1 //===-- RISCVISelLowering.cpp - RISC-V DAG Lowering Implementation -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISC-V uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineJumpTableInfo.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 32 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 33 #include "llvm/CodeGen/ValueTypes.h" 34 #include "llvm/IR/DiagnosticInfo.h" 35 #include "llvm/IR/DiagnosticPrinter.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicsRISCV.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/InstructionCost.h" 44 #include "llvm/Support/KnownBits.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <optional> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "riscv-lower" 52 53 STATISTIC(NumTailCalls, "Number of tail calls"); 54 55 static cl::opt<unsigned> ExtensionMaxWebSize( 56 DEBUG_TYPE "-ext-max-web-size", cl::Hidden, 57 cl::desc("Give the maximum size (in number of nodes) of the web of " 58 "instructions that we will consider for VW expansion"), 59 cl::init(18)); 60 61 static cl::opt<bool> 62 AllowSplatInVW_W(DEBUG_TYPE "-form-vw-w-with-splat", cl::Hidden, 63 cl::desc("Allow the formation of VW_W operations (e.g., " 64 "VWADD_W) with splat constants"), 65 cl::init(false)); 66 67 static cl::opt<unsigned> NumRepeatedDivisors( 68 DEBUG_TYPE "-fp-repeated-divisors", cl::Hidden, 69 cl::desc("Set the minimum number of repetitions of a divisor to allow " 70 "transformation to multiplications by the reciprocal"), 71 cl::init(2)); 72 73 static cl::opt<int> 74 FPImmCost(DEBUG_TYPE "-fpimm-cost", cl::Hidden, 75 cl::desc("Give the maximum number of instructions that we will " 76 "use for creating a floating-point immediate value"), 77 cl::init(2)); 78 79 static cl::opt<bool> 80 RV64LegalI32("riscv-experimental-rv64-legal-i32", cl::ReallyHidden, 81 cl::desc("Make i32 a legal type for SelectionDAG on RV64.")); 82 83 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 84 const RISCVSubtarget &STI) 85 : TargetLowering(TM), Subtarget(STI) { 86 87 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 88 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 89 90 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 91 !Subtarget.hasStdExtF()) { 92 errs() << "Hard-float 'f' ABI can't be used for a target that " 93 "doesn't support the F instruction set extension (ignoring " 94 "target-abi)\n"; 95 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 96 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 97 !Subtarget.hasStdExtD()) { 98 errs() << "Hard-float 'd' ABI can't be used for a target that " 99 "doesn't support the D instruction set extension (ignoring " 100 "target-abi)\n"; 101 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 102 } 103 104 switch (ABI) { 105 default: 106 report_fatal_error("Don't know how to lower this ABI"); 107 case RISCVABI::ABI_ILP32: 108 case RISCVABI::ABI_ILP32E: 109 case RISCVABI::ABI_LP64E: 110 case RISCVABI::ABI_ILP32F: 111 case RISCVABI::ABI_ILP32D: 112 case RISCVABI::ABI_LP64: 113 case RISCVABI::ABI_LP64F: 114 case RISCVABI::ABI_LP64D: 115 break; 116 } 117 118 MVT XLenVT = Subtarget.getXLenVT(); 119 120 // Set up the register classes. 121 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 122 if (Subtarget.is64Bit() && RV64LegalI32) 123 addRegisterClass(MVT::i32, &RISCV::GPRRegClass); 124 125 if (Subtarget.hasStdExtZfhmin()) 126 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 127 if (Subtarget.hasStdExtZfbfmin()) 128 addRegisterClass(MVT::bf16, &RISCV::FPR16RegClass); 129 if (Subtarget.hasStdExtF()) 130 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 131 if (Subtarget.hasStdExtD()) 132 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 133 if (Subtarget.hasStdExtZhinxmin()) 134 addRegisterClass(MVT::f16, &RISCV::GPRF16RegClass); 135 if (Subtarget.hasStdExtZfinx()) 136 addRegisterClass(MVT::f32, &RISCV::GPRF32RegClass); 137 if (Subtarget.hasStdExtZdinx()) { 138 if (Subtarget.is64Bit()) 139 addRegisterClass(MVT::f64, &RISCV::GPRRegClass); 140 else 141 addRegisterClass(MVT::f64, &RISCV::GPRPairRegClass); 142 } 143 144 static const MVT::SimpleValueType BoolVecVTs[] = { 145 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 146 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 147 static const MVT::SimpleValueType IntVecVTs[] = { 148 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 149 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 150 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 151 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 152 MVT::nxv4i64, MVT::nxv8i64}; 153 static const MVT::SimpleValueType F16VecVTs[] = { 154 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 155 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 156 static const MVT::SimpleValueType BF16VecVTs[] = { 157 MVT::nxv1bf16, MVT::nxv2bf16, MVT::nxv4bf16, 158 MVT::nxv8bf16, MVT::nxv16bf16, MVT::nxv32bf16}; 159 static const MVT::SimpleValueType F32VecVTs[] = { 160 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 161 static const MVT::SimpleValueType F64VecVTs[] = { 162 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 163 164 if (Subtarget.hasVInstructions()) { 165 auto addRegClassForRVV = [this](MVT VT) { 166 // Disable the smallest fractional LMUL types if ELEN is less than 167 // RVVBitsPerBlock. 168 unsigned MinElts = RISCV::RVVBitsPerBlock / Subtarget.getELen(); 169 if (VT.getVectorMinNumElements() < MinElts) 170 return; 171 172 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 173 const TargetRegisterClass *RC; 174 if (Size <= RISCV::RVVBitsPerBlock) 175 RC = &RISCV::VRRegClass; 176 else if (Size == 2 * RISCV::RVVBitsPerBlock) 177 RC = &RISCV::VRM2RegClass; 178 else if (Size == 4 * RISCV::RVVBitsPerBlock) 179 RC = &RISCV::VRM4RegClass; 180 else if (Size == 8 * RISCV::RVVBitsPerBlock) 181 RC = &RISCV::VRM8RegClass; 182 else 183 llvm_unreachable("Unexpected size"); 184 185 addRegisterClass(VT, RC); 186 }; 187 188 for (MVT VT : BoolVecVTs) 189 addRegClassForRVV(VT); 190 for (MVT VT : IntVecVTs) { 191 if (VT.getVectorElementType() == MVT::i64 && 192 !Subtarget.hasVInstructionsI64()) 193 continue; 194 addRegClassForRVV(VT); 195 } 196 197 if (Subtarget.hasVInstructionsF16Minimal()) 198 for (MVT VT : F16VecVTs) 199 addRegClassForRVV(VT); 200 201 if (Subtarget.hasVInstructionsBF16()) 202 for (MVT VT : BF16VecVTs) 203 addRegClassForRVV(VT); 204 205 if (Subtarget.hasVInstructionsF32()) 206 for (MVT VT : F32VecVTs) 207 addRegClassForRVV(VT); 208 209 if (Subtarget.hasVInstructionsF64()) 210 for (MVT VT : F64VecVTs) 211 addRegClassForRVV(VT); 212 213 if (Subtarget.useRVVForFixedLengthVectors()) { 214 auto addRegClassForFixedVectors = [this](MVT VT) { 215 MVT ContainerVT = getContainerForFixedLengthVector(VT); 216 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 217 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 218 addRegisterClass(VT, TRI.getRegClass(RCID)); 219 }; 220 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 221 if (useRVVForFixedLengthVectorVT(VT)) 222 addRegClassForFixedVectors(VT); 223 224 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 225 if (useRVVForFixedLengthVectorVT(VT)) 226 addRegClassForFixedVectors(VT); 227 } 228 } 229 230 // Compute derived properties from the register classes. 231 computeRegisterProperties(STI.getRegisterInfo()); 232 233 setStackPointerRegisterToSaveRestore(RISCV::X2); 234 235 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT, 236 MVT::i1, Promote); 237 // DAGCombiner can call isLoadExtLegal for types that aren't legal. 238 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i32, 239 MVT::i1, Promote); 240 241 // TODO: add all necessary setOperationAction calls. 242 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 243 244 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 245 setOperationAction(ISD::BR_CC, XLenVT, Expand); 246 if (RV64LegalI32 && Subtarget.is64Bit()) 247 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 248 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 249 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 250 if (RV64LegalI32 && Subtarget.is64Bit()) 251 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 252 253 if (!Subtarget.hasVendorXCValu()) 254 setCondCodeAction(ISD::SETLE, XLenVT, Expand); 255 setCondCodeAction(ISD::SETGT, XLenVT, Custom); 256 setCondCodeAction(ISD::SETGE, XLenVT, Expand); 257 if (!Subtarget.hasVendorXCValu()) 258 setCondCodeAction(ISD::SETULE, XLenVT, Expand); 259 setCondCodeAction(ISD::SETUGT, XLenVT, Custom); 260 setCondCodeAction(ISD::SETUGE, XLenVT, Expand); 261 262 if (RV64LegalI32 && Subtarget.is64Bit()) 263 setOperationAction(ISD::SETCC, MVT::i32, Promote); 264 265 setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand); 266 267 setOperationAction(ISD::VASTART, MVT::Other, Custom); 268 setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand); 269 if (RV64LegalI32 && Subtarget.is64Bit()) 270 setOperationAction(ISD::VAARG, MVT::i32, Promote); 271 272 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 273 274 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 275 276 if (!Subtarget.hasStdExtZbb() && !Subtarget.hasVendorXTHeadBb()) 277 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand); 278 279 if (Subtarget.is64Bit()) { 280 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 281 282 if (!RV64LegalI32) { 283 setOperationAction(ISD::LOAD, MVT::i32, Custom); 284 setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL}, 285 MVT::i32, Custom); 286 setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT}, 287 MVT::i32, Custom); 288 if (!Subtarget.hasStdExtZbb()) 289 setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, MVT::i32, Custom); 290 } else { 291 setOperationAction(ISD::SSUBO, MVT::i32, Custom); 292 if (Subtarget.hasStdExtZbb()) { 293 setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, MVT::i32, Custom); 294 setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Custom); 295 } 296 } 297 setOperationAction(ISD::SADDO, MVT::i32, Custom); 298 } 299 if (!Subtarget.hasStdExtZmmul()) { 300 setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU}, XLenVT, Expand); 301 if (RV64LegalI32 && Subtarget.is64Bit()) 302 setOperationAction(ISD::MUL, MVT::i32, Promote); 303 } else if (Subtarget.is64Bit()) { 304 setOperationAction(ISD::MUL, MVT::i128, Custom); 305 if (!RV64LegalI32) 306 setOperationAction(ISD::MUL, MVT::i32, Custom); 307 else 308 setOperationAction(ISD::SMULO, MVT::i32, Custom); 309 } else { 310 setOperationAction(ISD::MUL, MVT::i64, Custom); 311 } 312 313 if (!Subtarget.hasStdExtM()) { 314 setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM}, 315 XLenVT, Expand); 316 if (RV64LegalI32 && Subtarget.is64Bit()) 317 setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM}, MVT::i32, 318 Promote); 319 } else if (Subtarget.is64Bit()) { 320 if (!RV64LegalI32) 321 setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM}, 322 {MVT::i8, MVT::i16, MVT::i32}, Custom); 323 } 324 325 if (RV64LegalI32 && Subtarget.is64Bit()) { 326 setOperationAction({ISD::MULHS, ISD::MULHU}, MVT::i32, Expand); 327 setOperationAction( 328 {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, 329 Expand); 330 } 331 332 setOperationAction( 333 {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT, 334 Expand); 335 336 setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT, 337 Custom); 338 339 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) { 340 if (!RV64LegalI32 && Subtarget.is64Bit()) 341 setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom); 342 } else if (Subtarget.hasVendorXTHeadBb()) { 343 if (Subtarget.is64Bit()) 344 setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom); 345 setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Custom); 346 } else if (Subtarget.hasVendorXCVbitmanip()) { 347 setOperationAction(ISD::ROTL, XLenVT, Expand); 348 } else { 349 setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand); 350 if (RV64LegalI32 && Subtarget.is64Bit()) 351 setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Expand); 352 } 353 354 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 355 // pattern match it directly in isel. 356 setOperationAction(ISD::BSWAP, XLenVT, 357 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb() || 358 Subtarget.hasVendorXTHeadBb()) 359 ? Legal 360 : Expand); 361 if (RV64LegalI32 && Subtarget.is64Bit()) 362 setOperationAction(ISD::BSWAP, MVT::i32, 363 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb() || 364 Subtarget.hasVendorXTHeadBb()) 365 ? Promote 366 : Expand); 367 368 369 if (Subtarget.hasVendorXCVbitmanip()) { 370 setOperationAction(ISD::BITREVERSE, XLenVT, Legal); 371 } else { 372 // Zbkb can use rev8+brev8 to implement bitreverse. 373 setOperationAction(ISD::BITREVERSE, XLenVT, 374 Subtarget.hasStdExtZbkb() ? Custom : Expand); 375 } 376 377 if (Subtarget.hasStdExtZbb()) { 378 setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT, 379 Legal); 380 if (RV64LegalI32 && Subtarget.is64Bit()) 381 setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, MVT::i32, 382 Promote); 383 384 if (Subtarget.is64Bit()) { 385 if (RV64LegalI32) 386 setOperationAction(ISD::CTTZ, MVT::i32, Legal); 387 else 388 setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom); 389 } 390 } else if (!Subtarget.hasVendorXCVbitmanip()) { 391 setOperationAction({ISD::CTTZ, ISD::CTPOP}, XLenVT, Expand); 392 if (RV64LegalI32 && Subtarget.is64Bit()) 393 setOperationAction({ISD::CTTZ, ISD::CTPOP}, MVT::i32, Expand); 394 } 395 396 if (Subtarget.hasStdExtZbb() || Subtarget.hasVendorXTHeadBb() || 397 Subtarget.hasVendorXCVbitmanip()) { 398 // We need the custom lowering to make sure that the resulting sequence 399 // for the 32bit case is efficient on 64bit targets. 400 if (Subtarget.is64Bit()) { 401 if (RV64LegalI32) { 402 setOperationAction(ISD::CTLZ, MVT::i32, 403 Subtarget.hasStdExtZbb() ? Legal : Promote); 404 if (!Subtarget.hasStdExtZbb()) 405 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 406 } else 407 setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom); 408 } 409 } else { 410 setOperationAction(ISD::CTLZ, XLenVT, Expand); 411 if (RV64LegalI32 && Subtarget.is64Bit()) 412 setOperationAction(ISD::CTLZ, MVT::i32, Expand); 413 } 414 415 if (!RV64LegalI32 && Subtarget.is64Bit() && 416 !Subtarget.hasShortForwardBranchOpt()) 417 setOperationAction(ISD::ABS, MVT::i32, Custom); 418 419 // We can use PseudoCCSUB to implement ABS. 420 if (Subtarget.hasShortForwardBranchOpt()) 421 setOperationAction(ISD::ABS, XLenVT, Legal); 422 423 if (!Subtarget.hasVendorXTHeadCondMov()) { 424 setOperationAction(ISD::SELECT, XLenVT, Custom); 425 if (RV64LegalI32 && Subtarget.is64Bit()) 426 setOperationAction(ISD::SELECT, MVT::i32, Promote); 427 } 428 429 static const unsigned FPLegalNodeTypes[] = { 430 ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT, 431 ISD::LLRINT, ISD::LROUND, ISD::LLROUND, 432 ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND, 433 ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD, 434 ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, 435 ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS}; 436 437 static const ISD::CondCode FPCCToExpand[] = { 438 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 439 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 440 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 441 442 static const unsigned FPOpToExpand[] = { 443 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 444 ISD::FREM}; 445 446 static const unsigned FPRndMode[] = { 447 ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FRINT, ISD::FROUND, 448 ISD::FROUNDEVEN}; 449 450 if (Subtarget.hasStdExtZfhminOrZhinxmin()) 451 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 452 453 static const unsigned ZfhminZfbfminPromoteOps[] = { 454 ISD::FMINNUM, ISD::FMAXNUM, ISD::FADD, 455 ISD::FSUB, ISD::FMUL, ISD::FMA, 456 ISD::FDIV, ISD::FSQRT, ISD::FABS, 457 ISD::FNEG, ISD::STRICT_FMA, ISD::STRICT_FADD, 458 ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, 459 ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS, 460 ISD::SETCC, ISD::FCEIL, ISD::FFLOOR, 461 ISD::FTRUNC, ISD::FRINT, ISD::FROUND, 462 ISD::FROUNDEVEN, ISD::SELECT}; 463 464 if (Subtarget.hasStdExtZfbfmin()) { 465 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 466 setOperationAction(ISD::BITCAST, MVT::bf16, Custom); 467 setOperationAction(ISD::FP_ROUND, MVT::bf16, Custom); 468 setOperationAction(ISD::FP_EXTEND, MVT::f32, Custom); 469 setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom); 470 setOperationAction(ISD::ConstantFP, MVT::bf16, Expand); 471 setOperationAction(ISD::SELECT_CC, MVT::bf16, Expand); 472 setOperationAction(ISD::BR_CC, MVT::bf16, Expand); 473 setOperationAction(ZfhminZfbfminPromoteOps, MVT::bf16, Promote); 474 setOperationAction(ISD::FREM, MVT::bf16, Promote); 475 // FIXME: Need to promote bf16 FCOPYSIGN to f32, but the 476 // DAGCombiner::visitFP_ROUND probably needs improvements first. 477 setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Expand); 478 } 479 480 if (Subtarget.hasStdExtZfhminOrZhinxmin()) { 481 if (Subtarget.hasStdExtZfhOrZhinx()) { 482 setOperationAction(FPLegalNodeTypes, MVT::f16, Legal); 483 setOperationAction(FPRndMode, MVT::f16, 484 Subtarget.hasStdExtZfa() ? Legal : Custom); 485 setOperationAction(ISD::SELECT, MVT::f16, Custom); 486 setOperationAction(ISD::IS_FPCLASS, MVT::f16, Custom); 487 } else { 488 setOperationAction(ZfhminZfbfminPromoteOps, MVT::f16, Promote); 489 setOperationAction({ISD::STRICT_LRINT, ISD::STRICT_LLRINT, 490 ISD::STRICT_LROUND, ISD::STRICT_LLROUND}, 491 MVT::f16, Legal); 492 // FIXME: Need to promote f16 FCOPYSIGN to f32, but the 493 // DAGCombiner::visitFP_ROUND probably needs improvements first. 494 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand); 495 } 496 497 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 498 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 499 setCondCodeAction(FPCCToExpand, MVT::f16, Expand); 500 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 501 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 502 503 setOperationAction(ISD::FNEARBYINT, MVT::f16, 504 Subtarget.hasStdExtZfa() ? Legal : Promote); 505 setOperationAction({ISD::FREM, ISD::FPOW, ISD::FPOWI, 506 ISD::FCOS, ISD::FSIN, ISD::FSINCOS, ISD::FEXP, 507 ISD::FEXP2, ISD::FEXP10, ISD::FLOG, ISD::FLOG2, 508 ISD::FLOG10}, 509 MVT::f16, Promote); 510 511 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 512 // complete support for all operations in LegalizeDAG. 513 setOperationAction({ISD::STRICT_FCEIL, ISD::STRICT_FFLOOR, 514 ISD::STRICT_FNEARBYINT, ISD::STRICT_FRINT, 515 ISD::STRICT_FROUND, ISD::STRICT_FROUNDEVEN, 516 ISD::STRICT_FTRUNC}, 517 MVT::f16, Promote); 518 519 // We need to custom promote this. 520 if (Subtarget.is64Bit()) 521 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 522 523 setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f16, 524 Subtarget.hasStdExtZfa() ? Legal : Custom); 525 } 526 527 if (Subtarget.hasStdExtFOrZfinx()) { 528 setOperationAction(FPLegalNodeTypes, MVT::f32, Legal); 529 setOperationAction(FPRndMode, MVT::f32, 530 Subtarget.hasStdExtZfa() ? Legal : Custom); 531 setCondCodeAction(FPCCToExpand, MVT::f32, Expand); 532 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 533 setOperationAction(ISD::SELECT, MVT::f32, Custom); 534 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 535 setOperationAction(FPOpToExpand, MVT::f32, Expand); 536 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 537 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 538 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::bf16, Expand); 539 setTruncStoreAction(MVT::f32, MVT::bf16, Expand); 540 setOperationAction(ISD::IS_FPCLASS, MVT::f32, Custom); 541 setOperationAction(ISD::BF16_TO_FP, MVT::f32, Custom); 542 setOperationAction(ISD::FP_TO_BF16, MVT::f32, 543 Subtarget.isSoftFPABI() ? LibCall : Custom); 544 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 545 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Custom); 546 547 if (Subtarget.hasStdExtZfa()) { 548 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 549 setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f32, Legal); 550 } else { 551 setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f32, Custom); 552 } 553 } 554 555 if (Subtarget.hasStdExtFOrZfinx() && Subtarget.is64Bit()) 556 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 557 558 if (Subtarget.hasStdExtDOrZdinx()) { 559 setOperationAction(FPLegalNodeTypes, MVT::f64, Legal); 560 561 if (!Subtarget.is64Bit()) 562 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 563 564 if (Subtarget.hasStdExtZfa()) { 565 setOperationAction(FPRndMode, MVT::f64, Legal); 566 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 567 setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f64, Legal); 568 } else { 569 if (Subtarget.is64Bit()) 570 setOperationAction(FPRndMode, MVT::f64, Custom); 571 572 setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f64, Custom); 573 } 574 575 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 576 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 577 setCondCodeAction(FPCCToExpand, MVT::f64, Expand); 578 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 579 setOperationAction(ISD::SELECT, MVT::f64, Custom); 580 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 581 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 582 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 583 setOperationAction(FPOpToExpand, MVT::f64, Expand); 584 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 585 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 586 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::bf16, Expand); 587 setTruncStoreAction(MVT::f64, MVT::bf16, Expand); 588 setOperationAction(ISD::IS_FPCLASS, MVT::f64, Custom); 589 setOperationAction(ISD::BF16_TO_FP, MVT::f64, Custom); 590 setOperationAction(ISD::FP_TO_BF16, MVT::f64, 591 Subtarget.isSoftFPABI() ? LibCall : Custom); 592 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 593 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 594 } 595 596 if (Subtarget.is64Bit()) { 597 setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT, 598 ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT}, 599 MVT::i32, Custom); 600 setOperationAction(ISD::LROUND, MVT::i32, Custom); 601 } 602 603 if (Subtarget.hasStdExtFOrZfinx()) { 604 setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT, 605 Custom); 606 607 setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT, 608 ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP}, 609 XLenVT, Legal); 610 611 if (RV64LegalI32 && Subtarget.is64Bit()) 612 setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT, 613 ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP}, 614 MVT::i32, Legal); 615 616 setOperationAction(ISD::GET_ROUNDING, XLenVT, Custom); 617 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 618 } 619 620 setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool, 621 ISD::JumpTable}, 622 XLenVT, Custom); 623 624 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 625 626 if (Subtarget.is64Bit()) 627 setOperationAction(ISD::Constant, MVT::i64, Custom); 628 629 // TODO: On M-mode only targets, the cycle[h]/time[h] CSR may not be present. 630 // Unfortunately this can't be determined just from the ISA naming string. 631 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 632 Subtarget.is64Bit() ? Legal : Custom); 633 setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, 634 Subtarget.is64Bit() ? Legal : Custom); 635 636 setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal); 637 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 638 if (Subtarget.is64Bit()) 639 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 640 641 if (Subtarget.hasStdExtZicbop()) { 642 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 643 } 644 645 if (Subtarget.hasStdExtA()) { 646 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 647 if (Subtarget.hasStdExtZabha() && Subtarget.hasStdExtZacas()) 648 setMinCmpXchgSizeInBits(8); 649 else 650 setMinCmpXchgSizeInBits(32); 651 } else if (Subtarget.hasForcedAtomics()) { 652 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 653 } else { 654 setMaxAtomicSizeInBitsSupported(0); 655 } 656 657 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 658 659 setBooleanContents(ZeroOrOneBooleanContent); 660 661 if (getTargetMachine().getTargetTriple().isOSLinux()) { 662 // Custom lowering of llvm.clear_cache. 663 setOperationAction(ISD::CLEAR_CACHE, MVT::Other, Custom); 664 } 665 666 if (Subtarget.hasVInstructions()) { 667 setBooleanVectorContents(ZeroOrOneBooleanContent); 668 669 setOperationAction(ISD::VSCALE, XLenVT, Custom); 670 if (RV64LegalI32 && Subtarget.is64Bit()) 671 setOperationAction(ISD::VSCALE, MVT::i32, Custom); 672 673 // RVV intrinsics may have illegal operands. 674 // We also need to custom legalize vmv.x.s. 675 setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN, 676 ISD::INTRINSIC_VOID}, 677 {MVT::i8, MVT::i16}, Custom); 678 if (Subtarget.is64Bit()) 679 setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}, 680 MVT::i32, Custom); 681 else 682 setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN}, 683 MVT::i64, Custom); 684 685 setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}, 686 MVT::Other, Custom); 687 688 static const unsigned IntegerVPOps[] = { 689 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 690 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 691 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 692 ISD::VP_XOR, ISD::VP_SRA, ISD::VP_SRL, 693 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 694 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 695 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 696 ISD::VP_MERGE, ISD::VP_SELECT, ISD::VP_FP_TO_SINT, 697 ISD::VP_FP_TO_UINT, ISD::VP_SETCC, ISD::VP_SIGN_EXTEND, 698 ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE, ISD::VP_SMIN, 699 ISD::VP_SMAX, ISD::VP_UMIN, ISD::VP_UMAX, 700 ISD::VP_ABS, ISD::EXPERIMENTAL_VP_REVERSE, ISD::EXPERIMENTAL_VP_SPLICE, 701 ISD::VP_SADDSAT, ISD::VP_UADDSAT, ISD::VP_SSUBSAT, 702 ISD::VP_USUBSAT, ISD::VP_CTTZ_ELTS, ISD::VP_CTTZ_ELTS_ZERO_UNDEF, 703 ISD::EXPERIMENTAL_VP_SPLAT}; 704 705 static const unsigned FloatingPointVPOps[] = { 706 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 707 ISD::VP_FDIV, ISD::VP_FNEG, ISD::VP_FABS, 708 ISD::VP_FMA, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 709 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, 710 ISD::VP_SELECT, ISD::VP_SINT_TO_FP, ISD::VP_UINT_TO_FP, 711 ISD::VP_SETCC, ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND, 712 ISD::VP_SQRT, ISD::VP_FMINNUM, ISD::VP_FMAXNUM, 713 ISD::VP_FCEIL, ISD::VP_FFLOOR, ISD::VP_FROUND, 714 ISD::VP_FROUNDEVEN, ISD::VP_FCOPYSIGN, ISD::VP_FROUNDTOZERO, 715 ISD::VP_FRINT, ISD::VP_FNEARBYINT, ISD::VP_IS_FPCLASS, 716 ISD::VP_FMINIMUM, ISD::VP_FMAXIMUM, ISD::VP_LRINT, 717 ISD::VP_LLRINT, ISD::EXPERIMENTAL_VP_REVERSE, 718 ISD::EXPERIMENTAL_VP_SPLICE, ISD::VP_REDUCE_FMINIMUM, 719 ISD::VP_REDUCE_FMAXIMUM, ISD::EXPERIMENTAL_VP_SPLAT}; 720 721 static const unsigned IntegerVecReduceOps[] = { 722 ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, 723 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, 724 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN}; 725 726 static const unsigned FloatingPointVecReduceOps[] = { 727 ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_FMIN, 728 ISD::VECREDUCE_FMAX, ISD::VECREDUCE_FMINIMUM, ISD::VECREDUCE_FMAXIMUM}; 729 730 if (!Subtarget.is64Bit()) { 731 // We must custom-lower certain vXi64 operations on RV32 due to the vector 732 // element type being illegal. 733 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, 734 MVT::i64, Custom); 735 736 setOperationAction(IntegerVecReduceOps, MVT::i64, Custom); 737 738 setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 739 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, 740 ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN, 741 ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN}, 742 MVT::i64, Custom); 743 } 744 745 for (MVT VT : BoolVecVTs) { 746 if (!isTypeLegal(VT)) 747 continue; 748 749 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 750 751 // Mask VTs are custom-expanded into a series of standard nodes 752 setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS, 753 ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR, 754 ISD::SCALAR_TO_VECTOR}, 755 VT, Custom); 756 757 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 758 Custom); 759 760 setOperationAction(ISD::SELECT, VT, Custom); 761 setOperationAction( 762 {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT, 763 Expand); 764 765 setOperationAction({ISD::VP_CTTZ_ELTS, ISD::VP_CTTZ_ELTS_ZERO_UNDEF}, VT, 766 Custom); 767 768 setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom); 769 770 setOperationAction( 771 {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT, 772 Custom); 773 774 setOperationAction( 775 {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT, 776 Custom); 777 778 // RVV has native int->float & float->int conversions where the 779 // element type sizes are within one power-of-two of each other. Any 780 // wider distances between type sizes have to be lowered as sequences 781 // which progressively narrow the gap in stages. 782 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, 783 ISD::FP_TO_UINT, ISD::STRICT_SINT_TO_FP, 784 ISD::STRICT_UINT_TO_FP, ISD::STRICT_FP_TO_SINT, 785 ISD::STRICT_FP_TO_UINT}, 786 VT, Custom); 787 setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT, 788 Custom); 789 790 // Expand all extending loads to types larger than this, and truncating 791 // stores from types larger than this. 792 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 793 setTruncStoreAction(VT, OtherVT, Expand); 794 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, VT, 795 OtherVT, Expand); 796 } 797 798 setOperationAction({ISD::VP_FP_TO_SINT, ISD::VP_FP_TO_UINT, 799 ISD::VP_TRUNCATE, ISD::VP_SETCC}, 800 VT, Custom); 801 802 setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom); 803 setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom); 804 805 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 806 807 setOperationAction(ISD::EXPERIMENTAL_VP_SPLICE, VT, Custom); 808 setOperationAction(ISD::EXPERIMENTAL_VP_REVERSE, VT, Custom); 809 810 setOperationPromotedToType( 811 ISD::VECTOR_SPLICE, VT, 812 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount())); 813 } 814 815 for (MVT VT : IntVecVTs) { 816 if (!isTypeLegal(VT)) 817 continue; 818 819 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 820 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 821 822 // Vectors implement MULHS/MULHU. 823 setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand); 824 825 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 826 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) 827 setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand); 828 829 setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT, 830 Legal); 831 832 setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Custom); 833 834 // Custom-lower extensions and truncations from/to mask types. 835 setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, 836 VT, Custom); 837 838 // RVV has native int->float & float->int conversions where the 839 // element type sizes are within one power-of-two of each other. Any 840 // wider distances between type sizes have to be lowered as sequences 841 // which progressively narrow the gap in stages. 842 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, 843 ISD::FP_TO_UINT, ISD::STRICT_SINT_TO_FP, 844 ISD::STRICT_UINT_TO_FP, ISD::STRICT_FP_TO_SINT, 845 ISD::STRICT_FP_TO_UINT}, 846 VT, Custom); 847 setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT, 848 Custom); 849 setOperationAction({ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, 850 ISD::AVGCEILU, ISD::SADDSAT, ISD::UADDSAT, 851 ISD::SSUBSAT, ISD::USUBSAT}, 852 VT, Legal); 853 854 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 855 // nodes which truncate by one power of two at a time. 856 setOperationAction(ISD::TRUNCATE, VT, Custom); 857 858 // Custom-lower insert/extract operations to simplify patterns. 859 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 860 Custom); 861 862 // Custom-lower reduction operations to set up the corresponding custom 863 // nodes' operands. 864 setOperationAction(IntegerVecReduceOps, VT, Custom); 865 866 setOperationAction(IntegerVPOps, VT, Custom); 867 868 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 869 870 setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, 871 VT, Custom); 872 873 setOperationAction( 874 {ISD::VP_LOAD, ISD::VP_STORE, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, 875 ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, 876 VT, Custom); 877 878 setOperationAction({ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, 879 ISD::EXTRACT_SUBVECTOR, ISD::SCALAR_TO_VECTOR}, 880 VT, Custom); 881 882 setOperationAction(ISD::SELECT, VT, Custom); 883 setOperationAction(ISD::SELECT_CC, VT, Expand); 884 885 setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom); 886 887 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 888 setTruncStoreAction(VT, OtherVT, Expand); 889 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, VT, 890 OtherVT, Expand); 891 } 892 893 setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom); 894 setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom); 895 896 // Splice 897 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 898 899 if (Subtarget.hasStdExtZvkb()) { 900 setOperationAction(ISD::BSWAP, VT, Legal); 901 setOperationAction(ISD::VP_BSWAP, VT, Custom); 902 } else { 903 setOperationAction({ISD::BSWAP, ISD::VP_BSWAP}, VT, Expand); 904 setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand); 905 } 906 907 if (Subtarget.hasStdExtZvbb()) { 908 setOperationAction(ISD::BITREVERSE, VT, Legal); 909 setOperationAction(ISD::VP_BITREVERSE, VT, Custom); 910 setOperationAction({ISD::VP_CTLZ, ISD::VP_CTLZ_ZERO_UNDEF, ISD::VP_CTTZ, 911 ISD::VP_CTTZ_ZERO_UNDEF, ISD::VP_CTPOP}, 912 VT, Custom); 913 } else { 914 setOperationAction({ISD::BITREVERSE, ISD::VP_BITREVERSE}, VT, Expand); 915 setOperationAction({ISD::CTLZ, ISD::CTTZ, ISD::CTPOP}, VT, Expand); 916 setOperationAction({ISD::VP_CTLZ, ISD::VP_CTLZ_ZERO_UNDEF, ISD::VP_CTTZ, 917 ISD::VP_CTTZ_ZERO_UNDEF, ISD::VP_CTPOP}, 918 VT, Expand); 919 920 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if element of VT in the 921 // range of f32. 922 EVT FloatVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 923 if (isTypeLegal(FloatVT)) { 924 setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, 925 ISD::CTTZ_ZERO_UNDEF, ISD::VP_CTLZ, 926 ISD::VP_CTLZ_ZERO_UNDEF, ISD::VP_CTTZ_ZERO_UNDEF}, 927 VT, Custom); 928 } 929 } 930 } 931 932 // Expand various CCs to best match the RVV ISA, which natively supports UNE 933 // but no other unordered comparisons, and supports all ordered comparisons 934 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 935 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 936 // and we pattern-match those back to the "original", swapping operands once 937 // more. This way we catch both operations and both "vf" and "fv" forms with 938 // fewer patterns. 939 static const ISD::CondCode VFPCCToExpand[] = { 940 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 941 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 942 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 943 }; 944 945 // TODO: support more ops. 946 static const unsigned ZvfhminPromoteOps[] = { 947 ISD::FMINNUM, ISD::FMAXNUM, ISD::FADD, ISD::FSUB, 948 ISD::FMUL, ISD::FMA, ISD::FDIV, ISD::FSQRT, 949 ISD::FABS, ISD::FNEG, ISD::FCOPYSIGN, ISD::FCEIL, 950 ISD::FFLOOR, ISD::FROUND, ISD::FROUNDEVEN, ISD::FRINT, 951 ISD::FNEARBYINT, ISD::IS_FPCLASS, ISD::SETCC, ISD::FMAXIMUM, 952 ISD::FMINIMUM, ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL, 953 ISD::STRICT_FDIV, ISD::STRICT_FSQRT, ISD::STRICT_FMA}; 954 955 // TODO: support more vp ops. 956 static const unsigned ZvfhminPromoteVPOps[] = { 957 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 958 ISD::VP_FDIV, ISD::VP_FNEG, ISD::VP_FABS, 959 ISD::VP_FMA, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 960 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SQRT, 961 ISD::VP_FMINNUM, ISD::VP_FMAXNUM, ISD::VP_FCEIL, 962 ISD::VP_FFLOOR, ISD::VP_FROUND, ISD::VP_FROUNDEVEN, 963 ISD::VP_FCOPYSIGN, ISD::VP_FROUNDTOZERO, ISD::VP_FRINT, 964 ISD::VP_FNEARBYINT, ISD::VP_SETCC, ISD::VP_FMINIMUM, 965 ISD::VP_FMAXIMUM, ISD::VP_REDUCE_FMINIMUM, ISD::VP_REDUCE_FMAXIMUM}; 966 967 // Sets common operation actions on RVV floating-point vector types. 968 const auto SetCommonVFPActions = [&](MVT VT) { 969 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 970 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 971 // sizes are within one power-of-two of each other. Therefore conversions 972 // between vXf16 and vXf64 must be lowered as sequences which convert via 973 // vXf32. 974 setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); 975 setOperationAction({ISD::LRINT, ISD::LLRINT}, VT, Custom); 976 // Custom-lower insert/extract operations to simplify patterns. 977 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 978 Custom); 979 // Expand various condition codes (explained above). 980 setCondCodeAction(VFPCCToExpand, VT, Expand); 981 982 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal); 983 setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, VT, Custom); 984 985 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND, 986 ISD::FROUNDEVEN, ISD::FRINT, ISD::FNEARBYINT, 987 ISD::IS_FPCLASS}, 988 VT, Custom); 989 990 setOperationAction(FloatingPointVecReduceOps, VT, Custom); 991 992 // Expand FP operations that need libcalls. 993 setOperationAction(ISD::FREM, VT, Expand); 994 setOperationAction(ISD::FPOW, VT, Expand); 995 setOperationAction(ISD::FCOS, VT, Expand); 996 setOperationAction(ISD::FSIN, VT, Expand); 997 setOperationAction(ISD::FSINCOS, VT, Expand); 998 setOperationAction(ISD::FEXP, VT, Expand); 999 setOperationAction(ISD::FEXP2, VT, Expand); 1000 setOperationAction(ISD::FEXP10, VT, Expand); 1001 setOperationAction(ISD::FLOG, VT, Expand); 1002 setOperationAction(ISD::FLOG2, VT, Expand); 1003 setOperationAction(ISD::FLOG10, VT, Expand); 1004 1005 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 1006 1007 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 1008 1009 setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, 1010 VT, Custom); 1011 1012 setOperationAction( 1013 {ISD::VP_LOAD, ISD::VP_STORE, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, 1014 ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, 1015 VT, Custom); 1016 1017 setOperationAction(ISD::SELECT, VT, Custom); 1018 setOperationAction(ISD::SELECT_CC, VT, Expand); 1019 1020 setOperationAction({ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, 1021 ISD::EXTRACT_SUBVECTOR, ISD::SCALAR_TO_VECTOR}, 1022 VT, Custom); 1023 1024 setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom); 1025 setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom); 1026 1027 setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom); 1028 1029 setOperationAction(FloatingPointVPOps, VT, Custom); 1030 1031 setOperationAction({ISD::STRICT_FP_EXTEND, ISD::STRICT_FP_ROUND}, VT, 1032 Custom); 1033 setOperationAction({ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL, 1034 ISD::STRICT_FDIV, ISD::STRICT_FSQRT, ISD::STRICT_FMA}, 1035 VT, Legal); 1036 setOperationAction({ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS, 1037 ISD::STRICT_FTRUNC, ISD::STRICT_FCEIL, 1038 ISD::STRICT_FFLOOR, ISD::STRICT_FROUND, 1039 ISD::STRICT_FROUNDEVEN, ISD::STRICT_FNEARBYINT}, 1040 VT, Custom); 1041 }; 1042 1043 // Sets common extload/truncstore actions on RVV floating-point vector 1044 // types. 1045 const auto SetCommonVFPExtLoadTruncStoreActions = 1046 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 1047 for (auto SmallVT : SmallerVTs) { 1048 setTruncStoreAction(VT, SmallVT, Expand); 1049 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 1050 } 1051 }; 1052 1053 if (Subtarget.hasVInstructionsF16()) { 1054 for (MVT VT : F16VecVTs) { 1055 if (!isTypeLegal(VT)) 1056 continue; 1057 SetCommonVFPActions(VT); 1058 } 1059 } else if (Subtarget.hasVInstructionsF16Minimal()) { 1060 for (MVT VT : F16VecVTs) { 1061 if (!isTypeLegal(VT)) 1062 continue; 1063 setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); 1064 setOperationAction({ISD::STRICT_FP_ROUND, ISD::STRICT_FP_EXTEND}, VT, 1065 Custom); 1066 setOperationAction({ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND}, VT, Custom); 1067 setOperationAction({ISD::VP_MERGE, ISD::VP_SELECT, ISD::SELECT}, VT, 1068 Custom); 1069 setOperationAction(ISD::SELECT_CC, VT, Expand); 1070 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, 1071 ISD::VP_SINT_TO_FP, ISD::VP_UINT_TO_FP}, 1072 VT, Custom); 1073 setOperationAction({ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, 1074 ISD::EXTRACT_SUBVECTOR}, 1075 VT, Custom); 1076 if (Subtarget.hasStdExtZfhmin()) 1077 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 1078 // load/store 1079 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 1080 1081 // Custom split nxv32f16 since nxv32f32 if not legal. 1082 if (VT == MVT::nxv32f16) { 1083 setOperationAction(ZvfhminPromoteOps, VT, Custom); 1084 setOperationAction(ZvfhminPromoteVPOps, VT, Custom); 1085 continue; 1086 } 1087 // Add more promote ops. 1088 MVT F32VecVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 1089 setOperationPromotedToType(ZvfhminPromoteOps, VT, F32VecVT); 1090 setOperationPromotedToType(ZvfhminPromoteVPOps, VT, F32VecVT); 1091 } 1092 } 1093 1094 // TODO: Could we merge some code with zvfhmin? 1095 if (Subtarget.hasVInstructionsBF16()) { 1096 for (MVT VT : BF16VecVTs) { 1097 if (!isTypeLegal(VT)) 1098 continue; 1099 setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); 1100 setOperationAction({ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND}, VT, Custom); 1101 setOperationAction({ISD::STRICT_FP_ROUND, ISD::STRICT_FP_EXTEND}, VT, 1102 Custom); 1103 setOperationAction({ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, 1104 ISD::EXTRACT_SUBVECTOR}, 1105 VT, Custom); 1106 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 1107 if (Subtarget.hasStdExtZfbfmin()) 1108 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 1109 setOperationAction({ISD::VP_MERGE, ISD::VP_SELECT, ISD::SELECT}, VT, 1110 Custom); 1111 setOperationAction(ISD::SELECT_CC, VT, Expand); 1112 // TODO: Promote to fp32. 1113 } 1114 } 1115 1116 if (Subtarget.hasVInstructionsF32()) { 1117 for (MVT VT : F32VecVTs) { 1118 if (!isTypeLegal(VT)) 1119 continue; 1120 SetCommonVFPActions(VT); 1121 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 1122 } 1123 } 1124 1125 if (Subtarget.hasVInstructionsF64()) { 1126 for (MVT VT : F64VecVTs) { 1127 if (!isTypeLegal(VT)) 1128 continue; 1129 SetCommonVFPActions(VT); 1130 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 1131 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 1132 } 1133 } 1134 1135 if (Subtarget.useRVVForFixedLengthVectors()) { 1136 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 1137 if (!useRVVForFixedLengthVectorVT(VT)) 1138 continue; 1139 1140 // By default everything must be expanded. 1141 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 1142 setOperationAction(Op, VT, Expand); 1143 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 1144 setTruncStoreAction(VT, OtherVT, Expand); 1145 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, VT, 1146 OtherVT, Expand); 1147 } 1148 1149 // Custom lower fixed vector undefs to scalable vector undefs to avoid 1150 // expansion to a build_vector of 0s. 1151 setOperationAction(ISD::UNDEF, VT, Custom); 1152 1153 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 1154 setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT, 1155 Custom); 1156 1157 setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT, 1158 Custom); 1159 1160 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, 1161 VT, Custom); 1162 1163 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 1164 1165 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 1166 1167 setOperationAction(ISD::SETCC, VT, Custom); 1168 1169 setOperationAction(ISD::SELECT, VT, Custom); 1170 1171 setOperationAction(ISD::TRUNCATE, VT, Custom); 1172 1173 setOperationAction(ISD::BITCAST, VT, Custom); 1174 1175 setOperationAction( 1176 {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT, 1177 Custom); 1178 1179 setOperationAction( 1180 {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT, 1181 Custom); 1182 1183 setOperationAction( 1184 { 1185 ISD::SINT_TO_FP, 1186 ISD::UINT_TO_FP, 1187 ISD::FP_TO_SINT, 1188 ISD::FP_TO_UINT, 1189 ISD::STRICT_SINT_TO_FP, 1190 ISD::STRICT_UINT_TO_FP, 1191 ISD::STRICT_FP_TO_SINT, 1192 ISD::STRICT_FP_TO_UINT, 1193 }, 1194 VT, Custom); 1195 setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT, 1196 Custom); 1197 1198 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 1199 1200 // Operations below are different for between masks and other vectors. 1201 if (VT.getVectorElementType() == MVT::i1) { 1202 setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND, 1203 ISD::OR, ISD::XOR}, 1204 VT, Custom); 1205 1206 setOperationAction({ISD::VP_FP_TO_SINT, ISD::VP_FP_TO_UINT, 1207 ISD::VP_SETCC, ISD::VP_TRUNCATE}, 1208 VT, Custom); 1209 1210 setOperationAction(ISD::EXPERIMENTAL_VP_SPLICE, VT, Custom); 1211 setOperationAction(ISD::EXPERIMENTAL_VP_REVERSE, VT, Custom); 1212 continue; 1213 } 1214 1215 // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to 1216 // it before type legalization for i64 vectors on RV32. It will then be 1217 // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle. 1218 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 1219 // improvements first. 1220 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 1221 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 1222 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 1223 } 1224 1225 setOperationAction( 1226 {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom); 1227 1228 setOperationAction({ISD::VP_LOAD, ISD::VP_STORE, 1229 ISD::EXPERIMENTAL_VP_STRIDED_LOAD, 1230 ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, 1231 ISD::VP_SCATTER}, 1232 VT, Custom); 1233 1234 setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR, 1235 ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV, 1236 ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL}, 1237 VT, Custom); 1238 1239 setOperationAction( 1240 {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom); 1241 1242 setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Custom); 1243 1244 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 1245 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) 1246 setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom); 1247 1248 setOperationAction({ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, 1249 ISD::AVGCEILU, ISD::SADDSAT, ISD::UADDSAT, 1250 ISD::SSUBSAT, ISD::USUBSAT}, 1251 VT, Custom); 1252 1253 setOperationAction(ISD::VSELECT, VT, Custom); 1254 1255 setOperationAction( 1256 {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom); 1257 1258 // Custom-lower reduction operations to set up the corresponding custom 1259 // nodes' operands. 1260 setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX, 1261 ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX, 1262 ISD::VECREDUCE_UMIN}, 1263 VT, Custom); 1264 1265 setOperationAction(IntegerVPOps, VT, Custom); 1266 1267 if (Subtarget.hasStdExtZvkb()) 1268 setOperationAction({ISD::BSWAP, ISD::ROTL, ISD::ROTR}, VT, Custom); 1269 1270 if (Subtarget.hasStdExtZvbb()) { 1271 setOperationAction({ISD::BITREVERSE, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, 1272 ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTPOP}, 1273 VT, Custom); 1274 } else { 1275 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if element of VT in the 1276 // range of f32. 1277 EVT FloatVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 1278 if (isTypeLegal(FloatVT)) 1279 setOperationAction( 1280 {ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, 1281 Custom); 1282 } 1283 } 1284 1285 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 1286 // There are no extending loads or truncating stores. 1287 for (MVT InnerVT : MVT::fp_fixedlen_vector_valuetypes()) { 1288 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 1289 setTruncStoreAction(VT, InnerVT, Expand); 1290 } 1291 1292 if (!useRVVForFixedLengthVectorVT(VT)) 1293 continue; 1294 1295 // By default everything must be expanded. 1296 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 1297 setOperationAction(Op, VT, Expand); 1298 1299 // Custom lower fixed vector undefs to scalable vector undefs to avoid 1300 // expansion to a build_vector of 0s. 1301 setOperationAction(ISD::UNDEF, VT, Custom); 1302 1303 setOperationAction({ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, 1304 ISD::EXTRACT_SUBVECTOR}, 1305 VT, Custom); 1306 1307 // FIXME: mload, mstore, mgather, mscatter, vp_load/store, 1308 // vp_stride_load/store, vp_gather/scatter can be hoisted to here. 1309 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 1310 1311 setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); 1312 setOperationAction({ISD::STRICT_FP_ROUND, ISD::STRICT_FP_EXTEND}, VT, 1313 Custom); 1314 1315 if (VT.getVectorElementType() == MVT::f16 && 1316 !Subtarget.hasVInstructionsF16()) { 1317 setOperationAction({ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND}, VT, Custom); 1318 setOperationAction( 1319 {ISD::VP_MERGE, ISD::VP_SELECT, ISD::VSELECT, ISD::SELECT}, VT, 1320 Custom); 1321 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, 1322 ISD::VP_SINT_TO_FP, ISD::VP_UINT_TO_FP}, 1323 VT, Custom); 1324 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 1325 if (Subtarget.hasStdExtZfhmin()) { 1326 // FIXME: We should prefer BUILD_VECTOR over SPLAT_VECTOR. 1327 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 1328 } else { 1329 // We need to custom legalize f16 build vectors if Zfhmin isn't 1330 // available. 1331 setOperationAction(ISD::BUILD_VECTOR, MVT::f16, Custom); 1332 } 1333 MVT F32VecVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 1334 // Don't promote f16 vector operations to f32 if f32 vector type is 1335 // not legal. 1336 // TODO: could split the f16 vector into two vectors and do promotion. 1337 if (!isTypeLegal(F32VecVT)) 1338 continue; 1339 setOperationPromotedToType(ZvfhminPromoteOps, VT, F32VecVT); 1340 setOperationPromotedToType(ZvfhminPromoteVPOps, VT, F32VecVT); 1341 continue; 1342 } 1343 1344 if (VT.getVectorElementType() == MVT::bf16) { 1345 setOperationAction({ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND}, VT, Custom); 1346 // FIXME: We should prefer BUILD_VECTOR over SPLAT_VECTOR. 1347 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 1348 setOperationAction( 1349 {ISD::VP_MERGE, ISD::VP_SELECT, ISD::VSELECT, ISD::SELECT}, VT, 1350 Custom); 1351 // TODO: Promote to fp32. 1352 continue; 1353 } 1354 1355 setOperationAction({ISD::BUILD_VECTOR, ISD::VECTOR_SHUFFLE, 1356 ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, 1357 VT, Custom); 1358 1359 setOperationAction( 1360 {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom); 1361 1362 setOperationAction({ISD::VP_LOAD, ISD::VP_STORE, 1363 ISD::EXPERIMENTAL_VP_STRIDED_LOAD, 1364 ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, 1365 ISD::VP_SCATTER}, 1366 VT, Custom); 1367 1368 setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV, 1369 ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT, 1370 ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM, 1371 ISD::IS_FPCLASS, ISD::FMAXIMUM, ISD::FMINIMUM}, 1372 VT, Custom); 1373 1374 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND, 1375 ISD::FROUNDEVEN, ISD::FRINT, ISD::FNEARBYINT}, 1376 VT, Custom); 1377 1378 setCondCodeAction(VFPCCToExpand, VT, Expand); 1379 1380 setOperationAction(ISD::SETCC, VT, Custom); 1381 setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom); 1382 1383 setOperationAction(ISD::BITCAST, VT, Custom); 1384 1385 setOperationAction(FloatingPointVecReduceOps, VT, Custom); 1386 1387 setOperationAction(FloatingPointVPOps, VT, Custom); 1388 1389 setOperationAction( 1390 {ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL, 1391 ISD::STRICT_FDIV, ISD::STRICT_FSQRT, ISD::STRICT_FMA, 1392 ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS, ISD::STRICT_FTRUNC, 1393 ISD::STRICT_FCEIL, ISD::STRICT_FFLOOR, ISD::STRICT_FROUND, 1394 ISD::STRICT_FROUNDEVEN, ISD::STRICT_FNEARBYINT}, 1395 VT, Custom); 1396 } 1397 1398 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1399 setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64}, 1400 Custom); 1401 if (Subtarget.hasStdExtZfhminOrZhinxmin()) 1402 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1403 if (Subtarget.hasStdExtFOrZfinx()) 1404 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1405 if (Subtarget.hasStdExtDOrZdinx()) 1406 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1407 } 1408 } 1409 1410 if (Subtarget.hasStdExtA()) { 1411 setOperationAction(ISD::ATOMIC_LOAD_SUB, XLenVT, Expand); 1412 if (RV64LegalI32 && Subtarget.is64Bit()) 1413 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand); 1414 } 1415 1416 if (Subtarget.hasForcedAtomics()) { 1417 // Force __sync libcalls to be emitted for atomic rmw/cas operations. 1418 setOperationAction( 1419 {ISD::ATOMIC_CMP_SWAP, ISD::ATOMIC_SWAP, ISD::ATOMIC_LOAD_ADD, 1420 ISD::ATOMIC_LOAD_SUB, ISD::ATOMIC_LOAD_AND, ISD::ATOMIC_LOAD_OR, 1421 ISD::ATOMIC_LOAD_XOR, ISD::ATOMIC_LOAD_NAND, ISD::ATOMIC_LOAD_MIN, 1422 ISD::ATOMIC_LOAD_MAX, ISD::ATOMIC_LOAD_UMIN, ISD::ATOMIC_LOAD_UMAX}, 1423 XLenVT, LibCall); 1424 } 1425 1426 if (Subtarget.hasVendorXTHeadMemIdx()) { 1427 for (unsigned im : {ISD::PRE_INC, ISD::POST_INC}) { 1428 setIndexedLoadAction(im, MVT::i8, Legal); 1429 setIndexedStoreAction(im, MVT::i8, Legal); 1430 setIndexedLoadAction(im, MVT::i16, Legal); 1431 setIndexedStoreAction(im, MVT::i16, Legal); 1432 setIndexedLoadAction(im, MVT::i32, Legal); 1433 setIndexedStoreAction(im, MVT::i32, Legal); 1434 1435 if (Subtarget.is64Bit()) { 1436 setIndexedLoadAction(im, MVT::i64, Legal); 1437 setIndexedStoreAction(im, MVT::i64, Legal); 1438 } 1439 } 1440 } 1441 1442 if (Subtarget.hasVendorXCVmem()) { 1443 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal); 1444 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal); 1445 setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal); 1446 1447 setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal); 1448 setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal); 1449 setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal); 1450 } 1451 1452 if (Subtarget.hasVendorXCValu()) { 1453 setOperationAction(ISD::ABS, XLenVT, Legal); 1454 setOperationAction(ISD::SMIN, XLenVT, Legal); 1455 setOperationAction(ISD::UMIN, XLenVT, Legal); 1456 setOperationAction(ISD::SMAX, XLenVT, Legal); 1457 setOperationAction(ISD::UMAX, XLenVT, Legal); 1458 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal); 1459 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal); 1460 } 1461 1462 // Function alignments. 1463 const Align FunctionAlignment(Subtarget.hasStdExtCOrZca() ? 2 : 4); 1464 setMinFunctionAlignment(FunctionAlignment); 1465 // Set preferred alignments. 1466 setPrefFunctionAlignment(Subtarget.getPrefFunctionAlignment()); 1467 setPrefLoopAlignment(Subtarget.getPrefLoopAlignment()); 1468 1469 setTargetDAGCombine({ISD::INTRINSIC_VOID, ISD::INTRINSIC_W_CHAIN, 1470 ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::MUL, 1471 ISD::AND, ISD::OR, ISD::XOR, ISD::SETCC, ISD::SELECT}); 1472 if (Subtarget.is64Bit()) 1473 setTargetDAGCombine(ISD::SRA); 1474 1475 if (Subtarget.hasStdExtFOrZfinx()) 1476 setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM}); 1477 1478 if (Subtarget.hasStdExtZbb()) 1479 setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN}); 1480 1481 if ((Subtarget.hasStdExtZbs() && Subtarget.is64Bit()) || 1482 Subtarget.hasStdExtV()) 1483 setTargetDAGCombine(ISD::TRUNCATE); 1484 1485 if (Subtarget.hasStdExtZbkb()) 1486 setTargetDAGCombine(ISD::BITREVERSE); 1487 if (Subtarget.hasStdExtZfhminOrZhinxmin()) 1488 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 1489 if (Subtarget.hasStdExtFOrZfinx()) 1490 setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT, 1491 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}); 1492 if (Subtarget.hasVInstructions()) 1493 setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER, 1494 ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL, 1495 ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR, 1496 ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS, 1497 ISD::EXPERIMENTAL_VP_REVERSE, ISD::MUL, 1498 ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, 1499 ISD::INSERT_VECTOR_ELT, ISD::ABS}); 1500 if (Subtarget.hasVendorXTHeadMemPair()) 1501 setTargetDAGCombine({ISD::LOAD, ISD::STORE}); 1502 if (Subtarget.useRVVForFixedLengthVectors()) 1503 setTargetDAGCombine(ISD::BITCAST); 1504 1505 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 1506 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 1507 1508 // Disable strict node mutation. 1509 IsStrictFPEnabled = true; 1510 1511 // Let the subtarget decide if a predictable select is more expensive than the 1512 // corresponding branch. This information is used in CGP/SelectOpt to decide 1513 // when to convert selects into branches. 1514 PredictableSelectIsExpensive = Subtarget.predictableSelectIsExpensive(); 1515 } 1516 1517 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1518 LLVMContext &Context, 1519 EVT VT) const { 1520 if (!VT.isVector()) 1521 return getPointerTy(DL); 1522 if (Subtarget.hasVInstructions() && 1523 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1524 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1525 return VT.changeVectorElementTypeToInteger(); 1526 } 1527 1528 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1529 return Subtarget.getXLenVT(); 1530 } 1531 1532 // Return false if we can lower get_vector_length to a vsetvli intrinsic. 1533 bool RISCVTargetLowering::shouldExpandGetVectorLength(EVT TripCountVT, 1534 unsigned VF, 1535 bool IsScalable) const { 1536 if (!Subtarget.hasVInstructions()) 1537 return true; 1538 1539 if (!IsScalable) 1540 return true; 1541 1542 if (TripCountVT != MVT::i32 && TripCountVT != Subtarget.getXLenVT()) 1543 return true; 1544 1545 // Don't allow VF=1 if those types are't legal. 1546 if (VF < RISCV::RVVBitsPerBlock / Subtarget.getELen()) 1547 return true; 1548 1549 // VLEN=32 support is incomplete. 1550 if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock) 1551 return true; 1552 1553 // The maximum VF is for the smallest element width with LMUL=8. 1554 // VF must be a power of 2. 1555 unsigned MaxVF = (RISCV::RVVBitsPerBlock / 8) * 8; 1556 return VF > MaxVF || !isPowerOf2_32(VF); 1557 } 1558 1559 bool RISCVTargetLowering::shouldExpandCttzElements(EVT VT) const { 1560 return !Subtarget.hasVInstructions() || 1561 VT.getVectorElementType() != MVT::i1 || !isTypeLegal(VT); 1562 } 1563 1564 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1565 const CallInst &I, 1566 MachineFunction &MF, 1567 unsigned Intrinsic) const { 1568 auto &DL = I.getDataLayout(); 1569 1570 auto SetRVVLoadStoreInfo = [&](unsigned PtrOp, bool IsStore, 1571 bool IsUnitStrided, bool UsePtrVal = false) { 1572 Info.opc = IsStore ? ISD::INTRINSIC_VOID : ISD::INTRINSIC_W_CHAIN; 1573 // We can't use ptrVal if the intrinsic can access memory before the 1574 // pointer. This means we can't use it for strided or indexed intrinsics. 1575 if (UsePtrVal) 1576 Info.ptrVal = I.getArgOperand(PtrOp); 1577 else 1578 Info.fallbackAddressSpace = 1579 I.getArgOperand(PtrOp)->getType()->getPointerAddressSpace(); 1580 Type *MemTy; 1581 if (IsStore) { 1582 // Store value is the first operand. 1583 MemTy = I.getArgOperand(0)->getType(); 1584 } else { 1585 // Use return type. If it's segment load, return type is a struct. 1586 MemTy = I.getType(); 1587 if (MemTy->isStructTy()) 1588 MemTy = MemTy->getStructElementType(0); 1589 } 1590 if (!IsUnitStrided) 1591 MemTy = MemTy->getScalarType(); 1592 1593 Info.memVT = getValueType(DL, MemTy); 1594 Info.align = Align(DL.getTypeSizeInBits(MemTy->getScalarType()) / 8); 1595 Info.size = MemoryLocation::UnknownSize; 1596 Info.flags |= 1597 IsStore ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad; 1598 return true; 1599 }; 1600 1601 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 1602 Info.flags |= MachineMemOperand::MONonTemporal; 1603 1604 Info.flags |= RISCVTargetLowering::getTargetMMOFlags(I); 1605 switch (Intrinsic) { 1606 default: 1607 return false; 1608 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1609 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1610 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1611 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1612 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1613 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1614 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1615 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1616 case Intrinsic::riscv_masked_cmpxchg_i32: 1617 Info.opc = ISD::INTRINSIC_W_CHAIN; 1618 Info.memVT = MVT::i32; 1619 Info.ptrVal = I.getArgOperand(0); 1620 Info.offset = 0; 1621 Info.align = Align(4); 1622 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1623 MachineMemOperand::MOVolatile; 1624 return true; 1625 case Intrinsic::riscv_masked_strided_load: 1626 return SetRVVLoadStoreInfo(/*PtrOp*/ 1, /*IsStore*/ false, 1627 /*IsUnitStrided*/ false); 1628 case Intrinsic::riscv_masked_strided_store: 1629 return SetRVVLoadStoreInfo(/*PtrOp*/ 1, /*IsStore*/ true, 1630 /*IsUnitStrided*/ false); 1631 case Intrinsic::riscv_seg2_load: 1632 case Intrinsic::riscv_seg3_load: 1633 case Intrinsic::riscv_seg4_load: 1634 case Intrinsic::riscv_seg5_load: 1635 case Intrinsic::riscv_seg6_load: 1636 case Intrinsic::riscv_seg7_load: 1637 case Intrinsic::riscv_seg8_load: 1638 return SetRVVLoadStoreInfo(/*PtrOp*/ 0, /*IsStore*/ false, 1639 /*IsUnitStrided*/ false, /*UsePtrVal*/ true); 1640 case Intrinsic::riscv_seg2_store: 1641 case Intrinsic::riscv_seg3_store: 1642 case Intrinsic::riscv_seg4_store: 1643 case Intrinsic::riscv_seg5_store: 1644 case Intrinsic::riscv_seg6_store: 1645 case Intrinsic::riscv_seg7_store: 1646 case Intrinsic::riscv_seg8_store: 1647 // Operands are (vec, ..., vec, ptr, vl) 1648 return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 2, 1649 /*IsStore*/ true, 1650 /*IsUnitStrided*/ false, /*UsePtrVal*/ true); 1651 case Intrinsic::riscv_vle: 1652 case Intrinsic::riscv_vle_mask: 1653 case Intrinsic::riscv_vleff: 1654 case Intrinsic::riscv_vleff_mask: 1655 return SetRVVLoadStoreInfo(/*PtrOp*/ 1, 1656 /*IsStore*/ false, 1657 /*IsUnitStrided*/ true, 1658 /*UsePtrVal*/ true); 1659 case Intrinsic::riscv_vse: 1660 case Intrinsic::riscv_vse_mask: 1661 return SetRVVLoadStoreInfo(/*PtrOp*/ 1, 1662 /*IsStore*/ true, 1663 /*IsUnitStrided*/ true, 1664 /*UsePtrVal*/ true); 1665 case Intrinsic::riscv_vlse: 1666 case Intrinsic::riscv_vlse_mask: 1667 case Intrinsic::riscv_vloxei: 1668 case Intrinsic::riscv_vloxei_mask: 1669 case Intrinsic::riscv_vluxei: 1670 case Intrinsic::riscv_vluxei_mask: 1671 return SetRVVLoadStoreInfo(/*PtrOp*/ 1, 1672 /*IsStore*/ false, 1673 /*IsUnitStrided*/ false); 1674 case Intrinsic::riscv_vsse: 1675 case Intrinsic::riscv_vsse_mask: 1676 case Intrinsic::riscv_vsoxei: 1677 case Intrinsic::riscv_vsoxei_mask: 1678 case Intrinsic::riscv_vsuxei: 1679 case Intrinsic::riscv_vsuxei_mask: 1680 return SetRVVLoadStoreInfo(/*PtrOp*/ 1, 1681 /*IsStore*/ true, 1682 /*IsUnitStrided*/ false); 1683 case Intrinsic::riscv_vlseg2: 1684 case Intrinsic::riscv_vlseg3: 1685 case Intrinsic::riscv_vlseg4: 1686 case Intrinsic::riscv_vlseg5: 1687 case Intrinsic::riscv_vlseg6: 1688 case Intrinsic::riscv_vlseg7: 1689 case Intrinsic::riscv_vlseg8: 1690 case Intrinsic::riscv_vlseg2ff: 1691 case Intrinsic::riscv_vlseg3ff: 1692 case Intrinsic::riscv_vlseg4ff: 1693 case Intrinsic::riscv_vlseg5ff: 1694 case Intrinsic::riscv_vlseg6ff: 1695 case Intrinsic::riscv_vlseg7ff: 1696 case Intrinsic::riscv_vlseg8ff: 1697 return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 2, 1698 /*IsStore*/ false, 1699 /*IsUnitStrided*/ false, /*UsePtrVal*/ true); 1700 case Intrinsic::riscv_vlseg2_mask: 1701 case Intrinsic::riscv_vlseg3_mask: 1702 case Intrinsic::riscv_vlseg4_mask: 1703 case Intrinsic::riscv_vlseg5_mask: 1704 case Intrinsic::riscv_vlseg6_mask: 1705 case Intrinsic::riscv_vlseg7_mask: 1706 case Intrinsic::riscv_vlseg8_mask: 1707 case Intrinsic::riscv_vlseg2ff_mask: 1708 case Intrinsic::riscv_vlseg3ff_mask: 1709 case Intrinsic::riscv_vlseg4ff_mask: 1710 case Intrinsic::riscv_vlseg5ff_mask: 1711 case Intrinsic::riscv_vlseg6ff_mask: 1712 case Intrinsic::riscv_vlseg7ff_mask: 1713 case Intrinsic::riscv_vlseg8ff_mask: 1714 return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 4, 1715 /*IsStore*/ false, 1716 /*IsUnitStrided*/ false, /*UsePtrVal*/ true); 1717 case Intrinsic::riscv_vlsseg2: 1718 case Intrinsic::riscv_vlsseg3: 1719 case Intrinsic::riscv_vlsseg4: 1720 case Intrinsic::riscv_vlsseg5: 1721 case Intrinsic::riscv_vlsseg6: 1722 case Intrinsic::riscv_vlsseg7: 1723 case Intrinsic::riscv_vlsseg8: 1724 case Intrinsic::riscv_vloxseg2: 1725 case Intrinsic::riscv_vloxseg3: 1726 case Intrinsic::riscv_vloxseg4: 1727 case Intrinsic::riscv_vloxseg5: 1728 case Intrinsic::riscv_vloxseg6: 1729 case Intrinsic::riscv_vloxseg7: 1730 case Intrinsic::riscv_vloxseg8: 1731 case Intrinsic::riscv_vluxseg2: 1732 case Intrinsic::riscv_vluxseg3: 1733 case Intrinsic::riscv_vluxseg4: 1734 case Intrinsic::riscv_vluxseg5: 1735 case Intrinsic::riscv_vluxseg6: 1736 case Intrinsic::riscv_vluxseg7: 1737 case Intrinsic::riscv_vluxseg8: 1738 return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 3, 1739 /*IsStore*/ false, 1740 /*IsUnitStrided*/ false); 1741 case Intrinsic::riscv_vlsseg2_mask: 1742 case Intrinsic::riscv_vlsseg3_mask: 1743 case Intrinsic::riscv_vlsseg4_mask: 1744 case Intrinsic::riscv_vlsseg5_mask: 1745 case Intrinsic::riscv_vlsseg6_mask: 1746 case Intrinsic::riscv_vlsseg7_mask: 1747 case Intrinsic::riscv_vlsseg8_mask: 1748 case Intrinsic::riscv_vloxseg2_mask: 1749 case Intrinsic::riscv_vloxseg3_mask: 1750 case Intrinsic::riscv_vloxseg4_mask: 1751 case Intrinsic::riscv_vloxseg5_mask: 1752 case Intrinsic::riscv_vloxseg6_mask: 1753 case Intrinsic::riscv_vloxseg7_mask: 1754 case Intrinsic::riscv_vloxseg8_mask: 1755 case Intrinsic::riscv_vluxseg2_mask: 1756 case Intrinsic::riscv_vluxseg3_mask: 1757 case Intrinsic::riscv_vluxseg4_mask: 1758 case Intrinsic::riscv_vluxseg5_mask: 1759 case Intrinsic::riscv_vluxseg6_mask: 1760 case Intrinsic::riscv_vluxseg7_mask: 1761 case Intrinsic::riscv_vluxseg8_mask: 1762 return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 5, 1763 /*IsStore*/ false, 1764 /*IsUnitStrided*/ false); 1765 case Intrinsic::riscv_vsseg2: 1766 case Intrinsic::riscv_vsseg3: 1767 case Intrinsic::riscv_vsseg4: 1768 case Intrinsic::riscv_vsseg5: 1769 case Intrinsic::riscv_vsseg6: 1770 case Intrinsic::riscv_vsseg7: 1771 case Intrinsic::riscv_vsseg8: 1772 return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 2, 1773 /*IsStore*/ true, 1774 /*IsUnitStrided*/ false); 1775 case Intrinsic::riscv_vsseg2_mask: 1776 case Intrinsic::riscv_vsseg3_mask: 1777 case Intrinsic::riscv_vsseg4_mask: 1778 case Intrinsic::riscv_vsseg5_mask: 1779 case Intrinsic::riscv_vsseg6_mask: 1780 case Intrinsic::riscv_vsseg7_mask: 1781 case Intrinsic::riscv_vsseg8_mask: 1782 return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 3, 1783 /*IsStore*/ true, 1784 /*IsUnitStrided*/ false); 1785 case Intrinsic::riscv_vssseg2: 1786 case Intrinsic::riscv_vssseg3: 1787 case Intrinsic::riscv_vssseg4: 1788 case Intrinsic::riscv_vssseg5: 1789 case Intrinsic::riscv_vssseg6: 1790 case Intrinsic::riscv_vssseg7: 1791 case Intrinsic::riscv_vssseg8: 1792 case Intrinsic::riscv_vsoxseg2: 1793 case Intrinsic::riscv_vsoxseg3: 1794 case Intrinsic::riscv_vsoxseg4: 1795 case Intrinsic::riscv_vsoxseg5: 1796 case Intrinsic::riscv_vsoxseg6: 1797 case Intrinsic::riscv_vsoxseg7: 1798 case Intrinsic::riscv_vsoxseg8: 1799 case Intrinsic::riscv_vsuxseg2: 1800 case Intrinsic::riscv_vsuxseg3: 1801 case Intrinsic::riscv_vsuxseg4: 1802 case Intrinsic::riscv_vsuxseg5: 1803 case Intrinsic::riscv_vsuxseg6: 1804 case Intrinsic::riscv_vsuxseg7: 1805 case Intrinsic::riscv_vsuxseg8: 1806 return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 3, 1807 /*IsStore*/ true, 1808 /*IsUnitStrided*/ false); 1809 case Intrinsic::riscv_vssseg2_mask: 1810 case Intrinsic::riscv_vssseg3_mask: 1811 case Intrinsic::riscv_vssseg4_mask: 1812 case Intrinsic::riscv_vssseg5_mask: 1813 case Intrinsic::riscv_vssseg6_mask: 1814 case Intrinsic::riscv_vssseg7_mask: 1815 case Intrinsic::riscv_vssseg8_mask: 1816 case Intrinsic::riscv_vsoxseg2_mask: 1817 case Intrinsic::riscv_vsoxseg3_mask: 1818 case Intrinsic::riscv_vsoxseg4_mask: 1819 case Intrinsic::riscv_vsoxseg5_mask: 1820 case Intrinsic::riscv_vsoxseg6_mask: 1821 case Intrinsic::riscv_vsoxseg7_mask: 1822 case Intrinsic::riscv_vsoxseg8_mask: 1823 case Intrinsic::riscv_vsuxseg2_mask: 1824 case Intrinsic::riscv_vsuxseg3_mask: 1825 case Intrinsic::riscv_vsuxseg4_mask: 1826 case Intrinsic::riscv_vsuxseg5_mask: 1827 case Intrinsic::riscv_vsuxseg6_mask: 1828 case Intrinsic::riscv_vsuxseg7_mask: 1829 case Intrinsic::riscv_vsuxseg8_mask: 1830 return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 4, 1831 /*IsStore*/ true, 1832 /*IsUnitStrided*/ false); 1833 } 1834 } 1835 1836 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1837 const AddrMode &AM, Type *Ty, 1838 unsigned AS, 1839 Instruction *I) const { 1840 // No global is ever allowed as a base. 1841 if (AM.BaseGV) 1842 return false; 1843 1844 // RVV instructions only support register addressing. 1845 if (Subtarget.hasVInstructions() && isa<VectorType>(Ty)) 1846 return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs; 1847 1848 // Require a 12-bit signed offset. 1849 if (!isInt<12>(AM.BaseOffs)) 1850 return false; 1851 1852 switch (AM.Scale) { 1853 case 0: // "r+i" or just "i", depending on HasBaseReg. 1854 break; 1855 case 1: 1856 if (!AM.HasBaseReg) // allow "r+i". 1857 break; 1858 return false; // disallow "r+r" or "r+r+i". 1859 default: 1860 return false; 1861 } 1862 1863 return true; 1864 } 1865 1866 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1867 return isInt<12>(Imm); 1868 } 1869 1870 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1871 return isInt<12>(Imm); 1872 } 1873 1874 // On RV32, 64-bit integers are split into their high and low parts and held 1875 // in two different registers, so the trunc is free since the low register can 1876 // just be used. 1877 // FIXME: Should we consider i64->i32 free on RV64 to match the EVT version of 1878 // isTruncateFree? 1879 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1880 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1881 return false; 1882 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1883 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1884 return (SrcBits == 64 && DestBits == 32); 1885 } 1886 1887 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1888 // We consider i64->i32 free on RV64 since we have good selection of W 1889 // instructions that make promoting operations back to i64 free in many cases. 1890 if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() || 1891 !DstVT.isInteger()) 1892 return false; 1893 unsigned SrcBits = SrcVT.getSizeInBits(); 1894 unsigned DestBits = DstVT.getSizeInBits(); 1895 return (SrcBits == 64 && DestBits == 32); 1896 } 1897 1898 bool RISCVTargetLowering::isTruncateFree(SDValue Val, EVT VT2) const { 1899 EVT SrcVT = Val.getValueType(); 1900 // free truncate from vnsrl and vnsra 1901 if (Subtarget.hasStdExtV() && 1902 (Val.getOpcode() == ISD::SRL || Val.getOpcode() == ISD::SRA) && 1903 SrcVT.isVector() && VT2.isVector()) { 1904 unsigned SrcBits = SrcVT.getVectorElementType().getSizeInBits(); 1905 unsigned DestBits = VT2.getVectorElementType().getSizeInBits(); 1906 if (SrcBits == DestBits * 2) { 1907 return true; 1908 } 1909 } 1910 return TargetLowering::isTruncateFree(Val, VT2); 1911 } 1912 1913 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1914 // Zexts are free if they can be combined with a load. 1915 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1916 // poorly with type legalization of compares preferring sext. 1917 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1918 EVT MemVT = LD->getMemoryVT(); 1919 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1920 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1921 LD->getExtensionType() == ISD::ZEXTLOAD)) 1922 return true; 1923 } 1924 1925 return TargetLowering::isZExtFree(Val, VT2); 1926 } 1927 1928 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1929 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1930 } 1931 1932 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const { 1933 return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32); 1934 } 1935 1936 bool RISCVTargetLowering::isCheapToSpeculateCttz(Type *Ty) const { 1937 return Subtarget.hasStdExtZbb() || Subtarget.hasVendorXCVbitmanip(); 1938 } 1939 1940 bool RISCVTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const { 1941 return Subtarget.hasStdExtZbb() || Subtarget.hasVendorXTHeadBb() || 1942 Subtarget.hasVendorXCVbitmanip(); 1943 } 1944 1945 bool RISCVTargetLowering::isMaskAndCmp0FoldingBeneficial( 1946 const Instruction &AndI) const { 1947 // We expect to be able to match a bit extraction instruction if the Zbs 1948 // extension is supported and the mask is a power of two. However, we 1949 // conservatively return false if the mask would fit in an ANDI instruction, 1950 // on the basis that it's possible the sinking+duplication of the AND in 1951 // CodeGenPrepare triggered by this hook wouldn't decrease the instruction 1952 // count and would increase code size (e.g. ANDI+BNEZ => BEXTI+BNEZ). 1953 if (!Subtarget.hasStdExtZbs() && !Subtarget.hasVendorXTHeadBs()) 1954 return false; 1955 ConstantInt *Mask = dyn_cast<ConstantInt>(AndI.getOperand(1)); 1956 if (!Mask) 1957 return false; 1958 return !Mask->getValue().isSignedIntN(12) && Mask->getValue().isPowerOf2(); 1959 } 1960 1961 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1962 EVT VT = Y.getValueType(); 1963 1964 // FIXME: Support vectors once we have tests. 1965 if (VT.isVector()) 1966 return false; 1967 1968 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) && 1969 (!isa<ConstantSDNode>(Y) || cast<ConstantSDNode>(Y)->isOpaque()); 1970 } 1971 1972 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const { 1973 // Zbs provides BEXT[_I], which can be used with SEQZ/SNEZ as a bit test. 1974 if (Subtarget.hasStdExtZbs()) 1975 return X.getValueType().isScalarInteger(); 1976 auto *C = dyn_cast<ConstantSDNode>(Y); 1977 // XTheadBs provides th.tst (similar to bexti), if Y is a constant 1978 if (Subtarget.hasVendorXTHeadBs()) 1979 return C != nullptr; 1980 // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position. 1981 return C && C->getAPIntValue().ule(10); 1982 } 1983 1984 bool RISCVTargetLowering::shouldFoldSelectWithIdentityConstant(unsigned Opcode, 1985 EVT VT) const { 1986 // Only enable for rvv. 1987 if (!VT.isVector() || !Subtarget.hasVInstructions()) 1988 return false; 1989 1990 if (VT.isFixedLengthVector() && !isTypeLegal(VT)) 1991 return false; 1992 1993 return true; 1994 } 1995 1996 bool RISCVTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 1997 Type *Ty) const { 1998 assert(Ty->isIntegerTy()); 1999 2000 unsigned BitSize = Ty->getIntegerBitWidth(); 2001 if (BitSize > Subtarget.getXLen()) 2002 return false; 2003 2004 // Fast path, assume 32-bit immediates are cheap. 2005 int64_t Val = Imm.getSExtValue(); 2006 if (isInt<32>(Val)) 2007 return true; 2008 2009 // A constant pool entry may be more aligned thant he load we're trying to 2010 // replace. If we don't support unaligned scalar mem, prefer the constant 2011 // pool. 2012 // TODO: Can the caller pass down the alignment? 2013 if (!Subtarget.enableUnalignedScalarMem()) 2014 return true; 2015 2016 // Prefer to keep the load if it would require many instructions. 2017 // This uses the same threshold we use for constant pools but doesn't 2018 // check useConstantPoolForLargeInts. 2019 // TODO: Should we keep the load only when we're definitely going to emit a 2020 // constant pool? 2021 2022 RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, Subtarget); 2023 return Seq.size() <= Subtarget.getMaxBuildIntsCost(); 2024 } 2025 2026 bool RISCVTargetLowering:: 2027 shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 2028 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, 2029 unsigned OldShiftOpcode, unsigned NewShiftOpcode, 2030 SelectionDAG &DAG) const { 2031 // One interesting pattern that we'd want to form is 'bit extract': 2032 // ((1 >> Y) & 1) ==/!