getSimpleValueType(); 4039 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4040 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4041 4042 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4043 SDValue Lo = Op.getOperand(0); 4044 SDValue Hi = Op.getOperand(1); 4045 4046 if (VecVT.isFixedLengthVector()) { 4047 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4048 SDLoc DL(Op); 4049 SDValue Mask, VL; 4050 std::tie(Mask, VL) = 4051 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4052 4053 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 4054 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4055 } 4056 4057 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4058 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4059 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4060 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4061 // node in order to try and match RVV vector/scalar instructions. 4062 if ((LoC >> 31) == HiC) 4063 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 4064 } 4065 4066 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4067 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4068 isa<ConstantSDNode>(Hi.getOperand(1)) && 4069 Hi.getConstantOperandVal(1) == 31) 4070 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 4071 4072 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4073 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 4074 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 4075 } 4076 4077 // Custom-lower extensions from mask vectors by using a vselect either with 1 4078 // for zero/any-extension or -1 for sign-extension: 4079 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4080 // Note that any-extension is lowered identically to zero-extension. 4081 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4082 int64_t ExtTrueVal) const { 4083 SDLoc DL(Op); 4084 MVT VecVT = Op.getSimpleValueType(); 4085 SDValue Src = Op.getOperand(0); 4086 // Only custom-lower extensions from mask types 4087 assert(Src.getValueType().isVector() && 4088 Src.getValueType().getVectorElementType() == MVT::i1); 4089 4090 MVT XLenVT = Subtarget.getXLenVT(); 4091 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4092 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4093 4094 if (VecVT.isScalableVector()) { 4095 // Be careful not to introduce illegal scalar types at this stage, and be 4096 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 4097 // illegal and must be expanded. Since we know that the constants are 4098 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 4099 bool IsRV32E64 = 4100 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 4101 4102 if (!IsRV32E64) { 4103 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 4104 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 4105 } else { 4106 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 4107 SplatTrueVal = 4108 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 4109 } 4110 4111 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4112 } 4113 4114 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4115 MVT I1ContainerVT = 4116 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4117 4118 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4119 4120 SDValue Mask, VL; 4121 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4122 4123 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 4124 SplatTrueVal = 4125 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 4126 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4127 SplatTrueVal, SplatZero, VL); 4128 4129 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4130 } 4131 4132 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4133 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4134 MVT ExtVT = Op.getSimpleValueType(); 4135 // Only custom-lower extensions from fixed-length vector types. 4136 if (!ExtVT.isFixedLengthVector()) 4137 return Op; 4138 MVT VT = Op.getOperand(0).getSimpleValueType(); 4139 // Grab the canonical container type for the extended type. Infer the smaller 4140 // type from that to ensure the same number of vector elements, as we know 4141 // the LMUL will be sufficient to hold the smaller type. 4142 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4143 // Get the extended container type manually to ensure the same number of 4144 // vector elements between source and dest. 4145 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4146 ContainerExtVT.getVectorElementCount()); 4147 4148 SDValue Op1 = 4149 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4150 4151 SDLoc DL(Op); 4152 SDValue Mask, VL; 4153 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4154 4155 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4156 4157 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4158 } 4159 4160 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4161 // setcc operation: 4162 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4163 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 4164 SelectionDAG &DAG) const { 4165 SDLoc DL(Op); 4166 EVT MaskVT = Op.getValueType(); 4167 // Only expect to custom-lower truncations to mask types 4168 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4169 "Unexpected type for vector mask lowering"); 4170 SDValue Src = Op.getOperand(0); 4171 MVT VecVT = Src.getSimpleValueType(); 4172 4173 // If this is a fixed vector, we need to convert it to a scalable vector. 4174 MVT ContainerVT = VecVT; 4175 if (VecVT.isFixedLengthVector()) { 4176 ContainerVT = getContainerForFixedLengthVector(VecVT); 4177 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4178 } 4179 4180 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4181 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4182 4183 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 4184 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 4185 4186 if (VecVT.isScalableVector()) { 4187 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 4188 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 4189 } 4190 4191 SDValue Mask, VL; 4192 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4193 4194 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4195 SDValue Trunc = 4196 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4197 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4198 DAG.getCondCode(ISD::SETNE), Mask, VL); 4199 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4200 } 4201 4202 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4203 // first position of a vector, and that vector is slid up to the insert index. 4204 // By limiting the active vector length to index+1 and merging with the 4205 // original vector (with an undisturbed tail policy for elements >= VL), we 4206 // achieve the desired result of leaving all elements untouched except the one 4207 // at VL-1, which is replaced with the desired value. 4208 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4209 SelectionDAG &DAG) const { 4210 SDLoc DL(Op); 4211 MVT VecVT = Op.getSimpleValueType(); 4212 SDValue Vec = Op.getOperand(0); 4213 SDValue Val = Op.getOperand(1); 4214 SDValue Idx = Op.getOperand(2); 4215 4216 if (VecVT.getVectorElementType() == MVT::i1) { 4217 // FIXME: For now we just promote to an i8 vector and insert into that, 4218 // but this is probably not optimal. 4219 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4220 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4221 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4222 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4223 } 4224 4225 MVT ContainerVT = VecVT; 4226 // If the operand is a fixed-length vector, convert to a scalable one. 4227 if (VecVT.isFixedLengthVector()) { 4228 ContainerVT = getContainerForFixedLengthVector(VecVT); 4229 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4230 } 4231 4232 MVT XLenVT = Subtarget.getXLenVT(); 4233 4234 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4235 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4236 // Even i64-element vectors on RV32 can be lowered without scalar 4237 // legalization if the most-significant 32 bits of the value are not affected 4238 // by the sign-extension of the lower 32 bits. 4239 // TODO: We could also catch sign extensions of a 32-bit value. 4240 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4241 const auto *CVal = cast<ConstantSDNode>(Val); 4242 if (isInt<32>(CVal->getSExtValue())) { 4243 IsLegalInsert = true; 4244 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4245 } 4246 } 4247 4248 SDValue Mask, VL; 4249 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4250 4251 SDValue ValInVec; 4252 4253 if (IsLegalInsert) { 4254 unsigned Opc = 4255 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4256 if (isNullConstant(Idx)) { 4257 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4258 if (!VecVT.isFixedLengthVector()) 4259 return Vec; 4260 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4261 } 4262 ValInVec = 4263 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4264 } else { 4265 // On RV32, i64-element vectors must be specially handled to place the 4266 // value at element 0, by using two vslide1up instructions in sequence on 4267 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4268 // this. 4269 SDValue One = DAG.getConstant(1, DL, XLenVT); 4270 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4271 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4272 MVT I32ContainerVT = 4273 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4274 SDValue I32Mask = 4275 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4276 // Limit the active VL to two. 4277 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4278 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4279 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4280 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 4281 InsertI64VL); 4282 // First slide in the hi value, then the lo in underneath it. 4283 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4284 ValHi, I32Mask, InsertI64VL); 4285 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4286 ValLo, I32Mask, InsertI64VL); 4287 // Bitcast back to the right container type. 4288 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4289 } 4290 4291 // Now that the value is in a vector, slide it into position. 4292 SDValue InsertVL = 4293 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4294 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4295 ValInVec, Idx, Mask, InsertVL); 4296 if (!VecVT.isFixedLengthVector()) 4297 return Slideup; 4298 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4299 } 4300 4301 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4302 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4303 // types this is done using VMV_X_S to allow us to glean information about the 4304 // sign bits of the result. 4305 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4306 SelectionDAG &DAG) const { 4307 SDLoc DL(Op); 4308 SDValue Idx = Op.getOperand(1); 4309 SDValue Vec = Op.getOperand(0); 4310 EVT EltVT = Op.getValueType(); 4311 MVT VecVT = Vec.getSimpleValueType(); 4312 MVT XLenVT = Subtarget.getXLenVT(); 4313 4314 if (VecVT.getVectorElementType() == MVT::i1) { 4315 if (VecVT.isFixedLengthVector()) { 4316 unsigned NumElts = VecVT.getVectorNumElements(); 4317 if (NumElts >= 8) { 4318 MVT WideEltVT; 4319 unsigned WidenVecLen; 4320 SDValue ExtractElementIdx; 4321 SDValue ExtractBitIdx; 4322 unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors(); 4323 MVT LargestEltVT = MVT::getIntegerVT( 4324 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4325 if (NumElts <= LargestEltVT.getSizeInBits()) { 4326 assert(isPowerOf2_32(NumElts) && 4327 "the number of elements should be power of 2"); 4328 WideEltVT = MVT::getIntegerVT(NumElts); 4329 WidenVecLen = 1; 4330 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4331 ExtractBitIdx = Idx; 4332 } else { 4333 WideEltVT = LargestEltVT; 4334 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4335 // extract element index = index / element width 4336 ExtractElementIdx = DAG.getNode( 4337 ISD::SRL, DL, XLenVT, Idx, 4338 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4339 // mask bit index = index % element width 4340 ExtractBitIdx = DAG.getNode( 4341 ISD::AND, DL, XLenVT, Idx, 4342 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4343 } 4344 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4345 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4346 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4347 Vec, ExtractElementIdx); 4348 // Extract the bit from GPR. 4349 SDValue ShiftRight = 4350 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4351 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4352 DAG.getConstant(1, DL, XLenVT)); 4353 } 4354 } 4355 // Otherwise, promote to an i8 vector and extract from that. 4356 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4357 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4358 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4359 } 4360 4361 // If this is a fixed vector, we need to convert it to a scalable vector. 4362 MVT ContainerVT = VecVT; 4363 if (VecVT.isFixedLengthVector()) { 4364 ContainerVT = getContainerForFixedLengthVector(VecVT); 4365 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4366 } 4367 4368 // If the index is 0, the vector is already in the right position. 4369 if (!isNullConstant(Idx)) { 4370 // Use a VL of 1 to avoid processing more elements than we need. 4371 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4372 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4373 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4374 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4375 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4376 } 4377 4378 if (!EltVT.isInteger()) { 4379 // Floating-point extracts are handled in TableGen. 4380 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4381 DAG.getConstant(0, DL, XLenVT)); 4382 } 4383 4384 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4385 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4386 } 4387 4388 // Some RVV intrinsics may claim that they want an integer operand to be 4389 // promoted or expanded. 4390 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 4391 const RISCVSubtarget &Subtarget) { 4392 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4393 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4394 "Unexpected opcode"); 4395 4396 if (!Subtarget.hasVInstructions()) 4397 return SDValue(); 4398 4399 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4400 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4401 SDLoc DL(Op); 4402 4403 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4404 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4405 if (!II || !II->hasSplatOperand()) 4406 return SDValue(); 4407 4408 unsigned SplatOp = II->SplatOperand + 1 + HasChain; 4409 assert(SplatOp < Op.getNumOperands()); 4410 4411 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4412 SDValue &ScalarOp = Operands[SplatOp]; 4413 MVT OpVT = ScalarOp.getSimpleValueType(); 4414 MVT XLenVT = Subtarget.getXLenVT(); 4415 4416 // If this isn't a scalar, or its type is XLenVT we're done. 4417 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4418 return SDValue(); 4419 4420 // Simplest case is that the operand needs to be promoted to XLenVT. 4421 if (OpVT.bitsLT(XLenVT)) { 4422 // If the operand is a constant, sign extend to increase our chances 4423 // of being able to use a .vi instruction. ANY_EXTEND would become a 4424 // a zero extend and the simm5 check in isel would fail. 4425 // FIXME: Should we ignore the upper bits in isel instead? 4426 unsigned ExtOpc = 4427 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4428 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4429 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4430 } 4431 4432 // Use the previous operand to get the vXi64 VT. The result might be a mask 4433 // VT for compares. Using the previous operand assumes that the previous 4434 // operand will never have a smaller element size than a scalar operand and 4435 // that a widening operation never uses SEW=64. 4436 // NOTE: If this fails the below assert, we can probably just find the 4437 // element count from any operand or result and use it to construct the VT. 4438 assert(II->SplatOperand > 0 && "Unexpected splat operand!"); 4439 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4440 4441 // The more complex case is when the scalar is larger than XLenVT. 4442 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4443 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4444 4445 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4446 // on the instruction to sign-extend since SEW>XLEN. 4447 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4448 if (isInt<32>(CVal->getSExtValue())) { 4449 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4450 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4451 } 4452 } 4453 4454 // We need to convert the scalar to a splat vector. 4455 // FIXME: Can we implicitly truncate the scalar if it is known to 4456 // be sign extended? 4457 SDValue VL = getVLOperand(Op); 4458 assert(VL.getValueType() == XLenVT); 4459 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4460 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4461 } 4462 4463 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4464 SelectionDAG &DAG) const { 4465 unsigned IntNo = Op.getConstantOperandVal(0); 4466 SDLoc DL(Op); 4467 MVT XLenVT = Subtarget.getXLenVT(); 4468 4469 switch (IntNo) { 4470 default: 4471 break; // Don't custom lower most intrinsics. 4472 case Intrinsic::thread_pointer: { 4473 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4474 return DAG.getRegister(RISCV::X4, PtrVT); 4475 } 4476 case Intrinsic::riscv_orc_b: 4477 case Intrinsic::riscv_brev8: { 4478 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4479 unsigned Opc = 4480 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4481 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4482 DAG.getConstant(7, DL, XLenVT)); 4483 } 4484 case Intrinsic::riscv_grev: 4485 case Intrinsic::riscv_gorc: { 4486 unsigned Opc = 4487 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4488 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4489 } 4490 case Intrinsic::riscv_zip: 4491 case Intrinsic::riscv_unzip: { 4492 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4493 // For i32 the immdiate is 15. For i64 the immediate is 31. 4494 unsigned Opc = 4495 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4496 unsigned BitWidth = Op.getValueSizeInBits(); 4497 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4498 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4499 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4500 } 4501 case Intrinsic::riscv_shfl: 4502 case Intrinsic::riscv_unshfl: { 4503 unsigned Opc = 4504 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4505 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4506 } 4507 case Intrinsic::riscv_bcompress: 4508 case Intrinsic::riscv_bdecompress: { 4509 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4510 : RISCVISD::BDECOMPRESS; 4511 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4512 } 4513 case Intrinsic::riscv_bfp: 4514 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4515 Op.getOperand(2)); 4516 case Intrinsic::riscv_fsl: 4517 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4518 Op.getOperand(2), Op.getOperand(3)); 4519 case Intrinsic::riscv_fsr: 4520 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4521 Op.getOperand(2), Op.getOperand(3)); 4522 case Intrinsic::riscv_vmv_x_s: 4523 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4524 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4525 Op.getOperand(1)); 4526 case Intrinsic::riscv_vmv_v_x: 4527 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4528 Op.getSimpleValueType(), DL, DAG, Subtarget); 4529 case Intrinsic::riscv_vfmv_v_f: 4530 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4531 Op.getOperand(1), Op.getOperand(2)); 4532 case Intrinsic::riscv_vmv_s_x: { 4533 SDValue Scalar = Op.getOperand(2); 4534 4535 if (Scalar.getValueType().bitsLE(XLenVT)) { 4536 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4537 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4538 Op.getOperand(1), Scalar, Op.getOperand(3)); 4539 } 4540 4541 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4542 4543 // This is an i64 value that lives in two scalar registers. We have to 4544 // insert this in a convoluted way. First we build vXi64 splat containing 4545 // the/ two values that we assemble using some bit math. Next we'll use 4546 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4547 // to merge element 0 from our splat into the source vector. 4548 // FIXME: This is probably not the best way to do this, but it is 4549 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4550 // point. 4551 // sw lo, (a0) 4552 // sw hi, 4(a0) 4553 // vlse vX, (a0) 4554 // 4555 // vid.v vVid 4556 // vmseq.vx mMask, vVid, 0 4557 // vmerge.vvm vDest, vSrc, vVal, mMask 4558 MVT VT = Op.getSimpleValueType(); 4559 SDValue Vec = Op.getOperand(1); 4560 SDValue VL = getVLOperand(Op); 4561 4562 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4563 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4564 DAG.getConstant(0, DL, MVT::i32), VL); 4565 4566 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4567 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4568 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4569 SDValue SelectCond = 4570 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4571 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4572 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4573 Vec, VL); 4574 } 4575 case Intrinsic::riscv_vslide1up: 4576 case Intrinsic::riscv_vslide1down: 4577 case Intrinsic::riscv_vslide1up_mask: 4578 case Intrinsic::riscv_vslide1down_mask: { 4579 // We need to special case these when the scalar is larger than XLen. 4580 unsigned NumOps = Op.getNumOperands(); 4581 bool IsMasked = NumOps == 7; 4582 unsigned OpOffset = IsMasked ? 1 : 0; 4583 SDValue Scalar = Op.getOperand(2 + OpOffset); 4584 if (Scalar.getValueType().bitsLE(XLenVT)) 4585 break; 4586 4587 // Splatting a sign extended constant is fine. 4588 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4589 if (isInt<32>(CVal->getSExtValue())) 4590 break; 4591 4592 MVT VT = Op.getSimpleValueType(); 4593 assert(VT.getVectorElementType() == MVT::i64 && 4594 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4595 4596 // Convert the vector source to the equivalent nxvXi32 vector. 4597 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4598 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4599 4600 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4601 DAG.getConstant(0, DL, XLenVT)); 4602 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4603 DAG.getConstant(1, DL, XLenVT)); 4604 4605 // Double the VL since we halved SEW. 4606 SDValue VL = getVLOperand(Op); 4607 SDValue I32VL = 4608 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4609 4610 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4611 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4612 4613 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4614 // instructions. 4615 if (IntNo == Intrinsic::riscv_vslide1up || 4616 IntNo == Intrinsic::riscv_vslide1up_mask) { 4617 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4618 I32Mask, I32VL); 4619 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4620 I32Mask, I32VL); 4621 } else { 4622 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4623 I32Mask, I32VL); 4624 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4625 I32Mask, I32VL); 4626 } 4627 4628 // Convert back to nxvXi64. 4629 Vec = DAG.getBitcast(VT, Vec); 4630 4631 if (!IsMasked) 4632 return Vec; 4633 4634 // Apply mask after the operation. 4635 SDValue Mask = Op.getOperand(NumOps - 3); 4636 SDValue MaskedOff = Op.getOperand(1); 4637 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4638 } 4639 } 4640 4641 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4642 } 4643 4644 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4645 SelectionDAG &DAG) const { 4646 unsigned IntNo = Op.getConstantOperandVal(1); 4647 switch (IntNo) { 4648 default: 4649 break; 4650 case Intrinsic::riscv_masked_strided_load: { 4651 SDLoc DL(Op); 4652 MVT XLenVT = Subtarget.getXLenVT(); 4653 4654 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4655 // the selection of the masked intrinsics doesn't do this for us. 4656 SDValue Mask = Op.getOperand(5); 4657 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4658 4659 MVT VT = Op->getSimpleValueType(0); 4660 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4661 4662 SDValue PassThru = Op.getOperand(2); 4663 if (!IsUnmasked) { 4664 MVT MaskVT = 4665 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4666 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4667 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4668 } 4669 4670 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4671 4672 SDValue IntID = DAG.getTargetConstant( 4673 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4674 XLenVT); 4675 4676 auto *Load = cast<MemIntrinsicSDNode>(Op); 4677 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4678 if (IsUnmasked) 4679 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4680 else 4681 Ops.push_back(PassThru); 4682 Ops.push_back(Op.getOperand(3)); // Ptr 4683 Ops.push_back(Op.getOperand(4)); // Stride 4684 if (!IsUnmasked) 4685 Ops.push_back(Mask); 4686 Ops.push_back(VL); 4687 if (!IsUnmasked) { 4688 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4689 Ops.push_back(Policy); 4690 } 4691 4692 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4693 SDValue Result = 4694 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4695 Load->getMemoryVT(), Load->getMemOperand()); 4696 SDValue Chain = Result.getValue(1); 4697 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4698 return DAG.getMergeValues({Result, Chain}, DL); 4699 } 4700 } 4701 4702 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4703 } 4704 4705 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4706 SelectionDAG &DAG) const { 4707 unsigned IntNo = Op.getConstantOperandVal(1); 4708 switch (IntNo) { 4709 default: 4710 break; 4711 case Intrinsic::riscv_masked_strided_store: { 4712 SDLoc DL(Op); 4713 MVT XLenVT = Subtarget.getXLenVT(); 4714 4715 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4716 // the selection of the masked intrinsics doesn't do this for us. 4717 SDValue Mask = Op.getOperand(5); 4718 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4719 4720 SDValue Val = Op.getOperand(2); 4721 MVT VT = Val.getSimpleValueType(); 4722 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4723 4724 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4725 if (!IsUnmasked) { 4726 MVT MaskVT = 4727 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4728 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4729 } 4730 4731 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4732 4733 SDValue IntID = DAG.getTargetConstant( 4734 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4735 XLenVT); 4736 4737 auto *Store = cast<MemIntrinsicSDNode>(Op); 4738 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4739 Ops.push_back(Val); 4740 Ops.push_back(Op.getOperand(3)); // Ptr 4741 Ops.push_back(Op.getOperand(4)); // Stride 4742 if (!IsUnmasked) 4743 Ops.push_back(Mask); 4744 Ops.push_back(VL); 4745 4746 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4747 Ops, Store->getMemoryVT(), 4748 Store->getMemOperand()); 4749 } 4750 } 4751 4752 return SDValue(); 4753 } 4754 4755 static MVT getLMUL1VT(MVT VT) { 4756 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4757 "Unexpected vector MVT"); 4758 return MVT::getScalableVectorVT( 4759 VT.getVectorElementType(), 4760 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4761 } 4762 4763 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4764 switch (ISDOpcode) { 4765 default: 4766 llvm_unreachable("Unhandled reduction"); 4767 case ISD::VECREDUCE_ADD: 4768 return RISCVISD::VECREDUCE_ADD_VL; 4769 case ISD::VECREDUCE_UMAX: 4770 return RISCVISD::VECREDUCE_UMAX_VL; 4771 case ISD::VECREDUCE_SMAX: 4772 return RISCVISD::VECREDUCE_SMAX_VL; 4773 case ISD::VECREDUCE_UMIN: 4774 return RISCVISD::VECREDUCE_UMIN_VL; 4775 case ISD::VECREDUCE_SMIN: 4776 return RISCVISD::VECREDUCE_SMIN_VL; 4777 case ISD::VECREDUCE_AND: 4778 return RISCVISD::VECREDUCE_AND_VL; 4779 case ISD::VECREDUCE_OR: 4780 return RISCVISD::VECREDUCE_OR_VL; 4781 case ISD::VECREDUCE_XOR: 4782 return RISCVISD::VECREDUCE_XOR_VL; 4783 } 4784 } 4785 4786 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4787 SelectionDAG &DAG, 4788 bool IsVP) const { 4789 SDLoc DL(Op); 4790 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4791 MVT VecVT = Vec.getSimpleValueType(); 4792 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4793 Op.getOpcode() == ISD::VECREDUCE_OR || 4794 Op.getOpcode() == ISD::VECREDUCE_XOR || 4795 Op.getOpcode() == ISD::VP_REDUCE_AND || 4796 Op.getOpcode() == ISD::VP_REDUCE_OR || 4797 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4798 "Unexpected reduction lowering"); 4799 4800 MVT XLenVT = Subtarget.getXLenVT(); 4801 assert(Op.getValueType() == XLenVT && 4802 "Expected reduction output to be legalized to XLenVT"); 4803 4804 MVT ContainerVT = VecVT; 4805 if (VecVT.isFixedLengthVector()) { 4806 ContainerVT = getContainerForFixedLengthVector(VecVT); 4807 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4808 } 4809 4810 SDValue Mask, VL; 4811 if (IsVP) { 4812 Mask = Op.getOperand(2); 4813 VL = Op.getOperand(3); 4814 } else { 4815 std::tie(Mask, VL) = 4816 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4817 } 4818 4819 unsigned BaseOpc; 4820 ISD::CondCode CC; 4821 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4822 4823 switch (Op.getOpcode()) { 4824 default: 4825 llvm_unreachable("Unhandled reduction"); 4826 case ISD::VECREDUCE_AND: 4827 case ISD::VP_REDUCE_AND: { 4828 // vcpop ~x == 0 4829 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4830 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4831 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4832 CC = ISD::SETEQ; 4833 BaseOpc = ISD::AND; 4834 break; 4835 } 4836 case ISD::VECREDUCE_OR: 4837 case ISD::VP_REDUCE_OR: 4838 // vcpop x != 0 4839 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4840 CC = ISD::SETNE; 4841 BaseOpc = ISD::OR; 4842 break; 4843 case ISD::VECREDUCE_XOR: 4844 case ISD::VP_REDUCE_XOR: { 4845 // ((vcpop x) & 1) != 0 4846 SDValue One = DAG.getConstant(1, DL, XLenVT); 4847 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4848 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4849 CC = ISD::SETNE; 4850 BaseOpc = ISD::XOR; 4851 break; 4852 } 4853 } 4854 4855 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4856 4857 if (!IsVP) 4858 return SetCC; 4859 4860 // Now include the start value in the operation. 4861 // Note that we must return the start value when no elements are operated 4862 // upon. The vcpop instructions we've emitted in each case above will return 4863 // 0 for an inactive vector, and so we've already received the neutral value: 4864 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4865 // can simply include the start value. 4866 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4867 } 4868 4869 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4870 SelectionDAG &DAG) const { 4871 SDLoc DL(Op); 4872 SDValue Vec = Op.getOperand(0); 4873 EVT VecEVT = Vec.getValueType(); 4874 4875 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4876 4877 // Due to ordering in legalize types we may have a vector type that needs to 4878 // be split. Do that manually so we can get down to a legal type. 4879 while (getTypeAction(*DAG.getContext(), VecEVT) == 4880 TargetLowering::TypeSplitVector) { 4881 SDValue Lo, Hi; 4882 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4883 VecEVT = Lo.getValueType(); 4884 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4885 } 4886 4887 // TODO: The type may need to be widened rather than split. Or widened before 4888 // it can be split. 