= 0 2033 // But we also need to be careful not to try to reverse that fold. 2034 2035 // Is this '((1 >> Y) & 1)'? 2036 if (XC && OldShiftOpcode == ISD::SRL && XC->isOne()) 2037 return false; // Keep the 'bit extract' pattern. 2038 2039 // Will this be '((1 >> Y) & 1)' after the transform? 2040 if (NewShiftOpcode == ISD::SRL && CC->isOne()) 2041 return true; // Do form the 'bit extract' pattern. 2042 2043 // If 'X' is a constant, and we transform, then we will immediately 2044 // try to undo the fold, thus causing endless combine loop. 2045 // So only do the transform if X is not a constant. This matches the default 2046 // implementation of this function. 2047 return !XC; 2048 } 2049 2050 bool RISCVTargetLowering::canSplatOperand(unsigned Opcode, int Operand) const { 2051 switch (Opcode) { 2052 case Instruction::Add: 2053 case Instruction::Sub: 2054 case Instruction::Mul: 2055 case Instruction::And: 2056 case Instruction::Or: 2057 case Instruction::Xor: 2058 case Instruction::FAdd: 2059 case Instruction::FSub: 2060 case Instruction::FMul: 2061 case Instruction::FDiv: 2062 case Instruction::ICmp: 2063 case Instruction::FCmp: 2064 return true; 2065 case Instruction::Shl: 2066 case Instruction::LShr: 2067 case Instruction::AShr: 2068 case Instruction::UDiv: 2069 case Instruction::SDiv: 2070 case Instruction::URem: 2071 case Instruction::SRem: 2072 case Instruction::Select: 2073 return Operand == 1; 2074 default: 2075 return false; 2076 } 2077 } 2078 2079 2080 bool RISCVTargetLowering::canSplatOperand(Instruction *I, int Operand) const { 2081 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 2082 return false; 2083 2084 if (canSplatOperand(I->getOpcode(), Operand)) 2085 return true; 2086 2087 auto *II = dyn_cast<IntrinsicInst>(I); 2088 if (!II) 2089 return false; 2090 2091 switch (II->getIntrinsicID()) { 2092 case Intrinsic::fma: 2093 case Intrinsic::vp_fma: 2094 return Operand == 0 || Operand == 1; 2095 case Intrinsic::vp_shl: 2096 case Intrinsic::vp_lshr: 2097 case Intrinsic::vp_ashr: 2098 case Intrinsic::vp_udiv: 2099 case Intrinsic::vp_sdiv: 2100 case Intrinsic::vp_urem: 2101 case Intrinsic::vp_srem: 2102 case Intrinsic::ssub_sat: 2103 case Intrinsic::vp_ssub_sat: 2104 case Intrinsic::usub_sat: 2105 case Intrinsic::vp_usub_sat: 2106 return Operand == 1; 2107 // These intrinsics are commutative. 2108 case Intrinsic::vp_add: 2109 case Intrinsic::vp_mul: 2110 case Intrinsic::vp_and: 2111 case Intrinsic::vp_or: 2112 case Intrinsic::vp_xor: 2113 case Intrinsic::vp_fadd: 2114 case Intrinsic::vp_fmul: 2115 case Intrinsic::vp_icmp: 2116 case Intrinsic::vp_fcmp: 2117 case Intrinsic::smin: 2118 case Intrinsic::vp_smin: 2119 case Intrinsic::umin: 2120 case Intrinsic::vp_umin: 2121 case Intrinsic::smax: 2122 case Intrinsic::vp_smax: 2123 case Intrinsic::umax: 2124 case Intrinsic::vp_umax: 2125 case Intrinsic::sadd_sat: 2126 case Intrinsic::vp_sadd_sat: 2127 case Intrinsic::uadd_sat: 2128 case Intrinsic::vp_uadd_sat: 2129 // These intrinsics have 'vr' versions. 2130 case Intrinsic::vp_sub: 2131 case Intrinsic::vp_fsub: 2132 case Intrinsic::vp_fdiv: 2133 return Operand == 0 || Operand == 1; 2134 default: 2135 return false; 2136 } 2137 } 2138 2139 /// Check if sinking \p I's operands to I's basic block is profitable, because 2140 /// the operands can be folded into a target instruction, e.g. 2141 /// splats of scalars can fold into vector instructions. 2142 bool RISCVTargetLowering::shouldSinkOperands( 2143 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 2144 using namespace llvm::PatternMatch; 2145 2146 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 2147 return false; 2148 2149 // Don't sink splat operands if the target prefers it. Some targets requires 2150 // S2V transfer buffers and we can run out of them copying the same value 2151 // repeatedly. 2152 // FIXME: It could still be worth doing if it would improve vector register 2153 // pressure and prevent a vector spill. 2154 if (!Subtarget.sinkSplatOperands()) 2155 return false; 2156 2157 for (auto OpIdx : enumerate(I->operands())) { 2158 if (!canSplatOperand(I, OpIdx.index())) 2159 continue; 2160 2161 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 2162 // Make sure we are not already sinking this operand 2163 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 2164 continue; 2165 2166 // We are looking for a splat that can be sunk. 2167 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 2168 m_Undef(), m_ZeroMask()))) 2169 continue; 2170 2171 // Don't sink i1 splats. 2172 if (cast<VectorType>(Op->getType())->getElementType()->isIntegerTy(1)) 2173 continue; 2174 2175 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 2176 // and vector registers 2177 for (Use &U : Op->uses()) { 2178 Instruction *Insn = cast<Instruction>(U.getUser()); 2179 if (!canSplatOperand(Insn, U.getOperandNo())) 2180 return false; 2181 } 2182 2183 Ops.push_back(&Op->getOperandUse(0)); 2184 Ops.push_back(&OpIdx.value()); 2185 } 2186 return true; 2187 } 2188 2189 bool RISCVTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 2190 unsigned Opc = VecOp.getOpcode(); 2191 2192 // Assume target opcodes can't be scalarized. 2193 // TODO - do we have any exceptions? 2194 if (Opc >= ISD::BUILTIN_OP_END) 2195 return false; 2196 2197 // If the vector op is not supported, try to convert to scalar. 2198 EVT VecVT = VecOp.getValueType(); 2199 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 2200 return true; 2201 2202 // If the vector op is supported, but the scalar op is not, the transform may 2203 // not be worthwhile. 2204 // Permit a vector binary operation can be converted to scalar binary 2205 // operation which is custom lowered with illegal type. 2206 EVT ScalarVT = VecVT.getScalarType(); 2207 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT) || 2208 isOperationCustom(Opc, ScalarVT); 2209 } 2210 2211 bool RISCVTargetLowering::isOffsetFoldingLegal( 2212 const GlobalAddressSDNode *GA) const { 2213 // In order to maximise the opportunity for common subexpression elimination, 2214 // keep a separate ADD node for the global address offset instead of folding 2215 // it in the global address node. Later peephole optimisations may choose to 2216 // fold it back in when profitable. 2217 return false; 2218 } 2219 2220 // Return one of the followings: 2221 // (1) `{0-31 value, false}` if FLI is available for Imm's type and FP value. 2222 // (2) `{0-31 value, true}` if Imm is negative and FLI is available for its 2223 // positive counterpart, which will be materialized from the first returned 2224 // element. The second returned element indicated that there should be a FNEG 2225 // followed. 2226 // (3) `{-1, _}` if there is no way FLI can be used to materialize Imm. 2227 std::pair<int, bool> RISCVTargetLowering::getLegalZfaFPImm(const APFloat &Imm, 2228 EVT VT) const { 2229 if (!Subtarget.hasStdExtZfa()) 2230 return std::make_pair(-1, false); 2231 2232 bool IsSupportedVT = false; 2233 if (VT == MVT::f16) { 2234 IsSupportedVT = Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZvfh(); 2235 } else if (VT == MVT::f32) { 2236 IsSupportedVT = true; 2237 } else if (VT == MVT::f64) { 2238 assert(Subtarget.hasStdExtD() && "Expect D extension"); 2239 IsSupportedVT = true; 2240 } 2241 2242 if (!IsSupportedVT) 2243 return std::make_pair(-1, false); 2244 2245 int Index = RISCVLoadFPImm::getLoadFPImm(Imm); 2246 if (Index < 0 && Imm.isNegative()) 2247 // Try the combination of its positive counterpart + FNEG. 2248 return std::make_pair(RISCVLoadFPImm::getLoadFPImm(-Imm), true); 2249 else 2250 return std::make_pair(Index, false); 2251 } 2252 2253 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 2254 bool ForCodeSize) const { 2255 bool IsLegalVT = false; 2256 if (VT == MVT::f16) 2257 IsLegalVT = Subtarget.hasStdExtZfhminOrZhinxmin(); 2258 else if (VT == MVT::f32) 2259 IsLegalVT = Subtarget.hasStdExtFOrZfinx(); 2260 else if (VT == MVT::f64) 2261 IsLegalVT = Subtarget.hasStdExtDOrZdinx(); 2262 else if (VT == MVT::bf16) 2263 IsLegalVT = Subtarget.hasStdExtZfbfmin(); 2264 2265 if (!IsLegalVT) 2266 return false; 2267 2268 if (getLegalZfaFPImm(Imm, VT).first >= 0) 2269 return true; 2270 2271 // Cannot create a 64 bit floating-point immediate value for rv32. 2272 if (Subtarget.getXLen() < VT.getScalarSizeInBits()) { 2273 // td can handle +0.0 or -0.0 already. 2274 // -0.0 can be created by fmv + fneg. 2275 return Imm.isZero(); 2276 } 2277 2278 // Special case: fmv + fneg 2279 if (Imm.isNegZero()) 2280 return true; 2281 2282 // Building an integer and then converting requires a fmv at the end of 2283 // the integer sequence. 2284 const int Cost = 2285 1 + RISCVMatInt::getIntMatCost(Imm.bitcastToAPInt(), Subtarget.getXLen(), 2286 Subtarget); 2287 return Cost <= FPImmCost; 2288 } 2289 2290 // TODO: This is very conservative. 2291 bool RISCVTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, 2292 unsigned Index) const { 2293 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) 2294 return false; 2295 2296 // Only support extracting a fixed from a fixed vector for now. 2297 if (ResVT.isScalableVector() || SrcVT.isScalableVector()) 2298 return false; 2299 2300 EVT EltVT = ResVT.getVectorElementType(); 2301 assert(EltVT == SrcVT.getVectorElementType() && "Should hold for node"); 2302 2303 // The smallest type we can slide is i8. 2304 // TODO: We can extract index 0 from a mask vector without a slide. 2305 if (EltVT == MVT::i1) 2306 return false; 2307 2308 unsigned ResElts = ResVT.getVectorNumElements(); 2309 unsigned SrcElts = SrcVT.getVectorNumElements(); 2310 2311 unsigned MinVLen = Subtarget.getRealMinVLen(); 2312 unsigned MinVLMAX = MinVLen / EltVT.getSizeInBits(); 2313 2314 // If we're extracting only data from the first VLEN bits of the source 2315 // then we can always do this with an m1 vslidedown.vx. Restricting the 2316 // Index ensures we can use a vslidedown.vi. 2317 // TODO: We can generalize this when the exact VLEN is known. 2318 if (Index + ResElts <= MinVLMAX && Index < 31) 2319 return true; 2320 2321 // Convervatively only handle extracting half of a vector. 2322 // TODO: For sizes which aren't multiples of VLEN sizes, this may not be 2323 // a cheap extract. However, this case is important in practice for 2324 // shuffled extracts of longer vectors. How resolve? 2325 if ((ResElts * 2) != SrcElts) 2326 return false; 2327 2328 // Slide can support arbitrary index, but we only treat vslidedown.vi as 2329 // cheap. 2330 if (Index >= 32) 2331 return false; 2332 2333 // TODO: We can do arbitrary slidedowns, but for now only support extracting 2334 // the upper half of a vector until we have more test coverage. 2335 return Index == 0 || Index == ResElts; 2336 } 2337 2338 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 2339 CallingConv::ID CC, 2340 EVT VT) const { 2341 // Use f32 to pass f16 if it is legal and Zfh/Zfhmin is not enabled. 2342 // We might still end up using a GPR but that will be decided based on ABI. 2343 if (VT == MVT::f16 && Subtarget.hasStdExtFOrZfinx() && 2344 !Subtarget.hasStdExtZfhminOrZhinxmin()) 2345 return MVT::f32; 2346 2347 MVT PartVT = TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 2348 2349 if (RV64LegalI32 && Subtarget.is64Bit() && PartVT == MVT::i32) 2350 return MVT::i64; 2351 2352 return PartVT; 2353 } 2354 2355 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 2356 CallingConv::ID CC, 2357 EVT VT) const { 2358 // Use f32 to pass f16 if it is legal and Zfh/Zfhmin is not enabled. 2359 // We might still end up using a GPR but that will be decided based on ABI. 2360 if (VT == MVT::f16 && Subtarget.hasStdExtFOrZfinx() && 2361 !Subtarget.hasStdExtZfhminOrZhinxmin()) 2362 return 1; 2363 2364 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 2365 } 2366 2367 unsigned RISCVTargetLowering::getVectorTypeBreakdownForCallingConv( 2368 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, 2369 unsigned &NumIntermediates, MVT &RegisterVT) const { 2370 unsigned NumRegs = TargetLowering::getVectorTypeBreakdownForCallingConv( 2371 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); 2372 2373 if (RV64LegalI32 && Subtarget.is64Bit() && IntermediateVT == MVT::i32) 2374 IntermediateVT = MVT::i64; 2375 2376 if (RV64LegalI32 && Subtarget.is64Bit() && RegisterVT == MVT::i32) 2377 RegisterVT = MVT::i64; 2378 2379 return NumRegs; 2380 } 2381 2382 // Changes the condition code and swaps operands if necessary, so the SetCC 2383 // operation matches one of the comparisons supported directly by branches 2384 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 2385 // with 1/-1. 2386 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 2387 ISD::CondCode &CC, SelectionDAG &DAG) { 2388 // If this is a single bit test that can't be handled by ANDI, shift the 2389 // bit to be tested to the MSB and perform a signed compare with 0. 2390 if (isIntEqualitySetCC(CC) && isNullConstant(RHS) && 2391 LHS.getOpcode() == ISD::AND && LHS.hasOneUse() && 2392 isa<ConstantSDNode>(LHS.getOperand(1))) { 2393 uint64_t Mask = LHS.getConstantOperandVal(1); 2394 if ((isPowerOf2_64(Mask) || isMask_64(Mask)) && !isInt<12>(Mask)) { 2395 unsigned ShAmt = 0; 2396 if (isPowerOf2_64(Mask)) { 2397 CC = CC == ISD::SETEQ ? ISD::SETGE : ISD::SETLT; 2398 ShAmt = LHS.getValueSizeInBits() - 1 - Log2_64(Mask); 2399 } else { 2400 ShAmt = LHS.getValueSizeInBits() - llvm::bit_width(Mask); 2401 } 2402 2403 LHS = LHS.getOperand(0); 2404 if (ShAmt != 0) 2405 LHS = DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS, 2406 DAG.getConstant(ShAmt, DL, LHS.getValueType())); 2407 return; 2408 } 2409 } 2410 2411 if (auto *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 2412 int64_t C = RHSC->getSExtValue(); 2413 switch (CC) { 2414 default: break; 2415 case ISD::SETGT: 2416 // Convert X > -1 to X >= 0. 2417 if (C == -1) { 2418 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 2419 CC = ISD::SETGE; 2420 return; 2421 } 2422 break; 2423 case ISD::SETLT: 2424 // Convert X < 1 to 0 >= X. 2425 if (C == 1) { 2426 RHS = LHS; 2427 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 2428 CC = ISD::SETGE; 2429 return; 2430 } 2431 break; 2432 } 2433 } 2434 2435 switch (CC) { 2436 default: 2437 break; 2438 case ISD::SETGT: 2439 case ISD::SETLE: 2440 case ISD::SETUGT: 2441 case ISD::SETULE: 2442 CC = ISD::getSetCCSwappedOperands(CC); 2443 std::swap(LHS, RHS); 2444 break; 2445 } 2446 } 2447 2448 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 2449 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 2450 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 2451 if (VT.getVectorElementType() == MVT::i1) 2452 KnownSize *= 8; 2453 2454 switch (KnownSize) { 2455 default: 2456 llvm_unreachable("Invalid LMUL."); 2457 case 8: 2458 return RISCVII::VLMUL::LMUL_F8; 2459 case 16: 2460 return RISCVII::VLMUL::LMUL_F4; 2461 case 32: 2462 return RISCVII::VLMUL::LMUL_F2; 2463 case 64: 2464 return RISCVII::VLMUL::LMUL_1; 2465 case 128: 2466 return RISCVII::VLMUL::LMUL_2; 2467 case 256: 2468 return RISCVII::VLMUL::LMUL_4; 2469 case 512: 2470 return RISCVII::VLMUL::LMUL_8; 2471 } 2472 } 2473 2474 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 2475 switch (LMul) { 2476 default: 2477 llvm_unreachable("Invalid LMUL."); 2478 case RISCVII::VLMUL::LMUL_F8: 2479 case RISCVII::VLMUL::LMUL_F4: 2480 case RISCVII::VLMUL::LMUL_F2: 2481 case RISCVII::VLMUL::LMUL_1: 2482 return RISCV::VRRegClassID; 2483 case RISCVII::VLMUL::LMUL_2: 2484 return RISCV::VRM2RegClassID; 2485 case RISCVII::VLMUL::LMUL_4: 2486 return RISCV::VRM4RegClassID; 2487 case RISCVII::VLMUL::LMUL_8: 2488 return RISCV::VRM8RegClassID; 2489 } 2490 } 2491 2492 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 2493 RISCVII::VLMUL LMUL = getLMUL(VT); 2494 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 2495 LMUL == RISCVII::VLMUL::LMUL_F4 || 2496 LMUL == RISCVII::VLMUL::LMUL_F2 || 2497 LMUL == RISCVII::VLMUL::LMUL_1) { 2498 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 2499 "Unexpected subreg numbering"); 2500 return RISCV::sub_vrm1_0 + Index; 2501 } 2502 if (LMUL == RISCVII::VLMUL::LMUL_2) { 2503 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 2504 "Unexpected subreg numbering"); 2505 return RISCV::sub_vrm2_0 + Index; 2506 } 2507 if (LMUL == RISCVII::VLMUL::LMUL_4) { 2508 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 2509 "Unexpected subreg numbering"); 2510 return RISCV::sub_vrm4_0 + Index; 2511 } 2512 llvm_unreachable("Invalid vector type."); 2513 } 2514 2515 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 2516 if (VT.getVectorElementType() == MVT::i1) 2517 return RISCV::VRRegClassID; 2518 return getRegClassIDForLMUL(getLMUL(VT)); 2519 } 2520 2521 // Attempt to decompose a subvector insert/extract between VecVT and 2522 // SubVecVT via subregister indices. Returns the subregister index that 2523 // can perform the subvector insert/extract with the given element index, as 2524 // well as the index corresponding to any leftover subvectors that must be 2525 // further inserted/extracted within the register class for SubVecVT. 2526 std::pair<unsigned, unsigned> 2527 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 2528 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 2529 const RISCVRegisterInfo *TRI) { 2530 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 2531 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 2532 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 2533 "Register classes not ordered"); 2534 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 2535 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 2536 // Try to compose a subregister index that takes us from the incoming 2537 // LMUL>1 register class down to the outgoing one. At each step we half 2538 // the LMUL: 2539 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 2540 // Note that this is not guaranteed to find a subregister index, such as 2541 // when we are extracting from one VR type to another. 2542 unsigned SubRegIdx = RISCV::NoSubRegister; 2543 for (const unsigned RCID : 2544 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 2545 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 2546 VecVT = VecVT.getHalfNumVectorElementsVT(); 2547 bool IsHi = 2548 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 2549 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 2550 getSubregIndexByMVT(VecVT, IsHi)); 2551 if (IsHi) 2552 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 2553 } 2554 return {SubRegIdx, InsertExtractIdx}; 2555 } 2556 2557 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 2558 // stores for those types. 2559 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 2560 return !Subtarget.useRVVForFixedLengthVectors() || 2561 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 2562 } 2563 2564 bool RISCVTargetLowering::isLegalElementTypeForRVV(EVT ScalarTy) const { 2565 if (!ScalarTy.isSimple()) 2566 return false; 2567 switch (ScalarTy.getSimpleVT().SimpleTy) { 2568 case MVT::iPTR: 2569 return Subtarget.is64Bit() ? Subtarget.hasVInstructionsI64() : true; 2570 case MVT::i8: 2571 case MVT::i16: 2572 case MVT::i32: 2573 return true; 2574 case MVT::i64: 2575 return Subtarget.hasVInstructionsI64(); 2576 case MVT::f16: 2577 return Subtarget.hasVInstructionsF16(); 2578 case MVT::f32: 2579 return Subtarget.hasVInstructionsF32(); 2580 case MVT::f64: 2581 return Subtarget.hasVInstructionsF64(); 2582 default: 2583 return false; 2584 } 2585 } 2586 2587 2588 unsigned RISCVTargetLowering::combineRepeatedFPDivisors() const { 2589 return NumRepeatedDivisors; 2590 } 2591 2592 static SDValue getVLOperand(SDValue Op) { 2593 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2594 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 2595 "Unexpected opcode"); 2596 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 2597 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 2598 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 2599 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 2600 if (!II) 2601 return SDValue(); 2602 return Op.getOperand(II->VLOperand + 1 + HasChain); 2603 } 2604 2605 static bool useRVVForFixedLengthVectorVT(MVT VT, 2606 const RISCVSubtarget &Subtarget) { 2607 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 2608 if (!Subtarget.useRVVForFixedLengthVectors()) 2609 return false; 2610 2611 // We only support a set of vector types with a consistent maximum fixed size 2612 // across all supported vector element types to avoid legalization issues. 2613 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 2614 // fixed-length vector type we support is 1024 bytes. 2615 if (VT.getFixedSizeInBits() > 1024 * 8) 2616 return false; 2617 2618 unsigned MinVLen = Subtarget.getRealMinVLen(); 2619 2620 MVT EltVT = VT.getVectorElementType(); 2621 2622 // Don't use RVV for vectors we cannot scalarize if required. 2623 switch (EltVT.SimpleTy) { 2624 // i1 is supported but has different rules. 2625 default: 2626 return false; 2627 case MVT::i1: 2628 // Masks can only use a single register. 2629 if (VT.getVectorNumElements() > MinVLen) 2630 return false; 2631 MinVLen /= 8; 2632 break; 2633 case MVT::i8: 2634 case MVT::i16: 2635 case MVT::i32: 2636 break; 2637 case MVT::i64: 2638 if (!Subtarget.hasVInstructionsI64()) 2639 return false; 2640 break; 2641 case MVT::f16: 2642 if (!Subtarget.hasVInstructionsF16Minimal()) 2643 return false; 2644 break; 2645 case MVT::bf16: 2646 if (!Subtarget.hasVInstructionsBF16()) 2647 return false; 2648 break; 2649 case MVT::f32: 2650 if (!Subtarget.hasVInstructionsF32()) 2651 return false; 2652 break; 2653 case MVT::f64: 2654 if (!Subtarget.hasVInstructionsF64()) 2655 return false; 2656 break; 2657 } 2658 2659 // Reject elements larger than ELEN. 2660 if (EltVT.getSizeInBits() > Subtarget.getELen()) 2661 return false; 2662 2663 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 2664 // Don't use RVV for types that don't fit. 2665 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 2666 return false; 2667 2668 // TODO: Perhaps an artificial restriction, but worth having whilst getting 2669 // the base fixed length RVV support in place. 2670 if (!VT.isPow2VectorType()) 2671 return false; 2672 2673 return true; 2674 } 2675 2676 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 2677 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 2678 } 2679 2680 // Return the largest legal scalable vector type that matches VT's element type. 2681 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 2682 const RISCVSubtarget &Subtarget) { 2683 // This may be called before legal types are setup. 2684 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 2685 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 2686 "Expected legal fixed length vector!"); 2687 2688 unsigned MinVLen = Subtarget.getRealMinVLen(); 2689 unsigned MaxELen = Subtarget.getELen(); 2690 2691 MVT EltVT = VT.getVectorElementType(); 2692 switch (EltVT.SimpleTy) { 2693 default: 2694 llvm_unreachable("unexpected element type for RVV container"); 2695 case MVT::i1: 2696 case MVT::i8: 2697 case MVT::i16: 2698 case MVT::i32: 2699 case MVT::i64: 2700 case MVT::bf16: 2701 case MVT::f16: 2702 case MVT::f32: 2703 case MVT::f64: { 2704 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 2705 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 2706 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 2707 unsigned NumElts = 2708 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 2709 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 2710 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 2711 return MVT::getScalableVectorVT(EltVT, NumElts); 2712 } 2713 } 2714 } 2715 2716 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 2717 const RISCVSubtarget &Subtarget) { 2718 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 2719 Subtarget); 2720 } 2721 2722 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 2723 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 2724 } 2725 2726 // Grow V to consume an entire RVV register. 2727 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 2728 const RISCVSubtarget &Subtarget) { 2729 assert(VT.isScalableVector() && 2730 "Expected to convert into a scalable vector!"); 2731 assert(V.getValueType().isFixedLengthVector() && 2732 "Expected a fixed length vector operand!"); 2733 SDLoc DL(V); 2734 SDValue Zero = DAG.getVectorIdxConstant(0, DL); 2735 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 2736 } 2737 2738 // Shrink V so it's just big enough to maintain a VT's worth of data. 2739 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 2740 const RISCVSubtarget &Subtarget) { 2741 assert(VT.isFixedLengthVector() && 2742 "Expected to convert into a fixed length vector!"); 2743 assert(V.getValueType().isScalableVector() && 2744 "Expected a scalable vector operand!"); 2745 SDLoc DL(V); 2746 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 2747 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 2748 } 2749 2750 /// Return the type of the mask type suitable for masking the provided 2751 /// vector type. This is simply an i1 element type vector of the same 2752 /// (possibly scalable) length. 2753 static MVT getMaskTypeFor(MVT VecVT) { 2754 assert(VecVT.isVector()); 2755 ElementCount EC = VecVT.getVectorElementCount(); 2756 return MVT::getVectorVT(MVT::i1, EC); 2757 } 2758 2759 /// Creates an all ones mask suitable for masking a vector of type VecTy with 2760 /// vector length VL. . 2761 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, const SDLoc &DL, 2762 SelectionDAG &DAG) { 2763 MVT MaskVT = getMaskTypeFor(VecVT); 2764 return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2765 } 2766 2767 static SDValue getVLOp(uint64_t NumElts, MVT ContainerVT, const SDLoc &DL, 2768 SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { 2769 // If we know the exact VLEN, and our VL is exactly equal to VLMAX, 2770 // canonicalize the representation. InsertVSETVLI will pick the immediate 2771 // encoding later if profitable. 2772 const auto [MinVLMAX, MaxVLMAX] = 2773 RISCVTargetLowering::computeVLMAXBounds(ContainerVT, Subtarget); 2774 if (MinVLMAX == MaxVLMAX && NumElts == MinVLMAX) 2775 return DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()); 2776 2777 return DAG.getConstant(NumElts, DL, Subtarget.getXLenVT()); 2778 } 2779 2780 static std::pair<SDValue, SDValue> 2781 getDefaultScalableVLOps(MVT VecVT, const SDLoc &DL, SelectionDAG &DAG, 2782 const RISCVSubtarget &Subtarget) { 2783 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 2784 SDValue VL = DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()); 2785 SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG); 2786 return {Mask, VL}; 2787 } 2788 2789 static std::pair<SDValue, SDValue> 2790 getDefaultVLOps(uint64_t NumElts, MVT ContainerVT, const SDLoc &DL, 2791 SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { 2792 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 2793 SDValue VL = getVLOp(NumElts, ContainerVT, DL, DAG, Subtarget); 2794 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 2795 return {Mask, VL}; 2796 } 2797 2798 // Gets the two common "VL" operands: an all-ones mask and the vector length. 2799 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 2800 // the vector type that the fixed-length vector is contained in. Otherwise if 2801 // VecVT is scalable, then ContainerVT should be the same as VecVT. 2802 static std::pair<SDValue, SDValue> 2803 getDefaultVLOps(MVT VecVT, MVT ContainerVT, const SDLoc &DL, SelectionDAG &DAG, 2804 const RISCVSubtarget &Subtarget) { 2805 if (VecVT.isFixedLengthVector()) 2806 return getDefaultVLOps(VecVT.getVectorNumElements(), ContainerVT, DL, DAG, 2807 Subtarget); 2808 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 2809 return getDefaultScalableVLOps(ContainerVT, DL, DAG, Subtarget); 2810 } 2811 2812 SDValue RISCVTargetLowering::computeVLMax(MVT VecVT, const SDLoc &DL, 2813 SelectionDAG &DAG) const { 2814 assert(VecVT.isScalableVector() && "Expected scalable vector"); 2815 return DAG.getElementCount(DL, Subtarget.getXLenVT(), 2816 VecVT.getVectorElementCount()); 2817 } 2818 2819 std::pair<unsigned, unsigned> 2820 RISCVTargetLowering::computeVLMAXBounds(MVT VecVT, 2821 const RISCVSubtarget &Subtarget) { 2822 assert(VecVT.isScalableVector() && "Expected scalable vector"); 2823 2824 unsigned EltSize = VecVT.getScalarSizeInBits(); 2825 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 2826 2827 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 2828 unsigned MaxVLMAX = 2829 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 2830 2831 unsigned VectorBitsMin = Subtarget.getRealMinVLen(); 2832 unsigned MinVLMAX = 2833 RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize); 2834 2835 return std::make_pair(MinVLMAX, MaxVLMAX); 2836 } 2837 2838 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 2839 // of either is (currently) supported. This can get us into an infinite loop 2840 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 2841 // as a ..., etc. 2842 // Until either (or both) of these can reliably lower any node, reporting that 2843 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 2844 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 2845 // which is not desirable. 2846 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 2847 EVT VT, unsigned DefinedValues) const { 2848 return false; 2849 } 2850 2851 InstructionCost RISCVTargetLowering::getLMULCost(MVT VT) const { 2852 // TODO: Here assume reciprocal throughput is 1 for LMUL_1, it is 2853 // implementation-defined. 2854 if (!VT.isVector()) 2855 return InstructionCost::getInvalid(); 2856 unsigned DLenFactor = Subtarget.getDLenFactor(); 2857 unsigned Cost; 2858 if (VT.isScalableVector()) { 2859 unsigned LMul; 2860 bool Fractional; 2861 std::tie(LMul, Fractional) = 2862 RISCVVType::decodeVLMUL(RISCVTargetLowering::getLMUL(VT)); 2863 if (Fractional) 2864 Cost = LMul <= DLenFactor ? (DLenFactor / LMul) : 1; 2865 else 2866 Cost = (LMul * DLenFactor); 2867 } else { 2868 Cost = divideCeil(VT.getSizeInBits(), Subtarget.getRealMinVLen() / DLenFactor); 2869 } 2870 return Cost; 2871 } 2872 2873 2874 /// Return the cost of a vrgather.vv instruction for the type VT. vrgather.vv 2875 /// is generally quadratic in the number of vreg implied by LMUL. Note that 2876 /// operand (index and possibly mask) are handled separately. 2877 InstructionCost RISCVTargetLowering::getVRGatherVVCost(MVT VT) const { 2878 return getLMULCost(VT) * getLMULCost(VT); 2879 } 2880 2881 /// Return the cost of a vrgather.vi (or vx) instruction for the type VT. 2882 /// vrgather.vi/vx may be linear in the number of vregs implied by LMUL, 2883 /// or may track the vrgather.vv cost. It is implementation-dependent. 2884 InstructionCost RISCVTargetLowering::getVRGatherVICost(MVT VT) const { 2885 return getLMULCost(VT); 2886 } 2887 2888 /// Return the cost of a vslidedown.vx or vslideup.vx instruction 2889 /// for the type VT. (This does not cover the vslide1up or vslide1down 2890 /// variants.) Slides may be linear in the number of vregs implied by LMUL, 2891 /// or may track the vrgather.vv cost. It is implementation-dependent. 2892 InstructionCost RISCVTargetLowering::getVSlideVXCost(MVT VT) const { 2893 return getLMULCost(VT); 2894 } 2895 2896 /// Return the cost of a vslidedown.vi or vslideup.vi instruction 2897 /// for the type VT. (This does not cover the vslide1up or vslide1down 2898 /// variants.) Slides may be linear in the number of vregs implied by LMUL, 2899 /// or may track the vrgather.vv cost. It is implementation-dependent. 2900 InstructionCost RISCVTargetLowering::getVSlideVICost(MVT VT) const { 2901 return getLMULCost(VT); 2902 } 2903 2904 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 2905 const RISCVSubtarget &Subtarget) { 2906 // RISC-V FP-to-int conversions saturate to the destination register size, but 2907 // don't produce 0 for nan. We can use a conversion instruction and fix the 2908 // nan case with a compare and a select. 2909 SDValue Src = Op.getOperand(0); 2910 2911 MVT DstVT = Op.getSimpleValueType(); 2912 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2913 2914 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 2915 2916 if (!DstVT.isVector()) { 2917 // For bf16 or for f16 in absense of Zfh, promote to f32, then saturate 2918 // the result. 2919 if ((Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfhOrZhinx()) || 2920 Src.getValueType() == MVT::bf16) { 2921 Src = DAG.getNode(ISD::FP_EXTEND, SDLoc(Op), MVT::f32, Src); 2922 } 2923 2924 unsigned Opc; 2925 if (SatVT == DstVT) 2926 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 2927 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 2928 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 2929 else 2930 return SDValue(); 2931 // FIXME: Support other SatVTs by clamping before or after the conversion. 2932 2933 SDLoc DL(Op); 2934 SDValue FpToInt = DAG.getNode( 2935 Opc, DL, DstVT, Src, 2936 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 2937 2938 if (Opc == RISCVISD::FCVT_WU_RV64) 2939 FpToInt = DAG.getZeroExtendInReg(FpToInt, DL, MVT::i32); 2940 2941 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 2942 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, 2943 ISD::CondCode::SETUO); 2944 } 2945 2946 // Vectors. 2947 2948 MVT DstEltVT = DstVT.getVectorElementType(); 2949 MVT SrcVT = Src.getSimpleValueType(); 2950 MVT SrcEltVT = SrcVT.getVectorElementType(); 2951 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2952 unsigned DstEltSize = DstEltVT.getSizeInBits(); 2953 2954 // Only handle saturating to the destination type. 2955 if (SatVT != DstEltVT) 2956 return SDValue(); 2957 2958 // FIXME: Don't support narrowing by more than 1 steps for now. 2959 if (SrcEltSize > (2 * DstEltSize)) 2960 return SDValue(); 2961 2962 MVT DstContainerVT = DstVT; 2963 MVT SrcContainerVT = SrcVT; 2964 if (DstVT.isFixedLengthVector()) { 2965 DstContainerVT = getContainerForFixedLengthVector(DAG, DstVT, Subtarget); 2966 SrcContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget); 2967 assert(DstContainerVT.getVectorElementCount() == 2968 SrcContainerVT.getVectorElementCount() && 2969 "Expected same element count"); 2970 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2971 } 2972 2973 SDLoc DL(Op); 2974 2975 auto [Mask, VL] = getDefaultVLOps(DstVT, DstContainerVT, DL, DAG, Subtarget); 2976 2977 SDValue IsNan = DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(), 2978 {Src, Src, DAG.getCondCode(ISD::SETNE), 2979 DAG.getUNDEF(Mask.getValueType()), Mask, VL}); 2980 2981 // Need to widen by more than 1 step, promote the FP type, then do a widening 2982 // convert. 2983 if (DstEltSize > (2 * SrcEltSize)) { 2984 assert(SrcContainerVT.getVectorElementType() == MVT::f16 && "Unexpected VT!"); 2985 MVT InterVT = SrcContainerVT.changeVectorElementType(MVT::f32); 2986 Src = DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterVT, Src, Mask, VL); 2987 } 2988 2989 unsigned RVVOpc = 2990 IsSigned ? RISCVISD::VFCVT_RTZ_X_F_VL : RISCVISD::VFCVT_RTZ_XU_F_VL; 2991 SDValue Res = DAG.getNode(RVVOpc, DL, DstContainerVT, Src, Mask, VL); 2992 2993 SDValue SplatZero = DAG.getNode( 2994 RISCVISD::VMV_V_X_VL, DL, DstContainerVT, DAG.getUNDEF(DstContainerVT), 2995 DAG.getConstant(0, DL, Subtarget.getXLenVT()), VL); 2996 Res = DAG.getNode(RISCVISD::VMERGE_VL, DL, DstContainerVT, IsNan, SplatZero, 2997 Res, DAG.getUNDEF(DstContainerVT), VL); 2998 2999 if (DstVT.isFixedLengthVector()) 3000 Res = convertFromScalableVector(DstVT, Res, DAG, Subtarget); 3001 3002 return Res; 3003 } 3004 3005 static RISCVFPRndMode::RoundingMode matchRoundingOp(unsigned Opc) { 3006 switch (Opc) { 3007 case ISD::FROUNDEVEN: 3008 case ISD::STRICT_FROUNDEVEN: 3009 case ISD::VP_FROUNDEVEN: 3010 return RISCVFPRndMode::RNE; 3011 case ISD::FTRUNC: 3012 case ISD::STRICT_FTRUNC: 3013 case ISD::VP_FROUNDTOZERO: 3014 return RISCVFPRndMode::RTZ; 3015 case ISD::FFLOOR: 3016 case ISD::STRICT_FFLOOR: 3017 case ISD::VP_FFLOOR: 3018 return RISCVFPRndMode::RDN; 3019 case ISD::FCEIL: 3020 case ISD::STRICT_FCEIL: 3021 case ISD::VP_FCEIL: 3022 return RISCVFPRndMode::RUP; 3023 case ISD::FROUND: 3024 case ISD::STRICT_FROUND: 3025 case ISD::VP_FROUND: 3026 return RISCVFPRndMode::RMM; 3027 case ISD::FRINT: 3028 return RISCVFPRndMode::DYN; 3029 } 3030 3031 return RISCVFPRndMode::Invalid; 3032 } 3033 3034 // Expand vector FTRUNC, FCEIL, FFLOOR, FROUND, VP_FCEIL, VP_FFLOOR, VP_FROUND 3035 // VP_FROUNDEVEN, VP_FROUNDTOZERO, VP_FRINT and VP_FNEARBYINT by converting to 3036 // the integer domain and back. Taking care to avoid converting values that are 3037 // nan or already correct. 3038 static SDValue 3039 lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG, 3040 const RISCVSubtarget &Subtarget) { 3041 MVT VT = Op.getSimpleValueType(); 3042 assert(VT.isVector() && "Unexpected type"); 3043 3044 SDLoc DL(Op); 3045 3046 SDValue Src = Op.getOperand(0); 3047 3048 MVT ContainerVT = VT; 3049 if (VT.isFixedLengthVector()) { 3050 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 3051 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3052 } 3053 3054 SDValue Mask, VL; 3055 if (Op->isVPOpcode()) { 3056 Mask = Op.getOperand(1); 3057 if (VT.isFixedLengthVector()) 3058 Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG, 3059 Subtarget); 3060 VL = Op.getOperand(2); 3061 } else { 3062 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3063 } 3064 3065 // Freeze the source since we are increasing the number of uses. 3066 Src = DAG.getFreeze(Src); 3067 3068 // We do the conversion on the absolute value and fix the sign at the end. 3069 SDValue Abs = DAG.getNode(RISCVISD::FABS_VL, DL, ContainerVT, Src, Mask, VL); 3070 3071 // Determine the largest integer that can be represented exactly. This and 3072 // values larger than it don't have any fractional bits so don't need to 3073 // be converted. 3074 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(ContainerVT); 3075 unsigned Precision = APFloat::semanticsPrecision(FltSem); 3076 APFloat MaxVal = APFloat(FltSem); 3077 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 3078 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 3079 SDValue MaxValNode = 3080 DAG.getConstantFP(MaxVal, DL, ContainerVT.getVectorElementType()); 3081 SDValue MaxValSplat = DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, ContainerVT, 3082 DAG.getUNDEF(ContainerVT), MaxValNode, VL); 3083 3084 // If abs(Src) was larger than MaxVal or nan, keep it. 3085 MVT SetccVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3086 Mask = 3087 DAG.getNode(RISCVISD::SETCC_VL, DL, SetccVT, 3088 {Abs, MaxValSplat, DAG.getCondCode(ISD::SETOLT), 3089 Mask, Mask, VL}); 3090 3091 // Truncate to integer and convert back to FP. 3092 MVT IntVT = ContainerVT.changeVectorElementTypeToInteger(); 3093 MVT XLenVT = Subtarget.getXLenVT(); 3094 SDValue Truncated; 3095 3096 switch (Op.getOpcode()) { 3097 default: 3098 llvm_unreachable("Unexpected opcode"); 3099 case ISD::FCEIL: 3100 case ISD::VP_FCEIL: 3101 case ISD::FFLOOR: 3102 case ISD::VP_FFLOOR: 3103 case ISD::FROUND: 3104 case ISD::FROUNDEVEN: 3105 case ISD::VP_FROUND: 3106 case ISD::VP_FROUNDEVEN: 3107 case ISD::VP_FROUNDTOZERO: { 3108 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode()); 3109 assert(FRM != RISCVFPRndMode::Invalid); 3110 Truncated = DAG.getNode(RISCVISD::VFCVT_RM_X_F_VL, DL, IntVT, Src, Mask, 3111 DAG.getTargetConstant(FRM, DL, XLenVT), VL); 3112 break; 3113 } 3114 case ISD::FTRUNC: 3115 Truncated = DAG.getNode(RISCVISD::VFCVT_RTZ_X_F_VL, DL, IntVT, Src, 3116 Mask, VL); 3117 break; 3118 case ISD::FRINT: 3119 case ISD::VP_FRINT: 3120 Truncated = DAG.getNode(RISCVISD::VFCVT_X_F_VL, DL, IntVT, Src, Mask, VL); 3121 break; 3122 case ISD::FNEARBYINT: 3123 case ISD::VP_FNEARBYINT: 3124 Truncated = DAG.getNode(RISCVISD::VFROUND_NOEXCEPT_VL, DL, ContainerVT, Src, 3125 Mask, VL); 3126 break; 3127 } 3128 3129 // VFROUND_NOEXCEPT_VL includes SINT_TO_FP_VL. 3130 if (Truncated.getOpcode() != RISCVISD::VFROUND_NOEXCEPT_VL) 3131 Truncated = DAG.getNode(RISCVISD::SINT_TO_FP_VL, DL, ContainerVT, Truncated, 3132 Mask, VL); 3133 3134 // Restore the original sign so that -0.0 is preserved. 3135 Truncated = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Truncated, 3136 Src, Src, Mask, VL); 3137 3138 if (!VT.isFixedLengthVector()) 3139 return Truncated; 3140 3141 return convertFromScalableVector(VT, Truncated, DAG, Subtarget); 3142 } 3143 3144 // Expand vector STRICT_FTRUNC, STRICT_FCEIL, STRICT_FFLOOR, STRICT_FROUND 3145 // STRICT_FROUNDEVEN and STRICT_FNEARBYINT by converting sNan of the source to 3146 // qNan and coverting the new source to integer and back to FP. 3147 static SDValue 3148 lowerVectorStrictFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG, 3149 const RISCVSubtarget &Subtarget) { 3150 SDLoc DL(Op); 3151 MVT VT = Op.getSimpleValueType(); 3152 SDValue Chain = Op.getOperand(0); 3153 SDValue Src = Op.getOperand(1); 3154 3155 MVT ContainerVT = VT; 3156 if (VT.isFixedLengthVector()) { 3157 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 3158 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3159 } 3160 3161 auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3162 3163 // Freeze the source since we are increasing the number of uses. 3164 Src = DAG.getFreeze(Src); 3165 3166 // Covert sNan to qNan by executing x + x for all unordered elemenet x in Src. 3167 MVT MaskVT = Mask.getSimpleValueType(); 3168 SDValue Unorder = DAG.getNode(RISCVISD::STRICT_FSETCC_VL, DL, 3169 DAG.getVTList(MaskVT, MVT::Other), 3170 {Chain, Src, Src, DAG.getCondCode(ISD::SETUNE), 3171 DAG.getUNDEF(MaskVT), Mask, VL}); 3172 Chain = Unorder.getValue(1); 3173 Src = DAG.getNode(RISCVISD::STRICT_FADD_VL, DL, 3174 DAG.getVTList(ContainerVT, MVT::Other), 3175 {Chain, Src, Src, Src, Unorder, VL}); 3176 Chain = Src.getValue(1); 3177 3178 // We do the conversion on the absolute value and fix the sign at the end. 3179 SDValue Abs = DAG.getNode(RISCVISD::FABS_VL, DL, ContainerVT, Src, Mask, VL); 3180 3181 // Determine the largest integer that can be represented exactly. This and 3182 // values larger than it don't have any fractional bits so don't need to 3183 // be converted. 3184 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(ContainerVT); 3185 unsigned Precision = APFloat::semanticsPrecision(FltSem); 3186 APFloat MaxVal = APFloat(FltSem); 3187 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 3188 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 3189 SDValue MaxValNode = 3190 DAG.getConstantFP(MaxVal, DL, ContainerVT.getVectorElementType()); 3191 SDValue MaxValSplat = DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, ContainerVT, 3192 DAG.getUNDEF(ContainerVT), MaxValNode, VL); 3193 3194 // If abs(Src) was larger than MaxVal or nan, keep it. 3195 Mask = DAG.getNode( 3196 RISCVISD::SETCC_VL, DL, MaskVT, 3197 {Abs, MaxValSplat, DAG.getCondCode(ISD::SETOLT), Mask, Mask, VL}); 3198 3199 // Truncate to integer and convert back to FP. 3200 MVT IntVT = ContainerVT.changeVectorElementTypeToInteger(); 3201 MVT XLenVT = Subtarget.getXLenVT(); 3202 SDValue Truncated; 3203 3204 switch (Op.getOpcode()) { 3205 default: 3206 llvm_unreachable("Unexpected opcode"); 3207 case ISD::STRICT_FCEIL: 3208 case ISD::STRICT_FFLOOR: 3209 case ISD::STRICT_FROUND: 3210 case ISD::STRICT_FROUNDEVEN: { 3211 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode()); 3212 assert(FRM != RISCVFPRndMode::Invalid); 3213 Truncated = DAG.getNode( 3214 RISCVISD::STRICT_VFCVT_RM_X_F_VL, DL, DAG.getVTList(IntVT, MVT::Other), 3215 {Chain, Src, Mask, DAG.getTargetConstant(FRM, DL, XLenVT), VL}); 3216 break; 3217 } 3218 case ISD::STRICT_FTRUNC: 3219 Truncated = 3220 DAG.getNode(RISCVISD::STRICT_VFCVT_RTZ_X_F_VL, DL, 3221 DAG.getVTList(IntVT, MVT::Other), Chain, Src, Mask, VL); 3222 break; 3223 case ISD::STRICT_FNEARBYINT: 3224 Truncated = DAG.getNode(RISCVISD::STRICT_VFROUND_NOEXCEPT_VL, DL, 3225 DAG.getVTList(ContainerVT, MVT::Other), Chain, Src, 3226 Mask, VL); 3227 break; 3228 } 3229 Chain = Truncated.getValue(1); 3230 3231 // VFROUND_NOEXCEPT_VL includes SINT_TO_FP_VL. 3232 if (Op.getOpcode() != ISD::STRICT_FNEARBYINT) { 3233 Truncated = DAG.getNode(RISCVISD::STRICT_SINT_TO_FP_VL, DL, 3234 DAG.getVTList(ContainerVT, MVT::Other), Chain, 3235 Truncated, Mask, VL); 3236 Chain = Truncated.getValue(1); 3237 } 3238 3239 // Restore the original sign so that -0.0 is preserved. 3240 Truncated = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Truncated, 3241 Src, Src, Mask, VL); 3242 3243 if (VT.isFixedLengthVector()) 3244 Truncated = convertFromScalableVector(VT, Truncated, DAG, Subtarget); 3245 return DAG.getMergeValues({Truncated, Chain}, DL); 3246 } 3247 3248 static SDValue 3249 lowerFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG, 3250 const RISCVSubtarget &Subtarget) { 3251 MVT VT = Op.getSimpleValueType(); 3252 if (VT.isVector()) 3253 return lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget); 3254 3255 if (DAG.shouldOptForSize()) 3256 return SDValue(); 3257 3258 SDLoc DL(Op); 3259 SDValue Src = Op.getOperand(0); 3260 3261 // Create an integer the size of the mantissa with the MSB set. This and all 3262 // values larger than it don't have any fractional bits so don't need to be 3263 // converted. 3264 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 3265 unsigned Precision = APFloat::semanticsPrecision(FltSem); 3266 APFloat MaxVal = APFloat(FltSem); 3267 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 3268 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 3269 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 3270 3271 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode()); 3272 return DAG.getNode(RISCVISD::FROUND, DL, VT, Src, MaxValNode, 3273 DAG.getTargetConstant(FRM, DL, Subtarget.getXLenVT())); 3274 } 3275 3276 // Expand vector LRINT and LLRINT by converting to the integer domain. 3277 static SDValue lowerVectorXRINT(SDValue Op, SelectionDAG &DAG, 3278 const RISCVSubtarget &Subtarget) { 3279 MVT VT = Op.getSimpleValueType(); 3280 assert(VT.isVector() && "Unexpected type"); 3281 3282 SDLoc DL(Op); 3283 SDValue Src = Op.getOperand(0); 3284 MVT ContainerVT = VT; 3285 3286 if (VT.isFixedLengthVector()) { 3287 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 3288 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3289 } 3290 3291 auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3292 SDValue Truncated = 3293 DAG.getNode(RISCVISD::VFCVT_X_F_VL, DL, ContainerVT, Src, Mask, VL); 3294 3295 if (!VT.isFixedLengthVector()) 3296 return Truncated; 3297 3298 return convertFromScalableVector(VT, Truncated, DAG, Subtarget); 3299 } 3300 3301 static SDValue 3302 getVSlidedown(SelectionDAG &DAG, const RISCVSubtarget &Subtarget, 3303 const SDLoc &DL, EVT VT, SDValue Merge, SDValue Op, 3304 SDValue Offset, SDValue Mask, SDValue VL, 3305 unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED) { 3306 if (Merge.isUndef()) 3307 Policy = RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC; 3308 SDValue PolicyOp = DAG.getTargetConstant(Policy, DL, Subtarget.getXLenVT()); 3309 SDValue Ops[] = {Merge, Op, Offset, Mask, VL, PolicyOp}; 3310 return DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VT, Ops); 3311 } 3312 3313 static SDValue 3314 getVSlideup(SelectionDAG &DAG, const RISCVSubtarget &Subtarget, const SDLoc &DL, 3315 EVT VT, SDValue Merge, SDValue Op, SDValue Offset, SDValue Mask, 3316 SDValue VL, 3317 unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED) { 3318 if (Merge.isUndef()) 3319 Policy = RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC; 3320 SDValue PolicyOp = DAG.getTargetConstant(Policy, DL, Subtarget.getXLenVT()); 3321 SDValue Ops[] = {Merge, Op, Offset, Mask, VL, PolicyOp}; 3322 return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VT, Ops); 3323 } 3324 3325 static MVT getLMUL1VT(MVT VT) { 3326 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 3327 "Unexpected vector MVT"); 3328 return MVT::getScalableVectorVT( 3329 VT.getVectorElementType(), 3330 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 3331 } 3332 3333 struct VIDSequence { 3334 int64_t StepNumerator; 3335 unsigned StepDenominator; 3336 int64_t Addend; 3337 }; 3338 3339 static std::optional<uint64_t> getExactInteger(const APFloat &APF, 3340 uint32_t BitWidth) { 3341 // We will use a SINT_TO_FP to materialize this constant so we should use a 3342 // signed APSInt here. 3343 APSInt ValInt(BitWidth, /*IsUnsigned*/ false); 3344 // We use an arbitrary rounding mode here. If a floating-point is an exact 3345 // integer (e.g., 1.0), the rounding mode does not affect the output value. If 3346 // the rounding mode changes the output value, then it is not an exact 3347 // integer. 3348 RoundingMode ArbitraryRM = RoundingMode::TowardZero; 3349 bool IsExact; 3350 // If it is out of signed integer range, it will return an invalid operation. 3351 // If it is not an exact integer, IsExact is false. 3352 if ((APF.convertToInteger(ValInt, ArbitraryRM, &IsExact) == 3353 APFloatBase::opInvalidOp) || 3354 !IsExact) 3355 return std::nullopt; 3356 return ValInt.extractBitsAsZExtValue(BitWidth, 0); 3357 } 3358 3359 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 3360 // to the (non-zero) step S and start value X. This can be then lowered as the 3361 // RVV sequence (VID * S) + X, for example. 3362 // The step S is represented as an integer numerator divided by a positive 3363 // denominator. Note that the implementation currently only identifies 3364 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 3365 // cannot detect 2/3, for example. 3366 // Note that this method will also match potentially unappealing index 3367 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 3368 // determine whether this is worth generating code for. 3369 static std::optional<VIDSequence> isSimpleVIDSequence(SDValue Op, 3370 unsigned EltSizeInBits) { 3371 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 3372 if (!cast<BuildVectorSDNode>(Op)->isConstant()) 3373 return std::nullopt; 3374 bool IsInteger = Op.getValueType().isInteger(); 3375 3376 std::optional<unsigned> SeqStepDenom; 3377 std::optional<int64_t> SeqStepNum, SeqAddend; 3378 std::optional<std::pair<uint64_t, unsigned>> PrevElt; 3379 assert(EltSizeInBits >= Op.getValueType().getScalarSizeInBits()); 3380 3381 // First extract the ops into a list of constant integer values. This may not 3382 // be possible for floats if they're not all representable as integers. 3383 SmallVector<std::optional<uint64_t>> Elts(Op.getNumOperands()); 3384 const unsigned OpSize = Op.getScalarValueSizeInBits(); 3385 for (auto [Idx, Elt] : enumerate(Op->op_values())) { 3386 if (Elt.isUndef()) { 3387 Elts[Idx] = std::nullopt; 3388 continue; 3389 } 3390 if (IsInteger) { 3391 Elts[Idx] = Elt->getAsZExtVal() & maskTrailingOnes<uint64_t>(OpSize); 3392 } else { 3393 auto ExactInteger = 3394 getExactInteger(cast<ConstantFPSDNode>(Elt)->getValueAPF(), OpSize); 3395 if (!ExactInteger) 3396 return std::nullopt; 3397 Elts[Idx] = *ExactInteger; 3398 } 3399 } 3400 3401 for (auto [Idx, Elt] : enumerate(Elts)) { 3402 // Assume undef elements match the sequence; we just have to be careful 3403 // when interpolating across them. 3404 if (!Elt) 3405 continue; 3406 3407 if (PrevElt) { 3408 // Calculate the step since the last non-undef element, and ensure 3409 // it's consistent across the entire sequence. 3410 unsigned IdxDiff = Idx - PrevElt->second; 3411 int64_t ValDiff = SignExtend64(*Elt - PrevElt->first, EltSizeInBits); 3412 3413 // A zero-value value difference means that we're somewhere in the middle 3414 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 3415 // step change before evaluating the sequence. 3416 if (ValDiff == 0) 3417 continue; 3418 3419 int64_t Remainder = ValDiff % IdxDiff; 3420 // Normalize the step if it's greater than 1. 3421 if (Remainder != ValDiff) { 3422 // The difference must cleanly divide the element span. 3423 if (Remainder != 0) 3424 return std::nullopt; 3425 ValDiff /= IdxDiff; 3426 IdxDiff = 1; 3427 } 3428 3429 if (!SeqStepNum) 3430 SeqStepNum = ValDiff; 3431 else if (ValDiff != SeqStepNum) 3432 return std::nullopt; 3433 3434 if (!SeqStepDenom) 3435 SeqStepDenom = IdxDiff; 3436 else if (IdxDiff != *SeqStepDenom) 3437 return std::nullopt; 3438 } 3439 3440 // Record this non-undef element for later. 3441 if (!PrevElt || PrevElt->first != *Elt) 3442 PrevElt = std::make_pair(*Elt, Idx); 3443 } 3444 3445 // We need to have logged a step for this to count as a legal index sequence. 3446 if (!SeqStepNum || !SeqStepDenom) 3447 return std::nullopt; 3448 3449 // Loop back through the sequence and validate elements we might have skipped 3450 // while waiting for a valid step. While doing this, log any sequence addend. 3451 for (auto [Idx, Elt] : enumerate(Elts)) { 3452 if (!Elt) 3453 continue; 3454 uint64_t ExpectedVal = 3455 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 3456 int64_t Addend = SignExtend64(*Elt - ExpectedVal, EltSizeInBits); 3457 if (!SeqAddend) 3458 SeqAddend = Addend; 3459 else if (Addend != SeqAddend) 3460 return std::nullopt; 3461 } 3462 3463 assert(SeqAddend && "Must have an addend if we have a step"); 3464 3465 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 3466 } 3467 3468 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT 3469 // and lower it as a VRGATHER_VX_VL from the source vector. 3470 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, 3471 SelectionDAG &DAG, 3472 const RISCVSubtarget &Subtarget) { 3473 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 3474 return SDValue(); 3475 SDValue Vec = SplatVal.getOperand(0); 3476 // Only perform this optimization on vectors of the same size for simplicity. 3477 // Don't perform this optimization for i1 vectors. 3478 // FIXME: Support i1 vectors, maybe by promoting to i8? 3479 if (Vec.getValueType() != VT || VT.getVectorElementType() == MVT::i1) 3480 return SDValue(); 3481 SDValue Idx = SplatVal.getOperand(1); 3482 // The index must be a legal type. 3483 if (Idx.getValueType() != Subtarget.getXLenVT()) 3484 return SDValue(); 3485 3486 MVT ContainerVT = VT; 3487 if (VT.isFixedLengthVector()) { 3488 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 3489 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3490 } 3491 3492 auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3493 3494 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, 3495 Idx, DAG.getUNDEF(ContainerVT), Mask, VL); 3496 3497 if (!VT.isFixedLengthVector()) 3498 return Gather; 3499 3500 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 3501 } 3502 3503 3504 /// Try and optimize BUILD_VECTORs with "dominant values" - these are values 3505 /// which constitute a large proportion of the elements. In such cases we can 3506 /// splat a vector with the dominant element and make up the shortfall with 3507 /// INSERT_VECTOR_ELTs. Returns SDValue if not profitable. 3508 /// Note that this includes vectors of 2 elements by association. The 3509 /// upper-most element is the "dominant" one, allowing us to use a splat to 3510 /// "insert" the upper element, and an insert of the lower element at position 3511 /// 0, which improves codegen. 3512 static SDValue lowerBuildVectorViaDominantValues(SDValue Op, SelectionDAG &DAG, 3513 const RISCVSubtarget &Subtarget) { 3514 MVT VT = Op.getSimpleValueType(); 3515 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 3516 3517 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 3518 3519 SDLoc DL(Op); 3520 auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3521 3522 MVT XLenVT = Subtarget.getXLenVT(); 3523 unsigned NumElts = Op.getNumOperands(); 3524 3525 SDValue DominantValue; 3526 unsigned MostCommonCount = 0; 3527 DenseMap<SDValue, unsigned> ValueCounts; 3528 unsigned NumUndefElts = 3529 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 3530 3531 // Track the number of scalar loads we know we'd be inserting, estimated as 3532 // any non-zero floating-point constant. Other kinds of element are either 3533 // already in registers or are materialized on demand. The threshold at which 3534 // a vector load is more desirable than several scalar materializion and 3535 // vector-insertion instructions is not known. 3536 unsigned NumScalarLoads = 0; 3537 3538 for (SDValue V : Op->op_values()) { 3539 if (V.isUndef()) 3540 continue; 3541 3542 ValueCounts.insert(std::make_pair(V, 0)); 3543 unsigned &Count = ValueCounts[V]; 3544 if (0 == Count) 3545 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 3546 NumScalarLoads += !CFP->isExactlyValue(+0.0); 3547 3548 // Is this value dominant? In case of a tie, prefer the highest element as 3549 // it's cheaper to insert near the beginning of a vector than it is at the 3550 // end. 3551 if (++Count >= MostCommonCount) { 3552 DominantValue = V; 3553 MostCommonCount = Count; 3554 } 3555 } 3556 3557 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 3558 unsigned NumDefElts = NumElts - NumUndefElts; 3559 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 3560 3561 // Don't perform this optimization when optimizing for size, since 3562 // materializing elements and inserting them tends to cause code bloat. 3563 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 3564 (NumElts != 2 || ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) && 3565 ((MostCommonCount > DominantValueCountThreshold) || 3566 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 3567 // Start by splatting the most common element. 3568 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 3569 3570 DenseSet<SDValue> Processed{DominantValue}; 3571 3572 // We can handle an insert into the last element (of a splat) via 3573 // v(f)slide1down. This is slightly better than the vslideup insert 3574 // lowering as it avoids the need for a vector group temporary. It 3575 // is also better than using vmerge.vx as it avoids the need to 3576 // materialize the mask in a vector register. 3577 if (SDValue LastOp = Op->getOperand(Op->getNumOperands() - 1); 3578 !LastOp.isUndef() && ValueCounts[LastOp] == 1 && 3579 LastOp != DominantValue) { 3580 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3581 auto OpCode = 3582 VT.isFloatingPoint() ? RISCVISD::VFSLIDE1DOWN_VL : RISCVISD::VSLIDE1DOWN_VL; 3583 if (!VT.isFloatingPoint()) 3584 LastOp = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, LastOp); 3585 Vec = DAG.getNode(OpCode, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Vec, 3586 LastOp, Mask, VL); 3587 Vec = convertFromScalableVector(VT, Vec, DAG, Subtarget); 3588 Processed.insert(LastOp); 3589 } 3590 3591 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 3592 for (const auto &OpIdx : enumerate(Op->ops())) { 3593 const SDValue &V = OpIdx.value(); 3594 if (V.isUndef() || !Processed.insert(V).second) 3595 continue; 3596 if (ValueCounts[V] == 1) { 3597 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 3598 DAG.getVectorIdxConstant(OpIdx.index(), DL)); 3599 } else { 3600 // Blend in all instances of this value using a VSELECT, using a 3601 // mask where each bit signals whether that element is the one 3602 // we're after. 3603 SmallVector<SDValue> Ops; 3604 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 3605 return DAG.getConstant(V == V1, DL, XLenVT); 3606 }); 3607 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 3608 DAG.getBuildVector(SelMaskTy, DL, Ops), 3609 DAG.getSplatBuildVector(VT, DL, V), Vec); 3610 } 3611 } 3612 3613 return Vec; 3614 } 3615 3616 return SDValue(); 3617 } 3618 3619 static SDValue lowerBuildVectorOfConstants(SDValue Op, SelectionDAG &DAG, 3620 const RISCVSubtarget &Subtarget) { 3621 MVT VT = Op.getSimpleValueType(); 3622 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 3623 3624 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 3625 3626 SDLoc DL(Op); 3627 auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3628 3629 MVT XLenVT = Subtarget.getXLenVT(); 3630 unsigned NumElts = Op.getNumOperands(); 3631 3632 if (VT.getVectorElementType() == MVT::i1) { 3633 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 3634 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 3635 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 3636 } 3637 3638 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 3639 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 3640 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 3641 } 3642 3643 // Lower constant mask BUILD_VECTORs via an integer vector type, in 3644 // scalar integer chunks whose bit-width depends on the number of mask 3645 // bits and XLEN. 3646 // First, determine the most appropriate scalar integer type to use. This 3647 // is at most XLenVT, but may be shrunk to a smaller vector element type 3648 // according to the size of the final vector - use i8 chunks rather than 3649 // XLenVT if we're producing a v8i1. This results in more consistent 3650 // codegen across RV32 and RV64. 3651 unsigned NumViaIntegerBits = std::clamp(NumElts, 8u, Subtarget.getXLen()); 3652 NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELen()); 3653 // If we have to use more than one INSERT_VECTOR_ELT then this 3654 // optimization is likely to increase code size; avoid peforming it in 3655 // such a case. We can use a load from a constant pool in this case. 3656 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 3657 return SDValue(); 3658 // Now we can create our integer vector type. Note that it may be larger 3659 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 3660 unsigned IntegerViaVecElts = divideCeil(NumElts, NumViaIntegerBits); 3661 MVT IntegerViaVecVT = 3662 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 3663 IntegerViaVecElts); 3664 3665 uint64_t Bits = 0; 3666 unsigned BitPos = 0, IntegerEltIdx = 0; 3667 SmallVector<SDValue, 8> Elts(IntegerViaVecElts); 3668 3669 for (unsigned I = 0; I < NumElts;) { 3670 SDValue V = Op.getOperand(I); 3671 bool BitValue = !V.isUndef() && V->getAsZExtVal(); 3672 Bits |= ((uint64_t)BitValue << BitPos); 3673 ++BitPos; 3674 ++I; 3675 3676 // Once we accumulate enough bits to fill our scalar type or process the 3677 // last element, insert into our vector and clear our accumulated data. 3678 if (I % NumViaIntegerBits == 0 || I == NumElts) { 3679 if (NumViaIntegerBits <= 32) 3680 Bits = SignExtend64<32>(Bits); 3681 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 3682 Elts[IntegerEltIdx] = Elt; 3683 Bits = 0; 3684 BitPos = 0; 3685 IntegerEltIdx++; 3686 } 3687 } 3688 3689 SDValue Vec = DAG.getBuildVector(IntegerViaVecVT, DL, Elts); 3690 3691 if (NumElts < NumViaIntegerBits) { 3692 // If we're producing a smaller vector than our minimum legal integer 3693 // type, bitcast to the equivalent (known-legal) mask type, and extract 3694 // our final mask. 3695 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 3696 Vec = DAG.getBitcast(MVT::v8i1, Vec); 3697 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 3698 DAG.getConstant(0, DL, XLenVT)); 3699 } else { 3700 // Else we must have produced an integer type with the same size as the 3701 // mask type; bitcast for the final result. 3702 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 3703 Vec = DAG.getBitcast(VT, Vec); 3704 } 3705 3706 return Vec; 3707 } 3708 3709 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 3710 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 3711 : RISCVISD::VMV_V_X_VL; 3712 if (!VT.isFloatingPoint()) 3713 Splat = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Splat); 3714 Splat = 3715 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); 3716 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 3717 } 3718 3719 // Try and match index sequences, which we can lower to the vid instruction 3720 // with optional modifications. An all-undef vector is matched by 3721 // getSplatValue, above. 3722 if (auto SimpleVID = isSimpleVIDSequence(Op, Op.getScalarValueSizeInBits())) { 3723 int64_t StepNumerator = SimpleVID->StepNumerator; 3724 unsigned StepDenominator = SimpleVID->StepDenominator; 3725 int64_t Addend = SimpleVID->Addend; 3726 3727 assert(StepNumerator != 0 && "Invalid step"); 3728 bool Negate = false; 3729 int64_t SplatStepVal = StepNumerator; 3730 unsigned StepOpcode = ISD::MUL; 3731 // Exclude INT64_MIN to avoid passing it to std::abs. We won't optimize it 3732 // anyway as the shift of 63 won't fit in uimm5. 3733 if (StepNumerator != 1 && StepNumerator != INT64_MIN && 3734 isPowerOf2_64(std::abs(StepNumerator))) { 3735 Negate = StepNumerator < 0; 3736 StepOpcode = ISD::SHL; 3737 SplatStepVal = Log2_64(std::abs(StepNumerator)); 3738 } 3739 3740 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 3741 // threshold since it's the immediate value many RVV instructions accept. 3742 // There is no vmul.vi instruction so ensure multiply constant can fit in 3743 // a single addi instruction. 3744 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 3745 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 3746 isPowerOf2_32(StepDenominator) && 3747 (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) { 3748 MVT VIDVT = 3749 VT.isFloatingPoint() ? VT.changeVectorElementTypeToInteger() : VT; 3750 MVT VIDContainerVT = 3751 getContainerForFixedLengthVector(DAG, VIDVT, Subtarget); 3752 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VIDContainerVT, Mask, VL); 3753 // Convert right out of the scalable type so we can use standard ISD 3754 // nodes for the rest of the computation. If we used scalable types with 3755 // these, we'd lose the fixed-length vector info and generate worse 3756 // vsetvli code. 3757 VID = convertFromScalableVector(VIDVT, VID, DAG, Subtarget); 3758 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 3759 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 3760 SDValue SplatStep = DAG.getConstant(SplatStepVal, DL, VIDVT); 3761 VID = DAG.getNode(StepOpcode, DL, VIDVT, VID, SplatStep); 3762 } 3763 if (StepDenominator != 1) { 3764 SDValue SplatStep = 3765 DAG.getConstant(Log2_64(StepDenominator), DL, VIDVT); 3766 VID = DAG.getNode(ISD::SRL, DL, VIDVT, VID, SplatStep); 3767 } 3768 if (Addend != 0 || Negate) { 3769 SDValue SplatAddend = DAG.getConstant(Addend, DL, VIDVT); 3770 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VIDVT, SplatAddend, 3771 VID); 3772 } 3773 if (VT.isFloatingPoint()) { 3774 // TODO: Use vfwcvt to reduce register pressure. 3775 VID = DAG.getNode(ISD::SINT_TO_FP, DL, VT, VID); 3776 } 3777 return VID; 3778 } 3779 } 3780 3781 // For very small build_vectors, use a single scalar insert of a constant. 3782 // TODO: Base this on constant rematerialization cost, not size. 3783 const unsigned EltBitSize = VT.getScalarSizeInBits(); 3784 if (VT.getSizeInBits() <= 32 && 3785 ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 3786 MVT ViaIntVT = MVT::getIntegerVT(VT.getSizeInBits()); 3787 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32) && 3788 "Unexpected sequence type"); 3789 // If we can use the original VL with the modified element type, this 3790 // means we only have a VTYPE toggle, not a VL toggle. TODO: Should this 3791 // be moved into InsertVSETVLI? 3792 unsigned ViaVecLen = 3793 (Subtarget.getRealMinVLen() >= VT.getSizeInBits() * NumElts) ? NumElts : 1; 3794 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, ViaVecLen); 3795 3796 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 3797 uint64_t SplatValue = 0; 3798 // Construct the amalgamated value at this larger vector type. 3799 for (const auto &OpIdx : enumerate(Op->op_values())) { 3800 const auto &SeqV = OpIdx.value(); 3801 if (!SeqV.isUndef()) 3802 SplatValue |= 3803 ((SeqV->getAsZExtVal() & EltMask) << (OpIdx.index() * EltBitSize)); 3804 } 3805 3806 // On RV64, sign-extend from 32 to 64 bits where possible in order to 3807 // achieve better constant materializion. 3808 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 3809 SplatValue = SignExtend64<32>(SplatValue); 3810 3811 SDValue Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ViaVecVT, 3812 DAG.getUNDEF(ViaVecVT), 3813 DAG.getConstant(SplatValue, DL, XLenVT), 3814 DAG.getVectorIdxConstant(0, DL)); 3815 if (ViaVecLen != 1) 3816 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 3817 MVT::getVectorVT(ViaIntVT, 1), Vec, 3818 DAG.getConstant(0, DL, XLenVT)); 3819 return DAG.getBitcast(VT, Vec); 3820 } 3821 3822 3823 // Attempt to detect "hidden" splats, which only reveal themselves as splats 3824 // when re-interpreted as a vector with a larger element type. For example, 3825 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 3826 // could be instead splat as 3827 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 3828 // TODO: This optimization could also work on non-constant splats, but it 3829 // would require bit-manipulation instructions to construct the splat value. 3830 SmallVector<SDValue> Sequence; 3831 const auto *BV = cast<BuildVectorSDNode>(Op); 3832 if (VT.isInteger() && EltBitSize < Subtarget.getELen() && 3833 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 3834 BV->getRepeatedSequence(Sequence) && 3835 (Sequence.size() * EltBitSize) <= Subtarget.getELen()) { 3836 unsigned SeqLen = Sequence.size(); 3837 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 3838 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 3839 ViaIntVT == MVT::i64) && 3840 "Unexpected sequence type"); 3841 3842 // If we can use the original VL with the modified element type, this 3843 // means we only have a VTYPE toggle, not a VL toggle. TODO: Should this 3844 // be moved into InsertVSETVLI? 3845 const unsigned RequiredVL = NumElts / SeqLen; 3846 const unsigned ViaVecLen = 3847 (Subtarget.getRealMinVLen() >= ViaIntVT.getSizeInBits() * NumElts) ? 3848 NumElts : RequiredVL; 3849 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, ViaVecLen); 3850 3851 unsigned EltIdx = 0; 3852 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 3853 uint64_t SplatValue = 0; 3854 // Construct the amalgamated value which can be splatted as this larger 3855 // vector type. 3856 for (const auto &SeqV : Sequence) { 3857 if (!SeqV.isUndef()) 3858 SplatValue |= 3859 ((SeqV->getAsZExtVal() & EltMask) << (EltIdx * EltBitSize)); 3860 EltIdx++; 3861 } 3862 3863 // On RV64, sign-extend from 32 to 64 bits where possible in order to 3864 // achieve better constant materializion. 3865 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 3866 SplatValue = SignExtend64<32>(SplatValue); 3867 3868 // Since we can't introduce illegal i64 types at this stage, we can only 3869 // perform an i64 splat on RV32 if it is its own sign-extended value. That 3870 // way we can use RVV instructions to splat. 3871 assert((ViaIntVT.bitsLE(XLenVT) || 3872 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 3873 "Unexpected bitcast sequence"); 3874 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 3875 SDValue ViaVL = 3876 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 3877 MVT ViaContainerVT = 3878 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 3879 SDValue Splat = 3880 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 3881 DAG.getUNDEF(ViaContainerVT), 3882 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 3883 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 3884 if (ViaVecLen != RequiredVL) 3885 Splat = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 3886 MVT::getVectorVT(ViaIntVT, RequiredVL), Splat, 3887 DAG.getConstant(0, DL, XLenVT)); 3888 return DAG.getBitcast(VT, Splat); 3889 } 3890 } 3891 3892 // If the number of signbits allows, see if we can lower as a <N x i8>. 3893 // Our main goal here is to reduce LMUL (and thus work) required to 3894 // build the constant, but we will also narrow if the resulting 3895 // narrow vector is known to materialize cheaply. 3896 // TODO: We really should be costing the smaller vector. There are 3897 // profitable cases this misses. 3898 if (EltBitSize > 8 && VT.isInteger() && 3899 (NumElts <= 4 || VT.getSizeInBits() > Subtarget.getRealMinVLen())) { 3900 unsigned SignBits = DAG.ComputeNumSignBits(Op); 3901 if (EltBitSize - SignBits < 8) { 3902 SDValue Source = DAG.getBuildVector(VT.changeVectorElementType(MVT::i8), 3903 DL, Op->ops()); 3904 Source = convertToScalableVector(ContainerVT.changeVectorElementType(MVT::i8), 3905 Source, DAG, Subtarget); 3906 SDValue Res = DAG.getNode(RISCVISD::VSEXT_VL, DL, ContainerVT, Source, Mask, VL); 3907 return convertFromScalableVector(VT, Res, DAG, Subtarget); 3908 } 3909 } 3910 3911 if (SDValue Res = lowerBuildVectorViaDominantValues(Op, DAG, Subtarget)) 3912 return Res; 3913 3914 // For constant vectors, use generic constant pool lowering. Otherwise, 3915 // we'd have to materialize constants in GPRs just to move them into the 3916 // vector. 3917 return SDValue(); 3918 } 3919 3920 static unsigned getPACKOpcode(unsigned DestBW, 3921 const RISCVSubtarget &Subtarget) { 3922 switch (DestBW) { 3923 default: 3924 llvm_unreachable("Unsupported pack size"); 3925 case 16: 3926 return RISCV::PACKH; 3927 case 32: 3928 return Subtarget.is64Bit() ? RISCV::PACKW : RISCV::PACK; 3929 case 64: 3930 assert(Subtarget.is64Bit()); 3931 return RISCV::PACK; 3932 } 3933 } 3934 3935 /// Double the element size of the build vector to reduce the number 3936 /// of vslide1down in the build vector chain. In the worst case, this 3937 /// trades three scalar operations for 1 vector operation. Scalar 3938 /// operations are generally lower latency, and for out-of-order cores 3939 /// we also benefit from additional parallelism. 3940 static SDValue lowerBuildVectorViaPacking(SDValue Op, SelectionDAG &DAG, 3941 const RISCVSubtarget &Subtarget) { 3942 SDLoc DL(Op); 3943 MVT VT = Op.getSimpleValueType(); 3944 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 3945 MVT ElemVT = VT.getVectorElementType(); 3946 if (!ElemVT.isInteger()) 3947 return SDValue(); 3948 3949 // TODO: Relax these architectural restrictions, possibly with costing 3950 // of the actual instructions required. 3951 if (!Subtarget.hasStdExtZbb() || !Subtarget.hasStdExtZba()) 3952 return SDValue(); 3953 3954 unsigned NumElts = VT.getVectorNumElements(); 3955 unsigned ElemSizeInBits = ElemVT.getSizeInBits(); 3956 if (ElemSizeInBits >= std::min(Subtarget.getELen(), Subtarget.getXLen()) || 3957 NumElts % 2 != 0) 3958 return SDValue(); 3959 3960 // Produce [B,A] packed into a type twice as wide. Note that all 3961 // scalars are XLenVT, possibly masked (see below). 3962 MVT XLenVT = Subtarget.getXLenVT(); 3963 SDValue Mask = DAG.getConstant( 3964 APInt::getLowBitsSet(XLenVT.getSizeInBits(), ElemSizeInBits), DL, XLenVT); 3965 auto pack = [&](SDValue A, SDValue B) { 3966 // Bias the scheduling of the inserted operations to near the 3967 // definition of the element - this tends to reduce register 3968 // pressure overall. 3969 SDLoc ElemDL(B); 3970 if (Subtarget.hasStdExtZbkb()) 3971 // Note that we're relying on the high bits of the result being 3972 // don't care. For PACKW, the result is *sign* extended. 3973 return SDValue( 3974 DAG.getMachineNode(getPACKOpcode(ElemSizeInBits * 2, Subtarget), 3975 ElemDL, XLenVT, A, B), 3976 0); 3977 3978 A = DAG.getNode(ISD::AND, SDLoc(A), XLenVT, A, Mask); 3979 B = DAG.getNode(ISD::AND, SDLoc(B), XLenVT, B, Mask); 3980 SDValue ShtAmt = DAG.getConstant(ElemSizeInBits, ElemDL, XLenVT); 3981 SDNodeFlags Flags; 3982 Flags.setDisjoint(true); 3983 return DAG.getNode(ISD::OR, ElemDL, XLenVT, A, 3984 DAG.getNode(ISD::SHL, ElemDL, XLenVT, B, ShtAmt), Flags); 3985 }; 3986 3987 SmallVector<SDValue> NewOperands; 3988 NewOperands.reserve(NumElts / 2); 3989 for (unsigned i = 0; i < VT.getVectorNumElements(); i += 2) 3990 NewOperands.push_back(pack(Op.getOperand(i), Op.getOperand(i + 1))); 3991 assert(NumElts == NewOperands.size() * 2); 3992 MVT WideVT = MVT::getIntegerVT(ElemSizeInBits * 2); 3993 MVT WideVecVT = MVT::getVectorVT(WideVT, NumElts / 2); 3994 return DAG.getNode(ISD::BITCAST, DL, VT, 3995 DAG.getBuildVector(WideVecVT, DL, NewOperands)); 3996 } 3997 3998 // Convert to an vXf16 build_vector to vXi16 with bitcasts. 3999 static SDValue lowerBUILD_VECTORvXf16(SDValue Op, SelectionDAG &DAG) { 4000 MVT VT = Op.getSimpleValueType(); 4001 MVT IVT = VT.changeVectorElementType(MVT::i16); 4002 SmallVector<SDValue, 16> NewOps(Op.getNumOperands()); 4003 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) 4004 NewOps[I] = DAG.getBitcast(MVT::i16, Op.getOperand(I)); 4005 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), IVT, NewOps); 4006 return DAG.getBitcast(VT, Res); 4007 } 4008 4009 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 4010 const RISCVSubtarget &Subtarget) { 4011 MVT VT = Op.getSimpleValueType(); 4012 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 4013 4014 // If we don't have scalar f16, we need to bitcast to an i16 vector. 4015 if (VT.getVectorElementType() == MVT::f16 && 4016 !Subtarget.hasStdExtZfhmin()) 4017 return lowerBUILD_VECTORvXf16(Op, DAG); 4018 4019 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 4020 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 4021 return lowerBuildVectorOfConstants(Op, DAG, Subtarget); 4022 4023 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 4024 4025 SDLoc DL(Op); 4026 auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4027 4028 MVT XLenVT = Subtarget.getXLenVT(); 4029 4030 if (VT.getVectorElementType() == MVT::i1) { 4031 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 4032 // vector type, we have a legal equivalently-sized i8 type, so we can use 4033 // that. 4034 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 4035 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 4036 4037 SDValue WideVec; 4038 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 4039 // For a splat, perform a scalar truncate before creating the wider 4040 // vector. 4041 Splat = DAG.getNode(ISD::AND, DL, Splat.getValueType(), Splat, 4042 DAG.getConstant(1, DL, Splat.getValueType())); 4043 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 4044 } else { 4045 SmallVector<SDValue, 8> Ops(Op->op_values()); 4046 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 4047 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 4048 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 4049 } 4050 4051 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 4052 } 4053 4054 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 4055 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) 4056 return Gather; 4057 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 4058 : RISCVISD::VMV_V_X_VL; 4059 if (!VT.isFloatingPoint()) 4060 Splat = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Splat); 4061 Splat = 4062 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); 4063 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 4064 } 4065 4066 if (SDValue Res = lowerBuildVectorViaDominantValues(Op, DAG, Subtarget)) 4067 return Res; 4068 4069 // If we're compiling for an exact VLEN value, we can split our work per 4070 // register in the register group. 4071 if (const auto VLen = Subtarget.getRealVLen(); 4072 VLen && VT.getSizeInBits().getKnownMinValue() > *VLen) { 4073 MVT ElemVT = VT.getVectorElementType(); 4074 unsigned ElemsPerVReg = *VLen / ElemVT.getFixedSizeInBits(); 4075 EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 4076 MVT OneRegVT = MVT::getVectorVT(ElemVT, ElemsPerVReg); 4077 MVT M1VT = getContainerForFixedLengthVector(DAG, OneRegVT, Subtarget); 4078 assert(M1VT == getLMUL1VT(M1VT)); 4079 4080 // The following semantically builds up a fixed length concat_vector 4081 // of the component build_vectors. We eagerly lower to scalable and 4082 // insert_subvector here to avoid DAG combining it back to a large 4083 // build_vector. 4084 SmallVector<SDValue> BuildVectorOps(Op->op_begin(), Op->op_end()); 4085 unsigned NumOpElts = M1VT.getVectorMinNumElements(); 4086 SDValue Vec = DAG.getUNDEF(ContainerVT); 4087 for (unsigned i = 0; i < VT.getVectorNumElements(); i += ElemsPerVReg) { 4088 auto OneVRegOfOps = ArrayRef(BuildVectorOps).slice(i, ElemsPerVReg); 4089 SDValue SubBV = 4090 DAG.getNode(ISD::BUILD_VECTOR, DL, OneRegVT, OneVRegOfOps); 4091 SubBV = convertToScalableVector(M1VT, SubBV, DAG, Subtarget); 4092 unsigned InsertIdx = (i / ElemsPerVReg) * NumOpElts; 4093 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, Vec, SubBV, 4094 DAG.getVectorIdxConstant(InsertIdx, DL)); 4095 } 4096 return convertFromScalableVector(VT, Vec, DAG, Subtarget); 4097 } 4098 4099 // If we're about to resort to vslide1down (or stack usage), pack our 4100 // elements into the widest scalar type we can. This will force a VL/VTYPE 4101 // toggle, but reduces the critical path, the number of vslide1down ops 4102 // required, and possibly enables scalar folds of the values. 4103 if (SDValue Res = lowerBuildVectorViaPacking(Op, DAG, Subtarget)) 4104 return Res; 4105 4106 // For m1 vectors, if we have non-undef values in both halves of our vector, 4107 // split the vector into low and high halves, build them separately, then 4108 // use a vselect to combine them. For long vectors, this cuts the critical 4109 // path of the vslide1down sequence in half, and gives us an opportunity 4110 // to special case each half independently. Note that we don't change the 4111 // length of the sub-vectors here, so if both fallback to the generic 4112 // vslide1down path, we should be able to fold the vselect into the final 4113 // vslidedown (for the undef tail) for the first half w/ masking. 4114 unsigned NumElts = VT.getVectorNumElements(); 4115 unsigned NumUndefElts = 4116 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 4117 unsigned NumDefElts = NumElts - NumUndefElts; 4118 if (NumDefElts >= 8 && NumDefElts > NumElts / 2 && 4119 ContainerVT.bitsLE(getLMUL1VT(ContainerVT))) { 4120 SmallVector<SDValue> SubVecAOps, SubVecBOps; 4121 SmallVector<SDValue> MaskVals; 4122 SDValue UndefElem = DAG.getUNDEF(Op->getOperand(0)->getValueType(0)); 4123 SubVecAOps.reserve(NumElts); 4124 SubVecBOps.reserve(NumElts); 4125 for (unsigned i = 0; i < NumElts; i++) { 4126 SDValue Elem = Op->getOperand(i); 4127 if (i < NumElts / 2) { 4128 SubVecAOps.push_back(Elem); 4129 SubVecBOps.push_back(UndefElem); 4130 } else { 4131 SubVecAOps.push_back(UndefElem); 4132 SubVecBOps.push_back(Elem); 4133 } 4134 bool SelectMaskVal = (i < NumElts / 2); 4135 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 4136 } 4137 assert(SubVecAOps.size() == NumElts && SubVecBOps.size() == NumElts && 4138 MaskVals.size() == NumElts); 4139 4140 SDValue SubVecA = DAG.getBuildVector(VT, DL, SubVecAOps); 4141 SDValue SubVecB = DAG.getBuildVector(VT, DL, SubVecBOps); 4142 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 4143 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 4144 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, SubVecA, SubVecB); 4145 } 4146 4147 // Cap the cost at a value linear to the number of elements in the vector. 4148 // The default lowering is to use the stack. The vector store + scalar loads 4149 // is linear in VL. However, at high lmuls vslide1down and vslidedown end up 4150 // being (at least) linear in LMUL. As a result, using the vslidedown 4151 // lowering for every element ends up being VL*LMUL.. 4152 // TODO: Should we be directly costing the stack alternative? Doing so might 4153 // give us a more accurate upper bound. 4154 InstructionCost LinearBudget = VT.getVectorNumElements() * 2; 4155 4156 // TODO: unify with TTI getSlideCost. 4157 InstructionCost PerSlideCost = 1; 4158 switch (RISCVTargetLowering::getLMUL(ContainerVT)) { 4159 default: break; 4160 case RISCVII::VLMUL::LMUL_2: 4161 PerSlideCost = 2; 4162 break; 4163 case RISCVII::VLMUL::LMUL_4: 4164 PerSlideCost = 4; 4165 break; 4166 case RISCVII::VLMUL::LMUL_8: 4167 PerSlideCost = 8; 4168 break; 4169 } 4170 4171 // TODO: Should we be using the build instseq then cost + evaluate scheme 4172 // we use for integer constants here? 4173 unsigned UndefCount = 0; 4174 for (const SDValue &V : Op->ops()) { 4175 if (V.isUndef()) { 4176 UndefCount++; 4177 continue; 4178 } 4179 if (UndefCount) { 4180 LinearBudget -= PerSlideCost; 4181 UndefCount = 0; 4182 } 4183 LinearBudget -= PerSlideCost; 4184 } 4185 if (UndefCount) { 4186 LinearBudget -= PerSlideCost; 4187 } 4188 4189 if (LinearBudget < 0) 4190 return SDValue(); 4191 4192 assert((!VT.isFloatingPoint() || 4193 VT.getVectorElementType().getSizeInBits() <= Subtarget.getFLen()) && 4194 "Illegal type which will result in reserved encoding"); 4195 4196 const unsigned Policy = RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC; 4197 4198 SDValue Vec; 4199 UndefCount = 0; 4200 for (SDValue V : Op->ops()) { 4201 if (V.isUndef()) { 4202 UndefCount++; 4203 continue; 4204 } 4205 4206 // Start our sequence with a TA splat in the hopes that hardware is able to 4207 // recognize there's no dependency on the prior value of our temporary 4208 // register. 4209 if (!Vec) { 4210 Vec = DAG.getSplatVector(VT, DL, V); 4211 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4212 UndefCount = 0; 4213 continue; 4214 } 4215 4216 if (UndefCount) { 4217 const SDValue Offset = DAG.getConstant(UndefCount, DL, Subtarget.getXLenVT()); 4218 Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 4219 Vec, Offset, Mask, VL, Policy); 4220 UndefCount = 0; 4221 } 4222 auto OpCode = 4223 VT.isFloatingPoint() ? RISCVISD::VFSLIDE1DOWN_VL : RISCVISD::VSLIDE1DOWN_VL; 4224 if (!VT.isFloatingPoint()) 4225 V = DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), V); 4226 Vec = DAG.getNode(OpCode, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Vec, 4227 V, Mask, VL); 4228 } 4229 if (UndefCount) { 4230 const SDValue Offset = DAG.getConstant(UndefCount, DL, Subtarget.getXLenVT()); 4231 Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 4232 Vec, Offset, Mask, VL, Policy); 4233 } 4234 return convertFromScalableVector(VT, Vec, DAG, Subtarget); 4235 } 4236 4237 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 4238 SDValue Lo, SDValue Hi, SDValue VL, 4239 SelectionDAG &DAG) { 4240 if (!Passthru) 4241 Passthru = DAG.getUNDEF(VT); 4242 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4243 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4244 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4245 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4246 // node in order to try and match RVV vector/scalar instructions. 4247 if ((LoC >> 31) == HiC) 4248 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); 4249 4250 // If vl is equal to VLMAX or fits in 4 bits and Hi constant is equal to Lo, 4251 // we could use vmv.v.x whose EEW = 32 to lower it. This allows us to use 4252 // vlmax vsetvli or vsetivli to change the VL. 4253 // FIXME: Support larger constants? 4254 // FIXME: Support non-constant VLs by saturating? 4255 if (LoC == HiC) { 4256 SDValue NewVL; 4257 if (isAllOnesConstant(VL) || 4258 (isa<RegisterSDNode>(VL) && 4259 cast<RegisterSDNode>(VL)->getReg() == RISCV::X0)) 4260 NewVL = DAG.getRegister(RISCV::X0, MVT::i32); 4261 else if (isa<ConstantSDNode>(VL) && isUInt<4>(VL->getAsZExtVal())) 4262 NewVL = DAG.getNode(ISD::ADD, DL, VL.getValueType(), VL, VL); 4263 4264 if (NewVL) { 4265 MVT InterVT = 4266 MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4267 auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT, 4268 DAG.getUNDEF(InterVT), Lo, NewVL); 4269 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 4270 } 4271 } 4272 } 4273 4274 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4275 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4276 isa<ConstantSDNode>(Hi.getOperand(1)) && 4277 Hi.getConstantOperandVal(1) == 31) 4278 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); 4279 4280 // If the hi bits of the splat are undefined, then it's fine to just splat Lo 4281 // even if it might be sign extended. 4282 if (Hi.isUndef()) 4283 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); 4284 4285 // Fall back to a stack store and stride x0 vector load. 4286 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo, 4287 Hi, VL); 4288 } 4289 4290 // Called by type legalization to handle splat of i64 on RV32. 4291 // FIXME: We can optimize this when the type has sign or zero bits in one 4292 // of the halves. 4293 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 4294 SDValue Scalar, SDValue VL, 4295 SelectionDAG &DAG) { 4296 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 4297 SDValue Lo, Hi; 4298 std::tie(Lo, Hi) = DAG.SplitScalar(Scalar, DL, MVT::i32, MVT::i32); 4299 return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG); 4300 } 4301 4302 // This function lowers a splat of a scalar operand Splat with the vector 4303 // length VL. It ensures the final sequence is type legal, which is useful when 4304 // lowering a splat after type legalization. 4305 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL, 4306 MVT VT, const SDLoc &DL, SelectionDAG &DAG, 4307 const RISCVSubtarget &Subtarget) { 4308 bool HasPassthru = Passthru && !Passthru.isUndef(); 4309 if (!HasPassthru && !Passthru) 4310 Passthru = DAG.getUNDEF(VT); 4311 if (VT.isFloatingPoint()) 4312 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL); 4313 4314 MVT XLenVT = Subtarget.getXLenVT(); 4315 4316 // Simplest case is that the operand needs to be promoted to XLenVT. 4317 if (Scalar.getValueType().bitsLE(XLenVT)) { 4318 // If the operand is a constant, sign extend to increase our chances 4319 // of being able to use a .vi instruction. ANY_EXTEND would become a 4320 // a zero extend and the simm5 check in isel would fail. 4321 // FIXME: Should we ignore the upper bits in isel instead? 4322 unsigned ExtOpc = 4323 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4324 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 4325 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); 4326 } 4327 4328 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 4329 "Unexpected scalar for splat lowering!"); 4330 4331 if (isOneConstant(VL) && isNullConstant(Scalar)) 4332 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, 4333 DAG.getConstant(0, DL, XLenVT), VL); 4334 4335 // Otherwise use the more complicated splatting algorithm. 4336 return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG); 4337 } 4338 4339 // This function lowers an insert of a scalar operand Scalar into lane 4340 // 0 of the vector regardless of the value of VL. The contents of the 4341 // remaining lanes of the result vector are unspecified. VL is assumed 4342 // to be non-zero. 4343 static SDValue lowerScalarInsert(SDValue Scalar, SDValue VL, MVT VT, 4344 const SDLoc &DL, SelectionDAG &DAG, 4345 const RISCVSubtarget &Subtarget) { 4346 assert(VT.isScalableVector() && "Expect VT is scalable vector type."); 4347 4348 const MVT XLenVT = Subtarget.getXLenVT(); 4349 SDValue Passthru = DAG.getUNDEF(VT); 4350 4351 if (Scalar.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4352 isNullConstant(Scalar.getOperand(1))) { 4353 SDValue ExtractedVal = Scalar.getOperand(0); 4354 // The element types must be the same. 4355 if (ExtractedVal.getValueType().getVectorElementType() == 4356 VT.getVectorElementType()) { 4357 MVT ExtractedVT = ExtractedVal.getSimpleValueType(); 4358 MVT ExtractedContainerVT = ExtractedVT; 4359 if (ExtractedContainerVT.isFixedLengthVector()) { 4360 ExtractedContainerVT = getContainerForFixedLengthVector( 4361 DAG, ExtractedContainerVT, Subtarget); 4362 ExtractedVal = convertToScalableVector(ExtractedContainerVT, 4363 ExtractedVal, DAG, Subtarget); 4364 } 4365 if (ExtractedContainerVT.bitsLE(VT)) 4366 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Passthru, 4367 ExtractedVal, DAG.getVectorIdxConstant(0, DL)); 4368 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtractedVal, 4369 DAG.getVectorIdxConstant(0, DL)); 4370 } 4371 } 4372 4373 4374 if (VT.isFloatingPoint()) 4375 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, 4376 DAG.getUNDEF(VT), Scalar, VL); 4377 4378 // Avoid the tricky legalization cases by falling back to using the 4379 // splat code which already handles it gracefully. 4380 if (!Scalar.getValueType().bitsLE(XLenVT)) 4381 return lowerScalarSplat(DAG.getUNDEF(VT), Scalar, 4382 DAG.getConstant(1, DL, XLenVT), 4383 VT, DL, DAG, Subtarget); 4384 4385 // If the operand is a constant, sign extend to increase our chances 4386 // of being able to use a .vi instruction. ANY_EXTEND would become a 4387 // a zero extend and the simm5 check in isel would fail. 4388 // FIXME: Should we ignore the upper bits in isel instead? 4389 unsigned ExtOpc = 4390 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4391 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 4392 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, 4393 DAG.getUNDEF(VT), Scalar, VL); 4394 } 4395 4396 // Is this a shuffle extracts either the even or odd elements of a vector? 4397 // That is, specifically, either (a) or (b) below. 4398 // t34: v8i8 = extract_subvector t11, Constant:i64<0> 4399 // t33: v8i8 = extract_subvector t11, Constant:i64<8> 4400 // a) t35: v8i8 = vector_shuffle<0,2,4,6,8,10,12,14> t34, t33 4401 // b) t35: v8i8 = vector_shuffle<1,3,5,7,9,11,13,15> t34, t33 4402 // Returns {Src Vector, Even Elements} om success 4403 static bool isDeinterleaveShuffle(MVT VT, MVT ContainerVT, SDValue V1, 4404 SDValue V2, ArrayRef<int> Mask, 4405 const RISCVSubtarget &Subtarget) { 4406 // Need to be able to widen the vector. 4407 if (VT.getScalarSizeInBits() >= Subtarget.getELen()) 4408 return false; 4409 4410 // Both input must be extracts. 4411 if (V1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4412 V2.getOpcode() != ISD::EXTRACT_SUBVECTOR) 4413 return false; 4414 4415 // Extracting from the same source. 4416 SDValue Src = V1.getOperand(0); 4417 if (Src != V2.getOperand(0)) 4418 return false; 4419 4420 // Src needs to have twice the number of elements. 4421 if (Src.getValueType().getVectorNumElements() != (Mask.size() * 2)) 4422 return false; 4423 4424 // The extracts must extract the two halves of the source. 4425 if (V1.getConstantOperandVal(1) != 0 || 4426 V2.getConstantOperandVal(1) != Mask.size()) 4427 return false; 4428 4429 // First index must be the first even or odd element from V1. 4430 if (Mask[0] != 0 && Mask[0] != 1) 4431 return false; 4432 4433 // The others must increase by 2 each time. 4434 // TODO: Support undef elements? 4435 for (unsigned i = 1; i != Mask.size(); ++i) 4436 if (Mask[i] != Mask[i - 1] + 2) 4437 return false; 4438 4439 return true; 4440 } 4441 4442 /// Is this shuffle interleaving contiguous elements from one vector into the 4443 /// even elements and contiguous elements from another vector into the odd 4444 /// elements. \p EvenSrc will contain the element that should be in the first 4445 /// even element. \p OddSrc will contain the element that should be in the first 4446 /// odd element. These can be the first element in a source or the element half 4447 /// way through the source. 4448 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, int &EvenSrc, 4449 int &OddSrc, const RISCVSubtarget &Subtarget) { 4450 // We need to be able to widen elements to the next larger integer type. 4451 if (VT.getScalarSizeInBits() >= Subtarget.getELen()) 4452 return false; 4453 4454 int Size = Mask.size(); 4455 int NumElts = VT.getVectorNumElements(); 4456 assert(Size == (int)NumElts && "Unexpected mask size"); 4457 4458 SmallVector<unsigned, 2> StartIndexes; 4459 if (!ShuffleVectorInst::isInterleaveMask(Mask, 2, Size * 2, StartIndexes)) 4460 return false; 4461 4462 EvenSrc = StartIndexes[0]; 4463 OddSrc = StartIndexes[1]; 4464 4465 // One source should be low half of first vector. 4466 if (EvenSrc != 0 && OddSrc != 0) 4467 return false; 4468 4469 // Subvectors will be subtracted from either at the start of the two input 4470 // vectors, or at the start and middle of the first vector if it's an unary 4471 // interleave. 4472 // In both cases, HalfNumElts will be extracted. 4473 // We need to ensure that the extract indices are 0 or HalfNumElts otherwise 4474 // we'll create an illegal extract_subvector. 4475 // FIXME: We could support other values using a slidedown first. 4476 int HalfNumElts = NumElts / 2; 4477 return ((EvenSrc % HalfNumElts) == 0) && ((OddSrc % HalfNumElts) == 0); 4478 } 4479 4480 /// Match shuffles that concatenate two vectors, rotate the concatenation, 4481 /// and then extract the original number of elements from the rotated result. 4482 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The 4483 /// returned rotation amount is for a rotate right, where elements move from 4484 /// higher elements to lower elements. \p LoSrc indicates the first source 4485 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector 4486 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be 4487 /// 0 or 1 if a rotation is found. 4488 /// 4489 /// NOTE: We talk about rotate to the right which matches how bit shift and 4490 /// rotate instructions are described where LSBs are on the right, but LLVM IR 4491 /// and the table below write vectors with the lowest elements on the left. 4492 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) { 4493 int Size = Mask.size(); 4494 4495 // We need to detect various ways of spelling a rotation: 4496 // [11, 12, 13, 14, 15, 0, 1, 2] 4497 // [-1, 12, 13, 14, -1, -1, 1, -1] 4498 // [-1, -1, -1, -1, -1, -1, 1, 2] 4499 // [ 3, 4, 5, 6, 7, 8, 9, 10] 4500 // [-1, 4, 5, 6, -1, -1, 9, -1] 4501 // [-1, 4, 5, 6, -1, -1, -1, -1] 4502 int Rotation = 0; 4503 LoSrc = -1; 4504 HiSrc = -1; 4505 for (int i = 0; i != Size; ++i) { 4506 int M = Mask[i]; 4507 if (M < 0) 4508 continue; 4509 4510 // Determine where a rotate vector would have started. 4511 int StartIdx = i - (M % Size); 4512 // The identity rotation isn't interesting, stop. 4513 if (StartIdx == 0) 4514 return -1; 4515 4516 // If we found the tail of a vector the rotation must be the missing 4517 // front. If we found the head of a vector, it must be how much of the 4518 // head. 4519 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; 4520 4521 if (Rotation == 0) 4522 Rotation = CandidateRotation; 4523 else if (Rotation != CandidateRotation) 4524 // The rotations don't match, so we can't match this mask. 4525 return -1; 4526 4527 // Compute which value this mask is pointing at. 4528 int MaskSrc = M < Size ? 0 : 1; 4529 4530 // Compute which of the two target values this index should be assigned to. 4531 // This reflects whether the high elements are remaining or the low elemnts 4532 // are remaining. 4533 int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc; 4534 4535 // Either set up this value if we've not encountered it before, or check 4536 // that it remains consistent. 4537 if (TargetSrc < 0) 4538 TargetSrc = MaskSrc; 4539 else if (TargetSrc != MaskSrc) 4540 // This may be a rotation, but it pulls from the inputs in some 4541 // unsupported interleaving. 4542 return -1; 4543 } 4544 4545 // Check that we successfully analyzed the mask, and normalize the results. 4546 assert(Rotation != 0 && "Failed to locate a viable rotation!"); 4547 assert((LoSrc >= 0 || HiSrc >= 0) && 4548 "Failed to find a rotated input vector!"); 4549 4550 return Rotation; 4551 } 4552 4553 // Lower a deinterleave shuffle to vnsrl. 4554 // [a, p, b, q, c, r, d, s] -> [a, b, c, d] (EvenElts == true) 4555 // -> [p, q, r, s] (EvenElts == false) 4556 // VT is the type of the vector to return, <[vscale x ]n x ty> 4557 // Src is the vector to deinterleave of type <[vscale x ]n*2 x ty> 4558 static SDValue getDeinterleaveViaVNSRL(const SDLoc &DL, MVT VT, SDValue Src, 4559 bool EvenElts, 4560 const RISCVSubtarget &Subtarget, 4561 SelectionDAG &DAG) { 4562 // The result is a vector of type <m x n x ty> 4563 MVT ContainerVT = VT; 4564 // Convert fixed vectors to scalable if needed 4565 if (ContainerVT.isFixedLengthVector()) { 4566 assert(Src.getSimpleValueType().isFixedLengthVector()); 4567 ContainerVT = getContainerForFixedLengthVector(DAG, ContainerVT, Subtarget); 4568 4569 // The source is a vector of type <m x n*2 x ty> 4570 MVT SrcContainerVT = 4571 MVT::getVectorVT(ContainerVT.getVectorElementType(), 4572 ContainerVT.getVectorElementCount() * 2); 4573 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 4574 } 4575 4576 auto [TrueMask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4577 4578 // Bitcast the source vector from <m x n*2 x ty> -> <m x n x ty*2> 4579 // This also converts FP to int. 4580 unsigned EltBits = ContainerVT.getScalarSizeInBits(); 4581 MVT WideSrcContainerVT = MVT::getVectorVT( 4582 MVT::getIntegerVT(EltBits * 2), ContainerVT.getVectorElementCount()); 4583 Src = DAG.getBitcast(WideSrcContainerVT, Src); 4584 4585 // The integer version of the container type. 4586 MVT IntContainerVT = ContainerVT.changeVectorElementTypeToInteger(); 4587 4588 // If we want even elements, then the shift amount is 0. Otherwise, shift by 4589 // the original element size. 4590 unsigned Shift = EvenElts ? 0 : EltBits; 4591 SDValue SplatShift = DAG.getNode( 4592 RISCVISD::VMV_V_X_VL, DL, IntContainerVT, DAG.getUNDEF(ContainerVT), 4593 DAG.getConstant(Shift, DL, Subtarget.getXLenVT()), VL); 4594 SDValue Res = 4595 DAG.getNode(RISCVISD::VNSRL_VL, DL, IntContainerVT, Src, SplatShift, 4596 DAG.getUNDEF(IntContainerVT), TrueMask, VL); 4597 // Cast back to FP if needed. 4598 Res = DAG.getBitcast(ContainerVT, Res); 4599 4600 if (VT.isFixedLengthVector()) 4601 Res = convertFromScalableVector(VT, Res, DAG, Subtarget); 4602 return Res; 4603 } 4604 4605 // Lower the following shuffle to vslidedown. 4606 // a) 4607 // t49: v8i8 = extract_subvector t13, Constant:i64<0> 4608 // t109: v8i8 = extract_subvector t13, Constant:i64<8> 4609 // t108: v8i8 = vector_shuffle<1,2,3,4,5,6,7,8> t49, t106 4610 // b) 4611 // t69: v16i16 = extract_subvector t68, Constant:i64<0> 4612 // t23: v8i16 = extract_subvector t69, Constant:i64<0> 4613 // t29: v4i16 = extract_subvector t23, Constant:i64<4> 4614 // t26: v8i16 = extract_subvector t69, Constant:i64<8> 4615 // t30: v4i16 = extract_subvector t26, Constant:i64<0> 4616 // t54: v4i16 = vector_shuffle<1,2,3,4> t29, t30 4617 static SDValue lowerVECTOR_SHUFFLEAsVSlidedown(const SDLoc &DL, MVT VT, 4618 SDValue V1, SDValue V2, 4619 ArrayRef<int> Mask, 4620 const RISCVSubtarget &Subtarget, 4621 SelectionDAG &DAG) { 4622 auto findNonEXTRACT_SUBVECTORParent = 4623 [](SDValue Parent) -> std::pair<SDValue, uint64_t> { 4624 uint64_t Offset = 0; 4625 while (Parent.getOpcode() == ISD::EXTRACT_SUBVECTOR && 4626 // EXTRACT_SUBVECTOR can be used to extract a fixed-width vector from 4627 // a scalable vector. But we don't want to match the case. 4628 Parent.getOperand(0).getSimpleValueType().isFixedLengthVector()) { 4629 Offset += Parent.getConstantOperandVal(1); 4630 Parent = Parent.getOperand(0); 4631 } 4632 return std::make_pair(Parent, Offset); 4633 }; 4634 4635 auto [V1Src, V1IndexOffset] = findNonEXTRACT_SUBVECTORParent(V1); 4636 auto [V2Src, V2IndexOffset] = findNonEXTRACT_SUBVECTORParent(V2); 4637 4638 // Extracting from the same source. 4639 SDValue Src = V1Src; 4640 if (Src != V2Src) 4641 return SDValue(); 4642 4643 // Rebuild mask because Src may be from multiple EXTRACT_SUBVECTORs. 4644 SmallVector<int, 16> NewMask(Mask); 4645 for (size_t i = 0; i != NewMask.size(); ++i) { 4646 if (NewMask[i] == -1) 4647 continue; 4648 4649 if (static_cast<size_t>(NewMask[i]) < NewMask.size()) { 4650 NewMask[i] = NewMask[i] + V1IndexOffset; 4651 } else { 4652 // Minus NewMask.size() is needed. Otherwise, the b case would be 4653 // <5,6,7,12> instead of <5,6,7,8>. 4654 NewMask[i] = NewMask[i] - NewMask.size() + V2IndexOffset; 4655 } 4656 } 4657 4658 // First index must be known and non-zero. It will be used as the slidedown 4659 // amount. 4660 if (NewMask[0] <= 0) 4661 return SDValue(); 4662 4663 // NewMask is also continuous. 4664 for (unsigned i = 1; i != NewMask.size(); ++i) 4665 if (NewMask[i - 1] + 1 != NewMask[i]) 4666 return SDValue(); 4667 4668 MVT XLenVT = Subtarget.getXLenVT(); 4669 MVT SrcVT = Src.getSimpleValueType(); 4670 MVT ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget); 4671 auto [TrueMask, VL] = getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 4672 SDValue Slidedown = 4673 getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 4674 convertToScalableVector(ContainerVT, Src, DAG, Subtarget), 4675 DAG.getConstant(NewMask[0], DL, XLenVT), TrueMask, VL); 4676 return DAG.getNode( 4677 ISD::EXTRACT_SUBVECTOR, DL, VT, 4678 convertFromScalableVector(SrcVT, Slidedown, DAG, Subtarget), 4679 DAG.getConstant(0, DL, XLenVT)); 4680 } 4681 4682 // Because vslideup leaves the destination elements at the start intact, we can 4683 // use it to perform shuffles that insert subvectors: 4684 // 4685 // vector_shuffle v8:v8i8, v9:v8i8, <0, 1, 2, 3, 8, 9, 10, 11> 4686 // -> 4687 // vsetvli zero, 8, e8, mf2, ta, ma 4688 // vslideup.vi v8, v9, 4 4689 // 4690 // vector_shuffle v8:v8i8, v9:v8i8 <0, 1, 8, 9, 10, 5, 6, 7> 4691 // -> 4692 // vsetvli zero, 5, e8, mf2, tu, ma 4693 // vslideup.v1 v8, v9, 2 4694 static SDValue lowerVECTOR_SHUFFLEAsVSlideup(const SDLoc &DL, MVT VT, 4695 SDValue V1, SDValue V2, 4696 ArrayRef<int> Mask, 4697 const RISCVSubtarget &Subtarget, 4698 SelectionDAG &DAG) { 4699 unsigned NumElts = VT.getVectorNumElements(); 4700 int NumSubElts, Index; 4701 if (!ShuffleVectorInst::isInsertSubvectorMask(Mask, NumElts, NumSubElts, 4702 Index)) 4703 return SDValue(); 4704 4705 bool OpsSwapped = Mask[Index] < (int)NumElts; 4706 SDValue InPlace = OpsSwapped ? V2 : V1; 4707 SDValue ToInsert = OpsSwapped ? V1 : V2; 4708 4709 MVT XLenVT = Subtarget.getXLenVT(); 4710 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 4711 auto TrueMask = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).first; 4712 // We slide up by the index that the subvector is being inserted at, and set 4713 // VL to the index + the number of elements being inserted. 4714 unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED | RISCVII::MASK_AGNOSTIC; 4715 // If the we're adding a suffix to the in place vector, i.e. inserting right 4716 // up to the very end of it, then we don't actually care about the tail. 4717 if (NumSubElts + Index >= (int)NumElts) 4718 Policy |= RISCVII::TAIL_AGNOSTIC; 4719 4720 InPlace = convertToScalableVector(ContainerVT, InPlace, DAG, Subtarget); 4721 ToInsert = convertToScalableVector(ContainerVT, ToInsert, DAG, Subtarget); 4722 SDValue VL = DAG.getConstant(NumSubElts + Index, DL, XLenVT); 4723 4724 SDValue Res; 4725 // If we're inserting into the lowest elements, use a tail undisturbed 4726 // vmv.v.v. 4727 if (Index == 0) 4728 Res = DAG.getNode(RISCVISD::VMV_V_V_VL, DL, ContainerVT, InPlace, ToInsert, 4729 VL); 4730 else 4731 Res = getVSlideup(DAG, Subtarget, DL, ContainerVT, InPlace, ToInsert, 4732 DAG.getConstant(Index, DL, XLenVT), TrueMask, VL, Policy); 4733 return convertFromScalableVector(VT, Res, DAG, Subtarget); 4734 } 4735 4736 /// Match v(f)slide1up/down idioms. These operations involve sliding 4737 /// N-1 elements to make room for an inserted scalar at one end. 4738 static SDValue lowerVECTOR_SHUFFLEAsVSlide1(const SDLoc &DL, MVT VT, 4739 SDValue V1, SDValue V2, 4740 ArrayRef<int> Mask, 4741 const RISCVSubtarget &Subtarget, 4742 SelectionDAG &DAG) { 4743 bool OpsSwapped = false; 4744 if (!isa<BuildVectorSDNode>(V1)) { 4745 if (!isa<BuildVectorSDNode>(V2)) 4746 return SDValue(); 4747 std::swap(V1, V2); 4748 OpsSwapped = true; 4749 } 4750 SDValue Splat = cast<BuildVectorSDNode>(V1)->getSplatValue(); 4751 if (!Splat) 4752 return SDValue(); 4753 4754 // Return true if the mask could describe a slide of Mask.size() - 1 4755 // elements from concat_vector(V1, V2)[Base:] to [Offset:]. 4756 auto isSlideMask = [](ArrayRef<int> Mask, unsigned Base, int Offset) { 4757 const unsigned S = (Offset > 0) ? 0 : -Offset; 4758 const unsigned E = Mask.size() - ((Offset > 0) ? Offset : 0); 4759 for (unsigned i = S; i != E; ++i) 4760 if (Mask[i] >= 0 && (unsigned)Mask[i] != Base + i + Offset) 4761 return false; 4762 return true; 4763 }; 4764 4765 const unsigned NumElts = VT.getVectorNumElements(); 4766 bool IsVSlidedown = isSlideMask(Mask, OpsSwapped ? 0 : NumElts, 1); 4767 if (!IsVSlidedown && !isSlideMask(Mask, OpsSwapped ? 0 : NumElts, -1)) 4768 return SDValue(); 4769 4770 const int InsertIdx = Mask[IsVSlidedown ? (NumElts - 1) : 0]; 4771 // Inserted lane must come from splat, undef scalar is legal but not profitable. 4772 if (InsertIdx < 0 || InsertIdx / NumElts != (unsigned)OpsSwapped) 4773 return SDValue(); 4774 4775 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 4776 auto [TrueMask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4777 auto OpCode = IsVSlidedown ? 4778 (VT.isFloatingPoint() ? RISCVISD::VFSLIDE1DOWN_VL : RISCVISD::VSLIDE1DOWN_VL) : 4779 (VT.isFloatingPoint() ? RISCVISD::VFSLIDE1UP_VL : RISCVISD::VSLIDE1UP_VL); 4780 if (!VT.isFloatingPoint()) 4781 Splat = DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Splat); 4782 auto Vec = DAG.getNode(OpCode, DL, ContainerVT, 4783 DAG.getUNDEF(ContainerVT), 4784 convertToScalableVector(ContainerVT, V2, DAG, Subtarget), 4785 Splat, TrueMask, VL); 4786 return convertFromScalableVector(VT, Vec, DAG, Subtarget); 4787 } 4788 4789 // Given two input vectors of <[vscale x ]n x ty>, use vwaddu.vv and vwmaccu.vx 4790 // to create an interleaved vector of <[vscale x] n*2 x ty>. 4791 // This requires that the size of ty is less than the subtarget's maximum ELEN. 4792 static SDValue getWideningInterleave(SDValue EvenV, SDValue OddV, 4793 const SDLoc &DL, SelectionDAG &DAG, 4794 const RISCVSubtarget &Subtarget) { 4795 MVT VecVT = EvenV.getSimpleValueType(); 4796 MVT VecContainerVT = VecVT; // <vscale x n x ty> 4797 // Convert fixed vectors to scalable if needed 4798 if (VecContainerVT.isFixedLengthVector()) { 4799 VecContainerVT = getContainerForFixedLengthVector(DAG, VecVT, Subtarget); 4800 EvenV = convertToScalableVector(VecContainerVT, EvenV, DAG, Subtarget); 4801 OddV = convertToScalableVector(VecContainerVT, OddV, DAG, Subtarget); 4802 } 4803 4804 assert(VecVT.getScalarSizeInBits() < Subtarget.getELen()); 4805 4806 // We're working with a vector of the same size as the resulting 4807 // interleaved vector, but with half the number of elements and 4808 // twice the SEW (Hence the restriction on not using the maximum 4809 // ELEN) 4810 MVT WideVT = 4811 MVT::getVectorVT(MVT::getIntegerVT(VecVT.getScalarSizeInBits() * 2), 4812 VecVT.getVectorElementCount()); 4813 MVT WideContainerVT = WideVT; // <vscale x n x ty*2> 4814 if (WideContainerVT.isFixedLengthVector()) 4815 WideContainerVT = getContainerForFixedLengthVector(DAG, WideVT, Subtarget); 4816 4817 // Bitcast the input vectors to integers in case they are FP 4818 VecContainerVT = VecContainerVT.changeTypeToInteger(); 4819 EvenV = DAG.getBitcast(VecContainerVT, EvenV); 4820 OddV = DAG.getBitcast(VecContainerVT, OddV); 4821 4822 auto [Mask, VL] = getDefaultVLOps(VecVT, VecContainerVT, DL, DAG, Subtarget); 4823 SDValue Passthru = DAG.getUNDEF(WideContainerVT); 4824 4825 SDValue Interleaved; 4826 if (OddV.isUndef()) { 4827 // If OddV is undef, this is a zero extend. 4828 // FIXME: Not only does this optimize the code, it fixes some correctness 4829 // issues because MIR does not have freeze. 4830 Interleaved = 4831 DAG.getNode(RISCVISD::VZEXT_VL, DL, WideContainerVT, EvenV, Mask, VL); 4832 } else if (Subtarget.hasStdExtZvbb()) { 4833 // Interleaved = (OddV << VecVT.getScalarSizeInBits()) + EvenV. 4834 SDValue OffsetVec = 4835 DAG.getConstant(VecVT.getScalarSizeInBits(), DL, VecContainerVT); 4836 Interleaved = DAG.getNode(RISCVISD::VWSLL_VL, DL, WideContainerVT, OddV, 4837 OffsetVec, Passthru, Mask, VL); 4838 if (!EvenV.isUndef()) 4839 Interleaved = DAG.getNode(RISCVISD::VWADDU_W_VL, DL, WideContainerVT, 4840 Interleaved, EvenV, Passthru, Mask, VL); 4841 } else if (EvenV.isUndef()) { 4842 Interleaved = 4843 DAG.getNode(RISCVISD::VZEXT_VL, DL, WideContainerVT, OddV, Mask, VL); 4844 4845 SDValue OffsetVec = 4846 DAG.getConstant(VecVT.getScalarSizeInBits(), DL, WideContainerVT); 4847 Interleaved = DAG.getNode(RISCVISD::SHL_VL, DL, WideContainerVT, 4848 Interleaved, OffsetVec, Passthru, Mask, VL); 4849 } else { 4850 // FIXME: We should freeze the odd vector here. We already handled the case 4851 // of provably undef/poison above. 4852 4853 // Widen EvenV and OddV with 0s and add one copy of OddV to EvenV with 4854 // vwaddu.vv 4855 Interleaved = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideContainerVT, EvenV, 4856 OddV, Passthru, Mask, VL); 4857 4858 // Then get OddV * by 2^(VecVT.getScalarSizeInBits() - 1) 4859 SDValue AllOnesVec = DAG.getSplatVector( 4860 VecContainerVT, DL, DAG.getAllOnesConstant(DL, Subtarget.getXLenVT())); 4861 SDValue OddsMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideContainerVT, 4862 OddV, AllOnesVec, Passthru, Mask, VL); 4863 4864 // Add the two together so we get 4865 // (OddV * 0xff...ff) + (OddV + EvenV) 4866 // = (OddV * 0x100...00) + EvenV 4867 // = (OddV << VecVT.getScalarSizeInBits()) + EvenV 4868 // Note the ADD_VL and VLMULU_VL should get selected as vwmaccu.vx 4869 Interleaved = DAG.getNode(RISCVISD::ADD_VL, DL, WideContainerVT, 4870 Interleaved, OddsMul, Passthru, Mask, VL); 4871 } 4872 4873 // Bitcast from <vscale x n * ty*2> to <vscale x 2*n x ty> 4874 MVT ResultContainerVT = MVT::getVectorVT( 4875 VecVT.getVectorElementType(), // Make sure to use original type 4876 VecContainerVT.getVectorElementCount().multiplyCoefficientBy(2)); 4877 Interleaved = DAG.getBitcast(ResultContainerVT, Interleaved); 4878 4879 // Convert back to a fixed vector if needed 4880 MVT ResultVT = 4881 MVT::getVectorVT(VecVT.getVectorElementType(), 4882 VecVT.getVectorElementCount().multiplyCoefficientBy(2)); 4883 if (ResultVT.isFixedLengthVector()) 4884 Interleaved = 4885 convertFromScalableVector(ResultVT, Interleaved, DAG, Subtarget); 4886 4887 return Interleaved; 4888 } 4889 4890 // If we have a vector of bits that we want to reverse, we can use a vbrev on a 4891 // larger element type, e.g. v32i1 can be reversed with a v1i32 bitreverse. 4892 static SDValue lowerBitreverseShuffle(ShuffleVectorSDNode *SVN, 4893 SelectionDAG &DAG, 4894 const RISCVSubtarget &Subtarget) { 4895 SDLoc DL(SVN); 4896 MVT VT = SVN->getSimpleValueType(0); 4897 SDValue V = SVN->getOperand(0); 4898 unsigned NumElts = VT.getVectorNumElements(); 4899 4900 assert(VT.getVectorElementType() == MVT::i1); 4901 4902 if (!ShuffleVectorInst::isReverseMask(SVN->getMask(), 4903 SVN->getMask().size()) || 4904 !SVN->getOperand(1).isUndef()) 4905 return SDValue(); 4906 4907 unsigned ViaEltSize = std::max((uint64_t)8, PowerOf2Ceil(NumElts)); 4908 EVT ViaVT = EVT::getVectorVT( 4909 *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), ViaEltSize), 1); 4910 EVT ViaBitVT = 4911 EVT::getVectorVT(*DAG.getContext(), MVT::i1, ViaVT.getScalarSizeInBits()); 4912 4913 // If we don't have zvbb or the larger element type > ELEN, the operation will 4914 // be illegal. 4915 if (!Subtarget.getTargetLowering()->isOperationLegalOrCustom(ISD::BITREVERSE, 4916 ViaVT) || 4917 !Subtarget.getTargetLowering()->isTypeLegal(ViaBitVT)) 4918 return SDValue(); 4919 4920 // If the bit vector doesn't fit exactly into the larger element type, we need 4921 // to insert it into the larger vector and then shift up the reversed bits 4922 // afterwards to get rid of the gap introduced. 4923 if (ViaEltSize > NumElts) 4924 V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ViaBitVT, DAG.getUNDEF(ViaBitVT), 4925 V, DAG.getVectorIdxConstant(0, DL)); 4926 4927 SDValue Res = 4928 DAG.getNode(ISD::BITREVERSE, DL, ViaVT, DAG.getBitcast(ViaVT, V)); 4929 4930 // Shift up the reversed bits if the vector didn't exactly fit into the larger 4931 // element type. 4932 if (ViaEltSize > NumElts) 4933 Res = DAG.getNode(ISD::SRL, DL, ViaVT, Res, 4934 DAG.getConstant(ViaEltSize - NumElts, DL, ViaVT)); 4935 4936 Res = DAG.getBitcast(ViaBitVT, Res); 4937 4938 if (ViaEltSize > NumElts) 4939 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res, 4940 DAG.getVectorIdxConstant(0, DL)); 4941 return Res; 4942 } 4943 4944 static bool isLegalBitRotate(ShuffleVectorSDNode *SVN, 4945 SelectionDAG &DAG, 4946 const RISCVSubtarget &Subtarget, 4947 MVT &RotateVT, unsigned &RotateAmt) { 4948 SDLoc DL(SVN); 4949 4950 EVT VT = SVN->getValueType(0); 4951 unsigned NumElts = VT.getVectorNumElements(); 4952 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4953 unsigned NumSubElts; 4954 if (!ShuffleVectorInst::isBitRotateMask(SVN->getMask(), EltSizeInBits, 2, 4955 NumElts, NumSubElts, RotateAmt)) 4956 return false; 4957 RotateVT = MVT::getVectorVT(MVT::getIntegerVT(EltSizeInBits * NumSubElts), 4958 NumElts / NumSubElts); 4959 4960 // We might have a RotateVT that isn't legal, e.g. v4i64 on zve32x. 4961 return Subtarget.getTargetLowering()->isTypeLegal(RotateVT); 4962 } 4963 4964 // Given a shuffle mask like <3, 0, 1, 2, 7, 4, 5, 6> for v8i8, we can 4965 // reinterpret it as a v2i32 and rotate it right by 8 instead. We can lower this 4966 // as a vror.vi if we have Zvkb, or otherwise as a vsll, vsrl and vor. 4967 static SDValue lowerVECTOR_SHUFFLEAsRotate(ShuffleVectorSDNode *SVN, 4968 SelectionDAG &DAG, 4969 const RISCVSubtarget &Subtarget) { 4970 SDLoc DL(SVN); 4971 4972 EVT VT = SVN->getValueType(0); 4973 unsigned RotateAmt; 4974 MVT RotateVT; 4975 if (!isLegalBitRotate(SVN, DAG, Subtarget, RotateVT, RotateAmt)) 4976 return SDValue(); 4977 4978 SDValue Op = DAG.getBitcast(RotateVT, SVN->getOperand(0)); 4979 4980 SDValue Rotate; 4981 // A rotate of an i16 by 8 bits either direction is equivalent to a byteswap, 4982 // so canonicalize to vrev8. 4983 if (RotateVT.getScalarType() == MVT::i16 && RotateAmt == 8) 4984 Rotate = DAG.getNode(ISD::BSWAP, DL, RotateVT, Op); 4985 else 4986 Rotate = DAG.getNode(ISD::ROTL, DL, RotateVT, Op, 4987 DAG.getConstant(RotateAmt, DL, RotateVT)); 4988 4989 return DAG.getBitcast(VT, Rotate); 4990 } 4991 4992 // If compiling with an exactly known VLEN, see if we can split a 4993 // shuffle on m2 or larger into a small number of m1 sized shuffles 4994 // which write each destination registers exactly once. 4995 static SDValue lowerShuffleViaVRegSplitting(ShuffleVectorSDNode *SVN, 4996 SelectionDAG &DAG, 4997 const RISCVSubtarget &Subtarget) { 4998 SDLoc DL(SVN); 4999 MVT VT = SVN->getSimpleValueType(0); 5000 SDValue V1 = SVN->getOperand(0); 5001 SDValue V2 = SVN->getOperand(1); 5002 ArrayRef<int> Mask = SVN->getMask(); 5003 unsigned NumElts = VT.getVectorNumElements(); 5004 5005 // If we don't know exact data layout, not much we can do. If this 5006 // is already m1 or smaller, no point in splitting further. 5007 const auto VLen = Subtarget.getRealVLen(); 5008 if (!VLen || VT.getSizeInBits().getFixedValue() <= *VLen) 5009 return SDValue(); 5010 5011 // Avoid picking up bitrotate patterns which we have a linear-in-lmul 5012 // expansion for. 5013 unsigned RotateAmt; 5014 MVT RotateVT; 5015 if (isLegalBitRotate(SVN, DAG, Subtarget, RotateVT, RotateAmt)) 5016 return SDValue(); 5017 5018 MVT ElemVT = VT.getVectorElementType(); 5019 unsigned ElemsPerVReg = *VLen / ElemVT.getFixedSizeInBits(); 5020 unsigned VRegsPerSrc = NumElts / ElemsPerVReg; 5021 5022 SmallVector<std::pair<int, SmallVector<int>>> 5023 OutMasks(VRegsPerSrc, {-1, {}}); 5024 5025 // Check if our mask can be done as a 1-to-1 mapping from source 5026 // to destination registers in the group without needing to 5027 // write each destination more than once. 5028 for (unsigned DstIdx = 0; DstIdx < Mask.size(); DstIdx++) { 5029 int DstVecIdx = DstIdx / ElemsPerVReg; 5030 int DstSubIdx = DstIdx % ElemsPerVReg; 5031 int SrcIdx = Mask[DstIdx]; 5032 if (SrcIdx < 0 || (unsigned)SrcIdx >= 2 * NumElts) 5033 continue; 5034 int SrcVecIdx = SrcIdx / ElemsPerVReg; 5035 int SrcSubIdx = SrcIdx % ElemsPerVReg; 5036 if (OutMasks[DstVecIdx].first == -1) 5037 OutMasks[DstVecIdx].first = SrcVecIdx; 5038 if (OutMasks[DstVecIdx].first != SrcVecIdx) 5039 // Note: This case could easily be handled by keeping track of a chain 5040 // of source values and generating two element shuffles below. This is 5041 // less an implementation question, and more a profitability one. 5042 return SDValue(); 5043 5044 OutMasks[DstVecIdx].second.resize(ElemsPerVReg, -1); 5045 OutMasks[DstVecIdx].second[DstSubIdx] = SrcSubIdx; 5046 } 5047 5048 EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 5049 MVT OneRegVT = MVT::getVectorVT(ElemVT, ElemsPerVReg); 5050 MVT M1VT = getContainerForFixedLengthVector(DAG, OneRegVT, Subtarget); 5051 assert(M1VT == getLMUL1VT(M1VT)); 5052 unsigned NumOpElts = M1VT.getVectorMinNumElements(); 5053 SDValue Vec = DAG.getUNDEF(ContainerVT); 5054 // The following semantically builds up a fixed length concat_vector 5055 // of the component shuffle_vectors. We eagerly lower to scalable here 5056 // to avoid DAG combining it back to a large shuffle_vector again. 5057 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 5058 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 5059 for (unsigned DstVecIdx = 0 ; DstVecIdx < OutMasks.size(); DstVecIdx++) { 5060 auto &[SrcVecIdx, SrcSubMask] = OutMasks[DstVecIdx]; 5061 if (SrcVecIdx == -1) 5062 continue; 5063 unsigned ExtractIdx = (SrcVecIdx % VRegsPerSrc) * NumOpElts; 5064 SDValue SrcVec = (unsigned)SrcVecIdx >= VRegsPerSrc ? V2 : V1; 5065 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, M1VT, SrcVec, 5066 DAG.getVectorIdxConstant(ExtractIdx, DL)); 5067 SubVec = convertFromScalableVector(OneRegVT, SubVec, DAG, Subtarget); 5068 SubVec = DAG.getVectorShuffle(OneRegVT, DL, SubVec, SubVec, SrcSubMask); 5069 SubVec = convertToScalableVector(M1VT, SubVec, DAG, Subtarget); 5070 unsigned InsertIdx = DstVecIdx * NumOpElts; 5071 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, Vec, SubVec, 5072 DAG.getVectorIdxConstant(InsertIdx, DL)); 5073 } 5074 return convertFromScalableVector(VT, Vec, DAG, Subtarget); 5075 } 5076 5077 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 5078 const RISCVSubtarget &Subtarget) { 5079 SDValue V1 = Op.getOperand(0); 5080 SDValue V2 = Op.getOperand(1); 5081 SDLoc DL(Op); 5082 MVT XLenVT = Subtarget.getXLenVT(); 5083 MVT VT = Op.getSimpleValueType(); 5084 unsigned NumElts = VT.getVectorNumElements(); 5085 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 5086 5087 if (VT.getVectorElementType() == MVT::i1) { 5088 // Lower to a vror.vi of a larger element type if possible before we promote 5089 // i1s to i8s. 5090 if (SDValue V = lowerVECTOR_SHUFFLEAsRotate(SVN, DAG, Subtarget)) 5091 return V; 5092 if (SDValue V = lowerBitreverseShuffle(SVN, DAG, Subtarget)) 5093 return V; 5094 5095 // Promote i1 shuffle to i8 shuffle. 5096 MVT WidenVT = MVT::getVectorVT(MVT::i8, VT.getVectorElementCount()); 5097 V1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, V1); 5098 V2 = V2.isUndef() ? DAG.getUNDEF(WidenVT) 5099 : DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, V2); 5100 SDValue Shuffled = DAG.getVectorShuffle(WidenVT, DL, V1, V2, SVN->getMask()); 5101 return DAG.getSetCC(DL, VT, Shuffled, DAG.getConstant(0, DL, WidenVT), 5102 ISD::SETNE); 5103 } 5104 5105 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 5106 5107 auto [TrueMask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5108 5109 if (SVN->isSplat()) { 5110 const int Lane = SVN->getSplatIndex(); 5111 if (Lane >= 0) { 5112 MVT SVT = VT.getVectorElementType(); 5113 5114 // Turn splatted vector load into a strided load with an X0 stride. 5115 SDValue V = V1; 5116 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 5117 // with undef. 5118 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 5119 int Offset = Lane; 5120 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 5121 int OpElements = 5122 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 5123 V = V.getOperand(Offset / OpElements); 5124 Offset %= OpElements; 5125 } 5126 5127 // We need to ensure the load isn't atomic or volatile. 5128 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 5129 auto *Ld = cast<LoadSDNode>(V); 5130 Offset *= SVT.getStoreSize(); 5131 SDValue NewAddr = DAG.getMemBasePlusOffset( 5132 Ld->getBasePtr(), TypeSize::getFixed(Offset), DL); 5133 5134 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 5135 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 5136 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5137 SDValue IntID = 5138 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 5139 SDValue Ops[] = {Ld->getChain(), 5140 IntID, 5141 DAG.getUNDEF(ContainerVT), 5142 NewAddr, 5143 DAG.getRegister(RISCV::X0, XLenVT), 5144 VL}; 5145 SDValue NewLoad = DAG.getMemIntrinsicNode( 5146 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 5147 DAG.getMachineFunction().getMachineMemOperand( 5148 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 5149 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 5150 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5151 } 5152 5153 MVT SplatVT = ContainerVT; 5154 5155 // If we don't have Zfh, we need to use an integer scalar load. 5156 if (SVT == MVT::f16 && !Subtarget.hasStdExtZfh()) { 5157 SVT = MVT::i16; 5158 SplatVT = ContainerVT.changeVectorElementType(SVT); 5159 } 5160 5161 // Otherwise use a scalar load and splat. This will give the best 5162 // opportunity to fold a splat into the operation. ISel can turn it into 5163 // the x0 strided load if we aren't able to fold away the select. 5164 if (SVT.isFloatingPoint()) 5165 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 5166 Ld->getPointerInfo().getWithOffset(Offset), 5167 Ld->getOriginalAlign(), 5168 Ld->getMemOperand()->getFlags()); 5169 else 5170 V = DAG.getExtLoad(ISD::EXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 5171 Ld->getPointerInfo().getWithOffset(Offset), SVT, 5172 Ld->getOriginalAlign(), 5173 Ld->getMemOperand()->getFlags()); 5174 DAG.makeEquivalentMemoryOrdering(Ld, V); 5175 5176 unsigned Opc = SplatVT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 5177 : RISCVISD::VMV_V_X_VL; 5178 SDValue Splat = 5179 DAG.getNode(Opc, DL, SplatVT, DAG.getUNDEF(ContainerVT), V, VL); 5180 Splat = DAG.getBitcast(ContainerVT, Splat); 5181 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 5182 } 5183 5184 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 5185 assert(Lane < (int)NumElts && "Unexpected lane!"); 5186 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, 5187 V1, DAG.getConstant(Lane, DL, XLenVT), 5188 DAG.getUNDEF(ContainerVT), TrueMask, VL); 5189 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 5190 } 5191 } 5192 5193 // For exact VLEN m2 or greater, try to split to m1 operations if we 5194 // can split cleanly. 5195 if (SDValue V = lowerShuffleViaVRegSplitting(SVN, DAG, Subtarget)) 5196 return V; 5197 5198 ArrayRef<int> Mask = SVN->getMask(); 5199 5200 if (SDValue V = 5201 lowerVECTOR_SHUFFLEAsVSlide1(DL, VT, V1, V2, Mask, Subtarget, DAG)) 5202 return V; 5203 5204 if (SDValue V = 5205 lowerVECTOR_SHUFFLEAsVSlidedown(DL, VT, V1, V2, Mask, Subtarget, DAG)) 5206 return V; 5207 5208 // A bitrotate will be one instruction on Zvkb, so try to lower to it first if 5209 // available. 5210 if (Subtarget.hasStdExtZvkb()) 5211 if (SDValue V = lowerVECTOR_SHUFFLEAsRotate(SVN, DAG, Subtarget)) 5212 return V; 5213 5214 // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may 5215 // be undef which can be handled with a single SLIDEDOWN/UP. 5216 int LoSrc, HiSrc; 5217 int Rotation = isElementRotate(LoSrc, HiSrc, Mask); 5218 if (Rotation > 0) { 5219 SDValue LoV, HiV; 5220 if (LoSrc >= 0) { 5221 LoV = LoSrc == 0 ? V1 : V2; 5222 LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget); 5223 } 5224 if (HiSrc >= 0) { 5225 HiV = HiSrc == 0 ? V1 : V2; 5226 HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget); 5227 } 5228 5229 // We found a rotation. We need to slide HiV down by Rotation. Then we need 5230 // to slide LoV up by (NumElts - Rotation). 5231 unsigned InvRotate = NumElts - Rotation; 5232 5233 SDValue Res = DAG.getUNDEF(ContainerVT); 5234 if (HiV) { 5235 // Even though we could use a smaller VL, don't to avoid a vsetivli 5236 // toggle. 5237 Res = getVSlidedown(DAG, Subtarget, DL, ContainerVT, Res, HiV, 5238 DAG.getConstant(Rotation, DL, XLenVT), TrueMask, VL); 5239 } 5240 if (LoV) 5241 Res = getVSlideup(DAG, Subtarget, DL, ContainerVT, Res, LoV, 5242 DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL, 5243 RISCVII::TAIL_AGNOSTIC); 5244 5245 return convertFromScalableVector(VT, Res, DAG, Subtarget); 5246 } 5247 5248 // If this is a deinterleave and we can widen the vector, then we can use 5249 // vnsrl to deinterleave. 5250 if (isDeinterleaveShuffle(VT, ContainerVT, V1, V2, Mask, Subtarget)) { 5251 return getDeinterleaveViaVNSRL(DL, VT, V1.getOperand(0), Mask[0] == 0, 5252 Subtarget, DAG); 5253 } 5254 5255 if (SDValue V = 5256 lowerVECTOR_SHUFFLEAsVSlideup(DL, VT, V1, V2, Mask, Subtarget, DAG)) 5257 return V; 5258 5259 // Detect an interleave shuffle and lower to 5260 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 5261 int EvenSrc, OddSrc; 5262 if (isInterleaveShuffle(Mask, VT, EvenSrc, OddSrc, Subtarget)) { 5263 // Extract the halves of the vectors. 5264 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 5265 5266 int Size = Mask.size(); 5267 SDValue EvenV, OddV; 5268 assert(EvenSrc >= 0 && "Undef source?"); 5269 EvenV = (EvenSrc / Size) == 0 ? V1 : V2; 5270 EvenV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, EvenV, 5271 DAG.getVectorIdxConstant(EvenSrc % Size, DL)); 5272 5273 assert(OddSrc >= 0 && "Undef source?"); 5274 OddV = (OddSrc / Size) == 0 ? V1 : V2; 5275 OddV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, OddV, 5276 DAG.getVectorIdxConstant(OddSrc % Size, DL)); 5277 5278 return getWideningInterleave(EvenV, OddV, DL, DAG, Subtarget); 5279 } 5280 5281 5282 // Handle any remaining single source shuffles 5283 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 5284 if (V2.isUndef()) { 5285 // We might be able to express the shuffle as a bitrotate. But even if we 5286 // don't have Zvkb and have to expand, the expanded sequence of approx. 2 5287 // shifts and a vor will have a higher throughput than a vrgather. 5288 if (SDValue V = lowerVECTOR_SHUFFLEAsRotate(SVN, DAG, Subtarget)) 5289 return V; 5290 5291 if (VT.getScalarSizeInBits() == 8 && 5292 any_of(Mask, [&](const auto &Idx) { return Idx > 255; })) { 5293 // On such a vector we're unable to use i8 as the index type. 5294 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 5295 // may involve vector splitting if we're already at LMUL=8, or our 5296 // user-supplied maximum fixed-length LMUL. 5297 return SDValue(); 5298 } 5299 5300 // Base case for the two operand recursion below - handle the worst case 5301 // single source shuffle. 5302 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 5303 MVT IndexVT = VT.changeTypeToInteger(); 5304 // Since we can't introduce illegal index types at this stage, use i16 and 5305 // vrgatherei16 if the corresponding index type for plain vrgather is greater 5306 // than XLenVT. 5307 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 5308 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 5309 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 5310 } 5311 5312 // If the mask allows, we can do all the index computation in 16 bits. This 5313 // requires less work and less register pressure at high LMUL, and creates 5314 // smaller constants which may be cheaper to materialize. 5315 if (IndexVT.getScalarType().bitsGT(MVT::i16) && isUInt<16>(NumElts - 1) && 5316 (IndexVT.getSizeInBits() / Subtarget.getRealMinVLen()) > 1) { 5317 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 5318 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 5319 } 5320 5321 MVT IndexContainerVT = 5322 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 5323 5324 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 5325 SmallVector<SDValue> GatherIndicesLHS; 5326 for (int MaskIndex : Mask) { 5327 bool IsLHSIndex = MaskIndex < (int)NumElts && MaskIndex >= 0; 5328 GatherIndicesLHS.push_back(IsLHSIndex 5329 ? DAG.getConstant(MaskIndex, DL, XLenVT) 5330 : DAG.getUNDEF(XLenVT)); 5331 } 5332 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 5333 LHSIndices = convertToScalableVector(IndexContainerVT, LHSIndices, DAG, 5334 Subtarget); 5335 SDValue Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 5336 DAG.getUNDEF(ContainerVT), TrueMask, VL); 5337 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 5338 } 5339 5340 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 5341 // merged with a second vrgather. 5342 SmallVector<int> ShuffleMaskLHS, ShuffleMaskRHS; 5343 5344 // Now construct the mask that will be used by the blended vrgather operation. 5345 // Construct the appropriate indices into each vector. 5346 for (int MaskIndex : Mask) { 5347 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 5348 ShuffleMaskLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 5349 ? MaskIndex : -1); 5350 ShuffleMaskRHS.push_back(IsLHSOrUndefIndex ? -1 : (MaskIndex - NumElts)); 5351 } 5352 5353 // Try to pick a profitable operand order. 5354 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 5355 SwapOps = SwapOps ^ ShuffleVectorInst::isIdentityMask(ShuffleMaskRHS, NumElts); 5356 5357 // Recursively invoke lowering for each operand if we had two 5358 // independent single source shuffles, and then combine the result via a 5359 // vselect. Note that the vselect will likely be folded back into the 5360 // second permute (vrgather, or other) by the post-isel combine. 5361 V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), ShuffleMaskLHS); 5362 V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), ShuffleMaskRHS); 5363 5364 SmallVector<SDValue> MaskVals; 5365 for (int MaskIndex : Mask) { 5366 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ !SwapOps; 5367 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 5368 } 5369 5370 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 5371 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 5372 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 5373 5374 if (SwapOps) 5375 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 5376 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V2, V1); 5377 } 5378 5379 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 5380 // Support splats for any type. These should type legalize well. 5381 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 5382 return true; 5383 5384 // Only support legal VTs for other shuffles for now. 5385 if (!isTypeLegal(VT)) 5386 return false; 5387 5388 MVT SVT = VT.getSimpleVT(); 5389 5390 // Not for i1 vectors. 5391 if (SVT.getScalarType() == MVT::i1) 5392 return false; 5393 5394 int Dummy1, Dummy2; 5395 return (isElementRotate(Dummy1, Dummy2, M) > 0) || 5396 isInterleaveShuffle(M, SVT, Dummy1, Dummy2, Subtarget); 5397 } 5398 5399 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 5400 // the exponent. 5401 SDValue 5402 RISCVTargetLowering::lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, 5403 SelectionDAG &DAG) const { 5404 MVT VT = Op.getSimpleValueType(); 5405 unsigned EltSize = VT.getScalarSizeInBits(); 5406 SDValue Src = Op.getOperand(0); 5407 SDLoc DL(Op); 5408 MVT ContainerVT = VT; 5409 5410 SDValue Mask, VL; 5411 if (Op->isVPOpcode()) { 5412 Mask = Op.getOperand(1); 5413 if (VT.isFixedLengthVector()) 5414 Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG, 5415 Subtarget); 5416 VL = Op.getOperand(2); 5417 } 5418 5419 // We choose FP type that can represent the value if possible. Otherwise, we 5420 // use rounding to zero conversion for correct exponent of the result. 5421 // TODO: Use f16 for i8 when possible? 5422 MVT FloatEltVT = (EltSize >= 32) ? MVT::f64 : MVT::f32; 5423 if (!isTypeLegal(MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()))) 5424 FloatEltVT = MVT::f32; 5425 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 5426 5427 // Legal types should have been checked in the RISCVTargetLowering 5428 // constructor. 5429 // TODO: Splitting may make sense in some cases. 5430 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 5431 "Expected legal float type!"); 5432 5433 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 5434 // The trailing zero count is equal to log2 of this single bit value. 5435 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 5436 SDValue Neg = DAG.getNegative(Src, DL, VT); 5437 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 5438 } else if (Op.getOpcode() == ISD::VP_CTTZ_ZERO_UNDEF) { 5439 SDValue Neg = DAG.getNode(ISD::VP_SUB, DL, VT, DAG.getConstant(0, DL, VT), 5440 Src, Mask, VL); 5441 Src = DAG.getNode(ISD::VP_AND, DL, VT, Src, Neg, Mask, VL); 5442 } 5443 5444 // We have a legal FP type, convert to it. 5445 SDValue FloatVal; 5446 if (FloatVT.bitsGT(VT)) { 5447 if (Op->isVPOpcode()) 5448 FloatVal = DAG.getNode(ISD::VP_UINT_TO_FP, DL, FloatVT, Src, Mask, VL); 5449 else 5450 FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 5451 } else { 5452 // Use RTZ to avoid rounding influencing exponent of FloatVal. 5453 if (VT.isFixedLengthVector()) { 5454 ContainerVT = getContainerForFixedLengthVector(VT); 5455 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 5456 } 5457 if (!Op->isVPOpcode()) 5458 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5459 SDValue RTZRM = 5460 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()); 5461 MVT ContainerFloatVT = 5462 MVT::getVectorVT(FloatEltVT, ContainerVT.getVectorElementCount()); 5463 FloatVal = DAG.getNode(RISCVISD::VFCVT_RM_F_XU_VL, DL, ContainerFloatVT, 5464 Src, Mask, RTZRM, VL); 5465 if (VT.isFixedLengthVector()) 5466 FloatVal = convertFromScalableVector(FloatVT, FloatVal, DAG, Subtarget); 5467 } 5468 // Bitcast to integer and shift the exponent to the LSB. 5469 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 5470 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 5471 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 5472 5473 SDValue Exp; 5474 // Restore back to original type. Truncation after SRL is to generate vnsrl. 5475 if (Op->isVPOpcode()) { 5476 Exp = DAG.getNode(ISD::VP_SRL, DL, IntVT, Bitcast, 5477 DAG.getConstant(ShiftAmt, DL, IntVT), Mask, VL); 5478 Exp = DAG.getVPZExtOrTrunc(DL, VT, Exp, Mask, VL); 5479 } else { 5480 Exp = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 5481 DAG.getConstant(ShiftAmt, DL, IntVT)); 5482 if (IntVT.bitsLT(VT)) 5483 Exp = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Exp); 5484 else if (IntVT.bitsGT(VT)) 5485 Exp = DAG.getNode(ISD::TRUNCATE, DL, VT, Exp); 5486 } 5487 5488 // The exponent contains log2 of the value in biased form. 5489 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 5490 // For trailing zeros, we just need to subtract the bias. 5491 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 5492 return DAG.getNode(ISD::SUB, DL, VT, Exp, 5493 DAG.getConstant(ExponentBias, DL, VT)); 5494 if (Op.getOpcode() == ISD::VP_CTTZ_ZERO_UNDEF) 5495 return DAG.getNode(ISD::VP_SUB, DL, VT, Exp, 5496 DAG.getConstant(ExponentBias, DL, VT), Mask, VL); 5497 5498 // For leading zeros, we need to remove the bias and convert from log2 to 5499 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 5500 unsigned Adjust = ExponentBias + (EltSize - 1); 5501 SDValue Res; 5502 if (Op->isVPOpcode()) 5503 Res = DAG.getNode(ISD::VP_SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Exp, 5504 Mask, VL); 5505 else 5506 Res = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Exp); 5507 5508 // The above result with zero input equals to Adjust which is greater than 5509 // EltSize. Hence, we can do min(Res, EltSize) for CTLZ. 5510 if (Op.getOpcode() == ISD::CTLZ) 5511 Res = DAG.getNode(ISD::UMIN, DL, VT, Res, DAG.getConstant(EltSize, DL, VT)); 5512 else if (Op.getOpcode() == ISD::VP_CTLZ) 5513 Res = DAG.getNode(ISD::VP_UMIN, DL, VT, Res, 5514 DAG.getConstant(EltSize, DL, VT), Mask, VL); 5515 return Res; 5516 } 5517 5518 SDValue RISCVTargetLowering::lowerVPCttzElements(SDValue Op, 5519 SelectionDAG &DAG) const { 5520 SDLoc DL(Op); 5521 MVT XLenVT = Subtarget.getXLenVT(); 5522 SDValue Source = Op->getOperand(0); 5523 MVT SrcVT = Source.getSimpleValueType(); 5524 SDValue Mask = Op->getOperand(1); 5525 SDValue EVL = Op->getOperand(2); 5526 5527 if (SrcVT.isFixedLengthVector()) { 5528 MVT ContainerVT = getContainerForFixedLengthVector(SrcVT); 5529 Source = convertToScalableVector(ContainerVT, Source, DAG, Subtarget); 5530 Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG, 5531 Subtarget); 5532 SrcVT = ContainerVT; 5533 } 5534 5535 // Convert to boolean vector. 5536 if (SrcVT.getScalarType() != MVT::i1) { 5537 SDValue AllZero = DAG.getConstant(0, DL, SrcVT); 5538 SrcVT = MVT::getVectorVT(MVT::i1, SrcVT.getVectorElementCount()); 5539 Source = DAG.getNode(RISCVISD::SETCC_VL, DL, SrcVT, 5540 {Source, AllZero, DAG.getCondCode(ISD::SETNE), 5541 DAG.getUNDEF(SrcVT), Mask, EVL}); 5542 } 5543 5544 SDValue Res = DAG.getNode(RISCVISD::VFIRST_VL, DL, XLenVT, Source, Mask, EVL); 5545 if (Op->getOpcode() == ISD::VP_CTTZ_ELTS_ZERO_UNDEF) 5546 // In this case, we can interpret poison as -1, so nothing to do further. 5547 return Res; 5548 5549 // Convert -1 to VL. 5550 SDValue SetCC = 5551 DAG.getSetCC(DL, XLenVT, Res, DAG.getConstant(0, DL, XLenVT), ISD::SETLT); 5552 Res = DAG.getSelect(DL, XLenVT, SetCC, EVL, Res); 5553 return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Res); 5554 } 5555 5556 // While RVV has alignment restrictions, we should always be able to load as a 5557 // legal equivalently-sized byte-typed vector instead. This method is 5558 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 5559 // the load is already correctly-aligned, it returns SDValue(). 5560 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 5561 SelectionDAG &DAG) const { 5562 auto *Load = cast<LoadSDNode>(Op); 5563 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 5564 5565 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5566 Load->getMemoryVT(), 5567 *Load->getMemOperand())) 5568 return SDValue(); 5569 5570 SDLoc DL(Op); 5571 MVT VT = Op.getSimpleValueType(); 5572 unsigned EltSizeBits = VT.getScalarSizeInBits(); 5573 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 5574 "Unexpected unaligned RVV load type"); 5575 MVT NewVT = 5576 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 5577 assert(NewVT.isValid() && 5578 "Expecting equally-sized RVV vector types to be legal"); 5579 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 5580 Load->getPointerInfo(), Load->getOriginalAlign(), 5581 Load->getMemOperand()->getFlags()); 5582 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 5583 } 5584 5585 // While RVV has alignment restrictions, we should always be able to store as a 5586 // legal equivalently-sized byte-typed vector instead. This method is 5587 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 5588 // returns SDValue() if the store is already correctly aligned. 5589 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 5590 SelectionDAG &DAG) const { 5591 auto *Store = cast<StoreSDNode>(Op); 5592 assert(Store && Store->getValue().getValueType().isVector() && 5593 "Expected vector store"); 5594 5595 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5596 Store->getMemoryVT(), 5597 *Store->getMemOperand())) 5598 return SDValue(); 5599 5600 SDLoc DL(Op); 5601 SDValue StoredVal = Store->getValue(); 5602 MVT VT = StoredVal.getSimpleValueType(); 5603 unsigned EltSizeBits = VT.getScalarSizeInBits(); 5604 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 5605 "Unexpected unaligned RVV store type"); 5606 MVT NewVT = 5607 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 5608 assert(NewVT.isValid() && 5609 "Expecting equally-sized RVV vector types to be legal"); 5610 StoredVal = DAG.getBitcast(NewVT, StoredVal); 5611 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 5612 Store->getPointerInfo(), Store->getOriginalAlign(), 5613 Store->getMemOperand()->getFlags()); 5614 } 5615 5616 static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG, 5617 const RISCVSubtarget &Subtarget) { 5618 assert(Op.getValueType() == MVT::i64 && "Unexpected VT"); 5619 5620 int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue(); 5621 5622 // All simm32 constants should be handled by isel. 5623 // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making 5624 // this check redundant, but small immediates are common so this check 5625 // should have better compile time. 5626 if (isInt<32>(Imm)) 5627 return Op; 5628 5629 // We only need to cost the immediate, if constant pool lowering is enabled. 5630 if (!Subtarget.useConstantPoolForLargeInts()) 5631 return Op; 5632 5633 RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Imm, Subtarget); 5634 if (Seq.size() <= Subtarget.getMaxBuildIntsCost()) 5635 return Op; 5636 5637 // Optimizations below are disabled for opt size. If we're optimizing for 5638 // size, use a constant pool. 5639 if (DAG.shouldOptForSize()) 5640 return SDValue(); 5641 5642 // Special case. See if we can build the constant as (ADD (SLLI X, C), X) do 5643 // that if it will avoid a constant pool. 5644 // It will require an extra temporary register though. 5645 // If we have Zba we can use (ADD_UW X, (SLLI X, 32)) to handle cases where 5646 // low and high 32 bits are the same and bit 31 and 63 are set. 5647 unsigned ShiftAmt, AddOpc; 5648 RISCVMatInt::InstSeq SeqLo = 5649 RISCVMatInt::generateTwoRegInstSeq(Imm, Subtarget, ShiftAmt, AddOpc); 5650 if (!SeqLo.empty() && (SeqLo.size() + 2) <= Subtarget.getMaxBuildIntsCost()) 5651 return Op; 5652 5653 return SDValue(); 5654 } 5655 5656 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG, 5657 const RISCVSubtarget &Subtarget) { 5658 SDLoc dl(Op); 5659 AtomicOrdering FenceOrdering = 5660 static_cast<AtomicOrdering>(Op.getConstantOperandVal(1)); 5661 SyncScope::ID FenceSSID = 5662 static_cast<SyncScope::ID>(Op.getConstantOperandVal(2)); 5663 5664 if (Subtarget.hasStdExtZtso()) { 5665 // The only fence that needs an instruction is a sequentially-consistent 5666 // cross-thread fence. 5667 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 5668 FenceSSID == SyncScope::System) 5669 return Op; 5670 5671 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 5672 return DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); 5673 } 5674 5675 // singlethread fences only synchronize with signal handlers on the same 5676 // thread and thus only need to preserve instruction order, not actually 5677 // enforce memory ordering. 5678 if (FenceSSID == SyncScope::SingleThread) 5679 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 5680 return DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); 5681 5682 return Op; 5683 } 5684 5685 static SDValue lowerSADDSAT_SSUBSAT(SDValue Op, SelectionDAG &DAG) { 5686 assert(Op.getValueType() == MVT::i32 && RV64LegalI32 && 5687 "Unexpected custom legalisation"); 5688 5689 // With Zbb, we can widen to i64 and smin/smax with INT32_MAX/MIN. 5690 bool IsAdd = Op.getOpcode() == ISD::SADDSAT; 5691 SDLoc DL(Op); 5692 SDValue LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op.getOperand(0)); 5693 SDValue RHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op.getOperand(1)); 5694 SDValue Result = 5695 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5696 5697 APInt MinVal = APInt::getSignedMinValue(32).sext(64); 5698 APInt MaxVal = APInt::getSignedMaxValue(32).sext(64); 5699 SDValue SatMin = DAG.getConstant(MinVal, DL, MVT::i64); 5700 SDValue SatMax = DAG.getConstant(MaxVal, DL, MVT::i64); 5701 Result = DAG.getNode(ISD::SMIN, DL, MVT::i64, Result, SatMax); 5702 Result = DAG.getNode(ISD::SMAX, DL, MVT::i64, Result, SatMin); 5703 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Result); 5704 } 5705 5706 static SDValue lowerUADDSAT_USUBSAT(SDValue Op, SelectionDAG &DAG) { 5707 assert(Op.getValueType() == MVT::i32 && RV64LegalI32 && 5708 "Unexpected custom legalisation"); 5709 5710 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5711 // sign extend allows overflow of the lower 32 bits to be detected on 5712 // the promoted size. 5713 SDLoc DL(Op); 5714 SDValue LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op.getOperand(0)); 5715 SDValue RHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op.getOperand(1)); 5716 SDValue WideOp = DAG.getNode(Op.getOpcode(), DL, MVT::i64, LHS, RHS); 5717 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, WideOp); 5718 } 5719 5720 // Custom lower i32 SADDO/SSUBO with RV64LegalI32 so we take advantage of addw. 5721 static SDValue lowerSADDO_SSUBO(SDValue Op, SelectionDAG &DAG) { 5722 assert(Op.getValueType() == MVT::i32 && RV64LegalI32 && 5723 "Unexpected custom legalisation"); 5724 if (isa<ConstantSDNode>(Op.getOperand(1))) 5725 return SDValue(); 5726 5727 bool IsAdd = Op.getOpcode() == ISD::SADDO; 5728 SDLoc DL(Op); 5729 SDValue LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op.getOperand(0)); 5730 SDValue RHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op.getOperand(1)); 5731 SDValue WideOp = 5732 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5733 SDValue Res = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, WideOp); 5734 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, WideOp, 5735 DAG.getValueType(MVT::i32)); 5736 SDValue Ovf = DAG.getSetCC(DL, Op.getValue(1).getValueType(), WideOp, SExt, 5737 ISD::SETNE); 5738 return DAG.getMergeValues({Res, Ovf}, DL); 5739 } 5740 5741 // Custom lower i32 SMULO with RV64LegalI32 so we take advantage of mulw. 5742 static SDValue lowerSMULO(SDValue Op, SelectionDAG &DAG) { 5743 assert(Op.getValueType() == MVT::i32 && RV64LegalI32 && 5744 "Unexpected custom legalisation"); 5745 SDLoc DL(Op); 5746 SDValue LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op.getOperand(0)); 5747 SDValue RHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op.getOperand(1)); 5748 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); 5749 SDValue Res = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 5750 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Mul, 5751 DAG.getValueType(MVT::i32)); 5752 SDValue Ovf = DAG.getSetCC(DL, Op.getValue(1).getValueType(), Mul, SExt, 5753 ISD::SETNE); 5754 return DAG.getMergeValues({Res, Ovf}, DL); 5755 } 5756 5757 SDValue RISCVTargetLowering::LowerIS_FPCLASS(SDValue Op, 5758 SelectionDAG &DAG) const { 5759 SDLoc DL(Op); 5760 MVT VT = Op.getSimpleValueType(); 5761 MVT XLenVT = Subtarget.getXLenVT(); 5762 unsigned Check = Op.getConstantOperandVal(1); 5763 unsigned TDCMask = 0; 5764 if (Check & fcSNan) 5765 TDCMask |= RISCV::FPMASK_Signaling_NaN; 5766 if (Check & fcQNan) 5767 TDCMask |= RISCV::FPMASK_Quiet_NaN; 5768 if (Check & fcPosInf) 5769 TDCMask |= RISCV::FPMASK_Positive_Infinity; 5770 if (Check & fcNegInf) 5771 TDCMask |= RISCV::FPMASK_Negative_Infinity; 5772 if (Check & fcPosNormal) 5773 TDCMask |= RISCV::FPMASK_Positive_Normal; 5774 if (Check & fcNegNormal) 5775 TDCMask |= RISCV::FPMASK_Negative_Normal; 5776 if (Check & fcPosSubnormal) 5777 TDCMask |= RISCV::FPMASK_Positive_Subnormal; 5778 if (Check & fcNegSubnormal) 5779 TDCMask |= RISCV::FPMASK_Negative_Subnormal; 5780 if (Check & fcPosZero) 5781 TDCMask |= RISCV::FPMASK_Positive_Zero; 5782 if (Check & fcNegZero) 5783 TDCMask |= RISCV::FPMASK_Negative_Zero; 5784 5785 bool IsOneBitMask = isPowerOf2_32(TDCMask); 5786 5787 SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, XLenVT); 5788 5789 if (VT.isVector()) { 5790 SDValue Op0 = Op.getOperand(0); 5791 MVT VT0 = Op.getOperand(0).getSimpleValueType(); 5792 5793 if (VT.isScalableVector()) { 5794 MVT DstVT = VT0.changeVectorElementTypeToInteger(); 5795 auto [Mask, VL] = getDefaultScalableVLOps(VT0, DL, DAG, Subtarget); 5796 if (Op.getOpcode() == ISD::VP_IS_FPCLASS) { 5797 Mask = Op.getOperand(2); 5798 VL = Op.getOperand(3); 5799 } 5800 SDValue FPCLASS = DAG.getNode(RISCVISD::FCLASS_VL, DL, DstVT, Op0, Mask, 5801 VL, Op->getFlags()); 5802 if (IsOneBitMask) 5803 return DAG.getSetCC(DL, VT, FPCLASS, 5804 DAG.getConstant(TDCMask, DL, DstVT), 5805 ISD::CondCode::SETEQ); 5806 SDValue AND = DAG.getNode(ISD::AND, DL, DstVT, FPCLASS, 5807 DAG.getConstant(TDCMask, DL, DstVT)); 5808 return DAG.getSetCC(DL, VT, AND, DAG.getConstant(0, DL, DstVT), 5809 ISD::SETNE); 5810 } 5811 5812 MVT ContainerVT0 = getContainerForFixedLengthVector(VT0); 5813 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5814 MVT ContainerDstVT = ContainerVT0.changeVectorElementTypeToInteger(); 5815 auto [Mask, VL] = getDefaultVLOps(VT0, ContainerVT0, DL, DAG, Subtarget); 5816 if (Op.getOpcode() == ISD::VP_IS_FPCLASS) { 5817 Mask = Op.getOperand(2); 5818 MVT MaskContainerVT = 5819 getContainerForFixedLengthVector(Mask.getSimpleValueType()); 5820 Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget); 5821 VL = Op.getOperand(3); 5822 } 5823 Op0 = convertToScalableVector(ContainerVT0, Op0, DAG, Subtarget); 5824 5825 SDValue FPCLASS = DAG.getNode(RISCVISD::FCLASS_VL, DL, ContainerDstVT, Op0, 5826 Mask, VL, Op->getFlags()); 5827 5828 TDCMaskV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerDstVT, 5829 DAG.getUNDEF(ContainerDstVT), TDCMaskV, VL); 5830 if (IsOneBitMask) { 5831 SDValue VMSEQ = 5832 DAG.getNode(RISCVISD::SETCC_VL, DL, ContainerVT, 5833 {FPCLASS, TDCMaskV, DAG.getCondCode(ISD::SETEQ), 5834 DAG.getUNDEF(ContainerVT), Mask, VL}); 5835 return convertFromScalableVector(VT, VMSEQ, DAG, Subtarget); 5836 } 5837 SDValue AND = DAG.getNode(RISCVISD::AND_VL, DL, ContainerDstVT, FPCLASS, 5838 TDCMaskV, DAG.getUNDEF(ContainerDstVT), Mask, VL); 5839 5840 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 5841 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerDstVT, 5842 DAG.getUNDEF(ContainerDstVT), SplatZero, VL); 5843 5844 SDValue VMSNE = DAG.getNode(RISCVISD::SETCC_VL, DL, ContainerVT, 5845 {AND, SplatZero, DAG.getCondCode(ISD::SETNE), 5846 DAG.getUNDEF(ContainerVT), Mask, VL}); 5847 return convertFromScalableVector(VT, VMSNE, DAG, Subtarget); 5848 } 5849 5850 SDValue FCLASS = DAG.getNode(RISCVISD::FCLASS, DL, XLenVT, Op.getOperand(0)); 5851 SDValue AND = DAG.getNode(ISD::AND, DL, XLenVT, FCLASS, TDCMaskV); 5852 SDValue Res = DAG.getSetCC(DL, XLenVT, AND, DAG.getConstant(0, DL, XLenVT), 5853 ISD::CondCode::SETNE); 5854 return DAG.getNode(ISD::TRUNCATE, DL, VT, Res); 5855 } 5856 5857 // Lower fmaximum and fminimum. Unlike our fmax and fmin instructions, these 5858 // operations propagate nans. 5859 static SDValue lowerFMAXIMUM_FMINIMUM(SDValue Op, SelectionDAG &DAG, 5860 const RISCVSubtarget &Subtarget) { 5861 SDLoc DL(Op); 5862 MVT VT = Op.getSimpleValueType(); 5863 5864 SDValue X = Op.getOperand(0); 5865 SDValue Y = Op.getOperand(1); 5866 5867 if (!VT.isVector()) { 5868 MVT XLenVT = Subtarget.getXLenVT(); 5869 5870 // If X is a nan, replace Y with X. If Y is a nan, replace X with Y. This 5871 // ensures that when one input is a nan, the other will also be a nan 5872 // allowing the nan to propagate. If both inputs are nan, this will swap the 5873 // inputs which is harmless. 