4889 if (!isTypeLegal(VecEVT)) 4890 return SDValue(); 4891 4892 MVT VecVT = VecEVT.getSimpleVT(); 4893 MVT VecEltVT = VecVT.getVectorElementType(); 4894 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4895 4896 MVT ContainerVT = VecVT; 4897 if (VecVT.isFixedLengthVector()) { 4898 ContainerVT = getContainerForFixedLengthVector(VecVT); 4899 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4900 } 4901 4902 MVT M1VT = getLMUL1VT(ContainerVT); 4903 MVT XLenVT = Subtarget.getXLenVT(); 4904 4905 SDValue Mask, VL; 4906 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4907 4908 SDValue NeutralElem = 4909 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4910 SDValue IdentitySplat = lowerScalarSplat( 4911 NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4912 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4913 IdentitySplat, Mask, VL); 4914 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4915 DAG.getConstant(0, DL, XLenVT)); 4916 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4917 } 4918 4919 // Given a reduction op, this function returns the matching reduction opcode, 4920 // the vector SDValue and the scalar SDValue required to lower this to a 4921 // RISCVISD node. 4922 static std::tuple<unsigned, SDValue, SDValue> 4923 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4924 SDLoc DL(Op); 4925 auto Flags = Op->getFlags(); 4926 unsigned Opcode = Op.getOpcode(); 4927 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4928 switch (Opcode) { 4929 default: 4930 llvm_unreachable("Unhandled reduction"); 4931 case ISD::VECREDUCE_FADD: { 4932 // Use positive zero if we can. It is cheaper to materialize. 4933 SDValue Zero = 4934 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 4935 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 4936 } 4937 case ISD::VECREDUCE_SEQ_FADD: 4938 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4939 Op.getOperand(0)); 4940 case ISD::VECREDUCE_FMIN: 4941 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4942 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4943 case ISD::VECREDUCE_FMAX: 4944 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4945 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4946 } 4947 } 4948 4949 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4950 SelectionDAG &DAG) const { 4951 SDLoc DL(Op); 4952 MVT VecEltVT = Op.getSimpleValueType(); 4953 4954 unsigned RVVOpcode; 4955 SDValue VectorVal, ScalarVal; 4956 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4957 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4958 MVT VecVT = VectorVal.getSimpleValueType(); 4959 4960 MVT ContainerVT = VecVT; 4961 if (VecVT.isFixedLengthVector()) { 4962 ContainerVT = getContainerForFixedLengthVector(VecVT); 4963 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4964 } 4965 4966 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4967 MVT XLenVT = Subtarget.getXLenVT(); 4968 4969 SDValue Mask, VL; 4970 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4971 4972 SDValue ScalarSplat = lowerScalarSplat( 4973 ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4974 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4975 VectorVal, ScalarSplat, Mask, VL); 4976 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4977 DAG.getConstant(0, DL, XLenVT)); 4978 } 4979 4980 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4981 switch (ISDOpcode) { 4982 default: 4983 llvm_unreachable("Unhandled reduction"); 4984 case ISD::VP_REDUCE_ADD: 4985 return RISCVISD::VECREDUCE_ADD_VL; 4986 case ISD::VP_REDUCE_UMAX: 4987 return RISCVISD::VECREDUCE_UMAX_VL; 4988 case ISD::VP_REDUCE_SMAX: 4989 return RISCVISD::VECREDUCE_SMAX_VL; 4990 case ISD::VP_REDUCE_UMIN: 4991 return RISCVISD::VECREDUCE_UMIN_VL; 4992 case ISD::VP_REDUCE_SMIN: 4993 return RISCVISD::VECREDUCE_SMIN_VL; 4994 case ISD::VP_REDUCE_AND: 4995 return RISCVISD::VECREDUCE_AND_VL; 4996 case ISD::VP_REDUCE_OR: 4997 return RISCVISD::VECREDUCE_OR_VL; 4998 case ISD::VP_REDUCE_XOR: 4999 return RISCVISD::VECREDUCE_XOR_VL; 5000 case ISD::VP_REDUCE_FADD: 5001 return RISCVISD::VECREDUCE_FADD_VL; 5002 case ISD::VP_REDUCE_SEQ_FADD: 5003 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 5004 case ISD::VP_REDUCE_FMAX: 5005 return RISCVISD::VECREDUCE_FMAX_VL; 5006 case ISD::VP_REDUCE_FMIN: 5007 return RISCVISD::VECREDUCE_FMIN_VL; 5008 } 5009 } 5010 5011 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5012 SelectionDAG &DAG) const { 5013 SDLoc DL(Op); 5014 SDValue Vec = Op.getOperand(1); 5015 EVT VecEVT = Vec.getValueType(); 5016 5017 // TODO: The type may need to be widened rather than split. Or widened before 5018 // it can be split. 5019 if (!isTypeLegal(VecEVT)) 5020 return SDValue(); 5021 5022 MVT VecVT = VecEVT.getSimpleVT(); 5023 MVT VecEltVT = VecVT.getVectorElementType(); 5024 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5025 5026 MVT ContainerVT = VecVT; 5027 if (VecVT.isFixedLengthVector()) { 5028 ContainerVT = getContainerForFixedLengthVector(VecVT); 5029 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5030 } 5031 5032 SDValue VL = Op.getOperand(3); 5033 SDValue Mask = Op.getOperand(2); 5034 5035 MVT M1VT = getLMUL1VT(ContainerVT); 5036 MVT XLenVT = Subtarget.getXLenVT(); 5037 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5038 5039 SDValue StartSplat = 5040 lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, 5041 DL, DAG, Subtarget); 5042 SDValue Reduction = 5043 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5044 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5045 DAG.getConstant(0, DL, XLenVT)); 5046 if (!VecVT.isInteger()) 5047 return Elt0; 5048 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5049 } 5050 5051 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5052 SelectionDAG &DAG) const { 5053 SDValue Vec = Op.getOperand(0); 5054 SDValue SubVec = Op.getOperand(1); 5055 MVT VecVT = Vec.getSimpleValueType(); 5056 MVT SubVecVT = SubVec.getSimpleValueType(); 5057 5058 SDLoc DL(Op); 5059 MVT XLenVT = Subtarget.getXLenVT(); 5060 unsigned OrigIdx = Op.getConstantOperandVal(2); 5061 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5062 5063 // We don't have the ability to slide mask vectors up indexed by their i1 5064 // elements; the smallest we can do is i8. Often we are able to bitcast to 5065 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5066 // into a scalable one, we might not necessarily have enough scalable 5067 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5068 if (SubVecVT.getVectorElementType() == MVT::i1 && 5069 (OrigIdx != 0 || !Vec.isUndef())) { 5070 if (VecVT.getVectorMinNumElements() >= 8 && 5071 SubVecVT.getVectorMinNumElements() >= 8) { 5072 assert(OrigIdx % 8 == 0 && "Invalid index"); 5073 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5074 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5075 "Unexpected mask vector lowering"); 5076 OrigIdx /= 8; 5077 SubVecVT = 5078 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5079 SubVecVT.isScalableVector()); 5080 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5081 VecVT.isScalableVector()); 5082 Vec = DAG.getBitcast(VecVT, Vec); 5083 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5084 } else { 5085 // We can't slide this mask vector up indexed by its i1 elements. 5086 // This poses a problem when we wish to insert a scalable vector which 5087 // can't be re-expressed as a larger type. Just choose the slow path and 5088 // extend to a larger type, then truncate back down. 5089 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5090 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5091 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5092 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5093 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5094 Op.getOperand(2)); 5095 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5096 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5097 } 5098 } 5099 5100 // If the subvector vector is a fixed-length type, we cannot use subregister 5101 // manipulation to simplify the codegen; we don't know which register of a 5102 // LMUL group contains the specific subvector as we only know the minimum 5103 // register size. Therefore we must slide the vector group up the full 5104 // amount. 5105 if (SubVecVT.isFixedLengthVector()) { 5106 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5107 return Op; 5108 MVT ContainerVT = VecVT; 5109 if (VecVT.isFixedLengthVector()) { 5110 ContainerVT = getContainerForFixedLengthVector(VecVT); 5111 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5112 } 5113 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5114 DAG.getUNDEF(ContainerVT), SubVec, 5115 DAG.getConstant(0, DL, XLenVT)); 5116 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5117 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5118 return DAG.getBitcast(Op.getValueType(), SubVec); 5119 } 5120 SDValue Mask = 5121 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5122 // Set the vector length to only the number of elements we care about. Note 5123 // that for slideup this includes the offset. 5124 SDValue VL = 5125 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5126 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5127 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5128 SubVec, SlideupAmt, Mask, VL); 5129 if (VecVT.isFixedLengthVector()) 5130 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5131 return DAG.getBitcast(Op.getValueType(), Slideup); 5132 } 5133 5134 unsigned SubRegIdx, RemIdx; 5135 std::tie(SubRegIdx, RemIdx) = 5136 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5137 VecVT, SubVecVT, OrigIdx, TRI); 5138 5139 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5140 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5141 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5142 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5143 5144 // 1. If the Idx has been completely eliminated and this subvector's size is 5145 // a vector register or a multiple thereof, or the surrounding elements are 5146 // undef, then this is a subvector insert which naturally aligns to a vector 5147 // register. These can easily be handled using subregister manipulation. 5148 // 2. If the subvector is smaller than a vector register, then the insertion 5149 // must preserve the undisturbed elements of the register. We do this by 5150 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5151 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5152 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5153 // LMUL=1 type back into the larger vector (resolving to another subregister 5154 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5155 // to avoid allocating a large register group to hold our subvector. 5156 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5157 return Op; 5158 5159 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5160 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5161 // (in our case undisturbed). This means we can set up a subvector insertion 5162 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5163 // size of the subvector. 5164 MVT InterSubVT = VecVT; 5165 SDValue AlignedExtract = Vec; 5166 unsigned AlignedIdx = OrigIdx - RemIdx; 5167 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5168 InterSubVT = getLMUL1VT(VecVT); 5169 // Extract a subvector equal to the nearest full vector register type. This 5170 // should resolve to a EXTRACT_SUBREG instruction. 5171 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5172 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5173 } 5174 5175 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5176 // For scalable vectors this must be further multiplied by vscale. 5177 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5178 5179 SDValue Mask, VL; 5180 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5181 5182 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5183 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5184 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5185 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5186 5187 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5188 DAG.getUNDEF(InterSubVT), SubVec, 5189 DAG.getConstant(0, DL, XLenVT)); 5190 5191 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5192 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5193 5194 // If required, insert this subvector back into the correct vector register. 5195 // This should resolve to an INSERT_SUBREG instruction. 5196 if (VecVT.bitsGT(InterSubVT)) 5197 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5198 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5199 5200 // We might have bitcast from a mask type: cast back to the original type if 5201 // required. 5202 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5203 } 5204 5205 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5206 SelectionDAG &DAG) const { 5207 SDValue Vec = Op.getOperand(0); 5208 MVT SubVecVT = Op.getSimpleValueType(); 5209 MVT VecVT = Vec.getSimpleValueType(); 5210 5211 SDLoc DL(Op); 5212 MVT XLenVT = Subtarget.getXLenVT(); 5213 unsigned OrigIdx = Op.getConstantOperandVal(1); 5214 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5215 5216 // We don't have the ability to slide mask vectors down indexed by their i1 5217 // elements; the smallest we can do is i8. Often we are able to bitcast to 5218 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5219 // from a scalable one, we might not necessarily have enough scalable 5220 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5221 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5222 if (VecVT.getVectorMinNumElements() >= 8 && 5223 SubVecVT.getVectorMinNumElements() >= 8) { 5224 assert(OrigIdx % 8 == 0 && "Invalid index"); 5225 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5226 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5227 "Unexpected mask vector lowering"); 5228 OrigIdx /= 8; 5229 SubVecVT = 5230 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5231 SubVecVT.isScalableVector()); 5232 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5233 VecVT.isScalableVector()); 5234 Vec = DAG.getBitcast(VecVT, Vec); 5235 } else { 5236 // We can't slide this mask vector down, indexed by its i1 elements. 5237 // This poses a problem when we wish to extract a scalable vector which 5238 // can't be re-expressed as a larger type. Just choose the slow path and 5239 // extend to a larger type, then truncate back down. 5240 // TODO: We could probably improve this when extracting certain fixed 5241 // from fixed, where we can extract as i8 and shift the correct element 5242 // right to reach the desired subvector? 5243 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5244 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5245 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5246 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5247 Op.getOperand(1)); 5248 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5249 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5250 } 5251 } 5252 5253 // If the subvector vector is a fixed-length type, we cannot use subregister 5254 // manipulation to simplify the codegen; we don't know which register of a 5255 // LMUL group contains the specific subvector as we only know the minimum 5256 // register size. Therefore we must slide the vector group down the full 5257 // amount. 5258 if (SubVecVT.isFixedLengthVector()) { 5259 // With an index of 0 this is a cast-like subvector, which can be performed 5260 // with subregister operations. 5261 if (OrigIdx == 0) 5262 return Op; 5263 MVT ContainerVT = VecVT; 5264 if (VecVT.isFixedLengthVector()) { 5265 ContainerVT = getContainerForFixedLengthVector(VecVT); 5266 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5267 } 5268 SDValue Mask = 5269 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5270 // Set the vector length to only the number of elements we care about. This 5271 // avoids sliding down elements we're going to discard straight away. 5272 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5273 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5274 SDValue Slidedown = 5275 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5276 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5277 // Now we can use a cast-like subvector extract to get the result. 5278 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5279 DAG.getConstant(0, DL, XLenVT)); 5280 return DAG.getBitcast(Op.getValueType(), Slidedown); 5281 } 5282 5283 unsigned SubRegIdx, RemIdx; 5284 std::tie(SubRegIdx, RemIdx) = 5285 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5286 VecVT, SubVecVT, OrigIdx, TRI); 5287 5288 // If the Idx has been completely eliminated then this is a subvector extract 5289 // which naturally aligns to a vector register. These can easily be handled 5290 // using subregister manipulation. 5291 if (RemIdx == 0) 5292 return Op; 5293 5294 // Else we must shift our vector register directly to extract the subvector. 5295 // Do this using VSLIDEDOWN. 5296 5297 // If the vector type is an LMUL-group type, extract a subvector equal to the 5298 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5299 // instruction. 5300 MVT InterSubVT = VecVT; 5301 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5302 InterSubVT = getLMUL1VT(VecVT); 5303 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5304 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5305 } 5306 5307 // Slide this vector register down by the desired number of elements in order 5308 // to place the desired subvector starting at element 0. 5309 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5310 // For scalable vectors this must be further multiplied by vscale. 5311 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5312 5313 SDValue Mask, VL; 5314 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5315 SDValue Slidedown = 5316 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5317 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5318 5319 // Now the vector is in the right position, extract our final subvector. This 5320 // should resolve to a COPY. 5321 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5322 DAG.getConstant(0, DL, XLenVT)); 5323 5324 // We might have bitcast from a mask type: cast back to the original type if 5325 // required. 5326 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5327 } 5328 5329 // Lower step_vector to the vid instruction. Any non-identity step value must 5330 // be accounted for my manual expansion. 5331 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5332 SelectionDAG &DAG) const { 5333 SDLoc DL(Op); 5334 MVT VT = Op.getSimpleValueType(); 5335 MVT XLenVT = Subtarget.getXLenVT(); 5336 SDValue Mask, VL; 5337 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5338 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5339 uint64_t StepValImm = Op.getConstantOperandVal(0); 5340 if (StepValImm != 1) { 5341 if (isPowerOf2_64(StepValImm)) { 5342 SDValue StepVal = 5343 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 5344 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5345 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5346 } else { 5347 SDValue StepVal = lowerScalarSplat( 5348 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 5349 DL, DAG, Subtarget); 5350 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5351 } 5352 } 5353 return StepVec; 5354 } 5355 5356 // Implement vector_reverse using vrgather.vv with indices determined by 5357 // subtracting the id of each element from (VLMAX-1). This will convert 5358 // the indices like so: 5359 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5360 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5361 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5362 SelectionDAG &DAG) const { 5363 SDLoc DL(Op); 5364 MVT VecVT = Op.getSimpleValueType(); 5365 unsigned EltSize = VecVT.getScalarSizeInBits(); 5366 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5367 5368 unsigned MaxVLMAX = 0; 5369 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5370 if (VectorBitsMax != 0) 5371 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 5372 5373 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5374 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5375 5376 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5377 // to use vrgatherei16.vv. 5378 // TODO: It's also possible to use vrgatherei16.vv for other types to 5379 // decrease register width for the index calculation. 5380 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5381 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5382 // Reverse each half, then reassemble them in reverse order. 5383 // NOTE: It's also possible that after splitting that VLMAX no longer 5384 // requires vrgatherei16.vv. 5385 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5386 SDValue Lo, Hi; 5387 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5388 EVT LoVT, HiVT; 5389 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5390 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5391 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5392 // Reassemble the low and high pieces reversed. 5393 // FIXME: This is a CONCAT_VECTORS. 5394 SDValue Res = 5395 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5396 DAG.getIntPtrConstant(0, DL)); 5397 return DAG.getNode( 5398 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5399 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5400 } 5401 5402 // Just promote the int type to i16 which will double the LMUL. 5403 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5404 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5405 } 5406 5407 MVT XLenVT = Subtarget.getXLenVT(); 5408 SDValue Mask, VL; 5409 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5410 5411 // Calculate VLMAX-1 for the desired SEW. 5412 unsigned MinElts = VecVT.getVectorMinNumElements(); 5413 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5414 DAG.getConstant(MinElts, DL, XLenVT)); 5415 SDValue VLMinus1 = 5416 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5417 5418 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5419 bool IsRV32E64 = 5420 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5421 SDValue SplatVL; 5422 if (!IsRV32E64) 5423 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5424 else 5425 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 5426 5427 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5428 SDValue Indices = 5429 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5430 5431 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5432 } 5433 5434 SDValue 5435 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5436 SelectionDAG &DAG) const { 5437 SDLoc DL(Op); 5438 auto *Load = cast<LoadSDNode>(Op); 5439 5440 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5441 Load->getMemoryVT(), 5442 *Load->getMemOperand()) && 5443 "Expecting a correctly-aligned load"); 5444 5445 MVT VT = Op.getSimpleValueType(); 5446 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5447 5448 SDValue VL = 5449 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5450 5451 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5452 SDValue NewLoad = DAG.getMemIntrinsicNode( 5453 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5454 Load->getMemoryVT(), Load->getMemOperand()); 5455 5456 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5457 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5458 } 5459 5460 SDValue 5461 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5462 SelectionDAG &DAG) const { 5463 SDLoc DL(Op); 5464 auto *Store = cast<StoreSDNode>(Op); 5465 5466 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5467 Store->getMemoryVT(), 5468 *Store->getMemOperand()) && 5469 "Expecting a correctly-aligned store"); 5470 5471 SDValue StoreVal = Store->getValue(); 5472 MVT VT = StoreVal.getSimpleValueType(); 5473 5474 // If the size less than a byte, we need to pad with zeros to make a byte. 5475 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5476 VT = MVT::v8i1; 5477 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5478 DAG.getConstant(0, DL, VT), StoreVal, 5479 DAG.getIntPtrConstant(0, DL)); 5480 } 5481 5482 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5483 5484 SDValue VL = 5485 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5486 5487 SDValue NewValue = 5488 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5489 return DAG.getMemIntrinsicNode( 5490 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5491 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5492 Store->getMemoryVT(), Store->getMemOperand()); 5493 } 5494 5495 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5496 SelectionDAG &DAG) const { 5497 SDLoc DL(Op); 5498 MVT VT = Op.getSimpleValueType(); 5499 5500 const auto *MemSD = cast<MemSDNode>(Op); 5501 EVT MemVT = MemSD->getMemoryVT(); 5502 MachineMemOperand *MMO = MemSD->getMemOperand(); 5503 SDValue Chain = MemSD->getChain(); 5504 SDValue BasePtr = MemSD->getBasePtr(); 5505 5506 SDValue Mask, PassThru, VL; 5507 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5508 Mask = VPLoad->getMask(); 5509 PassThru = DAG.getUNDEF(VT); 5510 VL = VPLoad->getVectorLength(); 5511 } else { 5512 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5513 Mask = MLoad->getMask(); 5514 PassThru = MLoad->getPassThru(); 5515 } 5516 5517 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5518 5519 MVT XLenVT = Subtarget.getXLenVT(); 5520 5521 MVT ContainerVT = VT; 5522 if (VT.isFixedLengthVector()) { 5523 ContainerVT = getContainerForFixedLengthVector(VT); 5524 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5525 if (!IsUnmasked) { 5526 MVT MaskVT = 5527 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5528 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5529 } 5530 } 5531 5532 if (!VL) 5533 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5534 5535 unsigned IntID = 5536 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5537 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5538 if (IsUnmasked) 5539 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5540 else 5541 Ops.push_back(PassThru); 5542 Ops.push_back(BasePtr); 5543 if (!IsUnmasked) 5544 Ops.push_back(Mask); 5545 Ops.push_back(VL); 5546 if (!IsUnmasked) 5547 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5548 5549 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5550 5551 SDValue Result = 5552 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5553 Chain = Result.getValue(1); 5554 5555 if (VT.isFixedLengthVector()) 5556 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5557 5558 return DAG.getMergeValues({Result, Chain}, DL); 5559 } 5560 5561 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5562 SelectionDAG &DAG) const { 5563 SDLoc DL(Op); 5564 5565 const auto *MemSD = cast<MemSDNode>(Op); 5566 EVT MemVT = MemSD->getMemoryVT(); 5567 MachineMemOperand *MMO = MemSD->getMemOperand(); 5568 SDValue Chain = MemSD->getChain(); 5569 SDValue BasePtr = MemSD->getBasePtr(); 5570 SDValue Val, Mask, VL; 5571 5572 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5573 Val = VPStore->getValue(); 5574 Mask = VPStore->getMask(); 5575 VL = VPStore->getVectorLength(); 5576 } else { 5577 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5578 Val = MStore->getValue(); 5579 Mask = MStore->getMask(); 5580 } 5581 5582 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5583 5584 MVT VT = Val.getSimpleValueType(); 5585 MVT XLenVT = Subtarget.getXLenVT(); 5586 5587 MVT ContainerVT = VT; 5588 if (VT.isFixedLengthVector()) { 5589 ContainerVT = getContainerForFixedLengthVector(VT); 5590 5591 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5592 if (!IsUnmasked) { 5593 MVT MaskVT = 5594 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5595 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5596 } 5597 } 5598 5599 if (!VL) 5600 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5601 5602 unsigned IntID = 5603 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5604 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5605 Ops.push_back(Val); 5606 Ops.push_back(BasePtr); 5607 if (!IsUnmasked) 5608 Ops.push_back(Mask); 5609 Ops.push_back(VL); 5610 5611 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5612 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5613 } 5614 5615 SDValue 5616 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5617 SelectionDAG &DAG) const { 5618 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5619 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5620 5621 MVT VT = Op.getSimpleValueType(); 5622 5623 SDValue Op1 = 5624 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5625 SDValue Op2 = 5626 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5627 5628 SDLoc DL(Op); 5629 SDValue VL = 5630 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5631 5632 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5633 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5634 5635 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5636 Op.getOperand(2), Mask, VL); 5637 5638 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5639 } 5640 5641 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5642 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5643 MVT VT = Op.getSimpleValueType(); 5644 5645 if (VT.getVectorElementType() == MVT::i1) 5646 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5647 5648 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5649 } 5650 5651 SDValue 5652 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5653 SelectionDAG &DAG) const { 5654 unsigned Opc; 5655 switch (Op.getOpcode()) { 5656 default: llvm_unreachable("Unexpected opcode!"); 5657 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5658 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5659 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5660 } 5661 5662 return lowerToScalableOp(Op, DAG, Opc); 5663 } 5664 5665 // Lower vector ABS to smax(X, sub(0, X)). 5666 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5667 SDLoc DL(Op); 5668 MVT VT = Op.getSimpleValueType(); 5669 SDValue X = Op.getOperand(0); 5670 5671 assert(VT.isFixedLengthVector() && "Unexpected type"); 5672 5673 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5674 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5675 5676 SDValue Mask, VL; 5677 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5678 5679 SDValue SplatZero = 5680 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5681 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5682 SDValue NegX = 5683 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5684 SDValue Max = 5685 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5686 5687 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5688 } 5689 5690 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5691 SDValue Op, SelectionDAG &DAG) const { 5692 SDLoc DL(Op); 5693 MVT VT = Op.getSimpleValueType(); 5694 SDValue Mag = Op.getOperand(0); 5695 SDValue Sign = Op.getOperand(1); 5696 assert(Mag.getValueType() == Sign.getValueType() && 5697 "Can only handle COPYSIGN with matching types."); 5698 5699 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5700 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5701 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5702 5703 SDValue Mask, VL; 5704 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5705 5706 SDValue CopySign = 5707 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5708 5709 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5710 } 5711 5712 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5713 SDValue Op, SelectionDAG &DAG) const { 5714 MVT VT = Op.getSimpleValueType(); 5715 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5716 5717 MVT I1ContainerVT = 5718 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5719 5720 SDValue CC = 5721 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5722 SDValue Op1 = 5723 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5724 SDValue Op2 = 5725 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5726 5727 SDLoc DL(Op); 5728 SDValue Mask, VL; 5729 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5730 5731 SDValue Select = 5732 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5733 5734 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5735 } 5736 5737 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5738 unsigned NewOpc, 5739 bool HasMask) const { 5740 MVT VT = Op.getSimpleValueType(); 5741 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5742 5743 // Create list of operands by converting existing ones to scalable types. 5744 SmallVector<SDValue, 6> Ops; 5745 for (const SDValue &V : Op->op_values()) { 5746 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5747 5748 // Pass through non-vector operands. 5749 if (!V.getValueType().isVector()) { 5750 Ops.push_back(V); 5751 continue; 5752 } 5753 5754 // "cast" fixed length vector to a scalable vector. 5755 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5756 "Only fixed length vectors are supported!"); 5757 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5758 } 5759 5760 SDLoc DL(Op); 5761 SDValue Mask, VL; 5762 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5763 if (HasMask) 5764 Ops.push_back(Mask); 5765 Ops.push_back(VL); 5766 5767 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5768 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5769 } 5770 5771 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5772 // * Operands of each node are assumed to be in the same order. 