5874 5875 SDValue NewY = Y; 5876 if (!Op->getFlags().hasNoNaNs() && !DAG.isKnownNeverNaN(X)) { 5877 SDValue XIsNonNan = DAG.getSetCC(DL, XLenVT, X, X, ISD::SETOEQ); 5878 NewY = DAG.getSelect(DL, VT, XIsNonNan, Y, X); 5879 } 5880 5881 SDValue NewX = X; 5882 if (!Op->getFlags().hasNoNaNs() && !DAG.isKnownNeverNaN(Y)) { 5883 SDValue YIsNonNan = DAG.getSetCC(DL, XLenVT, Y, Y, ISD::SETOEQ); 5884 NewX = DAG.getSelect(DL, VT, YIsNonNan, X, Y); 5885 } 5886 5887 unsigned Opc = 5888 Op.getOpcode() == ISD::FMAXIMUM ? RISCVISD::FMAX : RISCVISD::FMIN; 5889 return DAG.getNode(Opc, DL, VT, NewX, NewY); 5890 } 5891 5892 // Check no NaNs before converting to fixed vector scalable. 5893 bool XIsNeverNan = Op->getFlags().hasNoNaNs() || DAG.isKnownNeverNaN(X); 5894 bool YIsNeverNan = Op->getFlags().hasNoNaNs() || DAG.isKnownNeverNaN(Y); 5895 5896 MVT ContainerVT = VT; 5897 if (VT.isFixedLengthVector()) { 5898 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 5899 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5900 Y = convertToScalableVector(ContainerVT, Y, DAG, Subtarget); 5901 } 5902 5903 SDValue Mask, VL; 5904 if (Op->isVPOpcode()) { 5905 Mask = Op.getOperand(2); 5906 if (VT.isFixedLengthVector()) 5907 Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG, 5908 Subtarget); 5909 VL = Op.getOperand(3); 5910 } else { 5911 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5912 } 5913 5914 SDValue NewY = Y; 5915 if (!XIsNeverNan) { 5916 SDValue XIsNonNan = DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(), 5917 {X, X, DAG.getCondCode(ISD::SETOEQ), 5918 DAG.getUNDEF(ContainerVT), Mask, VL}); 5919 NewY = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, XIsNonNan, Y, X, 5920 DAG.getUNDEF(ContainerVT), VL); 5921 } 5922 5923 SDValue NewX = X; 5924 if (!YIsNeverNan) { 5925 SDValue YIsNonNan = DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(), 5926 {Y, Y, DAG.getCondCode(ISD::SETOEQ), 5927 DAG.getUNDEF(ContainerVT), Mask, VL}); 5928 NewX = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, YIsNonNan, X, Y, 5929 DAG.getUNDEF(ContainerVT), VL); 5930 } 5931 5932 unsigned Opc = 5933 Op.getOpcode() == ISD::FMAXIMUM || Op->getOpcode() == ISD::VP_FMAXIMUM 5934 ? RISCVISD::VFMAX_VL 5935 : RISCVISD::VFMIN_VL; 5936 SDValue Res = DAG.getNode(Opc, DL, ContainerVT, NewX, NewY, 5937 DAG.getUNDEF(ContainerVT), Mask, VL); 5938 if (VT.isFixedLengthVector()) 5939 Res = convertFromScalableVector(VT, Res, DAG, Subtarget); 5940 return Res; 5941 } 5942 5943 /// Get a RISC-V target specified VL op for a given SDNode. 5944 static unsigned getRISCVVLOp(SDValue Op) { 5945 #define OP_CASE(NODE) \ 5946 case ISD::NODE: \ 5947 return RISCVISD::NODE##_VL; 5948 #define VP_CASE(NODE) \ 5949 case ISD::VP_##NODE: \ 5950 return RISCVISD::NODE##_VL; 5951 // clang-format off 5952 switch (Op.getOpcode()) { 5953 default: 5954 llvm_unreachable("don't have RISC-V specified VL op for this SDNode"); 5955 OP_CASE(ADD) 5956 OP_CASE(SUB) 5957 OP_CASE(MUL) 5958 OP_CASE(MULHS) 5959 OP_CASE(MULHU) 5960 OP_CASE(SDIV) 5961 OP_CASE(SREM) 5962 OP_CASE(UDIV) 5963 OP_CASE(UREM) 5964 OP_CASE(SHL) 5965 OP_CASE(SRA) 5966 OP_CASE(SRL) 5967 OP_CASE(ROTL) 5968 OP_CASE(ROTR) 5969 OP_CASE(BSWAP) 5970 OP_CASE(CTTZ) 5971 OP_CASE(CTLZ) 5972 OP_CASE(CTPOP) 5973 OP_CASE(BITREVERSE) 5974 OP_CASE(SADDSAT) 5975 OP_CASE(UADDSAT) 5976 OP_CASE(SSUBSAT) 5977 OP_CASE(USUBSAT) 5978 OP_CASE(AVGFLOORS) 5979 OP_CASE(AVGFLOORU) 5980 OP_CASE(AVGCEILS) 5981 OP_CASE(AVGCEILU) 5982 OP_CASE(FADD) 5983 OP_CASE(FSUB) 5984 OP_CASE(FMUL) 5985 OP_CASE(FDIV) 5986 OP_CASE(FNEG) 5987 OP_CASE(FABS) 5988 OP_CASE(FSQRT) 5989 OP_CASE(SMIN) 5990 OP_CASE(SMAX) 5991 OP_CASE(UMIN) 5992 OP_CASE(UMAX) 5993 OP_CASE(STRICT_FADD) 5994 OP_CASE(STRICT_FSUB) 5995 OP_CASE(STRICT_FMUL) 5996 OP_CASE(STRICT_FDIV) 5997 OP_CASE(STRICT_FSQRT) 5998 VP_CASE(ADD) // VP_ADD 5999 VP_CASE(SUB) // VP_SUB 6000 VP_CASE(MUL) // VP_MUL 6001 VP_CASE(SDIV) // VP_SDIV 6002 VP_CASE(SREM) // VP_SREM 6003 VP_CASE(UDIV) // VP_UDIV 6004 VP_CASE(UREM) // VP_UREM 6005 VP_CASE(SHL) // VP_SHL 6006 VP_CASE(FADD) // VP_FADD 6007 VP_CASE(FSUB) // VP_FSUB 6008 VP_CASE(FMUL) // VP_FMUL 6009 VP_CASE(FDIV) // VP_FDIV 6010 VP_CASE(FNEG) // VP_FNEG 6011 VP_CASE(FABS) // VP_FABS 6012 VP_CASE(SMIN) // VP_SMIN 6013 VP_CASE(SMAX) // VP_SMAX 6014 VP_CASE(UMIN) // VP_UMIN 6015 VP_CASE(UMAX) // VP_UMAX 6016 VP_CASE(FCOPYSIGN) // VP_FCOPYSIGN 6017 VP_CASE(SETCC) // VP_SETCC 6018 VP_CASE(SINT_TO_FP) // VP_SINT_TO_FP 6019 VP_CASE(UINT_TO_FP) // VP_UINT_TO_FP 6020 VP_CASE(BITREVERSE) // VP_BITREVERSE 6021 VP_CASE(SADDSAT) // VP_SADDSAT 6022 VP_CASE(UADDSAT) // VP_UADDSAT 6023 VP_CASE(SSUBSAT) // VP_SSUBSAT 6024 VP_CASE(USUBSAT) // VP_USUBSAT 6025 VP_CASE(BSWAP) // VP_BSWAP 6026 VP_CASE(CTLZ) // VP_CTLZ 6027 VP_CASE(CTTZ) // VP_CTTZ 6028 VP_CASE(CTPOP) // VP_CTPOP 6029 case ISD::CTLZ_ZERO_UNDEF: 6030 case ISD::VP_CTLZ_ZERO_UNDEF: 6031 return RISCVISD::CTLZ_VL; 6032 case ISD::CTTZ_ZERO_UNDEF: 6033 case ISD::VP_CTTZ_ZERO_UNDEF: 6034 return RISCVISD::CTTZ_VL; 6035 case ISD::FMA: 6036 case ISD::VP_FMA: 6037 return RISCVISD::VFMADD_VL; 6038 case ISD::STRICT_FMA: 6039 return RISCVISD::STRICT_VFMADD_VL; 6040 case ISD::AND: 6041 case ISD::VP_AND: 6042 if (Op.getSimpleValueType().getVectorElementType() == MVT::i1) 6043 return RISCVISD::VMAND_VL; 6044 return RISCVISD::AND_VL; 6045 case ISD::OR: 6046 case ISD::VP_OR: 6047 if (Op.getSimpleValueType().getVectorElementType() == MVT::i1) 6048 return RISCVISD::VMOR_VL; 6049 return RISCVISD::OR_VL; 6050 case ISD::XOR: 6051 case ISD::VP_XOR: 6052 if (Op.getSimpleValueType().getVectorElementType() == MVT::i1) 6053 return RISCVISD::VMXOR_VL; 6054 return RISCVISD::XOR_VL; 6055 case ISD::VP_SELECT: 6056 case ISD::VP_MERGE: 6057 return RISCVISD::VMERGE_VL; 6058 case ISD::VP_SRA: 6059 return RISCVISD::SRA_VL; 6060 case ISD::VP_SRL: 6061 return RISCVISD::SRL_VL; 6062 case ISD::VP_SQRT: 6063 return RISCVISD::FSQRT_VL; 6064 case ISD::VP_SIGN_EXTEND: 6065 return RISCVISD::VSEXT_VL; 6066 case ISD::VP_ZERO_EXTEND: 6067 return RISCVISD::VZEXT_VL; 6068 case ISD::VP_FP_TO_SINT: 6069 return RISCVISD::VFCVT_RTZ_X_F_VL; 6070 case ISD::VP_FP_TO_UINT: 6071 return RISCVISD::VFCVT_RTZ_XU_F_VL; 6072 case ISD::FMINNUM: 6073 case ISD::VP_FMINNUM: 6074 return RISCVISD::VFMIN_VL; 6075 case ISD::FMAXNUM: 6076 case ISD::VP_FMAXNUM: 6077 return RISCVISD::VFMAX_VL; 6078 case ISD::LRINT: 6079 case ISD::VP_LRINT: 6080 case ISD::LLRINT: 6081 case ISD::VP_LLRINT: 6082 return RISCVISD::VFCVT_X_F_VL; 6083 } 6084 // clang-format on 6085 #undef OP_CASE 6086 #undef VP_CASE 6087 } 6088 6089 /// Return true if a RISC-V target specified op has a merge operand. 6090 static bool hasMergeOp(unsigned Opcode) { 6091 assert(Opcode > RISCVISD::FIRST_NUMBER && 6092 Opcode <= RISCVISD::LAST_RISCV_STRICTFP_OPCODE && 6093 "not a RISC-V target specific op"); 6094 static_assert(RISCVISD::LAST_VL_VECTOR_OP - RISCVISD::FIRST_VL_VECTOR_OP == 6095 130 && 6096 RISCVISD::LAST_RISCV_STRICTFP_OPCODE - 6097 ISD::FIRST_TARGET_STRICTFP_OPCODE == 6098 21 && 6099 "adding target specific op should update this function"); 6100 if (Opcode >= RISCVISD::ADD_VL && Opcode <= RISCVISD::VFMAX_VL) 6101 return true; 6102 if (Opcode == RISCVISD::FCOPYSIGN_VL) 6103 return true; 6104 if (Opcode >= RISCVISD::VWMUL_VL && Opcode <= RISCVISD::VFWSUB_W_VL) 6105 return true; 6106 if (Opcode == RISCVISD::SETCC_VL) 6107 return true; 6108 if (Opcode >= RISCVISD::STRICT_FADD_VL && Opcode <= RISCVISD::STRICT_FDIV_VL) 6109 return true; 6110 if (Opcode == RISCVISD::VMERGE_VL) 6111 return true; 6112 return false; 6113 } 6114 6115 /// Return true if a RISC-V target specified op has a mask operand. 6116 static bool hasMaskOp(unsigned Opcode) { 6117 assert(Opcode > RISCVISD::FIRST_NUMBER && 6118 Opcode <= RISCVISD::LAST_RISCV_STRICTFP_OPCODE && 6119 "not a RISC-V target specific op"); 6120 static_assert(RISCVISD::LAST_VL_VECTOR_OP - RISCVISD::FIRST_VL_VECTOR_OP == 6121 130 && 6122 RISCVISD::LAST_RISCV_STRICTFP_OPCODE - 6123 ISD::FIRST_TARGET_STRICTFP_OPCODE == 6124 21 && 6125 "adding target specific op should update this function"); 6126 if (Opcode >= RISCVISD::TRUNCATE_VECTOR_VL && Opcode <= RISCVISD::SETCC_VL) 6127 return true; 6128 if (Opcode >= RISCVISD::VRGATHER_VX_VL && Opcode <= RISCVISD::VFIRST_VL) 6129 return true; 6130 if (Opcode >= RISCVISD::STRICT_FADD_VL && 6131 Opcode <= RISCVISD::STRICT_VFROUND_NOEXCEPT_VL) 6132 return true; 6133 return false; 6134 } 6135 6136 static SDValue SplitVectorOp(SDValue Op, SelectionDAG &DAG) { 6137 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(Op.getValueType()); 6138 SDLoc DL(Op); 6139 6140 SmallVector<SDValue, 4> LoOperands(Op.getNumOperands()); 6141 SmallVector<SDValue, 4> HiOperands(Op.getNumOperands()); 6142 6143 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 6144 if (!Op.getOperand(j).getValueType().isVector()) { 6145 LoOperands[j] = Op.getOperand(j); 6146 HiOperands[j] = Op.getOperand(j); 6147 continue; 6148 } 6149 std::tie(LoOperands[j], HiOperands[j]) = 6150 DAG.SplitVector(Op.getOperand(j), DL); 6151 } 6152 6153 SDValue LoRes = 6154 DAG.getNode(Op.getOpcode(), DL, LoVT, LoOperands, Op->getFlags()); 6155 SDValue HiRes = 6156 DAG.getNode(Op.getOpcode(), DL, HiVT, HiOperands, Op->getFlags()); 6157 6158 return DAG.getNode(ISD::CONCAT_VECTORS, DL, Op.getValueType(), LoRes, HiRes); 6159 } 6160 6161 static SDValue SplitVPOp(SDValue Op, SelectionDAG &DAG) { 6162 assert(ISD::isVPOpcode(Op.getOpcode()) && "Not a VP op"); 6163 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(Op.getValueType()); 6164 SDLoc DL(Op); 6165 6166 SmallVector<SDValue, 4> LoOperands(Op.getNumOperands()); 6167 SmallVector<SDValue, 4> HiOperands(Op.getNumOperands()); 6168 6169 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 6170 if (ISD::getVPExplicitVectorLengthIdx(Op.getOpcode()) == j) { 6171 std::tie(LoOperands[j], HiOperands[j]) = 6172 DAG.SplitEVL(Op.getOperand(j), Op.getValueType(), DL); 6173 continue; 6174 } 6175 if (!Op.getOperand(j).getValueType().isVector()) { 6176 LoOperands[j] = Op.getOperand(j); 6177 HiOperands[j] = Op.getOperand(j); 6178 continue; 6179 } 6180 std::tie(LoOperands[j], HiOperands[j]) = 6181 DAG.SplitVector(Op.getOperand(j), DL); 6182 } 6183 6184 SDValue LoRes = 6185 DAG.getNode(Op.getOpcode(), DL, LoVT, LoOperands, Op->getFlags()); 6186 SDValue HiRes = 6187 DAG.getNode(Op.getOpcode(), DL, HiVT, HiOperands, Op->getFlags()); 6188 6189 return DAG.getNode(ISD::CONCAT_VECTORS, DL, Op.getValueType(), LoRes, HiRes); 6190 } 6191 6192 static SDValue SplitVectorReductionOp(SDValue Op, SelectionDAG &DAG) { 6193 SDLoc DL(Op); 6194 6195 auto [Lo, Hi] = DAG.SplitVector(Op.getOperand(1), DL); 6196 auto [MaskLo, MaskHi] = DAG.SplitVector(Op.getOperand(2), DL); 6197 auto [EVLLo, EVLHi] = 6198 DAG.SplitEVL(Op.getOperand(3), Op.getOperand(1).getValueType(), DL); 6199 6200 SDValue ResLo = 6201 DAG.getNode(Op.getOpcode(), DL, Op.getValueType(), 6202 {Op.getOperand(0), Lo, MaskLo, EVLLo}, Op->getFlags()); 6203 return DAG.getNode(Op.getOpcode(), DL, Op.getValueType(), 6204 {ResLo, Hi, MaskHi, EVLHi}, Op->getFlags()); 6205 } 6206 6207 static SDValue SplitStrictFPVectorOp(SDValue Op, SelectionDAG &DAG) { 6208 6209 assert(Op->isStrictFPOpcode()); 6210 6211 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(Op->getValueType(0)); 6212 6213 SDVTList LoVTs = DAG.getVTList(LoVT, Op->getValueType(1)); 6214 SDVTList HiVTs = DAG.getVTList(HiVT, Op->getValueType(1)); 6215 6216 SDLoc DL(Op); 6217 6218 SmallVector<SDValue, 4> LoOperands(Op.getNumOperands()); 6219 SmallVector<SDValue, 4> HiOperands(Op.getNumOperands()); 6220 6221 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 6222 if (!Op.getOperand(j).getValueType().isVector()) { 6223 LoOperands[j] = Op.getOperand(j); 6224 HiOperands[j] = Op.getOperand(j); 6225 continue; 6226 } 6227 std::tie(LoOperands[j], HiOperands[j]) = 6228 DAG.SplitVector(Op.getOperand(j), DL); 6229 } 6230 6231 SDValue LoRes = 6232 DAG.getNode(Op.getOpcode(), DL, LoVTs, LoOperands, Op->getFlags()); 6233 HiOperands[0] = LoRes.getValue(1); 6234 SDValue HiRes = 6235 DAG.getNode(Op.getOpcode(), DL, HiVTs, HiOperands, Op->getFlags()); 6236 6237 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, Op->getValueType(0), 6238 LoRes.getValue(0), HiRes.getValue(0)); 6239 return DAG.getMergeValues({V, HiRes.getValue(1)}, DL); 6240 } 6241 6242 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 6243 SelectionDAG &DAG) const { 6244 switch (Op.getOpcode()) { 6245 default: 6246 report_fatal_error("unimplemented operand"); 6247 case ISD::ATOMIC_FENCE: 6248 return LowerATOMIC_FENCE(Op, DAG, Subtarget); 6249 case ISD::GlobalAddress: 6250 return lowerGlobalAddress(Op, DAG); 6251 case ISD::BlockAddress: 6252 return lowerBlockAddress(Op, DAG); 6253 case ISD::ConstantPool: 6254 return lowerConstantPool(Op, DAG); 6255 case ISD::JumpTable: 6256 return lowerJumpTable(Op, DAG); 6257 case ISD::GlobalTLSAddress: 6258 return lowerGlobalTLSAddress(Op, DAG); 6259 case ISD::Constant: 6260 return lowerConstant(Op, DAG, Subtarget); 6261 case ISD::SELECT: 6262 return lowerSELECT(Op, DAG); 6263 case ISD::BRCOND: 6264 return lowerBRCOND(Op, DAG); 6265 case ISD::VASTART: 6266 return lowerVASTART(Op, DAG); 6267 case ISD::FRAMEADDR: 6268 return lowerFRAMEADDR(Op, DAG); 6269 case ISD::RETURNADDR: 6270 return lowerRETURNADDR(Op, DAG); 6271 case ISD::SADDO: 6272 case ISD::SSUBO: 6273 return lowerSADDO_SSUBO(Op, DAG); 6274 case ISD::SMULO: 6275 return lowerSMULO(Op, DAG); 6276 case ISD::SHL_PARTS: 6277 return lowerShiftLeftParts(Op, DAG); 6278 case ISD::SRA_PARTS: 6279 return lowerShiftRightParts(Op, DAG, true); 6280 case ISD::SRL_PARTS: 6281 return lowerShiftRightParts(Op, DAG, false); 6282 case ISD::ROTL: 6283 case ISD::ROTR: 6284 if (Op.getValueType().isFixedLengthVector()) { 6285 assert(Subtarget.hasStdExtZvkb()); 6286 return lowerToScalableOp(Op, DAG); 6287 } 6288 assert(Subtarget.hasVendorXTHeadBb() && 6289 !(Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) && 6290 "Unexpected custom legalization"); 6291 // XTHeadBb only supports rotate by constant. 6292 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6293 return SDValue(); 6294 return Op; 6295 case ISD::BITCAST: { 6296 SDLoc DL(Op); 6297 EVT VT = Op.getValueType(); 6298 SDValue Op0 = Op.getOperand(0); 6299 EVT Op0VT = Op0.getValueType(); 6300 MVT XLenVT = Subtarget.getXLenVT(); 6301 if (VT == MVT::f16 && Op0VT == MVT::i16 && 6302 Subtarget.hasStdExtZfhminOrZhinxmin()) { 6303 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 6304 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 6305 return FPConv; 6306 } 6307 if (VT == MVT::bf16 && Op0VT == MVT::i16 && 6308 Subtarget.hasStdExtZfbfmin()) { 6309 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 6310 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::bf16, NewOp0); 6311 return FPConv; 6312 } 6313 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 6314 Subtarget.hasStdExtFOrZfinx()) { 6315 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 6316 SDValue FPConv = 6317 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 6318 return FPConv; 6319 } 6320 if (VT == MVT::f64 && Op0VT == MVT::i64 && XLenVT == MVT::i32) { 6321 SDValue Lo, Hi; 6322 std::tie(Lo, Hi) = DAG.SplitScalar(Op0, DL, MVT::i32, MVT::i32); 6323 SDValue RetReg = 6324 DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 6325 return RetReg; 6326 } 6327 6328 // Consider other scalar<->scalar casts as legal if the types are legal. 6329 // Otherwise expand them. 6330 if (!VT.isVector() && !Op0VT.isVector()) { 6331 if (isTypeLegal(VT) && isTypeLegal(Op0VT)) 6332 return Op; 6333 return SDValue(); 6334 } 6335 6336 assert(!VT.isScalableVector() && !Op0VT.isScalableVector() && 6337 "Unexpected types"); 6338 6339 if (VT.isFixedLengthVector()) { 6340 // We can handle fixed length vector bitcasts with a simple replacement 6341 // in isel. 6342 if (Op0VT.isFixedLengthVector()) 6343 return Op; 6344 // When bitcasting from scalar to fixed-length vector, insert the scalar 6345 // into a one-element vector of the result type, and perform a vector 6346 // bitcast. 6347 if (!Op0VT.isVector()) { 6348 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 6349 if (!isTypeLegal(BVT)) 6350 return SDValue(); 6351 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 6352 DAG.getUNDEF(BVT), Op0, 6353 DAG.getVectorIdxConstant(0, DL))); 6354 } 6355 return SDValue(); 6356 } 6357 // Custom-legalize bitcasts from fixed-length vector types to scalar types 6358 // thus: bitcast the vector to a one-element vector type whose element type 6359 // is the same as the result type, and extract the first element. 6360 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 6361 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6362 if (!isTypeLegal(BVT)) 6363 return SDValue(); 6364 SDValue BVec = DAG.getBitcast(BVT, Op0); 6365 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6366 DAG.getVectorIdxConstant(0, DL)); 6367 } 6368 return SDValue(); 6369 } 6370 case ISD::INTRINSIC_WO_CHAIN: 6371 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 6372 case ISD::INTRINSIC_W_CHAIN: 6373 return LowerINTRINSIC_W_CHAIN(Op, DAG); 6374 case ISD::INTRINSIC_VOID: 6375 return LowerINTRINSIC_VOID(Op, DAG); 6376 case ISD::IS_FPCLASS: 6377 return LowerIS_FPCLASS(Op, DAG); 6378 case ISD::BITREVERSE: { 6379 MVT VT = Op.getSimpleValueType(); 6380 if (VT.isFixedLengthVector()) { 6381 assert(Subtarget.hasStdExtZvbb()); 6382 return lowerToScalableOp(Op, DAG); 6383 } 6384 SDLoc DL(Op); 6385 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 6386 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 6387 // Expand bitreverse to a bswap(rev8) followed by brev8. 6388 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 6389 return DAG.getNode(RISCVISD::BREV8, DL, VT, BSwap); 6390 } 6391 case ISD::TRUNCATE: 6392 // Only custom-lower vector truncates 6393 if (!Op.getSimpleValueType().isVector()) 6394 return Op; 6395 return lowerVectorTruncLike(Op, DAG); 6396 case ISD::ANY_EXTEND: 6397 case ISD::ZERO_EXTEND: 6398 if (Op.getOperand(0).getValueType().isVector() && 6399 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 6400 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 6401 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 6402 case ISD::SIGN_EXTEND: 6403 if (Op.getOperand(0).getValueType().isVector() && 6404 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 6405 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 6406 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 6407 case ISD::SPLAT_VECTOR_PARTS: 6408 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 6409 case ISD::INSERT_VECTOR_ELT: 6410 return lowerINSERT_VECTOR_ELT(Op, DAG); 6411 case ISD::EXTRACT_VECTOR_ELT: 6412 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 6413 case ISD::SCALAR_TO_VECTOR: { 6414 MVT VT = Op.getSimpleValueType(); 6415 SDLoc DL(Op); 6416 SDValue Scalar = Op.getOperand(0); 6417 if (VT.getVectorElementType() == MVT::i1) { 6418 MVT WideVT = VT.changeVectorElementType(MVT::i8); 6419 SDValue V = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, WideVT, Scalar); 6420 return DAG.getNode(ISD::TRUNCATE, DL, VT, V); 6421 } 6422 MVT ContainerVT = VT; 6423 if (VT.isFixedLengthVector()) 6424 ContainerVT = getContainerForFixedLengthVector(VT); 6425 SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6426 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Scalar); 6427 SDValue V = DAG.getNode(RISCVISD::VMV_S_X_VL, DL, ContainerVT, 6428 DAG.getUNDEF(ContainerVT), Scalar, VL); 6429 if (VT.isFixedLengthVector()) 6430 V = convertFromScalableVector(VT, V, DAG, Subtarget); 6431 return V; 6432 } 6433 case ISD::VSCALE: { 6434 MVT XLenVT = Subtarget.getXLenVT(); 6435 MVT VT = Op.getSimpleValueType(); 6436 SDLoc DL(Op); 6437 SDValue Res = DAG.getNode(RISCVISD::READ_VLENB, DL, XLenVT); 6438 // We define our scalable vector types for lmul=1 to use a 64 bit known 6439 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 6440 // vscale as VLENB / 8. 6441 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 6442 if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock) 6443 report_fatal_error("Support for VLEN==32 is incomplete."); 6444 // We assume VLENB is a multiple of 8. We manually choose the best shift 6445 // here because SimplifyDemandedBits isn't always able to simplify it. 6446 uint64_t Val = Op.getConstantOperandVal(0); 6447 if (isPowerOf2_64(Val)) { 6448 uint64_t Log2 = Log2_64(Val); 6449 if (Log2 < 3) 6450 Res = DAG.getNode(ISD::SRL, DL, XLenVT, Res, 6451 DAG.getConstant(3 - Log2, DL, VT)); 6452 else if (Log2 > 3) 6453 Res = DAG.getNode(ISD::SHL, DL, XLenVT, Res, 6454 DAG.getConstant(Log2 - 3, DL, XLenVT)); 6455 } else if ((Val % 8) == 0) { 6456 // If the multiplier is a multiple of 8, scale it down to avoid needing 6457 // to shift the VLENB value. 6458 Res = DAG.getNode(ISD::MUL, DL, XLenVT, Res, 6459 DAG.getConstant(Val / 8, DL, XLenVT)); 6460 } else { 6461 SDValue VScale = DAG.getNode(ISD::SRL, DL, XLenVT, Res, 6462 DAG.getConstant(3, DL, XLenVT)); 6463 Res = DAG.getNode(ISD::MUL, DL, XLenVT, VScale, 6464 DAG.getConstant(Val, DL, XLenVT)); 6465 } 6466 return DAG.getNode(ISD::TRUNCATE, DL, VT, Res); 6467 } 6468 case ISD::FPOWI: { 6469 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 6470 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 6471 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 6472 Op.getOperand(1).getValueType() == MVT::i32) { 6473 SDLoc DL(Op); 6474 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 6475 SDValue Powi = 6476 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 6477 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 6478 DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)); 6479 } 6480 return SDValue(); 6481 } 6482 case ISD::FMAXIMUM: 6483 case ISD::FMINIMUM: 6484 if (Op.getValueType() == MVT::nxv32f16 && 6485 (Subtarget.hasVInstructionsF16Minimal() && 6486 !Subtarget.hasVInstructionsF16())) 6487 return SplitVectorOp(Op, DAG); 6488 return lowerFMAXIMUM_FMINIMUM(Op, DAG, Subtarget); 6489 case ISD::FP_EXTEND: { 6490 SDLoc DL(Op); 6491 EVT VT = Op.getValueType(); 6492 SDValue Op0 = Op.getOperand(0); 6493 EVT Op0VT = Op0.getValueType(); 6494 if (VT == MVT::f32 && Op0VT == MVT::bf16 && Subtarget.hasStdExtZfbfmin()) 6495 return DAG.getNode(RISCVISD::FP_EXTEND_BF16, DL, MVT::f32, Op0); 6496 if (VT == MVT::f64 && Op0VT == MVT::bf16 && Subtarget.hasStdExtZfbfmin()) { 6497 SDValue FloatVal = 6498 DAG.getNode(RISCVISD::FP_EXTEND_BF16, DL, MVT::f32, Op0); 6499 return DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, FloatVal); 6500 } 6501 6502 if (!Op.getValueType().isVector()) 6503 return Op; 6504 return lowerVectorFPExtendOrRoundLike(Op, DAG); 6505 } 6506 case ISD::FP_ROUND: { 6507 SDLoc DL(Op); 6508 EVT VT = Op.getValueType(); 6509 SDValue Op0 = Op.getOperand(0); 6510 EVT Op0VT = Op0.getValueType(); 6511 if (VT == MVT::bf16 && Op0VT == MVT::f32 && Subtarget.hasStdExtZfbfmin()) 6512 return DAG.getNode(RISCVISD::FP_ROUND_BF16, DL, MVT::bf16, Op0); 6513 if (VT == MVT::bf16 && Op0VT == MVT::f64 && Subtarget.hasStdExtZfbfmin() && 6514 Subtarget.hasStdExtDOrZdinx()) { 6515 SDValue FloatVal = 6516 DAG.getNode(ISD::FP_ROUND, DL, MVT::f32, Op0, 6517 DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)); 6518 return DAG.getNode(RISCVISD::FP_ROUND_BF16, DL, MVT::bf16, FloatVal); 6519 } 6520 6521 if (!Op.getValueType().isVector()) 6522 return Op; 6523 return lowerVectorFPExtendOrRoundLike(Op, DAG); 6524 } 6525 case ISD::STRICT_FP_ROUND: 6526 case ISD::STRICT_FP_EXTEND: 6527 return lowerStrictFPExtendOrRoundLike(Op, DAG); 6528 case ISD::SINT_TO_FP: 6529 case ISD::UINT_TO_FP: 6530 if (Op.getValueType().isVector() && 6531 Op.getValueType().getScalarType() == MVT::f16 && 6532 (Subtarget.hasVInstructionsF16Minimal() && 6533 !Subtarget.hasVInstructionsF16())) { 6534 if (Op.getValueType() == MVT::nxv32f16) 6535 return SplitVectorOp(Op, DAG); 6536 // int -> f32 6537 SDLoc DL(Op); 6538 MVT NVT = 6539 MVT::getVectorVT(MVT::f32, Op.getValueType().getVectorElementCount()); 6540 SDValue NC = DAG.getNode(Op.getOpcode(), DL, NVT, Op->ops()); 6541 // f32 -> f16 6542 return DAG.getNode(ISD::FP_ROUND, DL, Op.getValueType(), NC, 6543 DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)); 6544 } 6545 [[fallthrough]]; 6546 case ISD::FP_TO_SINT: 6547 case ISD::FP_TO_UINT: 6548 if (SDValue Op1 = Op.getOperand(0); 6549 Op1.getValueType().isVector() && 6550 Op1.getValueType().getScalarType() == MVT::f16 && 6551 (Subtarget.hasVInstructionsF16Minimal() && 6552 !Subtarget.hasVInstructionsF16())) { 6553 if (Op1.getValueType() == MVT::nxv32f16) 6554 return SplitVectorOp(Op, DAG); 6555 // f16 -> f32 6556 SDLoc DL(Op); 6557 MVT NVT = MVT::getVectorVT(MVT::f32, 6558 Op1.getValueType().getVectorElementCount()); 6559 SDValue WidenVec = DAG.getNode(ISD::FP_EXTEND, DL, NVT, Op1); 6560 // f32 -> int 6561 return DAG.getNode(Op.getOpcode(), DL, Op.getValueType(), WidenVec); 6562 } 6563 [[fallthrough]]; 6564 case ISD::STRICT_FP_TO_SINT: 6565 case ISD::STRICT_FP_TO_UINT: 6566 case ISD::STRICT_SINT_TO_FP: 6567 case ISD::STRICT_UINT_TO_FP: { 6568 // RVV can only do fp<->int conversions to types half/double the size as 6569 // the source. We custom-lower any conversions that do two hops into 6570 // sequences. 6571 MVT VT = Op.getSimpleValueType(); 6572 if (!VT.isVector()) 6573 return Op; 6574 SDLoc DL(Op); 6575 bool IsStrict = Op->isStrictFPOpcode(); 6576 SDValue Src = Op.getOperand(0 + IsStrict); 6577 MVT EltVT = VT.getVectorElementType(); 6578 MVT SrcVT = Src.getSimpleValueType(); 6579 MVT SrcEltVT = SrcVT.getVectorElementType(); 6580 unsigned EltSize = EltVT.getSizeInBits(); 6581 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 6582 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 6583 "Unexpected vector element types"); 6584 6585 bool IsInt2FP = SrcEltVT.isInteger(); 6586 // Widening conversions 6587 if (EltSize > (2 * SrcEltSize)) { 6588 if (IsInt2FP) { 6589 // Do a regular integer sign/zero extension then convert to float. 6590 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize / 2), 6591 VT.getVectorElementCount()); 6592 unsigned ExtOpcode = (Op.getOpcode() == ISD::UINT_TO_FP || 6593 Op.getOpcode() == ISD::STRICT_UINT_TO_FP) 6594 ? ISD::ZERO_EXTEND 6595 : ISD::SIGN_EXTEND; 6596 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 6597 if (IsStrict) 6598 return DAG.getNode(Op.getOpcode(), DL, Op->getVTList(), 6599 Op.getOperand(0), Ext); 6600 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 6601 } 6602 // FP2Int 6603 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 6604 // Do one doubling fp_extend then complete the operation by converting 6605 // to int. 6606 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 6607 if (IsStrict) { 6608 auto [FExt, Chain] = 6609 DAG.getStrictFPExtendOrRound(Src, Op.getOperand(0), DL, InterimFVT); 6610 return DAG.getNode(Op.getOpcode(), DL, Op->getVTList(), Chain, FExt); 6611 } 6612 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 6613 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 6614 } 6615 6616 // Narrowing conversions 6617 if (SrcEltSize > (2 * EltSize)) { 6618 if (IsInt2FP) { 6619 // One narrowing int_to_fp, then an fp_round. 6620 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 6621 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 6622 if (IsStrict) { 6623 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, 6624 DAG.getVTList(InterimFVT, MVT::Other), 6625 Op.getOperand(0), Src); 6626 SDValue Chain = Int2FP.getValue(1); 6627 return DAG.getStrictFPExtendOrRound(Int2FP, Chain, DL, VT).first; 6628 } 6629 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 6630 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 6631 } 6632 // FP2Int 6633 // One narrowing fp_to_int, then truncate the integer. If the float isn't 6634 // representable by the integer, the result is poison. 6635 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6636 VT.getVectorElementCount()); 6637 if (IsStrict) { 6638 SDValue FP2Int = 6639 DAG.getNode(Op.getOpcode(), DL, DAG.getVTList(IVecVT, MVT::Other), 6640 Op.getOperand(0), Src); 6641 SDValue Res = DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 6642 return DAG.getMergeValues({Res, FP2Int.getValue(1)}, DL); 6643 } 6644 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 6645 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 6646 } 6647 6648 // Scalable vectors can exit here. Patterns will handle equally-sized 6649 // conversions halving/doubling ones. 6650 if (!VT.isFixedLengthVector()) 6651 return Op; 6652 6653 // For fixed-length vectors we lower to a custom "VL" node. 6654 unsigned RVVOpc = 0; 6655 switch (Op.getOpcode()) { 6656 default: 6657 llvm_unreachable("Impossible opcode"); 6658 case ISD::FP_TO_SINT: 6659 RVVOpc = RISCVISD::VFCVT_RTZ_X_F_VL; 6660 break; 6661 case ISD::FP_TO_UINT: 6662 RVVOpc = RISCVISD::VFCVT_RTZ_XU_F_VL; 6663 break; 6664 case ISD::SINT_TO_FP: 6665 RVVOpc = RISCVISD::SINT_TO_FP_VL; 6666 break; 6667 case ISD::UINT_TO_FP: 6668 RVVOpc = RISCVISD::UINT_TO_FP_VL; 6669 break; 6670 case ISD::STRICT_FP_TO_SINT: 6671 RVVOpc = RISCVISD::STRICT_VFCVT_RTZ_X_F_VL; 6672 break; 6673 case ISD::STRICT_FP_TO_UINT: 6674 RVVOpc = RISCVISD::STRICT_VFCVT_RTZ_XU_F_VL; 6675 break; 6676 case ISD::STRICT_SINT_TO_FP: 6677 RVVOpc = RISCVISD::STRICT_SINT_TO_FP_VL; 6678 break; 6679 case ISD::STRICT_UINT_TO_FP: 6680 RVVOpc = RISCVISD::STRICT_UINT_TO_FP_VL; 6681 break; 6682 } 6683 6684 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6685 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 6686 assert(ContainerVT.getVectorElementCount() == SrcContainerVT.getVectorElementCount() && 6687 "Expected same element count"); 6688 6689 auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6690 6691 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 6692 if (IsStrict) { 6693 Src = DAG.getNode(RVVOpc, DL, DAG.getVTList(ContainerVT, MVT::Other), 6694 Op.getOperand(0), Src, Mask, VL); 6695 SDValue SubVec = convertFromScalableVector(VT, Src, DAG, Subtarget); 6696 return DAG.getMergeValues({SubVec, Src.getValue(1)}, DL); 6697 } 6698 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 6699 return convertFromScalableVector(VT, Src, DAG, Subtarget); 6700 } 6701 case ISD::FP_TO_SINT_SAT: 6702 case ISD::FP_TO_UINT_SAT: 6703 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 6704 case ISD::FP_TO_BF16: { 6705 // Custom lower to ensure the libcall return is passed in an FPR on hard 6706 // float ABIs. 6707 assert(!Subtarget.isSoftFPABI() && "Unexpected custom legalization"); 6708 SDLoc DL(Op); 6709 MakeLibCallOptions CallOptions; 6710 RTLIB::Libcall LC = 6711 RTLIB::getFPROUND(Op.getOperand(0).getValueType(), MVT::bf16); 6712 SDValue Res = 6713 makeLibCall(DAG, LC, MVT::f32, Op.getOperand(0), CallOptions, DL).first; 6714 if (Subtarget.is64Bit() && !RV64LegalI32) 6715 return DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Res); 6716 return DAG.getBitcast(MVT::i32, Res); 6717 } 6718 case ISD::BF16_TO_FP: { 6719 assert(Subtarget.hasStdExtFOrZfinx() && "Unexpected custom legalization"); 6720 MVT VT = Op.getSimpleValueType(); 6721 SDLoc DL(Op); 6722 Op = DAG.getNode( 6723 ISD::SHL, DL, Op.getOperand(0).getValueType(), Op.getOperand(0), 6724 DAG.getShiftAmountConstant(16, Op.getOperand(0).getValueType(), DL)); 6725 SDValue Res = Subtarget.is64Bit() 6726 ? DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Op) 6727 : DAG.getBitcast(MVT::f32, Op); 6728 // fp_extend if the target VT is bigger than f32. 6729 if (VT != MVT::f32) 6730 return DAG.getNode(ISD::FP_EXTEND, DL, VT, Res); 6731 return Res; 6732 } 6733 case ISD::FP_TO_FP16: { 6734 // Custom lower to ensure the libcall return is passed in an FPR on hard 6735 // float ABIs. 6736 assert(Subtarget.hasStdExtFOrZfinx() && "Unexpected custom legalisation"); 6737 SDLoc DL(Op); 6738 MakeLibCallOptions CallOptions; 6739 RTLIB::Libcall LC = 6740 RTLIB::getFPROUND(Op.getOperand(0).getValueType(), MVT::f16); 6741 SDValue Res = 6742 makeLibCall(DAG, LC, MVT::f32, Op.getOperand(0), CallOptions, DL).first; 6743 if (Subtarget.is64Bit() && !RV64LegalI32) 6744 return DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Res); 6745 return DAG.getBitcast(MVT::i32, Res); 6746 } 6747 case ISD::FP16_TO_FP: { 6748 // Custom lower to ensure the libcall argument is passed in an FPR on hard 6749 // float ABIs. 6750 assert(Subtarget.hasStdExtFOrZfinx() && "Unexpected custom legalisation"); 6751 SDLoc DL(Op); 6752 MakeLibCallOptions CallOptions; 6753 SDValue Arg = Subtarget.is64Bit() 6754 ? DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, 6755 Op.getOperand(0)) 6756 : DAG.getBitcast(MVT::f32, Op.getOperand(0)); 6757 SDValue Res = 6758 makeLibCall(DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Arg, CallOptions, DL) 6759 .first; 6760 return Res; 6761 } 6762 case ISD::FTRUNC: 6763 case ISD::FCEIL: 6764 case ISD::FFLOOR: 6765 case ISD::FNEARBYINT: 6766 case ISD::FRINT: 6767 case ISD::FROUND: 6768 case ISD::FROUNDEVEN: 6769 return lowerFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget); 6770 case ISD::LRINT: 6771 case ISD::LLRINT: 6772 return lowerVectorXRINT(Op, DAG, Subtarget); 6773 case ISD::VECREDUCE_ADD: 6774 case ISD::VECREDUCE_UMAX: 6775 case ISD::VECREDUCE_SMAX: 6776 case ISD::VECREDUCE_UMIN: 6777 case ISD::VECREDUCE_SMIN: 6778 return lowerVECREDUCE(Op, DAG); 6779 case ISD::VECREDUCE_AND: 6780 case ISD::VECREDUCE_OR: 6781 case ISD::VECREDUCE_XOR: 6782 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 6783 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 6784 return lowerVECREDUCE(Op, DAG); 6785 case ISD::VECREDUCE_FADD: 6786 case ISD::VECREDUCE_SEQ_FADD: 6787 case ISD::VECREDUCE_FMIN: 6788 case ISD::VECREDUCE_FMAX: 6789 case ISD::VECREDUCE_FMAXIMUM: 6790 case ISD::VECREDUCE_FMINIMUM: 6791 return lowerFPVECREDUCE(Op, DAG); 6792 case ISD::VP_REDUCE_ADD: 6793 case ISD::VP_REDUCE_UMAX: 6794 case ISD::VP_REDUCE_SMAX: 6795 case ISD::VP_REDUCE_UMIN: 6796 case ISD::VP_REDUCE_SMIN: 6797 case ISD::VP_REDUCE_FADD: 6798 case ISD::VP_REDUCE_SEQ_FADD: 6799 case ISD::VP_REDUCE_FMIN: 6800 case ISD::VP_REDUCE_FMAX: 6801 case ISD::VP_REDUCE_FMINIMUM: 6802 case ISD::VP_REDUCE_FMAXIMUM: 6803 if (Op.getOperand(1).getValueType() == MVT::nxv32f16 && 6804 (Subtarget.hasVInstructionsF16Minimal() && 6805 !Subtarget.hasVInstructionsF16())) 6806 return SplitVectorReductionOp(Op, DAG); 6807 return lowerVPREDUCE(Op, DAG); 6808 case ISD::VP_REDUCE_AND: 6809 case ISD::VP_REDUCE_OR: 6810 case ISD::VP_REDUCE_XOR: 6811 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 6812 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 6813 return lowerVPREDUCE(Op, DAG); 6814 case ISD::VP_CTTZ_ELTS: 6815 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 6816 return lowerVPCttzElements(Op, DAG); 6817 case ISD::UNDEF: { 6818 MVT ContainerVT = getContainerForFixedLengthVector(Op.getSimpleValueType()); 6819 return convertFromScalableVector(Op.getSimpleValueType(), 6820 DAG.getUNDEF(ContainerVT), DAG, Subtarget); 6821 } 6822 case ISD::INSERT_SUBVECTOR: 6823 return lowerINSERT_SUBVECTOR(Op, DAG); 6824 case ISD::EXTRACT_SUBVECTOR: 6825 return lowerEXTRACT_SUBVECTOR(Op, DAG); 6826 case ISD::VECTOR_DEINTERLEAVE: 6827 return lowerVECTOR_DEINTERLEAVE(Op, DAG); 6828 case ISD::VECTOR_INTERLEAVE: 6829 return lowerVECTOR_INTERLEAVE(Op, DAG); 6830 case ISD::STEP_VECTOR: 6831 return lowerSTEP_VECTOR(Op, DAG); 6832 case ISD::VECTOR_REVERSE: 6833 return lowerVECTOR_REVERSE(Op, DAG); 6834 case ISD::VECTOR_SPLICE: 6835 return lowerVECTOR_SPLICE(Op, DAG); 6836 case ISD::BUILD_VECTOR: 6837 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 6838 case ISD::SPLAT_VECTOR: 6839 if ((Op.getValueType().getScalarType() == MVT::f16 && 6840 (Subtarget.hasVInstructionsF16Minimal() && 6841 Subtarget.hasStdExtZfhminOrZhinxmin() && 6842 !Subtarget.hasVInstructionsF16())) || 6843 (Op.getValueType().getScalarType() == MVT::bf16 && 6844 (Subtarget.hasVInstructionsBF16() && Subtarget.hasStdExtZfbfmin()))) { 6845 if (Op.getValueType() == MVT::nxv32f16 || 6846 Op.getValueType() == MVT::nxv32bf16) 6847 return SplitVectorOp(Op, DAG); 6848 SDLoc DL(Op); 6849 SDValue NewScalar = 6850 DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 6851 SDValue NewSplat = DAG.getNode( 6852 ISD::SPLAT_VECTOR, DL, 6853 MVT::getVectorVT(MVT::f32, Op.getValueType().getVectorElementCount()), 6854 NewScalar); 6855 return DAG.getNode(ISD::FP_ROUND, DL, Op.getValueType(), NewSplat, 6856 DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)); 6857 } 6858 if (Op.getValueType().getVectorElementType() == MVT::i1) 6859 return lowerVectorMaskSplat(Op, DAG); 6860 return SDValue(); 6861 case ISD::VECTOR_SHUFFLE: 6862 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 6863 case ISD::CONCAT_VECTORS: { 6864 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 6865 // better than going through the stack, as the default expansion does. 6866 SDLoc DL(Op); 6867 MVT VT = Op.getSimpleValueType(); 6868 MVT ContainerVT = VT; 6869 if (VT.isFixedLengthVector()) 6870 ContainerVT = ::getContainerForFixedLengthVector(DAG, VT, Subtarget); 6871 6872 // Recursively split concat_vectors with more than 2 operands: 6873 // 6874 // concat_vector op1, op2, op3, op4 6875 // -> 6876 // concat_vector (concat_vector op1, op2), (concat_vector op3, op4) 6877 // 6878 // This reduces the length of the chain of vslideups and allows us to 6879 // perform the vslideups at a smaller LMUL, limited to MF2. 6880 if (Op.getNumOperands() > 2 && 6881 ContainerVT.bitsGE(getLMUL1VT(ContainerVT))) { 6882 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 6883 assert(isPowerOf2_32(Op.getNumOperands())); 6884 size_t HalfNumOps = Op.getNumOperands() / 2; 6885 SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, DL, HalfVT, 6886 Op->ops().take_front(HalfNumOps)); 6887 SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, DL, HalfVT, 6888 Op->ops().drop_front(HalfNumOps)); 6889 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 6890 } 6891 6892 unsigned NumOpElts = 6893 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 6894 SDValue Vec = DAG.getUNDEF(VT); 6895 for (const auto &OpIdx : enumerate(Op->ops())) { 6896 SDValue SubVec = OpIdx.value(); 6897 // Don't insert undef subvectors. 6898 if (SubVec.isUndef()) 6899 continue; 6900 Vec = 6901 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 6902 DAG.getVectorIdxConstant(OpIdx.index() * NumOpElts, DL)); 6903 } 6904 return Vec; 6905 } 6906 case ISD::LOAD: 6907 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 6908 return V; 6909 if (Op.getValueType().isFixedLengthVector()) 6910 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 6911 return Op; 6912 case ISD::STORE: 6913 if (auto V = expandUnalignedRVVStore(Op, DAG)) 6914 return V; 6915 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 6916 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 6917 return Op; 6918 case ISD::MLOAD: 6919 case ISD::VP_LOAD: 6920 return lowerMaskedLoad(Op, DAG); 6921 case ISD::MSTORE: 6922 case ISD::VP_STORE: 6923 return lowerMaskedStore(Op, DAG); 6924 case ISD::SELECT_CC: { 6925 // This occurs because we custom legalize SETGT and SETUGT for setcc. That 6926 // causes LegalizeDAG to think we need to custom legalize select_cc. Expand 6927 // into separate SETCC+SELECT just like LegalizeDAG. 6928 SDValue Tmp1 = Op.getOperand(0); 6929 SDValue Tmp2 = Op.getOperand(1); 6930 SDValue True = Op.getOperand(2); 6931 SDValue False = Op.getOperand(3); 6932 EVT VT = Op.getValueType(); 6933 SDValue CC = Op.getOperand(4); 6934 EVT CmpVT = Tmp1.getValueType(); 6935 EVT CCVT = 6936 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT); 6937 SDLoc DL(Op); 6938 SDValue Cond = 6939 DAG.getNode(ISD::SETCC, DL, CCVT, Tmp1, Tmp2, CC, Op->getFlags()); 6940 return DAG.getSelect(DL, VT, Cond, True, False); 6941 } 6942 case ISD::SETCC: { 6943 MVT OpVT = Op.getOperand(0).getSimpleValueType(); 6944 if (OpVT.isScalarInteger()) { 6945 MVT VT = Op.getSimpleValueType(); 6946 SDValue LHS = Op.getOperand(0); 6947 SDValue RHS = Op.getOperand(1); 6948 ISD::CondCode CCVal = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 6949 assert((CCVal == ISD::SETGT || CCVal == ISD::SETUGT) && 6950 "Unexpected CondCode"); 6951 6952 SDLoc DL(Op); 6953 6954 // If the RHS is a constant in the range [-2049, 0) or (0, 2046], we can 6955 // convert this to the equivalent of (set(u)ge X, C+1) by using 6956 // (xori (slti(u) X, C+1), 1). This avoids materializing a small constant 6957 // in a register. 6958 if (isa<ConstantSDNode>(RHS)) { 6959 int64_t Imm = cast<ConstantSDNode>(RHS)->getSExtValue(); 6960 if (Imm != 0 && isInt<12>((uint64_t)Imm + 1)) { 6961 // If this is an unsigned compare and the constant is -1, incrementing 6962 // the constant would change behavior. The result should be false. 6963 if (CCVal == ISD::SETUGT && Imm == -1) 6964 return DAG.getConstant(0, DL, VT); 6965 // Using getSetCCSwappedOperands will convert SET(U)GT->SET(U)LT. 6966 CCVal = ISD::getSetCCSwappedOperands(CCVal); 6967 SDValue SetCC = DAG.getSetCC( 6968 DL, VT, LHS, DAG.getConstant(Imm + 1, DL, OpVT), CCVal); 6969 return DAG.getLogicalNOT(DL, SetCC, VT); 6970 } 6971 } 6972 6973 // Not a constant we could handle, swap the operands and condition code to 6974 // SETLT/SETULT. 6975 CCVal = ISD::getSetCCSwappedOperands(CCVal); 6976 return DAG.getSetCC(DL, VT, RHS, LHS, CCVal); 6977 } 6978 6979 if (Op.getOperand(0).getSimpleValueType() == MVT::nxv32f16 && 6980 (Subtarget.hasVInstructionsF16Minimal() && 6981 !Subtarget.hasVInstructionsF16())) 6982 return SplitVectorOp(Op, DAG); 6983 6984 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 6985 } 6986 case ISD::ADD: 6987 case ISD::SUB: 6988 case ISD::MUL: 6989 case ISD::MULHS: 6990 case ISD::MULHU: 6991 case ISD::AND: 6992 case ISD::OR: 6993 case ISD::XOR: 6994 case ISD::SDIV: 6995 case ISD::SREM: 6996 case ISD::UDIV: 6997 case ISD::UREM: 6998 case ISD::BSWAP: 6999 case ISD::CTPOP: 7000 return lowerToScalableOp(Op, DAG); 7001 case ISD::SHL: 7002 case ISD::SRA: 7003 case ISD::SRL: 7004 if (Op.getSimpleValueType().isFixedLengthVector()) 7005 return lowerToScalableOp(Op, DAG); 7006 // This can be called for an i32 shift amount that needs to be promoted. 7007 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 7008 "Unexpected custom legalisation"); 7009 return SDValue(); 7010 case ISD::FADD: 7011 case ISD::FSUB: 7012 case ISD::FMUL: 7013 case ISD::FDIV: 7014 case ISD::FNEG: 7015 case ISD::FABS: 7016 case ISD::FSQRT: 7017 case ISD::FMA: 7018 case ISD::FMINNUM: 7019 case ISD::FMAXNUM: 7020 if (Op.getValueType() == MVT::nxv32f16 && 7021 (Subtarget.hasVInstructionsF16Minimal() && 7022 !Subtarget.hasVInstructionsF16())) 7023 return SplitVectorOp(Op, DAG); 7024 [[fallthrough]]; 7025 case ISD::AVGFLOORS: 7026 case ISD::AVGFLOORU: 7027 case ISD::AVGCEILS: 7028 case ISD::AVGCEILU: 7029 case ISD::SMIN: 7030 case ISD::SMAX: 7031 case ISD::UMIN: 7032 case ISD::UMAX: 7033 return lowerToScalableOp(Op, DAG); 7034 case ISD::UADDSAT: 7035 case ISD::USUBSAT: 7036 if (!Op.getValueType().isVector()) 7037 return lowerUADDSAT_USUBSAT(Op, DAG); 7038 return lowerToScalableOp(Op, DAG); 7039 case ISD::SADDSAT: 7040 case ISD::SSUBSAT: 7041 if (!Op.getValueType().isVector()) 7042 return lowerSADDSAT_SSUBSAT(Op, DAG); 7043 return lowerToScalableOp(Op, DAG); 7044 case ISD::ABDS: 7045 case ISD::ABDU: { 7046 SDLoc dl(Op); 7047 EVT VT = Op->getValueType(0); 7048 SDValue LHS = DAG.getFreeze(Op->getOperand(0)); 7049 SDValue RHS = DAG.getFreeze(Op->getOperand(1)); 7050 bool IsSigned = Op->getOpcode() == ISD::ABDS; 7051 7052 // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs)) 7053 // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs)) 7054 unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX; 7055 unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN; 7056 SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS); 7057 SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS); 7058 return DAG.getNode(ISD::SUB, dl, VT, Max, Min); 7059 } 7060 case ISD::ABS: 7061 case ISD::VP_ABS: 7062 return lowerABS(Op, DAG); 7063 case ISD::CTLZ: 7064 case ISD::CTLZ_ZERO_UNDEF: 7065 case ISD::CTTZ: 7066 case ISD::CTTZ_ZERO_UNDEF: 7067 if (Subtarget.hasStdExtZvbb()) 7068 return lowerToScalableOp(Op, DAG); 7069 assert(Op.getOpcode() != ISD::CTTZ); 7070 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 7071 case ISD::VSELECT: 7072 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 7073 case ISD::FCOPYSIGN: 7074 if (Op.getValueType() == MVT::nxv32f16 && 7075 (Subtarget.hasVInstructionsF16Minimal() && 7076 !Subtarget.hasVInstructionsF16())) 7077 return SplitVectorOp(Op, DAG); 7078 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 7079 case ISD::STRICT_FADD: 7080 case ISD::STRICT_FSUB: 7081 case ISD::STRICT_FMUL: 7082 case ISD::STRICT_FDIV: 7083 case ISD::STRICT_FSQRT: 7084 case ISD::STRICT_FMA: 7085 if (Op.getValueType() == MVT::nxv32f16 && 7086 (Subtarget.hasVInstructionsF16Minimal() && 7087 !Subtarget.hasVInstructionsF16())) 7088 return SplitStrictFPVectorOp(Op, DAG); 7089 return lowerToScalableOp(Op, DAG); 7090 case ISD::STRICT_FSETCC: 7091 case ISD::STRICT_FSETCCS: 7092 return lowerVectorStrictFSetcc(Op, DAG); 7093 case ISD::STRICT_FCEIL: 7094 case ISD::STRICT_FRINT: 7095 case ISD::STRICT_FFLOOR: 7096 case ISD::STRICT_FTRUNC: 7097 case ISD::STRICT_FNEARBYINT: 7098 case ISD::STRICT_FROUND: 7099 case ISD::STRICT_FROUNDEVEN: 7100 return lowerVectorStrictFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget); 7101 case ISD::MGATHER: 7102 case ISD::VP_GATHER: 7103 return lowerMaskedGather(Op, DAG); 7104 case ISD::MSCATTER: 7105 case ISD::VP_SCATTER: 7106 return lowerMaskedScatter(Op, DAG); 7107 case ISD::GET_ROUNDING: 7108 return lowerGET_ROUNDING(Op, DAG); 7109 case ISD::SET_ROUNDING: 7110 return lowerSET_ROUNDING(Op, DAG); 7111 case ISD::EH_DWARF_CFA: 7112 return lowerEH_DWARF_CFA(Op, DAG); 7113 case ISD::VP_SELECT: 7114 case ISD::VP_MERGE: 7115 case ISD::VP_ADD: 7116 case ISD::VP_SUB: 7117 case ISD::VP_MUL: 7118 case ISD::VP_SDIV: 7119 case ISD::VP_UDIV: 7120 case ISD::VP_SREM: 7121 case ISD::VP_UREM: 7122 case ISD::VP_UADDSAT: 7123 case ISD::VP_USUBSAT: 7124 case ISD::VP_SADDSAT: 7125 case ISD::VP_SSUBSAT: 7126 case ISD::VP_LRINT: 7127 case ISD::VP_LLRINT: 7128 return lowerVPOp(Op, DAG); 7129 case ISD::VP_AND: 7130 case ISD::VP_OR: 7131 case ISD::VP_XOR: 7132 return lowerLogicVPOp(Op, DAG); 7133 case ISD::VP_FADD: 7134 case ISD::VP_FSUB: 7135 case ISD::VP_FMUL: 7136 case ISD::VP_FDIV: 7137 case ISD::VP_FNEG: 7138 case ISD::VP_FABS: 7139 case ISD::VP_SQRT: 7140 case ISD::VP_FMA: 7141 case ISD::VP_FMINNUM: 7142 case ISD::VP_FMAXNUM: 7143 case ISD::VP_FCOPYSIGN: 7144 if (Op.getValueType() == MVT::nxv32f16 && 7145 (Subtarget.hasVInstructionsF16Minimal() && 7146 !Subtarget.hasVInstructionsF16())) 7147 return SplitVPOp(Op, DAG); 7148 [[fallthrough]]; 7149 case ISD::VP_SRA: 7150 case ISD::VP_SRL: 7151 case ISD::VP_SHL: 7152 return lowerVPOp(Op, DAG); 7153 case ISD::VP_IS_FPCLASS: 7154 return LowerIS_FPCLASS(Op, DAG); 7155 case ISD::VP_SIGN_EXTEND: 7156 case ISD::VP_ZERO_EXTEND: 7157 if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) 7158 return lowerVPExtMaskOp(Op, DAG); 7159 return lowerVPOp(Op, DAG); 7160 case ISD::VP_TRUNCATE: 7161 return lowerVectorTruncLike(Op, DAG); 7162 case ISD::VP_FP_EXTEND: 7163 case ISD::VP_FP_ROUND: 7164 return lowerVectorFPExtendOrRoundLike(Op, DAG); 7165 case ISD::VP_SINT_TO_FP: 7166 case ISD::VP_UINT_TO_FP: 7167 if (Op.getValueType().isVector() && 7168 Op.getValueType().getScalarType() == MVT::f16 && 7169 (Subtarget.hasVInstructionsF16Minimal() && 7170 !Subtarget.hasVInstructionsF16())) { 7171 if (Op.getValueType() == MVT::nxv32f16) 7172 return SplitVPOp(Op, DAG); 7173 // int -> f32 7174 SDLoc DL(Op); 7175 MVT NVT = 7176 MVT::getVectorVT(MVT::f32, Op.getValueType().getVectorElementCount()); 7177 auto NC = DAG.getNode(Op.getOpcode(), DL, NVT, Op->ops()); 7178 // f32 -> f16 7179 return DAG.getNode(ISD::FP_ROUND, DL, Op.getValueType(), NC, 7180 DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)); 7181 } 7182 [[fallthrough]]; 7183 case ISD::VP_FP_TO_SINT: 7184 case ISD::VP_FP_TO_UINT: 7185 if (SDValue Op1 = Op.getOperand(0); 7186 Op1.getValueType().isVector() && 7187 Op1.getValueType().getScalarType() == MVT::f16 && 7188 (Subtarget.hasVInstructionsF16Minimal() && 7189 !Subtarget.hasVInstructionsF16())) { 7190 if (Op1.getValueType() == MVT::nxv32f16) 7191 return SplitVPOp(Op, DAG); 7192 // f16 -> f32 7193 SDLoc DL(Op); 7194 MVT NVT = MVT::getVectorVT(MVT::f32, 7195 Op1.getValueType().getVectorElementCount()); 7196 SDValue WidenVec = DAG.getNode(ISD::FP_EXTEND, DL, NVT, Op1); 7197 // f32 -> int 7198 return DAG.getNode(Op.getOpcode(), DL, Op.getValueType(), 7199 {WidenVec, Op.getOperand(1), Op.getOperand(2)}); 7200 } 7201 return lowerVPFPIntConvOp(Op, DAG); 7202 case ISD::VP_SETCC: 7203 if (Op.getOperand(0).getSimpleValueType() == MVT::nxv32f16 && 7204 (Subtarget.hasVInstructionsF16Minimal() && 7205 !Subtarget.hasVInstructionsF16())) 7206 return SplitVPOp(Op, DAG); 7207 if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) 7208 return lowerVPSetCCMaskOp(Op, DAG); 7209 [[fallthrough]]; 7210 case ISD::VP_SMIN: 7211 case ISD::VP_SMAX: 7212 case ISD::VP_UMIN: 7213 case ISD::VP_UMAX: 7214 case ISD::VP_BITREVERSE: 7215 case ISD::VP_BSWAP: 7216 return lowerVPOp(Op, DAG); 7217 case ISD::VP_CTLZ: 7218 case ISD::VP_CTLZ_ZERO_UNDEF: 7219 if (Subtarget.hasStdExtZvbb()) 7220 return lowerVPOp(Op, DAG); 7221 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 7222 case ISD::VP_CTTZ: 7223 case ISD::VP_CTTZ_ZERO_UNDEF: 7224 if (Subtarget.hasStdExtZvbb()) 7225 return lowerVPOp(Op, DAG); 7226 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 7227 case ISD::VP_CTPOP: 7228 return lowerVPOp(Op, DAG); 7229 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7230 return lowerVPStridedLoad(Op, DAG); 7231 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7232 return lowerVPStridedStore(Op, DAG); 7233 case ISD::VP_FCEIL: 7234 case ISD::VP_FFLOOR: 7235 case ISD::VP_FRINT: 7236 case ISD::VP_FNEARBYINT: 7237 case ISD::VP_FROUND: 7238 case ISD::VP_FROUNDEVEN: 7239 case ISD::VP_FROUNDTOZERO: 7240 if (Op.getValueType() == MVT::nxv32f16 && 7241 (Subtarget.hasVInstructionsF16Minimal() && 7242 !Subtarget.hasVInstructionsF16())) 7243 return SplitVPOp(Op, DAG); 7244 return lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget); 7245 case ISD::VP_FMAXIMUM: 7246 case ISD::VP_FMINIMUM: 7247 if (Op.getValueType() == MVT::nxv32f16 && 7248 (Subtarget.hasVInstructionsF16Minimal() && 7249 !Subtarget.hasVInstructionsF16())) 7250 return SplitVPOp(Op, DAG); 7251 return lowerFMAXIMUM_FMINIMUM(Op, DAG, Subtarget); 7252 case ISD::EXPERIMENTAL_VP_SPLICE: 7253 return lowerVPSpliceExperimental(Op, DAG); 7254 case ISD::EXPERIMENTAL_VP_REVERSE: 7255 return lowerVPReverseExperimental(Op, DAG); 7256 case ISD::EXPERIMENTAL_VP_SPLAT: 7257 return lowerVPSplatExperimental(Op, DAG); 7258 case ISD::CLEAR_CACHE: { 7259 assert(getTargetMachine().getTargetTriple().isOSLinux() && 7260 "llvm.clear_cache only needs custom lower on Linux targets"); 7261 SDLoc DL(Op); 7262 SDValue Flags = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 7263 return emitFlushICache(DAG, Op.getOperand(0), Op.getOperand(1), 7264 Op.getOperand(2), Flags, DL); 7265 } 7266 } 7267 } 7268 7269 SDValue RISCVTargetLowering::emitFlushICache(SelectionDAG &DAG, SDValue InChain, 7270 SDValue Start, SDValue End, 7271 SDValue Flags, SDLoc DL) const { 7272 MakeLibCallOptions CallOptions; 7273 std::pair<SDValue, SDValue> CallResult = 7274 makeLibCall(DAG, RTLIB::RISCV_FLUSH_ICACHE, MVT::isVoid, 7275 {Start, End, Flags}, CallOptions, DL, InChain); 7276 7277 // This function returns void so only the out chain matters. 7278 return CallResult.second; 7279 } 7280 7281 static SDValue getTargetNode(GlobalAddressSDNode *N, const SDLoc &DL, EVT Ty, 7282 SelectionDAG &DAG, unsigned Flags) { 7283 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 7284 } 7285 7286 static SDValue getTargetNode(BlockAddressSDNode *N, const SDLoc &DL, EVT Ty, 7287 SelectionDAG &DAG, unsigned Flags) { 7288 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 7289 Flags); 7290 } 7291 7292 static SDValue getTargetNode(ConstantPoolSDNode *N, const SDLoc &DL, EVT Ty, 7293 SelectionDAG &DAG, unsigned Flags) { 7294 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 7295 N->getOffset(), Flags); 7296 } 7297 7298 static SDValue getTargetNode(JumpTableSDNode *N, const SDLoc &DL, EVT Ty, 7299 SelectionDAG &DAG, unsigned Flags) { 7300 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 7301 } 7302 7303 template <class NodeTy> 7304 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 7305 bool IsLocal, bool IsExternWeak) const { 7306 SDLoc DL(N); 7307 EVT Ty = getPointerTy(DAG.getDataLayout()); 7308 7309 // When HWASAN is used and tagging of global variables is enabled 7310 // they should be accessed via the GOT, since the tagged address of a global 7311 // is incompatible with existing code models. This also applies to non-pic 7312 // mode. 7313 if (isPositionIndependent() || Subtarget.allowTaggedGlobals()) { 7314 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 7315 if (IsLocal && !Subtarget.allowTaggedGlobals()) 7316 // Use PC-relative addressing to access the symbol. This generates the 7317 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 7318 // %pcrel_lo(auipc)). 7319 return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr); 7320 7321 // Use PC-relative addressing to access the GOT for this symbol, then load 7322 // the address from the GOT. This generates the pattern (PseudoLGA sym), 7323 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 7324 SDValue Load = 7325 SDValue(DAG.getMachineNode(RISCV::PseudoLGA, DL, Ty, Addr), 0); 7326 MachineFunction &MF = DAG.getMachineFunction(); 7327 MachineMemOperand *MemOp = MF.getMachineMemOperand( 7328 MachinePointerInfo::getGOT(MF), 7329 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 7330 MachineMemOperand::MOInvariant, 7331 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 7332 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 7333 return Load; 7334 } 7335 7336 switch (getTargetMachine().getCodeModel()) { 7337 default: 7338 report_fatal_error("Unsupported code model for lowering"); 7339 case CodeModel::Small: { 7340 // Generate a sequence for accessing addresses within the first 2 GiB of 7341 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 7342 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 7343 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 7344 SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi); 7345 return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNHi, AddrLo); 7346 } 7347 case CodeModel::Medium: { 7348 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 7349 if (IsExternWeak) { 7350 // An extern weak symbol may be undefined, i.e. have value 0, which may 7351 // not be within 2GiB of PC, so use GOT-indirect addressing to access the 7352 // symbol. This generates the pattern (PseudoLGA sym), which expands to 7353 // (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 7354 SDValue Load = 7355 SDValue(DAG.getMachineNode(RISCV::PseudoLGA, DL, Ty, Addr), 0); 7356 MachineFunction &MF = DAG.getMachineFunction(); 7357 MachineMemOperand *MemOp = MF.getMachineMemOperand( 7358 MachinePointerInfo::getGOT(MF), 7359 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 7360 MachineMemOperand::MOInvariant, 7361 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 7362 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 7363 return Load; 7364 } 7365 7366 // Generate a sequence for accessing addresses within any 2GiB range within 7367 // the address space. This generates the pattern (PseudoLLA sym), which 7368 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 7369 return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr); 7370 } 7371 } 7372 } 7373 7374 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 7375 SelectionDAG &DAG) const { 7376 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 7377 assert(N->getOffset() == 0 && "unexpected offset in global node"); 7378 const GlobalValue *GV = N->getGlobal(); 7379 return getAddr(N, DAG, GV->isDSOLocal(), GV->hasExternalWeakLinkage()); 7380 } 7381 7382 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 7383 SelectionDAG &DAG) const { 7384 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 7385 7386 return getAddr(N, DAG); 7387 } 7388 7389 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 7390 SelectionDAG &DAG) const { 7391 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 7392 7393 return getAddr(N, DAG); 7394 } 7395 7396 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 7397 SelectionDAG &DAG) const { 7398 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 7399 7400 return getAddr(N, DAG); 7401 } 7402 7403 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 7404 SelectionDAG &DAG, 7405 bool UseGOT) const { 7406 SDLoc DL(N); 7407 EVT Ty = getPointerTy(DAG.getDataLayout()); 7408 const GlobalValue *GV = N->getGlobal(); 7409 MVT XLenVT = Subtarget.getXLenVT(); 7410 7411 if (UseGOT) { 7412 // Use PC-relative addressing to access the GOT for this TLS symbol, then 7413 // load the address from the GOT and add the thread pointer. This generates 7414 // the pattern (PseudoLA_TLS_IE sym), which expands to 7415 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 7416 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 7417 SDValue Load = 7418 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 7419 MachineFunction &MF = DAG.getMachineFunction(); 7420 MachineMemOperand *MemOp = MF.getMachineMemOperand( 7421 MachinePointerInfo::getGOT(MF), 7422 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 7423 MachineMemOperand::MOInvariant, 7424 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 7425 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 7426 7427 // Add the thread pointer. 7428 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 7429 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 7430 } 7431 7432 // Generate a sequence for accessing the address relative to the thread 7433 // pointer, with the appropriate adjustment for the thread pointer offset. 7434 // This generates the pattern 7435 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 7436 SDValue AddrHi = 7437 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 7438 SDValue AddrAdd = 7439 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 7440 SDValue AddrLo = 7441 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 7442 7443 SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi); 7444 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 7445 SDValue MNAdd = 7446 DAG.getNode(RISCVISD::ADD_TPREL, DL, Ty, MNHi, TPReg, AddrAdd); 7447 return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNAdd, AddrLo); 7448 } 7449 7450 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 7451 SelectionDAG &DAG) const { 7452 SDLoc DL(N); 7453 EVT Ty = getPointerTy(DAG.getDataLayout()); 7454 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 7455 const GlobalValue *GV = N->getGlobal(); 7456 7457 // Use a PC-relative addressing mode to access the global dynamic GOT address. 7458 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 7459 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 7460 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 7461 SDValue Load = 7462 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 7463 7464 // Prepare argument list to generate call. 7465 ArgListTy Args; 7466 ArgListEntry Entry; 7467 Entry.Node = Load; 7468 Entry.Ty = CallTy; 7469 Args.push_back(Entry); 7470 7471 // Setup call to __tls_get_addr. 7472 TargetLowering::CallLoweringInfo CLI(DAG); 7473 CLI.setDebugLoc(DL) 7474 .setChain(DAG.getEntryNode()) 7475 .setLibCallee(CallingConv::C, CallTy, 7476 DAG.getExternalSymbol("__tls_get_addr", Ty), 7477 std::move(Args)); 7478 7479 return LowerCallTo(CLI).first; 7480 } 7481 7482 SDValue RISCVTargetLowering::getTLSDescAddr(GlobalAddressSDNode *N, 7483 SelectionDAG &DAG) const { 7484 SDLoc DL(N); 7485 EVT Ty = getPointerTy(DAG.getDataLayout()); 7486 const GlobalValue *GV = N->getGlobal(); 7487 7488 // Use a PC-relative addressing mode to access the global dynamic GOT address. 7489 // This generates the pattern (PseudoLA_TLSDESC sym), which expands to 7490 // 7491 // auipc tX, %tlsdesc_hi(symbol) // R_RISCV_TLSDESC_HI20(symbol) 7492 // lw tY, tX, %tlsdesc_load_lo(label) // R_RISCV_TLSDESC_LOAD_LO12(label) 7493 // addi a0, tX, %tlsdesc_add_lo(label) // R_RISCV_TLSDESC_ADD_LO12(label) 7494 // jalr t0, tY // R_RISCV_TLSDESC_CALL(label) 7495 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 7496 return SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLSDESC, DL, Ty, Addr), 0); 7497 } 7498 7499 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 7500 SelectionDAG &DAG) const { 7501 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 7502 assert(N->getOffset() == 0 && "unexpected offset in global node"); 7503 7504 if (DAG.getTarget().useEmulatedTLS()) 7505 return LowerToTLSEmulatedModel(N, DAG); 7506 7507 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 7508 7509 if (DAG.getMachineFunction().getFunction().getCallingConv() == 7510 CallingConv::GHC) 7511 report_fatal_error("In GHC calling convention TLS is not supported"); 7512 7513 SDValue Addr; 7514 switch (Model) { 7515 case TLSModel::LocalExec: 7516 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 7517 break; 7518 case TLSModel::InitialExec: 7519 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 7520 break; 7521 case TLSModel::LocalDynamic: 7522 case TLSModel::GeneralDynamic: 7523 Addr = DAG.getTarget().useTLSDESC() ? getTLSDescAddr(N, DAG) 7524 : getDynamicTLSAddr(N, DAG); 7525 break; 7526 } 7527 7528 return Addr; 7529 } 7530 7531 // Return true if Val is equal to (setcc LHS, RHS, CC). 7532 // Return false if Val is the inverse of (setcc LHS, RHS, CC). 7533 // Otherwise, return std::nullopt. 7534 static std::optional<bool> matchSetCC(SDValue LHS, SDValue RHS, 7535 ISD::CondCode CC, SDValue Val) { 7536 assert(Val->getOpcode() == ISD::SETCC); 7537 SDValue LHS2 = Val.getOperand(0); 7538 SDValue RHS2 = Val.getOperand(1); 7539 ISD::CondCode CC2 = cast<CondCodeSDNode>(Val.getOperand(2))->get(); 7540 7541 if (LHS == LHS2 && RHS == RHS2) { 7542 if (CC == CC2) 7543 return true; 7544 if (CC == ISD::getSetCCInverse(CC2, LHS2.getValueType())) 7545 return false; 7546 } else if (LHS == RHS2 && RHS == LHS2) { 7547 CC2 = ISD::getSetCCSwappedOperands(CC2); 7548 if (CC == CC2) 7549 return true; 7550 if (CC == ISD::getSetCCInverse(CC2, LHS2.getValueType())) 7551 return false; 7552 } 7553 7554 return std::nullopt; 7555 } 7556 7557 static SDValue combineSelectToBinOp(SDNode *N, SelectionDAG &DAG, 7558 const RISCVSubtarget &Subtarget) { 7559 SDValue CondV = N->getOperand(0); 7560 SDValue TrueV = N->getOperand(1); 7561 SDValue FalseV = N->getOperand(2); 7562 MVT VT = N->getSimpleValueType(0); 7563 SDLoc DL(N); 7564 7565 if (!Subtarget.hasConditionalMoveFusion()) { 7566 // (select c, -1, y) -> -c | y 7567 if (isAllOnesConstant(TrueV)) { 7568 SDValue Neg = DAG.getNegative(CondV, DL, VT); 7569 return DAG.getNode(ISD::OR, DL, VT, Neg, DAG.getFreeze(FalseV)); 7570 } 7571 // (select c, y, -1) -> (c-1) | y 7572 if (isAllOnesConstant(FalseV)) { 7573 SDValue Neg = DAG.getNode(ISD::ADD, DL, VT, CondV, 7574 DAG.getAllOnesConstant(DL, VT)); 7575 return DAG.getNode(ISD::OR, DL, VT, Neg, DAG.getFreeze(TrueV)); 7576 } 7577 7578 // (select c, 0, y) -> (c-1) & y 7579 if (isNullConstant(TrueV)) { 7580 SDValue Neg = DAG.getNode(ISD::ADD, DL, VT, CondV, 7581 DAG.getAllOnesConstant(DL, VT)); 7582 return DAG.getNode(ISD::AND, DL, VT, Neg, DAG.getFreeze(FalseV)); 7583 } 7584 // (select c, y, 0) -> -c & y 7585 if (isNullConstant(FalseV)) { 7586 SDValue Neg = DAG.getNegative(CondV, DL, VT); 7587 return DAG.getNode(ISD::AND, DL, VT, Neg, DAG.getFreeze(TrueV)); 7588 } 7589 } 7590 7591 // select c, ~x, x --> xor -c, x 7592 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV)) { 7593 const APInt &TrueVal = TrueV->getAsAPIntVal(); 7594 const APInt &FalseVal = FalseV->getAsAPIntVal(); 7595 if (~TrueVal == FalseVal) { 7596 SDValue Neg = DAG.getNegative(CondV, DL, VT); 7597 return DAG.getNode(ISD::XOR, DL, VT, Neg, FalseV); 7598 } 7599 } 7600 7601 // Try to fold (select (setcc lhs, rhs, cc), truev, falsev) into bitwise ops 7602 // when both truev and falsev are also setcc. 7603 if (CondV.getOpcode() == ISD::SETCC && TrueV.getOpcode() == ISD::SETCC && 7604 FalseV.getOpcode() == ISD::SETCC) { 7605 SDValue LHS = CondV.getOperand(0); 7606 SDValue RHS = CondV.getOperand(1); 7607 ISD::CondCode CC = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 7608 7609 // (select x, x, y) -> x | y 7610 // (select !x, x, y) -> x & y 7611 if (std::optional<bool> MatchResult = matchSetCC(LHS, RHS, CC, TrueV)) { 7612 return DAG.getNode(*MatchResult ? ISD::OR : ISD::AND, DL, VT, TrueV, 7613 DAG.getFreeze(FalseV)); 7614 } 7615 // (select x, y, x) -> x & y 7616 // (select !x, y, x) -> x | y 7617 if (std::optional<bool> MatchResult = matchSetCC(LHS, RHS, CC, FalseV)) { 7618 return DAG.getNode(*MatchResult ? ISD::AND : ISD::OR, DL, VT, 7619 DAG.getFreeze(TrueV), FalseV); 7620 } 7621 } 7622 7623 return SDValue(); 7624 } 7625 7626 // Transform `binOp (select cond, x, c0), c1` where `c0` and `c1` are constants 7627 // into `select cond, binOp(x, c1), binOp(c0, c1)` if profitable. 7628 // For now we only consider transformation profitable if `binOp(c0, c1)` ends up 7629 // being `0` or `-1`. In such cases we can replace `select` with `and`. 7630 // TODO: Should we also do this if `binOp(c0, c1)` is cheaper to materialize 7631 // than `c0`? 7632 static SDValue 7633 foldBinOpIntoSelectIfProfitable(SDNode *BO, SelectionDAG &DAG, 7634 const RISCVSubtarget &Subtarget) { 7635 if (Subtarget.hasShortForwardBranchOpt()) 7636 return SDValue(); 7637 7638 unsigned SelOpNo = 0; 7639 SDValue Sel = BO->getOperand(0); 7640 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { 7641 SelOpNo = 1; 7642 Sel = BO->getOperand(1); 7643 } 7644 7645 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) 7646 return SDValue(); 7647 7648 unsigned ConstSelOpNo = 1; 7649 unsigned OtherSelOpNo = 2; 7650 if (!dyn_cast<ConstantSDNode>(Sel->getOperand(ConstSelOpNo))) { 7651 ConstSelOpNo = 2; 7652 OtherSelOpNo = 1; 7653 } 7654 SDValue ConstSelOp = Sel->getOperand(ConstSelOpNo); 7655 ConstantSDNode *ConstSelOpNode = dyn_cast<ConstantSDNode>(ConstSelOp); 7656 if (!ConstSelOpNode || ConstSelOpNode->isOpaque()) 7657 return SDValue(); 7658 7659 SDValue ConstBinOp = BO->getOperand(SelOpNo ^ 1); 7660 ConstantSDNode *ConstBinOpNode = dyn_cast<ConstantSDNode>(ConstBinOp); 7661 if (!ConstBinOpNode || ConstBinOpNode->isOpaque()) 7662 return SDValue(); 7663 7664 SDLoc DL(Sel); 7665 EVT VT = BO->getValueType(0); 7666 7667 SDValue NewConstOps[2] = {ConstSelOp, ConstBinOp}; 7668 if (SelOpNo == 1) 7669 std::swap(NewConstOps[0], NewConstOps[1]); 7670 7671 SDValue NewConstOp = 7672 DAG.FoldConstantArithmetic(BO->getOpcode(), DL, VT, NewConstOps); 7673 if (!NewConstOp) 7674 return SDValue(); 7675 7676 const APInt &NewConstAPInt = NewConstOp->getAsAPIntVal(); 7677 if (!NewConstAPInt.isZero() && !NewConstAPInt.isAllOnes()) 7678 return SDValue(); 7679 7680 SDValue OtherSelOp = Sel->getOperand(OtherSelOpNo); 7681 SDValue NewNonConstOps[2] = {OtherSelOp, ConstBinOp}; 7682 if (SelOpNo == 1) 7683 std::swap(NewNonConstOps[0], NewNonConstOps[1]); 7684 SDValue NewNonConstOp = DAG.getNode(BO->getOpcode(), DL, VT, NewNonConstOps); 7685 7686 SDValue NewT = (ConstSelOpNo == 1) ? NewConstOp : NewNonConstOp; 7687 SDValue NewF = (ConstSelOpNo == 1) ? NewNonConstOp : NewConstOp; 7688 return DAG.getSelect(DL, VT, Sel.getOperand(0), NewT, NewF); 7689 } 7690 7691 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 7692 SDValue CondV = Op.getOperand(0); 7693 SDValue TrueV = Op.getOperand(1); 7694 SDValue FalseV = Op.getOperand(2); 7695 SDLoc DL(Op); 7696 MVT VT = Op.getSimpleValueType(); 7697 MVT XLenVT = Subtarget.getXLenVT(); 7698 7699 // Lower vector SELECTs to VSELECTs by splatting the condition. 7700 if (VT.isVector()) { 7701 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 7702 SDValue CondSplat = DAG.getSplat(SplatCondVT, DL, CondV); 7703 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 7704 } 7705 7706 // When Zicond or XVentanaCondOps is present, emit CZERO_EQZ and CZERO_NEZ 7707 // nodes to implement the SELECT. Performing the lowering here allows for 7708 // greater control over when CZERO_{EQZ/NEZ} are used vs another branchless 7709 // sequence or RISCVISD::SELECT_CC node (branch-based select). 7710 if ((Subtarget.hasStdExtZicond() || Subtarget.hasVendorXVentanaCondOps()) && 7711 VT.isScalarInteger()) { 7712 // (select c, t, 0) -> (czero_eqz t, c) 7713 if (isNullConstant(FalseV)) 7714 return DAG.getNode(RISCVISD::CZERO_EQZ, DL, VT, TrueV, CondV); 7715 // (select c, 0, f) -> (czero_nez f, c) 7716 if (isNullConstant(TrueV)) 7717 return DAG.getNode(RISCVISD::CZERO_NEZ, DL, VT, FalseV, CondV); 7718 7719 // (select c, (and f, x), f) -> (or (and f, x), (czero_nez f, c)) 7720 if (TrueV.getOpcode() == ISD::AND && 7721 (TrueV.getOperand(0) == FalseV || TrueV.getOperand(1) == FalseV)) 7722 return DAG.getNode( 7723 ISD::OR, DL, VT, TrueV, 7724 DAG.getNode(RISCVISD::CZERO_NEZ, DL, VT, FalseV, CondV)); 7725 // (select c, t, (and t, x)) -> (or (czero_eqz t, c), (and t, x)) 7726 if (FalseV.getOpcode() == ISD::AND && 7727 (FalseV.getOperand(0) == TrueV || FalseV.getOperand(1) == TrueV)) 7728 return DAG.getNode( 7729 ISD::OR, DL, VT, FalseV, 7730 DAG.getNode(RISCVISD::CZERO_EQZ, DL, VT, TrueV, CondV)); 7731 7732 // Try some other optimizations before falling back to generic lowering. 7733 if (SDValue V = combineSelectToBinOp(Op.getNode(), DAG, Subtarget)) 7734 return V; 7735 7736 // (select c, c1, c2) -> (add (czero_nez c2 - c1, c), c1) 7737 // (select c, c1, c2) -> (add (czero_eqz c1 - c2, c), c2) 7738 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV)) { 7739 const APInt &TrueVal = TrueV->getAsAPIntVal(); 7740 const APInt &FalseVal = FalseV->getAsAPIntVal(); 7741 const int TrueValCost = RISCVMatInt::getIntMatCost( 7742 TrueVal, Subtarget.getXLen(), Subtarget, /*CompressionCost=*/true); 7743 const int FalseValCost = RISCVMatInt::getIntMatCost( 7744 FalseVal, Subtarget.getXLen(), Subtarget, /*CompressionCost=*/true); 7745 bool IsCZERO_NEZ = TrueValCost <= FalseValCost; 7746 SDValue LHSVal = DAG.getConstant( 7747 IsCZERO_NEZ ? FalseVal - TrueVal : TrueVal - FalseVal, DL, VT); 7748 SDValue RHSVal = 7749 DAG.getConstant(IsCZERO_NEZ ? TrueVal : FalseVal, DL, VT); 7750 SDValue CMOV = 7751 DAG.getNode(IsCZERO_NEZ ? RISCVISD::CZERO_NEZ : RISCVISD::CZERO_EQZ, 7752 DL, VT, LHSVal, CondV); 7753 return DAG.getNode(ISD::ADD, DL, VT, CMOV, RHSVal); 7754 } 7755 7756 // (select c, t, f) -> (or (czero_eqz t, c), (czero_nez f, c)) 7757 // Unless we have the short forward branch optimization. 7758 if (!Subtarget.hasConditionalMoveFusion()) 7759 return DAG.getNode( 7760 ISD::OR, DL, VT, 7761 DAG.getNode(RISCVISD::CZERO_EQZ, DL, VT, TrueV, CondV), 7762 DAG.getNode(RISCVISD::CZERO_NEZ, DL, VT, FalseV, CondV)); 7763 } 7764 7765 if (SDValue V = combineSelectToBinOp(Op.getNode(), DAG, Subtarget)) 7766 return V; 7767 7768 if (Op.hasOneUse()) { 7769 unsigned UseOpc = Op->use_begin()->getOpcode(); 7770 if (isBinOp(UseOpc) && DAG.isSafeToSpeculativelyExecute(UseOpc)) { 7771 SDNode *BinOp = *Op->use_begin(); 7772 if (SDValue NewSel = foldBinOpIntoSelectIfProfitable(*Op->use_begin(), 7773 DAG, Subtarget)) { 7774 DAG.ReplaceAllUsesWith(BinOp, &NewSel); 7775 // Opcode check is necessary because foldBinOpIntoSelectIfProfitable 7776 // may return a constant node and cause crash in lowerSELECT. 7777 if (NewSel.getOpcode() == ISD::SELECT) 7778 return lowerSELECT(NewSel, DAG); 7779 return NewSel; 7780 } 7781 } 7782 } 7783 7784 // (select cc, 1.0, 0.0) -> (sint_to_fp (zext cc)) 7785 // (select cc, 0.0, 1.0) -> (sint_to_fp (zext (xor cc, 1))) 7786 const ConstantFPSDNode *FPTV = dyn_cast<ConstantFPSDNode>(TrueV); 7787 const ConstantFPSDNode *FPFV = dyn_cast<ConstantFPSDNode>(FalseV); 7788 if (FPTV && FPFV) { 7789 if (FPTV->isExactlyValue(1.0) && FPFV->isExactlyValue(0.0)) 7790 return DAG.getNode(ISD::SINT_TO_FP, DL, VT, CondV); 7791 if (FPTV->isExactlyValue(0.0) && FPFV->isExactlyValue(1.0)) { 7792 SDValue XOR = DAG.getNode(ISD::XOR, DL, XLenVT, CondV, 7793 DAG.getConstant(1, DL, XLenVT)); 7794 return DAG.getNode(ISD::SINT_TO_FP, DL, VT, XOR); 7795 } 7796 } 7797 7798 // If the condition is not an integer SETCC which operates on XLenVT, we need 7799 // to emit a RISCVISD::SELECT_CC comparing the condition to zero. i.e.: 7800 // (select condv, truev, falsev) 7801 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 7802 if (CondV.getOpcode() != ISD::SETCC || 7803 CondV.getOperand(0).getSimpleValueType() != XLenVT) { 7804 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 7805 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 7806 7807 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 7808 7809 return DAG.getNode(RISCVISD::SELECT_CC, DL, VT, Ops); 7810 } 7811 7812 // If the CondV is the output of a SETCC node which operates on XLenVT inputs, 7813 // then merge the SETCC node into the lowered RISCVISD::SELECT_CC to take 7814 // advantage of the integer compare+branch instructions. i.e.: 7815 // (select (setcc lhs, rhs, cc), truev, falsev) 7816 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 7817 SDValue LHS = CondV.getOperand(0); 7818 SDValue RHS = CondV.getOperand(1); 7819 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 7820 7821 // Special case for a select of 2 constants that have a diffence of 1. 7822 // Normally this is done by DAGCombine, but if the select is introduced by 7823 // type legalization or op legalization, we miss it. Restricting to SETLT 7824 // case for now because that is what signed saturating add/sub need. 7825 // FIXME: We don't need the condition to be SETLT or even a SETCC, 7826 // but we would probably want to swap the true/false values if the condition 7827 // is SETGE/SETLE to avoid an XORI. 7828 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 7829 CCVal == ISD::SETLT) { 7830 const APInt &TrueVal = TrueV->getAsAPIntVal(); 7831 const APInt &FalseVal = FalseV->getAsAPIntVal(); 7832 if (TrueVal - 1 == FalseVal) 7833 return DAG.getNode(ISD::ADD, DL, VT, CondV, FalseV); 7834 if (TrueVal + 1 == FalseVal) 7835 return DAG.getNode(ISD::SUB, DL, VT, FalseV, CondV); 7836 } 7837 7838 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7839 // 1 < x ? x : 1 -> 0 < x ? x : 1 7840 if (isOneConstant(LHS) && (CCVal == ISD::SETLT || CCVal == ISD::SETULT) && 7841 RHS == TrueV && LHS == FalseV) { 7842 LHS = DAG.getConstant(0, DL, VT); 7843 // 0 <u x is the same as x != 0. 7844 if (CCVal == ISD::SETULT) { 7845 std::swap(LHS, RHS); 7846 CCVal = ISD::SETNE; 7847 } 7848 } 7849 7850 // x <s -1 ? x : -1 -> x <s 0 ? x : -1 7851 if (isAllOnesConstant(RHS) && CCVal == ISD::SETLT && LHS == TrueV && 7852 RHS == FalseV) { 7853 RHS = DAG.getConstant(0, DL, VT); 7854 } 7855 7856 SDValue TargetCC = DAG.getCondCode(CCVal); 7857 7858 if (isa<ConstantSDNode>(TrueV) && !isa<ConstantSDNode>(FalseV)) { 7859 // (select (setcc lhs, rhs, CC), constant, falsev) 7860 // -> (select (setcc lhs, rhs, InverseCC), falsev, constant) 7861 std::swap(TrueV, FalseV); 7862 TargetCC = DAG.getCondCode(ISD::getSetCCInverse(CCVal, LHS.getValueType())); 7863 } 7864 7865 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 7866 return DAG.getNode(RISCVISD::SELECT_CC, DL, VT, Ops); 7867 } 7868 7869 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 7870 SDValue CondV = Op.getOperand(1); 7871 SDLoc DL(Op); 7872 MVT XLenVT = Subtarget.getXLenVT(); 7873 7874 if (CondV.getOpcode() == ISD::SETCC && 7875 CondV.getOperand(0).getValueType() == XLenVT) { 7876 SDValue LHS = CondV.getOperand(0); 7877 SDValue RHS = CondV.getOperand(1); 7878 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 7879 7880 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7881 7882 SDValue TargetCC = DAG.getCondCode(CCVal); 7883 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 7884 LHS, RHS, TargetCC, Op.getOperand(2)); 7885 } 7886 7887 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 7888 CondV, DAG.getConstant(0, DL, XLenVT), 7889 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 7890 } 7891 7892 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 7893 MachineFunction &MF = DAG.getMachineFunction(); 7894 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 7895 7896 SDLoc DL(Op); 7897 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 7898 getPointerTy(MF.getDataLayout())); 7899 7900 // vastart just stores the address of the VarArgsFrameIndex slot into the 7901 // memory location argument. 7902 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 7903 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 7904 MachinePointerInfo(SV)); 7905 } 7906 7907 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 7908 SelectionDAG &DAG) const { 7909 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 7910 MachineFunction &MF = DAG.getMachineFunction(); 7911 MachineFrameInfo &MFI = MF.getFrameInfo(); 7912 MFI.setFrameAddressIsTaken(true); 7913 Register FrameReg = RI.getFrameRegister(MF); 7914 int XLenInBytes = Subtarget.getXLen() / 8; 7915 7916 EVT VT = Op.getValueType(); 7917 SDLoc DL(Op); 7918 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 7919 unsigned Depth = Op.getConstantOperandVal(0); 7920 while (Depth--) { 7921 int Offset = -(XLenInBytes * 2); 7922 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 7923 DAG.getIntPtrConstant(Offset, DL)); 7924 FrameAddr = 7925 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 7926 } 7927 return FrameAddr; 7928 } 7929 7930 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 7931 SelectionDAG &DAG) const { 7932 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 7933 MachineFunction &MF = DAG.getMachineFunction(); 7934 MachineFrameInfo &MFI = MF.getFrameInfo(); 7935 MFI.setReturnAddressIsTaken(true); 7936 MVT XLenVT = Subtarget.getXLenVT(); 7937 int XLenInBytes = Subtarget.getXLen() / 8; 7938 7939 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 7940 return SDValue(); 7941 7942 EVT VT = Op.getValueType(); 7943 SDLoc DL(Op); 7944 unsigned Depth = Op.getConstantOperandVal(0); 7945 if (Depth) { 7946 int Off = -XLenInBytes; 7947 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 7948 SDValue Offset = DAG.getConstant(Off, DL, VT); 7949 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 7950 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 7951 MachinePointerInfo()); 7952 } 7953 7954 // Return the value of the return address register, marking it an implicit 7955 // live-in. 7956 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 7957 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 7958 } 7959 7960 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 7961 SelectionDAG &DAG) const { 7962 SDLoc DL(Op); 7963 SDValue Lo = Op.getOperand(0); 7964 SDValue Hi = Op.getOperand(1); 7965 SDValue Shamt = Op.getOperand(2); 7966 EVT VT = Lo.getValueType(); 7967 7968 // if Shamt-XLEN < 0: // Shamt < XLEN 7969 // Lo = Lo << Shamt 7970 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 7971 // else: 7972 // Lo = 0 7973 // Hi = Lo << (Shamt-XLEN) 7974 7975 SDValue Zero = DAG.getConstant(0, DL, VT); 7976 SDValue One = DAG.getConstant(1, DL, VT); 7977 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 7978 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 7979 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 7980 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 7981 7982 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 7983 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 7984 SDValue ShiftRightLo = 7985 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 7986 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 7987 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 7988 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 7989 7990 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 7991 7992 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 7993 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 7994 7995 SDValue Parts[2] = {Lo, Hi}; 7996 return DAG.getMergeValues(Parts, DL); 7997 } 7998 7999 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 8000 bool IsSRA) const { 8001 SDLoc DL(Op); 8002 SDValue Lo = Op.getOperand(0); 8003 SDValue Hi = Op.getOperand(1); 8004 SDValue Shamt = Op.getOperand(2); 8005 EVT VT = Lo.getValueType(); 8006 8007 // SRA expansion: 8008 // if Shamt-XLEN < 0: // Shamt < XLEN 8009 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - ShAmt)) 8010 // Hi = Hi >>s Shamt 8011 // else: 8012 // Lo = Hi >>s (Shamt-XLEN); 8013 // Hi = Hi >>s (XLEN-1) 8014 // 8015 // SRL expansion: 8016 // if Shamt-XLEN < 0: // Shamt < XLEN 8017 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - ShAmt)) 8018 // Hi = Hi >>u Shamt 8019 // else: 8020 // Lo = Hi >>u (Shamt-XLEN); 8021 // Hi = 0; 8022 8023 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 8024 8025 SDValue Zero = DAG.getConstant(0, DL, VT); 8026 SDValue One = DAG.getConstant(1, DL, VT); 8027 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 8028 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 8029 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 8030 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 8031 8032 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 8033 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 8034 SDValue ShiftLeftHi = 8035 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 8036 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 8037 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 8038 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 8039 SDValue HiFalse = 8040 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 8041 8042 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 8043 8044 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 8045 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 8046 8047 SDValue Parts[2] = {Lo, Hi}; 8048 return DAG.getMergeValues(Parts, DL); 8049 } 8050 8051 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 8052 // legal equivalently-sized i8 type, so we can use that as a go-between. 8053 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 8054 SelectionDAG &DAG) const { 8055 SDLoc DL(Op); 8056 MVT VT = Op.getSimpleValueType(); 8057 SDValue SplatVal = Op.getOperand(0); 8058 // All-zeros or all-ones splats are handled specially. 8059 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 8060 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 8061 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 8062 } 8063 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 8064 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 8065 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 8066 } 8067 MVT InterVT = VT.changeVectorElementType(MVT::i8); 8068 SplatVal = DAG.getNode(ISD::AND, DL, SplatVal.getValueType(), SplatVal, 8069 DAG.getConstant(1, DL, SplatVal.getValueType())); 8070 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 8071 SDValue Zero = DAG.getConstant(0, DL, InterVT); 8072 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 8073 } 8074 8075 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 8076 // illegal (currently only vXi64 RV32). 8077 // FIXME: We could also catch non-constant sign-extended i32 values and lower 8078 // them to VMV_V_X_VL. 8079 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 8080 SelectionDAG &DAG) const { 8081 SDLoc DL(Op); 8082 MVT VecVT = Op.getSimpleValueType(); 8083 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 8084 "Unexpected SPLAT_VECTOR_PARTS lowering"); 8085 8086 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 8087 SDValue Lo = Op.getOperand(0); 8088 SDValue Hi = Op.getOperand(1); 8089 8090 MVT ContainerVT = VecVT; 8091 if (VecVT.isFixedLengthVector()) 8092 ContainerVT = getContainerForFixedLengthVector(VecVT); 8093 8094 auto VL = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).second; 8095 8096 SDValue Res = 8097 splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG); 8098 8099 if (VecVT.isFixedLengthVector()) 8100 Res = convertFromScalableVector(VecVT, Res, DAG, Subtarget); 8101 8102 return Res; 8103 } 8104 8105 // Custom-lower extensions from mask vectors by using a vselect either with 1 8106 // for zero/any-extension or -1 for sign-extension: 8107 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 8108 // Note that any-extension is lowered identically to zero-extension. 8109 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 8110 int64_t ExtTrueVal) const { 8111 SDLoc DL(Op); 8112 MVT VecVT = Op.getSimpleValueType(); 8113 SDValue Src = Op.getOperand(0); 8114 // Only custom-lower extensions from mask types 8115 assert(Src.getValueType().isVector() && 8116 Src.getValueType().getVectorElementType() == MVT::i1); 8117 8118 if (VecVT.isScalableVector()) { 8119 SDValue SplatZero = DAG.getConstant(0, DL, VecVT); 8120 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT); 8121 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 8122 } 8123 8124 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 8125 MVT I1ContainerVT = 8126 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 8127 8128 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 8129 8130 SDValue VL = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).second; 8131 8132 MVT XLenVT = Subtarget.getXLenVT(); 8133 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 8134 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 8135 8136 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 8137 DAG.getUNDEF(ContainerVT), SplatZero, VL); 8138 SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 8139 DAG.getUNDEF(ContainerVT), SplatTrueVal, VL); 8140 SDValue Select = 8141 DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, CC, SplatTrueVal, 8142 SplatZero, DAG.getUNDEF(ContainerVT), VL); 8143 8144 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 8145 } 8146 8147 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 8148 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 8149 MVT ExtVT = Op.getSimpleValueType(); 8150 // Only custom-lower extensions from fixed-length vector types. 8151 if (!ExtVT.isFixedLengthVector()) 8152 return Op; 8153 MVT VT = Op.getOperand(0).getSimpleValueType(); 8154 // Grab the canonical container type for the extended type. Infer the smaller 8155 // type from that to ensure the same number of vector elements, as we know 8156 // the LMUL will be sufficient to hold the smaller type. 8157 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 8158 // Get the extended container type manually to ensure the same number of 8159 // vector elements between source and dest. 8160 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 8161 ContainerExtVT.getVectorElementCount()); 8162 8163 SDValue Op1 = 8164 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 8165 8166 SDLoc DL(Op); 8167 auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 8168 8169 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 8170 8171 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 8172 } 8173 8174 // Custom-lower truncations from vectors to mask vectors by using a mask and a 8175 // setcc operation: 8176 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 8177 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op, 8178 SelectionDAG &DAG) const { 8179 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE; 8180 SDLoc DL(Op); 8181 EVT MaskVT = Op.getValueType(); 8182 // Only expect to custom-lower truncations to mask types 8183 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 8184 "Unexpected type for vector mask lowering"); 8185 SDValue Src = Op.getOperand(0); 8186 MVT VecVT = Src.getSimpleValueType(); 8187 SDValue Mask, VL; 8188 if (IsVPTrunc) { 8189 Mask = Op.getOperand(1); 8190 VL = Op.getOperand(2); 8191 } 8192 // If this is a fixed vector, we need to convert it to a scalable vector. 8193 MVT ContainerVT = VecVT; 8194 8195 if (VecVT.isFixedLengthVector()) { 8196 ContainerVT = getContainerForFixedLengthVector(VecVT); 8197 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 8198 if (IsVPTrunc) { 8199 MVT MaskContainerVT = 8200 getContainerForFixedLengthVector(Mask.getSimpleValueType()); 8201 Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget); 8202 } 8203 } 8204 8205 if (!IsVPTrunc) { 8206 std::tie(Mask, VL) = 8207 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 8208 } 8209 8210 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 8211 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 8212 8213 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 8214 DAG.getUNDEF(ContainerVT), SplatOne, VL); 8215 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 8216 DAG.getUNDEF(ContainerVT), SplatZero, VL); 8217 8218 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 8219 SDValue Trunc = DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, 8220 DAG.getUNDEF(ContainerVT), Mask, VL); 8221 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, 8222 {Trunc, SplatZero, DAG.getCondCode(ISD::SETNE), 8223 DAG.getUNDEF(MaskContainerVT), Mask, VL}); 8224 if (MaskVT.isFixedLengthVector()) 8225 Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 8226 return Trunc; 8227 } 8228 8229 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op, 8230 SelectionDAG &DAG) const { 8231 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE; 8232 SDLoc DL(Op); 8233 8234 MVT VT = Op.getSimpleValueType(); 8235 // Only custom-lower vector truncates 8236 assert(VT.isVector() && "Unexpected type for vector truncate lowering"); 8237 8238 // Truncates to mask types are handled differently 8239 if (VT.getVectorElementType() == MVT::i1) 8240 return lowerVectorMaskTruncLike(Op, DAG); 8241 8242 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 8243 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 8244 // truncate by one power of two at a time. 8245 MVT DstEltVT = VT.getVectorElementType(); 8246 8247 SDValue Src = Op.getOperand(0); 8248 MVT SrcVT = Src.getSimpleValueType(); 8249 MVT SrcEltVT = SrcVT.getVectorElementType(); 8250 8251 assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) && 8252 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 8253 "Unexpected vector truncate lowering"); 8254 8255 MVT ContainerVT = SrcVT; 8256 SDValue Mask, VL; 8257 if (IsVPTrunc) { 8258 Mask = Op.getOperand(1); 8259 VL = Op.getOperand(2); 8260 } 8261 if (SrcVT.isFixedLengthVector()) { 8262 ContainerVT = getContainerForFixedLengthVector(SrcVT); 8263 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 8264 if (IsVPTrunc) { 8265 MVT MaskVT = getMaskTypeFor(ContainerVT); 8266 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 8267 } 8268 } 8269 8270 SDValue Result = Src; 8271 if (!IsVPTrunc) { 8272 std::tie(Mask, VL) = 8273 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 8274 } 8275 8276 LLVMContext &Context = *DAG.getContext(); 8277 const ElementCount Count = ContainerVT.getVectorElementCount(); 8278 do { 8279 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 8280 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 8281 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 8282 Mask, VL); 8283 } while (SrcEltVT != DstEltVT); 8284 8285 if (SrcVT.isFixedLengthVector()) 8286 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 8287 8288 return Result; 8289 } 8290 8291 SDValue 8292 RISCVTargetLowering::lowerStrictFPExtendOrRoundLike(SDValue Op, 8293 SelectionDAG &DAG) const { 8294 SDLoc DL(Op); 8295 SDValue Chain = Op.getOperand(0); 8296 SDValue Src = Op.getOperand(1); 8297 MVT VT = Op.getSimpleValueType(); 8298 MVT SrcVT = Src.getSimpleValueType(); 8299 MVT ContainerVT = VT; 8300 if (VT.isFixedLengthVector()) { 8301 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 8302 ContainerVT = 8303 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 8304 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 8305 } 8306 8307 auto [Mask, VL] = getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 8308 8309 // RVV can only widen/truncate fp to types double/half the size as the source. 8310 if ((VT.getVectorElementType() == MVT::f64 && 8311 (SrcVT.getVectorElementType() == MVT::f16 || 8312 SrcVT.getVectorElementType() == MVT::bf16)) || 8313 ((VT.getVectorElementType() == MVT::f16 || 8314 VT.getVectorElementType() == MVT::bf16) && 8315 SrcVT.getVectorElementType() == MVT::f64)) { 8316 // For double rounding, the intermediate rounding should be round-to-odd. 8317 unsigned InterConvOpc = Op.getOpcode() == ISD::STRICT_FP_EXTEND 8318 ? RISCVISD::STRICT_FP_EXTEND_VL 8319 : RISCVISD::STRICT_VFNCVT_ROD_VL; 8320 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 8321 Src = DAG.getNode(InterConvOpc, DL, DAG.getVTList(InterVT, MVT::Other), 8322 Chain, Src, Mask, VL); 8323 Chain = Src.getValue(1); 8324 } 8325 8326 unsigned ConvOpc = Op.getOpcode() == ISD::STRICT_FP_EXTEND 8327 ? RISCVISD::STRICT_FP_EXTEND_VL 8328 : RISCVISD::STRICT_FP_ROUND_VL; 8329 SDValue Res = DAG.getNode(ConvOpc, DL, DAG.getVTList(ContainerVT, MVT::Other), 8330 Chain, Src, Mask, VL); 8331 if (VT.isFixedLengthVector()) { 8332 // StrictFP operations have two result values. Their lowered result should 8333 // have same result count. 8334 SDValue SubVec = convertFromScalableVector(VT, Res, DAG, Subtarget); 8335 Res = DAG.getMergeValues({SubVec, Res.getValue(1)}, DL); 8336 } 8337 return Res; 8338 } 8339 8340 SDValue 8341 RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op, 8342 SelectionDAG &DAG) const { 8343 bool IsVP = 8344 Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND; 8345 bool IsExtend = 8346 Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND; 8347 // RVV can only do truncate fp to types half the size as the source. We 8348 // custom-lower f64->f16 rounds via RVV's round-to-odd float 8349 // conversion instruction. 8350 SDLoc DL(Op); 8351 MVT VT = Op.getSimpleValueType(); 8352 8353 assert(VT.isVector() && "Unexpected type for vector truncate lowering"); 8354 8355 SDValue Src = Op.getOperand(0); 8356 MVT SrcVT = Src.getSimpleValueType(); 8357 8358 bool IsDirectExtend = 8359 IsExtend && (VT.getVectorElementType() != MVT::f64 || 8360 (SrcVT.getVectorElementType() != MVT::f16 && 8361 SrcVT.getVectorElementType() != MVT::bf16)); 8362 bool IsDirectTrunc = !IsExtend && ((VT.getVectorElementType() != MVT::f16 && 8363 VT.getVectorElementType() != MVT::bf16) || 8364 SrcVT.getVectorElementType() != MVT::f64); 8365 8366 bool IsDirectConv = IsDirectExtend || IsDirectTrunc; 8367 8368 // Prepare any fixed-length vector operands. 8369 MVT ContainerVT = VT; 8370 SDValue Mask, VL; 8371 if (IsVP) { 8372 Mask = Op.getOperand(1); 8373 VL = Op.getOperand(2); 8374 } 8375 if (VT.isFixedLengthVector()) { 8376 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 8377 ContainerVT = 8378 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 8379 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 8380 if (IsVP) { 8381 MVT MaskVT = getMaskTypeFor(ContainerVT); 8382 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 8383 } 8384 } 8385 8386 if (!IsVP) 8387 std::tie(Mask, VL) = 8388 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 8389 8390 unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL; 8391 8392 if (IsDirectConv) { 8393 Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL); 8394 if (VT.isFixedLengthVector()) 8395 Src = convertFromScalableVector(VT, Src, DAG, Subtarget); 8396 return Src; 8397 } 8398 8399 unsigned InterConvOpc = 8400 IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL; 8401 8402 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 8403 SDValue IntermediateConv = 8404 DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL); 8405 SDValue Result = 8406 DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL); 8407 if (VT.isFixedLengthVector()) 8408 return convertFromScalableVector(VT, Result, DAG, Subtarget); 8409 return Result; 8410 } 8411 8412 // Given a scalable vector type and an index into it, returns the type for the 8413 // smallest subvector that the index fits in. This can be used to reduce LMUL 8414 // for operations like vslidedown. 8415 // 8416 // E.g. With Zvl128b, index 3 in a nxv4i32 fits within the first nxv2i32. 8417 static std::optional<MVT> 8418 getSmallestVTForIndex(MVT VecVT, unsigned MaxIdx, SDLoc DL, SelectionDAG &DAG, 8419 const RISCVSubtarget &Subtarget) { 8420 assert(VecVT.isScalableVector()); 8421 const unsigned EltSize = VecVT.getScalarSizeInBits(); 8422 const unsigned VectorBitsMin = Subtarget.getRealMinVLen(); 8423 const unsigned MinVLMAX = VectorBitsMin / EltSize; 8424 MVT SmallerVT; 8425 if (MaxIdx < MinVLMAX) 8426 SmallerVT = getLMUL1VT(VecVT); 8427 else if (MaxIdx < MinVLMAX * 2) 8428 SmallerVT = getLMUL1VT(VecVT).getDoubleNumVectorElementsVT(); 8429 else if (MaxIdx < MinVLMAX * 4) 8430 SmallerVT = getLMUL1VT(VecVT) 8431 .getDoubleNumVectorElementsVT() 8432 .getDoubleNumVectorElementsVT(); 8433 if (!SmallerVT.isValid() || !VecVT.bitsGT(SmallerVT)) 8434 return std::nullopt; 8435 return SmallerVT; 8436 } 8437 8438 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 8439 // first position of a vector, and that vector is slid up to the insert index. 8440 // By limiting the active vector length to index+1 and merging with the 8441 // original vector (with an undisturbed tail policy for elements >= VL), we 8442 // achieve the desired result of leaving all elements untouched except the one 8443 // at VL-1, which is replaced with the desired value. 8444 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 8445 SelectionDAG &DAG) const { 8446 SDLoc DL(Op); 8447 MVT VecVT = Op.getSimpleValueType(); 8448 SDValue Vec = Op.getOperand(0); 8449 SDValue Val = Op.getOperand(1); 8450 SDValue Idx = Op.getOperand(2); 8451 8452 if (VecVT.getVectorElementType() == MVT::i1) { 8453 // FIXME: For now we just promote to an i8 vector and insert into that, 8454 // but this is probably not optimal. 8455 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 8456 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 8457 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 8458 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 8459 } 8460 8461 MVT ContainerVT = VecVT; 8462 // If the operand is a fixed-length vector, convert to a scalable one. 8463 if (VecVT.isFixedLengthVector()) { 8464 ContainerVT = getContainerForFixedLengthVector(VecVT); 8465 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 8466 } 8467 8468 // If we know the index we're going to insert at, we can shrink Vec so that 8469 // we're performing the scalar inserts and slideup on a smaller LMUL. 8470 MVT OrigContainerVT = ContainerVT; 8471 SDValue OrigVec = Vec; 8472 SDValue AlignedIdx; 8473 if (auto *IdxC = dyn_cast<ConstantSDNode>(Idx)) { 8474 const unsigned OrigIdx = IdxC->getZExtValue(); 8475 // Do we know an upper bound on LMUL? 8476 if (auto ShrunkVT = getSmallestVTForIndex(ContainerVT, OrigIdx, 8477 DL, DAG, Subtarget)) { 8478 ContainerVT = *ShrunkVT; 8479 AlignedIdx = DAG.getVectorIdxConstant(0, DL); 8480 } 8481 8482 // If we're compiling for an exact VLEN value, we can always perform 8483 // the insert in m1 as we can determine the register corresponding to 8484 // the index in the register group. 8485 const MVT M1VT = getLMUL1VT(ContainerVT); 8486 if (auto VLEN = Subtarget.getRealVLen(); 8487 VLEN && ContainerVT.bitsGT(M1VT)) { 8488 EVT ElemVT = VecVT.getVectorElementType(); 8489 unsigned ElemsPerVReg = *VLEN / ElemVT.getFixedSizeInBits(); 8490 unsigned RemIdx = OrigIdx % ElemsPerVReg; 8491 unsigned SubRegIdx = OrigIdx / ElemsPerVReg; 8492 unsigned ExtractIdx = 8493 SubRegIdx * M1VT.getVectorElementCount().getKnownMinValue(); 8494 AlignedIdx = DAG.getVectorIdxConstant(ExtractIdx, DL); 8495 Idx = DAG.getVectorIdxConstant(RemIdx, DL); 8496 ContainerVT = M1VT; 8497 } 8498 8499 if (AlignedIdx) 8500 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ContainerVT, Vec, 8501 AlignedIdx); 8502 } 8503 8504 MVT XLenVT = Subtarget.getXLenVT(); 8505 8506 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 8507 // Even i64-element vectors on RV32 can be lowered without scalar 8508 // legalization if the most-significant 32 bits of the value are not affected 8509 // by the sign-extension of the lower 32 bits. 8510 // TODO: We could also catch sign extensions of a 32-bit value. 8511 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 8512 const auto *CVal = cast<ConstantSDNode>(Val); 8513 if (isInt<32>(CVal->getSExtValue())) { 8514 IsLegalInsert = true; 8515 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 8516 } 8517 } 8518 8519 auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 8520 8521 SDValue ValInVec; 8522 8523 if (IsLegalInsert) { 8524 unsigned Opc = 8525 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 8526 if (isNullConstant(Idx)) { 8527 if (!VecVT.isFloatingPoint()) 8528 Val = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Val); 8529 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 8530 8531 if (AlignedIdx) 8532 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, OrigContainerVT, OrigVec, 8533 Vec, AlignedIdx); 8534 if (!VecVT.isFixedLengthVector()) 8535 return Vec; 8536 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 8537 } 8538 ValInVec = lowerScalarInsert(Val, VL, ContainerVT, DL, DAG, Subtarget); 8539 } else { 8540 // On RV32, i64-element vectors must be specially handled to place the 8541 // value at element 0, by using two vslide1down instructions in sequence on 8542 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 8543 // this. 8544 SDValue ValLo, ValHi; 8545 std::tie(ValLo, ValHi) = DAG.SplitScalar(Val, DL, MVT::i32, MVT::i32); 8546 MVT I32ContainerVT = 8547 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 8548 SDValue I32Mask = 8549 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 8550 // Limit the active VL to two. 8551 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 8552 // If the Idx is 0 we can insert directly into the vector. 8553 if (isNullConstant(Idx)) { 8554 // First slide in the lo value, then the hi in above it. We use slide1down 8555 // to avoid the register group overlap constraint of vslide1up. 8556 ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT, 8557 Vec, Vec, ValLo, I32Mask, InsertI64VL); 8558 // If the source vector is undef don't pass along the tail elements from 8559 // the previous slide1down. 8560 SDValue Tail = Vec.isUndef() ? Vec : ValInVec; 8561 ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT, 8562 Tail, ValInVec, ValHi, I32Mask, InsertI64VL); 8563 // Bitcast back to the right container type. 8564 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 8565 8566 if (AlignedIdx) 8567 ValInVec = 8568 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, OrigContainerVT, OrigVec, 8569 ValInVec, AlignedIdx); 8570 if (!VecVT.isFixedLengthVector()) 8571 return ValInVec; 8572 return convertFromScalableVector(VecVT, ValInVec, DAG, Subtarget); 8573 } 8574 8575 // First slide in the lo value, then the hi in above it. We use slide1down 8576 // to avoid the register group overlap constraint of vslide1up. 8577 ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT, 8578 DAG.getUNDEF(I32ContainerVT), 8579 DAG.getUNDEF(I32ContainerVT), ValLo, 8580 I32Mask, InsertI64VL); 8581 ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT, 8582 DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi, 8583 I32Mask, InsertI64VL); 8584 // Bitcast back to the right container type. 8585 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 8586 } 8587 8588 // Now that the value is in a vector, slide it into position. 8589 SDValue InsertVL = 8590 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 8591 8592 // Use tail agnostic policy if Idx is the last index of Vec. 8593 unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED; 8594 if (VecVT.isFixedLengthVector() && isa<ConstantSDNode>(Idx) && 8595 Idx->getAsZExtVal() + 1 == VecVT.getVectorNumElements()) 8596 Policy = RISCVII::TAIL_AGNOSTIC; 8597 SDValue Slideup = getVSlideup(DAG, Subtarget, DL, ContainerVT, Vec, ValInVec, 8598 Idx, Mask, InsertVL, Policy); 8599 8600 if (AlignedIdx) 8601 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, OrigContainerVT, OrigVec, 8602 Slideup, AlignedIdx); 8603 if (!VecVT.isFixedLengthVector()) 8604 return Slideup; 8605 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 8606 } 8607 8608 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 8609 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 8610 // types this is done using VMV_X_S to allow us to glean information about the 8611 // sign bits of the result. 8612 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 8613 SelectionDAG &DAG) const { 8614 SDLoc DL(Op); 8615 SDValue Idx = Op.getOperand(1); 8616 SDValue Vec = Op.getOperand(0); 8617 EVT EltVT = Op.getValueType(); 8618 MVT VecVT = Vec.getSimpleValueType(); 8619 MVT XLenVT = Subtarget.getXLenVT(); 8620 8621 if (VecVT.getVectorElementType() == MVT::i1) { 8622 // Use vfirst.m to extract the first bit. 8623 if (isNullConstant(Idx)) { 8624 MVT ContainerVT = VecVT; 8625 if (VecVT.isFixedLengthVector()) { 8626 ContainerVT = getContainerForFixedLengthVector(VecVT); 8627 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 8628 } 8629 auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 8630 SDValue Vfirst = 8631 DAG.getNode(RISCVISD::VFIRST_VL, DL, XLenVT, Vec, Mask, VL); 8632 SDValue Res = DAG.getSetCC(DL, XLenVT, Vfirst, 8633 DAG.getConstant(0, DL, XLenVT), ISD::SETEQ); 8634 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Res); 8635 } 8636 if (VecVT.isFixedLengthVector()) { 8637 unsigned NumElts = VecVT.getVectorNumElements(); 8638 if (NumElts >= 8) { 8639 MVT WideEltVT; 8640 unsigned WidenVecLen; 8641 SDValue ExtractElementIdx; 8642 SDValue ExtractBitIdx; 8643 unsigned MaxEEW = Subtarget.getELen(); 8644 MVT LargestEltVT = MVT::getIntegerVT( 8645 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 8646 if (NumElts <= LargestEltVT.getSizeInBits()) { 8647 assert(isPowerOf2_32(NumElts) && 8648 "the number of elements should be power of 2"); 8649 WideEltVT = MVT::getIntegerVT(NumElts); 8650 WidenVecLen = 1; 8651 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 8652 ExtractBitIdx = Idx; 8653 } else { 8654 WideEltVT = LargestEltVT; 8655 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 8656 // extract element index = index / element width 8657 ExtractElementIdx = DAG.getNode( 8658 ISD::SRL, DL, XLenVT, Idx, 8659 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 8660 // mask bit index = index % element width 8661 ExtractBitIdx = DAG.getNode( 8662 ISD::AND, DL, XLenVT, Idx, 8663 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 8664 } 8665 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 8666 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 8667 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 8668 Vec, ExtractElementIdx); 8669 // Extract the bit from GPR. 8670 SDValue ShiftRight = 8671 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 8672 SDValue Res = DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 8673 DAG.getConstant(1, DL, XLenVT)); 8674 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Res); 8675 } 8676 } 8677 // Otherwise, promote to an i8 vector and extract from that. 8678 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 8679 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 8680 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 8681 } 8682 8683 // If this is a fixed vector, we need to convert it to a scalable vector. 8684 MVT ContainerVT = VecVT; 8685 if (VecVT.isFixedLengthVector()) { 8686 ContainerVT = getContainerForFixedLengthVector(VecVT); 8687 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 8688 } 8689 8690 // If we're compiling for an exact VLEN value and we have a known 8691 // constant index, we can always perform the extract in m1 (or 8692 // smaller) as we can determine the register corresponding to 8693 // the index in the register group. 8694 const auto VLen = Subtarget.getRealVLen(); 8695 if (auto *IdxC = dyn_cast<ConstantSDNode>(Idx); 8696 IdxC && VLen && VecVT.getSizeInBits().getKnownMinValue() > *VLen) { 8697 MVT M1VT = getLMUL1VT(ContainerVT); 8698 unsigned OrigIdx = IdxC->getZExtValue(); 8699 EVT ElemVT = VecVT.getVectorElementType(); 8700 unsigned ElemsPerVReg = *VLen / ElemVT.getFixedSizeInBits(); 8701 unsigned RemIdx = OrigIdx % ElemsPerVReg; 8702 unsigned SubRegIdx = OrigIdx / ElemsPerVReg; 8703 unsigned ExtractIdx = 8704 SubRegIdx * M1VT.getVectorElementCount().getKnownMinValue(); 8705 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, M1VT, Vec, 8706 DAG.getVectorIdxConstant(ExtractIdx, DL)); 8707 Idx = DAG.getVectorIdxConstant(RemIdx, DL); 8708 ContainerVT = M1VT; 8709 } 8710 8711 // Reduce the LMUL of our slidedown and vmv.x.s to the smallest LMUL which 8712 // contains our index. 8713 std::optional<uint64_t> MaxIdx; 8714 if (VecVT.isFixedLengthVector()) 8715 MaxIdx = VecVT.getVectorNumElements() - 1; 8716 if (auto *IdxC = dyn_cast<ConstantSDNode>(Idx)) 8717 MaxIdx = IdxC->getZExtValue(); 8718 if (MaxIdx) { 8719 if (auto SmallerVT = 8720 getSmallestVTForIndex(ContainerVT, *MaxIdx, DL, DAG, Subtarget)) { 8721 ContainerVT = *SmallerVT; 8722 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ContainerVT, Vec, 8723 DAG.getConstant(0, DL, XLenVT)); 8724 } 8725 } 8726 8727 // If after narrowing, the required slide is still greater than LMUL2, 8728 // fallback to generic expansion and go through the stack. This is done 8729 // for a subtle reason: extracting *all* elements out of a vector is 8730 // widely expected to be linear in vector size, but because vslidedown 8731 // is linear in LMUL, performing N extracts using vslidedown becomes 8732 // O(n^2) / (VLEN/ETYPE) work. On the surface, going through the stack 8733 // seems to have the same problem (the store is linear in LMUL), but the 8734 // generic expansion *memoizes* the store, and thus for many extracts of 8735 // the same vector we end up with one store and a bunch of loads. 8736 // TODO: We don't have the same code for insert_vector_elt because we 8737 // have BUILD_VECTOR and handle the degenerate case there. Should we 8738 // consider adding an inverse BUILD_VECTOR node? 8739 MVT LMUL2VT = getLMUL1VT(ContainerVT).getDoubleNumVectorElementsVT(); 8740 if (ContainerVT.bitsGT(LMUL2VT) && VecVT.isFixedLengthVector()) 8741 return SDValue(); 8742 8743 // If the index is 0, the vector is already in the right position. 8744 if (!isNullConstant(Idx)) { 8745 // Use a VL of 1 to avoid processing more elements than we need. 8746 auto [Mask, VL] = getDefaultVLOps(1, ContainerVT, DL, DAG, Subtarget); 8747 Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT, 8748 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 8749 } 8750 8751 if (!EltVT.isInteger()) { 8752 // Floating-point extracts are handled in TableGen. 8753 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 8754 DAG.getVectorIdxConstant(0, DL)); 8755 } 8756 8757 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 8758 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 8759 } 8760 8761 // Some RVV intrinsics may claim that they want an integer operand to be 8762 // promoted or expanded. 8763 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG, 8764 const RISCVSubtarget &Subtarget) { 8765 assert((Op.getOpcode() == ISD::INTRINSIC_VOID || 8766 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 8767 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 8768 "Unexpected opcode"); 8769 8770 if (!Subtarget.hasVInstructions()) 8771 return SDValue(); 8772 8773 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_VOID || 8774 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 8775 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 8776 8777 SDLoc DL(Op); 8778 8779 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 8780 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 8781 if (!II || !II->hasScalarOperand()) 8782 return SDValue(); 8783 8784 unsigned SplatOp = II->ScalarOperand + 1 + HasChain; 8785 assert(SplatOp < Op.getNumOperands()); 8786 8787 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 8788 SDValue &ScalarOp = Operands[SplatOp]; 8789 MVT OpVT = ScalarOp.getSimpleValueType(); 8790 MVT XLenVT = Subtarget.getXLenVT(); 8791 8792 // If this isn't a scalar, or its type is XLenVT we're done. 8793 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 8794 return SDValue(); 8795 8796 // Simplest case is that the operand needs to be promoted to XLenVT. 8797 if (OpVT.bitsLT(XLenVT)) { 8798 // If the operand is a constant, sign extend to increase our chances 8799 // of being able to use a .vi instruction. ANY_EXTEND would become a 8800 // a zero extend and the simm5 check in isel would fail. 8801 // FIXME: Should we ignore the upper bits in isel instead? 8802 unsigned ExtOpc = 8803 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 8804 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 8805 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 8806 } 8807 8808 // Use the previous operand to get the vXi64 VT. The result might be a mask 8809 // VT for compares. Using the previous operand assumes that the previous 8810 // operand will never have a smaller element size than a scalar operand and 8811 // that a widening operation never uses SEW=64. 8812 // NOTE: If this fails the below assert, we can probably just find the 8813 // element count from any operand or result and use it to construct the VT. 8814 assert(II->ScalarOperand > 0 && "Unexpected splat operand!"); 8815 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 8816 8817 // The more complex case is when the scalar is larger than XLenVT. 8818 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 8819 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 8820 8821 // If this is a sign-extended 32-bit value, we can truncate it and rely on the 8822 // instruction to sign-extend since SEW>XLEN. 8823 if (DAG.ComputeNumSignBits(ScalarOp) > 32) { 8824 ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp); 8825 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 8826 } 8827 8828 switch (IntNo) { 8829 case Intrinsic::riscv_vslide1up: 8830 case Intrinsic::riscv_vslide1down: 8831 case Intrinsic::riscv_vslide1up_mask: 8832 case Intrinsic::riscv_vslide1down_mask: { 8833 // We need to special case these when the scalar is larger than XLen. 8834 unsigned NumOps = Op.getNumOperands(); 8835 bool IsMasked = NumOps == 7; 8836 8837 // Convert the vector source to the equivalent nxvXi32 vector. 8838 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 8839 SDValue Vec = DAG.getBitcast(I32VT, Operands[2]); 8840 SDValue ScalarLo, ScalarHi; 8841 std::tie(ScalarLo, ScalarHi) = 8842 DAG.SplitScalar(ScalarOp, DL, MVT::i32, MVT::i32); 8843 8844 // Double the VL since we halved SEW. 8845 SDValue AVL = getVLOperand(Op); 8846 SDValue I32VL; 8847 8848 // Optimize for constant AVL 8849 if (isa<ConstantSDNode>(AVL)) { 8850 const auto [MinVLMAX, MaxVLMAX] = 8851 RISCVTargetLowering::computeVLMAXBounds(VT, Subtarget); 8852 8853 uint64_t AVLInt = AVL->getAsZExtVal(); 8854 if (AVLInt <= MinVLMAX) { 8855 I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT); 8856 } else if (AVLInt >= 2 * MaxVLMAX) { 8857 // Just set vl to VLMAX in this situation 8858 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT); 8859 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 8860 unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits()); 8861 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 8862 SDValue SETVLMAX = DAG.getTargetConstant( 8863 Intrinsic::riscv_vsetvlimax, DL, MVT::i32); 8864 I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW, 8865 LMUL); 8866 } else { 8867 // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl 8868 // is related to the hardware implementation. 8869 // So let the following code handle 8870 } 8871 } 8872 if (!I32VL) { 8873 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT); 8874 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 8875 unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits()); 8876 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 8877 SDValue SETVL = 8878 DAG.getTargetConstant(Intrinsic::riscv_vsetvli, DL, MVT::i32); 8879 // Using vsetvli instruction to get actually used length which related to 8880 // the hardware implementation 8881 SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL, 8882 SEW, LMUL); 8883 I32VL = 8884 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 8885 } 8886 8887 SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG); 8888 8889 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 8890 // instructions. 8891 SDValue Passthru; 8892 if (IsMasked) 8893 Passthru = DAG.getUNDEF(I32VT); 8894 else 8895 Passthru = DAG.getBitcast(I32VT, Operands[1]); 8896 8897 if (IntNo == Intrinsic::riscv_vslide1up || 8898 IntNo == Intrinsic::riscv_vslide1up_mask) { 8899 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 8900 ScalarHi, I32Mask, I32VL); 8901 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 8902 ScalarLo, I32Mask, I32VL); 8903 } else { 8904 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 8905 ScalarLo, I32Mask, I32VL); 8906 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 8907 ScalarHi, I32Mask, I32VL); 8908 } 8909 8910 // Convert back to nxvXi64. 8911 Vec = DAG.getBitcast(VT, Vec); 8912 8913 if (!IsMasked) 8914 return Vec; 8915 // Apply mask after the operation. 8916 SDValue Mask = Operands[NumOps - 3]; 8917 SDValue MaskedOff = Operands[1]; 8918 // Assume Policy operand is the last operand. 8919 uint64_t Policy = Operands[NumOps - 1]->getAsZExtVal(); 8920 // We don't need to select maskedoff if it's undef. 8921 if (MaskedOff.isUndef()) 8922 return Vec; 8923 // TAMU 8924 if (Policy == RISCVII::TAIL_AGNOSTIC) 8925 return DAG.getNode(RISCVISD::VMERGE_VL, DL, VT, Mask, Vec, MaskedOff, 8926 DAG.getUNDEF(VT), AVL); 8927 // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma. 8928 // It's fine because vmerge does not care mask policy. 8929 return DAG.getNode(RISCVISD::VMERGE_VL, DL, VT, Mask, Vec, MaskedOff, 8930 MaskedOff, AVL); 8931 } 8932 } 8933 8934 // We need to convert the scalar to a splat vector. 8935 SDValue VL = getVLOperand(Op); 8936 assert(VL.getValueType() == XLenVT); 8937 ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG); 8938 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 8939 } 8940 8941 // Lower the llvm.get.vector.length intrinsic to vsetvli. We only support 8942 // scalable vector llvm.get.vector.length for now. 8943 // 8944 // We need to convert from a scalable VF to a vsetvli with VLMax equal to 8945 // (vscale * VF). The vscale and VF are independent of element width. We use 8946 // SEW=8 for the vsetvli because it is the only element width that supports all 8947 // fractional LMULs. The LMUL is choosen so that with SEW=8 the VLMax is 8948 // (vscale * VF). Where vscale is defined as VLEN/RVVBitsPerBlock. The 8949 // InsertVSETVLI pass can fix up the vtype of the vsetvli if a different 8950 // SEW and LMUL are better for the surrounding vector instructions. 8951 static SDValue lowerGetVectorLength(SDNode *N, SelectionDAG &DAG, 8952 const RISCVSubtarget &Subtarget) { 8953 MVT XLenVT = Subtarget.getXLenVT(); 8954 8955 // The smallest LMUL is only valid for the smallest element width. 8956 const unsigned ElementWidth = 8; 8957 8958 // Determine the VF that corresponds to LMUL 1 for ElementWidth. 8959 unsigned LMul1VF = RISCV::RVVBitsPerBlock / ElementWidth; 8960 // We don't support VF==1 with ELEN==32. 8961 [[maybe_unused]] unsigned MinVF = 8962 RISCV::RVVBitsPerBlock / Subtarget.getELen(); 8963 8964 [[maybe_unused]] unsigned VF = N->getConstantOperandVal(2); 8965 assert(VF >= MinVF && VF <= (LMul1VF * 8) && isPowerOf2_32(VF) && 8966 "Unexpected VF"); 8967 8968 bool Fractional = VF < LMul1VF; 8969 unsigned LMulVal = Fractional ? LMul1VF / VF : VF / LMul1VF; 8970 unsigned VLMUL = (unsigned)RISCVVType::encodeLMUL(LMulVal, Fractional); 8971 unsigned VSEW = RISCVVType::encodeSEW(ElementWidth); 8972 8973 SDLoc DL(N); 8974 8975 SDValue LMul = DAG.getTargetConstant(VLMUL, DL, XLenVT); 8976 SDValue Sew = DAG.getTargetConstant(VSEW, DL, XLenVT); 8977 8978 SDValue AVL = DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1)); 8979 8980 SDValue ID = DAG.getTargetConstant(Intrinsic::riscv_vsetvli, DL, XLenVT); 8981 SDValue Res = 8982 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, ID, AVL, Sew, LMul); 8983 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), Res); 8984 } 8985 8986 static SDValue lowerCttzElts(SDNode *N, SelectionDAG &DAG, 8987 const RISCVSubtarget &Subtarget) { 8988 SDValue Op0 = N->getOperand(1); 8989 MVT OpVT = Op0.getSimpleValueType(); 8990 MVT ContainerVT = OpVT; 8991 if (OpVT.isFixedLengthVector()) { 8992 ContainerVT = getContainerForFixedLengthVector(DAG, OpVT, Subtarget); 8993 Op0 = convertToScalableVector(ContainerVT, Op0, DAG, Subtarget); 8994 } 8995 MVT XLenVT = Subtarget.getXLenVT(); 8996 SDLoc DL(N); 8997 auto [Mask, VL] = getDefaultVLOps(OpVT, ContainerVT, DL, DAG, Subtarget); 8998 SDValue Res = DAG.getNode(RISCVISD::VFIRST_VL, DL, XLenVT, Op0, Mask, VL); 8999 if (isOneConstant(N->getOperand(2))) 9000 return Res; 9001 9002 // Convert -1 to VL. 9003 SDValue Setcc = 9004 DAG.getSetCC(DL, XLenVT, Res, DAG.getConstant(0, DL, XLenVT), ISD::SETLT); 9005 VL = DAG.getElementCount(DL, XLenVT, OpVT.getVectorElementCount()); 9006 return DAG.getSelect(DL, XLenVT, Setcc, VL, Res); 9007 } 9008 9009 static inline void promoteVCIXScalar(const SDValue &Op, 9010 SmallVectorImpl<SDValue> &Operands, 9011 SelectionDAG &DAG) { 9012 const RISCVSubtarget &Subtarget = 9013 DAG.getMachineFunction().getSubtarget<RISCVSubtarget>(); 9014 9015 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_VOID || 9016 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 9017 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 9018 SDLoc DL(Op); 9019 9020 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 9021 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 9022 if (!II || !II->hasScalarOperand()) 9023 return; 9024 9025 unsigned SplatOp = II->ScalarOperand + 1; 9026 assert(SplatOp < Op.getNumOperands()); 9027 9028 SDValue &ScalarOp = Operands[SplatOp]; 9029 MVT OpVT = ScalarOp.getSimpleValueType(); 9030 MVT XLenVT = Subtarget.getXLenVT(); 9031 9032 // The code below is partially copied from lowerVectorIntrinsicScalars. 9033 // If this isn't a scalar, or its type is XLenVT we're done. 9034 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 9035 return; 9036 9037 // Manually emit promote operation for scalar operation. 9038 if (OpVT.bitsLT(XLenVT)) { 9039 unsigned ExtOpc = 9040 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 9041 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 9042 } 9043 9044 return; 9045 } 9046 9047 static void processVCIXOperands(SDValue &OrigOp, 9048 SmallVectorImpl<SDValue> &Operands, 9049 SelectionDAG &DAG) { 9050 promoteVCIXScalar(OrigOp, Operands, DAG); 9051 const RISCVSubtarget &Subtarget = 9052 DAG.getMachineFunction().getSubtarget<RISCVSubtarget>(); 9053 for (SDValue &V : Operands) { 9054 EVT ValType = V.getValueType(); 9055 if (ValType.isVector() && ValType.isFloatingPoint()) { 9056 MVT InterimIVT = 9057 MVT::getVectorVT(MVT::getIntegerVT(ValType.getScalarSizeInBits()), 9058 ValType.getVectorElementCount()); 9059 V = DAG.getBitcast(InterimIVT, V); 9060 } 9061 if (ValType.isFixedLengthVector()) { 9062 MVT OpContainerVT = getContainerForFixedLengthVector( 9063 DAG, V.getSimpleValueType(), Subtarget); 9064 V = convertToScalableVector(OpContainerVT, V, DAG, Subtarget); 9065 } 9066 } 9067 } 9068 9069 // LMUL * VLEN should be greater than or equal to EGS * SEW 9070 static inline bool isValidEGW(int EGS, EVT VT, 9071 const RISCVSubtarget &Subtarget) { 9072 return (Subtarget.getRealMinVLen() * 9073 VT.getSizeInBits().getKnownMinValue()) / RISCV::RVVBitsPerBlock >= 9074 EGS * VT.getScalarSizeInBits(); 9075 } 9076 9077 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9078 SelectionDAG &DAG) const { 9079 unsigned IntNo = Op.getConstantOperandVal(0); 9080 SDLoc DL(Op); 9081 MVT XLenVT = Subtarget.getXLenVT(); 9082 9083 switch (IntNo) { 9084 default: 9085 break; // Don't custom lower most intrinsics. 9086 case Intrinsic::thread_pointer: { 9087 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9088 return DAG.getRegister(RISCV::X4, PtrVT); 9089 } 9090 case Intrinsic::riscv_orc_b: 9091 case Intrinsic::riscv_brev8: 9092 case Intrinsic::riscv_sha256sig0: 9093 case Intrinsic::riscv_sha256sig1: 9094 case Intrinsic::riscv_sha256sum0: 9095 case Intrinsic::riscv_sha256sum1: 9096 case Intrinsic::riscv_sm3p0: 9097 case Intrinsic::riscv_sm3p1: { 9098 unsigned Opc; 9099 switch (IntNo) { 9100 case Intrinsic::riscv_orc_b: Opc = RISCVISD::ORC_B; break; 9101 case Intrinsic::riscv_brev8: Opc = RISCVISD::BREV8; break; 9102 case Intrinsic::riscv_sha256sig0: Opc = RISCVISD::SHA256SIG0; break; 9103 case Intrinsic::riscv_sha256sig1: Opc = RISCVISD::SHA256SIG1; break; 9104 case Intrinsic::riscv_sha256sum0: Opc = RISCVISD::SHA256SUM0; break; 9105 case Intrinsic::riscv_sha256sum1: Opc = RISCVISD::SHA256SUM1; break; 9106 case Intrinsic::riscv_sm3p0: Opc = RISCVISD::SM3P0; break; 9107 case Intrinsic::riscv_sm3p1: Opc = RISCVISD::SM3P1; break; 9108 } 9109 9110 if (RV64LegalI32 && Subtarget.is64Bit() && Op.getValueType() == MVT::i32) { 9111 SDValue NewOp = 9112 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(1)); 9113 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp); 9114 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res); 9115 } 9116 9117 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1)); 9118 } 9119 case Intrinsic::riscv_sm4ks: 9120 case Intrinsic::riscv_sm4ed: { 9121 unsigned Opc = 9122 IntNo == Intrinsic::riscv_sm4ks ? RISCVISD::SM4KS : RISCVISD::SM4ED; 9123 9124 if (RV64LegalI32 && Subtarget.is64Bit() && Op.getValueType() == MVT::i32) { 9125 SDValue NewOp0 = 9126 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(1)); 9127 SDValue NewOp1 = 9128 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(2)); 9129 SDValue Res = 9130 DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, Op.getOperand(3)); 9131 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res); 9132 } 9133 9134 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2), 9135 Op.getOperand(3)); 9136 } 9137 case Intrinsic::riscv_zip: 9138 case Intrinsic::riscv_unzip: { 9139 unsigned Opc = 9140 IntNo == Intrinsic::riscv_zip ? RISCVISD::ZIP : RISCVISD::UNZIP; 9141 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1)); 9142 } 9143 case Intrinsic::riscv_mopr: { 9144 if (RV64LegalI32 && Subtarget.is64Bit() && Op.getValueType() == MVT::i32) { 9145 SDValue NewOp = 9146 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(1)); 9147 SDValue Res = DAG.getNode( 9148 RISCVISD::MOPR, DL, MVT::i64, NewOp, 9149 DAG.getTargetConstant(Op.getConstantOperandVal(2), DL, MVT::i64)); 9150 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res); 9151 } 9152 return DAG.getNode(RISCVISD::MOPR, DL, XLenVT, Op.getOperand(1), 9153 Op.getOperand(2)); 9154 } 9155 9156 case Intrinsic::riscv_moprr: { 9157 if (RV64LegalI32 && Subtarget.is64Bit() && Op.getValueType() == MVT::i32) { 9158 SDValue NewOp0 = 9159 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(1)); 9160 SDValue NewOp1 = 9161 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(2)); 9162 SDValue Res = DAG.getNode( 9163 RISCVISD::MOPRR, DL, MVT::i64, NewOp0, NewOp1, 9164 DAG.getTargetConstant(Op.getConstantOperandVal(3), DL, MVT::i64)); 9165 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res); 9166 } 9167 return DAG.getNode(RISCVISD::MOPRR, DL, XLenVT, Op.getOperand(1), 9168 Op.getOperand(2), Op.getOperand(3)); 9169 } 9170 case Intrinsic::riscv_clmul: 9171 if (RV64LegalI32 && Subtarget.is64Bit() && Op.getValueType() == MVT::i32) { 9172 SDValue NewOp0 = 9173 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(1)); 9174 SDValue NewOp1 = 9175 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(2)); 9176 SDValue Res = DAG.getNode(RISCVISD::CLMUL, DL, MVT::i64, NewOp0, NewOp1); 9177 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res); 9178 } 9179 return DAG.getNode(RISCVISD::CLMUL, DL, XLenVT, Op.getOperand(1), 9180 Op.getOperand(2)); 9181 case Intrinsic::riscv_clmulh: 9182 case Intrinsic::riscv_clmulr: { 9183 unsigned Opc = 9184 IntNo == Intrinsic::riscv_clmulh ? RISCVISD::CLMULH : RISCVISD::CLMULR; 9185 if (RV64LegalI32 && Subtarget.is64Bit() && Op.getValueType() == MVT::i32) { 9186 SDValue NewOp0 = 9187 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(1)); 9188 SDValue NewOp1 = 9189 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(2)); 9190 NewOp0 = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, 9191 DAG.getConstant(32, DL, MVT::i64)); 9192 NewOp1 = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp1, 9193 DAG.getConstant(32, DL, MVT::i64)); 9194 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1); 9195 Res = DAG.getNode(ISD::SRL, DL, MVT::i64, Res, 9196 DAG.getConstant(32, DL, MVT::i64)); 9197 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res); 9198 } 9199 9200 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 9201 } 9202 case Intrinsic::experimental_get_vector_length: 9203 return lowerGetVectorLength(Op.getNode(), DAG, Subtarget); 9204 case Intrinsic::experimental_cttz_elts: 9205 return lowerCttzElts(Op.getNode(), DAG, Subtarget); 9206 case Intrinsic::riscv_vmv_x_s: { 9207 SDValue Res = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Op.getOperand(1)); 9208 return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Res); 9209 } 9210 case Intrinsic::riscv_vfmv_f_s: 9211 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(), 9212 Op.getOperand(1), DAG.getVectorIdxConstant(0, DL)); 9213 case Intrinsic::riscv_vmv_v_x: 9214 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 9215 Op.getOperand(3), Op.getSimpleValueType(), DL, DAG, 9216 Subtarget); 9217 case Intrinsic::riscv_vfmv_v_f: 9218 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 9219 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 9220 case Intrinsic::riscv_vmv_s_x: { 9221 SDValue Scalar = Op.getOperand(2); 9222 9223 if (Scalar.getValueType().bitsLE(XLenVT)) { 9224 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 9225 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 9226 Op.getOperand(1), Scalar, Op.getOperand(3)); 9227 } 9228 9229 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 9230 9231 // This is an i64 value that lives in two scalar registers. We have to 9232 // insert this in a convoluted way. First we build vXi64 splat containing 9233 // the two values that we assemble using some bit math. Next we'll use 9234 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 9235 // to merge element 0 from our splat into the source vector. 9236 // FIXME: This is probably not the best way to do this, but it is 9237 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 9238 // point. 9239 // sw lo, (a0) 9240 // sw hi, 4(a0) 9241 // vlse vX, (a0) 9242 // 9243 // vid.v vVid 9244 // vmseq.vx mMask, vVid, 0 9245 // vmerge.vvm vDest, vSrc, vVal, mMask 9246 MVT VT = Op.getSimpleValueType(); 9247 SDValue Vec = Op.getOperand(1); 9248 SDValue VL = getVLOperand(Op); 9249 9250 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG); 9251 if (Op.getOperand(1).isUndef()) 9252 return SplattedVal; 9253 SDValue SplattedIdx = 9254 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 9255 DAG.getConstant(0, DL, MVT::i32), VL); 9256 9257 MVT MaskVT = getMaskTypeFor(VT); 9258 SDValue Mask = getAllOnesMask(VT, VL, DL, DAG); 9259 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 9260 SDValue SelectCond = 9261 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, 9262 {VID, SplattedIdx, DAG.getCondCode(ISD::SETEQ), 9263 DAG.getUNDEF(MaskVT), Mask, VL}); 9264 return DAG.getNode(RISCVISD::VMERGE_VL, DL, VT, SelectCond, SplattedVal, 9265 Vec, DAG.getUNDEF(VT), VL); 9266 } 9267 case Intrinsic::riscv_vfmv_s_f: 9268 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, Op.getSimpleValueType(), 9269 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 9270 // EGS * EEW >= 128 bits 9271 case Intrinsic::riscv_vaesdf_vv: 9272 case Intrinsic::riscv_vaesdf_vs: 9273 case Intrinsic::riscv_vaesdm_vv: 9274 case Intrinsic::riscv_vaesdm_vs: 9275 case Intrinsic::riscv_vaesef_vv: 9276 case Intrinsic::riscv_vaesef_vs: 9277 case Intrinsic::riscv_vaesem_vv: 9278 case Intrinsic::riscv_vaesem_vs: 9279 case Intrinsic::riscv_vaeskf1: 9280 case Intrinsic::riscv_vaeskf2: 9281 case Intrinsic::riscv_vaesz_vs: 9282 case Intrinsic::riscv_vsm4k: 9283 case Intrinsic::riscv_vsm4r_vv: 9284 case Intrinsic::riscv_vsm4r_vs: { 9285 if (!isValidEGW(4, Op.getSimpleValueType(), Subtarget) || 9286 !isValidEGW(4, Op->getOperand(1).getSimpleValueType(), Subtarget) || 9287 !isValidEGW(4, Op->getOperand(2).getSimpleValueType(), Subtarget)) 9288 report_fatal_error("EGW should be greater than or equal to 4 * SEW."); 9289 return Op; 9290 } 9291 // EGS * EEW >= 256 bits 9292 case Intrinsic::riscv_vsm3c: 9293 case Intrinsic::riscv_vsm3me: { 9294 if (!isValidEGW(8, Op.getSimpleValueType(), Subtarget) || 9295 !isValidEGW(8, Op->getOperand(1).getSimpleValueType(), Subtarget)) 9296 report_fatal_error("EGW should be greater than or equal to 8 * SEW."); 9297 return Op; 9298 } 9299 // zvknha(SEW=32)/zvknhb(SEW=[32|64]) 9300 case Intrinsic::riscv_vsha2ch: 9301 case Intrinsic::riscv_vsha2cl: 9302 case Intrinsic::riscv_vsha2ms: { 9303 if (Op->getSimpleValueType(0).getScalarSizeInBits() == 64 && 9304 !Subtarget.hasStdExtZvknhb()) 9305 report_fatal_error("SEW=64 needs Zvknhb to be enabled."); 9306 if (!isValidEGW(4, Op.getSimpleValueType(), Subtarget) || 9307 !isValidEGW(4, Op->getOperand(1).getSimpleValueType(), Subtarget) || 9308 !isValidEGW(4, Op->getOperand(2).getSimpleValueType(), Subtarget)) 9309 report_fatal_error("EGW should be greater than or equal to 4 * SEW."); 9310 return Op; 9311 } 9312 case Intrinsic::riscv_sf_vc_v_x: 9313 case Intrinsic::riscv_sf_vc_v_i: 9314 case Intrinsic::riscv_sf_vc_v_xv: 9315 case Intrinsic::riscv_sf_vc_v_iv: 9316 case Intrinsic::riscv_sf_vc_v_vv: 9317 case Intrinsic::riscv_sf_vc_v_fv: 9318 case Intrinsic::riscv_sf_vc_v_xvv: 9319 case Intrinsic::riscv_sf_vc_v_ivv: 9320 case Intrinsic::riscv_sf_vc_v_vvv: 9321 case Intrinsic::riscv_sf_vc_v_fvv: 9322 case Intrinsic::riscv_sf_vc_v_xvw: 9323 case Intrinsic::riscv_sf_vc_v_ivw: 9324 case Intrinsic::riscv_sf_vc_v_vvw: 9325 case Intrinsic::riscv_sf_vc_v_fvw: { 9326 MVT VT = Op.getSimpleValueType(); 9327 9328 SmallVector<SDValue> Operands{Op->op_values()}; 9329 processVCIXOperands(Op, Operands, DAG); 9330 9331 MVT RetVT = VT; 9332 if (VT.isFixedLengthVector()) 9333 RetVT = getContainerForFixedLengthVector(VT); 9334 else if (VT.isFloatingPoint()) 9335 RetVT = MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits()), 9336 VT.getVectorElementCount()); 9337 9338 SDValue NewNode = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, RetVT, Operands); 9339 9340 if (VT.isFixedLengthVector()) 9341 NewNode = convertFromScalableVector(VT, NewNode, DAG, Subtarget); 9342 else if (VT.isFloatingPoint()) 9343 NewNode = DAG.getBitcast(VT, NewNode); 9344 9345 if (Op == NewNode) 9346 break; 9347 9348 return NewNode; 9349 } 9350 } 9351 9352 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 9353 } 9354 9355 static inline SDValue getVCIXISDNodeWCHAIN(SDValue &Op, SelectionDAG &DAG, 9356 unsigned Type) { 9357 SDLoc DL(Op); 9358 SmallVector<SDValue> Operands{Op->op_values()}; 9359 Operands.erase(Operands.begin() + 1); 9360 9361 const RISCVSubtarget &Subtarget = 9362 DAG.getMachineFunction().getSubtarget<RISCVSubtarget>(); 9363 MVT VT = Op.getSimpleValueType(); 9364 MVT RetVT = VT; 9365 MVT FloatVT = VT; 9366 9367 if (VT.isFloatingPoint()) { 9368 RetVT = MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits()), 9369 VT.getVectorElementCount()); 9370 FloatVT = RetVT; 9371 } 9372 if (VT.isFixedLengthVector()) 9373 RetVT = getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), RetVT, 9374 Subtarget); 9375 9376 processVCIXOperands(Op, Operands, DAG); 9377 9378 SDVTList VTs = DAG.getVTList({RetVT, MVT::Other}); 9379 SDValue NewNode = DAG.getNode(Type, DL, VTs, Operands); 9380 SDValue Chain = NewNode.getValue(1); 9381 9382 if (VT.isFixedLengthVector()) 9383 NewNode = convertFromScalableVector(FloatVT, NewNode, DAG, Subtarget); 9384 if (VT.isFloatingPoint()) 9385 NewNode = DAG.getBitcast(VT, NewNode); 9386 9387 NewNode = DAG.getMergeValues({NewNode, Chain}, DL); 9388 9389 return NewNode; 9390 } 9391 9392 static inline SDValue getVCIXISDNodeVOID(SDValue &Op, SelectionDAG &DAG, 9393 unsigned Type) { 9394 SmallVector<SDValue> Operands{Op->op_values()}; 9395 Operands.erase(Operands.begin() + 1); 9396 processVCIXOperands(Op, Operands, DAG); 9397 9398 return DAG.getNode(Type, SDLoc(Op), Op.getValueType(), Operands); 9399 } 9400 9401 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 9402 SelectionDAG &DAG) const { 9403 unsigned IntNo = Op.getConstantOperandVal(1); 9404 switch (IntNo) { 9405 default: 9406 break; 9407 case Intrinsic::riscv_masked_strided_load: { 9408 SDLoc DL(Op); 9409 MVT XLenVT = Subtarget.getXLenVT(); 9410 9411 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 9412 // the selection of the masked intrinsics doesn't do this for us. 9413 SDValue Mask = Op.getOperand(5); 9414 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 9415 9416 MVT VT = Op->getSimpleValueType(0); 9417 MVT ContainerVT = VT; 9418 if (VT.isFixedLengthVector()) 9419 ContainerVT = getContainerForFixedLengthVector(VT); 9420 9421 SDValue PassThru = Op.getOperand(2); 9422 if (!IsUnmasked) { 9423 MVT MaskVT = getMaskTypeFor(ContainerVT); 9424 if (VT.isFixedLengthVector()) { 9425 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 9426 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 9427 } 9428 } 9429 9430 auto *Load = cast<MemIntrinsicSDNode>(Op); 9431 SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 9432 SDValue Ptr = Op.getOperand(3); 9433 SDValue Stride = Op.getOperand(4); 9434 SDValue Result, Chain; 9435 9436 // TODO: We restrict this to unmasked loads currently in consideration of 9437 // the complexity of handling all falses masks. 9438 MVT ScalarVT = ContainerVT.getVectorElementType(); 9439 if (IsUnmasked && isNullConstant(Stride) && ContainerVT.isInteger()) { 9440 SDValue ScalarLoad = 9441 DAG.getExtLoad(ISD::EXTLOAD, DL, XLenVT, Load->getChain(), Ptr, 9442 ScalarVT, Load->getMemOperand()); 9443 Chain = ScalarLoad.getValue(1); 9444 Result = lowerScalarSplat(SDValue(), ScalarLoad, VL, ContainerVT, DL, DAG, 9445 Subtarget); 9446 } else if (IsUnmasked && isNullConstant(Stride) && isTypeLegal(ScalarVT)) { 9447 SDValue ScalarLoad = DAG.getLoad(ScalarVT, DL, Load->getChain(), Ptr, 9448 Load->getMemOperand()); 9449 Chain = ScalarLoad.getValue(1); 9450 Result = DAG.getSplat(ContainerVT, DL, ScalarLoad); 9451 } else { 9452 SDValue IntID = DAG.getTargetConstant( 9453 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 9454 XLenVT); 9455 9456 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 9457 if (IsUnmasked) 9458 Ops.push_back(DAG.getUNDEF(ContainerVT)); 9459 else 9460 Ops.push_back(PassThru); 9461 Ops.push_back(Ptr); 9462 Ops.push_back(Stride); 9463 if (!IsUnmasked) 9464 Ops.push_back(Mask); 9465 Ops.push_back(VL); 9466 if (!IsUnmasked) { 9467 SDValue Policy = 9468 DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 9469 Ops.push_back(Policy); 9470 } 9471 9472 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 9473 Result = 9474 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 9475 Load->getMemoryVT(), Load->getMemOperand()); 9476 Chain = Result.getValue(1); 9477 } 9478 if (VT.isFixedLengthVector()) 9479 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 9480 return DAG.getMergeValues({Result, Chain}, DL); 9481 } 9482 case Intrinsic::riscv_seg2_load: 9483 case Intrinsic::riscv_seg3_load: 9484 case Intrinsic::riscv_seg4_load: 9485 case Intrinsic::riscv_seg5_load: 9486 case Intrinsic::riscv_seg6_load: 9487 case Intrinsic::riscv_seg7_load: 9488 case Intrinsic::riscv_seg8_load: { 9489 SDLoc DL(Op); 9490 static const Intrinsic::ID VlsegInts[7] = { 9491 Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, 9492 Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, 9493 Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, 9494 Intrinsic::riscv_vlseg8}; 9495 unsigned NF = Op->getNumValues() - 1; 9496 assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); 9497 MVT XLenVT = Subtarget.getXLenVT(); 9498 MVT VT = Op->getSimpleValueType(0); 9499 MVT ContainerVT = getContainerForFixedLengthVector(VT); 9500 9501 SDValue VL = getVLOp(VT.getVectorNumElements(), ContainerVT, DL, DAG, 9502 Subtarget); 9503 SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT); 9504 auto *Load = cast<MemIntrinsicSDNode>(Op); 9505 SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT); 9506 ContainerVTs.push_back(MVT::Other); 9507 SDVTList VTs = DAG.getVTList(ContainerVTs); 9508 SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID}; 9509 Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT)); 9510 Ops.push_back(Op.getOperand(2)); 9511 Ops.push_back(VL); 9512 SDValue Result = 9513 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 9514 Load->getMemoryVT(), Load->getMemOperand()); 9515 SmallVector<SDValue, 9> Results; 9516 for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++) 9517 Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx), 9518 DAG, Subtarget)); 9519 Results.push_back(Result.getValue(NF)); 9520 return DAG.getMergeValues(Results, DL); 9521 } 9522 case Intrinsic::riscv_sf_vc_v_x_se: 9523 return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_X_SE); 9524 case Intrinsic::riscv_sf_vc_v_i_se: 9525 return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_I_SE); 9526 case Intrinsic::riscv_sf_vc_v_xv_se: 9527 return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_XV_SE); 9528 case Intrinsic::riscv_sf_vc_v_iv_se: 9529 return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_IV_SE); 9530 case Intrinsic::riscv_sf_vc_v_vv_se: 9531 return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_VV_SE); 9532 case Intrinsic::riscv_sf_vc_v_fv_se: 9533 return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_FV_SE); 9534 case Intrinsic::riscv_sf_vc_v_xvv_se: 9535 return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_XVV_SE); 9536 case Intrinsic::riscv_sf_vc_v_ivv_se: 9537 return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_IVV_SE); 9538 case Intrinsic::riscv_sf_vc_v_vvv_se: 9539 return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_VVV_SE); 9540 case Intrinsic::riscv_sf_vc_v_fvv_se: 9541 return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_FVV_SE); 9542 case Intrinsic::riscv_sf_vc_v_xvw_se: 9543 return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_XVW_SE); 9544 case Intrinsic::riscv_sf_vc_v_ivw_se: 9545 return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_IVW_SE); 9546 case Intrinsic::riscv_sf_vc_v_vvw_se: 9547 return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_VVW_SE); 9548 case Intrinsic::riscv_sf_vc_v_fvw_se: 9549 return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_FVW_SE); 9550 } 9551 9552 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 9553 } 9554 9555 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9556 SelectionDAG &DAG) const { 9557 unsigned IntNo = Op.getConstantOperandVal(1); 9558 switch (IntNo) { 9559 default: 9560 break; 9561 case Intrinsic::riscv_masked_strided_store: { 9562 SDLoc DL(Op); 9563 MVT XLenVT = Subtarget.getXLenVT(); 9564 9565 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 9566 // the selection of the masked intrinsics doesn't do this for us. 9567 SDValue Mask = Op.getOperand(5); 9568 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 9569 9570 SDValue Val = Op.getOperand(2); 9571 MVT VT = Val.getSimpleValueType(); 9572 MVT ContainerVT = VT; 9573 if (VT.isFixedLengthVector()) { 9574 ContainerVT = getContainerForFixedLengthVector(VT); 9575 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 9576 } 9577 if (!IsUnmasked) { 9578 MVT MaskVT = getMaskTypeFor(ContainerVT); 9579 if (VT.isFixedLengthVector()) 9580 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 9581 } 9582 9583 SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 9584 9585 SDValue IntID = DAG.getTargetConstant( 9586 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 9587 XLenVT); 9588 9589 auto *Store = cast<MemIntrinsicSDNode>(Op); 9590 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 9591 Ops.push_back(Val); 9592 Ops.push_back(Op.getOperand(3)); // Ptr 9593 Ops.push_back(Op.getOperand(4)); // Stride 9594 if (!IsUnmasked) 9595 Ops.push_back(Mask); 9596 Ops.push_back(VL); 9597 9598 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 9599 Ops, Store->getMemoryVT(), 9600 Store->getMemOperand()); 9601 } 9602 case Intrinsic::riscv_seg2_store: 9603 case Intrinsic::riscv_seg3_store: 9604 case Intrinsic::riscv_seg4_store: 9605 case Intrinsic::riscv_seg5_store: 9606 case Intrinsic::riscv_seg6_store: 9607 case Intrinsic::riscv_seg7_store: 9608 case Intrinsic::riscv_seg8_store: { 9609 SDLoc DL(Op); 9610 static const Intrinsic::ID VssegInts[] = { 9611 Intrinsic::riscv_vsseg2, Intrinsic::riscv_vsseg3, 9612 Intrinsic::riscv_vsseg4, Intrinsic::riscv_vsseg5, 9613 Intrinsic::riscv_vsseg6, Intrinsic::riscv_vsseg7, 9614 Intrinsic::riscv_vsseg8}; 9615 // Operands are (chain, int_id, vec*, ptr, vl) 9616 unsigned NF = Op->getNumOperands() - 4; 9617 assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); 9618 MVT XLenVT = Subtarget.getXLenVT(); 9619 MVT VT = Op->getOperand(2).getSimpleValueType(); 9620 MVT ContainerVT = getContainerForFixedLengthVector(VT); 9621 9622 SDValue VL = getVLOp(VT.getVectorNumElements(), ContainerVT, DL, DAG, 9623 Subtarget); 9624 SDValue IntID = DAG.getTargetConstant(VssegInts[NF - 2], DL, XLenVT); 9625 SDValue Ptr = Op->getOperand(NF + 2); 9626 9627 auto *FixedIntrinsic = cast<MemIntrinsicSDNode>(Op); 9628 SmallVector<SDValue, 12> Ops = {FixedIntrinsic->getChain(), IntID}; 9629 for (unsigned i = 0; i < NF; i++) 9630 Ops.push_back(convertToScalableVector( 9631 ContainerVT, FixedIntrinsic->getOperand(2 + i), DAG, Subtarget)); 9632 Ops.append({Ptr, VL}); 9633 9634 return DAG.getMemIntrinsicNode( 9635 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), Ops, 9636 FixedIntrinsic->getMemoryVT(), FixedIntrinsic->getMemOperand()); 9637 } 9638 case Intrinsic::riscv_sf_vc_xv_se: 9639 return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_XV_SE); 9640 case Intrinsic::riscv_sf_vc_iv_se: 9641 return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_IV_SE); 9642 case Intrinsic::riscv_sf_vc_vv_se: 9643 return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_VV_SE); 9644 case Intrinsic::riscv_sf_vc_fv_se: 9645 return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_FV_SE); 9646 case Intrinsic::riscv_sf_vc_xvv_se: 9647 return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_XVV_SE); 9648 case Intrinsic::riscv_sf_vc_ivv_se: 9649 return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_IVV_SE); 9650 case Intrinsic::riscv_sf_vc_vvv_se: 9651 return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_VVV_SE); 9652 case Intrinsic::riscv_sf_vc_fvv_se: 9653 return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_FVV_SE); 9654 case Intrinsic::riscv_sf_vc_xvw_se: 9655 return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_XVW_SE); 9656 case Intrinsic::riscv_sf_vc_ivw_se: 9657 return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_IVW_SE); 9658 case Intrinsic::riscv_sf_vc_vvw_se: 9659 return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_VVW_SE); 9660 case Intrinsic::riscv_sf_vc_fvw_se: 9661 return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_FVW_SE); 9662 } 9663 9664 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 9665 } 9666 9667 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 9668 switch (ISDOpcode) { 9669 default: 9670 llvm_unreachable("Unhandled reduction"); 9671 case ISD::VP_REDUCE_ADD: 9672 case ISD::VECREDUCE_ADD: 9673 return RISCVISD::VECREDUCE_ADD_VL; 9674 case ISD::VP_REDUCE_UMAX: 9675 case ISD::VECREDUCE_UMAX: 9676 return RISCVISD::VECREDUCE_UMAX_VL; 9677 case ISD::VP_REDUCE_SMAX: 9678 case ISD::VECREDUCE_SMAX: 9679 return RISCVISD::VECREDUCE_SMAX_VL; 9680 case ISD::VP_REDUCE_UMIN: 9681 case ISD::VECREDUCE_UMIN: 9682 return RISCVISD::VECREDUCE_UMIN_VL; 9683 case ISD::VP_REDUCE_SMIN: 9684 case ISD::VECREDUCE_SMIN: 9685 return RISCVISD::VECREDUCE_SMIN_VL; 9686 case ISD::VP_REDUCE_AND: 9687 case ISD::VECREDUCE_AND: 9688 return RISCVISD::VECREDUCE_AND_VL; 9689 case ISD::VP_REDUCE_OR: 9690 case ISD::VECREDUCE_OR: 9691 return RISCVISD::VECREDUCE_OR_VL; 9692 case ISD::VP_REDUCE_XOR: 9693 case ISD::VECREDUCE_XOR: 9694 return RISCVISD::VECREDUCE_XOR_VL; 9695 case ISD::VP_REDUCE_FADD: 9696 return RISCVISD::VECREDUCE_FADD_VL; 9697 case ISD::VP_REDUCE_SEQ_FADD: 9698 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 9699 case ISD::VP_REDUCE_FMAX: 9700 case ISD::VP_REDUCE_FMAXIMUM: 9701 return RISCVISD::VECREDUCE_FMAX_VL; 9702 case ISD::VP_REDUCE_FMIN: 9703 case ISD::VP_REDUCE_FMINIMUM: 9704 return RISCVISD::VECREDUCE_FMIN_VL; 9705 } 9706 9707 } 9708 9709 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 9710 SelectionDAG &DAG, 9711 bool IsVP) const { 9712 SDLoc DL(Op); 9713 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 9714 MVT VecVT = Vec.getSimpleValueType(); 9715 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 9716 Op.getOpcode() == ISD::VECREDUCE_OR || 9717 Op.getOpcode() == ISD::VECREDUCE_XOR || 9718 Op.getOpcode() == ISD::VP_REDUCE_AND || 9719 Op.getOpcode() == ISD::VP_REDUCE_OR || 9720 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 9721 "Unexpected reduction lowering"); 9722 9723 MVT XLenVT = Subtarget.getXLenVT(); 9724 9725 MVT ContainerVT = VecVT; 9726 if (VecVT.isFixedLengthVector()) { 9727 ContainerVT = getContainerForFixedLengthVector(VecVT); 9728 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 9729 } 9730 9731 SDValue Mask, VL; 9732 if (IsVP) { 9733 Mask = Op.getOperand(2); 9734 VL = Op.getOperand(3); 9735 } else { 9736 std::tie(Mask, VL) = 9737 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 9738 } 9739 9740 unsigned BaseOpc; 9741 ISD::CondCode CC; 9742 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 9743 9744 switch (Op.getOpcode()) { 9745 default: 9746 llvm_unreachable("Unhandled reduction"); 9747 case ISD::VECREDUCE_AND: 9748 case ISD::VP_REDUCE_AND: { 9749 // vcpop ~x == 0 9750 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 9751 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 9752 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 9753 CC = ISD::SETEQ; 9754 BaseOpc = ISD::AND; 9755 break; 9756 } 9757 case ISD::VECREDUCE_OR: 9758 case ISD::VP_REDUCE_OR: 9759 // vcpop x != 0 9760 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 9761 CC = ISD::SETNE; 9762 BaseOpc = ISD::OR; 9763 break; 9764 case ISD::VECREDUCE_XOR: 9765 case ISD::VP_REDUCE_XOR: { 9766 // ((vcpop x) & 1) != 0 9767 SDValue One = DAG.getConstant(1, DL, XLenVT); 9768 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 9769 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 9770 CC = ISD::SETNE; 9771 BaseOpc = ISD::XOR; 9772 break; 9773 } 9774 } 9775 9776 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 9777 SetCC = DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), SetCC); 9778 9779 if (!IsVP) 9780 return SetCC; 9781 9782 // Now include the start value in the operation. 9783 // Note that we must return the start value when no elements are operated 9784 // upon. The vcpop instructions we've emitted in each case above will return 9785 // 0 for an inactive vector, and so we've already received the neutral value: 9786 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 9787 // can simply include the start value. 9788 return DAG.getNode(BaseOpc, DL, Op.getValueType(), SetCC, Op.getOperand(0)); 9789 } 9790 9791 static bool isNonZeroAVL(SDValue AVL) { 9792 auto *RegisterAVL = dyn_cast<RegisterSDNode>(AVL); 9793 auto *ImmAVL = dyn_cast<ConstantSDNode>(AVL); 9794 return (RegisterAVL && RegisterAVL->getReg() == RISCV::X0) || 9795 (ImmAVL && ImmAVL->getZExtValue() >= 1); 9796 } 9797 9798 /// Helper to lower a reduction sequence of the form: 9799 /// scalar = reduce_op vec, scalar_start 9800 static SDValue lowerReductionSeq(unsigned RVVOpcode, MVT ResVT, 9801 SDValue StartValue, SDValue Vec, SDValue Mask, 9802 SDValue VL, const SDLoc &DL, SelectionDAG &DAG, 9803 const RISCVSubtarget &Subtarget) { 9804 const MVT VecVT = Vec.getSimpleValueType(); 9805 const MVT M1VT = getLMUL1VT(VecVT); 9806 const MVT XLenVT = Subtarget.getXLenVT(); 9807 const bool NonZeroAVL = isNonZeroAVL(VL); 9808 9809 // The reduction needs an LMUL1 input; do the splat at either LMUL1 9810 // or the original VT if fractional. 9811 auto InnerVT = VecVT.bitsLE(M1VT) ? VecVT : M1VT; 9812 // We reuse the VL of the reduction to reduce vsetvli toggles if we can 9813 // prove it is non-zero. For the AVL=0 case, we need the scalar to 9814 // be the result of the reduction operation. 9815 auto InnerVL = NonZeroAVL ? VL : DAG.getConstant(1, DL, XLenVT); 9816 SDValue InitialValue = lowerScalarInsert(StartValue, InnerVL, InnerVT, DL, 9817 DAG, Subtarget); 9818 if (M1VT != InnerVT) 9819 InitialValue = 9820 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, M1VT, DAG.getUNDEF(M1VT), 9821 InitialValue, DAG.getVectorIdxConstant(0, DL)); 9822 SDValue PassThru = NonZeroAVL ? DAG.getUNDEF(M1VT) : InitialValue; 9823 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 9824 SDValue Ops[] = {PassThru, Vec, InitialValue, Mask, VL, Policy}; 9825 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, Ops); 9826 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 9827 DAG.getVectorIdxConstant(0, DL)); 9828 } 9829 9830 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 9831 SelectionDAG &DAG) const { 9832 SDLoc DL(Op); 9833 SDValue Vec = Op.getOperand(0); 9834 EVT VecEVT = Vec.getValueType(); 9835 9836 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 9837 9838 // Due to ordering in legalize types we may have a vector type that needs to 9839 // be split. Do that manually so we can get down to a legal type. 9840 while (getTypeAction(*DAG.getContext(), VecEVT) == 9841 TargetLowering::TypeSplitVector) { 9842 auto [Lo, Hi] = DAG.SplitVector(Vec, DL); 9843 VecEVT = Lo.getValueType(); 9844 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 9845 } 9846 9847 // TODO: The type may need to be widened rather than split. Or widened before 9848 // it can be split. 