5773 // * The EVL operand is promoted from i32 to i64 on RV64. 5774 // * Fixed-length vectors are converted to their scalable-vector container 5775 // types. 5776 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5777 unsigned RISCVISDOpc) const { 5778 SDLoc DL(Op); 5779 MVT VT = Op.getSimpleValueType(); 5780 SmallVector<SDValue, 4> Ops; 5781 5782 for (const auto &OpIdx : enumerate(Op->ops())) { 5783 SDValue V = OpIdx.value(); 5784 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5785 // Pass through operands which aren't fixed-length vectors. 5786 if (!V.getValueType().isFixedLengthVector()) { 5787 Ops.push_back(V); 5788 continue; 5789 } 5790 // "cast" fixed length vector to a scalable vector. 5791 MVT OpVT = V.getSimpleValueType(); 5792 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5793 assert(useRVVForFixedLengthVectorVT(OpVT) && 5794 "Only fixed length vectors are supported!"); 5795 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5796 } 5797 5798 if (!VT.isFixedLengthVector()) 5799 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5800 5801 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5802 5803 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5804 5805 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5806 } 5807 5808 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 5809 unsigned MaskOpc, 5810 unsigned VecOpc) const { 5811 MVT VT = Op.getSimpleValueType(); 5812 if (VT.getVectorElementType() != MVT::i1) 5813 return lowerVPOp(Op, DAG, VecOpc); 5814 5815 // It is safe to drop mask parameter as masked-off elements are undef. 5816 SDValue Op1 = Op->getOperand(0); 5817 SDValue Op2 = Op->getOperand(1); 5818 SDValue VL = Op->getOperand(3); 5819 5820 MVT ContainerVT = VT; 5821 const bool IsFixed = VT.isFixedLengthVector(); 5822 if (IsFixed) { 5823 ContainerVT = getContainerForFixedLengthVector(VT); 5824 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 5825 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 5826 } 5827 5828 SDLoc DL(Op); 5829 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 5830 if (!IsFixed) 5831 return Val; 5832 return convertFromScalableVector(VT, Val, DAG, Subtarget); 5833 } 5834 5835 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5836 // matched to a RVV indexed load. The RVV indexed load instructions only 5837 // support the "unsigned unscaled" addressing mode; indices are implicitly 5838 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5839 // signed or scaled indexing is extended to the XLEN value type and scaled 5840 // accordingly. 5841 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5842 SelectionDAG &DAG) const { 5843 SDLoc DL(Op); 5844 MVT VT = Op.getSimpleValueType(); 5845 5846 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5847 EVT MemVT = MemSD->getMemoryVT(); 5848 MachineMemOperand *MMO = MemSD->getMemOperand(); 5849 SDValue Chain = MemSD->getChain(); 5850 SDValue BasePtr = MemSD->getBasePtr(); 5851 5852 ISD::LoadExtType LoadExtType; 5853 SDValue Index, Mask, PassThru, VL; 5854 5855 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5856 Index = VPGN->getIndex(); 5857 Mask = VPGN->getMask(); 5858 PassThru = DAG.getUNDEF(VT); 5859 VL = VPGN->getVectorLength(); 5860 // VP doesn't support extending loads. 5861 LoadExtType = ISD::NON_EXTLOAD; 5862 } else { 5863 // Else it must be a MGATHER. 5864 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5865 Index = MGN->getIndex(); 5866 Mask = MGN->getMask(); 5867 PassThru = MGN->getPassThru(); 5868 LoadExtType = MGN->getExtensionType(); 5869 } 5870 5871 MVT IndexVT = Index.getSimpleValueType(); 5872 MVT XLenVT = Subtarget.getXLenVT(); 5873 5874 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5875 "Unexpected VTs!"); 5876 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5877 // Targets have to explicitly opt-in for extending vector loads. 5878 assert(LoadExtType == ISD::NON_EXTLOAD && 5879 "Unexpected extending MGATHER/VP_GATHER"); 5880 (void)LoadExtType; 5881 5882 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5883 // the selection of the masked intrinsics doesn't do this for us. 5884 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5885 5886 MVT ContainerVT = VT; 5887 if (VT.isFixedLengthVector()) { 5888 // We need to use the larger of the result and index type to determine the 5889 // scalable type to use so we don't increase LMUL for any operand/result. 5890 if (VT.bitsGE(IndexVT)) { 5891 ContainerVT = getContainerForFixedLengthVector(VT); 5892 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5893 ContainerVT.getVectorElementCount()); 5894 } else { 5895 IndexVT = getContainerForFixedLengthVector(IndexVT); 5896 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5897 IndexVT.getVectorElementCount()); 5898 } 5899 5900 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5901 5902 if (!IsUnmasked) { 5903 MVT MaskVT = 5904 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5905 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5906 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5907 } 5908 } 5909 5910 if (!VL) 5911 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5912 5913 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5914 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5915 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 5916 VL); 5917 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 5918 TrueMask, VL); 5919 } 5920 5921 unsigned IntID = 5922 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5923 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5924 if (IsUnmasked) 5925 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5926 else 5927 Ops.push_back(PassThru); 5928 Ops.push_back(BasePtr); 5929 Ops.push_back(Index); 5930 if (!IsUnmasked) 5931 Ops.push_back(Mask); 5932 Ops.push_back(VL); 5933 if (!IsUnmasked) 5934 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5935 5936 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5937 SDValue Result = 5938 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5939 Chain = Result.getValue(1); 5940 5941 if (VT.isFixedLengthVector()) 5942 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5943 5944 return DAG.getMergeValues({Result, Chain}, DL); 5945 } 5946 5947 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5948 // matched to a RVV indexed store. The RVV indexed store instructions only 5949 // support the "unsigned unscaled" addressing mode; indices are implicitly 5950 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5951 // signed or scaled indexing is extended to the XLEN value type and scaled 5952 // accordingly. 5953 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5954 SelectionDAG &DAG) const { 5955 SDLoc DL(Op); 5956 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5957 EVT MemVT = MemSD->getMemoryVT(); 5958 MachineMemOperand *MMO = MemSD->getMemOperand(); 5959 SDValue Chain = MemSD->getChain(); 5960 SDValue BasePtr = MemSD->getBasePtr(); 5961 5962 bool IsTruncatingStore = false; 5963 SDValue Index, Mask, Val, VL; 5964 5965 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5966 Index = VPSN->getIndex(); 5967 Mask = VPSN->getMask(); 5968 Val = VPSN->getValue(); 5969 VL = VPSN->getVectorLength(); 5970 // VP doesn't support truncating stores. 5971 IsTruncatingStore = false; 5972 } else { 5973 // Else it must be a MSCATTER. 5974 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5975 Index = MSN->getIndex(); 5976 Mask = MSN->getMask(); 5977 Val = MSN->getValue(); 5978 IsTruncatingStore = MSN->isTruncatingStore(); 5979 } 5980 5981 MVT VT = Val.getSimpleValueType(); 5982 MVT IndexVT = Index.getSimpleValueType(); 5983 MVT XLenVT = Subtarget.getXLenVT(); 5984 5985 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5986 "Unexpected VTs!"); 5987 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5988 // Targets have to explicitly opt-in for extending vector loads and 5989 // truncating vector stores. 5990 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5991 (void)IsTruncatingStore; 5992 5993 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5994 // the selection of the masked intrinsics doesn't do this for us. 5995 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5996 5997 MVT ContainerVT = VT; 5998 if (VT.isFixedLengthVector()) { 5999 // We need to use the larger of the value and index type to determine the 6000 // scalable type to use so we don't increase LMUL for any operand/result. 6001 if (VT.bitsGE(IndexVT)) { 6002 ContainerVT = getContainerForFixedLengthVector(VT); 6003 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6004 ContainerVT.getVectorElementCount()); 6005 } else { 6006 IndexVT = getContainerForFixedLengthVector(IndexVT); 6007 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 6008 IndexVT.getVectorElementCount()); 6009 } 6010 6011 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6012 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6013 6014 if (!IsUnmasked) { 6015 MVT MaskVT = 6016 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6017 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6018 } 6019 } 6020 6021 if (!VL) 6022 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6023 6024 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6025 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6026 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6027 VL); 6028 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6029 TrueMask, VL); 6030 } 6031 6032 unsigned IntID = 6033 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6034 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6035 Ops.push_back(Val); 6036 Ops.push_back(BasePtr); 6037 Ops.push_back(Index); 6038 if (!IsUnmasked) 6039 Ops.push_back(Mask); 6040 Ops.push_back(VL); 6041 6042 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6043 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6044 } 6045 6046 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6047 SelectionDAG &DAG) const { 6048 const MVT XLenVT = Subtarget.getXLenVT(); 6049 SDLoc DL(Op); 6050 SDValue Chain = Op->getOperand(0); 6051 SDValue SysRegNo = DAG.getTargetConstant( 6052 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6053 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6054 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6055 6056 // Encoding used for rounding mode in RISCV differs from that used in 6057 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6058 // table, which consists of a sequence of 4-bit fields, each representing 6059 // corresponding FLT_ROUNDS mode. 6060 static const int Table = 6061 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6062 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6063 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6064 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6065 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6066 6067 SDValue Shift = 6068 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6069 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6070 DAG.getConstant(Table, DL, XLenVT), Shift); 6071 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6072 DAG.getConstant(7, DL, XLenVT)); 6073 6074 return DAG.getMergeValues({Masked, Chain}, DL); 6075 } 6076 6077 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6078 SelectionDAG &DAG) const { 6079 const MVT XLenVT = Subtarget.getXLenVT(); 6080 SDLoc DL(Op); 6081 SDValue Chain = Op->getOperand(0); 6082 SDValue RMValue = Op->getOperand(1); 6083 SDValue SysRegNo = DAG.getTargetConstant( 6084 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6085 6086 // Encoding used for rounding mode in RISCV differs from that used in 6087 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6088 // a table, which consists of a sequence of 4-bit fields, each representing 6089 // corresponding RISCV mode. 6090 static const unsigned Table = 6091 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6092 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6093 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6094 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6095 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6096 6097 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6098 DAG.getConstant(2, DL, XLenVT)); 6099 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6100 DAG.getConstant(Table, DL, XLenVT), Shift); 6101 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6102 DAG.getConstant(0x7, DL, XLenVT)); 6103 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6104 RMValue); 6105 } 6106 6107 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6108 switch (IntNo) { 6109 default: 6110 llvm_unreachable("Unexpected Intrinsic"); 6111 case Intrinsic::riscv_grev: 6112 return RISCVISD::GREVW; 6113 case Intrinsic::riscv_gorc: 6114 return RISCVISD::GORCW; 6115 case Intrinsic::riscv_bcompress: 6116 return RISCVISD::BCOMPRESSW; 6117 case Intrinsic::riscv_bdecompress: 6118 return RISCVISD::BDECOMPRESSW; 6119 case Intrinsic::riscv_bfp: 6120 return RISCVISD::BFPW; 6121 case Intrinsic::riscv_fsl: 6122 return RISCVISD::FSLW; 6123 case Intrinsic::riscv_fsr: 6124 return RISCVISD::FSRW; 6125 } 6126 } 6127 6128 // Converts the given intrinsic to a i64 operation with any extension. 6129 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6130 unsigned IntNo) { 6131 SDLoc DL(N); 6132 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6133 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6134 SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6135 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); 6136 // ReplaceNodeResults requires we maintain the same type for the return value. 6137 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6138 } 6139 6140 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6141 // form of the given Opcode. 6142 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6143 switch (Opcode) { 6144 default: 6145 llvm_unreachable("Unexpected opcode"); 6146 case ISD::SHL: 6147 return RISCVISD::SLLW; 6148 case ISD::SRA: 6149 return RISCVISD::SRAW; 6150 case ISD::SRL: 6151 return RISCVISD::SRLW; 6152 case ISD::SDIV: 6153 return RISCVISD::DIVW; 6154 case ISD::UDIV: 6155 return RISCVISD::DIVUW; 6156 case ISD::UREM: 6157 return RISCVISD::REMUW; 6158 case ISD::ROTL: 6159 return RISCVISD::ROLW; 6160 case ISD::ROTR: 6161 return RISCVISD::RORW; 6162 case RISCVISD::GREV: 6163 return RISCVISD::GREVW; 6164 case RISCVISD::GORC: 6165 return RISCVISD::GORCW; 6166 } 6167 } 6168 6169 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6170 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6171 // otherwise be promoted to i64, making it difficult to select the 6172 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6173 // type i8/i16/i32 is lost. 6174 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6175 unsigned ExtOpc = ISD::ANY_EXTEND) { 6176 SDLoc DL(N); 6177 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6178 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6179 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6180 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6181 // ReplaceNodeResults requires we maintain the same type for the return value. 6182 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6183 } 6184 6185 // Converts the given 32-bit operation to a i64 operation with signed extension 6186 // semantic to reduce the signed extension instructions. 6187 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6188 SDLoc DL(N); 6189 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6190 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6191 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6192 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6193 DAG.getValueType(MVT::i32)); 6194 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6195 } 6196 6197 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6198 SmallVectorImpl<SDValue> &Results, 6199 SelectionDAG &DAG) const { 6200 SDLoc DL(N); 6201 switch (N->getOpcode()) { 6202 default: 6203 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6204 case ISD::STRICT_FP_TO_SINT: 6205 case ISD::STRICT_FP_TO_UINT: 6206 case ISD::FP_TO_SINT: 6207 case ISD::FP_TO_UINT: { 6208 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6209 "Unexpected custom legalisation"); 6210 bool IsStrict = N->isStrictFPOpcode(); 6211 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6212 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6213 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6214 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6215 TargetLowering::TypeSoftenFloat) { 6216 if (!isTypeLegal(Op0.getValueType())) 6217 return; 6218 if (IsStrict) { 6219 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6220 : RISCVISD::STRICT_FCVT_WU_RV64; 6221 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6222 SDValue Res = DAG.getNode( 6223 Opc, DL, VTs, N->getOperand(0), Op0, 6224 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6225 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6226 Results.push_back(Res.getValue(1)); 6227 return; 6228 } 6229 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6230 SDValue Res = 6231 DAG.getNode(Opc, DL, MVT::i64, Op0, 6232 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6233 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6234 return; 6235 } 6236 // If the FP type needs to be softened, emit a library call using the 'si' 6237 // version. If we left it to default legalization we'd end up with 'di'. If 6238 // the FP type doesn't need to be softened just let generic type 6239 // legalization promote the result type. 6240 RTLIB::Libcall LC; 6241 if (IsSigned) 6242 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6243 else 6244 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6245 MakeLibCallOptions CallOptions; 6246 EVT OpVT = Op0.getValueType(); 6247 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6248 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6249 SDValue Result; 6250 std::tie(Result, Chain) = 6251 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6252 Results.push_back(Result); 6253 if (IsStrict) 6254 Results.push_back(Chain); 6255 break; 6256 } 6257 case ISD::READCYCLECOUNTER: { 6258 assert(!Subtarget.is64Bit() && 6259 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6260 6261 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6262 SDValue RCW = 6263 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6264 6265 Results.push_back( 6266 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6267 Results.push_back(RCW.getValue(2)); 6268 break; 6269 } 6270 case ISD::MUL: { 6271 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6272 unsigned XLen = Subtarget.getXLen(); 6273 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6274 if (Size > XLen) { 6275 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6276 SDValue LHS = N->getOperand(0); 6277 SDValue RHS = N->getOperand(1); 6278 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6279 6280 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6281 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6282 // We need exactly one side to be unsigned. 6283 if (LHSIsU == RHSIsU) 6284 return; 6285 6286 auto MakeMULPair = [&](SDValue S, SDValue U) { 6287 MVT XLenVT = Subtarget.getXLenVT(); 6288 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6289 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6290 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6291 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6292 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6293 }; 6294 6295 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6296 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6297 6298 // The other operand should be signed, but still prefer MULH when 6299 // possible. 6300 if (RHSIsU && LHSIsS && !RHSIsS) 6301 Results.push_back(MakeMULPair(LHS, RHS)); 6302 else if (LHSIsU && RHSIsS && !LHSIsS) 6303 Results.push_back(MakeMULPair(RHS, LHS)); 6304 6305 return; 6306 } 6307 LLVM_FALLTHROUGH; 6308 } 6309 case ISD::ADD: 6310 case ISD::SUB: 6311 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6312 "Unexpected custom legalisation"); 6313 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6314 break; 6315 case ISD::SHL: 6316 case ISD::SRA: 6317 case ISD::SRL: 6318 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6319 "Unexpected custom legalisation"); 6320 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6321 Results.push_back(customLegalizeToWOp(N, DAG)); 6322 break; 6323 } 6324 6325 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6326 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6327 // shift amount. 6328 if (N->getOpcode() == ISD::SHL) { 6329 SDLoc DL(N); 6330 SDValue NewOp0 = 6331 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6332 SDValue NewOp1 = 6333 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6334 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6335 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6336 DAG.getValueType(MVT::i32)); 6337 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6338 } 6339 6340 break; 6341 case ISD::ROTL: 6342 case ISD::ROTR: 6343 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6344 "Unexpected custom legalisation"); 6345 Results.push_back(customLegalizeToWOp(N, DAG)); 6346 break; 6347 case ISD::CTTZ: 6348 case ISD::CTTZ_ZERO_UNDEF: 6349 case ISD::CTLZ: 6350 case ISD::CTLZ_ZERO_UNDEF: { 6351 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6352 "Unexpected custom legalisation"); 6353 6354 SDValue NewOp0 = 6355 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6356 bool IsCTZ = 6357 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6358 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6359 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6360 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6361 return; 6362 } 6363 case ISD::SDIV: 6364 case ISD::UDIV: 6365 case ISD::UREM: { 6366 MVT VT = N->getSimpleValueType(0); 6367 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6368 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6369 "Unexpected custom legalisation"); 6370 // Don't promote division/remainder by constant since we should expand those 6371 // to multiply by magic constant. 6372 // FIXME: What if the expansion is disabled for minsize. 6373 if (N->getOperand(1).getOpcode() == ISD::Constant) 6374 return; 6375 6376 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6377 // the upper 32 bits. For other types we need to sign or zero extend 6378 // based on the opcode. 6379 unsigned ExtOpc = ISD::ANY_EXTEND; 6380 if (VT != MVT::i32) 6381 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6382 : ISD::ZERO_EXTEND; 6383 6384 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6385 break; 6386 } 6387 case ISD::UADDO: 6388 case ISD::USUBO: { 6389 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6390 "Unexpected custom legalisation"); 6391 bool IsAdd = N->getOpcode() == ISD::UADDO; 6392 // Create an ADDW or SUBW. 6393 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6394 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6395 SDValue Res = 6396 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6397 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6398 DAG.getValueType(MVT::i32)); 6399 6400 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6401 // Since the inputs are sign extended from i32, this is equivalent to 6402 // comparing the lower 32 bits. 6403 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6404 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6405 IsAdd ? ISD::SETULT : ISD::SETUGT); 6406 6407 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6408 Results.push_back(Overflow); 6409 return; 6410 } 6411 case ISD::UADDSAT: 6412 case ISD::USUBSAT: { 6413 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6414 "Unexpected custom legalisation"); 6415 if (Subtarget.hasStdExtZbb()) { 6416 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6417 // sign extend allows overflow of the lower 32 bits to be detected on 6418 // the promoted size. 6419 SDValue LHS = 6420 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6421 SDValue RHS = 6422 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6423 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6424 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6425 return; 6426 } 6427 6428 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6429 // promotion for UADDO/USUBO. 6430 Results.push_back(expandAddSubSat(N, DAG)); 6431 return; 6432 } 6433 case ISD::BITCAST: { 6434 EVT VT = N->getValueType(0); 6435 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6436 SDValue Op0 = N->getOperand(0); 6437 EVT Op0VT = Op0.getValueType(); 6438 MVT XLenVT = Subtarget.getXLenVT(); 6439 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6440 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6441 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6442 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6443 Subtarget.hasStdExtF()) { 6444 SDValue FPConv = 6445 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6446 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6447 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6448 isTypeLegal(Op0VT)) { 6449 // Custom-legalize bitcasts from fixed-length vector types to illegal 6450 // scalar types in order to improve codegen. Bitcast the vector to a 6451 // one-element vector type whose element type is the same as the result 6452 // type, and extract the first element. 6453 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6454 if (isTypeLegal(BVT)) { 6455 SDValue BVec = DAG.getBitcast(BVT, Op0); 6456 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6457 DAG.getConstant(0, DL, XLenVT))); 6458 } 6459 } 6460 break; 6461 } 6462 case RISCVISD::GREV: 6463 case RISCVISD::GORC: { 6464 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6465 "Unexpected custom legalisation"); 6466 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6467 // This is similar to customLegalizeToWOp, except that we pass the second 6468 // operand (a TargetConstant) straight through: it is already of type 6469 // XLenVT. 6470 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6471 SDValue NewOp0 = 6472 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6473 SDValue NewOp1 = 6474 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6475 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6476 // ReplaceNodeResults requires we maintain the same type for the return 6477 // value. 6478 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6479 break; 6480 } 6481 case RISCVISD::SHFL: { 6482 // There is no SHFLIW instruction, but we can just promote the operation. 6483 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6484 "Unexpected custom legalisation"); 6485 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6486 SDValue NewOp0 = 6487 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6488 SDValue NewOp1 = 6489 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6490 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 6491 // ReplaceNodeResults requires we maintain the same type for the return 6492 // value. 6493 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6494 break; 6495 } 6496 case ISD::BSWAP: 6497 case ISD::BITREVERSE: { 6498 MVT VT = N->getSimpleValueType(0); 6499 MVT XLenVT = Subtarget.getXLenVT(); 6500 assert((VT == MVT::i8 || VT == MVT::i16 || 6501 (VT == MVT::i32 && Subtarget.is64Bit())) && 6502 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6503 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6504 unsigned Imm = VT.getSizeInBits() - 1; 6505 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6506 if (N->getOpcode() == ISD::BSWAP) 6507 Imm &= ~0x7U; 6508 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 6509 SDValue GREVI = 6510 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 6511 // ReplaceNodeResults requires we maintain the same type for the return 6512 // value. 6513 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6514 break; 6515 } 6516 case ISD::FSHL: 6517 case ISD::FSHR: { 6518 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6519 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6520 SDValue NewOp0 = 6521 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6522 SDValue NewOp1 = 6523 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6524 SDValue NewShAmt = 6525 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6526 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6527 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 6528 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 6529 DAG.getConstant(0x1f, DL, MVT::i64)); 6530 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 6531 // instruction use different orders. fshl will return its first operand for 6532 // shift of zero, fshr will return its second operand. fsl and fsr both 6533 // return rs1 so the ISD nodes need to have different operand orders. 6534 // Shift amount is in rs2. 6535 unsigned Opc = RISCVISD::FSLW; 6536 if (N->getOpcode() == ISD::FSHR) { 6537 std::swap(NewOp0, NewOp1); 6538 Opc = RISCVISD::FSRW; 6539 } 6540 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 6541 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6542 break; 6543 } 6544 case ISD::EXTRACT_VECTOR_ELT: { 6545 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6546 // type is illegal (currently only vXi64 RV32). 6547 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6548 // transferred to the destination register. We issue two of these from the 6549 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6550 // first element. 6551 SDValue Vec = N->getOperand(0); 6552 SDValue Idx = N->getOperand(1); 6553 6554 // The vector type hasn't been legalized yet so we can't issue target 6555 // specific nodes if it needs legalization. 6556 // FIXME: We would manually legalize if it's important. 6557 if (!isTypeLegal(Vec.getValueType())) 6558 return; 6559 6560 MVT VecVT = Vec.getSimpleValueType(); 6561 6562 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6563 VecVT.getVectorElementType() == MVT::i64 && 6564 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6565 6566 // If this is a fixed vector, we need to convert it to a scalable vector. 6567 MVT ContainerVT = VecVT; 6568 if (VecVT.isFixedLengthVector()) { 6569 ContainerVT = getContainerForFixedLengthVector(VecVT); 6570 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6571 } 6572 6573 MVT XLenVT = Subtarget.getXLenVT(); 6574 6575 // Use a VL of 1 to avoid processing more elements than we need. 6576 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6577 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6578 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6579 6580 // Unless the index is known to be 0, we must slide the vector down to get 6581 // the desired element into index 0. 6582 if (!isNullConstant(Idx)) { 6583 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6584 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6585 } 6586 6587 // Extract the lower XLEN bits of the correct vector element. 6588 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6589 6590 // To extract the upper XLEN bits of the vector element, shift the first 6591 // element right by 32 bits and re-extract the lower XLEN bits. 6592 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6593 DAG.getConstant(32, DL, XLenVT), VL); 6594 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6595 ThirtyTwoV, Mask, VL); 6596 6597 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6598 6599 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6600 break; 6601 } 6602 case ISD::INTRINSIC_WO_CHAIN: { 6603 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6604 switch (IntNo) { 6605 default: 6606 llvm_unreachable( 6607 "Don't know how to custom type legalize this intrinsic!"); 6608 case Intrinsic::riscv_grev: 6609 case Intrinsic::riscv_gorc: 6610 case Intrinsic::riscv_bcompress: 6611 case Intrinsic::riscv_bdecompress: 6612 case Intrinsic::riscv_bfp: { 6613 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6614 "Unexpected custom legalisation"); 6615 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 6616 break; 6617 } 6618 case Intrinsic::riscv_fsl: 6619 case Intrinsic::riscv_fsr: { 6620 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6621 "Unexpected custom legalisation"); 6622 SDValue NewOp1 = 6623 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6624 SDValue NewOp2 = 6625 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6626 SDValue NewOp3 = 6627 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)); 6628 unsigned Opc = getRISCVWOpcodeByIntr(IntNo); 6629 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3); 6630 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6631 break; 6632 } 6633 case Intrinsic::riscv_orc_b: { 6634 // Lower to the GORCI encoding for orc.b with the operand extended. 6635 SDValue NewOp = 6636 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6637 // If Zbp is enabled, use GORCIW which will sign extend the result. 6638 unsigned Opc = 6639 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6640 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6641 DAG.getConstant(7, DL, MVT::i64)); 6642 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6643 return; 6644 } 6645 case Intrinsic::riscv_shfl: 6646 case Intrinsic::riscv_unshfl: { 6647 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6648 "Unexpected custom legalisation"); 6649 SDValue NewOp1 = 6650 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6651 SDValue NewOp2 = 6652 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6653 unsigned Opc = 6654 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6655 // There is no (UN)SHFLIW. If the control word is a constant, we can use 6656 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 6657 // will be shuffled the same way as the lower 32 bit half, but the two 6658 // halves won't cross. 6659 if (isa<ConstantSDNode>(NewOp2)) { 6660 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6661 DAG.getConstant(0xf, DL, MVT::i64)); 6662 Opc = 6663 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6664 } 6665 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6666 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6667 break; 6668 } 6669 case Intrinsic::riscv_vmv_x_s: { 6670 EVT VT = N->getValueType(0); 6671 MVT XLenVT = Subtarget.getXLenVT(); 6672 if (VT.bitsLT(XLenVT)) { 6673 // Simple case just extract using vmv.x.s and truncate. 6674 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6675 Subtarget.getXLenVT(), N->getOperand(1)); 6676 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6677 return; 6678 } 6679 6680 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6681 "Unexpected custom legalization"); 6682 6683 // We need to do the move in two steps. 6684 SDValue Vec = N->getOperand(1); 6685 MVT VecVT = Vec.getSimpleValueType(); 6686 6687 // First extract the lower XLEN bits of the element. 6688 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6689 6690 // To extract the upper XLEN bits of the vector element, shift the first 6691 // element right by 32 bits and re-extract the lower XLEN bits. 6692 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6693 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6694 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6695 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6696 DAG.getConstant(32, DL, XLenVT), VL); 6697 SDValue LShr32 = 6698 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6699 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6700 6701 Results.push_back( 6702 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6703 break; 6704 } 6705 } 6706 break; 6707 } 6708 case ISD::VECREDUCE_ADD: 6709 case ISD::VECREDUCE_AND: 6710 case ISD::VECREDUCE_OR: 6711 case ISD::VECREDUCE_XOR: 6712 case ISD::VECREDUCE_SMAX: 6713 case ISD::VECREDUCE_UMAX: 6714 case ISD::VECREDUCE_SMIN: 6715 case ISD::VECREDUCE_UMIN: 6716 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6717 Results.push_back(V); 6718 break; 6719 case ISD::VP_REDUCE_ADD: 6720 case ISD::VP_REDUCE_AND: 6721 case ISD::VP_REDUCE_OR: 6722 case ISD::VP_REDUCE_XOR: 6723 case ISD::VP_REDUCE_SMAX: 6724 case ISD::VP_REDUCE_UMAX: 6725 case ISD::VP_REDUCE_SMIN: 6726 case ISD::VP_REDUCE_UMIN: 6727 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6728 Results.push_back(V); 6729 break; 6730 case ISD::FLT_ROUNDS_: { 6731 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6732 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6733 Results.push_back(Res.getValue(0)); 6734 Results.push_back(Res.getValue(1)); 6735 break; 6736 } 6737 } 6738 } 6739 6740 // A structure to hold one of the bit-manipulation patterns below. Together, a 6741 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6742 // (or (and (shl x, 1), 0xAAAAAAAA), 6743 // (and (srl x, 1), 0x55555555)) 6744 struct RISCVBitmanipPat { 6745 SDValue Op; 6746 unsigned ShAmt; 6747 bool IsSHL; 6748 6749 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6750 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6751 } 6752 }; 6753 6754 // Matches patterns of the form 6755 // (and (shl x, C2), (C1 << C2)) 6756 // (and (srl x, C2), C1) 6757 // (shl (and x, C1), C2) 6758 // (srl (and x, (C1 << C2)), C2) 6759 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6760 // The expected masks for each shift amount are specified in BitmanipMasks where 6761 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6762 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6763 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6764 // XLen is 64. 6765 static Optional<RISCVBitmanipPat> 6766 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6767 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6768 "Unexpected number of masks"); 6769 Optional<uint64_t> Mask; 6770 // Optionally consume a mask around the shift operation. 6771 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6772 Mask = Op.getConstantOperandVal(1); 6773 Op = Op.getOperand(0); 6774 } 6775 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6776 return None; 6777 bool IsSHL = Op.getOpcode() == ISD::SHL; 6778 6779 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6780 return None; 6781 uint64_t ShAmt = Op.getConstantOperandVal(1); 6782 6783 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6784 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6785 return None; 6786 // If we don't have enough masks for 64 bit, then we must be trying to 6787 // match SHFL so we're only allowed to shift 1/4 of the width. 6788 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6789 return None; 6790 6791 SDValue Src = Op.getOperand(0); 6792 6793 // The expected mask is shifted left when the AND is found around SHL 6794 // patterns. 6795 // ((x >> 1) & 0x55555555) 6796 // ((x << 1) & 0xAAAAAAAA) 6797 bool SHLExpMask = IsSHL; 6798 6799 if (!Mask) { 6800 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6801 // the mask is all ones: consume that now. 6802 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6803 Mask = Src.getConstantOperandVal(1); 6804 Src = Src.getOperand(0); 6805 // The expected mask is now in fact shifted left for SRL, so reverse the 6806 // decision. 6807 // ((x & 0xAAAAAAAA) >> 1) 6808 // ((x & 0x55555555) << 1) 6809 SHLExpMask = !SHLExpMask; 6810 } else { 6811 // Use a default shifted mask of all-ones if there's no AND, truncated 6812 // down to the expected width. This simplifies the logic later on. 6813 Mask = maskTrailingOnes<uint64_t>(Width); 6814 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6815 } 6816 } 6817 6818 unsigned MaskIdx = Log2_32(ShAmt); 6819 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6820 6821 if (SHLExpMask) 6822 ExpMask <<= ShAmt; 6823 6824 if (Mask != ExpMask) 6825 return None; 6826 6827 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6828 } 6829 6830 // Matches any of the following bit-manipulation patterns: 6831 // (and (shl x, 1), (0x55555555 << 1)) 6832 // (and (srl x, 1), 0x55555555) 6833 // (shl (and x, 0x55555555), 1) 6834 // (srl (and x, (0x55555555 << 1)), 1) 6835 // where the shift amount and mask may vary thus: 6836 // [1] = 0x55555555 / 0xAAAAAAAA 6837 // [2] = 0x33333333 / 0xCCCCCCCC 6838 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6839 // [8] = 0x00FF00FF / 0xFF00FF00 6840 // [16] = 0x0000FFFF / 0xFFFFFFFF 6841 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6842 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6843 // These are the unshifted masks which we use to match bit-manipulation 6844 // patterns. They may be shifted left in certain circumstances. 6845 static const uint64_t BitmanipMasks[] = { 6846 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6847 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6848 6849 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6850 } 6851 6852 // Match the following pattern as a GREVI(W) operation 6853 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6854 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6855 const RISCVSubtarget &Subtarget) { 6856 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6857 EVT VT = Op.getValueType(); 6858 6859 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6860 auto LHS = matchGREVIPat(Op.getOperand(0)); 6861 auto RHS = matchGREVIPat(Op.getOperand(1)); 6862 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6863 SDLoc DL(Op); 6864 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6865 DAG.getConstant(LHS->ShAmt, DL, VT)); 6866 } 6867 } 6868 return SDValue(); 6869 } 6870 6871 // Matches any the following pattern as a GORCI(W) operation 6872 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6873 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6874 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6875 // Note that with the variant of 3., 6876 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6877 // the inner pattern will first be matched as GREVI and then the outer 6878 // pattern will be matched to GORC via the first rule above. 6879 // 4. (or (rotl/rotr x, bitwidth/2), x) 6880 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6881 const RISCVSubtarget &Subtarget) { 6882 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6883 EVT VT = Op.getValueType(); 6884 6885 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6886 SDLoc DL(Op); 6887 SDValue Op0 = Op.getOperand(0); 6888 SDValue Op1 = Op.getOperand(1); 6889 6890 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6891 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6892 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6893 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6894 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6895 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6896 if ((Reverse.getOpcode() == ISD::ROTL || 6897 Reverse.getOpcode() == ISD::ROTR) && 6898 Reverse.getOperand(0) == X && 6899 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6900 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6901 if (RotAmt == (VT.getSizeInBits() / 2)) 6902 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6903 DAG.getConstant(RotAmt, DL, VT)); 6904 } 6905 return SDValue(); 6906 }; 6907 6908 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6909 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6910 return V; 6911 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6912 return V; 6913 6914 // OR is commutable so canonicalize its OR operand to the left 6915 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6916 std::swap(Op0, Op1); 6917 if (Op0.getOpcode() != ISD::OR) 6918 return SDValue(); 6919 SDValue OrOp0 = Op0.getOperand(0); 6920 SDValue OrOp1 = Op0.getOperand(1); 6921 auto LHS = matchGREVIPat(OrOp0); 6922 // OR is commutable so swap the operands and try again: x might have been 6923 // on the left 6924 if (!LHS) { 6925 std::swap(OrOp0, OrOp1); 6926 LHS = matchGREVIPat(OrOp0); 6927 } 6928 auto RHS = matchGREVIPat(Op1); 6929 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6930 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6931 DAG.getConstant(LHS->ShAmt, DL, VT)); 6932 } 6933 } 6934 return SDValue(); 6935 } 6936 6937 // Matches any of the following bit-manipulation patterns: 6938 // (and (shl x, 1), (0x22222222 << 1)) 6939 // (and (srl x, 1), 0x22222222) 6940 // (shl (and x, 0x22222222), 1) 6941 // (srl (and x, (0x22222222 << 1)), 1) 6942 // where the shift amount and mask may vary thus: 6943 // [1] = 0x22222222 / 0x44444444 6944 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6945 // [4] = 0x00F000F0 / 0x0F000F00 6946 // [8] = 0x0000FF00 / 0x00FF0000 6947 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6948 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6949 // These are the unshifted masks which we use to match bit-manipulation 6950 // patterns. They may be shifted left in certain circumstances. 6951 static const uint64_t BitmanipMasks[] = { 6952 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6953 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6954 6955 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6956 } 6957 6958 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6959 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6960 const RISCVSubtarget &Subtarget) { 6961 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6962 EVT VT = Op.getValueType(); 6963 6964 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6965 return SDValue(); 6966 6967 SDValue Op0 = Op.getOperand(0); 6968 SDValue Op1 = Op.getOperand(1); 6969 6970 // Or is commutable so canonicalize the second OR to the LHS. 6971 if (Op0.getOpcode() != ISD::OR) 6972 std::swap(Op0, Op1); 6973 if (Op0.getOpcode() != ISD::OR) 6974 return SDValue(); 6975 6976 // We found an inner OR, so our operands are the operands of the inner OR 6977 // and the other operand of the outer OR. 6978 SDValue A = Op0.getOperand(0); 6979 SDValue B = Op0.getOperand(1); 6980 SDValue C = Op1; 6981 6982 auto Match1 = matchSHFLPat(A); 6983 auto Match2 = matchSHFLPat(B); 6984 6985 // If neither matched, we failed. 6986 if (!Match1 && !Match2) 6987 return SDValue(); 6988 6989 // We had at least one match. if one failed, try the remaining C operand. 6990 if (!Match1) { 6991 std::swap(A, C); 6992 Match1 = matchSHFLPat(A); 6993 if (!Match1) 6994 return SDValue(); 6995 } else if (!Match2) { 6996 std::swap(B, C); 6997 Match2 = matchSHFLPat(B); 6998 if (!Match2) 6999 return SDValue(); 7000 } 7001 assert(Match1 && Match2); 7002 7003 // Make sure our matches pair up. 7004 if (!Match1->formsPairWith(*Match2)) 7005 return SDValue(); 7006 7007 // All the remains is to make sure C is an AND with the same input, that masks 7008 // out the bits that are being shuffled. 7009 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7010 C.getOperand(0) != Match1->Op) 7011 return SDValue(); 7012 7013 uint64_t Mask = C.getConstantOperandVal(1); 7014 7015 static const uint64_t BitmanipMasks[] = { 7016 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7017 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7018 }; 7019 7020 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7021 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7022 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7023 7024 if (Mask != ExpMask) 7025 return SDValue(); 7026 7027 SDLoc DL(Op); 7028 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7029 DAG.getConstant(Match1->ShAmt, DL, VT)); 7030 } 7031 7032 // Optimize (add (shl x, c0), (shl y, c1)) -> 7033 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7034 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7035 const RISCVSubtarget &Subtarget) { 7036 // Perform this optimization only in the zba extension. 7037 if (!Subtarget.hasStdExtZba()) 7038 return SDValue(); 7039 7040 // Skip for vector types and larger types. 7041 EVT VT = N->getValueType(0); 7042 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7043 return SDValue(); 7044 7045 // The two operand nodes must be SHL and have no other use. 7046 SDValue N0 = N->getOperand(0); 7047 SDValue N1 = N->getOperand(1); 7048 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7049 !N0->hasOneUse() || !N1->hasOneUse()) 7050 return SDValue(); 7051 7052 // Check c0 and c1. 7053 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7054 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7055 if (!N0C || !N1C) 7056 return SDValue(); 7057 int64_t C0 = N0C->getSExtValue(); 7058 int64_t C1 = N1C->getSExtValue(); 7059 if (C0 <= 0 || C1 <= 0) 7060 return SDValue(); 7061 7062 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7063 int64_t Bits = std::min(C0, C1); 7064 int64_t Diff = std::abs(C0 - C1); 7065 if (Diff != 1 && Diff != 2 && Diff != 3) 7066 return SDValue(); 7067 7068 // Build nodes. 7069 SDLoc DL(N); 7070 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7071 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7072 SDValue NA0 = 7073 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7074 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7075 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7076 } 7077 7078 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7079 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7080 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7081 // not undo itself, but they are redundant. 7082 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7083 SDValue Src = N->getOperand(0); 7084 7085 if (Src.getOpcode() != N->getOpcode()) 7086 return SDValue(); 7087 7088 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7089 !isa<ConstantSDNode>(Src.getOperand(1))) 7090 return SDValue(); 7091 7092 unsigned ShAmt1 = N->getConstantOperandVal(1); 7093 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7094 Src = Src.getOperand(0); 7095 7096 unsigned CombinedShAmt; 7097 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 7098 CombinedShAmt = ShAmt1 | ShAmt2; 7099 else 7100 CombinedShAmt = ShAmt1 ^ ShAmt2; 7101 7102 if (CombinedShAmt == 0) 7103 return Src; 7104 7105 SDLoc DL(N); 7106 return DAG.getNode( 7107 N->getOpcode(), DL, N->getValueType(0), Src, 7108 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7109 } 7110 7111 // Combine a constant select operand into its use: 7112 // 7113 // (and (select cond, -1, c), x) 7114 // -> (select cond, x, (and x, c)) [AllOnes=1] 7115 // (or (select cond, 0, c), x) 7116 // -> (select cond, x, (or x, c)) [AllOnes=0] 7117 // (xor (select cond, 0, c), x) 7118 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7119 // (add (select cond, 0, c), x) 7120 // -> (select cond, x, (add x, c)) [AllOnes=0] 7121 // (sub x, (select cond, 0, c)) 7122 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7123 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7124 SelectionDAG &DAG, bool AllOnes) { 7125 EVT VT = N->getValueType(0); 7126 7127 // Skip vectors. 7128 if (VT.isVector()) 7129 return SDValue(); 7130 7131 if ((Slct.getOpcode() != ISD::SELECT && 7132 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7133 !Slct.hasOneUse()) 7134 return SDValue(); 7135 7136 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7137 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7138 }; 7139 7140 bool SwapSelectOps; 7141 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7142 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7143 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7144 SDValue NonConstantVal; 7145 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7146 SwapSelectOps = false; 7147 NonConstantVal = FalseVal; 7148 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7149 SwapSelectOps = true; 7150 NonConstantVal = TrueVal; 7151 } else 7152 return SDValue(); 7153 7154 // Slct is now know to be the desired identity constant when CC is true. 7155 TrueVal = OtherOp; 7156 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7157 // Unless SwapSelectOps says the condition should be false. 7158 if (SwapSelectOps) 7159 std::swap(TrueVal, FalseVal); 7160 7161 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7162 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7163 {Slct.getOperand(0), Slct.getOperand(1), 7164 Slct.getOperand(2), TrueVal, FalseVal}); 7165 7166 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7167 {Slct.getOperand(0), TrueVal, FalseVal}); 7168 } 7169 7170 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7171 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7172 bool AllOnes) { 7173 SDValue N0 = N->getOperand(0); 7174 SDValue N1 = N->getOperand(1); 7175 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7176 return Result; 7177 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7178 return Result; 7179 return SDValue(); 7180 } 7181 7182 // Transform (add (mul x, c0), c1) -> 7183 // (add (mul (add x, c1/c0), c0), c1%c0). 7184 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7185 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7186 // to an infinite loop in DAGCombine if transformed. 7187 // Or transform (add (mul x, c0), c1) -> 7188 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7189 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7190 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7191 // lead to an infinite loop in DAGCombine if transformed. 7192 // Or transform (add (mul x, c0), c1) -> 7193 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7194 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7195 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7196 // lead to an infinite loop in DAGCombine if transformed. 7197 // Or transform (add (mul x, c0), c1) -> 7198 // (mul (add x, c1/c0), c0). 7199 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7200 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7201 const RISCVSubtarget &Subtarget) { 7202 // Skip for vector types and larger types. 7203 EVT VT = N->getValueType(0); 7204 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7205 return SDValue(); 7206 // The first operand node must be a MUL and has no other use. 7207 SDValue N0 = N->getOperand(0); 7208 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7209 return SDValue(); 7210 // Check if c0 and c1 match above conditions. 7211 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7212 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7213 if (!N0C || !N1C) 7214 return SDValue(); 7215 // If N0C has multiple uses it's possible one of the cases in 7216 // DAGCombiner::isMulAddWithConstProfitable will be true, which would result 7217 // in an infinite loop. 7218 if (!N0C->hasOneUse()) 7219 return SDValue(); 7220 int64_t C0 = N0C->getSExtValue(); 7221 int64_t C1 = N1C->getSExtValue(); 7222 int64_t CA, CB; 7223 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7224 return SDValue(); 7225 // Search for proper CA (non-zero) and CB that both are simm12. 7226 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7227 !isInt<12>(C0 * (C1 / C0))) { 7228 CA = C1 / C0; 7229 CB = C1 % C0; 7230 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7231 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7232 CA = C1 / C0 + 1; 7233 CB = C1 % C0 - C0; 7234 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7235 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7236 CA = C1 / C0 - 1; 7237 CB = C1 % C0 + C0; 7238 } else 7239 return SDValue(); 7240 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7241 SDLoc DL(N); 7242 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7243 DAG.getConstant(CA, DL, VT)); 7244 SDValue New1 = 7245 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7246 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7247 } 7248 7249 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7250 const RISCVSubtarget &Subtarget) { 7251 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7252 return V; 7253 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7254 return V; 7255 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7256 // (select lhs, rhs, cc, x, (add x, y)) 7257 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7258 } 7259 7260 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7261 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7262 // (select lhs, rhs, cc, x, (sub x, y)) 7263 SDValue N0 = N->getOperand(0); 7264 SDValue N1 = N->getOperand(1); 7265 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7266 } 7267 7268 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7269 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7270 // (select lhs, rhs, cc, x, (and x, y)) 7271 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7272 } 7273 7274 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7275 const RISCVSubtarget &Subtarget) { 7276 if (Subtarget.hasStdExtZbp()) { 7277 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7278 return GREV; 7279 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7280 return GORC; 7281 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7282 return SHFL; 7283 } 7284 7285 // fold (or (select cond, 0, y), x) -> 7286 // (select cond, x, (or x, y)) 7287 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7288 } 7289 7290 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7291 // fold (xor (select cond, 0, y), x) -> 7292 // (select cond, x, (xor x, y)) 7293 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7294 } 7295 7296 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 7297 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 7298 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 7299 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 7300 // ADDW/SUBW/MULW. 7301 static SDValue performANY_EXTENDCombine(SDNode *N, 7302 TargetLowering::DAGCombinerInfo &DCI, 7303 const RISCVSubtarget &Subtarget) { 7304 if (!Subtarget.is64Bit()) 7305 return SDValue(); 7306 7307 SelectionDAG &DAG = DCI.DAG; 7308 7309 SDValue Src = N->getOperand(0); 7310 EVT VT = N->getValueType(0); 7311 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 7312 return SDValue(); 7313 7314 // The opcode must be one that can implicitly sign_extend. 7315 // FIXME: Additional opcodes. 7316 switch (Src.getOpcode()) { 7317 default: 7318 return SDValue(); 7319 case ISD::MUL: 7320 if (!Subtarget.hasStdExtM()) 7321 return SDValue(); 7322 LLVM_FALLTHROUGH; 7323 case ISD::ADD: 7324 case ISD::SUB: 7325 break; 7326 } 7327 7328 // Only handle cases where the result is used by a CopyToReg. That likely 7329 // means the value is a liveout of the basic block. This helps prevent 7330 // infinite combine loops like PR51206. 7331 if (none_of(N->uses(), 7332 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 7333 return SDValue(); 7334 7335 SmallVector<SDNode *, 4> SetCCs; 7336 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 7337 UE = Src.getNode()->use_end(); 7338 UI != UE; ++UI) { 7339 SDNode *User = *UI; 7340 if (User == N) 7341 continue; 7342 if (UI.getUse().getResNo() != Src.getResNo()) 7343 continue; 7344 // All i32 setccs are legalized by sign extending operands. 7345 if (User->getOpcode() == ISD::SETCC) { 7346 SetCCs.push_back(User); 7347 continue; 7348 } 7349 // We don't know if we can extend this user. 7350 break; 7351 } 7352 7353 // If we don't have any SetCCs, this isn't worthwhile. 7354 if (SetCCs.empty()) 7355 return SDValue(); 7356 7357 SDLoc DL(N); 7358 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 7359 DCI.CombineTo(N, SExt); 7360 7361 // Promote all the setccs. 7362 for (SDNode *SetCC : SetCCs) { 7363 SmallVector<SDValue, 4> Ops; 7364 7365 for (unsigned j = 0; j != 2; ++j) { 7366 SDValue SOp = SetCC->getOperand(j); 7367 if (SOp == Src) 7368 Ops.push_back(SExt); 7369 else 7370 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 7371 } 7372 7373 Ops.push_back(SetCC->getOperand(2)); 7374 DCI.CombineTo(SetCC, 7375 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 7376 } 7377 return SDValue(N, 0); 7378 } 7379 7380 // Try to form VWMUL, VWMULU or VWMULSU. 7381 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 7382 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 7383 bool Commute) { 7384 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7385 SDValue Op0 = N->getOperand(0); 7386 SDValue Op1 = N->getOperand(1); 7387 if (Commute) 7388 std::swap(Op0, Op1); 7389 7390 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7391 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7392 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 7393 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7394 return SDValue(); 7395 7396 SDValue Mask = N->getOperand(2); 7397 SDValue VL = N->getOperand(3); 7398 7399 // Make sure the mask and VL match. 7400 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 7401 return SDValue(); 7402 7403 MVT VT = N->getSimpleValueType(0); 7404 7405 // Determine the narrow size for a widening multiply. 7406 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7407 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7408 VT.getVectorElementCount()); 7409 7410 SDLoc DL(N); 7411 7412 // See if the other operand is the same opcode. 7413 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 7414 if (!Op1.hasOneUse()) 7415 return SDValue(); 7416 7417 // Make sure the mask and VL match. 7418 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 7419 return SDValue(); 7420 7421 Op1 = Op1.getOperand(0); 7422 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 7423 // The operand is a splat of a scalar. 7424 7425 // The VL must be the same. 7426 if (Op1.getOperand(1) != VL) 7427 return SDValue(); 7428 7429 // Get the scalar value. 7430 Op1 = Op1.getOperand(0); 7431 7432 // See if have enough sign bits or zero bits in the scalar to use a 7433 // widening multiply by splatting to smaller element size. 7434 unsigned EltBits = VT.getScalarSizeInBits(); 7435 unsigned ScalarBits = Op1.getValueSizeInBits(); 7436 // Make sure we're getting all element bits from the scalar register. 7437 // FIXME: Support implicit sign extension of vmv.v.x? 7438 if (ScalarBits < EltBits) 7439 return SDValue(); 7440 7441 if (IsSignExt) { 7442 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 7443 return SDValue(); 7444 } else { 7445 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7446 if (!DAG.MaskedValueIsZero(Op1, Mask)) 7447 return SDValue(); 7448 } 7449 7450 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 7451 } else 7452 return SDValue(); 7453 7454 Op0 = Op0.getOperand(0); 7455 7456 // Re-introduce narrower extends if needed. 7457 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7458 if (Op0.getValueType() != NarrowVT) 7459 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7460 // vwmulsu requires second operand to be zero extended. 7461 ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc; 7462 if (Op1.getValueType() != NarrowVT) 7463 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7464 7465 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 7466 if (!IsVWMULSU) 7467 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7468 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7469 } 7470 7471 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 7472 switch (Op.getOpcode()) { 7473 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 7474 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 7475 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 7476 case ISD::FCEIL: return RISCVFPRndMode::RUP; 7477 case ISD::FROUND: return RISCVFPRndMode::RMM; 7478 } 7479 7480 return RISCVFPRndMode::Invalid; 7481 } 7482 7483 // Fold 7484 // (fp_to_int (froundeven X)) -> fcvt X, rne 7485 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 7486 // (fp_to_int (ffloor X)) -> fcvt X, rdn 7487 // (fp_to_int (fceil X)) -> fcvt X, rup 7488 // (fp_to_int (fround X)) -> fcvt X, rmm 7489 static SDValue performFP_TO_INTCombine(SDNode *N, 7490 TargetLowering::DAGCombinerInfo &DCI, 7491 const RISCVSubtarget &Subtarget) { 7492 SelectionDAG &DAG = DCI.DAG; 7493 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7494 MVT XLenVT = Subtarget.getXLenVT(); 7495 7496 // Only handle XLen or i32 types. Other types narrower than XLen will 7497 // eventually be legalized to XLenVT. 7498 EVT VT = N->getValueType(0); 7499 if (VT != MVT::i32 && VT != XLenVT) 7500 return SDValue(); 7501 7502 SDValue Src = N->getOperand(0); 7503 7504 // Ensure the FP type is also legal. 7505 if (!TLI.isTypeLegal(Src.getValueType())) 7506 return SDValue(); 7507 7508 // Don't do this for f16 with Zfhmin and not Zfh. 7509 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7510 return SDValue(); 7511 7512 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7513 if (FRM == RISCVFPRndMode::Invalid) 7514 return SDValue(); 7515 7516 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 7517 7518 unsigned Opc; 7519 if (VT == XLenVT) 7520 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7521 else 7522 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7523 7524 SDLoc DL(N); 7525 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 7526 DAG.getTargetConstant(FRM, DL, XLenVT)); 7527 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 7528 } 7529 7530 // Fold 7531 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 7532 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 7533 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 7534 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 7535 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 7536 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 7537 TargetLowering::DAGCombinerInfo &DCI, 7538 const RISCVSubtarget &Subtarget) { 7539 SelectionDAG &DAG = DCI.DAG; 7540 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7541 MVT XLenVT = Subtarget.getXLenVT(); 7542 7543 // Only handle XLen types. Other types narrower than XLen will eventually be 7544 // legalized to XLenVT. 