9849 if (!isTypeLegal(VecEVT)) 9850 return SDValue(); 9851 9852 MVT VecVT = VecEVT.getSimpleVT(); 9853 MVT VecEltVT = VecVT.getVectorElementType(); 9854 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 9855 9856 MVT ContainerVT = VecVT; 9857 if (VecVT.isFixedLengthVector()) { 9858 ContainerVT = getContainerForFixedLengthVector(VecVT); 9859 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 9860 } 9861 9862 auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 9863 9864 SDValue StartV = DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 9865 switch (BaseOpc) { 9866 case ISD::AND: 9867 case ISD::OR: 9868 case ISD::UMAX: 9869 case ISD::UMIN: 9870 case ISD::SMAX: 9871 case ISD::SMIN: 9872 StartV = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Vec, 9873 DAG.getVectorIdxConstant(0, DL)); 9874 } 9875 return lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), StartV, Vec, 9876 Mask, VL, DL, DAG, Subtarget); 9877 } 9878 9879 // Given a reduction op, this function returns the matching reduction opcode, 9880 // the vector SDValue and the scalar SDValue required to lower this to a 9881 // RISCVISD node. 9882 static std::tuple<unsigned, SDValue, SDValue> 9883 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT, 9884 const RISCVSubtarget &Subtarget) { 9885 SDLoc DL(Op); 9886 auto Flags = Op->getFlags(); 9887 unsigned Opcode = Op.getOpcode(); 9888 switch (Opcode) { 9889 default: 9890 llvm_unreachable("Unhandled reduction"); 9891 case ISD::VECREDUCE_FADD: { 9892 // Use positive zero if we can. It is cheaper to materialize. 9893 SDValue Zero = 9894 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 9895 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 9896 } 9897 case ISD::VECREDUCE_SEQ_FADD: 9898 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 9899 Op.getOperand(0)); 9900 case ISD::VECREDUCE_FMINIMUM: 9901 case ISD::VECREDUCE_FMAXIMUM: 9902 case ISD::VECREDUCE_FMIN: 9903 case ISD::VECREDUCE_FMAX: { 9904 SDValue Front = 9905 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Op.getOperand(0), 9906 DAG.getVectorIdxConstant(0, DL)); 9907 unsigned RVVOpc = 9908 (Opcode == ISD::VECREDUCE_FMIN || Opcode == ISD::VECREDUCE_FMINIMUM) 9909 ? RISCVISD::VECREDUCE_FMIN_VL 9910 : RISCVISD::VECREDUCE_FMAX_VL; 9911 return std::make_tuple(RVVOpc, Op.getOperand(0), Front); 9912 } 9913 } 9914 } 9915 9916 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 9917 SelectionDAG &DAG) const { 9918 SDLoc DL(Op); 9919 MVT VecEltVT = Op.getSimpleValueType(); 9920 9921 unsigned RVVOpcode; 9922 SDValue VectorVal, ScalarVal; 9923 std::tie(RVVOpcode, VectorVal, ScalarVal) = 9924 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT, Subtarget); 9925 MVT VecVT = VectorVal.getSimpleValueType(); 9926 9927 MVT ContainerVT = VecVT; 9928 if (VecVT.isFixedLengthVector()) { 9929 ContainerVT = getContainerForFixedLengthVector(VecVT); 9930 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 9931 } 9932 9933 MVT ResVT = Op.getSimpleValueType(); 9934 auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 9935 SDValue Res = lowerReductionSeq(RVVOpcode, ResVT, ScalarVal, VectorVal, Mask, 9936 VL, DL, DAG, Subtarget); 9937 if (Op.getOpcode() != ISD::VECREDUCE_FMINIMUM && 9938 Op.getOpcode() != ISD::VECREDUCE_FMAXIMUM) 9939 return Res; 9940 9941 if (Op->getFlags().hasNoNaNs()) 9942 return Res; 9943 9944 // Force output to NaN if any element is Nan. 9945 SDValue IsNan = 9946 DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(), 9947 {VectorVal, VectorVal, DAG.getCondCode(ISD::SETNE), 9948 DAG.getUNDEF(Mask.getValueType()), Mask, VL}); 9949 MVT XLenVT = Subtarget.getXLenVT(); 9950 SDValue CPop = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, IsNan, Mask, VL); 9951 SDValue NoNaNs = DAG.getSetCC(DL, XLenVT, CPop, 9952 DAG.getConstant(0, DL, XLenVT), ISD::SETEQ); 9953 return DAG.getSelect( 9954 DL, ResVT, NoNaNs, Res, 9955 DAG.getConstantFP(APFloat::getNaN(DAG.EVTToAPFloatSemantics(ResVT)), DL, 9956 ResVT)); 9957 } 9958 9959 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 9960 SelectionDAG &DAG) const { 9961 SDLoc DL(Op); 9962 unsigned Opc = Op.getOpcode(); 9963 SDValue Start = Op.getOperand(0); 9964 SDValue Vec = Op.getOperand(1); 9965 EVT VecEVT = Vec.getValueType(); 9966 MVT XLenVT = Subtarget.getXLenVT(); 9967 9968 // TODO: The type may need to be widened rather than split. Or widened before 9969 // it can be split. 9970 if (!isTypeLegal(VecEVT)) 9971 return SDValue(); 9972 9973 MVT VecVT = VecEVT.getSimpleVT(); 9974 unsigned RVVOpcode = getRVVReductionOp(Opc); 9975 9976 if (VecVT.isFixedLengthVector()) { 9977 auto ContainerVT = getContainerForFixedLengthVector(VecVT); 9978 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 9979 } 9980 9981 SDValue VL = Op.getOperand(3); 9982 SDValue Mask = Op.getOperand(2); 9983 SDValue Res = 9984 lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), Op.getOperand(0), 9985 Vec, Mask, VL, DL, DAG, Subtarget); 9986 if ((Opc != ISD::VP_REDUCE_FMINIMUM && Opc != ISD::VP_REDUCE_FMAXIMUM) || 9987 Op->getFlags().hasNoNaNs()) 9988 return Res; 9989 9990 // Propagate NaNs. 9991 MVT PredVT = getMaskTypeFor(Vec.getSimpleValueType()); 9992 // Check if any of the elements in Vec is NaN. 9993 SDValue IsNaN = DAG.getNode( 9994 RISCVISD::SETCC_VL, DL, PredVT, 9995 {Vec, Vec, DAG.getCondCode(ISD::SETNE), DAG.getUNDEF(PredVT), Mask, VL}); 9996 SDValue VCPop = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, IsNaN, Mask, VL); 9997 // Check if the start value is NaN. 9998 SDValue StartIsNaN = DAG.getSetCC(DL, XLenVT, Start, Start, ISD::SETUO); 9999 VCPop = DAG.getNode(ISD::OR, DL, XLenVT, VCPop, StartIsNaN); 10000 SDValue NoNaNs = DAG.getSetCC(DL, XLenVT, VCPop, 10001 DAG.getConstant(0, DL, XLenVT), ISD::SETEQ); 10002 MVT ResVT = Res.getSimpleValueType(); 10003 return DAG.getSelect( 10004 DL, ResVT, NoNaNs, Res, 10005 DAG.getConstantFP(APFloat::getNaN(DAG.EVTToAPFloatSemantics(ResVT)), DL, 10006 ResVT)); 10007 } 10008 10009 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 10010 SelectionDAG &DAG) const { 10011 SDValue Vec = Op.getOperand(0); 10012 SDValue SubVec = Op.getOperand(1); 10013 MVT VecVT = Vec.getSimpleValueType(); 10014 MVT SubVecVT = SubVec.getSimpleValueType(); 10015 10016 SDLoc DL(Op); 10017 MVT XLenVT = Subtarget.getXLenVT(); 10018 unsigned OrigIdx = Op.getConstantOperandVal(2); 10019 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10020 10021 // We don't have the ability to slide mask vectors up indexed by their i1 10022 // elements; the smallest we can do is i8. Often we are able to bitcast to 10023 // equivalent i8 vectors. Note that when inserting a fixed-length vector 10024 // into a scalable one, we might not necessarily have enough scalable 10025 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 10026 if (SubVecVT.getVectorElementType() == MVT::i1 && 10027 (OrigIdx != 0 || !Vec.isUndef())) { 10028 if (VecVT.getVectorMinNumElements() >= 8 && 10029 SubVecVT.getVectorMinNumElements() >= 8) { 10030 assert(OrigIdx % 8 == 0 && "Invalid index"); 10031 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 10032 SubVecVT.getVectorMinNumElements() % 8 == 0 && 10033 "Unexpected mask vector lowering"); 10034 OrigIdx /= 8; 10035 SubVecVT = 10036 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 10037 SubVecVT.isScalableVector()); 10038 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 10039 VecVT.isScalableVector()); 10040 Vec = DAG.getBitcast(VecVT, Vec); 10041 SubVec = DAG.getBitcast(SubVecVT, SubVec); 10042 } else { 10043 // We can't slide this mask vector up indexed by its i1 elements. 10044 // This poses a problem when we wish to insert a scalable vector which 10045 // can't be re-expressed as a larger type. Just choose the slow path and 10046 // extend to a larger type, then truncate back down. 10047 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 10048 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 10049 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 10050 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 10051 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 10052 Op.getOperand(2)); 10053 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 10054 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 10055 } 10056 } 10057 10058 // If the subvector vector is a fixed-length type and we don't know VLEN 10059 // exactly, we cannot use subregister manipulation to simplify the codegen; we 10060 // don't know which register of a LMUL group contains the specific subvector 10061 // as we only know the minimum register size. Therefore we must slide the 10062 // vector group up the full amount. 10063 const auto VLen = Subtarget.getRealVLen(); 10064 if (SubVecVT.isFixedLengthVector() && !VLen) { 10065 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 10066 return Op; 10067 MVT ContainerVT = VecVT; 10068 if (VecVT.isFixedLengthVector()) { 10069 ContainerVT = getContainerForFixedLengthVector(VecVT); 10070 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 10071 } 10072 10073 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 10074 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 10075 DAG.getUNDEF(ContainerVT), SubVec, 10076 DAG.getVectorIdxConstant(0, DL)); 10077 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 10078 return DAG.getBitcast(Op.getValueType(), SubVec); 10079 } 10080 10081 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 10082 DAG.getUNDEF(ContainerVT), SubVec, 10083 DAG.getVectorIdxConstant(0, DL)); 10084 SDValue Mask = 10085 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 10086 // Set the vector length to only the number of elements we care about. Note 10087 // that for slideup this includes the offset. 10088 unsigned EndIndex = OrigIdx + SubVecVT.getVectorNumElements(); 10089 SDValue VL = getVLOp(EndIndex, ContainerVT, DL, DAG, Subtarget); 10090 10091 // Use tail agnostic policy if we're inserting over Vec's tail. 10092 unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED; 10093 if (VecVT.isFixedLengthVector() && EndIndex == VecVT.getVectorNumElements()) 10094 Policy = RISCVII::TAIL_AGNOSTIC; 10095 10096 // If we're inserting into the lowest elements, use a tail undisturbed 10097 // vmv.v.v. 10098 if (OrigIdx == 0) { 10099 SubVec = 10100 DAG.getNode(RISCVISD::VMV_V_V_VL, DL, ContainerVT, Vec, SubVec, VL); 10101 } else { 10102 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 10103 SubVec = getVSlideup(DAG, Subtarget, DL, ContainerVT, Vec, SubVec, 10104 SlideupAmt, Mask, VL, Policy); 10105 } 10106 10107 if (VecVT.isFixedLengthVector()) 10108 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 10109 return DAG.getBitcast(Op.getValueType(), SubVec); 10110 } 10111 10112 MVT ContainerVecVT = VecVT; 10113 if (VecVT.isFixedLengthVector()) { 10114 ContainerVecVT = getContainerForFixedLengthVector(VecVT); 10115 Vec = convertToScalableVector(ContainerVecVT, Vec, DAG, Subtarget); 10116 } 10117 10118 MVT ContainerSubVecVT = SubVecVT; 10119 if (SubVecVT.isFixedLengthVector()) { 10120 ContainerSubVecVT = getContainerForFixedLengthVector(SubVecVT); 10121 SubVec = convertToScalableVector(ContainerSubVecVT, SubVec, DAG, Subtarget); 10122 } 10123 10124 unsigned SubRegIdx; 10125 ElementCount RemIdx; 10126 // insert_subvector scales the index by vscale if the subvector is scalable, 10127 // and decomposeSubvectorInsertExtractToSubRegs takes this into account. So if 10128 // we have a fixed length subvector, we need to adjust the index by 1/vscale. 10129 if (SubVecVT.isFixedLengthVector()) { 10130 assert(VLen); 10131 unsigned Vscale = *VLen / RISCV::RVVBitsPerBlock; 10132 auto Decompose = 10133 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 10134 ContainerVecVT, ContainerSubVecVT, OrigIdx / Vscale, TRI); 10135 SubRegIdx = Decompose.first; 10136 RemIdx = ElementCount::getFixed((Decompose.second * Vscale) + 10137 (OrigIdx % Vscale)); 10138 } else { 10139 auto Decompose = 10140 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 10141 ContainerVecVT, ContainerSubVecVT, OrigIdx, TRI); 10142 SubRegIdx = Decompose.first; 10143 RemIdx = ElementCount::getScalable(Decompose.second); 10144 } 10145 10146 TypeSize VecRegSize = TypeSize::getScalable(RISCV::RVVBitsPerBlock); 10147 assert(isPowerOf2_64( 10148 Subtarget.expandVScale(SubVecVT.getSizeInBits()).getKnownMinValue())); 10149 bool ExactlyVecRegSized = 10150 Subtarget.expandVScale(SubVecVT.getSizeInBits()) 10151 .isKnownMultipleOf(Subtarget.expandVScale(VecRegSize)); 10152 10153 // 1. If the Idx has been completely eliminated and this subvector's size is 10154 // a vector register or a multiple thereof, or the surrounding elements are 10155 // undef, then this is a subvector insert which naturally aligns to a vector 10156 // register. These can easily be handled using subregister manipulation. 10157 // 2. If the subvector isn't an exact multiple of a valid register group size, 10158 // then the insertion must preserve the undisturbed elements of the register. 10159 // We do this by lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 10160 // vector type (which resolves to a subregister copy), performing a VSLIDEUP 10161 // to place the subvector within the vector register, and an INSERT_SUBVECTOR 10162 // of that LMUL=1 type back into the larger vector (resolving to another 10163 // subregister operation). See below for how our VSLIDEUP works. We go via a 10164 // LMUL=1 type to avoid allocating a large register group to hold our 10165 // subvector. 10166 if (RemIdx.isZero() && (ExactlyVecRegSized || Vec.isUndef())) { 10167 if (SubVecVT.isFixedLengthVector()) { 10168 // We may get NoSubRegister if inserting at index 0 and the subvec 10169 // container is the same as the vector, e.g. vec=v4i32,subvec=v4i32,idx=0 10170 if (SubRegIdx == RISCV::NoSubRegister) { 10171 assert(OrigIdx == 0); 10172 return Op; 10173 } 10174 10175 SDValue Insert = 10176 DAG.getTargetInsertSubreg(SubRegIdx, DL, ContainerVecVT, Vec, SubVec); 10177 if (VecVT.isFixedLengthVector()) 10178 Insert = convertFromScalableVector(VecVT, Insert, DAG, Subtarget); 10179 return Insert; 10180 } 10181 return Op; 10182 } 10183 10184 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 10185 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 10186 // (in our case undisturbed). This means we can set up a subvector insertion 10187 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 10188 // size of the subvector. 10189 MVT InterSubVT = ContainerVecVT; 10190 SDValue AlignedExtract = Vec; 10191 unsigned AlignedIdx = OrigIdx - RemIdx.getKnownMinValue(); 10192 if (SubVecVT.isFixedLengthVector()) 10193 AlignedIdx /= *VLen / RISCV::RVVBitsPerBlock; 10194 if (ContainerVecVT.bitsGT(getLMUL1VT(ContainerVecVT))) { 10195 InterSubVT = getLMUL1VT(ContainerVecVT); 10196 // Extract a subvector equal to the nearest full vector register type. This 10197 // should resolve to a EXTRACT_SUBREG instruction. 10198 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 10199 DAG.getVectorIdxConstant(AlignedIdx, DL)); 10200 } 10201 10202 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 10203 DAG.getUNDEF(InterSubVT), SubVec, 10204 DAG.getVectorIdxConstant(0, DL)); 10205 10206 auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVecVT, DL, DAG, Subtarget); 10207 10208 ElementCount EndIndex = RemIdx + SubVecVT.getVectorElementCount(); 10209 VL = DAG.getElementCount(DL, XLenVT, SubVecVT.getVectorElementCount()); 10210 10211 // Use tail agnostic policy if we're inserting over InterSubVT's tail. 10212 unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED; 10213 if (Subtarget.expandVScale(EndIndex) == 10214 Subtarget.expandVScale(InterSubVT.getVectorElementCount())) 10215 Policy = RISCVII::TAIL_AGNOSTIC; 10216 10217 // If we're inserting into the lowest elements, use a tail undisturbed 10218 // vmv.v.v. 10219 if (RemIdx.isZero()) { 10220 SubVec = DAG.getNode(RISCVISD::VMV_V_V_VL, DL, InterSubVT, AlignedExtract, 10221 SubVec, VL); 10222 } else { 10223 SDValue SlideupAmt = DAG.getElementCount(DL, XLenVT, RemIdx); 10224 10225 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 10226 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 10227 10228 SubVec = getVSlideup(DAG, Subtarget, DL, InterSubVT, AlignedExtract, SubVec, 10229 SlideupAmt, Mask, VL, Policy); 10230 } 10231 10232 // If required, insert this subvector back into the correct vector register. 10233 // This should resolve to an INSERT_SUBREG instruction. 10234 if (ContainerVecVT.bitsGT(InterSubVT)) 10235 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVecVT, Vec, SubVec, 10236 DAG.getVectorIdxConstant(AlignedIdx, DL)); 10237 10238 if (VecVT.isFixedLengthVector()) 10239 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 10240 10241 // We might have bitcast from a mask type: cast back to the original type if 10242 // required. 10243 return DAG.getBitcast(Op.getSimpleValueType(), SubVec); 10244 } 10245 10246 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 10247 SelectionDAG &DAG) const { 10248 SDValue Vec = Op.getOperand(0); 10249 MVT SubVecVT = Op.getSimpleValueType(); 10250 MVT VecVT = Vec.getSimpleValueType(); 10251 10252 SDLoc DL(Op); 10253 MVT XLenVT = Subtarget.getXLenVT(); 10254 unsigned OrigIdx = Op.getConstantOperandVal(1); 10255 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10256 10257 // We don't have the ability to slide mask vectors down indexed by their i1 10258 // elements; the smallest we can do is i8. Often we are able to bitcast to 10259 // equivalent i8 vectors. Note that when extracting a fixed-length vector 10260 // from a scalable one, we might not necessarily have enough scalable 10261 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 10262 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 10263 if (VecVT.getVectorMinNumElements() >= 8 && 10264 SubVecVT.getVectorMinNumElements() >= 8) { 10265 assert(OrigIdx % 8 == 0 && "Invalid index"); 10266 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 10267 SubVecVT.getVectorMinNumElements() % 8 == 0 && 10268 "Unexpected mask vector lowering"); 10269 OrigIdx /= 8; 10270 SubVecVT = 10271 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 10272 SubVecVT.isScalableVector()); 10273 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 10274 VecVT.isScalableVector()); 10275 Vec = DAG.getBitcast(VecVT, Vec); 10276 } else { 10277 // We can't slide this mask vector down, indexed by its i1 elements. 10278 // This poses a problem when we wish to extract a scalable vector which 10279 // can't be re-expressed as a larger type. Just choose the slow path and 10280 // extend to a larger type, then truncate back down. 10281 // TODO: We could probably improve this when extracting certain fixed 10282 // from fixed, where we can extract as i8 and shift the correct element 10283 // right to reach the desired subvector? 10284 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 10285 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 10286 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 10287 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 10288 Op.getOperand(1)); 10289 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 10290 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 10291 } 10292 } 10293 10294 // With an index of 0 this is a cast-like subvector, which can be performed 10295 // with subregister operations. 10296 if (OrigIdx == 0) 10297 return Op; 10298 10299 const auto VLen = Subtarget.getRealVLen(); 10300 10301 // If the subvector vector is a fixed-length type and we don't know VLEN 10302 // exactly, we cannot use subregister manipulation to simplify the codegen; we 10303 // don't know which register of a LMUL group contains the specific subvector 10304 // as we only know the minimum register size. Therefore we must slide the 10305 // vector group down the full amount. 10306 if (SubVecVT.isFixedLengthVector() && !VLen) { 10307 MVT ContainerVT = VecVT; 10308 if (VecVT.isFixedLengthVector()) { 10309 ContainerVT = getContainerForFixedLengthVector(VecVT); 10310 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 10311 } 10312 10313 // Shrink down Vec so we're performing the slidedown on a smaller LMUL. 10314 unsigned LastIdx = OrigIdx + SubVecVT.getVectorNumElements() - 1; 10315 if (auto ShrunkVT = 10316 getSmallestVTForIndex(ContainerVT, LastIdx, DL, DAG, Subtarget)) { 10317 ContainerVT = *ShrunkVT; 10318 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ContainerVT, Vec, 10319 DAG.getVectorIdxConstant(0, DL)); 10320 } 10321 10322 SDValue Mask = 10323 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 10324 // Set the vector length to only the number of elements we care about. This 10325 // avoids sliding down elements we're going to discard straight away. 10326 SDValue VL = getVLOp(SubVecVT.getVectorNumElements(), ContainerVT, DL, DAG, 10327 Subtarget); 10328 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 10329 SDValue Slidedown = 10330 getVSlidedown(DAG, Subtarget, DL, ContainerVT, 10331 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 10332 // Now we can use a cast-like subvector extract to get the result. 10333 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 10334 DAG.getVectorIdxConstant(0, DL)); 10335 return DAG.getBitcast(Op.getValueType(), Slidedown); 10336 } 10337 10338 if (VecVT.isFixedLengthVector()) { 10339 VecVT = getContainerForFixedLengthVector(VecVT); 10340 Vec = convertToScalableVector(VecVT, Vec, DAG, Subtarget); 10341 } 10342 10343 MVT ContainerSubVecVT = SubVecVT; 10344 if (SubVecVT.isFixedLengthVector()) 10345 ContainerSubVecVT = getContainerForFixedLengthVector(SubVecVT); 10346 10347 unsigned SubRegIdx; 10348 ElementCount RemIdx; 10349 // extract_subvector scales the index by vscale if the subvector is scalable, 10350 // and decomposeSubvectorInsertExtractToSubRegs takes this into account. So if 10351 // we have a fixed length subvector, we need to adjust the index by 1/vscale. 10352 if (SubVecVT.isFixedLengthVector()) { 10353 assert(VLen); 10354 unsigned Vscale = *VLen / RISCV::RVVBitsPerBlock; 10355 auto Decompose = 10356 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 10357 VecVT, ContainerSubVecVT, OrigIdx / Vscale, TRI); 10358 SubRegIdx = Decompose.first; 10359 RemIdx = ElementCount::getFixed((Decompose.second * Vscale) + 10360 (OrigIdx % Vscale)); 10361 } else { 10362 auto Decompose = 10363 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 10364 VecVT, ContainerSubVecVT, OrigIdx, TRI); 10365 SubRegIdx = Decompose.first; 10366 RemIdx = ElementCount::getScalable(Decompose.second); 10367 } 10368 10369 // If the Idx has been completely eliminated then this is a subvector extract 10370 // which naturally aligns to a vector register. These can easily be handled 10371 // using subregister manipulation. 10372 if (RemIdx.isZero()) { 10373 if (SubVecVT.isFixedLengthVector()) { 10374 Vec = DAG.getTargetExtractSubreg(SubRegIdx, DL, ContainerSubVecVT, Vec); 10375 return convertFromScalableVector(SubVecVT, Vec, DAG, Subtarget); 10376 } 10377 return Op; 10378 } 10379 10380 // Else SubVecVT is M1 or smaller and may need to be slid down: if SubVecVT 10381 // was > M1 then the index would need to be a multiple of VLMAX, and so would 10382 // divide exactly. 10383 assert(RISCVVType::decodeVLMUL(getLMUL(ContainerSubVecVT)).second || 10384 getLMUL(ContainerSubVecVT) == RISCVII::VLMUL::LMUL_1); 10385 10386 // If the vector type is an LMUL-group type, extract a subvector equal to the 10387 // nearest full vector register type. 10388 MVT InterSubVT = VecVT; 10389 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 10390 // If VecVT has an LMUL > 1, then SubVecVT should have a smaller LMUL, and 10391 // we should have successfully decomposed the extract into a subregister. 10392 assert(SubRegIdx != RISCV::NoSubRegister); 10393 InterSubVT = getLMUL1VT(VecVT); 10394 Vec = DAG.getTargetExtractSubreg(SubRegIdx, DL, InterSubVT, Vec); 10395 } 10396 10397 // Slide this vector register down by the desired number of elements in order 10398 // to place the desired subvector starting at element 0. 10399 SDValue SlidedownAmt = DAG.getElementCount(DL, XLenVT, RemIdx); 10400 auto [Mask, VL] = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 10401 if (SubVecVT.isFixedLengthVector()) 10402 VL = getVLOp(SubVecVT.getVectorNumElements(), InterSubVT, DL, DAG, 10403 Subtarget); 10404 SDValue Slidedown = 10405 getVSlidedown(DAG, Subtarget, DL, InterSubVT, DAG.getUNDEF(InterSubVT), 10406 Vec, SlidedownAmt, Mask, VL); 10407 10408 // Now the vector is in the right position, extract our final subvector. This 10409 // should resolve to a COPY. 10410 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 10411 DAG.getVectorIdxConstant(0, DL)); 10412 10413 // We might have bitcast from a mask type: cast back to the original type if 10414 // required. 10415 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 10416 } 10417 10418 // Widen a vector's operands to i8, then truncate its results back to the 10419 // original type, typically i1. All operand and result types must be the same. 10420 static SDValue widenVectorOpsToi8(SDValue N, const SDLoc &DL, 10421 SelectionDAG &DAG) { 10422 MVT VT = N.getSimpleValueType(); 10423 MVT WideVT = VT.changeVectorElementType(MVT::i8); 10424 SmallVector<SDValue, 4> WideOps; 10425 for (SDValue Op : N->ops()) { 10426 assert(Op.getSimpleValueType() == VT && 10427 "Operands and result must be same type"); 10428 WideOps.push_back(DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Op)); 10429 } 10430 10431 unsigned NumVals = N->getNumValues(); 10432 10433 SDVTList VTs = DAG.getVTList(SmallVector<EVT, 4>( 10434 NumVals, N.getValueType().changeVectorElementType(MVT::i8))); 10435 SDValue WideN = DAG.getNode(N.getOpcode(), DL, VTs, WideOps); 10436 SmallVector<SDValue, 4> TruncVals; 10437 for (unsigned I = 0; I < NumVals; I++) { 10438 TruncVals.push_back( 10439 DAG.getSetCC(DL, N->getSimpleValueType(I), WideN.getValue(I), 10440 DAG.getConstant(0, DL, WideVT), ISD::SETNE)); 10441 } 10442 10443 if (TruncVals.size() > 1) 10444 return DAG.getMergeValues(TruncVals, DL); 10445 return TruncVals.front(); 10446 } 10447 10448 SDValue RISCVTargetLowering::lowerVECTOR_DEINTERLEAVE(SDValue Op, 10449 SelectionDAG &DAG) const { 10450 SDLoc DL(Op); 10451 MVT VecVT = Op.getSimpleValueType(); 10452 10453 assert(VecVT.isScalableVector() && 10454 "vector_interleave on non-scalable vector!"); 10455 10456 // 1 bit element vectors need to be widened to e8 10457 if (VecVT.getVectorElementType() == MVT::i1) 10458 return widenVectorOpsToi8(Op, DL, DAG); 10459 10460 // If the VT is LMUL=8, we need to split and reassemble. 10461 if (VecVT.getSizeInBits().getKnownMinValue() == 10462 (8 * RISCV::RVVBitsPerBlock)) { 10463 auto [Op0Lo, Op0Hi] = DAG.SplitVectorOperand(Op.getNode(), 0); 10464 auto [Op1Lo, Op1Hi] = DAG.SplitVectorOperand(Op.getNode(), 1); 10465 EVT SplitVT = Op0Lo.getValueType(); 10466 10467 SDValue ResLo = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 10468 DAG.getVTList(SplitVT, SplitVT), Op0Lo, Op0Hi); 10469 SDValue ResHi = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 10470 DAG.getVTList(SplitVT, SplitVT), Op1Lo, Op1Hi); 10471 10472 SDValue Even = DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, 10473 ResLo.getValue(0), ResHi.getValue(0)); 10474 SDValue Odd = DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, ResLo.getValue(1), 10475 ResHi.getValue(1)); 10476 return DAG.getMergeValues({Even, Odd}, DL); 10477 } 10478 10479 // Concatenate the two vectors as one vector to deinterleave 10480 MVT ConcatVT = 10481 MVT::getVectorVT(VecVT.getVectorElementType(), 10482 VecVT.getVectorElementCount().multiplyCoefficientBy(2)); 10483 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatVT, 10484 Op.getOperand(0), Op.getOperand(1)); 10485 10486 // We want to operate on all lanes, so get the mask and VL and mask for it 10487 auto [Mask, VL] = getDefaultScalableVLOps(ConcatVT, DL, DAG, Subtarget); 10488 SDValue Passthru = DAG.getUNDEF(ConcatVT); 10489 10490 // We can deinterleave through vnsrl.wi if the element type is smaller than 10491 // ELEN 10492 if (VecVT.getScalarSizeInBits() < Subtarget.getELen()) { 10493 SDValue Even = 10494 getDeinterleaveViaVNSRL(DL, VecVT, Concat, true, Subtarget, DAG); 10495 SDValue Odd = 10496 getDeinterleaveViaVNSRL(DL, VecVT, Concat, false, Subtarget, DAG); 10497 return DAG.getMergeValues({Even, Odd}, DL); 10498 } 10499 10500 // For the indices, use the same SEW to avoid an extra vsetvli 10501 MVT IdxVT = ConcatVT.changeVectorElementTypeToInteger(); 10502 // Create a vector of even indices {0, 2, 4, ...} 10503 SDValue EvenIdx = 10504 DAG.getStepVector(DL, IdxVT, APInt(IdxVT.getScalarSizeInBits(), 2)); 10505 // Create a vector of odd indices {1, 3, 5, ... } 10506 SDValue OddIdx = 10507 DAG.getNode(ISD::ADD, DL, IdxVT, EvenIdx, DAG.getConstant(1, DL, IdxVT)); 10508 10509 // Gather the even and odd elements into two separate vectors 10510 SDValue EvenWide = DAG.getNode(RISCVISD::VRGATHER_VV_VL, DL, ConcatVT, 10511 Concat, EvenIdx, Passthru, Mask, VL); 10512 SDValue OddWide = DAG.getNode(RISCVISD::VRGATHER_VV_VL, DL, ConcatVT, 10513 Concat, OddIdx, Passthru, Mask, VL); 10514 10515 // Extract the result half of the gather for even and odd 10516 SDValue Even = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VecVT, EvenWide, 10517 DAG.getVectorIdxConstant(0, DL)); 10518 SDValue Odd = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VecVT, OddWide, 10519 DAG.getVectorIdxConstant(0, DL)); 10520 10521 return DAG.getMergeValues({Even, Odd}, DL); 10522 } 10523 10524 SDValue RISCVTargetLowering::lowerVECTOR_INTERLEAVE(SDValue Op, 10525 SelectionDAG &DAG) const { 10526 SDLoc DL(Op); 10527 MVT VecVT = Op.getSimpleValueType(); 10528 10529 assert(VecVT.isScalableVector() && 10530 "vector_interleave on non-scalable vector!"); 10531 10532 // i1 vectors need to be widened to i8 10533 if (VecVT.getVectorElementType() == MVT::i1) 10534 return widenVectorOpsToi8(Op, DL, DAG); 10535 10536 MVT XLenVT = Subtarget.getXLenVT(); 10537 SDValue VL = DAG.getRegister(RISCV::X0, XLenVT); 10538 10539 // If the VT is LMUL=8, we need to split and reassemble. 10540 if (VecVT.getSizeInBits().getKnownMinValue() == (8 * RISCV::RVVBitsPerBlock)) { 10541 auto [Op0Lo, Op0Hi] = DAG.SplitVectorOperand(Op.getNode(), 0); 10542 auto [Op1Lo, Op1Hi] = DAG.SplitVectorOperand(Op.getNode(), 1); 10543 EVT SplitVT = Op0Lo.getValueType(); 10544 10545 SDValue ResLo = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 10546 DAG.getVTList(SplitVT, SplitVT), Op0Lo, Op1Lo); 10547 SDValue ResHi = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 10548 DAG.getVTList(SplitVT, SplitVT), Op0Hi, Op1Hi); 10549 10550 SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, 10551 ResLo.getValue(0), ResLo.getValue(1)); 10552 SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, 10553 ResHi.getValue(0), ResHi.getValue(1)); 10554 return DAG.getMergeValues({Lo, Hi}, DL); 10555 } 10556 10557 SDValue Interleaved; 10558 10559 // If the element type is smaller than ELEN, then we can interleave with 10560 // vwaddu.vv and vwmaccu.vx 10561 if (VecVT.getScalarSizeInBits() < Subtarget.getELen()) { 10562 Interleaved = getWideningInterleave(Op.getOperand(0), Op.getOperand(1), DL, 10563 DAG, Subtarget); 10564 } else { 10565 // Otherwise, fallback to using vrgathere16.vv 10566 MVT ConcatVT = 10567 MVT::getVectorVT(VecVT.getVectorElementType(), 10568 VecVT.getVectorElementCount().multiplyCoefficientBy(2)); 10569 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatVT, 10570 Op.getOperand(0), Op.getOperand(1)); 10571 10572 MVT IdxVT = ConcatVT.changeVectorElementType(MVT::i16); 10573 10574 // 0 1 2 3 4 5 6 7 ... 10575 SDValue StepVec = DAG.getStepVector(DL, IdxVT); 10576 10577 // 1 1 1 1 1 1 1 1 ... 10578 SDValue Ones = DAG.getSplatVector(IdxVT, DL, DAG.getConstant(1, DL, XLenVT)); 10579 10580 // 1 0 1 0 1 0 1 0 ... 10581 SDValue OddMask = DAG.getNode(ISD::AND, DL, IdxVT, StepVec, Ones); 10582 OddMask = DAG.getSetCC( 10583 DL, IdxVT.changeVectorElementType(MVT::i1), OddMask, 10584 DAG.getSplatVector(IdxVT, DL, DAG.getConstant(0, DL, XLenVT)), 10585 ISD::CondCode::SETNE); 10586 10587 SDValue VLMax = DAG.getSplatVector(IdxVT, DL, computeVLMax(VecVT, DL, DAG)); 10588 10589 // Build up the index vector for interleaving the concatenated vector 10590 // 0 0 1 1 2 2 3 3 ... 10591 SDValue Idx = DAG.getNode(ISD::SRL, DL, IdxVT, StepVec, Ones); 10592 // 0 n 1 n+1 2 n+2 3 n+3 ... 10593 Idx = 10594 DAG.getNode(RISCVISD::ADD_VL, DL, IdxVT, Idx, VLMax, Idx, OddMask, VL); 10595 10596 // Then perform the interleave 10597 // v[0] v[n] v[1] v[n+1] v[2] v[n+2] v[3] v[n+3] ... 10598 SDValue TrueMask = getAllOnesMask(IdxVT, VL, DL, DAG); 10599 Interleaved = DAG.getNode(RISCVISD::VRGATHEREI16_VV_VL, DL, ConcatVT, 10600 Concat, Idx, DAG.getUNDEF(ConcatVT), TrueMask, VL); 10601 } 10602 10603 // Extract the two halves from the interleaved result 10604 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VecVT, Interleaved, 10605 DAG.getVectorIdxConstant(0, DL)); 10606 SDValue Hi = DAG.getNode( 10607 ISD::EXTRACT_SUBVECTOR, DL, VecVT, Interleaved, 10608 DAG.getVectorIdxConstant(VecVT.getVectorMinNumElements(), DL)); 10609 10610 return DAG.getMergeValues({Lo, Hi}, DL); 10611 } 10612 10613 // Lower step_vector to the vid instruction. Any non-identity step value must 10614 // be accounted for my manual expansion. 10615 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 10616 SelectionDAG &DAG) const { 10617 SDLoc DL(Op); 10618 MVT VT = Op.getSimpleValueType(); 10619 assert(VT.isScalableVector() && "Expected scalable vector"); 10620 MVT XLenVT = Subtarget.getXLenVT(); 10621 auto [Mask, VL] = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 10622 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 10623 uint64_t StepValImm = Op.getConstantOperandVal(0); 10624 if (StepValImm != 1) { 10625 if (isPowerOf2_64(StepValImm)) { 10626 SDValue StepVal = 10627 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 10628 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT), VL); 10629 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 10630 } else { 10631 SDValue StepVal = lowerScalarSplat( 10632 SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), 10633 VL, VT, DL, DAG, Subtarget); 10634 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 10635 } 10636 } 10637 return StepVec; 10638 } 10639 10640 // Implement vector_reverse using vrgather.vv with indices determined by 10641 // subtracting the id of each element from (VLMAX-1). This will convert 10642 // the indices like so: 10643 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 10644 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 10645 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 10646 SelectionDAG &DAG) const { 10647 SDLoc DL(Op); 10648 MVT VecVT = Op.getSimpleValueType(); 10649 if (VecVT.getVectorElementType() == MVT::i1) { 10650 MVT WidenVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 10651 SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, Op.getOperand(0)); 10652 SDValue Op2 = DAG.getNode(ISD::VECTOR_REVERSE, DL, WidenVT, Op1); 10653 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Op2); 10654 } 10655 unsigned EltSize = VecVT.getScalarSizeInBits(); 10656 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 10657 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 10658 unsigned MaxVLMAX = 10659 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 10660 10661 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 10662 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 10663 10664 // If this is SEW=8 and VLMAX is potentially more than 256, we need 10665 // to use vrgatherei16.vv. 10666 // TODO: It's also possible to use vrgatherei16.vv for other types to 10667 // decrease register width for the index calculation. 10668 if (MaxVLMAX > 256 && EltSize == 8) { 10669 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 10670 // Reverse each half, then reassemble them in reverse order. 10671 // NOTE: It's also possible that after splitting that VLMAX no longer 10672 // requires vrgatherei16.vv. 10673 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 10674 auto [Lo, Hi] = DAG.SplitVectorOperand(Op.getNode(), 0); 10675 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VecVT); 10676 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 10677 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 10678 // Reassemble the low and high pieces reversed. 10679 // FIXME: This is a CONCAT_VECTORS. 10680 SDValue Res = 10681 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 10682 DAG.getVectorIdxConstant(0, DL)); 10683 return DAG.getNode( 10684 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 10685 DAG.getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10686 } 10687 10688 // Just promote the int type to i16 which will double the LMUL. 10689 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 10690 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 10691 } 10692 10693 MVT XLenVT = Subtarget.getXLenVT(); 10694 auto [Mask, VL] = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 10695 10696 // Calculate VLMAX-1 for the desired SEW. 10697 SDValue VLMinus1 = DAG.getNode(ISD::SUB, DL, XLenVT, 10698 computeVLMax(VecVT, DL, DAG), 10699 DAG.getConstant(1, DL, XLenVT)); 10700 10701 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 10702 bool IsRV32E64 = 10703 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 10704 SDValue SplatVL; 10705 if (!IsRV32E64) 10706 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 10707 else 10708 SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), 10709 VLMinus1, DAG.getRegister(RISCV::X0, XLenVT)); 10710 10711 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 10712 SDValue Indices = DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, 10713 DAG.getUNDEF(IntVT), Mask, VL); 10714 10715 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, 10716 DAG.getUNDEF(VecVT), Mask, VL); 10717 } 10718 10719 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op, 10720 SelectionDAG &DAG) const { 10721 SDLoc DL(Op); 10722 SDValue V1 = Op.getOperand(0); 10723 SDValue V2 = Op.getOperand(1); 10724 MVT XLenVT = Subtarget.getXLenVT(); 10725 MVT VecVT = Op.getSimpleValueType(); 10726 10727 SDValue VLMax = computeVLMax(VecVT, DL, DAG); 10728 10729 int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue(); 10730 SDValue DownOffset, UpOffset; 10731 if (ImmValue >= 0) { 10732 // The operand is a TargetConstant, we need to rebuild it as a regular 10733 // constant. 10734 DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); 10735 UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset); 10736 } else { 10737 // The operand is a TargetConstant, we need to rebuild it as a regular 10738 // constant rather than negating the original operand. 10739 UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); 10740 DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset); 10741 } 10742 10743 SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG); 10744 10745 SDValue SlideDown = 10746 getVSlidedown(DAG, Subtarget, DL, VecVT, DAG.getUNDEF(VecVT), V1, 10747 DownOffset, TrueMask, UpOffset); 10748 return getVSlideup(DAG, Subtarget, DL, VecVT, SlideDown, V2, UpOffset, 10749 TrueMask, DAG.getRegister(RISCV::X0, XLenVT), 10750 RISCVII::TAIL_AGNOSTIC); 10751 } 10752 10753 SDValue 10754 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 10755 SelectionDAG &DAG) const { 10756 SDLoc DL(Op); 10757 auto *Load = cast<LoadSDNode>(Op); 10758 10759 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 10760 Load->getMemoryVT(), 10761 *Load->getMemOperand()) && 10762 "Expecting a correctly-aligned load"); 10763 10764 MVT VT = Op.getSimpleValueType(); 10765 MVT XLenVT = Subtarget.getXLenVT(); 10766 MVT ContainerVT = getContainerForFixedLengthVector(VT); 10767 10768 // If we know the exact VLEN and our fixed length vector completely fills 10769 // the container, use a whole register load instead. 10770 const auto [MinVLMAX, MaxVLMAX] = 10771 RISCVTargetLowering::computeVLMAXBounds(ContainerVT, Subtarget); 10772 if (MinVLMAX == MaxVLMAX && MinVLMAX == VT.getVectorNumElements() && 10773 getLMUL1VT(ContainerVT).bitsLE(ContainerVT)) { 10774 MachineMemOperand *MMO = Load->getMemOperand(); 10775 SDValue NewLoad = 10776 DAG.getLoad(ContainerVT, DL, Load->getChain(), Load->getBasePtr(), 10777 MMO->getPointerInfo(), MMO->getBaseAlign(), MMO->getFlags(), 10778 MMO->getAAInfo(), MMO->getRanges()); 10779 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 10780 return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL); 10781 } 10782 10783 SDValue VL = getVLOp(VT.getVectorNumElements(), ContainerVT, DL, DAG, Subtarget); 10784 10785 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 10786 SDValue IntID = DAG.getTargetConstant( 10787 IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT); 10788 SmallVector<SDValue, 4> Ops{Load->getChain(), IntID}; 10789 if (!IsMaskOp) 10790 Ops.push_back(DAG.getUNDEF(ContainerVT)); 10791 Ops.push_back(Load->getBasePtr()); 10792 Ops.push_back(VL); 10793 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 10794 SDValue NewLoad = 10795 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 10796 Load->getMemoryVT(), Load->getMemOperand()); 10797 10798 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 10799 return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL); 10800 } 10801 10802 SDValue 10803 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 10804 SelectionDAG &DAG) const { 10805 SDLoc DL(Op); 10806 auto *Store = cast<StoreSDNode>(Op); 10807 10808 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 10809 Store->getMemoryVT(), 10810 *Store->getMemOperand()) && 10811 "Expecting a correctly-aligned store"); 10812 10813 SDValue StoreVal = Store->getValue(); 10814 MVT VT = StoreVal.getSimpleValueType(); 10815 MVT XLenVT = Subtarget.getXLenVT(); 10816 10817 // If the size less than a byte, we need to pad with zeros to make a byte. 10818 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 10819 VT = MVT::v8i1; 10820 StoreVal = 10821 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getConstant(0, DL, VT), 10822 StoreVal, DAG.getVectorIdxConstant(0, DL)); 10823 } 10824 10825 MVT ContainerVT = getContainerForFixedLengthVector(VT); 10826 10827 SDValue NewValue = 10828 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 10829 10830 10831 // If we know the exact VLEN and our fixed length vector completely fills 10832 // the container, use a whole register store instead. 10833 const auto [MinVLMAX, MaxVLMAX] = 10834 RISCVTargetLowering::computeVLMAXBounds(ContainerVT, Subtarget); 10835 if (MinVLMAX == MaxVLMAX && MinVLMAX == VT.getVectorNumElements() && 10836 getLMUL1VT(ContainerVT).bitsLE(ContainerVT)) { 10837 MachineMemOperand *MMO = Store->getMemOperand(); 10838 return DAG.getStore(Store->getChain(), DL, NewValue, Store->getBasePtr(), 10839 MMO->getPointerInfo(), MMO->getBaseAlign(), 10840 MMO->getFlags(), MMO->getAAInfo()); 10841 } 10842 10843 SDValue VL = getVLOp(VT.getVectorNumElements(), ContainerVT, DL, DAG, 10844 Subtarget); 10845 10846 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 10847 SDValue IntID = DAG.getTargetConstant( 10848 IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT); 10849 return DAG.getMemIntrinsicNode( 10850 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 10851 {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL}, 10852 Store->getMemoryVT(), Store->getMemOperand()); 10853 } 10854 10855 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 10856 SelectionDAG &DAG) const { 10857 SDLoc DL(Op); 10858 MVT VT = Op.getSimpleValueType(); 10859 10860 const auto *MemSD = cast<MemSDNode>(Op); 10861 EVT MemVT = MemSD->getMemoryVT(); 10862 MachineMemOperand *MMO = MemSD->getMemOperand(); 10863 SDValue Chain = MemSD->getChain(); 10864 SDValue BasePtr = MemSD->getBasePtr(); 10865 10866 SDValue Mask, PassThru, VL; 10867 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 10868 Mask = VPLoad->getMask(); 10869 PassThru = DAG.getUNDEF(VT); 10870 VL = VPLoad->getVectorLength(); 10871 } else { 10872 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 10873 Mask = MLoad->getMask(); 10874 PassThru = MLoad->getPassThru(); 10875 } 10876 10877 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 10878 10879 MVT XLenVT = Subtarget.getXLenVT(); 10880 10881 MVT ContainerVT = VT; 10882 if (VT.isFixedLengthVector()) { 10883 ContainerVT = getContainerForFixedLengthVector(VT); 10884 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 10885 if (!IsUnmasked) { 10886 MVT MaskVT = getMaskTypeFor(ContainerVT); 10887 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 10888 } 10889 } 10890 10891 if (!VL) 10892 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 10893 10894 unsigned IntID = 10895 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 10896 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 10897 if (IsUnmasked) 10898 Ops.push_back(DAG.getUNDEF(ContainerVT)); 10899 else 10900 Ops.push_back(PassThru); 10901 Ops.push_back(BasePtr); 10902 if (!IsUnmasked) 10903 Ops.push_back(Mask); 10904 Ops.push_back(VL); 10905 if (!IsUnmasked) 10906 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 10907 10908 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 10909 10910 SDValue Result = 10911 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 10912 Chain = Result.getValue(1); 10913 10914 if (VT.isFixedLengthVector()) 10915 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 10916 10917 return DAG.getMergeValues({Result, Chain}, DL); 10918 } 10919 10920 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 10921 SelectionDAG &DAG) const { 10922 SDLoc DL(Op); 10923 10924 const auto *MemSD = cast<MemSDNode>(Op); 10925 EVT MemVT = MemSD->getMemoryVT(); 10926 MachineMemOperand *MMO = MemSD->getMemOperand(); 10927 SDValue Chain = MemSD->getChain(); 10928 SDValue BasePtr = MemSD->getBasePtr(); 10929 SDValue Val, Mask, VL; 10930 10931 bool IsCompressingStore = false; 10932 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 10933 Val = VPStore->getValue(); 10934 Mask = VPStore->getMask(); 10935 VL = VPStore->getVectorLength(); 10936 } else { 10937 const auto *MStore = cast<MaskedStoreSDNode>(Op); 10938 Val = MStore->getValue(); 10939 Mask = MStore->getMask(); 10940 IsCompressingStore = MStore->isCompressingStore(); 10941 } 10942 10943 bool IsUnmasked = 10944 ISD::isConstantSplatVectorAllOnes(Mask.getNode()) || IsCompressingStore; 10945 10946 MVT VT = Val.getSimpleValueType(); 10947 MVT XLenVT = Subtarget.getXLenVT(); 10948 10949 MVT ContainerVT = VT; 10950 if (VT.isFixedLengthVector()) { 10951 ContainerVT = getContainerForFixedLengthVector(VT); 10952 10953 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 10954 if (!IsUnmasked || IsCompressingStore) { 10955 MVT MaskVT = getMaskTypeFor(ContainerVT); 10956 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 10957 } 10958 } 10959 10960 if (!VL) 10961 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 10962 10963 if (IsCompressingStore) { 10964 Val = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ContainerVT, 10965 DAG.getConstant(Intrinsic::riscv_vcompress, DL, XLenVT), 10966 DAG.getUNDEF(ContainerVT), Val, Mask, VL); 10967 VL = 10968 DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Mask, 10969 getAllOnesMask(Mask.getSimpleValueType(), VL, DL, DAG), VL); 10970 } 10971 10972 unsigned IntID = 10973 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 10974 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 10975 Ops.push_back(Val); 10976 Ops.push_back(BasePtr); 10977 if (!IsUnmasked) 10978 Ops.push_back(Mask); 10979 Ops.push_back(VL); 10980 10981 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 10982 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 10983 } 10984 10985 SDValue 10986 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 10987 SelectionDAG &DAG) const { 10988 MVT InVT = Op.getOperand(0).getSimpleValueType(); 10989 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 10990 10991 MVT VT = Op.getSimpleValueType(); 10992 10993 SDValue Op1 = 10994 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 10995 SDValue Op2 = 10996 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 10997 10998 SDLoc DL(Op); 10999 auto [Mask, VL] = getDefaultVLOps(VT.getVectorNumElements(), ContainerVT, DL, 11000 DAG, Subtarget); 11001 MVT MaskVT = getMaskTypeFor(ContainerVT); 11002 11003 SDValue Cmp = 11004 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, 11005 {Op1, Op2, Op.getOperand(2), DAG.getUNDEF(MaskVT), Mask, VL}); 11006 11007 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 11008 } 11009 11010 SDValue RISCVTargetLowering::lowerVectorStrictFSetcc(SDValue Op, 11011 SelectionDAG &DAG) const { 11012 unsigned Opc = Op.getOpcode(); 11013 SDLoc DL(Op); 11014 SDValue Chain = Op.getOperand(0); 11015 SDValue Op1 = Op.getOperand(1); 11016 SDValue Op2 = Op.getOperand(2); 11017 SDValue CC = Op.getOperand(3); 11018 ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get(); 11019 MVT VT = Op.getSimpleValueType(); 11020 MVT InVT = Op1.getSimpleValueType(); 11021 11022 // RVV VMFEQ/VMFNE ignores qNan, so we expand strict_fsetccs with OEQ/UNE 11023 // condition code. 11024 if (Opc == ISD::STRICT_FSETCCS) { 11025 // Expand strict_fsetccs(x, oeq) to 11026 // (and strict_fsetccs(x, y, oge), strict_fsetccs(x, y, ole)) 11027 SDVTList VTList = Op->getVTList(); 11028 if (CCVal == ISD::SETEQ || CCVal == ISD::SETOEQ) { 11029 SDValue OLECCVal = DAG.getCondCode(ISD::SETOLE); 11030 SDValue Tmp1 = DAG.getNode(ISD::STRICT_FSETCCS, DL, VTList, Chain, Op1, 11031 Op2, OLECCVal); 11032 SDValue Tmp2 = DAG.getNode(ISD::STRICT_FSETCCS, DL, VTList, Chain, Op2, 11033 Op1, OLECCVal); 11034 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 11035 Tmp1.getValue(1), Tmp2.getValue(1)); 11036 // Tmp1 and Tmp2 might be the same node. 11037 if (Tmp1 != Tmp2) 11038 Tmp1 = DAG.getNode(ISD::AND, DL, VT, Tmp1, Tmp2); 11039 return DAG.getMergeValues({Tmp1, OutChain}, DL); 11040 } 11041 11042 // Expand (strict_fsetccs x, y, une) to (not (strict_fsetccs x, y, oeq)) 11043 if (CCVal == ISD::SETNE || CCVal == ISD::SETUNE) { 11044 SDValue OEQCCVal = DAG.getCondCode(ISD::SETOEQ); 11045 SDValue OEQ = DAG.getNode(ISD::STRICT_FSETCCS, DL, VTList, Chain, Op1, 11046 Op2, OEQCCVal); 11047 SDValue Res = DAG.getNOT(DL, OEQ, VT); 11048 return DAG.getMergeValues({Res, OEQ.getValue(1)}, DL); 11049 } 11050 } 11051 11052 MVT ContainerInVT = InVT; 11053 if (InVT.isFixedLengthVector()) { 11054 ContainerInVT = getContainerForFixedLengthVector(InVT); 11055 Op1 = convertToScalableVector(ContainerInVT, Op1, DAG, Subtarget); 11056 Op2 = convertToScalableVector(ContainerInVT, Op2, DAG, Subtarget); 11057 } 11058 MVT MaskVT = getMaskTypeFor(ContainerInVT); 11059 11060 auto [Mask, VL] = getDefaultVLOps(InVT, ContainerInVT, DL, DAG, Subtarget); 11061 11062 SDValue Res; 11063 if (Opc == ISD::STRICT_FSETCC && 11064 (CCVal == ISD::SETLT || CCVal == ISD::SETOLT || CCVal == ISD::SETLE || 11065 CCVal == ISD::SETOLE)) { 11066 // VMFLT/VMFLE/VMFGT/VMFGE raise exception for qNan. Generate a mask to only 11067 // active when both input elements are ordered. 11068 SDValue True = getAllOnesMask(ContainerInVT, VL, DL, DAG); 11069 SDValue OrderMask1 = DAG.getNode( 11070 RISCVISD::STRICT_FSETCC_VL, DL, DAG.getVTList(MaskVT, MVT::Other), 11071 {Chain, Op1, Op1, DAG.getCondCode(ISD::SETOEQ), DAG.getUNDEF(MaskVT), 11072 True, VL}); 11073 SDValue OrderMask2 = DAG.getNode( 11074 RISCVISD::STRICT_FSETCC_VL, DL, DAG.getVTList(MaskVT, MVT::Other), 11075 {Chain, Op2, Op2, DAG.getCondCode(ISD::SETOEQ), DAG.getUNDEF(MaskVT), 11076 True, VL}); 11077 Mask = 11078 DAG.getNode(RISCVISD::VMAND_VL, DL, MaskVT, OrderMask1, OrderMask2, VL); 11079 // Use Mask as the merge operand to let the result be 0 if either of the 11080 // inputs is unordered. 11081 Res = DAG.getNode(RISCVISD::STRICT_FSETCCS_VL, DL, 11082 DAG.getVTList(MaskVT, MVT::Other), 11083 {Chain, Op1, Op2, CC, Mask, Mask, VL}); 11084 } else { 11085 unsigned RVVOpc = Opc == ISD::STRICT_FSETCC ? RISCVISD::STRICT_FSETCC_VL 11086 : RISCVISD::STRICT_FSETCCS_VL; 11087 Res = DAG.getNode(RVVOpc, DL, DAG.getVTList(MaskVT, MVT::Other), 11088 {Chain, Op1, Op2, CC, DAG.getUNDEF(MaskVT), Mask, VL}); 11089 } 11090 11091 if (VT.isFixedLengthVector()) { 11092 SDValue SubVec = convertFromScalableVector(VT, Res, DAG, Subtarget); 11093 return DAG.getMergeValues({SubVec, Res.getValue(1)}, DL); 11094 } 11095 return Res; 11096 } 11097 11098 // Lower vector ABS to smax(X, sub(0, X)). 11099 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 11100 SDLoc DL(Op); 11101 MVT VT = Op.getSimpleValueType(); 11102 SDValue X = Op.getOperand(0); 11103 11104 assert((Op.getOpcode() == ISD::VP_ABS || VT.isFixedLengthVector()) && 11105 "Unexpected type for ISD::ABS"); 11106 11107 MVT ContainerVT = VT; 11108 if (VT.isFixedLengthVector()) { 11109 ContainerVT = getContainerForFixedLengthVector(VT); 11110 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 11111 } 11112 11113 SDValue Mask, VL; 11114 if (Op->getOpcode() == ISD::VP_ABS) { 11115 Mask = Op->getOperand(1); 11116 if (VT.isFixedLengthVector()) 11117 Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG, 11118 Subtarget); 11119 VL = Op->getOperand(2); 11120 } else 11121 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 11122 11123 SDValue SplatZero = DAG.getNode( 11124 RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 11125 DAG.getConstant(0, DL, Subtarget.getXLenVT()), VL); 11126 SDValue NegX = DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, 11127 DAG.getUNDEF(ContainerVT), Mask, VL); 11128 SDValue Max = DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, 11129 DAG.getUNDEF(ContainerVT), Mask, VL); 11130 11131 if (VT.isFixedLengthVector()) 11132 Max = convertFromScalableVector(VT, Max, DAG, Subtarget); 11133 return Max; 11134 } 11135 11136 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 11137 SDValue Op, SelectionDAG &DAG) const { 11138 SDLoc DL(Op); 11139 MVT VT = Op.getSimpleValueType(); 11140 SDValue Mag = Op.getOperand(0); 11141 SDValue Sign = Op.getOperand(1); 11142 assert(Mag.getValueType() == Sign.getValueType() && 11143 "Can only handle COPYSIGN with matching types."); 11144 11145 MVT ContainerVT = getContainerForFixedLengthVector(VT); 11146 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 11147 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 11148 11149 auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 11150 11151 SDValue CopySign = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, 11152 Sign, DAG.getUNDEF(ContainerVT), Mask, VL); 11153 11154 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 11155 } 11156 11157 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 11158 SDValue Op, SelectionDAG &DAG) const { 11159 MVT VT = Op.getSimpleValueType(); 11160 MVT ContainerVT = getContainerForFixedLengthVector(VT); 11161 11162 MVT I1ContainerVT = 11163 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 11164 11165 SDValue CC = 11166 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 11167 SDValue Op1 = 11168 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 11169 SDValue Op2 = 11170 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 11171 11172 SDLoc DL(Op); 11173 SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 11174 11175 SDValue Select = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, CC, Op1, 11176 Op2, DAG.getUNDEF(ContainerVT), VL); 11177 11178 return convertFromScalableVector(VT, Select, DAG, Subtarget); 11179 } 11180 11181 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, 11182 SelectionDAG &DAG) const { 11183 unsigned NewOpc = getRISCVVLOp(Op); 11184 bool HasMergeOp = hasMergeOp(NewOpc); 11185 bool HasMask = hasMaskOp(NewOpc); 11186 11187 MVT VT = Op.getSimpleValueType(); 11188 MVT ContainerVT = getContainerForFixedLengthVector(VT); 11189 11190 // Create list of operands by converting existing ones to scalable types. 11191 SmallVector<SDValue, 6> Ops; 11192 for (const SDValue &V : Op->op_values()) { 11193 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 11194 11195 // Pass through non-vector operands. 11196 if (!V.getValueType().isVector()) { 11197 Ops.push_back(V); 11198 continue; 11199 } 11200 11201 // "cast" fixed length vector to a scalable vector. 11202 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 11203 "Only fixed length vectors are supported!"); 11204 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 11205 } 11206 11207 SDLoc DL(Op); 11208 auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 11209 if (HasMergeOp) 11210 Ops.push_back(DAG.getUNDEF(ContainerVT)); 11211 if (HasMask) 11212 Ops.push_back(Mask); 11213 Ops.push_back(VL); 11214 11215 // StrictFP operations have two result values. Their lowered result should 11216 // have same result count. 11217 if (Op->isStrictFPOpcode()) { 11218 SDValue ScalableRes = 11219 DAG.getNode(NewOpc, DL, DAG.getVTList(ContainerVT, MVT::Other), Ops, 11220 Op->getFlags()); 11221 SDValue SubVec = convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 11222 return DAG.getMergeValues({SubVec, ScalableRes.getValue(1)}, DL); 11223 } 11224 11225 SDValue ScalableRes = 11226 DAG.getNode(NewOpc, DL, ContainerVT, Ops, Op->getFlags()); 11227 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 11228 } 11229 11230 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 11231 // * Operands of each node are assumed to be in the same order. 11232 // * The EVL operand is promoted from i32 to i64 on RV64. 11233 // * Fixed-length vectors are converted to their scalable-vector container 11234 // types. 11235 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG) const { 11236 unsigned RISCVISDOpc = getRISCVVLOp(Op); 11237 bool HasMergeOp = hasMergeOp(RISCVISDOpc); 11238 11239 SDLoc DL(Op); 11240 MVT VT = Op.getSimpleValueType(); 11241 SmallVector<SDValue, 4> Ops; 11242 11243 MVT ContainerVT = VT; 11244 if (VT.isFixedLengthVector()) 11245 ContainerVT = getContainerForFixedLengthVector(VT); 11246 11247 for (const auto &OpIdx : enumerate(Op->ops())) { 11248 SDValue V = OpIdx.value(); 11249 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 11250 // Add dummy merge value before the mask. Or if there isn't a mask, before 11251 // EVL. 11252 if (HasMergeOp) { 11253 auto MaskIdx = ISD::getVPMaskIdx(Op.getOpcode()); 11254 if (MaskIdx) { 11255 if (*MaskIdx == OpIdx.index()) 11256 Ops.push_back(DAG.getUNDEF(ContainerVT)); 11257 } else if (ISD::getVPExplicitVectorLengthIdx(Op.getOpcode()) == 11258 OpIdx.index()) { 11259 if (Op.getOpcode() == ISD::VP_MERGE) { 11260 // For VP_MERGE, copy the false operand instead of an undef value. 11261 Ops.push_back(Ops.back()); 11262 } else { 11263 assert(Op.getOpcode() == ISD::VP_SELECT); 11264 // For VP_SELECT, add an undef value. 11265 Ops.push_back(DAG.getUNDEF(ContainerVT)); 11266 } 11267 } 11268 } 11269 // Pass through operands which aren't fixed-length vectors. 11270 if (!V.getValueType().isFixedLengthVector()) { 11271 Ops.push_back(V); 11272 continue; 11273 } 11274 // "cast" fixed length vector to a scalable vector. 11275 MVT OpVT = V.getSimpleValueType(); 11276 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 11277 assert(useRVVForFixedLengthVectorVT(OpVT) && 11278 "Only fixed length vectors are supported!"); 11279 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 11280 } 11281 11282 if (!VT.isFixedLengthVector()) 11283 return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags()); 11284 11285 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags()); 11286 11287 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 11288 } 11289 11290 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op, 11291 SelectionDAG &DAG) const { 11292 SDLoc DL(Op); 11293 MVT VT = Op.getSimpleValueType(); 11294 11295 SDValue Src = Op.getOperand(0); 11296 // NOTE: Mask is dropped. 11297 SDValue VL = Op.getOperand(2); 11298 11299 MVT ContainerVT = VT; 11300 if (VT.isFixedLengthVector()) { 11301 ContainerVT = getContainerForFixedLengthVector(VT); 11302 MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 11303 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 11304 } 11305 11306 MVT XLenVT = Subtarget.getXLenVT(); 11307 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 11308 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 11309 DAG.getUNDEF(ContainerVT), Zero, VL); 11310 11311 SDValue SplatValue = DAG.getConstant( 11312 Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT); 11313 SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 11314 DAG.getUNDEF(ContainerVT), SplatValue, VL); 11315 11316 SDValue Result = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, Src, Splat, 11317 ZeroSplat, DAG.getUNDEF(ContainerVT), VL); 11318 if (!VT.isFixedLengthVector()) 11319 return Result; 11320 return convertFromScalableVector(VT, Result, DAG, Subtarget); 11321 } 11322 11323 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op, 11324 SelectionDAG &DAG) const { 11325 SDLoc DL(Op); 11326 MVT VT = Op.getSimpleValueType(); 11327 11328 SDValue Op1 = Op.getOperand(0); 11329 SDValue Op2 = Op.getOperand(1); 11330 ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 11331 // NOTE: Mask is dropped. 11332 SDValue VL = Op.getOperand(4); 11333 11334 MVT ContainerVT = VT; 11335 if (VT.isFixedLengthVector()) { 11336 ContainerVT = getContainerForFixedLengthVector(VT); 11337 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 11338 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 11339 } 11340 11341 SDValue Result; 11342 SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 11343 11344 switch (Condition) { 11345 default: 11346 break; 11347 // X != Y --> (X^Y) 11348 case ISD::SETNE: 11349 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL); 11350 break; 11351 // X == Y --> ~(X^Y) 11352 case ISD::SETEQ: { 11353 SDValue Temp = 11354 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL); 11355 Result = 11356 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL); 11357 break; 11358 } 11359 // X >s Y --> X == 0 & Y == 1 --> ~X & Y 11360 // X <u Y --> X == 0 & Y == 1 --> ~X & Y 11361 case ISD::SETGT: 11362 case ISD::SETULT: { 11363 SDValue Temp = 11364 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL); 11365 Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL); 11366 break; 11367 } 11368 // X <s Y --> X == 1 & Y == 0 --> ~Y & X 11369 // X >u Y --> X == 1 & Y == 0 --> ~Y & X 11370 case ISD::SETLT: 11371 case ISD::SETUGT: { 11372 SDValue Temp = 11373 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL); 11374 Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL); 11375 break; 11376 } 11377 // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 11378 // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 11379 case ISD::SETGE: 11380 case ISD::SETULE: { 11381 SDValue Temp = 11382 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL); 11383 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL); 11384 break; 11385 } 11386 // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 11387 // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 11388 case ISD::SETLE: 11389 case ISD::SETUGE: { 11390 SDValue Temp = 11391 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL); 11392 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL); 11393 break; 11394 } 11395 } 11396 11397 if (!VT.isFixedLengthVector()) 11398 return Result; 11399 return convertFromScalableVector(VT, Result, DAG, Subtarget); 11400 } 11401 11402 // Lower Floating-Point/Integer Type-Convert VP SDNodes 11403 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, 11404 SelectionDAG &DAG) const { 11405 SDLoc DL(Op); 11406 11407 SDValue Src = Op.getOperand(0); 11408 SDValue Mask = Op.getOperand(1); 11409 SDValue VL = Op.getOperand(2); 11410 unsigned RISCVISDOpc = getRISCVVLOp(Op); 11411 11412 MVT DstVT = Op.getSimpleValueType(); 11413 MVT SrcVT = Src.getSimpleValueType(); 11414 if (DstVT.isFixedLengthVector()) { 11415 DstVT = getContainerForFixedLengthVector(DstVT); 11416 SrcVT = getContainerForFixedLengthVector(SrcVT); 11417 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 11418 MVT MaskVT = getMaskTypeFor(DstVT); 11419 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 11420 } 11421 11422 unsigned DstEltSize = DstVT.getScalarSizeInBits(); 11423 unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); 11424 11425 SDValue Result; 11426 if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion. 11427 if (SrcVT.isInteger()) { 11428 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 11429 11430 unsigned RISCVISDExtOpc = RISCVISDOpc == RISCVISD::SINT_TO_FP_VL 11431 ? RISCVISD::VSEXT_VL 11432 : RISCVISD::VZEXT_VL; 11433 11434 // Do we need to do any pre-widening before converting? 11435 if (SrcEltSize == 1) { 11436 MVT IntVT = DstVT.changeVectorElementTypeToInteger(); 11437 MVT XLenVT = Subtarget.getXLenVT(); 11438 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 11439 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 11440 DAG.getUNDEF(IntVT), Zero, VL); 11441 SDValue One = DAG.getConstant( 11442 RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT); 11443 SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 11444 DAG.getUNDEF(IntVT), One, VL); 11445 Src = DAG.getNode(RISCVISD::VMERGE_VL, DL, IntVT, Src, OneSplat, 11446 ZeroSplat, DAG.getUNDEF(IntVT), VL); 11447 } else if (DstEltSize > (2 * SrcEltSize)) { 11448 // Widen before converting. 11449 MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2), 11450 DstVT.getVectorElementCount()); 11451 Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL); 11452 } 11453 11454 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 11455 } else { 11456 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 11457 "Wrong input/output vector types"); 11458 11459 // Convert f16 to f32 then convert f32 to i64. 11460 if (DstEltSize > (2 * SrcEltSize)) { 11461 assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 11462 MVT InterimFVT = 11463 MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 11464 Src = 11465 DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL); 11466 } 11467 11468 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 11469 } 11470 } else { // Narrowing + Conversion 11471 if (SrcVT.isInteger()) { 11472 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 11473 // First do a narrowing convert to an FP type half the size, then round 11474 // the FP type to a small FP type if needed. 11475 11476 MVT InterimFVT = DstVT; 11477 if (SrcEltSize > (2 * DstEltSize)) { 11478 assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!"); 11479 assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 11480 InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 11481 } 11482 11483 Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL); 11484 11485 if (InterimFVT != DstVT) { 11486 Src = Result; 11487 Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL); 11488 } 11489 } else { 11490 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 11491 "Wrong input/output vector types"); 11492 // First do a narrowing conversion to an integer half the size, then 11493 // truncate if needed. 11494 11495 if (DstEltSize == 1) { 11496 // First convert to the same size integer, then convert to mask using 11497 // setcc. 11498 assert(SrcEltSize >= 16 && "Unexpected FP type!"); 11499 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize), 11500 DstVT.getVectorElementCount()); 11501 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 11502 11503 // Compare the integer result to 0. The integer should be 0 or 1/-1, 11504 // otherwise the conversion was undefined. 11505 MVT XLenVT = Subtarget.getXLenVT(); 11506 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 11507 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT, 11508 DAG.getUNDEF(InterimIVT), SplatZero, VL); 11509 Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, 11510 {Result, SplatZero, DAG.getCondCode(ISD::SETNE), 11511 DAG.getUNDEF(DstVT), Mask, VL}); 11512 } else { 11513 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 11514 DstVT.getVectorElementCount()); 11515 11516 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 11517 11518 while (InterimIVT != DstVT) { 11519 SrcEltSize /= 2; 11520 Src = Result; 11521 InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 11522 DstVT.getVectorElementCount()); 11523 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT, 11524 Src, Mask, VL); 11525 } 11526 } 11527 } 11528 } 11529 11530 MVT VT = Op.getSimpleValueType(); 11531 if (!VT.isFixedLengthVector()) 11532 return Result; 11533 return convertFromScalableVector(VT, Result, DAG, Subtarget); 11534 } 11535 11536 SDValue 11537 RISCVTargetLowering::lowerVPSpliceExperimental(SDValue Op, 11538 SelectionDAG &DAG) const { 11539 SDLoc DL(Op); 11540 11541 SDValue Op1 = Op.getOperand(0); 11542 SDValue Op2 = Op.getOperand(1); 11543 SDValue Offset = Op.getOperand(2); 11544 SDValue Mask = Op.getOperand(3); 11545 SDValue EVL1 = Op.getOperand(4); 11546 SDValue EVL2 = Op.getOperand(5); 11547 11548 const MVT XLenVT = Subtarget.getXLenVT(); 11549 MVT VT = Op.getSimpleValueType(); 11550 MVT ContainerVT = VT; 11551 if (VT.isFixedLengthVector()) { 11552 ContainerVT = getContainerForFixedLengthVector(VT); 11553 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 11554 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 11555 MVT MaskVT = getMaskTypeFor(ContainerVT); 11556 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 11557 } 11558 11559 // EVL1 may need to be extended to XLenVT with RV64LegalI32. 11560 EVL1 = DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, EVL1); 11561 11562 bool IsMaskVector = VT.getVectorElementType() == MVT::i1; 11563 if (IsMaskVector) { 11564 ContainerVT = ContainerVT.changeVectorElementType(MVT::i8); 11565 11566 // Expand input operands 11567 SDValue SplatOneOp1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 11568 DAG.getUNDEF(ContainerVT), 11569 DAG.getConstant(1, DL, XLenVT), EVL1); 11570 SDValue SplatZeroOp1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 11571 DAG.getUNDEF(ContainerVT), 11572 DAG.getConstant(0, DL, XLenVT), EVL1); 11573 Op1 = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, Op1, SplatOneOp1, 11574 SplatZeroOp1, DAG.getUNDEF(ContainerVT), EVL1); 11575 11576 SDValue SplatOneOp2 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 11577 DAG.getUNDEF(ContainerVT), 11578 DAG.getConstant(1, DL, XLenVT), EVL2); 11579 SDValue SplatZeroOp2 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 11580 DAG.getUNDEF(ContainerVT), 11581 DAG.getConstant(0, DL, XLenVT), EVL2); 11582 Op2 = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, Op2, SplatOneOp2, 11583 SplatZeroOp2, DAG.getUNDEF(ContainerVT), EVL2); 11584 } 11585 11586 int64_t ImmValue = cast<ConstantSDNode>(Offset)->getSExtValue(); 11587 SDValue DownOffset, UpOffset; 11588 if (ImmValue >= 0) { 11589 // The operand is a TargetConstant, we need to rebuild it as a regular 11590 // constant. 11591 DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); 11592 UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, EVL1, DownOffset); 11593 } else { 11594 // The operand is a TargetConstant, we need to rebuild it as a regular 11595 // constant rather than negating the original operand. 11596 UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); 11597 DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, EVL1, UpOffset); 11598 } 11599 11600 SDValue SlideDown = 11601 getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 11602 Op1, DownOffset, Mask, UpOffset); 11603 SDValue Result = getVSlideup(DAG, Subtarget, DL, ContainerVT, SlideDown, Op2, 11604 UpOffset, Mask, EVL2, RISCVII::TAIL_AGNOSTIC); 11605 11606 if (IsMaskVector) { 11607 // Truncate Result back to a mask vector (Result has same EVL as Op2) 11608 Result = DAG.getNode( 11609 RISCVISD::SETCC_VL, DL, ContainerVT.changeVectorElementType(MVT::i1), 11610 {Result, DAG.getConstant(0, DL, ContainerVT), 11611 DAG.getCondCode(ISD::SETNE), DAG.getUNDEF(getMaskTypeFor(ContainerVT)), 11612 Mask, EVL2}); 11613 } 11614 11615 if (!VT.isFixedLengthVector()) 11616 return Result; 11617 return convertFromScalableVector(VT, Result, DAG, Subtarget); 11618 } 11619 11620 SDValue RISCVTargetLowering::lowerVPSplatExperimental(SDValue Op, 11621 SelectionDAG &DAG) const { 11622 SDLoc DL(Op); 11623 SDValue Val = Op.getOperand(0); 11624 SDValue Mask = Op.getOperand(1); 11625 SDValue VL = Op.getOperand(2); 11626 MVT VT = Op.getSimpleValueType(); 11627 11628 MVT ContainerVT = VT; 11629 if (VT.isFixedLengthVector()) { 11630 ContainerVT = getContainerForFixedLengthVector(VT); 11631 MVT MaskVT = getMaskTypeFor(ContainerVT); 11632 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 11633 } 11634 11635 SDValue Result = 11636 lowerScalarSplat(SDValue(), Val, VL, ContainerVT, DL, DAG, Subtarget); 11637 11638 if (!VT.isFixedLengthVector()) 11639 return Result; 11640 return convertFromScalableVector(VT, Result, DAG, Subtarget); 11641 } 11642 11643 SDValue 11644 RISCVTargetLowering::lowerVPReverseExperimental(SDValue Op, 11645 SelectionDAG &DAG) const { 11646 SDLoc DL(Op); 11647 MVT VT = Op.getSimpleValueType(); 11648 MVT XLenVT = Subtarget.getXLenVT(); 11649 11650 SDValue Op1 = Op.getOperand(0); 11651 SDValue Mask = Op.getOperand(1); 11652 SDValue EVL = Op.getOperand(2); 11653 11654 MVT ContainerVT = VT; 11655 if (VT.isFixedLengthVector()) { 11656 ContainerVT = getContainerForFixedLengthVector(VT); 11657 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 11658 MVT MaskVT = getMaskTypeFor(ContainerVT); 11659 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 11660 } 11661 11662 MVT GatherVT = ContainerVT; 11663 MVT IndicesVT = ContainerVT.changeVectorElementTypeToInteger(); 11664 // Check if we are working with mask vectors 11665 bool IsMaskVector = ContainerVT.getVectorElementType() == MVT::i1; 11666 if (IsMaskVector) { 11667 GatherVT = IndicesVT = ContainerVT.changeVectorElementType(MVT::i8); 11668 11669 // Expand input operand 11670 SDValue SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IndicesVT, 11671 DAG.getUNDEF(IndicesVT), 11672 DAG.getConstant(1, DL, XLenVT), EVL); 11673 SDValue SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IndicesVT, 11674 DAG.getUNDEF(IndicesVT), 11675 DAG.getConstant(0, DL, XLenVT), EVL); 11676 Op1 = DAG.getNode(RISCVISD::VMERGE_VL, DL, IndicesVT, Op1, SplatOne, 11677 SplatZero, DAG.getUNDEF(IndicesVT), EVL); 11678 } 11679 11680 unsigned EltSize = GatherVT.getScalarSizeInBits(); 11681 unsigned MinSize = GatherVT.getSizeInBits().getKnownMinValue(); 11682 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 11683 unsigned MaxVLMAX = 11684 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 11685 11686 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 11687 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 11688 // to use vrgatherei16.vv. 11689 // TODO: It's also possible to use vrgatherei16.vv for other types to 11690 // decrease register width for the index calculation. 11691 // NOTE: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 11692 if (MaxVLMAX > 256 && EltSize == 8) { 11693 // If this is LMUL=8, we have to split before using vrgatherei16.vv. 11694 // Split the vector in half and reverse each half using a full register 11695 // reverse. 11696 // Swap the halves and concatenate them. 11697 // Slide the concatenated result by (VLMax - VL). 11698 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 11699 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(GatherVT); 11700 auto [Lo, Hi] = DAG.SplitVector(Op1, DL); 11701 11702 SDValue LoRev = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 11703 SDValue HiRev = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 11704 11705 // Reassemble the low and high pieces reversed. 11706 // NOTE: this Result is unmasked (because we do not need masks for 11707 // shuffles). If in the future this has to change, we can use a SELECT_VL 11708 // between Result and UNDEF using the mask originally passed to VP_REVERSE 11709 SDValue Result = 11710 DAG.getNode(ISD::CONCAT_VECTORS, DL, GatherVT, HiRev, LoRev); 11711 11712 // Slide off any elements from past EVL that were reversed into the low 11713 // elements. 