7545 EVT DstVT = N->getValueType(0); 7546 if (DstVT != XLenVT) 7547 return SDValue(); 7548 7549 SDValue Src = N->getOperand(0); 7550 7551 // Ensure the FP type is also legal. 7552 if (!TLI.isTypeLegal(Src.getValueType())) 7553 return SDValue(); 7554 7555 // Don't do this for f16 with Zfhmin and not Zfh. 7556 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7557 return SDValue(); 7558 7559 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 7560 7561 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7562 if (FRM == RISCVFPRndMode::Invalid) 7563 return SDValue(); 7564 7565 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 7566 7567 unsigned Opc; 7568 if (SatVT == DstVT) 7569 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7570 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 7571 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7572 else 7573 return SDValue(); 7574 // FIXME: Support other SatVTs by clamping before or after the conversion. 7575 7576 Src = Src.getOperand(0); 7577 7578 SDLoc DL(N); 7579 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 7580 DAG.getTargetConstant(FRM, DL, XLenVT)); 7581 7582 // RISCV FP-to-int conversions saturate to the destination register size, but 7583 // don't produce 0 for nan. 7584 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 7585 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 7586 } 7587 7588 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 7589 DAGCombinerInfo &DCI) const { 7590 SelectionDAG &DAG = DCI.DAG; 7591 7592 // Helper to call SimplifyDemandedBits on an operand of N where only some low 7593 // bits are demanded. N will be added to the Worklist if it was not deleted. 7594 // Caller should return SDValue(N, 0) if this returns true. 7595 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 7596 SDValue Op = N->getOperand(OpNo); 7597 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 7598 if (!SimplifyDemandedBits(Op, Mask, DCI)) 7599 return false; 7600 7601 if (N->getOpcode() != ISD::DELETED_NODE) 7602 DCI.AddToWorklist(N); 7603 return true; 7604 }; 7605 7606 switch (N->getOpcode()) { 7607 default: 7608 break; 7609 case RISCVISD::SplitF64: { 7610 SDValue Op0 = N->getOperand(0); 7611 // If the input to SplitF64 is just BuildPairF64 then the operation is 7612 // redundant. Instead, use BuildPairF64's operands directly. 7613 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 7614 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 7615 7616 SDLoc DL(N); 7617 7618 // It's cheaper to materialise two 32-bit integers than to load a double 7619 // from the constant pool and transfer it to integer registers through the 7620 // stack. 7621 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 7622 APInt V = C->getValueAPF().bitcastToAPInt(); 7623 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 7624 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 7625 return DCI.CombineTo(N, Lo, Hi); 7626 } 7627 7628 // This is a target-specific version of a DAGCombine performed in 7629 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7630 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7631 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7632 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7633 !Op0.getNode()->hasOneUse()) 7634 break; 7635 SDValue NewSplitF64 = 7636 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 7637 Op0.getOperand(0)); 7638 SDValue Lo = NewSplitF64.getValue(0); 7639 SDValue Hi = NewSplitF64.getValue(1); 7640 APInt SignBit = APInt::getSignMask(32); 7641 if (Op0.getOpcode() == ISD::FNEG) { 7642 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 7643 DAG.getConstant(SignBit, DL, MVT::i32)); 7644 return DCI.CombineTo(N, Lo, NewHi); 7645 } 7646 assert(Op0.getOpcode() == ISD::FABS); 7647 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 7648 DAG.getConstant(~SignBit, DL, MVT::i32)); 7649 return DCI.CombineTo(N, Lo, NewHi); 7650 } 7651 case RISCVISD::SLLW: 7652 case RISCVISD::SRAW: 7653 case RISCVISD::SRLW: 7654 case RISCVISD::ROLW: 7655 case RISCVISD::RORW: { 7656 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7657 if (SimplifyDemandedLowBitsHelper(0, 32) || 7658 SimplifyDemandedLowBitsHelper(1, 5)) 7659 return SDValue(N, 0); 7660 break; 7661 } 7662 case RISCVISD::CLZW: 7663 case RISCVISD::CTZW: { 7664 // Only the lower 32 bits of the first operand are read 7665 if (SimplifyDemandedLowBitsHelper(0, 32)) 7666 return SDValue(N, 0); 7667 break; 7668 } 7669 case RISCVISD::GREV: 7670 case RISCVISD::GORC: { 7671 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 7672 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7673 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7674 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 7675 return SDValue(N, 0); 7676 7677 return combineGREVI_GORCI(N, DAG); 7678 } 7679 case RISCVISD::GREVW: 7680 case RISCVISD::GORCW: { 7681 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7682 if (SimplifyDemandedLowBitsHelper(0, 32) || 7683 SimplifyDemandedLowBitsHelper(1, 5)) 7684 return SDValue(N, 0); 7685 7686 return combineGREVI_GORCI(N, DAG); 7687 } 7688 case RISCVISD::SHFL: 7689 case RISCVISD::UNSHFL: { 7690 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 7691 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7692 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7693 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 7694 return SDValue(N, 0); 7695 7696 break; 7697 } 7698 case RISCVISD::SHFLW: 7699 case RISCVISD::UNSHFLW: { 7700 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 7701 SDValue LHS = N->getOperand(0); 7702 SDValue RHS = N->getOperand(1); 7703 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 7704 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 7705 if (SimplifyDemandedLowBitsHelper(0, 32) || 7706 SimplifyDemandedLowBitsHelper(1, 4)) 7707 return SDValue(N, 0); 7708 7709 break; 7710 } 7711 case RISCVISD::BCOMPRESSW: 7712 case RISCVISD::BDECOMPRESSW: { 7713 // Only the lower 32 bits of LHS and RHS are read. 7714 if (SimplifyDemandedLowBitsHelper(0, 32) || 7715 SimplifyDemandedLowBitsHelper(1, 32)) 7716 return SDValue(N, 0); 7717 7718 break; 7719 } 7720 case RISCVISD::FMV_X_ANYEXTH: 7721 case RISCVISD::FMV_X_ANYEXTW_RV64: { 7722 SDLoc DL(N); 7723 SDValue Op0 = N->getOperand(0); 7724 MVT VT = N->getSimpleValueType(0); 7725 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 7726 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 7727 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 7728 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 7729 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 7730 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7731 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 7732 assert(Op0.getOperand(0).getValueType() == VT && 7733 "Unexpected value type!"); 7734 return Op0.getOperand(0); 7735 } 7736 7737 // This is a target-specific version of a DAGCombine performed in 7738 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7739 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7740 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7741 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7742 !Op0.getNode()->hasOneUse()) 7743 break; 7744 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 7745 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 7746 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 7747 if (Op0.getOpcode() == ISD::FNEG) 7748 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 7749 DAG.getConstant(SignBit, DL, VT)); 7750 7751 assert(Op0.getOpcode() == ISD::FABS); 7752 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 7753 DAG.getConstant(~SignBit, DL, VT)); 7754 } 7755 case ISD::ADD: 7756 return performADDCombine(N, DAG, Subtarget); 7757 case ISD::SUB: 7758 return performSUBCombine(N, DAG); 7759 case ISD::AND: 7760 return performANDCombine(N, DAG); 7761 case ISD::OR: 7762 return performORCombine(N, DAG, Subtarget); 7763 case ISD::XOR: 7764 return performXORCombine(N, DAG); 7765 case ISD::ANY_EXTEND: 7766 return performANY_EXTENDCombine(N, DCI, Subtarget); 7767 case ISD::ZERO_EXTEND: 7768 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 7769 // type legalization. This is safe because fp_to_uint produces poison if 7770 // it overflows. 7771 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 7772 SDValue Src = N->getOperand(0); 7773 if (Src.getOpcode() == ISD::FP_TO_UINT && 7774 isTypeLegal(Src.getOperand(0).getValueType())) 7775 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 7776 Src.getOperand(0)); 7777 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 7778 isTypeLegal(Src.getOperand(1).getValueType())) { 7779 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 7780 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 7781 Src.getOperand(0), Src.getOperand(1)); 7782 DCI.CombineTo(N, Res); 7783 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 7784 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 7785 return SDValue(N, 0); // Return N so it doesn't get rechecked. 7786 } 7787 } 7788 return SDValue(); 7789 case RISCVISD::SELECT_CC: { 7790 // Transform 7791 SDValue LHS = N->getOperand(0); 7792 SDValue RHS = N->getOperand(1); 7793 SDValue TrueV = N->getOperand(3); 7794 SDValue FalseV = N->getOperand(4); 7795 7796 // If the True and False values are the same, we don't need a select_cc. 7797 if (TrueV == FalseV) 7798 return TrueV; 7799 7800 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 7801 if (!ISD::isIntEqualitySetCC(CCVal)) 7802 break; 7803 7804 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 7805 // (select_cc X, Y, lt, trueV, falseV) 7806 // Sometimes the setcc is introduced after select_cc has been formed. 7807 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7808 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7809 // If we're looking for eq 0 instead of ne 0, we need to invert the 7810 // condition. 7811 bool Invert = CCVal == ISD::SETEQ; 7812 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7813 if (Invert) 7814 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7815 7816 SDLoc DL(N); 7817 RHS = LHS.getOperand(1); 7818 LHS = LHS.getOperand(0); 7819 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7820 7821 SDValue TargetCC = DAG.getCondCode(CCVal); 7822 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7823 {LHS, RHS, TargetCC, TrueV, FalseV}); 7824 } 7825 7826 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 7827 // (select_cc X, Y, eq/ne, trueV, falseV) 7828 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7829 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 7830 {LHS.getOperand(0), LHS.getOperand(1), 7831 N->getOperand(2), TrueV, FalseV}); 7832 // (select_cc X, 1, setne, trueV, falseV) -> 7833 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 7834 // This can occur when legalizing some floating point comparisons. 7835 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7836 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7837 SDLoc DL(N); 7838 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7839 SDValue TargetCC = DAG.getCondCode(CCVal); 7840 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7841 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7842 {LHS, RHS, TargetCC, TrueV, FalseV}); 7843 } 7844 7845 break; 7846 } 7847 case RISCVISD::BR_CC: { 7848 SDValue LHS = N->getOperand(1); 7849 SDValue RHS = N->getOperand(2); 7850 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 7851 if (!ISD::isIntEqualitySetCC(CCVal)) 7852 break; 7853 7854 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 7855 // (br_cc X, Y, lt, dest) 7856 // Sometimes the setcc is introduced after br_cc has been formed. 7857 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7858 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7859 // If we're looking for eq 0 instead of ne 0, we need to invert the 7860 // condition. 7861 bool Invert = CCVal == ISD::SETEQ; 7862 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7863 if (Invert) 7864 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7865 7866 SDLoc DL(N); 7867 RHS = LHS.getOperand(1); 7868 LHS = LHS.getOperand(0); 7869 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7870 7871 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7872 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7873 N->getOperand(4)); 7874 } 7875 7876 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7877 // (br_cc X, Y, eq/ne, trueV, falseV) 7878 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7879 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7880 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7881 N->getOperand(3), N->getOperand(4)); 7882 7883 // (br_cc X, 1, setne, br_cc) -> 7884 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7885 // This can occur when legalizing some floating point comparisons. 7886 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7887 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7888 SDLoc DL(N); 7889 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7890 SDValue TargetCC = DAG.getCondCode(CCVal); 7891 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7892 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7893 N->getOperand(0), LHS, RHS, TargetCC, 7894 N->getOperand(4)); 7895 } 7896 break; 7897 } 7898 case ISD::FP_TO_SINT: 7899 case ISD::FP_TO_UINT: 7900 return performFP_TO_INTCombine(N, DCI, Subtarget); 7901 case ISD::FP_TO_SINT_SAT: 7902 case ISD::FP_TO_UINT_SAT: 7903 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 7904 case ISD::FCOPYSIGN: { 7905 EVT VT = N->getValueType(0); 7906 if (!VT.isVector()) 7907 break; 7908 // There is a form of VFSGNJ which injects the negated sign of its second 7909 // operand. Try and bubble any FNEG up after the extend/round to produce 7910 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7911 // TRUNC=1. 7912 SDValue In2 = N->getOperand(1); 7913 // Avoid cases where the extend/round has multiple uses, as duplicating 7914 // those is typically more expensive than removing a fneg. 7915 if (!In2.hasOneUse()) 7916 break; 7917 if (In2.getOpcode() != ISD::FP_EXTEND && 7918 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7919 break; 7920 In2 = In2.getOperand(0); 7921 if (In2.getOpcode() != ISD::FNEG) 7922 break; 7923 SDLoc DL(N); 7924 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7925 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7926 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7927 } 7928 case ISD::MGATHER: 7929 case ISD::MSCATTER: 7930 case ISD::VP_GATHER: 7931 case ISD::VP_SCATTER: { 7932 if (!DCI.isBeforeLegalize()) 7933 break; 7934 SDValue Index, ScaleOp; 7935 bool IsIndexScaled = false; 7936 bool IsIndexSigned = false; 7937 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7938 Index = VPGSN->getIndex(); 7939 ScaleOp = VPGSN->getScale(); 7940 IsIndexScaled = VPGSN->isIndexScaled(); 7941 IsIndexSigned = VPGSN->isIndexSigned(); 7942 } else { 7943 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7944 Index = MGSN->getIndex(); 7945 ScaleOp = MGSN->getScale(); 7946 IsIndexScaled = MGSN->isIndexScaled(); 7947 IsIndexSigned = MGSN->isIndexSigned(); 7948 } 7949 EVT IndexVT = Index.getValueType(); 7950 MVT XLenVT = Subtarget.getXLenVT(); 7951 // RISCV indexed loads only support the "unsigned unscaled" addressing 7952 // mode, so anything else must be manually legalized. 7953 bool NeedsIdxLegalization = 7954 IsIndexScaled || 7955 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7956 if (!NeedsIdxLegalization) 7957 break; 7958 7959 SDLoc DL(N); 7960 7961 // Any index legalization should first promote to XLenVT, so we don't lose 7962 // bits when scaling. This may create an illegal index type so we let 7963 // LLVM's legalization take care of the splitting. 7964 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7965 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7966 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7967 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7968 DL, IndexVT, Index); 7969 } 7970 7971 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7972 if (IsIndexScaled && Scale != 1) { 7973 // Manually scale the indices by the element size. 7974 // TODO: Sanitize the scale operand here? 7975 // TODO: For VP nodes, should we use VP_SHL here? 7976 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7977 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7978 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7979 } 7980 7981 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7982 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7983 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7984 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7985 VPGN->getScale(), VPGN->getMask(), 7986 VPGN->getVectorLength()}, 7987 VPGN->getMemOperand(), NewIndexTy); 7988 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7989 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7990 {VPSN->getChain(), VPSN->getValue(), 7991 VPSN->getBasePtr(), Index, VPSN->getScale(), 7992 VPSN->getMask(), VPSN->getVectorLength()}, 7993 VPSN->getMemOperand(), NewIndexTy); 7994 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7995 return DAG.getMaskedGather( 7996 N->getVTList(), MGN->getMemoryVT(), DL, 7997 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7998 MGN->getBasePtr(), Index, MGN->getScale()}, 7999 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 8000 const auto *MSN = cast<MaskedScatterSDNode>(N); 8001 return DAG.getMaskedScatter( 8002 N->getVTList(), MSN->getMemoryVT(), DL, 8003 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 8004 Index, MSN->getScale()}, 8005 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 8006 } 8007 case RISCVISD::SRA_VL: 8008 case RISCVISD::SRL_VL: 8009 case RISCVISD::SHL_VL: { 8010 SDValue ShAmt = N->getOperand(1); 8011 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8012 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8013 SDLoc DL(N); 8014 SDValue VL = N->getOperand(3); 8015 EVT VT = N->getValueType(0); 8016 ShAmt = 8017 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 8018 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 8019 N->getOperand(2), N->getOperand(3)); 8020 } 8021 break; 8022 } 8023 case ISD::SRA: 8024 case ISD::SRL: 8025 case ISD::SHL: { 8026 SDValue ShAmt = N->getOperand(1); 8027 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8028 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8029 SDLoc DL(N); 8030 EVT VT = N->getValueType(0); 8031 ShAmt = 8032 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 8033 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 8034 } 8035 break; 8036 } 8037 case RISCVISD::MUL_VL: 8038 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 8039 return V; 8040 // Mul is commutative. 8041 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 8042 case ISD::STORE: { 8043 auto *Store = cast<StoreSDNode>(N); 8044 SDValue Val = Store->getValue(); 8045 // Combine store of vmv.x.s to vse with VL of 1. 8046 // FIXME: Support FP. 8047 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 8048 SDValue Src = Val.getOperand(0); 8049 EVT VecVT = Src.getValueType(); 8050 EVT MemVT = Store->getMemoryVT(); 8051 // The memory VT and the element type must match. 8052 if (VecVT.getVectorElementType() == MemVT) { 8053 SDLoc DL(N); 8054 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 8055 return DAG.getStoreVP( 8056 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 8057 DAG.getConstant(1, DL, MaskVT), 8058 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 8059 Store->getMemOperand(), Store->getAddressingMode(), 8060 Store->isTruncatingStore(), /*IsCompress*/ false); 8061 } 8062 } 8063 8064 break; 8065 } 8066 } 8067 8068 return SDValue(); 8069 } 8070 8071 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 8072 const SDNode *N, CombineLevel Level) const { 8073 // The following folds are only desirable if `(OP _, c1 << c2)` can be 8074 // materialised in fewer instructions than `(OP _, c1)`: 8075 // 8076 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8077 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8078 SDValue N0 = N->getOperand(0); 8079 EVT Ty = N0.getValueType(); 8080 if (Ty.isScalarInteger() && 8081 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 8082 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 8083 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8084 if (C1 && C2) { 8085 const APInt &C1Int = C1->getAPIntValue(); 8086 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 8087 8088 // We can materialise `c1 << c2` into an add immediate, so it's "free", 8089 // and the combine should happen, to potentially allow further combines 8090 // later. 8091 if (ShiftedC1Int.getMinSignedBits() <= 64 && 8092 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 8093 return true; 8094 8095 // We can materialise `c1` in an add immediate, so it's "free", and the 8096 // combine should be prevented. 8097 if (C1Int.getMinSignedBits() <= 64 && 8098 isLegalAddImmediate(C1Int.getSExtValue())) 8099 return false; 8100 8101 // Neither constant will fit into an immediate, so find materialisation 8102 // costs. 8103 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 8104 Subtarget.getFeatureBits(), 8105 /*CompressionCost*/true); 8106 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 8107 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 8108 /*CompressionCost*/true); 8109 8110 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 8111 // combine should be prevented. 8112 if (C1Cost < ShiftedC1Cost) 8113 return false; 8114 } 8115 } 8116 return true; 8117 } 8118 8119 bool RISCVTargetLowering::targetShrinkDemandedConstant( 8120 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 8121 TargetLoweringOpt &TLO) const { 8122 // Delay this optimization as late as possible. 8123 if (!TLO.LegalOps) 8124 return false; 8125 8126 EVT VT = Op.getValueType(); 8127 if (VT.isVector()) 8128 return false; 8129 8130 // Only handle AND for now. 8131 if (Op.getOpcode() != ISD::AND) 8132 return false; 8133 8134 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8135 if (!C) 8136 return false; 8137 8138 const APInt &Mask = C->getAPIntValue(); 8139 8140 // Clear all non-demanded bits initially. 8141 APInt ShrunkMask = Mask & DemandedBits; 8142 8143 // Try to make a smaller immediate by setting undemanded bits. 8144 8145 APInt ExpandedMask = Mask | ~DemandedBits; 8146 8147 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 8148 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 8149 }; 8150 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 8151 if (NewMask == Mask) 8152 return true; 8153 SDLoc DL(Op); 8154 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 8155 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 8156 return TLO.CombineTo(Op, NewOp); 8157 }; 8158 8159 // If the shrunk mask fits in sign extended 12 bits, let the target 8160 // independent code apply it. 8161 if (ShrunkMask.isSignedIntN(12)) 8162 return false; 8163 8164 // Preserve (and X, 0xffff) when zext.h is supported. 8165 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 8166 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 8167 if (IsLegalMask(NewMask)) 8168 return UseMask(NewMask); 8169 } 8170 8171 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 8172 if (VT == MVT::i64) { 8173 APInt NewMask = APInt(64, 0xffffffff); 8174 if (IsLegalMask(NewMask)) 8175 return UseMask(NewMask); 8176 } 8177 8178 // For the remaining optimizations, we need to be able to make a negative 8179 // number through a combination of mask and undemanded bits. 8180 if (!ExpandedMask.isNegative()) 8181 return false; 8182 8183 // What is the fewest number of bits we need to represent the negative number. 8184 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 8185 8186 // Try to make a 12 bit negative immediate. If that fails try to make a 32 8187 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 8188 APInt NewMask = ShrunkMask; 8189 if (MinSignedBits <= 12) 8190 NewMask.setBitsFrom(11); 8191 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 8192 NewMask.setBitsFrom(31); 8193 else 8194 return false; 8195 8196 // Check that our new mask is a subset of the demanded mask. 8197 assert(IsLegalMask(NewMask)); 8198 return UseMask(NewMask); 8199 } 8200 8201 static void computeGREV(APInt &Src, unsigned ShAmt) { 8202 ShAmt &= Src.getBitWidth() - 1; 8203 uint64_t x = Src.getZExtValue(); 8204 if (ShAmt & 1) 8205 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 8206 if (ShAmt & 2) 8207 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 8208 if (ShAmt & 4) 8209 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 8210 if (ShAmt & 8) 8211 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 8212 if (ShAmt & 16) 8213 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 8214 if (ShAmt & 32) 8215 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 8216 Src = x; 8217 } 8218 8219 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 8220 KnownBits &Known, 8221 const APInt &DemandedElts, 8222 const SelectionDAG &DAG, 8223 unsigned Depth) const { 8224 unsigned BitWidth = Known.getBitWidth(); 8225 unsigned Opc = Op.getOpcode(); 8226 assert((Opc >= ISD::BUILTIN_OP_END || 8227 Opc == ISD::INTRINSIC_WO_CHAIN || 8228 Opc == ISD::INTRINSIC_W_CHAIN || 8229 Opc == ISD::INTRINSIC_VOID) && 8230 "Should use MaskedValueIsZero if you don't know whether Op" 8231 " is a target node!"); 8232 8233 Known.resetAll(); 8234 switch (Opc) { 8235 default: break; 8236 case RISCVISD::SELECT_CC: { 8237 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 8238 // If we don't know any bits, early out. 8239 if (Known.isUnknown()) 8240 break; 8241 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 8242 8243 // Only known if known in both the LHS and RHS. 8244 Known = KnownBits::commonBits(Known, Known2); 8245 break; 8246 } 8247 case RISCVISD::REMUW: { 8248 KnownBits Known2; 8249 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8250 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8251 // We only care about the lower 32 bits. 8252 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 8253 // Restore the original width by sign extending. 8254 Known = Known.sext(BitWidth); 8255 break; 8256 } 8257 case RISCVISD::DIVUW: { 8258 KnownBits Known2; 8259 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8260 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8261 // We only care about the lower 32 bits. 8262 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 8263 // Restore the original width by sign extending. 8264 Known = Known.sext(BitWidth); 8265 break; 8266 } 8267 case RISCVISD::CTZW: { 8268 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8269 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 8270 unsigned LowBits = Log2_32(PossibleTZ) + 1; 8271 Known.Zero.setBitsFrom(LowBits); 8272 break; 8273 } 8274 case RISCVISD::CLZW: { 8275 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8276 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 8277 unsigned LowBits = Log2_32(PossibleLZ) + 1; 8278 Known.Zero.setBitsFrom(LowBits); 8279 break; 8280 } 8281 case RISCVISD::GREV: 8282 case RISCVISD::GREVW: { 8283 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8284 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8285 if (Opc == RISCVISD::GREVW) 8286 Known = Known.trunc(32); 8287 unsigned ShAmt = C->getZExtValue(); 8288 computeGREV(Known.Zero, ShAmt); 8289 computeGREV(Known.One, ShAmt); 8290 if (Opc == RISCVISD::GREVW) 8291 Known = Known.sext(BitWidth); 8292 } 8293 break; 8294 } 8295 case RISCVISD::READ_VLENB: { 8296 // If we know the minimum VLen from Zvl extensions, we can use that to 8297 // determine the trailing zeros of VLENB. 8298 // FIXME: Limit to 128 bit vectors until we have more testing. 8299 unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8; 8300 if (MinVLenB > 0) 8301 Known.Zero.setLowBits(Log2_32(MinVLenB)); 8302 // We assume VLENB is no more than 65536 / 8 bytes. 8303 Known.Zero.setBitsFrom(14); 8304 break; 8305 } 8306 case ISD::INTRINSIC_W_CHAIN: 8307 case ISD::INTRINSIC_WO_CHAIN: { 8308 unsigned IntNo = 8309 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 8310 switch (IntNo) { 8311 default: 8312 // We can't do anything for most intrinsics. 8313 break; 8314 case Intrinsic::riscv_vsetvli: 8315 case Intrinsic::riscv_vsetvlimax: 8316 case Intrinsic::riscv_vsetvli_opt: 8317 case Intrinsic::riscv_vsetvlimax_opt: 8318 // Assume that VL output is positive and would fit in an int32_t. 8319 // TODO: VLEN might be capped at 16 bits in a future V spec update. 8320 if (BitWidth >= 32) 8321 Known.Zero.setBitsFrom(31); 8322 break; 8323 } 8324 break; 8325 } 8326 } 8327 } 8328 8329 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 8330 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 8331 unsigned Depth) const { 8332 switch (Op.getOpcode()) { 8333 default: 8334 break; 8335 case RISCVISD::SELECT_CC: { 8336 unsigned Tmp = 8337 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 8338 if (Tmp == 1) return 1; // Early out. 8339 unsigned Tmp2 = 8340 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 8341 return std::min(Tmp, Tmp2); 8342 } 8343 case RISCVISD::SLLW: 8344 case RISCVISD::SRAW: 8345 case RISCVISD::SRLW: 8346 case RISCVISD::DIVW: 8347 case RISCVISD::DIVUW: 8348 case RISCVISD::REMUW: 8349 case RISCVISD::ROLW: 8350 case RISCVISD::RORW: 8351 case RISCVISD::GREVW: 8352 case RISCVISD::GORCW: 8353 case RISCVISD::FSLW: 8354 case RISCVISD::FSRW: 8355 case RISCVISD::SHFLW: 8356 case RISCVISD::UNSHFLW: 8357 case RISCVISD::BCOMPRESSW: 8358 case RISCVISD::BDECOMPRESSW: 8359 case RISCVISD::BFPW: 8360 case RISCVISD::FCVT_W_RV64: 8361 case RISCVISD::FCVT_WU_RV64: 8362 case RISCVISD::STRICT_FCVT_W_RV64: 8363 case RISCVISD::STRICT_FCVT_WU_RV64: 8364 // TODO: As the result is sign-extended, this is conservatively correct. A 8365 // more precise answer could be calculated for SRAW depending on known 8366 // bits in the shift amount. 8367 return 33; 8368 case RISCVISD::SHFL: 8369 case RISCVISD::UNSHFL: { 8370 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 8371 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 8372 // will stay within the upper 32 bits. If there were more than 32 sign bits 8373 // before there will be at least 33 sign bits after. 8374 if (Op.getValueType() == MVT::i64 && 8375 isa<ConstantSDNode>(Op.getOperand(1)) && 8376 (Op.getConstantOperandVal(1) & 0x10) == 0) { 8377 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 8378 if (Tmp > 32) 8379 return 33; 8380 } 8381 break; 8382 } 8383 case RISCVISD::VMV_X_S: { 8384 // The number of sign bits of the scalar result is computed by obtaining the 8385 // element type of the input vector operand, subtracting its width from the 8386 // XLEN, and then adding one (sign bit within the element type). If the 8387 // element type is wider than XLen, the least-significant XLEN bits are 8388 // taken. 8389 unsigned XLen = Subtarget.getXLen(); 8390 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 8391 if (EltBits <= XLen) 8392 return XLen - EltBits + 1; 8393 break; 8394 } 8395 } 8396 8397 return 1; 8398 } 8399 8400 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 8401 MachineBasicBlock *BB) { 8402 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 8403 8404 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 8405 // Should the count have wrapped while it was being read, we need to try 8406 // again. 8407 // ... 8408 // read: 8409 // rdcycleh x3 # load high word of cycle 8410 // rdcycle x2 # load low word of cycle 8411 // rdcycleh x4 # load high word of cycle 8412 // bne x3, x4, read # check if high word reads match, otherwise try again 8413 // ... 8414 8415 MachineFunction &MF = *BB->getParent(); 8416 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8417 MachineFunction::iterator It = ++BB->getIterator(); 8418 8419 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8420 MF.insert(It, LoopMBB); 8421 8422 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8423 MF.insert(It, DoneMBB); 8424 8425 // Transfer the remainder of BB and its successor edges to DoneMBB. 8426 DoneMBB->splice(DoneMBB->begin(), BB, 8427 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8428 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 8429 8430 BB->addSuccessor(LoopMBB); 8431 8432 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8433 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8434 Register LoReg = MI.getOperand(0).getReg(); 8435 Register HiReg = MI.getOperand(1).getReg(); 8436 DebugLoc DL = MI.getDebugLoc(); 8437 8438 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 8439 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 8440 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8441 .addReg(RISCV::X0); 8442 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 8443 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 8444 .addReg(RISCV::X0); 8445 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 8446 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8447 .addReg(RISCV::X0); 8448 8449 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 8450 .addReg(HiReg) 8451 .addReg(ReadAgainReg) 8452 .addMBB(LoopMBB); 8453 8454 LoopMBB->addSuccessor(LoopMBB); 8455 LoopMBB->addSuccessor(DoneMBB); 8456 8457 MI.eraseFromParent(); 8458 8459 return DoneMBB; 8460 } 8461 8462 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 8463 MachineBasicBlock *BB) { 8464 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 8465 8466 MachineFunction &MF = *BB->getParent(); 8467 DebugLoc DL = MI.getDebugLoc(); 8468 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8469 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8470 Register LoReg = MI.getOperand(0).getReg(); 8471 Register HiReg = MI.getOperand(1).getReg(); 8472 Register SrcReg = MI.getOperand(2).getReg(); 8473 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 8474 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8475 8476 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 8477 RI); 8478 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8479 MachineMemOperand *MMOLo = 8480 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 8481 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8482 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 8483 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 8484 .addFrameIndex(FI) 8485 .addImm(0) 8486 .addMemOperand(MMOLo); 8487 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 8488 .addFrameIndex(FI) 8489 .addImm(4) 8490 .addMemOperand(MMOHi); 8491 MI.eraseFromParent(); // The pseudo instruction is gone now. 8492 return BB; 8493 } 8494 8495 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 8496 MachineBasicBlock *BB) { 8497 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 8498 "Unexpected instruction"); 8499 8500 MachineFunction &MF = *BB->getParent(); 8501 DebugLoc DL = MI.getDebugLoc(); 8502 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8503 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8504 Register DstReg = MI.getOperand(0).getReg(); 8505 Register LoReg = MI.getOperand(1).getReg(); 8506 Register HiReg = MI.getOperand(2).getReg(); 8507 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 8508 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8509 8510 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8511 MachineMemOperand *MMOLo = 8512 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 8513 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8514 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 8515 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8516 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 8517 .addFrameIndex(FI) 8518 .addImm(0) 8519 .addMemOperand(MMOLo); 8520 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8521 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 8522 .addFrameIndex(FI) 8523 .addImm(4) 8524 .addMemOperand(MMOHi); 8525 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 8526 MI.eraseFromParent(); // The pseudo instruction is gone now. 8527 return BB; 8528 } 8529 8530 static bool isSelectPseudo(MachineInstr &MI) { 8531 switch (MI.getOpcode()) { 8532 default: 8533 return false; 8534 case RISCV::Select_GPR_Using_CC_GPR: 8535 case RISCV::Select_FPR16_Using_CC_GPR: 8536 case RISCV::Select_FPR32_Using_CC_GPR: 8537 case RISCV::Select_FPR64_Using_CC_GPR: 8538 return true; 8539 } 8540 } 8541 8542 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 8543 unsigned RelOpcode, unsigned EqOpcode, 8544 const RISCVSubtarget &Subtarget) { 8545 DebugLoc DL = MI.getDebugLoc(); 8546 Register DstReg = MI.getOperand(0).getReg(); 8547 Register Src1Reg = MI.getOperand(1).getReg(); 8548 Register Src2Reg = MI.getOperand(2).getReg(); 8549 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 8550 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 8551 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 8552 8553 // Save the current FFLAGS. 8554 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 8555 8556 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 8557 .addReg(Src1Reg) 8558 .addReg(Src2Reg); 8559 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8560 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 8561 8562 // Restore the FFLAGS. 8563 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 8564 .addReg(SavedFFlags, RegState::Kill); 8565 8566 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 8567 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 8568 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 8569 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 8570 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8571 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 8572 8573 // Erase the pseudoinstruction. 8574 MI.eraseFromParent(); 8575 return BB; 8576 } 8577 8578 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 8579 MachineBasicBlock *BB, 8580 const RISCVSubtarget &Subtarget) { 8581 // To "insert" Select_* instructions, we actually have to insert the triangle 8582 // control-flow pattern. The incoming instructions know the destination vreg 8583 // to set, the condition code register to branch on, the true/false values to 8584 // select between, and the condcode to use to select the appropriate branch. 8585 // 8586 // We produce the following control flow: 8587 // HeadMBB 8588 // | \ 8589 // | IfFalseMBB 8590 // | / 8591 // TailMBB 8592 // 8593 // When we find a sequence of selects we attempt to optimize their emission 8594 // by sharing the control flow. Currently we only handle cases where we have 8595 // multiple selects with the exact same condition (same LHS, RHS and CC). 8596 // The selects may be interleaved with other instructions if the other 8597 // instructions meet some requirements we deem safe: 8598 // - They are debug instructions. Otherwise, 8599 // - They do not have side-effects, do not access memory and their inputs do 8600 // not depend on the results of the select pseudo-instructions. 8601 // The TrueV/FalseV operands of the selects cannot depend on the result of 8602 // previous selects in the sequence. 8603 // These conditions could be further relaxed. See the X86 target for a 8604 // related approach and more information. 8605 Register LHS = MI.getOperand(1).getReg(); 8606 Register RHS = MI.getOperand(2).getReg(); 8607 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 8608 8609 SmallVector<MachineInstr *, 4> SelectDebugValues; 8610 SmallSet<Register, 4> SelectDests; 8611 SelectDests.insert(MI.getOperand(0).getReg()); 8612 8613 MachineInstr *LastSelectPseudo = &MI; 8614 8615 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 8616 SequenceMBBI != E; ++SequenceMBBI) { 8617 if (SequenceMBBI->isDebugInstr()) 8618 continue; 8619 else if (isSelectPseudo(*SequenceMBBI)) { 8620 if (SequenceMBBI->getOperand(1).getReg() != LHS || 8621 SequenceMBBI->getOperand(2).getReg() != RHS || 8622 SequenceMBBI->getOperand(3).getImm() != CC || 8623 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 8624 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 8625 break; 8626 LastSelectPseudo = &*SequenceMBBI; 8627 SequenceMBBI->collectDebugValues(SelectDebugValues); 8628 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 8629 } else { 8630 if (SequenceMBBI->hasUnmodeledSideEffects() || 8631 SequenceMBBI->mayLoadOrStore()) 8632 break; 8633 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 8634 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 8635 })) 8636 break; 8637 } 8638 } 8639 8640 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 8641 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8642 DebugLoc DL = MI.getDebugLoc(); 8643 MachineFunction::iterator I = ++BB->getIterator(); 8644 8645 MachineBasicBlock *HeadMBB = BB; 8646 MachineFunction *F = BB->getParent(); 8647 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 8648 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 8649 8650 F->insert(I, IfFalseMBB); 8651 F->insert(I, TailMBB); 8652 8653 // Transfer debug instructions associated with the selects to TailMBB. 8654 for (MachineInstr *DebugInstr : SelectDebugValues) { 8655 TailMBB->push_back(DebugInstr->removeFromParent()); 8656 } 8657 8658 // Move all instructions after the sequence to TailMBB. 8659 TailMBB->splice(TailMBB->end(), HeadMBB, 8660 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 8661 // Update machine-CFG edges by transferring all successors of the current 8662 // block to the new block which will contain the Phi nodes for the selects. 8663 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 8664 // Set the successors for HeadMBB. 8665 HeadMBB->addSuccessor(IfFalseMBB); 8666 HeadMBB->addSuccessor(TailMBB); 8667 8668 // Insert appropriate branch. 8669 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 8670 .addReg(LHS) 8671 .addReg(RHS) 8672 .addMBB(TailMBB); 8673 8674 // IfFalseMBB just falls through to TailMBB. 8675 IfFalseMBB->addSuccessor(TailMBB); 8676 8677 // Create PHIs for all of the select pseudo-instructions. 8678 auto SelectMBBI = MI.getIterator(); 8679 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 8680 auto InsertionPoint = TailMBB->begin(); 8681 while (SelectMBBI != SelectEnd) { 8682 auto Next = std::next(SelectMBBI); 8683 if (isSelectPseudo(*SelectMBBI)) { 8684 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 8685 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 8686 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 8687 .addReg(SelectMBBI->getOperand(4).getReg()) 8688 .addMBB(HeadMBB) 8689 .addReg(SelectMBBI->getOperand(5).getReg()) 8690 .addMBB(IfFalseMBB); 8691 SelectMBBI->eraseFromParent(); 8692 } 8693 SelectMBBI = Next; 8694 } 8695 8696 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8697 return TailMBB; 8698 } 8699 8700 MachineBasicBlock * 8701 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 8702 MachineBasicBlock *BB) const { 8703 switch (MI.getOpcode()) { 8704 default: 8705 llvm_unreachable("Unexpected instr type to insert"); 8706 case RISCV::ReadCycleWide: 8707 assert(!Subtarget.is64Bit() && 8708 "ReadCycleWrite is only to be used on riscv32"); 8709 return emitReadCycleWidePseudo(MI, BB); 8710 case RISCV::Select_GPR_Using_CC_GPR: 8711 case RISCV::Select_FPR16_Using_CC_GPR: 8712 case RISCV::Select_FPR32_Using_CC_GPR: 8713 case RISCV::Select_FPR64_Using_CC_GPR: 8714 return emitSelectPseudo(MI, BB, Subtarget); 8715 case RISCV::BuildPairF64Pseudo: 8716 return emitBuildPairF64Pseudo(MI, BB); 8717 case RISCV::SplitF64Pseudo: 8718 return emitSplitF64Pseudo(MI, BB); 8719 case RISCV::PseudoQuietFLE_H: 8720 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 8721 case RISCV::PseudoQuietFLT_H: 8722 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 8723 case RISCV::PseudoQuietFLE_S: 8724 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 8725 case RISCV::PseudoQuietFLT_S: 8726 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 8727 case RISCV::PseudoQuietFLE_D: 8728 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 8729 case RISCV::PseudoQuietFLT_D: 8730 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 8731 } 8732 } 8733 8734 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 8735 SDNode *Node) const { 8736 // Add FRM dependency to any instructions with dynamic rounding mode. 8737 unsigned Opc = MI.getOpcode(); 8738 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 8739 if (Idx < 0) 8740 return; 8741 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 8742 return; 8743 // If the instruction already reads FRM, don't add another read. 8744 if (MI.readsRegister(RISCV::FRM)) 8745 return; 8746 MI.addOperand( 8747 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 8748 } 8749 8750 // Calling Convention Implementation. 8751 // The expectations for frontend ABI lowering vary from target to target. 8752 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 8753 // details, but this is a longer term goal. For now, we simply try to keep the 8754 // role of the frontend as simple and well-defined as possible. The rules can 8755 // be summarised as: 8756 // * Never split up large scalar arguments. We handle them here. 8757 // * If a hardfloat calling convention is being used, and the struct may be 8758 // passed in a pair of registers (fp+fp, int+fp), and both registers are 8759 // available, then pass as two separate arguments. If either the GPRs or FPRs 8760 // are exhausted, then pass according to the rule below. 8761 // * If a struct could never be passed in registers or directly in a stack 8762 // slot (as it is larger than 2*XLEN and the floating point rules don't 8763 // apply), then pass it using a pointer with the byval attribute. 8764 // * If a struct is less than 2*XLEN, then coerce to either a two-element 8765 // word-sized array or a 2*XLEN scalar (depending on alignment). 8766 // * The frontend can determine whether a struct is returned by reference or 8767 // not based on its size and fields. If it will be returned by reference, the 8768 // frontend must modify the prototype so a pointer with the sret annotation is 8769 // passed as the first argument. This is not necessary for large scalar 8770 // returns. 8771 // * Struct return values and varargs should be coerced to structs containing 8772 // register-size fields in the same situations they would be for fixed 8773 // arguments. 8774 8775 static const MCPhysReg ArgGPRs[] = { 8776 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 8777 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 8778 }; 8779 static const MCPhysReg ArgFPR16s[] = { 8780 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 8781 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 8782 }; 8783 static const MCPhysReg ArgFPR32s[] = { 8784 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 8785 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 8786 }; 8787 static const MCPhysReg ArgFPR64s[] = { 8788 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 8789 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 8790 }; 8791 // This is an interim calling convention and it may be changed in the future. 8792 static const MCPhysReg ArgVRs[] = { 8793 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 8794 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 8795 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 8796 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 8797 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 8798 RISCV::V20M2, RISCV::V22M2}; 8799 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 8800 RISCV::V20M4}; 8801 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 8802 8803 // Pass a 2*XLEN argument that has been split into two XLEN values through 8804 // registers or the stack as necessary. 8805 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 8806 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 8807 MVT ValVT2, MVT LocVT2, 8808 ISD::ArgFlagsTy ArgFlags2) { 8809 unsigned XLenInBytes = XLen / 8; 8810 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8811 // At least one half can be passed via register. 8812 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 8813 VA1.getLocVT(), CCValAssign::Full)); 8814 } else { 8815 // Both halves must be passed on the stack, with proper alignment. 8816 Align StackAlign = 8817 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 8818 State.addLoc( 8819 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 8820 State.AllocateStack(XLenInBytes, StackAlign), 8821 VA1.getLocVT(), CCValAssign::Full)); 8822 State.addLoc(CCValAssign::getMem( 8823 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8824 LocVT2, CCValAssign::Full)); 8825 return false; 8826 } 8827 8828 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8829 // The second half can also be passed via register. 8830 State.addLoc( 8831 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 8832 } else { 8833 // The second half is passed via the stack, without additional alignment. 8834 State.addLoc(CCValAssign::getMem( 8835 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8836 LocVT2, CCValAssign::Full)); 8837 } 8838 8839 return false; 8840 } 8841 8842 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 8843 Optional<unsigned> FirstMaskArgument, 8844 CCState &State, const RISCVTargetLowering &TLI) { 8845 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 8846 if (RC == &RISCV::VRRegClass) { 8847 // Assign the first mask argument to V0. 8848 // This is an interim calling convention and it may be changed in the 8849 // future. 8850 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 8851 return State.AllocateReg(RISCV::V0); 8852 return State.AllocateReg(ArgVRs); 8853 } 8854 if (RC == &RISCV::VRM2RegClass) 8855 return State.AllocateReg(ArgVRM2s); 8856 if (RC == &RISCV::VRM4RegClass) 8857 return State.AllocateReg(ArgVRM4s); 8858 if (RC == &RISCV::VRM8RegClass) 8859 return State.AllocateReg(ArgVRM8s); 8860 llvm_unreachable("Unhandled register class for ValueType"); 8861 } 8862 8863 // Implements the RISC-V calling convention. Returns true upon failure. 8864 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 8865 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 8866 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 8867 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 8868 Optional<unsigned> FirstMaskArgument) { 8869 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 8870 assert(XLen == 32 || XLen == 64); 8871 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 8872 8873 // Any return value split in to more than two values can't be returned 8874 // directly. Vectors are returned via the available vector registers. 8875 if (!LocVT.isVector() && IsRet && ValNo > 1) 8876 return true; 8877 8878 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 8879 // variadic argument, or if no F16/F32 argument registers are available. 8880 bool UseGPRForF16_F32 = true; 8881 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 8882 // variadic argument, or if no F64 argument registers are available. 8883 bool UseGPRForF64 = true; 8884 8885 switch (ABI) { 8886 default: 8887 llvm_unreachable("Unexpected ABI"); 8888 case RISCVABI::ABI_ILP32: 8889 case RISCVABI::ABI_LP64: 8890 break; 8891 case RISCVABI::ABI_ILP32F: 8892 case RISCVABI::ABI_LP64F: 8893 UseGPRForF16_F32 = !IsFixed; 8894 break; 8895 case RISCVABI::ABI_ILP32D: 8896 case RISCVABI::ABI_LP64D: 8897 UseGPRForF16_F32 = !IsFixed; 8898 UseGPRForF64 = !IsFixed; 8899 break; 8900 } 8901 8902 // FPR16, FPR32, and FPR64 alias each other. 8903 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 8904 UseGPRForF16_F32 = true; 8905 UseGPRForF64 = true; 8906 } 8907 8908 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 8909 // similar local variables rather than directly checking against the target 8910 // ABI. 8911 8912 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 8913 LocVT = XLenVT; 8914 LocInfo = CCValAssign::BCvt; 8915 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 8916 LocVT = MVT::i64; 8917 LocInfo = CCValAssign::BCvt; 8918 } 8919 8920 // If this is a variadic argument, the RISC-V calling convention requires 8921 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 8922 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 8923 // be used regardless of whether the original argument was split during 8924 // legalisation or not. The argument will not be passed by registers if the 8925 // original type is larger than 2*XLEN, so the register alignment rule does 8926 // not apply. 8927 unsigned TwoXLenInBytes = (2 * XLen) / 8; 8928 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 8929 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 8930 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 8931 // Skip 'odd' register if necessary. 8932 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 8933 State.AllocateReg(ArgGPRs); 8934 } 8935 8936 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 8937 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 8938 State.getPendingArgFlags(); 8939 8940 assert(PendingLocs.size() == PendingArgFlags.size() && 8941 "PendingLocs and PendingArgFlags out of sync"); 8942 8943 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8944 // registers are exhausted. 8945 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8946 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8947 "Can't lower f64 if it is split"); 8948 // Depending on available argument GPRS, f64 may be passed in a pair of 8949 // GPRs, split between a GPR and the stack, or passed completely on the 8950 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8951 // cases. 8952 Register Reg = State.AllocateReg(ArgGPRs); 8953 LocVT = MVT::i32; 8954 if (!Reg) { 8955 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8956 State.addLoc( 8957 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8958 return false; 8959 } 8960 if (!State.AllocateReg(ArgGPRs)) 8961 State.AllocateStack(4, Align(4)); 8962 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8963 return false; 8964 } 8965 8966 // Fixed-length vectors are located in the corresponding scalable-vector 8967 // container types. 8968 if (ValVT.isFixedLengthVector()) 8969 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8970 8971 // Split arguments might be passed indirectly, so keep track of the pending 8972 // values. Split vectors are passed via a mix of registers and indirectly, so 8973 // treat them as we would any other argument. 8974 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8975 LocVT = XLenVT; 8976 LocInfo = CCValAssign::Indirect; 8977 PendingLocs.push_back( 8978 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8979 PendingArgFlags.push_back(ArgFlags); 8980 if (!ArgFlags.isSplitEnd()) { 8981 return false; 8982 } 8983 } 8984 8985 // If the split argument only had two elements, it should be passed directly 8986 // in registers or on the stack. 8987 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8988 PendingLocs.size() <= 2) { 8989 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8990 // Apply the normal calling convention rules to the first half of the 8991 // split argument. 8992 CCValAssign VA = PendingLocs[0]; 8993 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8994 PendingLocs.clear(); 8995 PendingArgFlags.clear(); 8996 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8997 ArgFlags); 8998 } 8999 9000 // Allocate to a register if possible, or else a stack slot. 9001 Register Reg; 9002 unsigned StoreSizeBytes = XLen / 8; 9003 Align StackAlign = Align(XLen / 8); 9004 9005 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 9006 Reg = State.AllocateReg(ArgFPR16s); 9007 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 9008 Reg = State.AllocateReg(ArgFPR32s); 9009 else if (ValVT == MVT::f64 && !UseGPRForF64) 9010 Reg = State.AllocateReg(ArgFPR64s); 9011 else if (ValVT.isVector()) { 9012 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 9013 if (!Reg) { 9014 // For return values, the vector must be passed fully via registers or 9015 // via the stack. 9016 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 9017 // but we're using all of them. 9018 if (IsRet) 9019 return true; 9020 // Try using a GPR to pass the address 9021 if ((Reg = State.AllocateReg(ArgGPRs))) { 9022 LocVT = XLenVT; 9023 LocInfo = CCValAssign::Indirect; 9024 } else if (ValVT.isScalableVector()) { 9025 LocVT = XLenVT; 9026 LocInfo = CCValAssign::Indirect; 9027 } else { 9028 // Pass fixed-length vectors on the stack. 9029 LocVT = ValVT; 9030 StoreSizeBytes = ValVT.getStoreSize(); 9031 // Align vectors to their element sizes, being careful for vXi1 9032 // vectors. 9033 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9034 } 9035 } 9036 } else { 9037 Reg = State.AllocateReg(ArgGPRs); 9038 } 9039 9040 unsigned StackOffset = 9041 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 9042 9043 // If we reach this point and PendingLocs is non-empty, we must be at the 9044 // end of a split argument that must be passed indirectly. 9045 if (!PendingLocs.empty()) { 9046 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 9047 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 9048 9049 for (auto &It : PendingLocs) { 9050 if (Reg) 9051 It.convertToReg(Reg); 9052 else 9053 It.convertToMem(StackOffset); 9054 State.addLoc(It); 9055 } 9056 PendingLocs.clear(); 9057 PendingArgFlags.clear(); 9058 return false; 9059 } 9060 9061 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 9062 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 9063 "Expected an XLenVT or vector types at this stage"); 9064 9065 if (Reg) { 9066 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9067 return false; 9068 } 9069 9070 // When a floating-point value is passed on the stack, no bit-conversion is 9071 // needed. 9072 if (ValVT.isFloatingPoint()) { 9073 LocVT = ValVT; 9074 LocInfo = CCValAssign::Full; 9075 } 9076 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9077 return false; 9078 } 9079 9080 template <typename ArgTy> 9081 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 9082 for (const auto &ArgIdx : enumerate(Args)) { 9083 MVT ArgVT = ArgIdx.value().VT; 9084 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 9085 return ArgIdx.index(); 9086 } 9087 return None; 9088 } 9089 9090 void RISCVTargetLowering::analyzeInputArgs( 9091 MachineFunction &MF, CCState &CCInfo, 9092 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 9093 RISCVCCAssignFn Fn) const { 9094 unsigned NumArgs = Ins.size(); 9095 FunctionType *FType = MF.getFunction().getFunctionType(); 9096 9097 Optional<unsigned> FirstMaskArgument; 9098 if (Subtarget.hasVInstructions()) 9099 FirstMaskArgument = preAssignMask(Ins); 9100 9101 for (unsigned i = 0; i != NumArgs; ++i) { 9102 MVT ArgVT = Ins[i].VT; 9103 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 9104 9105 Type *ArgTy = nullptr; 9106 if (IsRet) 9107 ArgTy = FType->getReturnType(); 9108 else if (Ins[i].isOrigArg()) 9109 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 9110 9111 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9112 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9113 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 9114 FirstMaskArgument)) { 9115 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 9116 << EVT(ArgVT).getEVTString() << '\n'); 9117 llvm_unreachable(nullptr); 9118 } 9119 } 9120 } 9121 9122 void RISCVTargetLowering::analyzeOutputArgs( 9123 MachineFunction &MF, CCState &CCInfo, 9124 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 9125 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 9126 unsigned NumArgs = Outs.size(); 9127 9128 Optional<unsigned> FirstMaskArgument; 9129 if (Subtarget.hasVInstructions()) 9130 FirstMaskArgument = preAssignMask(Outs); 9131 9132 for (unsigned i = 0; i != NumArgs; i++) { 9133 MVT ArgVT = Outs[i].VT; 9134 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9135 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 9136 9137 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9138 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9139 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 9140 FirstMaskArgument)) { 9141 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 9142 << EVT(ArgVT).getEVTString() << "\n"); 9143 llvm_unreachable(nullptr); 9144 } 9145 } 9146 } 9147 9148 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 9149 // values. 9150 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 9151 const CCValAssign &VA, const SDLoc &DL, 9152 const RISCVSubtarget &Subtarget) { 9153 switch (VA.getLocInfo()) { 9154 default: 9155 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9156 case CCValAssign::Full: 9157 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 9158 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 9159 break; 9160 case CCValAssign::BCvt: 9161 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9162 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 9163 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9164 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 9165 else 9166 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 9167 break; 9168 } 9169 return Val; 9170 } 9171 9172 // The caller is responsible for loading the full value if the argument is 9173 // passed with CCValAssign::Indirect. 9174 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 9175 const CCValAssign &VA, const SDLoc &DL, 9176 const RISCVTargetLowering &TLI) { 9177 MachineFunction &MF = DAG.getMachineFunction(); 9178 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9179 EVT LocVT = VA.getLocVT(); 9180 SDValue Val; 9181 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 9182 Register VReg = RegInfo.createVirtualRegister(RC); 9183 RegInfo.addLiveIn(VA.getLocReg(), VReg); 9184 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 9185 9186 if (VA.getLocInfo() == CCValAssign::Indirect) 9187 return Val; 9188 9189 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 9190 } 9191 9192 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 9193 const CCValAssign &VA, const SDLoc &DL, 9194 const RISCVSubtarget &Subtarget) { 9195 EVT LocVT = VA.getLocVT(); 9196 9197 switch (VA.getLocInfo()) { 9198 default: 9199 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9200 case CCValAssign::Full: 9201 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 9202 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 9203 break; 9204 case CCValAssign::BCvt: 9205 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9206 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 9207 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9208 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 9209 else 9210 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 9211 break; 9212 } 9213 return Val; 9214 } 9215 9216 // The caller is responsible for loading the full value if the argument is 9217 // passed with CCValAssign::Indirect. 9218 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 9219 const CCValAssign &VA, const SDLoc &DL) { 9220 MachineFunction &MF = DAG.getMachineFunction(); 9221 MachineFrameInfo &MFI = MF.getFrameInfo(); 9222 EVT LocVT = VA.getLocVT(); 9223 EVT ValVT = VA.getValVT(); 9224 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 9225 if (ValVT.isScalableVector()) { 9226 // When the value is a scalable vector, we save the pointer which points to 9227 // the scalable vector value in the stack. The ValVT will be the pointer 9228 // type, instead of the scalable vector type. 9229 ValVT = LocVT; 9230 } 9231 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 9232 /*IsImmutable=*/true); 9233 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 9234 SDValue Val; 9235 9236 ISD::LoadExtType ExtType; 9237 switch (VA.getLocInfo()) { 9238 default: 9239 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9240 case CCValAssign::Full: 9241 case CCValAssign::Indirect: 9242 case CCValAssign::BCvt: 9243 ExtType = ISD::NON_EXTLOAD; 9244 break; 9245 } 9246 Val = DAG.getExtLoad( 9247 ExtType, DL, LocVT, Chain, FIN, 9248 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 9249 return Val; 9250 } 9251 9252 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 9253 const CCValAssign &VA, const SDLoc &DL) { 9254 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 9255 "Unexpected VA"); 9256 MachineFunction &MF = DAG.getMachineFunction(); 9257 MachineFrameInfo &MFI = MF.getFrameInfo(); 9258 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9259 9260 if (VA.isMemLoc()) { 9261 // f64 is passed on the stack. 9262 int FI = 9263 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 9264 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9265 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 9266 MachinePointerInfo::getFixedStack(MF, FI)); 9267 } 9268 9269 assert(VA.isRegLoc() && "Expected register VA assignment"); 9270 9271 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9272 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 9273 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 9274 SDValue Hi; 9275 if (VA.getLocReg() == RISCV::X17) { 9276 // Second half of f64 is passed on the stack. 9277 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 9278 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9279 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 9280 MachinePointerInfo::getFixedStack(MF, FI)); 9281 } else { 9282 // Second half of f64 is passed in another GPR. 9283 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9284 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 9285 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 9286 } 9287 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 9288 } 9289 9290 // FastCC has less than 1% performance improvement for some particular 9291 // benchmark. But theoretically, it may has benenfit for some cases. 