11714 unsigned MinElts = GatherVT.getVectorMinNumElements(); 11715 SDValue VLMax = 11716 DAG.getVScale(DL, XLenVT, APInt(XLenVT.getSizeInBits(), MinElts)); 11717 SDValue Diff = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, EVL); 11718 11719 Result = getVSlidedown(DAG, Subtarget, DL, GatherVT, 11720 DAG.getUNDEF(GatherVT), Result, Diff, Mask, EVL); 11721 11722 if (IsMaskVector) { 11723 // Truncate Result back to a mask vector 11724 Result = 11725 DAG.getNode(RISCVISD::SETCC_VL, DL, ContainerVT, 11726 {Result, DAG.getConstant(0, DL, GatherVT), 11727 DAG.getCondCode(ISD::SETNE), 11728 DAG.getUNDEF(getMaskTypeFor(ContainerVT)), Mask, EVL}); 11729 } 11730 11731 if (!VT.isFixedLengthVector()) 11732 return Result; 11733 return convertFromScalableVector(VT, Result, DAG, Subtarget); 11734 } 11735 11736 // Just promote the int type to i16 which will double the LMUL. 11737 IndicesVT = MVT::getVectorVT(MVT::i16, IndicesVT.getVectorElementCount()); 11738 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 11739 } 11740 11741 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IndicesVT, Mask, EVL); 11742 SDValue VecLen = 11743 DAG.getNode(ISD::SUB, DL, XLenVT, EVL, DAG.getConstant(1, DL, XLenVT)); 11744 SDValue VecLenSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IndicesVT, 11745 DAG.getUNDEF(IndicesVT), VecLen, EVL); 11746 SDValue VRSUB = DAG.getNode(RISCVISD::SUB_VL, DL, IndicesVT, VecLenSplat, VID, 11747 DAG.getUNDEF(IndicesVT), Mask, EVL); 11748 SDValue Result = DAG.getNode(GatherOpc, DL, GatherVT, Op1, VRSUB, 11749 DAG.getUNDEF(GatherVT), Mask, EVL); 11750 11751 if (IsMaskVector) { 11752 // Truncate Result back to a mask vector 11753 Result = DAG.getNode( 11754 RISCVISD::SETCC_VL, DL, ContainerVT, 11755 {Result, DAG.getConstant(0, DL, GatherVT), DAG.getCondCode(ISD::SETNE), 11756 DAG.getUNDEF(getMaskTypeFor(ContainerVT)), Mask, EVL}); 11757 } 11758 11759 if (!VT.isFixedLengthVector()) 11760 return Result; 11761 return convertFromScalableVector(VT, Result, DAG, Subtarget); 11762 } 11763 11764 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, 11765 SelectionDAG &DAG) const { 11766 MVT VT = Op.getSimpleValueType(); 11767 if (VT.getVectorElementType() != MVT::i1) 11768 return lowerVPOp(Op, DAG); 11769 11770 // It is safe to drop mask parameter as masked-off elements are undef. 11771 SDValue Op1 = Op->getOperand(0); 11772 SDValue Op2 = Op->getOperand(1); 11773 SDValue VL = Op->getOperand(3); 11774 11775 MVT ContainerVT = VT; 11776 const bool IsFixed = VT.isFixedLengthVector(); 11777 if (IsFixed) { 11778 ContainerVT = getContainerForFixedLengthVector(VT); 11779 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 11780 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 11781 } 11782 11783 SDLoc DL(Op); 11784 SDValue Val = DAG.getNode(getRISCVVLOp(Op), DL, ContainerVT, Op1, Op2, VL); 11785 if (!IsFixed) 11786 return Val; 11787 return convertFromScalableVector(VT, Val, DAG, Subtarget); 11788 } 11789 11790 SDValue RISCVTargetLowering::lowerVPStridedLoad(SDValue Op, 11791 SelectionDAG &DAG) const { 11792 SDLoc DL(Op); 11793 MVT XLenVT = Subtarget.getXLenVT(); 11794 MVT VT = Op.getSimpleValueType(); 11795 MVT ContainerVT = VT; 11796 if (VT.isFixedLengthVector()) 11797 ContainerVT = getContainerForFixedLengthVector(VT); 11798 11799 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 11800 11801 auto *VPNode = cast<VPStridedLoadSDNode>(Op); 11802 // Check if the mask is known to be all ones 11803 SDValue Mask = VPNode->getMask(); 11804 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 11805 11806 SDValue IntID = DAG.getTargetConstant(IsUnmasked ? Intrinsic::riscv_vlse 11807 : Intrinsic::riscv_vlse_mask, 11808 DL, XLenVT); 11809 SmallVector<SDValue, 8> Ops{VPNode->getChain(), IntID, 11810 DAG.getUNDEF(ContainerVT), VPNode->getBasePtr(), 11811 VPNode->getStride()}; 11812 if (!IsUnmasked) { 11813 if (VT.isFixedLengthVector()) { 11814 MVT MaskVT = ContainerVT.changeVectorElementType(MVT::i1); 11815 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 11816 } 11817 Ops.push_back(Mask); 11818 } 11819 Ops.push_back(VPNode->getVectorLength()); 11820 if (!IsUnmasked) { 11821 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 11822 Ops.push_back(Policy); 11823 } 11824 11825 SDValue Result = 11826 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 11827 VPNode->getMemoryVT(), VPNode->getMemOperand()); 11828 SDValue Chain = Result.getValue(1); 11829 11830 if (VT.isFixedLengthVector()) 11831 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 11832 11833 return DAG.getMergeValues({Result, Chain}, DL); 11834 } 11835 11836 SDValue RISCVTargetLowering::lowerVPStridedStore(SDValue Op, 11837 SelectionDAG &DAG) const { 11838 SDLoc DL(Op); 11839 MVT XLenVT = Subtarget.getXLenVT(); 11840 11841 auto *VPNode = cast<VPStridedStoreSDNode>(Op); 11842 SDValue StoreVal = VPNode->getValue(); 11843 MVT VT = StoreVal.getSimpleValueType(); 11844 MVT ContainerVT = VT; 11845 if (VT.isFixedLengthVector()) { 11846 ContainerVT = getContainerForFixedLengthVector(VT); 11847 StoreVal = convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 11848 } 11849 11850 // Check if the mask is known to be all ones 11851 SDValue Mask = VPNode->getMask(); 11852 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 11853 11854 SDValue IntID = DAG.getTargetConstant(IsUnmasked ? Intrinsic::riscv_vsse 11855 : Intrinsic::riscv_vsse_mask, 11856 DL, XLenVT); 11857 SmallVector<SDValue, 8> Ops{VPNode->getChain(), IntID, StoreVal, 11858 VPNode->getBasePtr(), VPNode->getStride()}; 11859 if (!IsUnmasked) { 11860 if (VT.isFixedLengthVector()) { 11861 MVT MaskVT = ContainerVT.changeVectorElementType(MVT::i1); 11862 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 11863 } 11864 Ops.push_back(Mask); 11865 } 11866 Ops.push_back(VPNode->getVectorLength()); 11867 11868 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, VPNode->getVTList(), 11869 Ops, VPNode->getMemoryVT(), 11870 VPNode->getMemOperand()); 11871 } 11872 11873 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 11874 // matched to a RVV indexed load. The RVV indexed load instructions only 11875 // support the "unsigned unscaled" addressing mode; indices are implicitly 11876 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 11877 // signed or scaled indexing is extended to the XLEN value type and scaled 11878 // accordingly. 11879 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 11880 SelectionDAG &DAG) const { 11881 SDLoc DL(Op); 11882 MVT VT = Op.getSimpleValueType(); 11883 11884 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 11885 EVT MemVT = MemSD->getMemoryVT(); 11886 MachineMemOperand *MMO = MemSD->getMemOperand(); 11887 SDValue Chain = MemSD->getChain(); 11888 SDValue BasePtr = MemSD->getBasePtr(); 11889 11890 [[maybe_unused]] ISD::LoadExtType LoadExtType; 11891 SDValue Index, Mask, PassThru, VL; 11892 11893 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 11894 Index = VPGN->getIndex(); 11895 Mask = VPGN->getMask(); 11896 PassThru = DAG.getUNDEF(VT); 11897 VL = VPGN->getVectorLength(); 11898 // VP doesn't support extending loads. 11899 LoadExtType = ISD::NON_EXTLOAD; 11900 } else { 11901 // Else it must be a MGATHER. 11902 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 11903 Index = MGN->getIndex(); 11904 Mask = MGN->getMask(); 11905 PassThru = MGN->getPassThru(); 11906 LoadExtType = MGN->getExtensionType(); 11907 } 11908 11909 MVT IndexVT = Index.getSimpleValueType(); 11910 MVT XLenVT = Subtarget.getXLenVT(); 11911 11912 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 11913 "Unexpected VTs!"); 11914 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 11915 // Targets have to explicitly opt-in for extending vector loads. 11916 assert(LoadExtType == ISD::NON_EXTLOAD && 11917 "Unexpected extending MGATHER/VP_GATHER"); 11918 11919 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 11920 // the selection of the masked intrinsics doesn't do this for us. 11921 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 11922 11923 MVT ContainerVT = VT; 11924 if (VT.isFixedLengthVector()) { 11925 ContainerVT = getContainerForFixedLengthVector(VT); 11926 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 11927 ContainerVT.getVectorElementCount()); 11928 11929 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 11930 11931 if (!IsUnmasked) { 11932 MVT MaskVT = getMaskTypeFor(ContainerVT); 11933 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 11934 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 11935 } 11936 } 11937 11938 if (!VL) 11939 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 11940 11941 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 11942 IndexVT = IndexVT.changeVectorElementType(XLenVT); 11943 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 11944 } 11945 11946 unsigned IntID = 11947 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 11948 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 11949 if (IsUnmasked) 11950 Ops.push_back(DAG.getUNDEF(ContainerVT)); 11951 else 11952 Ops.push_back(PassThru); 11953 Ops.push_back(BasePtr); 11954 Ops.push_back(Index); 11955 if (!IsUnmasked) 11956 Ops.push_back(Mask); 11957 Ops.push_back(VL); 11958 if (!IsUnmasked) 11959 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 11960 11961 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 11962 SDValue Result = 11963 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 11964 Chain = Result.getValue(1); 11965 11966 if (VT.isFixedLengthVector()) 11967 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 11968 11969 return DAG.getMergeValues({Result, Chain}, DL); 11970 } 11971 11972 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 11973 // matched to a RVV indexed store. The RVV indexed store instructions only 11974 // support the "unsigned unscaled" addressing mode; indices are implicitly 11975 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 11976 // signed or scaled indexing is extended to the XLEN value type and scaled 11977 // accordingly. 11978 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 11979 SelectionDAG &DAG) const { 11980 SDLoc DL(Op); 11981 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 11982 EVT MemVT = MemSD->getMemoryVT(); 11983 MachineMemOperand *MMO = MemSD->getMemOperand(); 11984 SDValue Chain = MemSD->getChain(); 11985 SDValue BasePtr = MemSD->getBasePtr(); 11986 11987 [[maybe_unused]] bool IsTruncatingStore = false; 11988 SDValue Index, Mask, Val, VL; 11989 11990 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 11991 Index = VPSN->getIndex(); 11992 Mask = VPSN->getMask(); 11993 Val = VPSN->getValue(); 11994 VL = VPSN->getVectorLength(); 11995 // VP doesn't support truncating stores. 11996 IsTruncatingStore = false; 11997 } else { 11998 // Else it must be a MSCATTER. 11999 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 12000 Index = MSN->getIndex(); 12001 Mask = MSN->getMask(); 12002 Val = MSN->getValue(); 12003 IsTruncatingStore = MSN->isTruncatingStore(); 12004 } 12005 12006 MVT VT = Val.getSimpleValueType(); 12007 MVT IndexVT = Index.getSimpleValueType(); 12008 MVT XLenVT = Subtarget.getXLenVT(); 12009 12010 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 12011 "Unexpected VTs!"); 12012 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 12013 // Targets have to explicitly opt-in for extending vector loads and 12014 // truncating vector stores. 12015 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 12016 12017 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 12018 // the selection of the masked intrinsics doesn't do this for us. 12019 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 12020 12021 MVT ContainerVT = VT; 12022 if (VT.isFixedLengthVector()) { 12023 ContainerVT = getContainerForFixedLengthVector(VT); 12024 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 12025 ContainerVT.getVectorElementCount()); 12026 12027 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 12028 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 12029 12030 if (!IsUnmasked) { 12031 MVT MaskVT = getMaskTypeFor(ContainerVT); 12032 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 12033 } 12034 } 12035 12036 if (!VL) 12037 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 12038 12039 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 12040 IndexVT = IndexVT.changeVectorElementType(XLenVT); 12041 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 12042 } 12043 12044 unsigned IntID = 12045 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 12046 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 12047 Ops.push_back(Val); 12048 Ops.push_back(BasePtr); 12049 Ops.push_back(Index); 12050 if (!IsUnmasked) 12051 Ops.push_back(Mask); 12052 Ops.push_back(VL); 12053 12054 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 12055 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 12056 } 12057 12058 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 12059 SelectionDAG &DAG) const { 12060 const MVT XLenVT = Subtarget.getXLenVT(); 12061 SDLoc DL(Op); 12062 SDValue Chain = Op->getOperand(0); 12063 SDValue SysRegNo = DAG.getTargetConstant( 12064 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 12065 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 12066 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 12067 12068 // Encoding used for rounding mode in RISC-V differs from that used in 12069 // FLT_ROUNDS. To convert it the RISC-V rounding mode is used as an index in a 12070 // table, which consists of a sequence of 4-bit fields, each representing 12071 // corresponding FLT_ROUNDS mode. 12072 static const int Table = 12073 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 12074 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 12075 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 12076 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 12077 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 12078 12079 SDValue Shift = 12080 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 12081 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 12082 DAG.getConstant(Table, DL, XLenVT), Shift); 12083 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 12084 DAG.getConstant(7, DL, XLenVT)); 12085 12086 return DAG.getMergeValues({Masked, Chain}, DL); 12087 } 12088 12089 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 12090 SelectionDAG &DAG) const { 12091 const MVT XLenVT = Subtarget.getXLenVT(); 12092 SDLoc DL(Op); 12093 SDValue Chain = Op->getOperand(0); 12094 SDValue RMValue = Op->getOperand(1); 12095 SDValue SysRegNo = DAG.getTargetConstant( 12096 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 12097 12098 // Encoding used for rounding mode in RISC-V differs from that used in 12099 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 12100 // a table, which consists of a sequence of 4-bit fields, each representing 12101 // corresponding RISC-V mode. 12102 static const unsigned Table = 12103 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 12104 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 12105 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 12106 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 12107 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 12108 12109 RMValue = DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, RMValue); 12110 12111 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 12112 DAG.getConstant(2, DL, XLenVT)); 12113 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 12114 DAG.getConstant(Table, DL, XLenVT), Shift); 12115 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 12116 DAG.getConstant(0x7, DL, XLenVT)); 12117 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 12118 RMValue); 12119 } 12120 12121 SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op, 12122 SelectionDAG &DAG) const { 12123 MachineFunction &MF = DAG.getMachineFunction(); 12124 12125 bool isRISCV64 = Subtarget.is64Bit(); 12126 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 12127 12128 int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false); 12129 return DAG.getFrameIndex(FI, PtrVT); 12130 } 12131 12132 // Returns the opcode of the target-specific SDNode that implements the 32-bit 12133 // form of the given Opcode. 12134 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 12135 switch (Opcode) { 12136 default: 12137 llvm_unreachable("Unexpected opcode"); 12138 case ISD::SHL: 12139 return RISCVISD::SLLW; 12140 case ISD::SRA: 12141 return RISCVISD::SRAW; 12142 case ISD::SRL: 12143 return RISCVISD::SRLW; 12144 case ISD::SDIV: 12145 return RISCVISD::DIVW; 12146 case ISD::UDIV: 12147 return RISCVISD::DIVUW; 12148 case ISD::UREM: 12149 return RISCVISD::REMUW; 12150 case ISD::ROTL: 12151 return RISCVISD::ROLW; 12152 case ISD::ROTR: 12153 return RISCVISD::RORW; 12154 } 12155 } 12156 12157 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 12158 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 12159 // otherwise be promoted to i64, making it difficult to select the 12160 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 12161 // type i8/i16/i32 is lost. 12162 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 12163 unsigned ExtOpc = ISD::ANY_EXTEND) { 12164 SDLoc DL(N); 12165 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 12166 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 12167 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 12168 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 12169 // ReplaceNodeResults requires we maintain the same type for the return value. 12170 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 12171 } 12172 12173 // Converts the given 32-bit operation to a i64 operation with signed extension 12174 // semantic to reduce the signed extension instructions. 12175 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 12176 SDLoc DL(N); 12177 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 12178 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 12179 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 12180 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 12181 DAG.getValueType(MVT::i32)); 12182 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 12183 } 12184 12185 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 12186 SmallVectorImpl<SDValue> &Results, 12187 SelectionDAG &DAG) const { 12188 SDLoc DL(N); 12189 switch (N->getOpcode()) { 12190 default: 12191 llvm_unreachable("Don't know how to custom type legalize this operation!"); 12192 case ISD::STRICT_FP_TO_SINT: 12193 case ISD::STRICT_FP_TO_UINT: 12194 case ISD::FP_TO_SINT: 12195 case ISD::FP_TO_UINT: { 12196 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 12197 "Unexpected custom legalisation"); 12198 bool IsStrict = N->isStrictFPOpcode(); 12199 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 12200 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 12201 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 12202 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 12203 TargetLowering::TypeSoftenFloat) { 12204 if (!isTypeLegal(Op0.getValueType())) 12205 return; 12206 if (IsStrict) { 12207 SDValue Chain = N->getOperand(0); 12208 // In absense of Zfh, promote f16 to f32, then convert. 12209 if (Op0.getValueType() == MVT::f16 && 12210 !Subtarget.hasStdExtZfhOrZhinx()) { 12211 Op0 = DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {MVT::f32, MVT::Other}, 12212 {Chain, Op0}); 12213 Chain = Op0.getValue(1); 12214 } 12215 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 12216 : RISCVISD::STRICT_FCVT_WU_RV64; 12217 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 12218 SDValue Res = DAG.getNode( 12219 Opc, DL, VTs, Chain, Op0, 12220 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 12221 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 12222 Results.push_back(Res.getValue(1)); 12223 return; 12224 } 12225 // For bf16, or f16 in absense of Zfh, promote [b]f16 to f32 and then 12226 // convert. 12227 if ((Op0.getValueType() == MVT::f16 && 12228 !Subtarget.hasStdExtZfhOrZhinx()) || 12229 Op0.getValueType() == MVT::bf16) 12230 Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op0); 12231 12232 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 12233 SDValue Res = 12234 DAG.getNode(Opc, DL, MVT::i64, Op0, 12235 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 12236 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 12237 return; 12238 } 12239 // If the FP type needs to be softened, emit a library call using the 'si' 12240 // version. If we left it to default legalization we'd end up with 'di'. If 12241 // the FP type doesn't need to be softened just let generic type 12242 // legalization promote the result type. 12243 RTLIB::Libcall LC; 12244 if (IsSigned) 12245 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 12246 else 12247 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 12248 MakeLibCallOptions CallOptions; 12249 EVT OpVT = Op0.getValueType(); 12250 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 12251 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 12252 SDValue Result; 12253 std::tie(Result, Chain) = 12254 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 12255 Results.push_back(Result); 12256 if (IsStrict) 12257 Results.push_back(Chain); 12258 break; 12259 } 12260 case ISD::LROUND: { 12261 SDValue Op0 = N->getOperand(0); 12262 EVT Op0VT = Op0.getValueType(); 12263 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 12264 TargetLowering::TypeSoftenFloat) { 12265 if (!isTypeLegal(Op0VT)) 12266 return; 12267 12268 // In absense of Zfh, promote f16 to f32, then convert. 12269 if (Op0.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfhOrZhinx()) 12270 Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op0); 12271 12272 SDValue Res = 12273 DAG.getNode(RISCVISD::FCVT_W_RV64, DL, MVT::i64, Op0, 12274 DAG.getTargetConstant(RISCVFPRndMode::RMM, DL, MVT::i64)); 12275 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 12276 return; 12277 } 12278 // If the FP type needs to be softened, emit a library call to lround. We'll 12279 // need to truncate the result. We assume any value that doesn't fit in i32 12280 // is allowed to return an unspecified value. 12281 RTLIB::Libcall LC = 12282 Op0.getValueType() == MVT::f64 ? RTLIB::LROUND_F64 : RTLIB::LROUND_F32; 12283 MakeLibCallOptions CallOptions; 12284 EVT OpVT = Op0.getValueType(); 12285 CallOptions.setTypeListBeforeSoften(OpVT, MVT::i64, true); 12286 SDValue Result = makeLibCall(DAG, LC, MVT::i64, Op0, CallOptions, DL).first; 12287 Result = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Result); 12288 Results.push_back(Result); 12289 break; 12290 } 12291 case ISD::READCYCLECOUNTER: 12292 case ISD::READSTEADYCOUNTER: { 12293 assert(!Subtarget.is64Bit() && "READCYCLECOUNTER/READSTEADYCOUNTER only " 12294 "has custom type legalization on riscv32"); 12295 12296 SDValue LoCounter, HiCounter; 12297 MVT XLenVT = Subtarget.getXLenVT(); 12298 if (N->getOpcode() == ISD::READCYCLECOUNTER) { 12299 LoCounter = DAG.getTargetConstant( 12300 RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding, DL, XLenVT); 12301 HiCounter = DAG.getTargetConstant( 12302 RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding, DL, XLenVT); 12303 } else { 12304 LoCounter = DAG.getTargetConstant( 12305 RISCVSysReg::lookupSysRegByName("TIME")->Encoding, DL, XLenVT); 12306 HiCounter = DAG.getTargetConstant( 12307 RISCVSysReg::lookupSysRegByName("TIMEH")->Encoding, DL, XLenVT); 12308 } 12309 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 12310 SDValue RCW = DAG.getNode(RISCVISD::READ_COUNTER_WIDE, DL, VTs, 12311 N->getOperand(0), LoCounter, HiCounter); 12312 12313 Results.push_back( 12314 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 12315 Results.push_back(RCW.getValue(2)); 12316 break; 12317 } 12318 case ISD::LOAD: { 12319 if (!ISD::isNON_EXTLoad(N)) 12320 return; 12321 12322 // Use a SEXTLOAD instead of the default EXTLOAD. Similar to the 12323 // sext_inreg we emit for ADD/SUB/MUL/SLLI. 12324 LoadSDNode *Ld = cast<LoadSDNode>(N); 12325 12326 SDLoc dl(N); 12327 SDValue Res = DAG.getExtLoad(ISD::SEXTLOAD, dl, MVT::i64, Ld->getChain(), 12328 Ld->getBasePtr(), Ld->getMemoryVT(), 12329 Ld->getMemOperand()); 12330 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Res)); 12331 Results.push_back(Res.getValue(1)); 12332 return; 12333 } 12334 case ISD::MUL: { 12335 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 12336 unsigned XLen = Subtarget.getXLen(); 12337 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 12338 if (Size > XLen) { 12339 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 12340 SDValue LHS = N->getOperand(0); 12341 SDValue RHS = N->getOperand(1); 12342 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 12343 12344 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 12345 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 12346 // We need exactly one side to be unsigned. 12347 if (LHSIsU == RHSIsU) 12348 return; 12349 12350 auto MakeMULPair = [&](SDValue S, SDValue U) { 12351 MVT XLenVT = Subtarget.getXLenVT(); 12352 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 12353 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 12354 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 12355 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 12356 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 12357 }; 12358 12359 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 12360 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 12361 12362 // The other operand should be signed, but still prefer MULH when 12363 // possible. 12364 if (RHSIsU && LHSIsS && !RHSIsS) 12365 Results.push_back(MakeMULPair(LHS, RHS)); 12366 else if (LHSIsU && RHSIsS && !LHSIsS) 12367 Results.push_back(MakeMULPair(RHS, LHS)); 12368 12369 return; 12370 } 12371 [[fallthrough]]; 12372 } 12373 case ISD::ADD: 12374 case ISD::SUB: 12375 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 12376 "Unexpected custom legalisation"); 12377 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 12378 break; 12379 case ISD::SHL: 12380 case ISD::SRA: 12381 case ISD::SRL: 12382 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 12383 "Unexpected custom legalisation"); 12384 if (N->getOperand(1).getOpcode() != ISD::Constant) { 12385 // If we can use a BSET instruction, allow default promotion to apply. 12386 if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() && 12387 isOneConstant(N->getOperand(0))) 12388 break; 12389 Results.push_back(customLegalizeToWOp(N, DAG)); 12390 break; 12391 } 12392 12393 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 12394 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 12395 // shift amount. 12396 if (N->getOpcode() == ISD::SHL) { 12397 SDLoc DL(N); 12398 SDValue NewOp0 = 12399 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 12400 SDValue NewOp1 = 12401 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 12402 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 12403 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 12404 DAG.getValueType(MVT::i32)); 12405 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 12406 } 12407 12408 break; 12409 case ISD::ROTL: 12410 case ISD::ROTR: 12411 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 12412 "Unexpected custom legalisation"); 12413 assert((Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb() || 12414 Subtarget.hasVendorXTHeadBb()) && 12415 "Unexpected custom legalization"); 12416 if (!isa<ConstantSDNode>(N->getOperand(1)) && 12417 !(Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())) 12418 return; 12419 Results.push_back(customLegalizeToWOp(N, DAG)); 12420 break; 12421 case ISD::CTTZ: 12422 case ISD::CTTZ_ZERO_UNDEF: 12423 case ISD::CTLZ: 12424 case ISD::CTLZ_ZERO_UNDEF: { 12425 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 12426 "Unexpected custom legalisation"); 12427 12428 SDValue NewOp0 = 12429 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 12430 bool IsCTZ = 12431 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 12432 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 12433 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 12434 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 12435 return; 12436 } 12437 case ISD::SDIV: 12438 case ISD::UDIV: 12439 case ISD::UREM: { 12440 MVT VT = N->getSimpleValueType(0); 12441 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 12442 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 12443 "Unexpected custom legalisation"); 12444 // Don't promote division/remainder by constant since we should expand those 12445 // to multiply by magic constant. 12446 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 12447 if (N->getOperand(1).getOpcode() == ISD::Constant && 12448 !isIntDivCheap(N->getValueType(0), Attr)) 12449 return; 12450 12451 // If the input is i32, use ANY_EXTEND since the W instructions don't read 12452 // the upper 32 bits. For other types we need to sign or zero extend 12453 // based on the opcode. 12454 unsigned ExtOpc = ISD::ANY_EXTEND; 12455 if (VT != MVT::i32) 12456 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 12457 : ISD::ZERO_EXTEND; 12458 12459 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 12460 break; 12461 } 12462 case ISD::SADDO: { 12463 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 12464 "Unexpected custom legalisation"); 12465 12466 // If the RHS is a constant, we can simplify ConditionRHS below. Otherwise 12467 // use the default legalization. 12468 if (!isa<ConstantSDNode>(N->getOperand(1))) 12469 return; 12470 12471 SDValue LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 12472 SDValue RHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 12473 SDValue Res = DAG.getNode(ISD::ADD, DL, MVT::i64, LHS, RHS); 12474 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 12475 DAG.getValueType(MVT::i32)); 12476 12477 SDValue Zero = DAG.getConstant(0, DL, MVT::i64); 12478 12479 // For an addition, the result should be less than one of the operands (LHS) 12480 // if and only if the other operand (RHS) is negative, otherwise there will 12481 // be overflow. 12482 // For a subtraction, the result should be less than one of the operands 12483 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 12484 // otherwise there will be overflow. 12485 EVT OType = N->getValueType(1); 12486 SDValue ResultLowerThanLHS = DAG.getSetCC(DL, OType, Res, LHS, ISD::SETLT); 12487 SDValue ConditionRHS = DAG.getSetCC(DL, OType, RHS, Zero, ISD::SETLT); 12488 12489 SDValue Overflow = 12490 DAG.getNode(ISD::XOR, DL, OType, ConditionRHS, ResultLowerThanLHS); 12491 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 12492 Results.push_back(Overflow); 12493 return; 12494 } 12495 case ISD::UADDO: 12496 case ISD::USUBO: { 12497 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 12498 "Unexpected custom legalisation"); 12499 bool IsAdd = N->getOpcode() == ISD::UADDO; 12500 // Create an ADDW or SUBW. 12501 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 12502 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 12503 SDValue Res = 12504 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 12505 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 12506 DAG.getValueType(MVT::i32)); 12507 12508 SDValue Overflow; 12509 if (IsAdd && isOneConstant(RHS)) { 12510 // Special case uaddo X, 1 overflowed if the addition result is 0. 12511 // The general case (X + C) < C is not necessarily beneficial. Although we 12512 // reduce the live range of X, we may introduce the materialization of 12513 // constant C, especially when the setcc result is used by branch. We have 12514 // no compare with constant and branch instructions. 12515 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, 12516 DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ); 12517 } else if (IsAdd && isAllOnesConstant(RHS)) { 12518 // Special case uaddo X, -1 overflowed if X != 0. 12519 Overflow = DAG.getSetCC(DL, N->getValueType(1), N->getOperand(0), 12520 DAG.getConstant(0, DL, MVT::i32), ISD::SETNE); 12521 } else { 12522 // Sign extend the LHS and perform an unsigned compare with the ADDW 12523 // result. Since the inputs are sign extended from i32, this is equivalent 12524 // to comparing the lower 32 bits. 12525 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 12526 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 12527 IsAdd ? ISD::SETULT : ISD::SETUGT); 12528 } 12529 12530 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 12531 Results.push_back(Overflow); 12532 return; 12533 } 12534 case ISD::UADDSAT: 12535 case ISD::USUBSAT: { 12536 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 12537 "Unexpected custom legalisation"); 12538 if (Subtarget.hasStdExtZbb()) { 12539 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 12540 // sign extend allows overflow of the lower 32 bits to be detected on 12541 // the promoted size. 12542 SDValue LHS = 12543 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 12544 SDValue RHS = 12545 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 12546 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 12547 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 12548 return; 12549 } 12550 12551 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 12552 // promotion for UADDO/USUBO. 12553 Results.push_back(expandAddSubSat(N, DAG)); 12554 return; 12555 } 12556 case ISD::SADDSAT: 12557 case ISD::SSUBSAT: { 12558 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 12559 "Unexpected custom legalisation"); 12560 Results.push_back(expandAddSubSat(N, DAG)); 12561 return; 12562 } 12563 case ISD::ABS: { 12564 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 12565 "Unexpected custom legalisation"); 12566 12567 if (Subtarget.hasStdExtZbb()) { 12568 // Emit a special ABSW node that will be expanded to NEGW+MAX at isel. 12569 // This allows us to remember that the result is sign extended. Expanding 12570 // to NEGW+MAX here requires a Freeze which breaks ComputeNumSignBits. 12571 SDValue Src = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, 12572 N->getOperand(0)); 12573 SDValue Abs = DAG.getNode(RISCVISD::ABSW, DL, MVT::i64, Src); 12574 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Abs)); 12575 return; 12576 } 12577 12578 // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y) 12579 SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 12580 12581 // Freeze the source so we can increase it's use count. 12582 Src = DAG.getFreeze(Src); 12583 12584 // Copy sign bit to all bits using the sraiw pattern. 12585 SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src, 12586 DAG.getValueType(MVT::i32)); 12587 SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill, 12588 DAG.getConstant(31, DL, MVT::i64)); 12589 12590 SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill); 12591 NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill); 12592 12593 // NOTE: The result is only required to be anyextended, but sext is 12594 // consistent with type legalization of sub. 12595 NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes, 12596 DAG.getValueType(MVT::i32)); 12597 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 12598 return; 12599 } 12600 case ISD::BITCAST: { 12601 EVT VT = N->getValueType(0); 12602 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 12603 SDValue Op0 = N->getOperand(0); 12604 EVT Op0VT = Op0.getValueType(); 12605 MVT XLenVT = Subtarget.getXLenVT(); 12606 if (VT == MVT::i16 && Op0VT == MVT::f16 && 12607 Subtarget.hasStdExtZfhminOrZhinxmin()) { 12608 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 12609 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 12610 } else if (VT == MVT::i16 && Op0VT == MVT::bf16 && 12611 Subtarget.hasStdExtZfbfmin()) { 12612 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 12613 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 12614 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 12615 Subtarget.hasStdExtFOrZfinx()) { 12616 SDValue FPConv = 12617 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 12618 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 12619 } else if (VT == MVT::i64 && Op0VT == MVT::f64 && XLenVT == MVT::i32) { 12620 SDValue NewReg = DAG.getNode(RISCVISD::SplitF64, DL, 12621 DAG.getVTList(MVT::i32, MVT::i32), Op0); 12622 SDValue RetReg = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, 12623 NewReg.getValue(0), NewReg.getValue(1)); 12624 Results.push_back(RetReg); 12625 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 12626 isTypeLegal(Op0VT)) { 12627 // Custom-legalize bitcasts from fixed-length vector types to illegal 12628 // scalar types in order to improve codegen. Bitcast the vector to a 12629 // one-element vector type whose element type is the same as the result 12630 // type, and extract the first element. 12631 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 12632 if (isTypeLegal(BVT)) { 12633 SDValue BVec = DAG.getBitcast(BVT, Op0); 12634 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 12635 DAG.getVectorIdxConstant(0, DL))); 12636 } 12637 } 12638 break; 12639 } 12640 case RISCVISD::BREV8: 12641 case RISCVISD::ORC_B: { 12642 MVT VT = N->getSimpleValueType(0); 12643 MVT XLenVT = Subtarget.getXLenVT(); 12644 assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) && 12645 "Unexpected custom legalisation"); 12646 assert(((N->getOpcode() == RISCVISD::BREV8 && Subtarget.hasStdExtZbkb()) || 12647 (N->getOpcode() == RISCVISD::ORC_B && Subtarget.hasStdExtZbb())) && 12648 "Unexpected extension"); 12649 SDValue NewOp = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 12650 SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp); 12651 // ReplaceNodeResults requires we maintain the same type for the return 12652 // value. 12653 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes)); 12654 break; 12655 } 12656 case ISD::EXTRACT_VECTOR_ELT: { 12657 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 12658 // type is illegal (currently only vXi64 RV32). 12659 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 12660 // transferred to the destination register. We issue two of these from the 12661 // upper- and lower- halves of the SEW-bit vector element, slid down to the 12662 // first element. 12663 SDValue Vec = N->getOperand(0); 12664 SDValue Idx = N->getOperand(1); 12665 12666 // The vector type hasn't been legalized yet so we can't issue target 12667 // specific nodes if it needs legalization. 12668 // FIXME: We would manually legalize if it's important. 12669 if (!isTypeLegal(Vec.getValueType())) 12670 return; 12671 12672 MVT VecVT = Vec.getSimpleValueType(); 12673 12674 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 12675 VecVT.getVectorElementType() == MVT::i64 && 12676 "Unexpected EXTRACT_VECTOR_ELT legalization"); 12677 12678 // If this is a fixed vector, we need to convert it to a scalable vector. 12679 MVT ContainerVT = VecVT; 12680 if (VecVT.isFixedLengthVector()) { 12681 ContainerVT = getContainerForFixedLengthVector(VecVT); 12682 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 12683 } 12684 12685 MVT XLenVT = Subtarget.getXLenVT(); 12686 12687 // Use a VL of 1 to avoid processing more elements than we need. 12688 auto [Mask, VL] = getDefaultVLOps(1, ContainerVT, DL, DAG, Subtarget); 12689 12690 // Unless the index is known to be 0, we must slide the vector down to get 12691 // the desired element into index 0. 12692 if (!isNullConstant(Idx)) { 12693 Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT, 12694 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 12695 } 12696 12697 // Extract the lower XLEN bits of the correct vector element. 12698 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 12699 12700 // To extract the upper XLEN bits of the vector element, shift the first 12701 // element right by 32 bits and re-extract the lower XLEN bits. 12702 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 12703 DAG.getUNDEF(ContainerVT), 12704 DAG.getConstant(32, DL, XLenVT), VL); 12705 SDValue LShr32 = 12706 DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, ThirtyTwoV, 12707 DAG.getUNDEF(ContainerVT), Mask, VL); 12708 12709 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 12710 12711 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 12712 break; 12713 } 12714 case ISD::INTRINSIC_WO_CHAIN: { 12715 unsigned IntNo = N->getConstantOperandVal(0); 12716 switch (IntNo) { 12717 default: 12718 llvm_unreachable( 12719 "Don't know how to custom type legalize this intrinsic!"); 12720 case Intrinsic::experimental_get_vector_length: { 12721 SDValue Res = lowerGetVectorLength(N, DAG, Subtarget); 12722 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 12723 return; 12724 } 12725 case Intrinsic::experimental_cttz_elts: { 12726 SDValue Res = lowerCttzElts(N, DAG, Subtarget); 12727 Results.push_back( 12728 DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), Res)); 12729 return; 12730 } 12731 case Intrinsic::riscv_orc_b: 12732 case Intrinsic::riscv_brev8: 12733 case Intrinsic::riscv_sha256sig0: 12734 case Intrinsic::riscv_sha256sig1: 12735 case Intrinsic::riscv_sha256sum0: 12736 case Intrinsic::riscv_sha256sum1: 12737 case Intrinsic::riscv_sm3p0: 12738 case Intrinsic::riscv_sm3p1: { 12739 if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32) 12740 return; 12741 unsigned Opc; 12742 switch (IntNo) { 12743 case Intrinsic::riscv_orc_b: Opc = RISCVISD::ORC_B; break; 12744 case Intrinsic::riscv_brev8: Opc = RISCVISD::BREV8; break; 12745 case Intrinsic::riscv_sha256sig0: Opc = RISCVISD::SHA256SIG0; break; 12746 case Intrinsic::riscv_sha256sig1: Opc = RISCVISD::SHA256SIG1; break; 12747 case Intrinsic::riscv_sha256sum0: Opc = RISCVISD::SHA256SUM0; break; 12748 case Intrinsic::riscv_sha256sum1: Opc = RISCVISD::SHA256SUM1; break; 12749 case Intrinsic::riscv_sm3p0: Opc = RISCVISD::SM3P0; break; 12750 case Intrinsic::riscv_sm3p1: Opc = RISCVISD::SM3P1; break; 12751 } 12752 12753 SDValue NewOp = 12754 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 12755 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp); 12756 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 12757 return; 12758 } 12759 case Intrinsic::riscv_sm4ks: 12760 case Intrinsic::riscv_sm4ed: { 12761 unsigned Opc = 12762 IntNo == Intrinsic::riscv_sm4ks ? RISCVISD::SM4KS : RISCVISD::SM4ED; 12763 SDValue NewOp0 = 12764 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 12765 SDValue NewOp1 = 12766 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 12767 SDValue Res = 12768 DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, N->getOperand(3)); 12769 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 12770 return; 12771 } 12772 case Intrinsic::riscv_mopr: { 12773 if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32) 12774 return; 12775 SDValue NewOp = 12776 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 12777 SDValue Res = DAG.getNode( 12778 RISCVISD::MOPR, DL, MVT::i64, NewOp, 12779 DAG.getTargetConstant(N->getConstantOperandVal(2), DL, MVT::i64)); 12780 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 12781 return; 12782 } 12783 case Intrinsic::riscv_moprr: { 12784 if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32) 12785 return; 12786 SDValue NewOp0 = 12787 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 12788 SDValue NewOp1 = 12789 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 12790 SDValue Res = DAG.getNode( 12791 RISCVISD::MOPRR, DL, MVT::i64, NewOp0, NewOp1, 12792 DAG.getTargetConstant(N->getConstantOperandVal(3), DL, MVT::i64)); 12793 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 12794 return; 12795 } 12796 case Intrinsic::riscv_clmul: { 12797 if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32) 12798 return; 12799 12800 SDValue NewOp0 = 12801 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 12802 SDValue NewOp1 = 12803 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 12804 SDValue Res = DAG.getNode(RISCVISD::CLMUL, DL, MVT::i64, NewOp0, NewOp1); 12805 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 12806 return; 12807 } 12808 case Intrinsic::riscv_clmulh: 12809 case Intrinsic::riscv_clmulr: { 12810 if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32) 12811 return; 12812 12813 // Extend inputs to XLen, and shift by 32. This will add 64 trailing zeros 12814 // to the full 128-bit clmul result of multiplying two xlen values. 12815 // Perform clmulr or clmulh on the shifted values. Finally, extract the 12816 // upper 32 bits. 12817 // 12818 // The alternative is to mask the inputs to 32 bits and use clmul, but 12819 // that requires two shifts to mask each input without zext.w. 12820 // FIXME: If the inputs are known zero extended or could be freely 12821 // zero extended, the mask form would be better. 12822 SDValue NewOp0 = 12823 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 12824 SDValue NewOp1 = 12825 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 12826 NewOp0 = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, 12827 DAG.getConstant(32, DL, MVT::i64)); 12828 NewOp1 = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp1, 12829 DAG.getConstant(32, DL, MVT::i64)); 12830 unsigned Opc = IntNo == Intrinsic::riscv_clmulh ? RISCVISD::CLMULH 12831 : RISCVISD::CLMULR; 12832 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1); 12833 Res = DAG.getNode(ISD::SRL, DL, MVT::i64, Res, 12834 DAG.getConstant(32, DL, MVT::i64)); 12835 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 12836 return; 12837 } 12838 case Intrinsic::riscv_vmv_x_s: { 12839 EVT VT = N->getValueType(0); 12840 MVT XLenVT = Subtarget.getXLenVT(); 12841 if (VT.bitsLT(XLenVT)) { 12842 // Simple case just extract using vmv.x.s and truncate. 12843 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 12844 Subtarget.getXLenVT(), N->getOperand(1)); 12845 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 12846 return; 12847 } 12848 12849 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 12850 "Unexpected custom legalization"); 12851 12852 // We need to do the move in two steps. 12853 SDValue Vec = N->getOperand(1); 12854 MVT VecVT = Vec.getSimpleValueType(); 12855 12856 // First extract the lower XLEN bits of the element. 12857 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 12858 12859 // To extract the upper XLEN bits of the vector element, shift the first 12860 // element right by 32 bits and re-extract the lower XLEN bits. 12861 auto [Mask, VL] = getDefaultVLOps(1, VecVT, DL, DAG, Subtarget); 12862 12863 SDValue ThirtyTwoV = 12864 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 12865 DAG.getConstant(32, DL, XLenVT), VL); 12866 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, 12867 DAG.getUNDEF(VecVT), Mask, VL); 12868 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 12869 12870 Results.push_back( 12871 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 12872 break; 12873 } 12874 } 12875 break; 12876 } 12877 case ISD::VECREDUCE_ADD: 12878 case ISD::VECREDUCE_AND: 12879 case ISD::VECREDUCE_OR: 12880 case ISD::VECREDUCE_XOR: 12881 case ISD::VECREDUCE_SMAX: 12882 case ISD::VECREDUCE_UMAX: 12883 case ISD::VECREDUCE_SMIN: 12884 case ISD::VECREDUCE_UMIN: 12885 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 12886 Results.push_back(V); 12887 break; 12888 case ISD::VP_REDUCE_ADD: 12889 case ISD::VP_REDUCE_AND: 12890 case ISD::VP_REDUCE_OR: 12891 case ISD::VP_REDUCE_XOR: 12892 case ISD::VP_REDUCE_SMAX: 12893 case ISD::VP_REDUCE_UMAX: 12894 case ISD::VP_REDUCE_SMIN: 12895 case ISD::VP_REDUCE_UMIN: 12896 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 12897 Results.push_back(V); 12898 break; 12899 case ISD::GET_ROUNDING: { 12900 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 12901 SDValue Res = DAG.getNode(ISD::GET_ROUNDING, DL, VTs, N->getOperand(0)); 12902 Results.push_back(Res.getValue(0)); 12903 Results.push_back(Res.getValue(1)); 12904 break; 12905 } 12906 } 12907 } 12908 12909 /// Given a binary operator, return the *associative* generic ISD::VECREDUCE_OP 12910 /// which corresponds to it. 12911 static unsigned getVecReduceOpcode(unsigned Opc) { 12912 switch (Opc) { 12913 default: 12914 llvm_unreachable("Unhandled binary to transfrom reduction"); 12915 case ISD::ADD: 12916 return ISD::VECREDUCE_ADD; 12917 case ISD::UMAX: 12918 return ISD::VECREDUCE_UMAX; 12919 case ISD::SMAX: 12920 return ISD::VECREDUCE_SMAX; 12921 case ISD::UMIN: 12922 return ISD::VECREDUCE_UMIN; 12923 case ISD::SMIN: 12924 return ISD::VECREDUCE_SMIN; 12925 case ISD::AND: 12926 return ISD::VECREDUCE_AND; 12927 case ISD::OR: 12928 return ISD::VECREDUCE_OR; 12929 case ISD::XOR: 12930 return ISD::VECREDUCE_XOR; 12931 case ISD::FADD: 12932 // Note: This is the associative form of the generic reduction opcode. 12933 return ISD::VECREDUCE_FADD; 12934 } 12935 } 12936 12937 /// Perform two related transforms whose purpose is to incrementally recognize 12938 /// an explode_vector followed by scalar reduction as a vector reduction node. 12939 /// This exists to recover from a deficiency in SLP which can't handle 12940 /// forests with multiple roots sharing common nodes. In some cases, one 12941 /// of the trees will be vectorized, and the other will remain (unprofitably) 12942 /// scalarized. 12943 static SDValue 12944 combineBinOpOfExtractToReduceTree(SDNode *N, SelectionDAG &DAG, 12945 const RISCVSubtarget &Subtarget) { 12946 12947 // This transforms need to run before all integer types have been legalized 12948 // to i64 (so that the vector element type matches the add type), and while 12949 // it's safe to introduce odd sized vector types. 12950 if (DAG.NewNodesMustHaveLegalTypes) 12951 return SDValue(); 12952 12953 // Without V, this transform isn't useful. We could form the (illegal) 12954 // operations and let them be scalarized again, but there's really no point. 12955 if (!Subtarget.hasVInstructions()) 12956 return SDValue(); 12957 12958 const SDLoc DL(N); 12959 const EVT VT = N->getValueType(0); 12960 const unsigned Opc = N->getOpcode(); 12961 12962 // For FADD, we only handle the case with reassociation allowed. We 12963 // could handle strict reduction order, but at the moment, there's no 12964 // known reason to, and the complexity isn't worth it. 12965 // TODO: Handle fminnum and fmaxnum here 12966 if (!VT.isInteger() && 12967 (Opc != ISD::FADD || !N->getFlags().hasAllowReassociation())) 12968 return SDValue(); 12969 12970 const unsigned ReduceOpc = getVecReduceOpcode(Opc); 12971 assert(Opc == ISD::getVecReduceBaseOpcode(ReduceOpc) && 12972 "Inconsistent mappings"); 12973 SDValue LHS = N->getOperand(0); 12974 SDValue RHS = N->getOperand(1); 12975 12976 if (!LHS.hasOneUse() || !RHS.hasOneUse()) 12977 return SDValue(); 12978 12979 if (RHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12980 std::swap(LHS, RHS); 12981 12982 if (RHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12983 !isa<ConstantSDNode>(RHS.getOperand(1))) 12984 return SDValue(); 12985 12986 uint64_t RHSIdx = cast<ConstantSDNode>(RHS.getOperand(1))->getLimitedValue(); 12987 SDValue SrcVec = RHS.getOperand(0); 12988 EVT SrcVecVT = SrcVec.getValueType(); 12989 assert(SrcVecVT.getVectorElementType() == VT); 12990 if (SrcVecVT.isScalableVector()) 12991 return SDValue(); 12992 12993 if (SrcVecVT.getScalarSizeInBits() > Subtarget.getELen()) 12994 return SDValue(); 12995 12996 // match binop (extract_vector_elt V, 0), (extract_vector_elt V, 1) to 12997 // reduce_op (extract_subvector [2 x VT] from V). This will form the 12998 // root of our reduction tree. TODO: We could extend this to any two 12999 // adjacent aligned constant indices if desired. 13000 if (LHS.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 13001 LHS.getOperand(0) == SrcVec && isa<ConstantSDNode>(LHS.getOperand(1))) { 13002 uint64_t LHSIdx = 13003 cast<ConstantSDNode>(LHS.getOperand(1))->getLimitedValue(); 13004 if (0 == std::min(LHSIdx, RHSIdx) && 1 == std::max(LHSIdx, RHSIdx)) { 13005 EVT ReduceVT = EVT::getVectorVT(*DAG.getContext(), VT, 2); 13006 SDValue Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ReduceVT, SrcVec, 13007 DAG.getVectorIdxConstant(0, DL)); 13008 return DAG.getNode(ReduceOpc, DL, VT, Vec, N->getFlags()); 13009 } 13010 } 13011 13012 // Match (binop (reduce (extract_subvector V, 0), 13013 // (extract_vector_elt V, sizeof(SubVec)))) 13014 // into a reduction of one more element from the original vector V. 13015 if (LHS.getOpcode() != ReduceOpc) 13016 return SDValue(); 13017 13018 SDValue ReduceVec = LHS.getOperand(0); 13019 if (ReduceVec.getOpcode() == ISD::EXTRACT_SUBVECTOR && 13020 ReduceVec.hasOneUse() && ReduceVec.getOperand(0) == RHS.getOperand(0) && 13021 isNullConstant(ReduceVec.getOperand(1)) && 13022 ReduceVec.getValueType().getVectorNumElements() == RHSIdx) { 13023 // For illegal types (e.g. 3xi32), most will be combined again into a 13024 // wider (hopefully legal) type. If this is a terminal state, we are 13025 // relying on type legalization here to produce something reasonable 13026 // and this lowering quality could probably be improved. (TODO) 13027 EVT ReduceVT = EVT::getVectorVT(*DAG.getContext(), VT, RHSIdx + 1); 13028 SDValue Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ReduceVT, SrcVec, 13029 DAG.getVectorIdxConstant(0, DL)); 13030 auto Flags = ReduceVec->getFlags(); 13031 Flags.intersectWith(N->getFlags()); 13032 return DAG.getNode(ReduceOpc, DL, VT, Vec, Flags); 13033 } 13034 13035 return SDValue(); 13036 } 13037 13038 13039 // Try to fold (<bop> x, (reduction.<bop> vec, start)) 13040 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG, 13041 const RISCVSubtarget &Subtarget) { 13042 auto BinOpToRVVReduce = [](unsigned Opc) { 13043 switch (Opc) { 13044 default: 13045 llvm_unreachable("Unhandled binary to transfrom reduction"); 13046 case ISD::ADD: 13047 return RISCVISD::VECREDUCE_ADD_VL; 13048 case ISD::UMAX: 13049 return RISCVISD::VECREDUCE_UMAX_VL; 13050 case ISD::SMAX: 13051 return RISCVISD::VECREDUCE_SMAX_VL; 13052 case ISD::UMIN: 13053 return RISCVISD::VECREDUCE_UMIN_VL; 13054 case ISD::SMIN: 13055 return RISCVISD::VECREDUCE_SMIN_VL; 13056 case ISD::AND: 13057 return RISCVISD::VECREDUCE_AND_VL; 13058 case ISD::OR: 13059 return RISCVISD::VECREDUCE_OR_VL; 13060 case ISD::XOR: 13061 return RISCVISD::VECREDUCE_XOR_VL; 13062 case ISD::FADD: 13063 return RISCVISD::VECREDUCE_FADD_VL; 13064 case ISD::FMAXNUM: 13065 return RISCVISD::VECREDUCE_FMAX_VL; 13066 case ISD::FMINNUM: 13067 return RISCVISD::VECREDUCE_FMIN_VL; 13068 } 13069 }; 13070 13071 auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) { 13072 return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 13073 isNullConstant(V.getOperand(1)) && 13074 V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc); 13075 }; 13076 13077 unsigned Opc = N->getOpcode(); 13078 unsigned ReduceIdx; 13079 if (IsReduction(N->getOperand(0), Opc)) 13080 ReduceIdx = 0; 13081 else if (IsReduction(N->getOperand(1), Opc)) 13082 ReduceIdx = 1; 13083 else 13084 return SDValue(); 13085 13086 // Skip if FADD disallows reassociation but the combiner needs. 13087 if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation()) 13088 return SDValue(); 13089 13090 SDValue Extract = N->getOperand(ReduceIdx); 13091 SDValue Reduce = Extract.getOperand(0); 13092 if (!Extract.hasOneUse() || !Reduce.hasOneUse()) 13093 return SDValue(); 13094 13095 SDValue ScalarV = Reduce.getOperand(2); 13096 EVT ScalarVT = ScalarV.getValueType(); 13097 if (ScalarV.getOpcode() == ISD::INSERT_SUBVECTOR && 13098 ScalarV.getOperand(0)->isUndef() && 13099 isNullConstant(ScalarV.getOperand(2))) 13100 ScalarV = ScalarV.getOperand(1); 13101 13102 // Make sure that ScalarV is a splat with VL=1. 13103 if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL && 13104 ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL && 13105 ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL) 13106 return SDValue(); 13107 13108 if (!isNonZeroAVL(ScalarV.getOperand(2))) 13109 return SDValue(); 13110 13111 // Check the scalar of ScalarV is neutral element 13112 // TODO: Deal with value other than neutral element. 13113 if (!isNeutralConstant(N->getOpcode(), N->getFlags(), ScalarV.getOperand(1), 13114 0)) 13115 return SDValue(); 13116 13117 // If the AVL is zero, operand 0 will be returned. So it's not safe to fold. 13118 // FIXME: We might be able to improve this if operand 0 is undef. 13119 if (!isNonZeroAVL(Reduce.getOperand(5))) 13120 return SDValue(); 13121 13122 SDValue NewStart = N->getOperand(1 - ReduceIdx); 13123 13124 SDLoc DL(N); 13125 SDValue NewScalarV = 13126 lowerScalarInsert(NewStart, ScalarV.getOperand(2), 13127 ScalarV.getSimpleValueType(), DL, DAG, Subtarget); 13128 13129 // If we looked through an INSERT_SUBVECTOR we need to restore it. 13130 if (ScalarVT != ScalarV.getValueType()) 13131 NewScalarV = 13132 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ScalarVT, DAG.getUNDEF(ScalarVT), 13133 NewScalarV, DAG.getVectorIdxConstant(0, DL)); 13134 13135 SDValue Ops[] = {Reduce.getOperand(0), Reduce.getOperand(1), 13136 NewScalarV, Reduce.getOperand(3), 13137 Reduce.getOperand(4), Reduce.getOperand(5)}; 13138 SDValue NewReduce = 13139 DAG.getNode(Reduce.getOpcode(), DL, Reduce.getValueType(), Ops); 13140 return DAG.getNode(Extract.getOpcode(), DL, Extract.getValueType(), NewReduce, 13141 Extract.getOperand(1)); 13142 } 13143 13144 // Optimize (add (shl x, c0), (shl y, c1)) -> 13145 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 13146 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 13147 const RISCVSubtarget &Subtarget) { 13148 // Perform this optimization only in the zba extension. 13149 if (!Subtarget.hasStdExtZba()) 13150 return SDValue(); 13151 13152 // Skip for vector types and larger types. 13153 EVT VT = N->getValueType(0); 13154 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 13155 return SDValue(); 13156 13157 // The two operand nodes must be SHL and have no other use. 13158 SDValue N0 = N->getOperand(0); 13159 SDValue N1 = N->getOperand(1); 13160 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 13161 !N0->hasOneUse() || !N1->hasOneUse()) 13162 return SDValue(); 13163 13164 // Check c0 and c1. 13165 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 13166 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 13167 if (!N0C || !N1C) 13168 return SDValue(); 13169 int64_t C0 = N0C->getSExtValue(); 13170 int64_t C1 = N1C->getSExtValue(); 13171 if (C0 <= 0 || C1 <= 0) 13172 return SDValue(); 13173 13174 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 13175 int64_t Bits = std::min(C0, C1); 13176 int64_t Diff = std::abs(C0 - C1); 13177 if (Diff != 1 && Diff != 2 && Diff != 3) 13178 return SDValue(); 13179 13180 // Build nodes. 13181 SDLoc DL(N); 13182 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 13183 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 13184 SDValue SHADD = DAG.getNode(RISCVISD::SHL_ADD, DL, VT, NL, 13185 DAG.getConstant(Diff, DL, VT), NS); 13186 return DAG.getNode(ISD::SHL, DL, VT, SHADD, DAG.getConstant(Bits, DL, VT)); 13187 } 13188 13189 // Combine a constant select operand into its use: 13190 // 13191 // (and (select cond, -1, c), x) 13192 // -> (select cond, x, (and x, c)) [AllOnes=1] 13193 // (or (select cond, 0, c), x) 13194 // -> (select cond, x, (or x, c)) [AllOnes=0] 13195 // (xor (select cond, 0, c), x) 13196 // -> (select cond, x, (xor x, c)) [AllOnes=0] 13197 // (add (select cond, 0, c), x) 13198 // -> (select cond, x, (add x, c)) [AllOnes=0] 13199 // (sub x, (select cond, 0, c)) 13200 // -> (select cond, x, (sub x, c)) [AllOnes=0] 13201 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 13202 SelectionDAG &DAG, bool AllOnes, 13203 const RISCVSubtarget &Subtarget) { 13204 EVT VT = N->getValueType(0); 13205 13206 // Skip vectors. 13207 if (VT.isVector()) 13208 return SDValue(); 13209 13210 if (!Subtarget.hasConditionalMoveFusion()) { 13211 // (select cond, x, (and x, c)) has custom lowering with Zicond. 13212 if ((!Subtarget.hasStdExtZicond() && 13213 !Subtarget.hasVendorXVentanaCondOps()) || 13214 N->getOpcode() != ISD::AND) 13215 return SDValue(); 13216 13217 // Maybe harmful when condition code has multiple use. 13218 if (Slct.getOpcode() == ISD::SELECT && !Slct.getOperand(0).hasOneUse()) 13219 return SDValue(); 13220 13221 // Maybe harmful when VT is wider than XLen. 13222 if (VT.getSizeInBits() > Subtarget.getXLen()) 13223 return SDValue(); 13224 } 13225 13226 if ((Slct.getOpcode() != ISD::SELECT && 13227 Slct.getOpcode() != RISCVISD::SELECT_CC) || 13228 !Slct.hasOneUse()) 13229 return SDValue(); 13230 13231 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 13232 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 13233 }; 13234 13235 bool SwapSelectOps; 13236 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 13237 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 13238 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 13239 SDValue NonConstantVal; 13240 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 13241 SwapSelectOps = false; 13242 NonConstantVal = FalseVal; 13243 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 13244 SwapSelectOps = true; 13245 NonConstantVal = TrueVal; 13246 } else 13247 return SDValue(); 13248 13249 // Slct is now know to be the desired identity constant when CC is true. 13250 TrueVal = OtherOp; 13251 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 13252 // Unless SwapSelectOps says the condition should be false. 13253 if (SwapSelectOps) 13254 std::swap(TrueVal, FalseVal); 13255 13256 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 13257 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 13258 {Slct.getOperand(0), Slct.getOperand(1), 13259 Slct.getOperand(2), TrueVal, FalseVal}); 13260 13261 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 13262 {Slct.getOperand(0), TrueVal, FalseVal}); 13263 } 13264 13265 // Attempt combineSelectAndUse on each operand of a commutative operator N. 13266 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 13267 bool AllOnes, 13268 const RISCVSubtarget &Subtarget) { 13269 SDValue N0 = N->getOperand(0); 13270 SDValue N1 = N->getOperand(1); 13271 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes, Subtarget)) 13272 return Result; 13273 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes, Subtarget)) 13274 return Result; 13275 return SDValue(); 13276 } 13277 13278 // Transform (add (mul x, c0), c1) -> 13279 // (add (mul (add x, c1/c0), c0), c1%c0). 13280 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 13281 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 13282 // to an infinite loop in DAGCombine if transformed. 13283 // Or transform (add (mul x, c0), c1) -> 13284 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 13285 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 13286 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 13287 // lead to an infinite loop in DAGCombine if transformed. 13288 // Or transform (add (mul x, c0), c1) -> 13289 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 13290 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 13291 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 13292 // lead to an infinite loop in DAGCombine if transformed. 13293 // Or transform (add (mul x, c0), c1) -> 13294 // (mul (add x, c1/c0), c0). 13295 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 13296 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 13297 const RISCVSubtarget &Subtarget) { 13298 // Skip for vector types and larger types. 13299 EVT VT = N->getValueType(0); 13300 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 13301 return SDValue(); 13302 // The first operand node must be a MUL and has no other use. 13303 SDValue N0 = N->getOperand(0); 13304 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 13305 return SDValue(); 13306 // Check if c0 and c1 match above conditions. 13307 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 13308 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 13309 if (!N0C || !N1C) 13310 return SDValue(); 13311 // If N0C has multiple uses it's possible one of the cases in 13312 // DAGCombiner::isMulAddWithConstProfitable will be true, which would result 13313 // in an infinite loop. 13314 if (!N0C->hasOneUse()) 13315 return SDValue(); 13316 int64_t C0 = N0C->getSExtValue(); 13317 int64_t C1 = N1C->getSExtValue(); 13318 int64_t CA, CB; 13319 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 13320 return SDValue(); 13321 // Search for proper CA (non-zero) and CB that both are simm12. 13322 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 13323 !isInt<12>(C0 * (C1 / C0))) { 13324 CA = C1 / C0; 13325 CB = C1 % C0; 13326 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 13327 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 13328 CA = C1 / C0 + 1; 13329 CB = C1 % C0 - C0; 13330 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 13331 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 13332 CA = C1 / C0 - 1; 13333 CB = C1 % C0 + C0; 13334 } else 13335 return SDValue(); 13336 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 13337 SDLoc DL(N); 13338 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 13339 DAG.getConstant(CA, DL, VT)); 13340 SDValue New1 = 13341 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 13342 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 13343 } 13344 13345 // add (zext, zext) -> zext (add (zext, zext)) 13346 // sub (zext, zext) -> sext (sub (zext, zext)) 13347 // mul (zext, zext) -> zext (mul (zext, zext)) 13348 // sdiv (zext, zext) -> zext (sdiv (zext, zext)) 13349 // udiv (zext, zext) -> zext (udiv (zext, zext)) 13350 // srem (zext, zext) -> zext (srem (zext, zext)) 13351 // urem (zext, zext) -> zext (urem (zext, zext)) 13352 // 13353 // where the sum of the extend widths match, and the the range of the bin op 13354 // fits inside the width of the narrower bin op. (For profitability on rvv, we 13355 // use a power of two for both inner and outer extend.) 13356 static SDValue combineBinOpOfZExt(SDNode *N, SelectionDAG &DAG) { 13357 13358 EVT VT = N->getValueType(0); 13359 if (!VT.isVector() || !DAG.getTargetLoweringInfo().isTypeLegal(VT)) 13360 return SDValue(); 13361 13362 SDValue N0 = N->getOperand(0); 13363 SDValue N1 = N->getOperand(1); 13364 if (N0.getOpcode() != ISD::ZERO_EXTEND || N1.getOpcode() != ISD::ZERO_EXTEND) 13365 return SDValue(); 13366 if (!N0.hasOneUse() || !N1.hasOneUse()) 13367 return SDValue(); 13368 13369 SDValue Src0 = N0.getOperand(0); 13370 SDValue Src1 = N1.getOperand(0); 13371 EVT SrcVT = Src0.getValueType(); 13372 if (!DAG.getTargetLoweringInfo().isTypeLegal(SrcVT) || 13373 SrcVT != Src1.getValueType() || SrcVT.getScalarSizeInBits() < 8 || 13374 SrcVT.getScalarSizeInBits() >= VT.getScalarSizeInBits() / 2) 13375 return SDValue(); 13376 13377 LLVMContext &C = *DAG.getContext(); 13378 EVT ElemVT = VT.getVectorElementType().getHalfSizedIntegerVT(C); 13379 EVT NarrowVT = EVT::getVectorVT(C, ElemVT, VT.getVectorElementCount()); 13380 13381 Src0 = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Src0), NarrowVT, Src0); 13382 Src1 = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Src1), NarrowVT, Src1); 13383 13384 // Src0 and Src1 are zero extended, so they're always positive if signed. 13385 // 13386 // sub can produce a negative from two positive operands, so it needs sign 13387 // extended. Other nodes produce a positive from two positive operands, so 13388 // zero extend instead. 13389 unsigned OuterExtend = 13390 N->getOpcode() == ISD::SUB ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 13391 13392 return DAG.getNode( 13393 OuterExtend, SDLoc(N), VT, 13394 DAG.getNode(N->getOpcode(), SDLoc(N), NarrowVT, Src0, Src1)); 13395 } 13396 13397 // Try to turn (add (xor bool, 1) -1) into (neg bool). 13398 static SDValue combineAddOfBooleanXor(SDNode *N, SelectionDAG &DAG) { 13399 SDValue N0 = N->getOperand(0); 13400 SDValue N1 = N->getOperand(1); 13401 EVT VT = N->getValueType(0); 13402 SDLoc DL(N); 13403 13404 // RHS should be -1. 13405 if (!isAllOnesConstant(N1)) 13406 return SDValue(); 13407 13408 // Look for (xor X, 1). 13409 if (N0.getOpcode() != ISD::XOR || !isOneConstant(N0.getOperand(1))) 13410 return SDValue(); 13411 13412 // First xor input should be 0 or 1. 13413 APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1); 13414 if (!DAG.MaskedValueIsZero(N0.getOperand(0), Mask)) 13415 return SDValue(); 13416 13417 // Emit a negate of the setcc. 13418 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 13419 N0.getOperand(0)); 13420 } 13421 13422 static SDValue performADDCombine(SDNode *N, 13423 TargetLowering::DAGCombinerInfo &DCI, 13424 const RISCVSubtarget &Subtarget) { 13425 SelectionDAG &DAG = DCI.DAG; 13426 if (SDValue V = combineAddOfBooleanXor(N, DAG)) 13427 return V; 13428 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 13429 return V; 13430 if (!DCI.isBeforeLegalize() && !DCI.isCalledByLegalizer()) 13431 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 13432 return V; 13433 if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget)) 13434 return V; 13435 if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget)) 13436 return V; 13437 if (SDValue V = combineBinOpOfZExt(N, DAG)) 13438 return V; 13439 13440 // fold (add (select lhs, rhs, cc, 0, y), x) -> 13441 // (select lhs, rhs, cc, x, (add x, y)) 13442 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget); 13443 } 13444 13445 // Try to turn a sub boolean RHS and constant LHS into an addi. 13446 static SDValue combineSubOfBoolean(SDNode *N, SelectionDAG &DAG) { 13447 SDValue N0 = N->getOperand(0); 13448 SDValue N1 = N->getOperand(1); 13449 EVT VT = N->getValueType(0); 13450 SDLoc DL(N); 13451 13452 // Require a constant LHS. 13453 auto *N0C = dyn_cast<ConstantSDNode>(N0); 13454 if (!N0C) 13455 return SDValue(); 13456 13457 // All our optimizations involve subtracting 1 from the immediate and forming 13458 // an ADDI. Make sure the new immediate is valid for an ADDI. 13459 APInt ImmValMinus1 = N0C->getAPIntValue() - 1; 13460 if (!ImmValMinus1.isSignedIntN(12)) 13461 return SDValue(); 13462 13463 SDValue NewLHS; 13464 if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse()) { 13465 // (sub constant, (setcc x, y, eq/neq)) -> 13466 // (add (setcc x, y, neq/eq), constant - 1) 13467 ISD::CondCode CCVal = cast<CondCodeSDNode>(N1.getOperand(2))->get(); 13468 EVT SetCCOpVT = N1.getOperand(0).getValueType(); 13469 if (!isIntEqualitySetCC(CCVal) || !SetCCOpVT.isInteger()) 13470 return SDValue(); 13471 CCVal = ISD::getSetCCInverse(CCVal, SetCCOpVT); 13472 NewLHS = 13473 DAG.getSetCC(SDLoc(N1), VT, N1.getOperand(0), N1.getOperand(1), CCVal); 13474 } else if (N1.getOpcode() == ISD::XOR && isOneConstant(N1.getOperand(1)) && 13475 N1.getOperand(0).getOpcode() == ISD::SETCC) { 13476 // (sub C, (xor (setcc), 1)) -> (add (setcc), C-1). 13477 // Since setcc returns a bool the xor is equivalent to 1-setcc. 13478 NewLHS = N1.getOperand(0); 13479 } else 13480 return SDValue(); 13481 13482 SDValue NewRHS = DAG.getConstant(ImmValMinus1, DL, VT); 13483 return DAG.getNode(ISD::ADD, DL, VT, NewLHS, NewRHS); 13484 } 13485 13486 // Looks for (sub (shl X, 8), X) where only bits 8, 16, 24, 32, etc. of X are 13487 // non-zero. Replace with orc.b. 13488 static SDValue combineSubShiftToOrcB(SDNode *N, SelectionDAG &DAG, 13489 const RISCVSubtarget &Subtarget) { 13490 if (!Subtarget.hasStdExtZbb()) 13491 return SDValue(); 13492 13493 EVT VT = N->getValueType(0); 13494 13495 if (VT != Subtarget.getXLenVT() && VT != MVT::i32 && VT != MVT::i16) 13496 return SDValue(); 13497 13498 SDValue N0 = N->getOperand(0); 13499 SDValue N1 = N->getOperand(1); 13500 13501 if (N0.getOpcode() != ISD::SHL || N0.getOperand(0) != N1 || !N0.hasOneUse()) 13502 return SDValue(); 13503 13504 auto *ShAmtC = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 13505 if (!ShAmtC || ShAmtC->getZExtValue() != 8) 13506 return SDValue(); 13507 13508 APInt Mask = APInt::getSplat(VT.getSizeInBits(), APInt(8, 0xfe)); 13509 if (!DAG.MaskedValueIsZero(N1, Mask)) 13510 return SDValue(); 13511 13512 return DAG.getNode(RISCVISD::ORC_B, SDLoc(N), VT, N1); 13513 } 13514 13515 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG, 13516 const RISCVSubtarget &Subtarget) { 13517 if (SDValue V = combineSubOfBoolean(N, DAG)) 13518 return V; 13519 13520 EVT VT = N->getValueType(0); 13521 SDValue N0 = N->getOperand(0); 13522 SDValue N1 = N->getOperand(1); 13523 // fold (sub 0, (setcc x, 0, setlt)) -> (sra x, xlen - 1) 13524 if (isNullConstant(N0) && N1.getOpcode() == ISD::SETCC && N1.hasOneUse() && 13525 isNullConstant(N1.getOperand(1))) { 13526 ISD::CondCode CCVal = cast<CondCodeSDNode>(N1.getOperand(2))->get(); 13527 if (CCVal == ISD::SETLT) { 13528 SDLoc DL(N); 13529 unsigned ShAmt = N0.getValueSizeInBits() - 1; 13530 return DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), 13531 DAG.getConstant(ShAmt, DL, VT)); 13532 } 13533 } 13534 13535 if (SDValue V = combineBinOpOfZExt(N, DAG)) 13536 return V; 13537 if (SDValue V = combineSubShiftToOrcB(N, DAG, Subtarget)) 13538 return V; 13539 13540 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 13541 // (select lhs, rhs, cc, x, (sub x, y)) 13542 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false, Subtarget); 13543 } 13544 13545 // Apply DeMorgan's law to (and/or (xor X, 1), (xor Y, 1)) if X and Y are 0/1. 13546 // Legalizing setcc can introduce xors like this. Doing this transform reduces 13547 // the number of xors and may allow the xor to fold into a branch condition. 13548 static SDValue combineDeMorganOfBoolean(SDNode *N, SelectionDAG &DAG) { 13549 SDValue N0 = N->getOperand(0); 13550 SDValue N1 = N->getOperand(1); 13551 bool IsAnd = N->getOpcode() == ISD::AND; 13552 13553 if (N0.getOpcode() != ISD::XOR || N1.getOpcode() != ISD::XOR) 13554 return SDValue(); 13555 13556 if (!N0.hasOneUse() || !N1.hasOneUse()) 13557 return SDValue(); 13558 13559 SDValue N01 = N0.getOperand(1); 13560 SDValue N11 = N1.getOperand(1); 13561 13562 // For AND, SimplifyDemandedBits may have turned one of the (xor X, 1) into 13563 // (xor X, -1) based on the upper bits of the other operand being 0. If the 13564 // operation is And, allow one of the Xors to use -1. 13565 if (isOneConstant(N01)) { 13566 if (!isOneConstant(N11) && !(IsAnd && isAllOnesConstant(N11))) 13567 return SDValue(); 13568 } else if (isOneConstant(N11)) { 13569 // N01 and N11 being 1 was already handled. Handle N11==1 and N01==-1. 13570 if (!(IsAnd && isAllOnesConstant(N01))) 13571 return SDValue(); 13572 } else 13573 return SDValue(); 13574 13575 EVT VT = N->getValueType(0); 13576 13577 SDValue N00 = N0.getOperand(0); 13578 SDValue N10 = N1.getOperand(0); 13579 13580 // The LHS of the xors needs to be 0/1. 13581 APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1); 13582 if (!DAG.MaskedValueIsZero(N00, Mask) || !DAG.MaskedValueIsZero(N10, Mask)) 13583 return SDValue(); 13584 13585 // Invert the opcode and insert a new xor. 13586 SDLoc DL(N); 13587 unsigned Opc = IsAnd ? ISD::OR : ISD::AND; 13588 SDValue Logic = DAG.getNode(Opc, DL, VT, N00, N10); 13589 return DAG.getNode(ISD::XOR, DL, VT, Logic, DAG.getConstant(1, DL, VT)); 13590 } 13591 13592 // Fold (vXi8 (trunc (vselect (setltu, X, 256), X, (sext (setgt X, 0))))) to 13593 // (vXi8 (trunc (smin (smax X, 0), 255))). This represents saturating a signed 13594 // value to an unsigned value. This will be lowered to vmax and series of 13595 // vnclipu instructions later. This can be extended to other truncated types 13596 // other than i8 by replacing 256 and 255 with the equivalent constants for the 13597 // type. 13598 static SDValue combineTruncSelectToSMaxUSat(SDNode *N, SelectionDAG &DAG) { 13599 EVT VT = N->getValueType(0); 13600 SDValue N0 = N->getOperand(0); 13601 EVT SrcVT = N0.getValueType(); 13602 13603 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 13604 if (!VT.isVector() || !TLI.isTypeLegal(VT) || !TLI.isTypeLegal(SrcVT)) 13605 return SDValue(); 13606 13607 if (N0.getOpcode() != ISD::VSELECT || !N0.hasOneUse()) 13608 return SDValue(); 13609 13610 SDValue Cond = N0.getOperand(0); 13611 SDValue True = N0.getOperand(1); 13612 SDValue False = N0.getOperand(2); 13613 13614 if (Cond.getOpcode() != ISD::SETCC) 13615 return SDValue(); 13616 13617 // FIXME: Support the version of this pattern with the select operands 13618 // swapped. 13619 ISD::CondCode CCVal = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 13620 if (CCVal != ISD::SETULT) 13621 return SDValue(); 13622 13623 SDValue CondLHS = Cond.getOperand(0); 13624 SDValue CondRHS = Cond.getOperand(1); 13625 13626 if (CondLHS != True) 13627 return SDValue(); 13628 13629 unsigned ScalarBits = VT.getScalarSizeInBits(); 13630 13631 // FIXME: Support other constants. 13632 ConstantSDNode *CondRHSC = isConstOrConstSplat(CondRHS); 13633 if (!CondRHSC || CondRHSC->getAPIntValue() != (1ULL << ScalarBits)) 13634 return SDValue(); 13635 13636 if (False.getOpcode() != ISD::SIGN_EXTEND) 13637 return SDValue(); 13638 13639 False = False.getOperand(0); 13640 13641 if (False.getOpcode() != ISD::SETCC || False.getOperand(0) != True) 13642 return SDValue(); 13643 13644 ConstantSDNode *FalseRHSC = isConstOrConstSplat(False.getOperand(1)); 13645 if (!FalseRHSC || !FalseRHSC->isZero()) 13646 return SDValue(); 13647 13648 ISD::CondCode CCVal2 = cast<CondCodeSDNode>(False.getOperand(2))->get(); 13649 if (CCVal2 != ISD::SETGT) 13650 return SDValue(); 13651 13652 // Emit the signed to unsigned saturation pattern. 