9292 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 9293 unsigned ValNo, MVT ValVT, MVT LocVT, 9294 CCValAssign::LocInfo LocInfo, 9295 ISD::ArgFlagsTy ArgFlags, CCState &State, 9296 bool IsFixed, bool IsRet, Type *OrigTy, 9297 const RISCVTargetLowering &TLI, 9298 Optional<unsigned> FirstMaskArgument) { 9299 9300 // X5 and X6 might be used for save-restore libcall. 9301 static const MCPhysReg GPRList[] = { 9302 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 9303 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 9304 RISCV::X29, RISCV::X30, RISCV::X31}; 9305 9306 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9307 if (unsigned Reg = State.AllocateReg(GPRList)) { 9308 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9309 return false; 9310 } 9311 } 9312 9313 if (LocVT == MVT::f16) { 9314 static const MCPhysReg FPR16List[] = { 9315 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 9316 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 9317 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 9318 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 9319 if (unsigned Reg = State.AllocateReg(FPR16List)) { 9320 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9321 return false; 9322 } 9323 } 9324 9325 if (LocVT == MVT::f32) { 9326 static const MCPhysReg FPR32List[] = { 9327 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 9328 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 9329 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 9330 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 9331 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9332 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9333 return false; 9334 } 9335 } 9336 9337 if (LocVT == MVT::f64) { 9338 static const MCPhysReg FPR64List[] = { 9339 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 9340 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 9341 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 9342 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 9343 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9344 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9345 return false; 9346 } 9347 } 9348 9349 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 9350 unsigned Offset4 = State.AllocateStack(4, Align(4)); 9351 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 9352 return false; 9353 } 9354 9355 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 9356 unsigned Offset5 = State.AllocateStack(8, Align(8)); 9357 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 9358 return false; 9359 } 9360 9361 if (LocVT.isVector()) { 9362 if (unsigned Reg = 9363 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 9364 // Fixed-length vectors are located in the corresponding scalable-vector 9365 // container types. 9366 if (ValVT.isFixedLengthVector()) 9367 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9368 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9369 } else { 9370 // Try and pass the address via a "fast" GPR. 9371 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 9372 LocInfo = CCValAssign::Indirect; 9373 LocVT = TLI.getSubtarget().getXLenVT(); 9374 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 9375 } else if (ValVT.isFixedLengthVector()) { 9376 auto StackAlign = 9377 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9378 unsigned StackOffset = 9379 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 9380 State.addLoc( 9381 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9382 } else { 9383 // Can't pass scalable vectors on the stack. 9384 return true; 9385 } 9386 } 9387 9388 return false; 9389 } 9390 9391 return true; // CC didn't match. 9392 } 9393 9394 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 9395 CCValAssign::LocInfo LocInfo, 9396 ISD::ArgFlagsTy ArgFlags, CCState &State) { 9397 9398 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9399 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 9400 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 9401 static const MCPhysReg GPRList[] = { 9402 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 9403 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 9404 if (unsigned Reg = State.AllocateReg(GPRList)) { 9405 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9406 return false; 9407 } 9408 } 9409 9410 if (LocVT == MVT::f32) { 9411 // Pass in STG registers: F1, ..., F6 9412 // fs0 ... fs5 9413 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 9414 RISCV::F18_F, RISCV::F19_F, 9415 RISCV::F20_F, RISCV::F21_F}; 9416 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9417 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9418 return false; 9419 } 9420 } 9421 9422 if (LocVT == MVT::f64) { 9423 // Pass in STG registers: D1, ..., D6 9424 // fs6 ... fs11 9425 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 9426 RISCV::F24_D, RISCV::F25_D, 9427 RISCV::F26_D, RISCV::F27_D}; 9428 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9429 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9430 return false; 9431 } 9432 } 9433 9434 report_fatal_error("No registers left in GHC calling convention"); 9435 return true; 9436 } 9437 9438 // Transform physical registers into virtual registers. 9439 SDValue RISCVTargetLowering::LowerFormalArguments( 9440 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 9441 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 9442 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 9443 9444 MachineFunction &MF = DAG.getMachineFunction(); 9445 9446 switch (CallConv) { 9447 default: 9448 report_fatal_error("Unsupported calling convention"); 9449 case CallingConv::C: 9450 case CallingConv::Fast: 9451 break; 9452 case CallingConv::GHC: 9453 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 9454 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 9455 report_fatal_error( 9456 "GHC calling convention requires the F and D instruction set extensions"); 9457 } 9458 9459 const Function &Func = MF.getFunction(); 9460 if (Func.hasFnAttribute("interrupt")) { 9461 if (!Func.arg_empty()) 9462 report_fatal_error( 9463 "Functions with the interrupt attribute cannot have arguments!"); 9464 9465 StringRef Kind = 9466 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9467 9468 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 9469 report_fatal_error( 9470 "Function interrupt attribute argument not supported!"); 9471 } 9472 9473 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9474 MVT XLenVT = Subtarget.getXLenVT(); 9475 unsigned XLenInBytes = Subtarget.getXLen() / 8; 9476 // Used with vargs to acumulate store chains. 9477 std::vector<SDValue> OutChains; 9478 9479 // Assign locations to all of the incoming arguments. 9480 SmallVector<CCValAssign, 16> ArgLocs; 9481 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9482 9483 if (CallConv == CallingConv::GHC) 9484 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 9485 else 9486 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 9487 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9488 : CC_RISCV); 9489 9490 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 9491 CCValAssign &VA = ArgLocs[i]; 9492 SDValue ArgValue; 9493 // Passing f64 on RV32D with a soft float ABI must be handled as a special 9494 // case. 9495 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 9496 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 9497 else if (VA.isRegLoc()) 9498 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 9499 else 9500 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 9501 9502 if (VA.getLocInfo() == CCValAssign::Indirect) { 9503 // If the original argument was split and passed by reference (e.g. i128 9504 // on RV32), we need to load all parts of it here (using the same 9505 // address). Vectors may be partly split to registers and partly to the 9506 // stack, in which case the base address is partly offset and subsequent 9507 // stores are relative to that. 9508 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 9509 MachinePointerInfo())); 9510 unsigned ArgIndex = Ins[i].OrigArgIndex; 9511 unsigned ArgPartOffset = Ins[i].PartOffset; 9512 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9513 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 9514 CCValAssign &PartVA = ArgLocs[i + 1]; 9515 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 9516 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9517 if (PartVA.getValVT().isScalableVector()) 9518 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9519 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 9520 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 9521 MachinePointerInfo())); 9522 ++i; 9523 } 9524 continue; 9525 } 9526 InVals.push_back(ArgValue); 9527 } 9528 9529 if (IsVarArg) { 9530 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 9531 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 9532 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 9533 MachineFrameInfo &MFI = MF.getFrameInfo(); 9534 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9535 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 9536 9537 // Offset of the first variable argument from stack pointer, and size of 9538 // the vararg save area. For now, the varargs save area is either zero or 9539 // large enough to hold a0-a7. 9540 int VaArgOffset, VarArgsSaveSize; 9541 9542 // If all registers are allocated, then all varargs must be passed on the 9543 // stack and we don't need to save any argregs. 9544 if (ArgRegs.size() == Idx) { 9545 VaArgOffset = CCInfo.getNextStackOffset(); 9546 VarArgsSaveSize = 0; 9547 } else { 9548 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 9549 VaArgOffset = -VarArgsSaveSize; 9550 } 9551 9552 // Record the frame index of the first variable argument 9553 // which is a value necessary to VASTART. 9554 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9555 RVFI->setVarArgsFrameIndex(FI); 9556 9557 // If saving an odd number of registers then create an extra stack slot to 9558 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 9559 // offsets to even-numbered registered remain 2*XLEN-aligned. 9560 if (Idx % 2) { 9561 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 9562 VarArgsSaveSize += XLenInBytes; 9563 } 9564 9565 // Copy the integer registers that may have been used for passing varargs 9566 // to the vararg save area. 9567 for (unsigned I = Idx; I < ArgRegs.size(); 9568 ++I, VaArgOffset += XLenInBytes) { 9569 const Register Reg = RegInfo.createVirtualRegister(RC); 9570 RegInfo.addLiveIn(ArgRegs[I], Reg); 9571 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 9572 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9573 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9574 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 9575 MachinePointerInfo::getFixedStack(MF, FI)); 9576 cast<StoreSDNode>(Store.getNode()) 9577 ->getMemOperand() 9578 ->setValue((Value *)nullptr); 9579 OutChains.push_back(Store); 9580 } 9581 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 9582 } 9583 9584 // All stores are grouped in one node to allow the matching between 9585 // the size of Ins and InVals. This only happens for vararg functions. 9586 if (!OutChains.empty()) { 9587 OutChains.push_back(Chain); 9588 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 9589 } 9590 9591 return Chain; 9592 } 9593 9594 /// isEligibleForTailCallOptimization - Check whether the call is eligible 9595 /// for tail call optimization. 9596 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 9597 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 9598 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 9599 const SmallVector<CCValAssign, 16> &ArgLocs) const { 9600 9601 auto &Callee = CLI.Callee; 9602 auto CalleeCC = CLI.CallConv; 9603 auto &Outs = CLI.Outs; 9604 auto &Caller = MF.getFunction(); 9605 auto CallerCC = Caller.getCallingConv(); 9606 9607 // Exception-handling functions need a special set of instructions to 9608 // indicate a return to the hardware. Tail-calling another function would 9609 // probably break this. 9610 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 9611 // should be expanded as new function attributes are introduced. 9612 if (Caller.hasFnAttribute("interrupt")) 9613 return false; 9614 9615 // Do not tail call opt if the stack is used to pass parameters. 9616 if (CCInfo.getNextStackOffset() != 0) 9617 return false; 9618 9619 // Do not tail call opt if any parameters need to be passed indirectly. 9620 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 9621 // passed indirectly. So the address of the value will be passed in a 9622 // register, or if not available, then the address is put on the stack. In 9623 // order to pass indirectly, space on the stack often needs to be allocated 9624 // in order to store the value. In this case the CCInfo.getNextStackOffset() 9625 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 9626 // are passed CCValAssign::Indirect. 9627 for (auto &VA : ArgLocs) 9628 if (VA.getLocInfo() == CCValAssign::Indirect) 9629 return false; 9630 9631 // Do not tail call opt if either caller or callee uses struct return 9632 // semantics. 9633 auto IsCallerStructRet = Caller.hasStructRetAttr(); 9634 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 9635 if (IsCallerStructRet || IsCalleeStructRet) 9636 return false; 9637 9638 // Externally-defined functions with weak linkage should not be 9639 // tail-called. The behaviour of branch instructions in this situation (as 9640 // used for tail calls) is implementation-defined, so we cannot rely on the 9641 // linker replacing the tail call with a return. 9642 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 9643 const GlobalValue *GV = G->getGlobal(); 9644 if (GV->hasExternalWeakLinkage()) 9645 return false; 9646 } 9647 9648 // The callee has to preserve all registers the caller needs to preserve. 9649 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9650 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 9651 if (CalleeCC != CallerCC) { 9652 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 9653 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 9654 return false; 9655 } 9656 9657 // Byval parameters hand the function a pointer directly into the stack area 9658 // we want to reuse during a tail call. Working around this *is* possible 9659 // but less efficient and uglier in LowerCall. 9660 for (auto &Arg : Outs) 9661 if (Arg.Flags.isByVal()) 9662 return false; 9663 9664 return true; 9665 } 9666 9667 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 9668 return DAG.getDataLayout().getPrefTypeAlign( 9669 VT.getTypeForEVT(*DAG.getContext())); 9670 } 9671 9672 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 9673 // and output parameter nodes. 9674 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 9675 SmallVectorImpl<SDValue> &InVals) const { 9676 SelectionDAG &DAG = CLI.DAG; 9677 SDLoc &DL = CLI.DL; 9678 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 9679 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 9680 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 9681 SDValue Chain = CLI.Chain; 9682 SDValue Callee = CLI.Callee; 9683 bool &IsTailCall = CLI.IsTailCall; 9684 CallingConv::ID CallConv = CLI.CallConv; 9685 bool IsVarArg = CLI.IsVarArg; 9686 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9687 MVT XLenVT = Subtarget.getXLenVT(); 9688 9689 MachineFunction &MF = DAG.getMachineFunction(); 9690 9691 // Analyze the operands of the call, assigning locations to each operand. 9692 SmallVector<CCValAssign, 16> ArgLocs; 9693 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9694 9695 if (CallConv == CallingConv::GHC) 9696 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 9697 else 9698 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 9699 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9700 : CC_RISCV); 9701 9702 // Check if it's really possible to do a tail call. 9703 if (IsTailCall) 9704 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 9705 9706 if (IsTailCall) 9707 ++NumTailCalls; 9708 else if (CLI.CB && CLI.CB->isMustTailCall()) 9709 report_fatal_error("failed to perform tail call elimination on a call " 9710 "site marked musttail"); 9711 9712 // Get a count of how many bytes are to be pushed on the stack. 9713 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 9714 9715 // Create local copies for byval args 9716 SmallVector<SDValue, 8> ByValArgs; 9717 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9718 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9719 if (!Flags.isByVal()) 9720 continue; 9721 9722 SDValue Arg = OutVals[i]; 9723 unsigned Size = Flags.getByValSize(); 9724 Align Alignment = Flags.getNonZeroByValAlign(); 9725 9726 int FI = 9727 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 9728 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9729 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 9730 9731 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 9732 /*IsVolatile=*/false, 9733 /*AlwaysInline=*/false, IsTailCall, 9734 MachinePointerInfo(), MachinePointerInfo()); 9735 ByValArgs.push_back(FIPtr); 9736 } 9737 9738 if (!IsTailCall) 9739 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 9740 9741 // Copy argument values to their designated locations. 9742 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 9743 SmallVector<SDValue, 8> MemOpChains; 9744 SDValue StackPtr; 9745 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 9746 CCValAssign &VA = ArgLocs[i]; 9747 SDValue ArgValue = OutVals[i]; 9748 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9749 9750 // Handle passing f64 on RV32D with a soft float ABI as a special case. 9751 bool IsF64OnRV32DSoftABI = 9752 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 9753 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 9754 SDValue SplitF64 = DAG.getNode( 9755 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 9756 SDValue Lo = SplitF64.getValue(0); 9757 SDValue Hi = SplitF64.getValue(1); 9758 9759 Register RegLo = VA.getLocReg(); 9760 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 9761 9762 if (RegLo == RISCV::X17) { 9763 // Second half of f64 is passed on the stack. 9764 // Work out the address of the stack slot. 9765 if (!StackPtr.getNode()) 9766 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9767 // Emit the store. 9768 MemOpChains.push_back( 9769 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 9770 } else { 9771 // Second half of f64 is passed in another GPR. 9772 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9773 Register RegHigh = RegLo + 1; 9774 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 9775 } 9776 continue; 9777 } 9778 9779 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 9780 // as any other MemLoc. 9781 9782 // Promote the value if needed. 9783 // For now, only handle fully promoted and indirect arguments. 9784 if (VA.getLocInfo() == CCValAssign::Indirect) { 9785 // Store the argument in a stack slot and pass its address. 9786 Align StackAlign = 9787 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 9788 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 9789 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 9790 // If the original argument was split (e.g. i128), we need 9791 // to store the required parts of it here (and pass just one address). 9792 // Vectors may be partly split to registers and partly to the stack, in 9793 // which case the base address is partly offset and subsequent stores are 9794 // relative to that. 9795 unsigned ArgIndex = Outs[i].OrigArgIndex; 9796 unsigned ArgPartOffset = Outs[i].PartOffset; 9797 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9798 // Calculate the total size to store. We don't have access to what we're 9799 // actually storing other than performing the loop and collecting the 9800 // info. 9801 SmallVector<std::pair<SDValue, SDValue>> Parts; 9802 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 9803 SDValue PartValue = OutVals[i + 1]; 9804 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 9805 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9806 EVT PartVT = PartValue.getValueType(); 9807 if (PartVT.isScalableVector()) 9808 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9809 StoredSize += PartVT.getStoreSize(); 9810 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 9811 Parts.push_back(std::make_pair(PartValue, Offset)); 9812 ++i; 9813 } 9814 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 9815 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 9816 MemOpChains.push_back( 9817 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 9818 MachinePointerInfo::getFixedStack(MF, FI))); 9819 for (const auto &Part : Parts) { 9820 SDValue PartValue = Part.first; 9821 SDValue PartOffset = Part.second; 9822 SDValue Address = 9823 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 9824 MemOpChains.push_back( 9825 DAG.getStore(Chain, DL, PartValue, Address, 9826 MachinePointerInfo::getFixedStack(MF, FI))); 9827 } 9828 ArgValue = SpillSlot; 9829 } else { 9830 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 9831 } 9832 9833 // Use local copy if it is a byval arg. 9834 if (Flags.isByVal()) 9835 ArgValue = ByValArgs[j++]; 9836 9837 if (VA.isRegLoc()) { 9838 // Queue up the argument copies and emit them at the end. 9839 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 9840 } else { 9841 assert(VA.isMemLoc() && "Argument not register or memory"); 9842 assert(!IsTailCall && "Tail call not allowed if stack is used " 9843 "for passing parameters"); 9844 9845 // Work out the address of the stack slot. 9846 if (!StackPtr.getNode()) 9847 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9848 SDValue Address = 9849 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 9850 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 9851 9852 // Emit the store. 9853 MemOpChains.push_back( 9854 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 9855 } 9856 } 9857 9858 // Join the stores, which are independent of one another. 9859 if (!MemOpChains.empty()) 9860 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 9861 9862 SDValue Glue; 9863 9864 // Build a sequence of copy-to-reg nodes, chained and glued together. 9865 for (auto &Reg : RegsToPass) { 9866 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 9867 Glue = Chain.getValue(1); 9868 } 9869 9870 // Validate that none of the argument registers have been marked as 9871 // reserved, if so report an error. Do the same for the return address if this 9872 // is not a tailcall. 9873 validateCCReservedRegs(RegsToPass, MF); 9874 if (!IsTailCall && 9875 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 9876 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9877 MF.getFunction(), 9878 "Return address register required, but has been reserved."}); 9879 9880 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 9881 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 9882 // split it and then direct call can be matched by PseudoCALL. 9883 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 9884 const GlobalValue *GV = S->getGlobal(); 9885 9886 unsigned OpFlags = RISCVII::MO_CALL; 9887 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 9888 OpFlags = RISCVII::MO_PLT; 9889 9890 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 9891 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 9892 unsigned OpFlags = RISCVII::MO_CALL; 9893 9894 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 9895 nullptr)) 9896 OpFlags = RISCVII::MO_PLT; 9897 9898 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 9899 } 9900 9901 // The first call operand is the chain and the second is the target address. 9902 SmallVector<SDValue, 8> Ops; 9903 Ops.push_back(Chain); 9904 Ops.push_back(Callee); 9905 9906 // Add argument registers to the end of the list so that they are 9907 // known live into the call. 9908 for (auto &Reg : RegsToPass) 9909 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 9910 9911 if (!IsTailCall) { 9912 // Add a register mask operand representing the call-preserved registers. 9913 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9914 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 9915 assert(Mask && "Missing call preserved mask for calling convention"); 9916 Ops.push_back(DAG.getRegisterMask(Mask)); 9917 } 9918 9919 // Glue the call to the argument copies, if any. 9920 if (Glue.getNode()) 9921 Ops.push_back(Glue); 9922 9923 // Emit the call. 9924 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9925 9926 if (IsTailCall) { 9927 MF.getFrameInfo().setHasTailCall(); 9928 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 9929 } 9930 9931 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 9932 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 9933 Glue = Chain.getValue(1); 9934 9935 // Mark the end of the call, which is glued to the call itself. 9936 Chain = DAG.getCALLSEQ_END(Chain, 9937 DAG.getConstant(NumBytes, DL, PtrVT, true), 9938 DAG.getConstant(0, DL, PtrVT, true), 9939 Glue, DL); 9940 Glue = Chain.getValue(1); 9941 9942 // Assign locations to each value returned by this call. 9943 SmallVector<CCValAssign, 16> RVLocs; 9944 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 9945 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 9946 9947 // Copy all of the result registers out of their specified physreg. 9948 for (auto &VA : RVLocs) { 9949 // Copy the value out 9950 SDValue RetValue = 9951 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9952 // Glue the RetValue to the end of the call sequence 9953 Chain = RetValue.getValue(1); 9954 Glue = RetValue.getValue(2); 9955 9956 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9957 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9958 SDValue RetValue2 = 9959 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9960 Chain = RetValue2.getValue(1); 9961 Glue = RetValue2.getValue(2); 9962 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9963 RetValue2); 9964 } 9965 9966 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9967 9968 InVals.push_back(RetValue); 9969 } 9970 9971 return Chain; 9972 } 9973 9974 bool RISCVTargetLowering::CanLowerReturn( 9975 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9976 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9977 SmallVector<CCValAssign, 16> RVLocs; 9978 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9979 9980 Optional<unsigned> FirstMaskArgument; 9981 if (Subtarget.hasVInstructions()) 9982 FirstMaskArgument = preAssignMask(Outs); 9983 9984 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9985 MVT VT = Outs[i].VT; 9986 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9987 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9988 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9989 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9990 *this, FirstMaskArgument)) 9991 return false; 9992 } 9993 return true; 9994 } 9995 9996 SDValue 9997 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9998 bool IsVarArg, 9999 const SmallVectorImpl<ISD::OutputArg> &Outs, 10000 const SmallVectorImpl<SDValue> &OutVals, 10001 const SDLoc &DL, SelectionDAG &DAG) const { 10002 const MachineFunction &MF = DAG.getMachineFunction(); 10003 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10004 10005 // Stores the assignment of the return value to a location. 10006 SmallVector<CCValAssign, 16> RVLocs; 10007 10008 // Info about the registers and stack slot. 10009 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 10010 *DAG.getContext()); 10011 10012 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 10013 nullptr, CC_RISCV); 10014 10015 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 10016 report_fatal_error("GHC functions return void only"); 10017 10018 SDValue Glue; 10019 SmallVector<SDValue, 4> RetOps(1, Chain); 10020 10021 // Copy the result values into the output registers. 10022 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 10023 SDValue Val = OutVals[i]; 10024 CCValAssign &VA = RVLocs[i]; 10025 assert(VA.isRegLoc() && "Can only return in registers!"); 10026 10027 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10028 // Handle returning f64 on RV32D with a soft float ABI. 10029 assert(VA.isRegLoc() && "Expected return via registers"); 10030 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 10031 DAG.getVTList(MVT::i32, MVT::i32), Val); 10032 SDValue Lo = SplitF64.getValue(0); 10033 SDValue Hi = SplitF64.getValue(1); 10034 Register RegLo = VA.getLocReg(); 10035 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10036 Register RegHi = RegLo + 1; 10037 10038 if (STI.isRegisterReservedByUser(RegLo) || 10039 STI.isRegisterReservedByUser(RegHi)) 10040 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10041 MF.getFunction(), 10042 "Return value register required, but has been reserved."}); 10043 10044 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 10045 Glue = Chain.getValue(1); 10046 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 10047 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 10048 Glue = Chain.getValue(1); 10049 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 10050 } else { 10051 // Handle a 'normal' return. 10052 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 10053 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 10054 10055 if (STI.isRegisterReservedByUser(VA.getLocReg())) 10056 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10057 MF.getFunction(), 10058 "Return value register required, but has been reserved."}); 10059 10060 // Guarantee that all emitted copies are stuck together. 10061 Glue = Chain.getValue(1); 10062 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 10063 } 10064 } 10065 10066 RetOps[0] = Chain; // Update chain. 10067 10068 // Add the glue node if we have it. 10069 if (Glue.getNode()) { 10070 RetOps.push_back(Glue); 10071 } 10072 10073 unsigned RetOpc = RISCVISD::RET_FLAG; 10074 // Interrupt service routines use different return instructions. 10075 const Function &Func = DAG.getMachineFunction().getFunction(); 10076 if (Func.hasFnAttribute("interrupt")) { 10077 if (!Func.getReturnType()->isVoidTy()) 10078 report_fatal_error( 10079 "Functions with the interrupt attribute must have void return type!"); 10080 10081 MachineFunction &MF = DAG.getMachineFunction(); 10082 StringRef Kind = 10083 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10084 10085 if (Kind == "user") 10086 RetOpc = RISCVISD::URET_FLAG; 10087 else if (Kind == "supervisor") 10088 RetOpc = RISCVISD::SRET_FLAG; 10089 else 10090 RetOpc = RISCVISD::MRET_FLAG; 10091 } 10092 10093 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 10094 } 10095 10096 void RISCVTargetLowering::validateCCReservedRegs( 10097 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 10098 MachineFunction &MF) const { 10099 const Function &F = MF.getFunction(); 10100 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10101 10102 if (llvm::any_of(Regs, [&STI](auto Reg) { 10103 return STI.isRegisterReservedByUser(Reg.first); 10104 })) 10105 F.getContext().diagnose(DiagnosticInfoUnsupported{ 10106 F, "Argument register required, but has been reserved."}); 10107 } 10108 10109 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 10110 return CI->isTailCall(); 10111 } 10112 10113 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 10114 #define NODE_NAME_CASE(NODE) \ 10115 case RISCVISD::NODE: \ 10116 return "RISCVISD::" #NODE; 10117 // clang-format off 10118 switch ((RISCVISD::NodeType)Opcode) { 10119 case RISCVISD::FIRST_NUMBER: 10120 break; 10121 NODE_NAME_CASE(RET_FLAG) 10122 NODE_NAME_CASE(URET_FLAG) 10123 NODE_NAME_CASE(SRET_FLAG) 10124 NODE_NAME_CASE(MRET_FLAG) 10125 NODE_NAME_CASE(CALL) 10126 NODE_NAME_CASE(SELECT_CC) 10127 NODE_NAME_CASE(BR_CC) 10128 NODE_NAME_CASE(BuildPairF64) 10129 NODE_NAME_CASE(SplitF64) 10130 NODE_NAME_CASE(TAIL) 10131 NODE_NAME_CASE(MULHSU) 10132 NODE_NAME_CASE(SLLW) 10133 NODE_NAME_CASE(SRAW) 10134 NODE_NAME_CASE(SRLW) 10135 NODE_NAME_CASE(DIVW) 10136 NODE_NAME_CASE(DIVUW) 10137 NODE_NAME_CASE(REMUW) 10138 NODE_NAME_CASE(ROLW) 10139 NODE_NAME_CASE(RORW) 10140 NODE_NAME_CASE(CLZW) 10141 NODE_NAME_CASE(CTZW) 10142 NODE_NAME_CASE(FSLW) 10143 NODE_NAME_CASE(FSRW) 10144 NODE_NAME_CASE(FSL) 10145 NODE_NAME_CASE(FSR) 10146 NODE_NAME_CASE(FMV_H_X) 10147 NODE_NAME_CASE(FMV_X_ANYEXTH) 10148 NODE_NAME_CASE(FMV_W_X_RV64) 10149 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 10150 NODE_NAME_CASE(FCVT_X) 10151 NODE_NAME_CASE(FCVT_XU) 10152 NODE_NAME_CASE(FCVT_W_RV64) 10153 NODE_NAME_CASE(FCVT_WU_RV64) 10154 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 10155 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 10156 NODE_NAME_CASE(READ_CYCLE_WIDE) 10157 NODE_NAME_CASE(GREV) 10158 NODE_NAME_CASE(GREVW) 10159 NODE_NAME_CASE(GORC) 10160 NODE_NAME_CASE(GORCW) 10161 NODE_NAME_CASE(SHFL) 10162 NODE_NAME_CASE(SHFLW) 10163 NODE_NAME_CASE(UNSHFL) 10164 NODE_NAME_CASE(UNSHFLW) 10165 NODE_NAME_CASE(BFP) 10166 NODE_NAME_CASE(BFPW) 10167 NODE_NAME_CASE(BCOMPRESS) 10168 NODE_NAME_CASE(BCOMPRESSW) 10169 NODE_NAME_CASE(BDECOMPRESS) 10170 NODE_NAME_CASE(BDECOMPRESSW) 10171 NODE_NAME_CASE(VMV_V_X_VL) 10172 NODE_NAME_CASE(VFMV_V_F_VL) 10173 NODE_NAME_CASE(VMV_X_S) 10174 NODE_NAME_CASE(VMV_S_X_VL) 10175 NODE_NAME_CASE(VFMV_S_F_VL) 10176 NODE_NAME_CASE(SPLAT_VECTOR_I64) 10177 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 10178 NODE_NAME_CASE(READ_VLENB) 10179 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 10180 NODE_NAME_CASE(VSLIDEUP_VL) 10181 NODE_NAME_CASE(VSLIDE1UP_VL) 10182 NODE_NAME_CASE(VSLIDEDOWN_VL) 10183 NODE_NAME_CASE(VSLIDE1DOWN_VL) 10184 NODE_NAME_CASE(VID_VL) 10185 NODE_NAME_CASE(VFNCVT_ROD_VL) 10186 NODE_NAME_CASE(VECREDUCE_ADD_VL) 10187 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 10188 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 10189 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 10190 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 10191 NODE_NAME_CASE(VECREDUCE_AND_VL) 10192 NODE_NAME_CASE(VECREDUCE_OR_VL) 10193 NODE_NAME_CASE(VECREDUCE_XOR_VL) 10194 NODE_NAME_CASE(VECREDUCE_FADD_VL) 10195 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 10196 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 10197 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 10198 NODE_NAME_CASE(ADD_VL) 10199 NODE_NAME_CASE(AND_VL) 10200 NODE_NAME_CASE(MUL_VL) 10201 NODE_NAME_CASE(OR_VL) 10202 NODE_NAME_CASE(SDIV_VL) 10203 NODE_NAME_CASE(SHL_VL) 10204 NODE_NAME_CASE(SREM_VL) 10205 NODE_NAME_CASE(SRA_VL) 10206 NODE_NAME_CASE(SRL_VL) 10207 NODE_NAME_CASE(SUB_VL) 10208 NODE_NAME_CASE(UDIV_VL) 10209 NODE_NAME_CASE(UREM_VL) 10210 NODE_NAME_CASE(XOR_VL) 10211 NODE_NAME_CASE(SADDSAT_VL) 10212 NODE_NAME_CASE(UADDSAT_VL) 10213 NODE_NAME_CASE(SSUBSAT_VL) 10214 NODE_NAME_CASE(USUBSAT_VL) 10215 NODE_NAME_CASE(FADD_VL) 10216 NODE_NAME_CASE(FSUB_VL) 10217 NODE_NAME_CASE(FMUL_VL) 10218 NODE_NAME_CASE(FDIV_VL) 10219 NODE_NAME_CASE(FNEG_VL) 10220 NODE_NAME_CASE(FABS_VL) 10221 NODE_NAME_CASE(FSQRT_VL) 10222 NODE_NAME_CASE(FMA_VL) 10223 NODE_NAME_CASE(FCOPYSIGN_VL) 10224 NODE_NAME_CASE(SMIN_VL) 10225 NODE_NAME_CASE(SMAX_VL) 10226 NODE_NAME_CASE(UMIN_VL) 10227 NODE_NAME_CASE(UMAX_VL) 10228 NODE_NAME_CASE(FMINNUM_VL) 10229 NODE_NAME_CASE(FMAXNUM_VL) 10230 NODE_NAME_CASE(MULHS_VL) 10231 NODE_NAME_CASE(MULHU_VL) 10232 NODE_NAME_CASE(FP_TO_SINT_VL) 10233 NODE_NAME_CASE(FP_TO_UINT_VL) 10234 NODE_NAME_CASE(SINT_TO_FP_VL) 10235 NODE_NAME_CASE(UINT_TO_FP_VL) 10236 NODE_NAME_CASE(FP_EXTEND_VL) 10237 NODE_NAME_CASE(FP_ROUND_VL) 10238 NODE_NAME_CASE(VWMUL_VL) 10239 NODE_NAME_CASE(VWMULU_VL) 10240 NODE_NAME_CASE(VWMULSU_VL) 10241 NODE_NAME_CASE(VWADDU_VL) 10242 NODE_NAME_CASE(SETCC_VL) 10243 NODE_NAME_CASE(VSELECT_VL) 10244 NODE_NAME_CASE(VP_MERGE_VL) 10245 NODE_NAME_CASE(VMAND_VL) 10246 NODE_NAME_CASE(VMOR_VL) 10247 NODE_NAME_CASE(VMXOR_VL) 10248 NODE_NAME_CASE(VMCLR_VL) 10249 NODE_NAME_CASE(VMSET_VL) 10250 NODE_NAME_CASE(VRGATHER_VX_VL) 10251 NODE_NAME_CASE(VRGATHER_VV_VL) 10252 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 10253 NODE_NAME_CASE(VSEXT_VL) 10254 NODE_NAME_CASE(VZEXT_VL) 10255 NODE_NAME_CASE(VCPOP_VL) 10256 NODE_NAME_CASE(VLE_VL) 10257 NODE_NAME_CASE(VSE_VL) 10258 NODE_NAME_CASE(READ_CSR) 10259 NODE_NAME_CASE(WRITE_CSR) 10260 NODE_NAME_CASE(SWAP_CSR) 10261 } 10262 // clang-format on 10263 return nullptr; 10264 #undef NODE_NAME_CASE 10265 } 10266 10267 /// getConstraintType - Given a constraint letter, return the type of 10268 /// constraint it is for this target. 10269 RISCVTargetLowering::ConstraintType 10270 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 10271 if (Constraint.size() == 1) { 10272 switch (Constraint[0]) { 10273 default: 10274 break; 10275 case 'f': 10276 return C_RegisterClass; 10277 case 'I': 10278 case 'J': 10279 case 'K': 10280 return C_Immediate; 10281 case 'A': 10282 return C_Memory; 10283 case 'S': // A symbolic address 10284 return C_Other; 10285 } 10286 } else { 10287 if (Constraint == "vr" || Constraint == "vm") 10288 return C_RegisterClass; 10289 } 10290 return TargetLowering::getConstraintType(Constraint); 10291 } 10292 10293 std::pair<unsigned, const TargetRegisterClass *> 10294 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10295 StringRef Constraint, 10296 MVT VT) const { 10297 // First, see if this is a constraint that directly corresponds to a 10298 // RISCV register class. 10299 if (Constraint.size() == 1) { 10300 switch (Constraint[0]) { 10301 case 'r': 10302 // TODO: Support fixed vectors up to XLen for P extension? 10303 if (VT.isVector()) 10304 break; 10305 return std::make_pair(0U, &RISCV::GPRRegClass); 10306 case 'f': 10307 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 10308 return std::make_pair(0U, &RISCV::FPR16RegClass); 10309 if (Subtarget.hasStdExtF() && VT == MVT::f32) 10310 return std::make_pair(0U, &RISCV::FPR32RegClass); 10311 if (Subtarget.hasStdExtD() && VT == MVT::f64) 10312 return std::make_pair(0U, &RISCV::FPR64RegClass); 10313 break; 10314 default: 10315 break; 10316 } 10317 } else if (Constraint == "vr") { 10318 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 10319 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10320 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 10321 return std::make_pair(0U, RC); 10322 } 10323 } else if (Constraint == "vm") { 10324 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 10325 return std::make_pair(0U, &RISCV::VMV0RegClass); 10326 } 10327 10328 // Clang will correctly decode the usage of register name aliases into their 10329 // official names. However, other frontends like `rustc` do not. This allows 10330 // users of these frontends to use the ABI names for registers in LLVM-style 10331 // register constraints. 10332 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 10333 .Case("{zero}", RISCV::X0) 10334 .Case("{ra}", RISCV::X1) 10335 .Case("{sp}", RISCV::X2) 10336 .Case("{gp}", RISCV::X3) 10337 .Case("{tp}", RISCV::X4) 10338 .Case("{t0}", RISCV::X5) 10339 .Case("{t1}", RISCV::X6) 10340 .Case("{t2}", RISCV::X7) 10341 .Cases("{s0}", "{fp}", RISCV::X8) 10342 .Case("{s1}", RISCV::X9) 10343 .Case("{a0}", RISCV::X10) 10344 .Case("{a1}", RISCV::X11) 10345 .Case("{a2}", RISCV::X12) 10346 .Case("{a3}", RISCV::X13) 10347 .Case("{a4}", RISCV::X14) 10348 .Case("{a5}", RISCV::X15) 10349 .Case("{a6}", RISCV::X16) 10350 .Case("{a7}", RISCV::X17) 10351 .Case("{s2}", RISCV::X18) 10352 .Case("{s3}", RISCV::X19) 10353 .Case("{s4}", RISCV::X20) 10354 .Case("{s5}", RISCV::X21) 10355 .Case("{s6}", RISCV::X22) 10356 .Case("{s7}", RISCV::X23) 10357 .Case("{s8}", RISCV::X24) 10358 .Case("{s9}", RISCV::X25) 10359 .Case("{s10}", RISCV::X26) 10360 .Case("{s11}", RISCV::X27) 10361 .Case("{t3}", RISCV::X28) 10362 .Case("{t4}", RISCV::X29) 10363 .Case("{t5}", RISCV::X30) 10364 .Case("{t6}", RISCV::X31) 10365 .Default(RISCV::NoRegister); 10366 if (XRegFromAlias != RISCV::NoRegister) 10367 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 10368 10369 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 10370 // TableGen record rather than the AsmName to choose registers for InlineAsm 10371 // constraints, plus we want to match those names to the widest floating point 10372 // register type available, manually select floating point registers here. 10373 // 10374 // The second case is the ABI name of the register, so that frontends can also 10375 // use the ABI names in register constraint lists. 10376 if (Subtarget.hasStdExtF()) { 10377 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 10378 .Cases("{f0}", "{ft0}", RISCV::F0_F) 10379 .Cases("{f1}", "{ft1}", RISCV::F1_F) 10380 .Cases("{f2}", "{ft2}", RISCV::F2_F) 10381 .Cases("{f3}", "{ft3}", RISCV::F3_F) 10382 .Cases("{f4}", "{ft4}", RISCV::F4_F) 10383 .Cases("{f5}", "{ft5}", RISCV::F5_F) 10384 .Cases("{f6}", "{ft6}", RISCV::F6_F) 10385 .Cases("{f7}", "{ft7}", RISCV::F7_F) 10386 .Cases("{f8}", "{fs0}", RISCV::F8_F) 10387 .Cases("{f9}", "{fs1}", RISCV::F9_F) 10388 .Cases("{f10}", "{fa0}", RISCV::F10_F) 10389 .Cases("{f11}", "{fa1}", RISCV::F11_F) 10390 .Cases("{f12}", "{fa2}", RISCV::F12_F) 10391 .Cases("{f13}", "{fa3}", RISCV::F13_F) 10392 .Cases("{f14}", "{fa4}", RISCV::F14_F) 10393 .Cases("{f15}", "{fa5}", RISCV::F15_F) 10394 .Cases("{f16}", "{fa6}", RISCV::F16_F) 10395 .Cases("{f17}", "{fa7}", RISCV::F17_F) 10396 .Cases("{f18}", "{fs2}", RISCV::F18_F) 10397 .Cases("{f19}", "{fs3}", RISCV::F19_F) 10398 .Cases("{f20}", "{fs4}", RISCV::F20_F) 10399 .Cases("{f21}", "{fs5}", RISCV::F21_F) 10400 .Cases("{f22}", "{fs6}", RISCV::F22_F) 10401 .Cases("{f23}", "{fs7}", RISCV::F23_F) 10402 .Cases("{f24}", "{fs8}", RISCV::F24_F) 10403 .Cases("{f25}", "{fs9}", RISCV::F25_F) 10404 .Cases("{f26}", "{fs10}", RISCV::F26_F) 10405 .Cases("{f27}", "{fs11}", RISCV::F27_F) 10406 .Cases("{f28}", "{ft8}", RISCV::F28_F) 10407 .Cases("{f29}", "{ft9}", RISCV::F29_F) 10408 .Cases("{f30}", "{ft10}", RISCV::F30_F) 10409 .Cases("{f31}", "{ft11}", RISCV::F31_F) 10410 .Default(RISCV::NoRegister); 10411 if (FReg != RISCV::NoRegister) { 10412 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 10413 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 10414 unsigned RegNo = FReg - RISCV::F0_F; 10415 unsigned DReg = RISCV::F0_D + RegNo; 10416 return std::make_pair(DReg, &RISCV::FPR64RegClass); 10417 } 10418 if (VT == MVT::f32 || VT == MVT::Other) 10419 return std::make_pair(FReg, &RISCV::FPR32RegClass); 10420 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 10421 unsigned RegNo = FReg - RISCV::F0_F; 10422 unsigned HReg = RISCV::F0_H + RegNo; 10423 return std::make_pair(HReg, &RISCV::FPR16RegClass); 10424 } 10425 } 10426 } 10427 10428 if (Subtarget.hasVInstructions()) { 10429 Register VReg = StringSwitch<Register>(Constraint.lower()) 10430 .Case("{v0}", RISCV::V0) 10431 .Case("{v1}", RISCV::V1) 10432 .Case("{v2}", RISCV::V2) 10433 .Case("{v3}", RISCV::V3) 10434 .Case("{v4}", RISCV::V4) 10435 .Case("{v5}", RISCV::V5) 10436 .Case("{v6}", RISCV::V6) 10437 .Case("{v7}", RISCV::V7) 10438 .Case("{v8}", RISCV::V8) 10439 .Case("{v9}", RISCV::V9) 10440 .Case("{v10}", RISCV::V10) 10441 .Case("{v11}", RISCV::V11) 10442 .Case("{v12}", RISCV::V12) 10443 .Case("{v13}", RISCV::V13) 10444 .Case("{v14}", RISCV::V14) 10445 .Case("{v15}", RISCV::V15) 10446 .Case("{v16}", RISCV::V16) 10447 .Case("{v17}", RISCV::V17) 10448 .Case("{v18}", RISCV::V18) 10449 .Case("{v19}", RISCV::V19) 10450 .Case("{v20}", RISCV::V20) 10451 .Case("{v21}", RISCV::V21) 10452 .Case("{v22}", RISCV::V22) 10453 .Case("{v23}", RISCV::V23) 10454 .Case("{v24}", RISCV::V24) 10455 .Case("{v25}", RISCV::V25) 10456 .Case("{v26}", RISCV::V26) 10457 .Case("{v27}", RISCV::V27) 10458 .Case("{v28}", RISCV::V28) 10459 .Case("{v29}", RISCV::V29) 10460 .Case("{v30}", RISCV::V30) 10461 .Case("{v31}", RISCV::V31) 10462 .Default(RISCV::NoRegister); 10463 if (VReg != RISCV::NoRegister) { 10464 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 10465 return std::make_pair(VReg, &RISCV::VMRegClass); 10466 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 10467 return std::make_pair(VReg, &RISCV::VRRegClass); 10468 for (const auto *RC : 10469 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10470 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 10471 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 10472 return std::make_pair(VReg, RC); 10473 } 10474 } 10475 } 10476 } 10477 10478 std::pair<Register, const TargetRegisterClass *> Res = 10479 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10480 10481 // If we picked one of the Zfinx register classes, remap it to the GPR class. 10482 // FIXME: When Zfinx is supported in CodeGen this will need to take the 10483 // Subtarget into account. 10484 if (Res.second == &RISCV::GPRF16RegClass || 10485 Res.second == &RISCV::GPRF32RegClass || 10486 Res.second == &RISCV::GPRF64RegClass) 10487 return std::make_pair(Res.first, &RISCV::GPRRegClass); 10488 10489 return Res; 10490 } 10491 10492 unsigned 10493 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 10494 // Currently only support length 1 constraints. 10495 if (ConstraintCode.size() == 1) { 10496 switch (ConstraintCode[0]) { 10497 case 'A': 10498 return InlineAsm::Constraint_A; 10499 default: 10500 break; 10501 } 10502 } 10503 10504 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 10505 } 10506 10507 void RISCVTargetLowering::LowerAsmOperandForConstraint( 10508 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 10509 SelectionDAG &DAG) const { 10510 // Currently only support length 1 constraints. 10511 if (Constraint.length() == 1) { 10512 switch (Constraint[0]) { 10513 case 'I': 10514 // Validate & create a 12-bit signed immediate operand. 10515 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10516 uint64_t CVal = C->getSExtValue(); 10517 if (isInt<12>(CVal)) 10518 Ops.push_back( 10519 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10520 } 10521 return; 10522 case 'J': 10523 // Validate & create an integer zero operand. 10524 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 10525 if (C->getZExtValue() == 0) 10526 Ops.push_back( 10527 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 10528 return; 10529 case 'K': 10530 // Validate & create a 5-bit unsigned immediate operand. 10531 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10532 uint64_t CVal = C->getZExtValue(); 10533 if (isUInt<5>(CVal)) 10534 Ops.push_back( 10535 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10536 } 10537 return; 10538 case 'S': 10539 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 10540 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 10541 GA->getValueType(0))); 10542 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 10543 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 10544 BA->getValueType(0))); 10545 } 10546 return; 10547 default: 10548 break; 10549 } 10550 } 10551 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10552 } 10553 10554 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 10555 Instruction *Inst, 10556 AtomicOrdering Ord) const { 10557 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 10558 return Builder.CreateFence(Ord); 10559 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 10560 return Builder.CreateFence(AtomicOrdering::Release); 10561 return nullptr; 10562 } 10563 10564 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 10565 Instruction *Inst, 10566 AtomicOrdering Ord) const { 10567 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 10568 return Builder.CreateFence(AtomicOrdering::Acquire); 10569 return nullptr; 10570 } 10571 10572 TargetLowering::AtomicExpansionKind 10573 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 10574 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 10575 // point operations can't be used in an lr/sc sequence without breaking the 10576 // forward-progress guarantee. 10577 if (AI->isFloatingPointOperation()) 10578 return AtomicExpansionKind::CmpXChg; 10579 10580 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 10581 if (Size == 8 || Size == 16) 10582 return AtomicExpansionKind::MaskedIntrinsic; 10583 return AtomicExpansionKind::None; 10584 } 10585 10586 static Intrinsic::ID 10587 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 10588 if (XLen == 32) { 10589 switch (BinOp) { 10590 default: 10591 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10592 case AtomicRMWInst::Xchg: 10593 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 10594 case AtomicRMWInst::Add: 10595 return Intrinsic::riscv_masked_atomicrmw_add_i32; 10596 case AtomicRMWInst::Sub: 10597 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 10598 case AtomicRMWInst::Nand: 10599 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 10600 case AtomicRMWInst::Max: 10601 return Intrinsic::riscv_masked_atomicrmw_max_i32; 10602 case AtomicRMWInst::Min: 10603 return Intrinsic::riscv_masked_atomicrmw_min_i32; 10604 case AtomicRMWInst::UMax: 10605 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 10606 case AtomicRMWInst::UMin: 10607 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 10608 } 10609 } 10610 10611 if (XLen == 64) { 10612 switch (BinOp) { 10613 default: 10614 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10615 case AtomicRMWInst::Xchg: 10616 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 10617 case AtomicRMWInst::Add: 10618 return Intrinsic::riscv_masked_atomicrmw_add_i64; 10619 case AtomicRMWInst::Sub: 10620 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 10621 case AtomicRMWInst::Nand: 10622 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 10623 case AtomicRMWInst::Max: 10624 return Intrinsic::riscv_masked_atomicrmw_max_i64; 10625 case AtomicRMWInst::Min: 10626 return Intrinsic::riscv_masked_atomicrmw_min_i64; 10627 case AtomicRMWInst::UMax: 10628 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 10629 case AtomicRMWInst::UMin: 10630 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 10631 } 10632 } 10633 10634 llvm_unreachable("Unexpected XLen\n"); 10635 } 10636 10637 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 10638 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 10639 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 10640 unsigned XLen = Subtarget.getXLen(); 10641 Value *Ordering = 10642 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 10643 Type *Tys[] = {AlignedAddr->getType()}; 10644 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 10645 AI->getModule(), 10646 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 10647 10648 if (XLen == 64) { 10649 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 10650 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10651 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 10652 } 10653 10654 Value *Result; 10655 10656 // Must pass the shift amount needed to sign extend the loaded value prior 10657 // to performing a signed comparison for min/max. ShiftAmt is the number of 10658 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 10659 // is the number of bits to left+right shift the value in order to 10660 // sign-extend. 10661 if (AI->getOperation() == AtomicRMWInst::Min || 10662 AI->getOperation() == AtomicRMWInst::Max) { 10663 const DataLayout &DL = AI->getModule()->getDataLayout(); 10664 unsigned ValWidth = 10665 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 10666 Value *SextShamt = 10667 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 10668 Result = Builder.CreateCall(LrwOpScwLoop, 10669 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 10670 } else { 10671 Result = 10672 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 10673 } 10674 10675 if (XLen == 64) 10676 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10677 return Result; 10678 } 10679 10680 TargetLowering::AtomicExpansionKind 10681 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 10682 AtomicCmpXchgInst *CI) const { 10683 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 10684 if (Size == 8 || Size == 16) 10685 return AtomicExpansionKind::MaskedIntrinsic; 10686 return AtomicExpansionKind::None; 10687 } 10688 10689 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 10690 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 10691 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 10692 unsigned XLen = Subtarget.getXLen(); 10693 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 10694 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 10695 if (XLen == 64) { 10696 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 10697 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 10698 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10699 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 10700 } 10701 Type *Tys[] = {AlignedAddr->getType()}; 10702 Function *MaskedCmpXchg = 10703 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 10704 Value *Result = Builder.CreateCall( 10705 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 10706 if (XLen == 64) 10707 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10708 return Result; 10709 } 10710 10711 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 10712 return false; 10713 } 10714 10715 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 10716 EVT VT) const { 10717 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 10718 return false; 10719 10720 switch (FPVT.getSimpleVT().SimpleTy) { 10721 case MVT::f16: 10722 return Subtarget.hasStdExtZfh(); 10723 case MVT::f32: 10724 return Subtarget.hasStdExtF(); 10725 case MVT::f64: 10726 return Subtarget.hasStdExtD(); 10727 default: 10728 return false; 10729 } 10730 } 10731 10732 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 10733 // If we are using the small code model, we can reduce size of jump table 10734 // entry to 4 bytes. 10735 if (Subtarget.is64Bit() && !isPositionIndependent() && 10736 getTargetMachine().getCodeModel() == CodeModel::Small) { 10737 return MachineJumpTableInfo::EK_Custom32; 10738 } 10739 return TargetLowering::getJumpTableEncoding(); 10740 } 10741 10742 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 10743 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 10744 unsigned uid, MCContext &Ctx) const { 10745 assert(Subtarget.is64Bit() && !isPositionIndependent() && 10746 getTargetMachine().getCodeModel() == CodeModel::Small); 10747 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 10748 } 10749 10750 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 10751 EVT VT) const { 10752 VT = VT.getScalarType(); 10753 10754 if (!VT.isSimple()) 10755 return false; 10756 10757 switch (VT.getSimpleVT().SimpleTy) { 10758 case MVT::f16: 10759 return Subtarget.hasStdExtZfh(); 10760 case MVT::f32: 10761 return Subtarget.hasStdExtF(); 10762 case MVT::f64: 10763 return Subtarget.hasStdExtD(); 10764 default: 10765 break; 10766 } 10767 10768 return false; 10769 } 10770 10771 Register RISCVTargetLowering::getExceptionPointerRegister( 10772 const Constant *PersonalityFn) const { 10773 return RISCV::X10; 10774 } 10775 10776 Register RISCVTargetLowering::getExceptionSelectorRegister( 10777 const Constant *PersonalityFn) const { 10778 return RISCV::X11; 10779 } 10780 10781 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 10782 // Return false to suppress the unnecessary extensions if the LibCall 10783 // arguments or return value is f32 type for LP64 ABI. 10784 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 10785 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 10786 return false; 10787 10788 return true; 10789 } 10790 10791 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 10792 if (Subtarget.is64Bit() && Type == MVT::i32) 10793 return true; 10794 10795 return IsSigned; 10796 } 10797 10798 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 10799 SDValue C) const { 10800 // Check integral scalar types. 10801 if (VT.isScalarInteger()) { 10802 // Omit the optimization if the sub target has the M extension and the data 10803 // size exceeds XLen. 10804 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 10805 return false; 10806 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 10807 // Break the MUL to a SLLI and an ADD/SUB. 10808 const APInt &Imm = ConstNode->getAPIntValue(); 10809 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 10810 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 10811 return true; 10812 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 10813 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 10814 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 10815 (Imm - 8).isPowerOf2())) 10816 return true; 10817 // Omit the following optimization if the sub target has the M extension 10818 // and the data size >= XLen. 10819 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 10820 return false; 10821 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 10822 // a pair of LUI/ADDI. 10823 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 10824 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 10825 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 10826 (1 - ImmS).isPowerOf2()) 10827 return true; 10828 } 10829 } 10830 } 10831 10832 return false; 10833 } 10834 10835 bool RISCVTargetLowering::isMulAddWithConstProfitable( 10836 const SDValue &AddNode, const SDValue &ConstNode) const { 10837 // Let the DAGCombiner decide for vectors. 10838 EVT VT = AddNode.getValueType(); 10839 if (VT.isVector()) 10840 return true; 10841 10842 // Let the DAGCombiner decide for larger types. 10843 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 10844 return true; 10845 10846 // It is worse if c1 is simm12 while c1*c2 is not. 10847 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 10848 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 10849 const APInt &C1 = C1Node->getAPIntValue(); 10850 const APInt &C2 = C2Node->getAPIntValue(); 10851 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 10852 return false; 10853 10854 // Default to true and let the DAGCombiner decide. 10855 return true; 10856 } 10857 10858 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 10859 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 10860 bool *Fast) const { 10861 if (!VT.isVector()) 10862 return false; 10863 10864 EVT ElemVT = VT.getVectorElementType(); 10865 if (Alignment >= ElemVT.getStoreSize()) { 10866 if (Fast) 10867 *Fast = true; 10868 return true; 10869 } 10870 10871 return false; 10872 } 10873 10874 bool RISCVTargetLowering::splitValueIntoRegisterParts( 10875 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 10876 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 10877 bool IsABIRegCopy = CC.hasValue(); 10878 EVT ValueVT = Val.getValueType(); 10879 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10880 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 10881 // and cast to f32. 10882 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 10883 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 10884 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 10885 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 10886 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 10887 Parts[0] = Val; 10888 return true; 10889 } 10890 10891 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10892 LLVMContext &Context = *DAG.getContext(); 10893 EVT ValueEltVT = ValueVT.getVectorElementType(); 10894 EVT PartEltVT = PartVT.getVectorElementType(); 10895 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10896 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10897 if (PartVTBitSize % ValueVTBitSize == 0) { 10898 assert(PartVTBitSize >= ValueVTBitSize); 10899 // If the element types are different, bitcast to the same element type of 10900 // PartVT first. 10901 // Give an example here, we want copy a <vscale x 1 x i8> value to 10902 // <vscale x 4 x i16>. 10903 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 10904 // subvector, then we can bitcast to <vscale x 4 x i16>. 10905 if (ValueEltVT != PartEltVT) { 10906 if (PartVTBitSize > ValueVTBitSize) { 10907 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10908 assert(Count != 0 && "The number of element should not be zero."); 10909 EVT SameEltTypeVT = 10910 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10911 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 10912 DAG.getUNDEF(SameEltTypeVT), Val, 10913 DAG.getVectorIdxConstant(0, DL)); 10914 } 10915 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 10916 } else { 10917 Val = 10918 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 10919 Val, DAG.getVectorIdxConstant(0, DL)); 10920 } 10921 Parts[0] = Val; 10922 return true; 10923 } 10924 } 10925 return false; 10926 } 10927 10928 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 10929 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 10930 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 10931 bool IsABIRegCopy = CC.hasValue(); 10932 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10933 SDValue Val = Parts[0]; 10934 10935 // Cast the f32 to i32, truncate to i16, and cast back to f16. 10936 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 10937 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 10938 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 10939 return Val; 10940 } 10941 10942 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10943 LLVMContext &Context = *DAG.getContext(); 10944 SDValue Val = Parts[0]; 10945 EVT ValueEltVT = ValueVT.getVectorElementType(); 10946 EVT PartEltVT = PartVT.getVectorElementType(); 10947 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10948 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10949 if (PartVTBitSize % ValueVTBitSize == 0) { 10950 assert(PartVTBitSize >= ValueVTBitSize); 10951 EVT SameEltTypeVT = ValueVT; 10952 // If the element types are different, convert it to the same element type 10953 // of PartVT. 10954 // Give an example here, we want copy a <vscale x 1 x i8> value from 10955 // <vscale x 4 x i16>. 10956 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 10957 // then we can extract <vscale x 1 x i8>. 10958 if (ValueEltVT != PartEltVT) { 10959 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10960 assert(Count != 0 && "The number of element should not be zero."); 10961 SameEltTypeVT = 10962 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10963 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 10964 } 10965 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 10966 DAG.getVectorIdxConstant(0, DL)); 10967 return Val; 10968 } 10969 } 10970 return SDValue(); 10971 } 10972 10973 SDValue 10974 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10975 SelectionDAG &DAG, 10976 SmallVectorImpl<SDNode *> &Created) const { 10977 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 10978 if (isIntDivCheap(N->getValueType(0), Attr)) 10979 return SDValue(N, 0); // Lower SDIV as SDIV 10980 10981 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 10982 "Unexpected divisor!"); 10983 10984 // Conditional move is needed, so do the transformation iff Zbt is enabled. 10985 if (!Subtarget.hasStdExtZbt()) 10986 return SDValue(); 10987 10988 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 10989 // Besides, more critical path instructions will be generated when dividing 10990 // by 2. So we keep using the original DAGs for these cases. 10991 unsigned Lg2 = Divisor.countTrailingZeros(); 10992 if (Lg2 == 1 || Lg2 >= 12) 10993 return SDValue(); 10994 10995 // fold (sdiv X, pow2) 10996 EVT VT = N->getValueType(0); 10997 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 10998 return SDValue(); 10999 11000 SDLoc DL(N); 11001 SDValue N0 = N->getOperand(0); 11002 SDValue Zero = DAG.getConstant(0, DL, VT); 11003 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 11004 11005 // Add (N0 < 0) ? Pow2 - 1 : 0; 11006 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 11007 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 11008 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 11009 11010 Created.push_back(Cmp.getNode()); 11011 Created.push_back(Add.getNode()); 11012 Created.push_back(Sel.getNode()); 11013 11014 // Divide by pow2. 11015 SDValue SRA = 11016 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 11017 11018 // If we're dividing by a positive value, we're done. Otherwise, we must 11019 // negate the result. 11020 if (Divisor.isNonNegative()) 11021 return SRA; 11022 11023 Created.push_back(SRA.getNode()); 11024 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 11025 } 11026 11027 #define GET_REGISTER_MATCHER 11028 #include "RISCVGenAsmMatcher.inc" 11029 11030 Register 11031 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 11032 const MachineFunction &MF) const { 11033 Register Reg = MatchRegisterAltName(RegName); 11034 if (Reg == RISCV::NoRegister) 11035 Reg = MatchRegisterName(RegName); 11036 if (Reg == RISCV::NoRegister) 11037 report_fatal_error( 11038 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 11039 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 11040 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 11041 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 11042 StringRef(RegName) + "\".")); 11043 return Reg; 11044 } 11045 11046 namespace llvm { 11047 namespace RISCVVIntrinsicsTable { 11048 11049 #define GET_RISCVVIntrinsicsTable_IMPL 11050 #include "RISCVGenSearchableTables.inc" 11051 11052 } // namespace RISCVVIntrinsicsTable 11053 11054 } // namespace llvm 11055