13653 SDLoc DL(N); 13654 SDValue Max = 13655 DAG.getNode(ISD::SMAX, DL, SrcVT, True, DAG.getConstant(0, DL, SrcVT)); 13656 SDValue Min = 13657 DAG.getNode(ISD::SMIN, DL, SrcVT, Max, 13658 DAG.getConstant((1ULL << ScalarBits) - 1, DL, SrcVT)); 13659 return DAG.getNode(ISD::TRUNCATE, DL, VT, Min); 13660 } 13661 13662 static SDValue performTRUNCATECombine(SDNode *N, SelectionDAG &DAG, 13663 const RISCVSubtarget &Subtarget) { 13664 SDValue N0 = N->getOperand(0); 13665 EVT VT = N->getValueType(0); 13666 13667 // Pre-promote (i1 (truncate (srl X, Y))) on RV64 with Zbs without zero 13668 // extending X. This is safe since we only need the LSB after the shift and 13669 // shift amounts larger than 31 would produce poison. If we wait until 13670 // type legalization, we'll create RISCVISD::SRLW and we can't recover it 13671 // to use a BEXT instruction. 13672 if (!RV64LegalI32 && Subtarget.is64Bit() && Subtarget.hasStdExtZbs() && VT == MVT::i1 && 13673 N0.getValueType() == MVT::i32 && N0.getOpcode() == ISD::SRL && 13674 !isa<ConstantSDNode>(N0.getOperand(1)) && N0.hasOneUse()) { 13675 SDLoc DL(N0); 13676 SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0)); 13677 SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1)); 13678 SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1); 13679 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Srl); 13680 } 13681 13682 return combineTruncSelectToSMaxUSat(N, DAG); 13683 } 13684 13685 // Combines two comparison operation and logic operation to one selection 13686 // operation(min, max) and logic operation. Returns new constructed Node if 13687 // conditions for optimization are satisfied. 13688 static SDValue performANDCombine(SDNode *N, 13689 TargetLowering::DAGCombinerInfo &DCI, 13690 const RISCVSubtarget &Subtarget) { 13691 SelectionDAG &DAG = DCI.DAG; 13692 13693 SDValue N0 = N->getOperand(0); 13694 // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero 13695 // extending X. This is safe since we only need the LSB after the shift and 13696 // shift amounts larger than 31 would produce poison. If we wait until 13697 // type legalization, we'll create RISCVISD::SRLW and we can't recover it 13698 // to use a BEXT instruction. 13699 if (!RV64LegalI32 && Subtarget.is64Bit() && Subtarget.hasStdExtZbs() && 13700 N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) && 13701 N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) && 13702 N0.hasOneUse()) { 13703 SDLoc DL(N); 13704 SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0)); 13705 SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1)); 13706 SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1); 13707 SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl, 13708 DAG.getConstant(1, DL, MVT::i64)); 13709 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And); 13710 } 13711 13712 if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget)) 13713 return V; 13714 if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget)) 13715 return V; 13716 13717 if (DCI.isAfterLegalizeDAG()) 13718 if (SDValue V = combineDeMorganOfBoolean(N, DAG)) 13719 return V; 13720 13721 // fold (and (select lhs, rhs, cc, -1, y), x) -> 13722 // (select lhs, rhs, cc, x, (and x, y)) 13723 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true, Subtarget); 13724 } 13725 13726 // Try to pull an xor with 1 through a select idiom that uses czero_eqz/nez. 13727 // FIXME: Generalize to other binary operators with same operand. 13728 static SDValue combineOrOfCZERO(SDNode *N, SDValue N0, SDValue N1, 13729 SelectionDAG &DAG) { 13730 assert(N->getOpcode() == ISD::OR && "Unexpected opcode"); 13731 13732 if (N0.getOpcode() != RISCVISD::CZERO_EQZ || 13733 N1.getOpcode() != RISCVISD::CZERO_NEZ || 13734 !N0.hasOneUse() || !N1.hasOneUse()) 13735 return SDValue(); 13736 13737 // Should have the same condition. 13738 SDValue Cond = N0.getOperand(1); 13739 if (Cond != N1.getOperand(1)) 13740 return SDValue(); 13741 13742 SDValue TrueV = N0.getOperand(0); 13743 SDValue FalseV = N1.getOperand(0); 13744 13745 if (TrueV.getOpcode() != ISD::XOR || FalseV.getOpcode() != ISD::XOR || 13746 TrueV.getOperand(1) != FalseV.getOperand(1) || 13747 !isOneConstant(TrueV.getOperand(1)) || 13748 !TrueV.hasOneUse() || !FalseV.hasOneUse()) 13749 return SDValue(); 13750 13751 EVT VT = N->getValueType(0); 13752 SDLoc DL(N); 13753 13754 SDValue NewN0 = DAG.getNode(RISCVISD::CZERO_EQZ, DL, VT, TrueV.getOperand(0), 13755 Cond); 13756 SDValue NewN1 = DAG.getNode(RISCVISD::CZERO_NEZ, DL, VT, FalseV.getOperand(0), 13757 Cond); 13758 SDValue NewOr = DAG.getNode(ISD::OR, DL, VT, NewN0, NewN1); 13759 return DAG.getNode(ISD::XOR, DL, VT, NewOr, TrueV.getOperand(1)); 13760 } 13761 13762 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 13763 const RISCVSubtarget &Subtarget) { 13764 SelectionDAG &DAG = DCI.DAG; 13765 13766 if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget)) 13767 return V; 13768 if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget)) 13769 return V; 13770 13771 if (DCI.isAfterLegalizeDAG()) 13772 if (SDValue V = combineDeMorganOfBoolean(N, DAG)) 13773 return V; 13774 13775 // Look for Or of CZERO_EQZ/NEZ with same condition which is the select idiom. 13776 // We may be able to pull a common operation out of the true and false value. 13777 SDValue N0 = N->getOperand(0); 13778 SDValue N1 = N->getOperand(1); 13779 if (SDValue V = combineOrOfCZERO(N, N0, N1, DAG)) 13780 return V; 13781 if (SDValue V = combineOrOfCZERO(N, N1, N0, DAG)) 13782 return V; 13783 13784 // fold (or (select cond, 0, y), x) -> 13785 // (select cond, x, (or x, y)) 13786 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget); 13787 } 13788 13789 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG, 13790 const RISCVSubtarget &Subtarget) { 13791 SDValue N0 = N->getOperand(0); 13792 SDValue N1 = N->getOperand(1); 13793 13794 // Pre-promote (i32 (xor (shl -1, X), ~0)) on RV64 with Zbs so we can use 13795 // (ADDI (BSET X0, X), -1). If we wait until/ type legalization, we'll create 13796 // RISCVISD:::SLLW and we can't recover it to use a BSET instruction. 13797 if (!RV64LegalI32 && Subtarget.is64Bit() && Subtarget.hasStdExtZbs() && 13798 N->getValueType(0) == MVT::i32 && isAllOnesConstant(N1) && 13799 N0.getOpcode() == ISD::SHL && isAllOnesConstant(N0.getOperand(0)) && 13800 !isa<ConstantSDNode>(N0.getOperand(1)) && N0.hasOneUse()) { 13801 SDLoc DL(N); 13802 SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0)); 13803 SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1)); 13804 SDValue Shl = DAG.getNode(ISD::SHL, DL, MVT::i64, Op0, Op1); 13805 SDValue And = DAG.getNOT(DL, Shl, MVT::i64); 13806 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And); 13807 } 13808 13809 // fold (xor (sllw 1, x), -1) -> (rolw ~1, x) 13810 // NOTE: Assumes ROL being legal means ROLW is legal. 13811 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 13812 if (N0.getOpcode() == RISCVISD::SLLW && 13813 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) && 13814 TLI.isOperationLegal(ISD::ROTL, MVT::i64)) { 13815 SDLoc DL(N); 13816 return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64, 13817 DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1)); 13818 } 13819 13820 // Fold (xor (setcc constant, y, setlt), 1) -> (setcc y, constant + 1, setlt) 13821 if (N0.getOpcode() == ISD::SETCC && isOneConstant(N1) && N0.hasOneUse()) { 13822 auto *ConstN00 = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 13823 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 13824 if (ConstN00 && CC == ISD::SETLT) { 13825 EVT VT = N0.getValueType(); 13826 SDLoc DL(N0); 13827 const APInt &Imm = ConstN00->getAPIntValue(); 13828 if ((Imm + 1).isSignedIntN(12)) 13829 return DAG.getSetCC(DL, VT, N0.getOperand(1), 13830 DAG.getConstant(Imm + 1, DL, VT), CC); 13831 } 13832 } 13833 13834 // Combine (xor (trunc (X cc Y)) 1) -> (trunc (X !cc Y)). This is needed with 13835 // RV64LegalI32 when the setcc is created after type legalization. An i1 xor 13836 // would have been promoted to i32, but the setcc would have i64 result. 13837 if (N->getValueType(0) == MVT::i32 && N0.getOpcode() == ISD::TRUNCATE && 13838 isOneConstant(N1) && N0.getOperand(0).getOpcode() == ISD::SETCC) { 13839 SDValue N00 = N0.getOperand(0); 13840 SDLoc DL(N); 13841 SDValue LHS = N00.getOperand(0); 13842 SDValue RHS = N00.getOperand(1); 13843 SDValue CC = N00.getOperand(2); 13844 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 13845 LHS.getValueType()); 13846 SDValue Setcc = DAG.getSetCC(SDLoc(N00), N0.getOperand(0).getValueType(), 13847 LHS, RHS, NotCC); 13848 return DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N->getValueType(0), Setcc); 13849 } 13850 13851 if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget)) 13852 return V; 13853 if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget)) 13854 return V; 13855 13856 // fold (xor (select cond, 0, y), x) -> 13857 // (select cond, x, (xor x, y)) 13858 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget); 13859 } 13860 13861 // Try to expand a scalar multiply to a faster sequence. 13862 static SDValue expandMul(SDNode *N, SelectionDAG &DAG, 13863 TargetLowering::DAGCombinerInfo &DCI, 13864 const RISCVSubtarget &Subtarget) { 13865 13866 EVT VT = N->getValueType(0); 13867 13868 // LI + MUL is usually smaller than the alternative sequence. 13869 if (DAG.getMachineFunction().getFunction().hasMinSize()) 13870 return SDValue(); 13871 13872 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 13873 return SDValue(); 13874 13875 if (VT != Subtarget.getXLenVT()) 13876 return SDValue(); 13877 13878 const bool HasShlAdd = 13879 Subtarget.hasStdExtZba() || Subtarget.hasVendorXTHeadBa(); 13880 13881 ConstantSDNode *CNode = dyn_cast<ConstantSDNode>(N->getOperand(1)); 13882 if (!CNode) 13883 return SDValue(); 13884 uint64_t MulAmt = CNode->getZExtValue(); 13885 13886 // WARNING: The code below is knowingly incorrect with regards to undef semantics. 13887 // We're adding additional uses of X here, and in principle, we should be freezing 13888 // X before doing so. However, adding freeze here causes real regressions, and no 13889 // other target properly freezes X in these cases either. 13890 SDValue X = N->getOperand(0); 13891 13892 if (HasShlAdd) { 13893 for (uint64_t Divisor : {3, 5, 9}) { 13894 if (MulAmt % Divisor != 0) 13895 continue; 13896 uint64_t MulAmt2 = MulAmt / Divisor; 13897 // 3/5/9 * 2^N -> shl (shXadd X, X), N 13898 if (isPowerOf2_64(MulAmt2)) { 13899 SDLoc DL(N); 13900 SDValue X = N->getOperand(0); 13901 // Put the shift first if we can fold a zext into the 13902 // shift forming a slli.uw. 13903 if (X.getOpcode() == ISD::AND && isa<ConstantSDNode>(X.getOperand(1)) && 13904 X.getConstantOperandVal(1) == UINT64_C(0xffffffff)) { 13905 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, X, 13906 DAG.getConstant(Log2_64(MulAmt2), DL, VT)); 13907 return DAG.getNode(RISCVISD::SHL_ADD, DL, VT, Shl, 13908 DAG.getConstant(Log2_64(Divisor - 1), DL, VT), 13909 Shl); 13910 } 13911 // Otherwise, put rhe shl second so that it can fold with following 13912 // instructions (e.g. sext or add). 13913 SDValue Mul359 = 13914 DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X, 13915 DAG.getConstant(Log2_64(Divisor - 1), DL, VT), X); 13916 return DAG.getNode(ISD::SHL, DL, VT, Mul359, 13917 DAG.getConstant(Log2_64(MulAmt2), DL, VT)); 13918 } 13919 13920 // 3/5/9 * 3/5/9 -> shXadd (shYadd X, X), (shYadd X, X) 13921 if (MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9) { 13922 SDLoc DL(N); 13923 SDValue Mul359 = 13924 DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X, 13925 DAG.getConstant(Log2_64(Divisor - 1), DL, VT), X); 13926 return DAG.getNode(RISCVISD::SHL_ADD, DL, VT, Mul359, 13927 DAG.getConstant(Log2_64(MulAmt2 - 1), DL, VT), 13928 Mul359); 13929 } 13930 } 13931 13932 // If this is a power 2 + 2/4/8, we can use a shift followed by a single 13933 // shXadd. First check if this a sum of two power of 2s because that's 13934 // easy. Then count how many zeros are up to the first bit. 13935 if (isPowerOf2_64(MulAmt & (MulAmt - 1))) { 13936 unsigned ScaleShift = llvm::countr_zero(MulAmt); 13937 if (ScaleShift >= 1 && ScaleShift < 4) { 13938 unsigned ShiftAmt = Log2_64((MulAmt & (MulAmt - 1))); 13939 SDLoc DL(N); 13940 SDValue Shift1 = 13941 DAG.getNode(ISD::SHL, DL, VT, X, DAG.getConstant(ShiftAmt, DL, VT)); 13942 return DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X, 13943 DAG.getConstant(ScaleShift, DL, VT), Shift1); 13944 } 13945 } 13946 13947 // 2^(1,2,3) * 3,5,9 + 1 -> (shXadd (shYadd x, x), x) 13948 // This is the two instruction form, there are also three instruction 13949 // variants we could implement. e.g. 13950 // (2^(1,2,3) * 3,5,9 + 1) << C2 13951 // 2^(C1>3) * 3,5,9 +/- 1 13952 for (uint64_t Divisor : {3, 5, 9}) { 13953 uint64_t C = MulAmt - 1; 13954 if (C <= Divisor) 13955 continue; 13956 unsigned TZ = llvm::countr_zero(C); 13957 if ((C >> TZ) == Divisor && (TZ == 1 || TZ == 2 || TZ == 3)) { 13958 SDLoc DL(N); 13959 SDValue Mul359 = 13960 DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X, 13961 DAG.getConstant(Log2_64(Divisor - 1), DL, VT), X); 13962 return DAG.getNode(RISCVISD::SHL_ADD, DL, VT, Mul359, 13963 DAG.getConstant(TZ, DL, VT), X); 13964 } 13965 } 13966 13967 // 2^n + 2/4/8 + 1 -> (add (shl X, C1), (shXadd X, X)) 13968 if (MulAmt > 2 && isPowerOf2_64((MulAmt - 1) & (MulAmt - 2))) { 13969 unsigned ScaleShift = llvm::countr_zero(MulAmt - 1); 13970 if (ScaleShift >= 1 && ScaleShift < 4) { 13971 unsigned ShiftAmt = Log2_64(((MulAmt - 1) & (MulAmt - 2))); 13972 SDLoc DL(N); 13973 SDValue Shift1 = 13974 DAG.getNode(ISD::SHL, DL, VT, X, DAG.getConstant(ShiftAmt, DL, VT)); 13975 return DAG.getNode(ISD::ADD, DL, VT, Shift1, 13976 DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X, 13977 DAG.getConstant(ScaleShift, DL, VT), X)); 13978 } 13979 } 13980 13981 // 2^N - 3/5/9 --> (sub (shl X, C1), (shXadd X, x)) 13982 for (uint64_t Offset : {3, 5, 9}) { 13983 if (isPowerOf2_64(MulAmt + Offset)) { 13984 SDLoc DL(N); 13985 SDValue Shift1 = 13986 DAG.getNode(ISD::SHL, DL, VT, X, 13987 DAG.getConstant(Log2_64(MulAmt + Offset), DL, VT)); 13988 SDValue Mul359 = 13989 DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X, 13990 DAG.getConstant(Log2_64(Offset - 1), DL, VT), X); 13991 return DAG.getNode(ISD::SUB, DL, VT, Shift1, Mul359); 13992 } 13993 } 13994 } 13995 13996 // 2^N - 2^M -> (sub (shl X, C1), (shl X, C2)) 13997 uint64_t MulAmtLowBit = MulAmt & (-MulAmt); 13998 if (isPowerOf2_64(MulAmt + MulAmtLowBit)) { 13999 uint64_t ShiftAmt1 = MulAmt + MulAmtLowBit; 14000 SDLoc DL(N); 14001 SDValue Shift1 = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 14002 DAG.getConstant(Log2_64(ShiftAmt1), DL, VT)); 14003 SDValue Shift2 = 14004 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 14005 DAG.getConstant(Log2_64(MulAmtLowBit), DL, VT)); 14006 return DAG.getNode(ISD::SUB, DL, VT, Shift1, Shift2); 14007 } 14008 14009 return SDValue(); 14010 } 14011 14012 // Combine vXi32 (mul (and (lshr X, 15), 0x10001), 0xffff) -> 14013 // (bitcast (sra (v2Xi16 (bitcast X)), 15)) 14014 // Same for other equivalent types with other equivalent constants. 14015 static SDValue combineVectorMulToSraBitcast(SDNode *N, SelectionDAG &DAG) { 14016 EVT VT = N->getValueType(0); 14017 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 14018 14019 // Do this for legal vectors unless they are i1 or i8 vectors. 14020 if (!VT.isVector() || !TLI.isTypeLegal(VT) || VT.getScalarSizeInBits() < 16) 14021 return SDValue(); 14022 14023 if (N->getOperand(0).getOpcode() != ISD::AND || 14024 N->getOperand(0).getOperand(0).getOpcode() != ISD::SRL) 14025 return SDValue(); 14026 14027 SDValue And = N->getOperand(0); 14028 SDValue Srl = And.getOperand(0); 14029 14030 APInt V1, V2, V3; 14031 if (!ISD::isConstantSplatVector(N->getOperand(1).getNode(), V1) || 14032 !ISD::isConstantSplatVector(And.getOperand(1).getNode(), V2) || 14033 !ISD::isConstantSplatVector(Srl.getOperand(1).getNode(), V3)) 14034 return SDValue(); 14035 14036 unsigned HalfSize = VT.getScalarSizeInBits() / 2; 14037 if (!V1.isMask(HalfSize) || V2 != (1ULL | 1ULL << HalfSize) || 14038 V3 != (HalfSize - 1)) 14039 return SDValue(); 14040 14041 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), 14042 EVT::getIntegerVT(*DAG.getContext(), HalfSize), 14043 VT.getVectorElementCount() * 2); 14044 SDLoc DL(N); 14045 SDValue Cast = DAG.getNode(ISD::BITCAST, DL, HalfVT, Srl.getOperand(0)); 14046 SDValue Sra = DAG.getNode(ISD::SRA, DL, HalfVT, Cast, 14047 DAG.getConstant(HalfSize - 1, DL, HalfVT)); 14048 return DAG.getNode(ISD::BITCAST, DL, VT, Sra); 14049 } 14050 14051 static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG, 14052 TargetLowering::DAGCombinerInfo &DCI, 14053 const RISCVSubtarget &Subtarget) { 14054 EVT VT = N->getValueType(0); 14055 if (!VT.isVector()) 14056 return expandMul(N, DAG, DCI, Subtarget); 14057 14058 SDLoc DL(N); 14059 SDValue N0 = N->getOperand(0); 14060 SDValue N1 = N->getOperand(1); 14061 SDValue MulOper; 14062 unsigned AddSubOpc; 14063 14064 // vmadd: (mul (add x, 1), y) -> (add (mul x, y), y) 14065 // (mul x, add (y, 1)) -> (add x, (mul x, y)) 14066 // vnmsub: (mul (sub 1, x), y) -> (sub y, (mul x, y)) 14067 // (mul x, (sub 1, y)) -> (sub x, (mul x, y)) 14068 auto IsAddSubWith1 = [&](SDValue V) -> bool { 14069 AddSubOpc = V->getOpcode(); 14070 if ((AddSubOpc == ISD::ADD || AddSubOpc == ISD::SUB) && V->hasOneUse()) { 14071 SDValue Opnd = V->getOperand(1); 14072 MulOper = V->getOperand(0); 14073 if (AddSubOpc == ISD::SUB) 14074 std::swap(Opnd, MulOper); 14075 if (isOneOrOneSplat(Opnd)) 14076 return true; 14077 } 14078 return false; 14079 }; 14080 14081 if (IsAddSubWith1(N0)) { 14082 SDValue MulVal = DAG.getNode(ISD::MUL, DL, VT, N1, MulOper); 14083 return DAG.getNode(AddSubOpc, DL, VT, N1, MulVal); 14084 } 14085 14086 if (IsAddSubWith1(N1)) { 14087 SDValue MulVal = DAG.getNode(ISD::MUL, DL, VT, N0, MulOper); 14088 return DAG.getNode(AddSubOpc, DL, VT, N0, MulVal); 14089 } 14090 14091 if (SDValue V = combineBinOpOfZExt(N, DAG)) 14092 return V; 14093 14094 if (SDValue V = combineVectorMulToSraBitcast(N, DAG)) 14095 return V; 14096 14097 return SDValue(); 14098 } 14099 14100 /// According to the property that indexed load/store instructions zero-extend 14101 /// their indices, try to narrow the type of index operand. 14102 static bool narrowIndex(SDValue &N, ISD::MemIndexType IndexType, SelectionDAG &DAG) { 14103 if (isIndexTypeSigned(IndexType)) 14104 return false; 14105 14106 if (!N->hasOneUse()) 14107 return false; 14108 14109 EVT VT = N.getValueType(); 14110 SDLoc DL(N); 14111 14112 // In general, what we're doing here is seeing if we can sink a truncate to 14113 // a smaller element type into the expression tree building our index. 14114 // TODO: We can generalize this and handle a bunch more cases if useful. 14115 14116 // Narrow a buildvector to the narrowest element type. This requires less 14117 // work and less register pressure at high LMUL, and creates smaller constants 14118 // which may be cheaper to materialize. 14119 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) { 14120 KnownBits Known = DAG.computeKnownBits(N); 14121 unsigned ActiveBits = std::max(8u, Known.countMaxActiveBits()); 14122 LLVMContext &C = *DAG.getContext(); 14123 EVT ResultVT = EVT::getIntegerVT(C, ActiveBits).getRoundIntegerType(C); 14124 if (ResultVT.bitsLT(VT.getVectorElementType())) { 14125 N = DAG.getNode(ISD::TRUNCATE, DL, 14126 VT.changeVectorElementType(ResultVT), N); 14127 return true; 14128 } 14129 } 14130 14131 // Handle the pattern (shl (zext x to ty), C) and bits(x) + C < bits(ty). 14132 if (N.getOpcode() != ISD::SHL) 14133 return false; 14134 14135 SDValue N0 = N.getOperand(0); 14136 if (N0.getOpcode() != ISD::ZERO_EXTEND && 14137 N0.getOpcode() != RISCVISD::VZEXT_VL) 14138 return false; 14139 if (!N0->hasOneUse()) 14140 return false; 14141 14142 APInt ShAmt; 14143 SDValue N1 = N.getOperand(1); 14144 if (!ISD::isConstantSplatVector(N1.getNode(), ShAmt)) 14145 return false; 14146 14147 SDValue Src = N0.getOperand(0); 14148 EVT SrcVT = Src.getValueType(); 14149 unsigned SrcElen = SrcVT.getScalarSizeInBits(); 14150 unsigned ShAmtV = ShAmt.getZExtValue(); 14151 unsigned NewElen = PowerOf2Ceil(SrcElen + ShAmtV); 14152 NewElen = std::max(NewElen, 8U); 14153 14154 // Skip if NewElen is not narrower than the original extended type. 14155 if (NewElen >= N0.getValueType().getScalarSizeInBits()) 14156 return false; 14157 14158 EVT NewEltVT = EVT::getIntegerVT(*DAG.getContext(), NewElen); 14159 EVT NewVT = SrcVT.changeVectorElementType(NewEltVT); 14160 14161 SDValue NewExt = DAG.getNode(N0->getOpcode(), DL, NewVT, N0->ops()); 14162 SDValue NewShAmtVec = DAG.getConstant(ShAmtV, DL, NewVT); 14163 N = DAG.getNode(ISD::SHL, DL, NewVT, NewExt, NewShAmtVec); 14164 return true; 14165 } 14166 14167 // Replace (seteq (i64 (and X, 0xffffffff)), C1) with 14168 // (seteq (i64 (sext_inreg (X, i32)), C1')) where C1' is C1 sign extended from 14169 // bit 31. Same for setne. C1' may be cheaper to materialize and the sext_inreg 14170 // can become a sext.w instead of a shift pair. 14171 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG, 14172 const RISCVSubtarget &Subtarget) { 14173 SDValue N0 = N->getOperand(0); 14174 SDValue N1 = N->getOperand(1); 14175 EVT VT = N->getValueType(0); 14176 EVT OpVT = N0.getValueType(); 14177 14178 if (OpVT != MVT::i64 || !Subtarget.is64Bit()) 14179 return SDValue(); 14180 14181 // RHS needs to be a constant. 14182 auto *N1C = dyn_cast<ConstantSDNode>(N1); 14183 if (!N1C) 14184 return SDValue(); 14185 14186 // LHS needs to be (and X, 0xffffffff). 14187 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse() || 14188 !isa<ConstantSDNode>(N0.getOperand(1)) || 14189 N0.getConstantOperandVal(1) != UINT64_C(0xffffffff)) 14190 return SDValue(); 14191 14192 // Looking for an equality compare. 14193 ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get(); 14194 if (!isIntEqualitySetCC(Cond)) 14195 return SDValue(); 14196 14197 // Don't do this if the sign bit is provably zero, it will be turned back into 14198 // an AND. 14199 APInt SignMask = APInt::getOneBitSet(64, 31); 14200 if (DAG.MaskedValueIsZero(N0.getOperand(0), SignMask)) 14201 return SDValue(); 14202 14203 const APInt &C1 = N1C->getAPIntValue(); 14204 14205 SDLoc dl(N); 14206 // If the constant is larger than 2^32 - 1 it is impossible for both sides 14207 // to be equal. 14208 if (C1.getActiveBits() > 32) 14209 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 14210 14211 SDValue SExtOp = DAG.getNode(ISD::SIGN_EXTEND_INREG, N, OpVT, 14212 N0.getOperand(0), DAG.getValueType(MVT::i32)); 14213 return DAG.getSetCC(dl, VT, SExtOp, DAG.getConstant(C1.trunc(32).sext(64), 14214 dl, OpVT), Cond); 14215 } 14216 14217 static SDValue 14218 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, 14219 const RISCVSubtarget &Subtarget) { 14220 SDValue Src = N->getOperand(0); 14221 EVT VT = N->getValueType(0); 14222 14223 // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X) 14224 if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH && 14225 cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16)) 14226 return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT, 14227 Src.getOperand(0)); 14228 14229 return SDValue(); 14230 } 14231 14232 namespace { 14233 // Forward declaration of the structure holding the necessary information to 14234 // apply a combine. 14235 struct CombineResult; 14236 14237 enum ExtKind : uint8_t { ZExt = 1 << 0, SExt = 1 << 1, FPExt = 1 << 2 }; 14238 /// Helper class for folding sign/zero extensions. 14239 /// In particular, this class is used for the following combines: 14240 /// add | add_vl | or disjoint -> vwadd(u) | vwadd(u)_w 14241 /// sub | sub_vl -> vwsub(u) | vwsub(u)_w 14242 /// mul | mul_vl -> vwmul(u) | vwmul_su 14243 /// shl | shl_vl -> vwsll 14244 /// fadd -> vfwadd | vfwadd_w 14245 /// fsub -> vfwsub | vfwsub_w 14246 /// fmul -> vfwmul 14247 /// An object of this class represents an operand of the operation we want to 14248 /// combine. 14249 /// E.g., when trying to combine `mul_vl a, b`, we will have one instance of 14250 /// NodeExtensionHelper for `a` and one for `b`. 14251 /// 14252 /// This class abstracts away how the extension is materialized and 14253 /// how its number of users affect the combines. 14254 /// 14255 /// In particular: 14256 /// - VWADD_W is conceptually == add(op0, sext(op1)) 14257 /// - VWADDU_W == add(op0, zext(op1)) 14258 /// - VWSUB_W == sub(op0, sext(op1)) 14259 /// - VWSUBU_W == sub(op0, zext(op1)) 14260 /// - VFWADD_W == fadd(op0, fpext(op1)) 14261 /// - VFWSUB_W == fsub(op0, fpext(op1)) 14262 /// And VMV_V_X_VL, depending on the value, is conceptually equivalent to 14263 /// zext|sext(smaller_value). 14264 struct NodeExtensionHelper { 14265 /// Records if this operand is like being zero extended. 14266 bool SupportsZExt; 14267 /// Records if this operand is like being sign extended. 14268 /// Note: SupportsZExt and SupportsSExt are not mutually exclusive. For 14269 /// instance, a splat constant (e.g., 3), would support being both sign and 14270 /// zero extended. 14271 bool SupportsSExt; 14272 /// Records if this operand is like being floating-Point extended. 14273 bool SupportsFPExt; 14274 /// This boolean captures whether we care if this operand would still be 14275 /// around after the folding happens. 14276 bool EnforceOneUse; 14277 /// Original value that this NodeExtensionHelper represents. 14278 SDValue OrigOperand; 14279 14280 /// Get the value feeding the extension or the value itself. 14281 /// E.g., for zext(a), this would return a. 14282 SDValue getSource() const { 14283 switch (OrigOperand.getOpcode()) { 14284 case ISD::ZERO_EXTEND: 14285 case ISD::SIGN_EXTEND: 14286 case RISCVISD::VSEXT_VL: 14287 case RISCVISD::VZEXT_VL: 14288 case RISCVISD::FP_EXTEND_VL: 14289 return OrigOperand.getOperand(0); 14290 default: 14291 return OrigOperand; 14292 } 14293 } 14294 14295 /// Check if this instance represents a splat. 14296 bool isSplat() const { 14297 return OrigOperand.getOpcode() == RISCVISD::VMV_V_X_VL || 14298 OrigOperand.getOpcode() == ISD::SPLAT_VECTOR; 14299 } 14300 14301 /// Get the extended opcode. 14302 unsigned getExtOpc(ExtKind SupportsExt) const { 14303 switch (SupportsExt) { 14304 case ExtKind::SExt: 14305 return RISCVISD::VSEXT_VL; 14306 case ExtKind::ZExt: 14307 return RISCVISD::VZEXT_VL; 14308 case ExtKind::FPExt: 14309 return RISCVISD::FP_EXTEND_VL; 14310 } 14311 llvm_unreachable("Unknown ExtKind enum"); 14312 } 14313 14314 /// Get or create a value that can feed \p Root with the given extension \p 14315 /// SupportsExt. If \p SExt is std::nullopt, this returns the source of this 14316 /// operand. \see ::getSource(). 14317 SDValue getOrCreateExtendedOp(SDNode *Root, SelectionDAG &DAG, 14318 const RISCVSubtarget &Subtarget, 14319 std::optional<ExtKind> SupportsExt) const { 14320 if (!SupportsExt.has_value()) 14321 return OrigOperand; 14322 14323 MVT NarrowVT = getNarrowType(Root, *SupportsExt); 14324 14325 SDValue Source = getSource(); 14326 assert(Subtarget.getTargetLowering()->isTypeLegal(Source.getValueType())); 14327 if (Source.getValueType() == NarrowVT) 14328 return Source; 14329 14330 unsigned ExtOpc = getExtOpc(*SupportsExt); 14331 14332 // If we need an extension, we should be changing the type. 14333 SDLoc DL(OrigOperand); 14334 auto [Mask, VL] = getMaskAndVL(Root, DAG, Subtarget); 14335 switch (OrigOperand.getOpcode()) { 14336 case ISD::ZERO_EXTEND: 14337 case ISD::SIGN_EXTEND: 14338 case RISCVISD::VSEXT_VL: 14339 case RISCVISD::VZEXT_VL: 14340 case RISCVISD::FP_EXTEND_VL: 14341 return DAG.getNode(ExtOpc, DL, NarrowVT, Source, Mask, VL); 14342 case ISD::SPLAT_VECTOR: 14343 return DAG.getSplat(NarrowVT, DL, Source.getOperand(0)); 14344 case RISCVISD::VMV_V_X_VL: 14345 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 14346 DAG.getUNDEF(NarrowVT), Source.getOperand(1), VL); 14347 case RISCVISD::VFMV_V_F_VL: 14348 Source = Source.getOperand(1); 14349 assert(Source.getOpcode() == ISD::FP_EXTEND && "Unexpected source"); 14350 Source = Source.getOperand(0); 14351 assert(Source.getValueType() == NarrowVT.getVectorElementType()); 14352 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, NarrowVT, 14353 DAG.getUNDEF(NarrowVT), Source, VL); 14354 default: 14355 // Other opcodes can only come from the original LHS of VW(ADD|SUB)_W_VL 14356 // and that operand should already have the right NarrowVT so no 14357 // extension should be required at this point. 14358 llvm_unreachable("Unsupported opcode"); 14359 } 14360 } 14361 14362 /// Helper function to get the narrow type for \p Root. 14363 /// The narrow type is the type of \p Root where we divided the size of each 14364 /// element by 2. E.g., if Root's type <2xi16> -> narrow type <2xi8>. 14365 /// \pre Both the narrow type and the original type should be legal. 14366 static MVT getNarrowType(const SDNode *Root, ExtKind SupportsExt) { 14367 MVT VT = Root->getSimpleValueType(0); 14368 14369 // Determine the narrow size. 14370 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 14371 14372 MVT EltVT = SupportsExt == ExtKind::FPExt 14373 ? MVT::getFloatingPointVT(NarrowSize) 14374 : MVT::getIntegerVT(NarrowSize); 14375 14376 assert((int)NarrowSize >= (SupportsExt == ExtKind::FPExt ? 16 : 8) && 14377 "Trying to extend something we can't represent"); 14378 MVT NarrowVT = MVT::getVectorVT(EltVT, VT.getVectorElementCount()); 14379 return NarrowVT; 14380 } 14381 14382 /// Get the opcode to materialize: 14383 /// Opcode(sext(a), sext(b)) -> newOpcode(a, b) 14384 static unsigned getSExtOpcode(unsigned Opcode) { 14385 switch (Opcode) { 14386 case ISD::ADD: 14387 case RISCVISD::ADD_VL: 14388 case RISCVISD::VWADD_W_VL: 14389 case RISCVISD::VWADDU_W_VL: 14390 case ISD::OR: 14391 return RISCVISD::VWADD_VL; 14392 case ISD::SUB: 14393 case RISCVISD::SUB_VL: 14394 case RISCVISD::VWSUB_W_VL: 14395 case RISCVISD::VWSUBU_W_VL: 14396 return RISCVISD::VWSUB_VL; 14397 case ISD::MUL: 14398 case RISCVISD::MUL_VL: 14399 return RISCVISD::VWMUL_VL; 14400 default: 14401 llvm_unreachable("Unexpected opcode"); 14402 } 14403 } 14404 14405 /// Get the opcode to materialize: 14406 /// Opcode(zext(a), zext(b)) -> newOpcode(a, b) 14407 static unsigned getZExtOpcode(unsigned Opcode) { 14408 switch (Opcode) { 14409 case ISD::ADD: 14410 case RISCVISD::ADD_VL: 14411 case RISCVISD::VWADD_W_VL: 14412 case RISCVISD::VWADDU_W_VL: 14413 case ISD::OR: 14414 return RISCVISD::VWADDU_VL; 14415 case ISD::SUB: 14416 case RISCVISD::SUB_VL: 14417 case RISCVISD::VWSUB_W_VL: 14418 case RISCVISD::VWSUBU_W_VL: 14419 return RISCVISD::VWSUBU_VL; 14420 case ISD::MUL: 14421 case RISCVISD::MUL_VL: 14422 return RISCVISD::VWMULU_VL; 14423 case ISD::SHL: 14424 case RISCVISD::SHL_VL: 14425 return RISCVISD::VWSLL_VL; 14426 default: 14427 llvm_unreachable("Unexpected opcode"); 14428 } 14429 } 14430 14431 /// Get the opcode to materialize: 14432 /// Opcode(fpext(a), fpext(b)) -> newOpcode(a, b) 14433 static unsigned getFPExtOpcode(unsigned Opcode) { 14434 switch (Opcode) { 14435 case RISCVISD::FADD_VL: 14436 case RISCVISD::VFWADD_W_VL: 14437 return RISCVISD::VFWADD_VL; 14438 case RISCVISD::FSUB_VL: 14439 case RISCVISD::VFWSUB_W_VL: 14440 return RISCVISD::VFWSUB_VL; 14441 case RISCVISD::FMUL_VL: 14442 return RISCVISD::VFWMUL_VL; 14443 default: 14444 llvm_unreachable("Unexpected opcode"); 14445 } 14446 } 14447 14448 /// Get the opcode to materialize \p Opcode(sext(a), zext(b)) -> 14449 /// newOpcode(a, b). 14450 static unsigned getSUOpcode(unsigned Opcode) { 14451 assert((Opcode == RISCVISD::MUL_VL || Opcode == ISD::MUL) && 14452 "SU is only supported for MUL"); 14453 return RISCVISD::VWMULSU_VL; 14454 } 14455 14456 /// Get the opcode to materialize 14457 /// \p Opcode(a, s|z|fpext(b)) -> newOpcode(a, b). 14458 static unsigned getWOpcode(unsigned Opcode, ExtKind SupportsExt) { 14459 switch (Opcode) { 14460 case ISD::ADD: 14461 case RISCVISD::ADD_VL: 14462 case ISD::OR: 14463 return SupportsExt == ExtKind::SExt ? RISCVISD::VWADD_W_VL 14464 : RISCVISD::VWADDU_W_VL; 14465 case ISD::SUB: 14466 case RISCVISD::SUB_VL: 14467 return SupportsExt == ExtKind::SExt ? RISCVISD::VWSUB_W_VL 14468 : RISCVISD::VWSUBU_W_VL; 14469 case RISCVISD::FADD_VL: 14470 return RISCVISD::VFWADD_W_VL; 14471 case RISCVISD::FSUB_VL: 14472 return RISCVISD::VFWSUB_W_VL; 14473 default: 14474 llvm_unreachable("Unexpected opcode"); 14475 } 14476 } 14477 14478 using CombineToTry = std::function<std::optional<CombineResult>( 14479 SDNode * /*Root*/, const NodeExtensionHelper & /*LHS*/, 14480 const NodeExtensionHelper & /*RHS*/, SelectionDAG &, 14481 const RISCVSubtarget &)>; 14482 14483 /// Check if this node needs to be fully folded or extended for all users. 14484 bool needToPromoteOtherUsers() const { return EnforceOneUse; } 14485 14486 void fillUpExtensionSupportForSplat(SDNode *Root, SelectionDAG &DAG, 14487 const RISCVSubtarget &Subtarget) { 14488 unsigned Opc = OrigOperand.getOpcode(); 14489 MVT VT = OrigOperand.getSimpleValueType(); 14490 14491 assert((Opc == ISD::SPLAT_VECTOR || Opc == RISCVISD::VMV_V_X_VL) && 14492 "Unexpected Opcode"); 14493 14494 // The pasthru must be undef for tail agnostic. 14495 if (Opc == RISCVISD::VMV_V_X_VL && !OrigOperand.getOperand(0).isUndef()) 14496 return; 14497 14498 // Get the scalar value. 14499 SDValue Op = Opc == ISD::SPLAT_VECTOR ? OrigOperand.getOperand(0) 14500 : OrigOperand.getOperand(1); 14501 14502 // See if we have enough sign bits or zero bits in the scalar to use a 14503 // widening opcode by splatting to smaller element size. 14504 unsigned EltBits = VT.getScalarSizeInBits(); 14505 unsigned ScalarBits = Op.getValueSizeInBits(); 14506 // If we're not getting all bits from the element, we need special handling. 14507 if (ScalarBits < EltBits) { 14508 // This should only occur on RV32. 14509 assert(Opc == RISCVISD::VMV_V_X_VL && EltBits == 64 && ScalarBits == 32 && 14510 !Subtarget.is64Bit() && "Unexpected splat"); 14511 // vmv.v.x sign extends narrow inputs. 14512 SupportsSExt = true; 14513 14514 // If the input is positive, then sign extend is also zero extend. 14515 if (DAG.SignBitIsZero(Op)) 14516 SupportsZExt = true; 14517 14518 EnforceOneUse = false; 14519 return; 14520 } 14521 14522 unsigned NarrowSize = EltBits / 2; 14523 // If the narrow type cannot be expressed with a legal VMV, 14524 // this is not a valid candidate. 14525 if (NarrowSize < 8) 14526 return; 14527 14528 if (DAG.ComputeMaxSignificantBits(Op) <= NarrowSize) 14529 SupportsSExt = true; 14530 14531 if (DAG.MaskedValueIsZero(Op, 14532 APInt::getBitsSetFrom(ScalarBits, NarrowSize))) 14533 SupportsZExt = true; 14534 14535 EnforceOneUse = false; 14536 } 14537 14538 /// Helper method to set the various fields of this struct based on the 14539 /// type of \p Root. 14540 void fillUpExtensionSupport(SDNode *Root, SelectionDAG &DAG, 14541 const RISCVSubtarget &Subtarget) { 14542 SupportsZExt = false; 14543 SupportsSExt = false; 14544 SupportsFPExt = false; 14545 EnforceOneUse = true; 14546 unsigned Opc = OrigOperand.getOpcode(); 14547 // For the nodes we handle below, we end up using their inputs directly: see 14548 // getSource(). However since they either don't have a passthru or we check 14549 // that their passthru is undef, we can safely ignore their mask and VL. 14550 switch (Opc) { 14551 case ISD::ZERO_EXTEND: 14552 case ISD::SIGN_EXTEND: { 14553 MVT VT = OrigOperand.getSimpleValueType(); 14554 if (!VT.isVector()) 14555 break; 14556 14557 SDValue NarrowElt = OrigOperand.getOperand(0); 14558 MVT NarrowVT = NarrowElt.getSimpleValueType(); 14559 // i1 types are legal but we can't select V{S,Z}EXT_VLs with them. 14560 if (NarrowVT.getVectorElementType() == MVT::i1) 14561 break; 14562 14563 SupportsZExt = Opc == ISD::ZERO_EXTEND; 14564 SupportsSExt = Opc == ISD::SIGN_EXTEND; 14565 break; 14566 } 14567 case RISCVISD::VZEXT_VL: 14568 SupportsZExt = true; 14569 break; 14570 case RISCVISD::VSEXT_VL: 14571 SupportsSExt = true; 14572 break; 14573 case RISCVISD::FP_EXTEND_VL: 14574 SupportsFPExt = true; 14575 break; 14576 case ISD::SPLAT_VECTOR: 14577 case RISCVISD::VMV_V_X_VL: 14578 fillUpExtensionSupportForSplat(Root, DAG, Subtarget); 14579 break; 14580 case RISCVISD::VFMV_V_F_VL: { 14581 MVT VT = OrigOperand.getSimpleValueType(); 14582 14583 if (!OrigOperand.getOperand(0).isUndef()) 14584 break; 14585 14586 SDValue Op = OrigOperand.getOperand(1); 14587 if (Op.getOpcode() != ISD::FP_EXTEND) 14588 break; 14589 14590 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 14591 unsigned ScalarBits = Op.getOperand(0).getValueSizeInBits(); 14592 if (NarrowSize != ScalarBits) 14593 break; 14594 14595 SupportsFPExt = true; 14596 break; 14597 } 14598 default: 14599 break; 14600 } 14601 } 14602 14603 /// Check if \p Root supports any extension folding combines. 14604 static bool isSupportedRoot(const SDNode *Root, 14605 const RISCVSubtarget &Subtarget) { 14606 switch (Root->getOpcode()) { 14607 case ISD::ADD: 14608 case ISD::SUB: 14609 case ISD::MUL: { 14610 return Root->getValueType(0).isScalableVector(); 14611 } 14612 case ISD::OR: { 14613 return Root->getValueType(0).isScalableVector() && 14614 Root->getFlags().hasDisjoint(); 14615 } 14616 // Vector Widening Integer Add/Sub/Mul Instructions 14617 case RISCVISD::ADD_VL: 14618 case RISCVISD::MUL_VL: 14619 case RISCVISD::VWADD_W_VL: 14620 case RISCVISD::VWADDU_W_VL: 14621 case RISCVISD::SUB_VL: 14622 case RISCVISD::VWSUB_W_VL: 14623 case RISCVISD::VWSUBU_W_VL: 14624 // Vector Widening Floating-Point Add/Sub/Mul Instructions 14625 case RISCVISD::FADD_VL: 14626 case RISCVISD::FSUB_VL: 14627 case RISCVISD::FMUL_VL: 14628 case RISCVISD::VFWADD_W_VL: 14629 case RISCVISD::VFWSUB_W_VL: 14630 return true; 14631 case ISD::SHL: 14632 return Root->getValueType(0).isScalableVector() && 14633 Subtarget.hasStdExtZvbb(); 14634 case RISCVISD::SHL_VL: 14635 return Subtarget.hasStdExtZvbb(); 14636 default: 14637 return false; 14638 } 14639 } 14640 14641 /// Build a NodeExtensionHelper for \p Root.getOperand(\p OperandIdx). 14642 NodeExtensionHelper(SDNode *Root, unsigned OperandIdx, SelectionDAG &DAG, 14643 const RISCVSubtarget &Subtarget) { 14644 assert(isSupportedRoot(Root, Subtarget) && 14645 "Trying to build an helper with an " 14646 "unsupported root"); 14647 assert(OperandIdx < 2 && "Requesting something else than LHS or RHS"); 14648 assert(DAG.getTargetLoweringInfo().isTypeLegal(Root->getValueType(0))); 14649 OrigOperand = Root->getOperand(OperandIdx); 14650 14651 unsigned Opc = Root->getOpcode(); 14652 switch (Opc) { 14653 // We consider 14654 // VW<ADD|SUB>_W(LHS, RHS) -> <ADD|SUB>(LHS, SEXT(RHS)) 14655 // VW<ADD|SUB>U_W(LHS, RHS) -> <ADD|SUB>(LHS, ZEXT(RHS)) 14656 // VFW<ADD|SUB>_W(LHS, RHS) -> F<ADD|SUB>(LHS, FPEXT(RHS)) 14657 case RISCVISD::VWADD_W_VL: 14658 case RISCVISD::VWADDU_W_VL: 14659 case RISCVISD::VWSUB_W_VL: 14660 case RISCVISD::VWSUBU_W_VL: 14661 case RISCVISD::VFWADD_W_VL: 14662 case RISCVISD::VFWSUB_W_VL: 14663 if (OperandIdx == 1) { 14664 SupportsZExt = 14665 Opc == RISCVISD::VWADDU_W_VL || Opc == RISCVISD::VWSUBU_W_VL; 14666 SupportsSExt = 14667 Opc == RISCVISD::VWADD_W_VL || Opc == RISCVISD::VWSUB_W_VL; 14668 SupportsFPExt = 14669 Opc == RISCVISD::VFWADD_W_VL || Opc == RISCVISD::VFWSUB_W_VL; 14670 // There's no existing extension here, so we don't have to worry about 14671 // making sure it gets removed. 14672 EnforceOneUse = false; 14673 break; 14674 } 14675 [[fallthrough]]; 14676 default: 14677 fillUpExtensionSupport(Root, DAG, Subtarget); 14678 break; 14679 } 14680 } 14681 14682 /// Helper function to get the Mask and VL from \p Root. 14683 static std::pair<SDValue, SDValue> 14684 getMaskAndVL(const SDNode *Root, SelectionDAG &DAG, 14685 const RISCVSubtarget &Subtarget) { 14686 assert(isSupportedRoot(Root, Subtarget) && "Unexpected root"); 14687 switch (Root->getOpcode()) { 14688 case ISD::ADD: 14689 case ISD::SUB: 14690 case ISD::MUL: 14691 case ISD::OR: 14692 case ISD::SHL: { 14693 SDLoc DL(Root); 14694 MVT VT = Root->getSimpleValueType(0); 14695 return getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 14696 } 14697 default: 14698 return std::make_pair(Root->getOperand(3), Root->getOperand(4)); 14699 } 14700 } 14701 14702 /// Helper function to check if \p N is commutative with respect to the 14703 /// foldings that are supported by this class. 14704 static bool isCommutative(const SDNode *N) { 14705 switch (N->getOpcode()) { 14706 case ISD::ADD: 14707 case ISD::MUL: 14708 case ISD::OR: 14709 case RISCVISD::ADD_VL: 14710 case RISCVISD::MUL_VL: 14711 case RISCVISD::VWADD_W_VL: 14712 case RISCVISD::VWADDU_W_VL: 14713 case RISCVISD::FADD_VL: 14714 case RISCVISD::FMUL_VL: 14715 case RISCVISD::VFWADD_W_VL: 14716 return true; 14717 case ISD::SUB: 14718 case RISCVISD::SUB_VL: 14719 case RISCVISD::VWSUB_W_VL: 14720 case RISCVISD::VWSUBU_W_VL: 14721 case RISCVISD::FSUB_VL: 14722 case RISCVISD::VFWSUB_W_VL: 14723 case ISD::SHL: 14724 case RISCVISD::SHL_VL: 14725 return false; 14726 default: 14727 llvm_unreachable("Unexpected opcode"); 14728 } 14729 } 14730 14731 /// Get a list of combine to try for folding extensions in \p Root. 14732 /// Note that each returned CombineToTry function doesn't actually modify 14733 /// anything. Instead they produce an optional CombineResult that if not None, 14734 /// need to be materialized for the combine to be applied. 14735 /// \see CombineResult::materialize. 14736 /// If the related CombineToTry function returns std::nullopt, that means the 14737 /// combine didn't match. 14738 static SmallVector<CombineToTry> getSupportedFoldings(const SDNode *Root); 14739 }; 14740 14741 /// Helper structure that holds all the necessary information to materialize a 14742 /// combine that does some extension folding. 14743 struct CombineResult { 14744 /// Opcode to be generated when materializing the combine. 14745 unsigned TargetOpcode; 14746 // No value means no extension is needed. 14747 std::optional<ExtKind> LHSExt; 14748 std::optional<ExtKind> RHSExt; 14749 /// Root of the combine. 14750 SDNode *Root; 14751 /// LHS of the TargetOpcode. 14752 NodeExtensionHelper LHS; 14753 /// RHS of the TargetOpcode. 14754 NodeExtensionHelper RHS; 14755 14756 CombineResult(unsigned TargetOpcode, SDNode *Root, 14757 const NodeExtensionHelper &LHS, std::optional<ExtKind> LHSExt, 14758 const NodeExtensionHelper &RHS, std::optional<ExtKind> RHSExt) 14759 : TargetOpcode(TargetOpcode), LHSExt(LHSExt), RHSExt(RHSExt), Root(Root), 14760 LHS(LHS), RHS(RHS) {} 14761 14762 /// Return a value that uses TargetOpcode and that can be used to replace 14763 /// Root. 14764 /// The actual replacement is *not* done in that method. 14765 SDValue materialize(SelectionDAG &DAG, 14766 const RISCVSubtarget &Subtarget) const { 14767 SDValue Mask, VL, Merge; 14768 std::tie(Mask, VL) = 14769 NodeExtensionHelper::getMaskAndVL(Root, DAG, Subtarget); 14770 switch (Root->getOpcode()) { 14771 default: 14772 Merge = Root->getOperand(2); 14773 break; 14774 case ISD::ADD: 14775 case ISD::SUB: 14776 case ISD::MUL: 14777 case ISD::OR: 14778 case ISD::SHL: 14779 Merge = DAG.getUNDEF(Root->getValueType(0)); 14780 break; 14781 } 14782 return DAG.getNode(TargetOpcode, SDLoc(Root), Root->getValueType(0), 14783 LHS.getOrCreateExtendedOp(Root, DAG, Subtarget, LHSExt), 14784 RHS.getOrCreateExtendedOp(Root, DAG, Subtarget, RHSExt), 14785 Merge, Mask, VL); 14786 } 14787 }; 14788 14789 /// Check if \p Root follows a pattern Root(ext(LHS), ext(RHS)) 14790 /// where `ext` is the same for both LHS and RHS (i.e., both are sext or both 14791 /// are zext) and LHS and RHS can be folded into Root. 14792 /// AllowExtMask define which form `ext` can take in this pattern. 14793 /// 14794 /// \note If the pattern can match with both zext and sext, the returned 14795 /// CombineResult will feature the zext result. 14796 /// 14797 /// \returns std::nullopt if the pattern doesn't match or a CombineResult that 14798 /// can be used to apply the pattern. 14799 static std::optional<CombineResult> 14800 canFoldToVWWithSameExtensionImpl(SDNode *Root, const NodeExtensionHelper &LHS, 14801 const NodeExtensionHelper &RHS, 14802 uint8_t AllowExtMask, SelectionDAG &DAG, 14803 const RISCVSubtarget &Subtarget) { 14804 if ((AllowExtMask & ExtKind::ZExt) && LHS.SupportsZExt && RHS.SupportsZExt) 14805 return CombineResult(NodeExtensionHelper::getZExtOpcode(Root->getOpcode()), 14806 Root, LHS, /*LHSExt=*/{ExtKind::ZExt}, RHS, 14807 /*RHSExt=*/{ExtKind::ZExt}); 14808 if ((AllowExtMask & ExtKind::SExt) && LHS.SupportsSExt && RHS.SupportsSExt) 14809 return CombineResult(NodeExtensionHelper::getSExtOpcode(Root->getOpcode()), 14810 Root, LHS, /*LHSExt=*/{ExtKind::SExt}, RHS, 14811 /*RHSExt=*/{ExtKind::SExt}); 14812 if ((AllowExtMask & ExtKind::FPExt) && LHS.SupportsFPExt && RHS.SupportsFPExt) 14813 return CombineResult(NodeExtensionHelper::getFPExtOpcode(Root->getOpcode()), 14814 Root, LHS, /*LHSExt=*/{ExtKind::FPExt}, RHS, 14815 /*RHSExt=*/{ExtKind::FPExt}); 14816 return std::nullopt; 14817 } 14818 14819 /// Check if \p Root follows a pattern Root(ext(LHS), ext(RHS)) 14820 /// where `ext` is the same for both LHS and RHS (i.e., both are sext or both 14821 /// are zext) and LHS and RHS can be folded into Root. 14822 /// 14823 /// \returns std::nullopt if the pattern doesn't match or a CombineResult that 14824 /// can be used to apply the pattern. 14825 static std::optional<CombineResult> 14826 canFoldToVWWithSameExtension(SDNode *Root, const NodeExtensionHelper &LHS, 14827 const NodeExtensionHelper &RHS, SelectionDAG &DAG, 14828 const RISCVSubtarget &Subtarget) { 14829 return canFoldToVWWithSameExtensionImpl( 14830 Root, LHS, RHS, ExtKind::ZExt | ExtKind::SExt | ExtKind::FPExt, DAG, 14831 Subtarget); 14832 } 14833 14834 /// Check if \p Root follows a pattern Root(LHS, ext(RHS)) 14835 /// 14836 /// \returns std::nullopt if the pattern doesn't match or a CombineResult that 14837 /// can be used to apply the pattern. 14838 static std::optional<CombineResult> 14839 canFoldToVW_W(SDNode *Root, const NodeExtensionHelper &LHS, 14840 const NodeExtensionHelper &RHS, SelectionDAG &DAG, 14841 const RISCVSubtarget &Subtarget) { 14842 if (RHS.SupportsFPExt) 14843 return CombineResult( 14844 NodeExtensionHelper::getWOpcode(Root->getOpcode(), ExtKind::FPExt), 14845 Root, LHS, /*LHSExt=*/std::nullopt, RHS, /*RHSExt=*/{ExtKind::FPExt}); 14846 14847 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar 14848 // sext/zext? 14849 // Control this behavior behind an option (AllowSplatInVW_W) for testing 14850 // purposes. 14851 if (RHS.SupportsZExt && (!RHS.isSplat() || AllowSplatInVW_W)) 14852 return CombineResult( 14853 NodeExtensionHelper::getWOpcode(Root->getOpcode(), ExtKind::ZExt), Root, 14854 LHS, /*LHSExt=*/std::nullopt, RHS, /*RHSExt=*/{ExtKind::ZExt}); 14855 if (RHS.SupportsSExt && (!RHS.isSplat() || AllowSplatInVW_W)) 14856 return CombineResult( 14857 NodeExtensionHelper::getWOpcode(Root->getOpcode(), ExtKind::SExt), Root, 14858 LHS, /*LHSExt=*/std::nullopt, RHS, /*RHSExt=*/{ExtKind::SExt}); 14859 return std::nullopt; 14860 } 14861 14862 /// Check if \p Root follows a pattern Root(sext(LHS), sext(RHS)) 14863 /// 14864 /// \returns std::nullopt if the pattern doesn't match or a CombineResult that 14865 /// can be used to apply the pattern. 14866 static std::optional<CombineResult> 14867 canFoldToVWWithSEXT(SDNode *Root, const NodeExtensionHelper &LHS, 14868 const NodeExtensionHelper &RHS, SelectionDAG &DAG, 14869 const RISCVSubtarget &Subtarget) { 14870 return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, ExtKind::SExt, DAG, 14871 Subtarget); 14872 } 14873 14874 /// Check if \p Root follows a pattern Root(zext(LHS), zext(RHS)) 14875 /// 14876 /// \returns std::nullopt if the pattern doesn't match or a CombineResult that 14877 /// can be used to apply the pattern. 14878 static std::optional<CombineResult> 14879 canFoldToVWWithZEXT(SDNode *Root, const NodeExtensionHelper &LHS, 14880 const NodeExtensionHelper &RHS, SelectionDAG &DAG, 14881 const RISCVSubtarget &Subtarget) { 14882 return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, ExtKind::ZExt, DAG, 14883 Subtarget); 14884 } 14885 14886 /// Check if \p Root follows a pattern Root(fpext(LHS), fpext(RHS)) 14887 /// 14888 /// \returns std::nullopt if the pattern doesn't match or a CombineResult that 14889 /// can be used to apply the pattern. 14890 static std::optional<CombineResult> 14891 canFoldToVWWithFPEXT(SDNode *Root, const NodeExtensionHelper &LHS, 14892 const NodeExtensionHelper &RHS, SelectionDAG &DAG, 14893 const RISCVSubtarget &Subtarget) { 14894 return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, ExtKind::FPExt, DAG, 14895 Subtarget); 14896 } 14897 14898 /// Check if \p Root follows a pattern Root(sext(LHS), zext(RHS)) 14899 /// 14900 /// \returns std::nullopt if the pattern doesn't match or a CombineResult that 14901 /// can be used to apply the pattern. 14902 static std::optional<CombineResult> 14903 canFoldToVW_SU(SDNode *Root, const NodeExtensionHelper &LHS, 14904 const NodeExtensionHelper &RHS, SelectionDAG &DAG, 14905 const RISCVSubtarget &Subtarget) { 14906 14907 if (!LHS.SupportsSExt || !RHS.SupportsZExt) 14908 return std::nullopt; 14909 return CombineResult(NodeExtensionHelper::getSUOpcode(Root->getOpcode()), 14910 Root, LHS, /*LHSExt=*/{ExtKind::SExt}, RHS, 14911 /*RHSExt=*/{ExtKind::ZExt}); 14912 } 14913 14914 SmallVector<NodeExtensionHelper::CombineToTry> 14915 NodeExtensionHelper::getSupportedFoldings(const SDNode *Root) { 14916 SmallVector<CombineToTry> Strategies; 14917 switch (Root->getOpcode()) { 14918 case ISD::ADD: 14919 case ISD::SUB: 14920 case ISD::OR: 14921 case RISCVISD::ADD_VL: 14922 case RISCVISD::SUB_VL: 14923 case RISCVISD::FADD_VL: 14924 case RISCVISD::FSUB_VL: 14925 // add|sub|fadd|fsub-> vwadd(u)|vwsub(u)|vfwadd|vfwsub 14926 Strategies.push_back(canFoldToVWWithSameExtension); 14927 // add|sub|fadd|fsub -> vwadd(u)_w|vwsub(u)_w}|vfwadd_w|vfwsub_w 14928 Strategies.push_back(canFoldToVW_W); 14929 break; 14930 case RISCVISD::FMUL_VL: 14931 Strategies.push_back(canFoldToVWWithSameExtension); 14932 break; 14933 case ISD::MUL: 14934 case RISCVISD::MUL_VL: 14935 // mul -> vwmul(u) 14936 Strategies.push_back(canFoldToVWWithSameExtension); 14937 // mul -> vwmulsu 14938 Strategies.push_back(canFoldToVW_SU); 14939 break; 14940 case ISD::SHL: 14941 case RISCVISD::SHL_VL: 14942 // shl -> vwsll 14943 Strategies.push_back(canFoldToVWWithZEXT); 14944 break; 14945 case RISCVISD::VWADD_W_VL: 14946 case RISCVISD::VWSUB_W_VL: 14947 // vwadd_w|vwsub_w -> vwadd|vwsub 14948 Strategies.push_back(canFoldToVWWithSEXT); 14949 break; 14950 case RISCVISD::VWADDU_W_VL: 14951 case RISCVISD::VWSUBU_W_VL: 14952 // vwaddu_w|vwsubu_w -> vwaddu|vwsubu 14953 Strategies.push_back(canFoldToVWWithZEXT); 14954 break; 14955 case RISCVISD::VFWADD_W_VL: 14956 case RISCVISD::VFWSUB_W_VL: 14957 // vfwadd_w|vfwsub_w -> vfwadd|vfwsub 14958 Strategies.push_back(canFoldToVWWithFPEXT); 14959 break; 14960 default: 14961 llvm_unreachable("Unexpected opcode"); 14962 } 14963 return Strategies; 14964 } 14965 } // End anonymous namespace. 14966 14967 /// Combine a binary operation to its equivalent VW or VW_W form. 14968 /// The supported combines are: 14969 /// add | add_vl | or disjoint -> vwadd(u) | vwadd(u)_w 14970 /// sub | sub_vl -> vwsub(u) | vwsub(u)_w 14971 /// mul | mul_vl -> vwmul(u) | vwmul_su 14972 /// shl | shl_vl -> vwsll 14973 /// fadd_vl -> vfwadd | vfwadd_w 14974 /// fsub_vl -> vfwsub | vfwsub_w 14975 /// fmul_vl -> vfwmul 14976 /// vwadd_w(u) -> vwadd(u) 14977 /// vwsub_w(u) -> vwsub(u) 14978 /// vfwadd_w -> vfwadd 14979 /// vfwsub_w -> vfwsub 14980 static SDValue combineBinOp_VLToVWBinOp_VL(SDNode *N, 14981 TargetLowering::DAGCombinerInfo &DCI, 14982 const RISCVSubtarget &Subtarget) { 14983 SelectionDAG &DAG = DCI.DAG; 14984 if (DCI.isBeforeLegalize()) 14985 return SDValue(); 14986 14987 if (!NodeExtensionHelper::isSupportedRoot(N, Subtarget)) 14988 return SDValue(); 14989 14990 SmallVector<SDNode *> Worklist; 14991 SmallSet<SDNode *, 8> Inserted; 14992 Worklist.push_back(N); 14993 Inserted.insert(N); 14994 SmallVector<CombineResult> CombinesToApply; 14995 14996 while (!Worklist.empty()) { 14997 SDNode *Root = Worklist.pop_back_val(); 14998 if (!NodeExtensionHelper::isSupportedRoot(Root, Subtarget)) 14999 return SDValue(); 15000 15001 NodeExtensionHelper LHS(Root, 0, DAG, Subtarget); 15002 NodeExtensionHelper RHS(Root, 1, DAG, Subtarget); 15003 auto AppendUsersIfNeeded = [&Worklist, 15004 &Inserted](const NodeExtensionHelper &Op) { 15005 if (Op.needToPromoteOtherUsers()) { 15006 for (SDNode *TheUse : Op.OrigOperand->uses()) { 15007 if (Inserted.insert(TheUse).second) 15008 Worklist.push_back(TheUse); 15009 } 15010 } 15011 }; 15012 15013 // Control the compile time by limiting the number of node we look at in 15014 // total. 15015 if (Inserted.size() > ExtensionMaxWebSize) 15016 return SDValue(); 15017 15018 SmallVector<NodeExtensionHelper::CombineToTry> FoldingStrategies = 15019 NodeExtensionHelper::getSupportedFoldings(Root); 15020 15021 assert(!FoldingStrategies.empty() && "Nothing to be folded"); 15022 bool Matched = false; 15023 for (int Attempt = 0; 15024 (Attempt != 1 + NodeExtensionHelper::isCommutative(Root)) && !Matched; 15025 ++Attempt) { 15026 15027 for (NodeExtensionHelper::CombineToTry FoldingStrategy : 15028 FoldingStrategies) { 15029 std::optional<CombineResult> Res = 15030 FoldingStrategy(Root, LHS, RHS, DAG, Subtarget); 15031 if (Res) { 15032 Matched = true; 15033 CombinesToApply.push_back(*Res); 15034 // All the inputs that are extended need to be folded, otherwise 15035 // we would be leaving the old input (since it is may still be used), 15036 // and the new one. 15037 if (Res->LHSExt.has_value()) 15038 AppendUsersIfNeeded(LHS); 15039 if (Res->RHSExt.has_value()) 15040 AppendUsersIfNeeded(RHS); 15041 break; 15042 } 15043 } 15044 std::swap(LHS, RHS); 15045 } 15046 // Right now we do an all or nothing approach. 15047 if (!Matched) 15048 return SDValue(); 15049 } 15050 // Store the value for the replacement of the input node separately. 15051 SDValue InputRootReplacement; 15052 // We do the RAUW after we materialize all the combines, because some replaced 15053 // nodes may be feeding some of the yet-to-be-replaced nodes. Put differently, 15054 // some of these nodes may appear in the NodeExtensionHelpers of some of the 15055 // yet-to-be-visited CombinesToApply roots. 15056 SmallVector<std::pair<SDValue, SDValue>> ValuesToReplace; 15057 ValuesToReplace.reserve(CombinesToApply.size()); 15058 for (CombineResult Res : CombinesToApply) { 15059 SDValue NewValue = Res.materialize(DAG, Subtarget); 15060 if (!InputRootReplacement) { 15061 assert(Res.Root == N && 15062 "First element is expected to be the current node"); 15063 InputRootReplacement = NewValue; 15064 } else { 15065 ValuesToReplace.emplace_back(SDValue(Res.Root, 0), NewValue); 15066 } 15067 } 15068 for (std::pair<SDValue, SDValue> OldNewValues : ValuesToReplace) { 15069 DAG.ReplaceAllUsesOfValueWith(OldNewValues.first, OldNewValues.second); 15070 DCI.AddToWorklist(OldNewValues.second.getNode()); 15071 } 15072 return InputRootReplacement; 15073 } 15074 15075 // Fold (vwadd(u).wv y, (vmerge cond, x, 0)) -> vwadd(u).wv y, x, y, cond 15076 // (vwsub(u).wv y, (vmerge cond, x, 0)) -> vwsub(u).wv y, x, y, cond 15077 // y will be the Passthru and cond will be the Mask. 15078 static SDValue combineVWADDSUBWSelect(SDNode *N, SelectionDAG &DAG) { 15079 unsigned Opc = N->getOpcode(); 15080 assert(Opc == RISCVISD::VWADD_W_VL || Opc == RISCVISD::VWADDU_W_VL || 15081 Opc == RISCVISD::VWSUB_W_VL || Opc == RISCVISD::VWSUBU_W_VL); 15082 15083 SDValue Y = N->getOperand(0); 15084 SDValue MergeOp = N->getOperand(1); 15085 unsigned MergeOpc = MergeOp.getOpcode(); 15086 15087 if (MergeOpc != RISCVISD::VMERGE_VL && MergeOpc != ISD::VSELECT) 15088 return SDValue(); 15089 15090 SDValue X = MergeOp->getOperand(1); 15091 15092 if (!MergeOp.hasOneUse()) 15093 return SDValue(); 15094 15095 // Passthru should be undef 15096 SDValue Passthru = N->getOperand(2); 15097 if (!Passthru.isUndef()) 15098 return SDValue(); 15099 15100 // Mask should be all ones 15101 SDValue Mask = N->getOperand(3); 15102 if (Mask.getOpcode() != RISCVISD::VMSET_VL) 15103 return SDValue(); 15104 15105 // False value of MergeOp should be all zeros 15106 SDValue Z = MergeOp->getOperand(2); 15107 15108 if (Z.getOpcode() == ISD::INSERT_SUBVECTOR && 15109 (isNullOrNullSplat(Z.getOperand(0)) || Z.getOperand(0).isUndef())) 15110 Z = Z.getOperand(1); 15111 15112 if (!ISD::isConstantSplatVectorAllZeros(Z.getNode())) 15113 return SDValue(); 15114 15115 return DAG.getNode(Opc, SDLoc(N), N->getValueType(0), 15116 {Y, X, Y, MergeOp->getOperand(0), N->getOperand(4)}, 15117 N->getFlags()); 15118 } 15119 15120 static SDValue performVWADDSUBW_VLCombine(SDNode *N, 15121 TargetLowering::DAGCombinerInfo &DCI, 15122 const RISCVSubtarget &Subtarget) { 15123 [[maybe_unused]] unsigned Opc = N->getOpcode(); 15124 assert(Opc == RISCVISD::VWADD_W_VL || Opc == RISCVISD::VWADDU_W_VL || 15125 Opc == RISCVISD::VWSUB_W_VL || Opc == RISCVISD::VWSUBU_W_VL); 15126 15127 if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget)) 15128 return V; 15129 15130 return combineVWADDSUBWSelect(N, DCI.DAG); 15131 } 15132 15133 // Helper function for performMemPairCombine. 15134 // Try to combine the memory loads/stores LSNode1 and LSNode2 15135 // into a single memory pair operation. 15136 static SDValue tryMemPairCombine(SelectionDAG &DAG, LSBaseSDNode *LSNode1, 15137 LSBaseSDNode *LSNode2, SDValue BasePtr, 15138 uint64_t Imm) { 15139 SmallPtrSet<const SDNode *, 32> Visited; 15140 SmallVector<const SDNode *, 8> Worklist = {LSNode1, LSNode2}; 15141 15142 if (SDNode::hasPredecessorHelper(LSNode1, Visited, Worklist) || 15143 SDNode::hasPredecessorHelper(LSNode2, Visited, Worklist)) 15144 return SDValue(); 15145 15146 MachineFunction &MF = DAG.getMachineFunction(); 15147 const RISCVSubtarget &Subtarget = MF.getSubtarget<RISCVSubtarget>(); 15148 15149 // The new operation has twice the width. 15150 MVT XLenVT = Subtarget.getXLenVT(); 15151 EVT MemVT = LSNode1->getMemoryVT(); 15152 EVT NewMemVT = (MemVT == MVT::i32) ? MVT::i64 : MVT::i128; 15153 MachineMemOperand *MMO = LSNode1->getMemOperand(); 15154 MachineMemOperand *NewMMO = MF.getMachineMemOperand( 15155 MMO, MMO->getPointerInfo(), MemVT == MVT::i32 ? 8 : 16); 15156 15157 if (LSNode1->getOpcode() == ISD::LOAD) { 15158 auto Ext = cast<LoadSDNode>(LSNode1)->getExtensionType(); 15159 unsigned Opcode; 15160 if (MemVT == MVT::i32) 15161 Opcode = (Ext == ISD::ZEXTLOAD) ? RISCVISD::TH_LWUD : RISCVISD::TH_LWD; 15162 else 15163 Opcode = RISCVISD::TH_LDD; 15164 15165 SDValue Res = DAG.getMemIntrinsicNode( 15166 Opcode, SDLoc(LSNode1), DAG.getVTList({XLenVT, XLenVT, MVT::Other}), 15167 {LSNode1->getChain(), BasePtr, 15168 DAG.getConstant(Imm, SDLoc(LSNode1), XLenVT)}, 15169 NewMemVT, NewMMO); 15170 15171 SDValue Node1 = 15172 DAG.getMergeValues({Res.getValue(0), Res.getValue(2)}, SDLoc(LSNode1)); 15173 SDValue Node2 = 15174 DAG.getMergeValues({Res.getValue(1), Res.getValue(2)}, SDLoc(LSNode2)); 15175 15176 DAG.ReplaceAllUsesWith(LSNode2, Node2.getNode()); 15177 return Node1; 15178 } else { 15179 unsigned Opcode = (MemVT == MVT::i32) ? RISCVISD::TH_SWD : RISCVISD::TH_SDD; 15180 15181 SDValue Res = DAG.getMemIntrinsicNode( 15182 Opcode, SDLoc(LSNode1), DAG.getVTList(MVT::Other), 15183 {LSNode1->getChain(), LSNode1->getOperand(1), LSNode2->getOperand(1), 15184 BasePtr, DAG.getConstant(Imm, SDLoc(LSNode1), XLenVT)}, 15185 NewMemVT, NewMMO); 15186 15187 DAG.ReplaceAllUsesWith(LSNode2, Res.getNode()); 15188 return Res; 15189 } 15190 } 15191 15192 // Try to combine two adjacent loads/stores to a single pair instruction from 15193 // the XTHeadMemPair vendor extension. 15194 static SDValue performMemPairCombine(SDNode *N, 15195 TargetLowering::DAGCombinerInfo &DCI) { 15196 SelectionDAG &DAG = DCI.DAG; 15197 MachineFunction &MF = DAG.getMachineFunction(); 15198 const RISCVSubtarget &Subtarget = MF.getSubtarget<RISCVSubtarget>(); 15199 15200 // Target does not support load/store pair. 15201 if (!Subtarget.hasVendorXTHeadMemPair()) 15202 return SDValue(); 15203 15204 LSBaseSDNode *LSNode1 = cast<LSBaseSDNode>(N); 15205 EVT MemVT = LSNode1->getMemoryVT(); 15206 unsigned OpNum = LSNode1->getOpcode() == ISD::LOAD ? 1 : 2; 15207 15208 // No volatile, indexed or atomic loads/stores. 15209 if (!LSNode1->isSimple() || LSNode1->isIndexed()) 15210 return SDValue(); 15211 15212 // Function to get a base + constant representation from a memory value. 15213 auto ExtractBaseAndOffset = [](SDValue Ptr) -> std::pair<SDValue, uint64_t> { 15214 if (Ptr->getOpcode() == ISD::ADD) 15215 if (auto *C1 = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) 15216 return {Ptr->getOperand(0), C1->getZExtValue()}; 15217 return {Ptr, 0}; 15218 }; 15219 15220 auto [Base1, Offset1] = ExtractBaseAndOffset(LSNode1->getOperand(OpNum)); 15221 15222 SDValue Chain = N->getOperand(0); 15223 for (SDNode::use_iterator UI = Chain->use_begin(), UE = Chain->use_end(); 15224 UI != UE; ++UI) { 15225 SDUse &Use = UI.getUse(); 15226 if (Use.getUser() != N && Use.getResNo() == 0 && 15227 Use.getUser()->getOpcode() == N->getOpcode()) { 15228 LSBaseSDNode *LSNode2 = cast<LSBaseSDNode>(Use.getUser()); 15229 15230 // No volatile, indexed or atomic loads/stores. 15231 if (!LSNode2->isSimple() || LSNode2->isIndexed()) 15232 continue; 15233 15234 // Check if LSNode1 and LSNode2 have the same type and extension. 15235 if (LSNode1->getOpcode() == ISD::LOAD) 15236 if (cast<LoadSDNode>(LSNode2)->getExtensionType() != 15237 cast<LoadSDNode>(LSNode1)->getExtensionType()) 15238 continue; 15239 15240 if (LSNode1->getMemoryVT() != LSNode2->getMemoryVT()) 15241 continue; 15242 15243 auto [Base2, Offset2] = ExtractBaseAndOffset(LSNode2->getOperand(OpNum)); 15244 15245 // Check if the base pointer is the same for both instruction. 15246 if (Base1 != Base2) 15247 continue; 15248 15249 // Check if the offsets match the XTHeadMemPair encoding contraints. 15250 bool Valid = false; 15251 if (MemVT == MVT::i32) { 15252 // Check for adjacent i32 values and a 2-bit index. 15253 if ((Offset1 + 4 == Offset2) && isShiftedUInt<2, 3>(Offset1)) 15254 Valid = true; 15255 } else if (MemVT == MVT::i64) { 15256 // Check for adjacent i64 values and a 2-bit index. 15257 if ((Offset1 + 8 == Offset2) && isShiftedUInt<2, 4>(Offset1)) 15258 Valid = true; 15259 } 15260 15261 if (!Valid) 15262 continue; 15263 15264 // Try to combine. 15265 if (SDValue Res = 15266 tryMemPairCombine(DAG, LSNode1, LSNode2, Base1, Offset1)) 15267 return Res; 15268 } 15269 } 15270 15271 return SDValue(); 15272 } 15273 15274 // Fold 15275 // (fp_to_int (froundeven X)) -> fcvt X, rne 15276 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 15277 // (fp_to_int (ffloor X)) -> fcvt X, rdn 15278 // (fp_to_int (fceil X)) -> fcvt X, rup 15279 // (fp_to_int (fround X)) -> fcvt X, rmm 15280 // (fp_to_int (frint X)) -> fcvt X 15281 static SDValue performFP_TO_INTCombine(SDNode *N, 15282 TargetLowering::DAGCombinerInfo &DCI, 15283 const RISCVSubtarget &Subtarget) { 15284 SelectionDAG &DAG = DCI.DAG; 15285 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 15286 MVT XLenVT = Subtarget.getXLenVT(); 15287 15288 SDValue Src = N->getOperand(0); 15289 15290 // Don't do this for strict-fp Src. 15291 if (Src->isStrictFPOpcode() || Src->isTargetStrictFPOpcode()) 15292 return SDValue(); 15293 15294 // Ensure the FP type is legal. 15295 if (!TLI.isTypeLegal(Src.getValueType())) 15296 return SDValue(); 15297 15298 // Don't do this for f16 with Zfhmin and not Zfh. 15299 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 15300 return SDValue(); 15301 15302 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src.getOpcode()); 15303 // If the result is invalid, we didn't find a foldable instruction. 15304 if (FRM == RISCVFPRndMode::Invalid) 15305 return SDValue(); 15306 15307 SDLoc DL(N); 15308 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 15309 EVT VT = N->getValueType(0); 15310 15311 if (VT.isVector() && TLI.isTypeLegal(VT)) { 15312 MVT SrcVT = Src.getSimpleValueType(); 15313 MVT SrcContainerVT = SrcVT; 15314 MVT ContainerVT = VT.getSimpleVT(); 15315 SDValue XVal = Src.getOperand(0); 15316 15317 // For widening and narrowing conversions we just combine it into a 15318 // VFCVT_..._VL node, as there are no specific VFWCVT/VFNCVT VL nodes. They 15319 // end up getting lowered to their appropriate pseudo instructions based on 15320 // their operand types 15321 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits() * 2 || 15322 VT.getScalarSizeInBits() * 2 < SrcVT.getScalarSizeInBits()) 15323 return SDValue(); 15324 15325 // Make fixed-length vectors scalable first 15326 if (SrcVT.isFixedLengthVector()) { 15327 SrcContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget); 15328 XVal = convertToScalableVector(SrcContainerVT, XVal, DAG, Subtarget); 15329 ContainerVT = 15330 getContainerForFixedLengthVector(DAG, ContainerVT, Subtarget); 15331 } 15332 15333 auto [Mask, VL] = 15334 getDefaultVLOps(SrcVT, SrcContainerVT, DL, DAG, Subtarget); 15335 15336 SDValue FpToInt; 15337 if (FRM == RISCVFPRndMode::RTZ) { 15338 // Use the dedicated trunc static rounding mode if we're truncating so we 15339 // don't need to generate calls to fsrmi/fsrm 15340 unsigned Opc = 15341 IsSigned ? RISCVISD::VFCVT_RTZ_X_F_VL : RISCVISD::VFCVT_RTZ_XU_F_VL; 15342 FpToInt = DAG.getNode(Opc, DL, ContainerVT, XVal, Mask, VL); 15343 } else if (FRM == RISCVFPRndMode::DYN) { 15344 unsigned Opc = 15345 IsSigned ? RISCVISD::VFCVT_X_F_VL : RISCVISD::VFCVT_XU_F_VL; 15346 FpToInt = DAG.getNode(Opc, DL, ContainerVT, XVal, Mask, VL); 15347 } else { 15348 unsigned Opc = 15349 IsSigned ? RISCVISD::VFCVT_RM_X_F_VL : RISCVISD::VFCVT_RM_XU_F_VL; 15350 FpToInt = DAG.getNode(Opc, DL, ContainerVT, XVal, Mask, 15351 DAG.getTargetConstant(FRM, DL, XLenVT), VL); 15352 } 15353 15354 // If converted from fixed-length to scalable, convert back 15355 if (VT.isFixedLengthVector()) 15356 FpToInt = convertFromScalableVector(VT, FpToInt, DAG, Subtarget); 15357 15358 return FpToInt; 15359 } 15360 15361 // Only handle XLen or i32 types. Other types narrower than XLen will 15362 // eventually be legalized to XLenVT. 15363 if (VT != MVT::i32 && VT != XLenVT) 15364 return SDValue(); 15365 15366 unsigned Opc; 15367 if (VT == XLenVT) 15368 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 15369 else 15370 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 15371 15372 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 15373 DAG.getTargetConstant(FRM, DL, XLenVT)); 15374 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 15375 } 15376 15377 // Fold 15378 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 15379 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 15380 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 15381 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 15382 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 15383 // (fp_to_int_sat (frint X)) -> (select X == nan, 0, (fcvt X, dyn)) 15384 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 15385 TargetLowering::DAGCombinerInfo &DCI, 15386 const RISCVSubtarget &Subtarget) { 15387 SelectionDAG &DAG = DCI.DAG; 15388 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 15389 MVT XLenVT = Subtarget.getXLenVT(); 15390 15391 // Only handle XLen types. Other types narrower than XLen will eventually be 15392 // legalized to XLenVT. 15393 EVT DstVT = N->getValueType(0); 15394 if (DstVT != XLenVT) 15395 return SDValue(); 15396 15397 SDValue Src = N->getOperand(0); 15398 15399 // Don't do this for strict-fp Src. 15400 if (Src->isStrictFPOpcode() || Src->isTargetStrictFPOpcode()) 15401 return SDValue(); 15402 15403 // Ensure the FP type is also legal. 15404 if (!TLI.isTypeLegal(Src.getValueType())) 15405 return SDValue(); 15406 15407 // Don't do this for f16 with Zfhmin and not Zfh. 15408 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 15409 return SDValue(); 15410 15411 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 15412 15413 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src.getOpcode()); 15414 if (FRM == RISCVFPRndMode::Invalid) 15415 return SDValue(); 15416 15417 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 15418 15419 unsigned Opc; 15420 if (SatVT == DstVT) 15421 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 15422 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 15423 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 15424 else 15425 return SDValue(); 15426 // FIXME: Support other SatVTs by clamping before or after the conversion. 15427 15428 Src = Src.getOperand(0); 15429 15430 SDLoc DL(N); 15431 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 15432 DAG.getTargetConstant(FRM, DL, XLenVT)); 15433 15434 // fcvt.wu.* sign extends bit 31 on RV64. FP_TO_UINT_SAT expects to zero 15435 // extend. 15436 if (Opc == RISCVISD::FCVT_WU_RV64) 15437 FpToInt = DAG.getZeroExtendInReg(FpToInt, DL, MVT::i32); 15438 15439 // RISC-V FP-to-int conversions saturate to the destination register size, but 15440 // don't produce 0 for nan. 15441 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 15442 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 15443 } 15444 15445 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is 15446 // smaller than XLenVT. 15447 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG, 15448 const RISCVSubtarget &Subtarget) { 15449 assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); 15450 15451 SDValue Src = N->getOperand(0); 15452 if (Src.getOpcode() != ISD::BSWAP) 15453 return SDValue(); 15454 15455 EVT VT = N->getValueType(0); 15456 if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() || 15457 !llvm::has_single_bit<uint32_t>(VT.getSizeInBits())) 15458 return SDValue(); 15459 15460 SDLoc DL(N); 15461 return DAG.getNode(RISCVISD::BREV8, DL, VT, Src.getOperand(0)); 15462 } 15463 15464 // Convert from one FMA opcode to another based on whether we are negating the 15465 // multiply result and/or the accumulator. 15466 // NOTE: Only supports RVV operations with VL. 15467 static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc) { 15468 // Negating the multiply result changes ADD<->SUB and toggles 'N'. 15469 if (NegMul) { 15470 // clang-format off 15471 switch (Opcode) { 15472 default: llvm_unreachable("Unexpected opcode"); 15473 case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break; 15474 case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break; 15475 case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break; 15476 case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break; 15477 case RISCVISD::STRICT_VFMADD_VL: Opcode = RISCVISD::STRICT_VFNMSUB_VL; break; 15478 case RISCVISD::STRICT_VFNMSUB_VL: Opcode = RISCVISD::STRICT_VFMADD_VL; break; 15479 case RISCVISD::STRICT_VFNMADD_VL: Opcode = RISCVISD::STRICT_VFMSUB_VL; break; 15480 case RISCVISD::STRICT_VFMSUB_VL: Opcode = RISCVISD::STRICT_VFNMADD_VL; break; 15481 } 15482 // clang-format on 15483 } 15484 15485 // Negating the accumulator changes ADD<->SUB. 15486 if (NegAcc) { 15487 // clang-format off 15488 switch (Opcode) { 15489 default: llvm_unreachable("Unexpected opcode"); 15490 case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break; 15491 case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break; 15492 case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break; 15493 case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break; 15494 case RISCVISD::STRICT_VFMADD_VL: Opcode = RISCVISD::STRICT_VFMSUB_VL; break; 15495 case RISCVISD::STRICT_VFMSUB_VL: Opcode = RISCVISD::STRICT_VFMADD_VL; break; 15496 case RISCVISD::STRICT_VFNMADD_VL: Opcode = RISCVISD::STRICT_VFNMSUB_VL; break; 15497 case RISCVISD::STRICT_VFNMSUB_VL: Opcode = RISCVISD::STRICT_VFNMADD_VL; break; 15498 } 15499 // clang-format on 15500 } 15501 15502 return Opcode; 15503 } 15504 15505 static SDValue combineVFMADD_VLWithVFNEG_VL(SDNode *N, SelectionDAG &DAG) { 15506 // Fold FNEG_VL into FMA opcodes. 15507 // The first operand of strict-fp is chain. 15508 unsigned Offset = N->isTargetStrictFPOpcode(); 15509 SDValue A = N->getOperand(0 + Offset); 15510 SDValue B = N->getOperand(1 + Offset); 15511 SDValue C = N->getOperand(2 + Offset); 15512 SDValue Mask = N->getOperand(3 + Offset); 15513 SDValue VL = N->getOperand(4 + Offset); 15514 15515 auto invertIfNegative = [&Mask, &VL](SDValue &V) { 15516 if (V.getOpcode() == RISCVISD::FNEG_VL && V.getOperand(1) == Mask && 15517 V.getOperand(2) == VL) { 15518 // Return the negated input. 15519 V = V.getOperand(0); 15520 return true; 15521 } 15522 15523 return false; 15524 }; 15525 15526 bool NegA = invertIfNegative(A); 15527 bool NegB = invertIfNegative(B); 15528 bool NegC = invertIfNegative(C); 15529 15530 // If no operands are negated, we're done. 15531 if (!NegA && !NegB && !NegC) 15532 return SDValue(); 15533 15534 unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC); 15535 if (N->isTargetStrictFPOpcode()) 15536 return DAG.getNode(NewOpcode, SDLoc(N), N->getVTList(), 15537 {N->getOperand(0), A, B, C, Mask, VL}); 15538 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), A, B, C, Mask, 15539 VL); 15540 } 15541 15542 static SDValue performVFMADD_VLCombine(SDNode *N, SelectionDAG &DAG, 15543 const RISCVSubtarget &Subtarget) { 15544 if (SDValue V = combineVFMADD_VLWithVFNEG_VL(N, DAG)) 15545 return V; 15546 15547 if (N->getValueType(0).getVectorElementType() == MVT::f32 && 15548 !Subtarget.hasVInstructionsF16()) 15549 return SDValue(); 15550 15551 // FIXME: Ignore strict opcodes for now. 15552 if (N->isTargetStrictFPOpcode()) 15553 return SDValue(); 15554 15555 // Try to form widening FMA. 15556 SDValue Op0 = N->getOperand(0); 15557 SDValue Op1 = N->getOperand(1); 15558 SDValue Mask = N->getOperand(3); 15559 SDValue VL = N->getOperand(4); 15560 15561 if (Op0.getOpcode() != RISCVISD::FP_EXTEND_VL || 15562 Op1.getOpcode() != RISCVISD::FP_EXTEND_VL) 15563 return SDValue(); 15564 15565 // TODO: Refactor to handle more complex cases similar to 15566 // combineBinOp_VLToVWBinOp_VL. 15567 if ((!Op0.hasOneUse() || !Op1.hasOneUse()) && 15568 (Op0 != Op1 || !Op0->hasNUsesOfValue(2, 0))) 15569 return SDValue(); 15570 15571 // Check the mask and VL are the same. 15572 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL || 15573 Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 15574 return SDValue(); 15575 15576 unsigned NewOpc; 15577 switch (N->getOpcode()) { 15578 default: 15579 llvm_unreachable("Unexpected opcode"); 15580 case RISCVISD::VFMADD_VL: 15581 NewOpc = RISCVISD::VFWMADD_VL; 15582 break; 15583 case RISCVISD::VFNMSUB_VL: 15584 NewOpc = RISCVISD::VFWNMSUB_VL; 15585 break; 15586 case RISCVISD::VFNMADD_VL: 15587 NewOpc = RISCVISD::VFWNMADD_VL; 15588 break; 15589 case RISCVISD::VFMSUB_VL: 15590 NewOpc = RISCVISD::VFWMSUB_VL; 15591 break; 15592 } 15593 15594 Op0 = Op0.getOperand(0); 15595 Op1 = Op1.getOperand(0); 15596 15597 return DAG.getNode(NewOpc, SDLoc(N), N->getValueType(0), Op0, Op1, 15598 N->getOperand(2), Mask, VL); 15599 } 15600 15601 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG, 15602 const RISCVSubtarget &Subtarget) { 15603 assert(N->getOpcode() == ISD::SRA && "Unexpected opcode"); 15604 15605 if (N->getValueType(0) != MVT::i64 || !Subtarget.is64Bit()) 15606 return SDValue(); 15607 15608 if (!isa<ConstantSDNode>(N->getOperand(1))) 15609 return SDValue(); 15610 uint64_t ShAmt = N->getConstantOperandVal(1); 15611 if (ShAmt > 32) 15612 return SDValue(); 15613 15614 SDValue N0 = N->getOperand(0); 15615 15616 // Combine (sra (sext_inreg (shl X, C1), i32), C2) -> 15617 // (sra (shl X, C1+32), C2+32) so it gets selected as SLLI+SRAI instead of 15618 // SLLIW+SRAIW. SLLI+SRAI have compressed forms. 15619 if (ShAmt < 32 && 15620 N0.getOpcode() == ISD::SIGN_EXTEND_INREG && N0.hasOneUse() && 15621 cast<VTSDNode>(N0.getOperand(1))->getVT() == MVT::i32 && 15622 N0.getOperand(0).getOpcode() == ISD::SHL && N0.getOperand(0).hasOneUse() && 15623 isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) { 15624 uint64_t LShAmt = N0.getOperand(0).getConstantOperandVal(1); 15625 if (LShAmt < 32) { 15626 SDLoc ShlDL(N0.getOperand(0)); 15627 SDValue Shl = DAG.getNode(ISD::SHL, ShlDL, MVT::i64, 15628 N0.getOperand(0).getOperand(0), 15629 DAG.getConstant(LShAmt + 32, ShlDL, MVT::i64)); 15630 SDLoc DL(N); 15631 return DAG.getNode(ISD::SRA, DL, MVT::i64, Shl, 15632 DAG.getConstant(ShAmt + 32, DL, MVT::i64)); 15633 } 15634 } 15635 15636 // Combine (sra (shl X, 32), 32 - C) -> (shl (sext_inreg X, i32), C) 15637 // FIXME: Should this be a generic combine? There's a similar combine on X86. 15638 // 15639 // Also try these folds where an add or sub is in the middle. 15640 // (sra (add (shl X, 32), C1), 32 - C) -> (shl (sext_inreg (add X, C1), C) 15641 // (sra (sub C1, (shl X, 32)), 32 - C) -> (shl (sext_inreg (sub C1, X), C) 15642 SDValue Shl; 15643 ConstantSDNode *AddC = nullptr; 15644 15645 // We might have an ADD or SUB between the SRA and SHL. 15646 bool IsAdd = N0.getOpcode() == ISD::ADD; 15647 if ((IsAdd || N0.getOpcode() == ISD::SUB)) { 15648 // Other operand needs to be a constant we can modify. 15649 AddC = dyn_cast<ConstantSDNode>(N0.getOperand(IsAdd ? 1 : 0)); 15650 if (!AddC) 15651 return SDValue(); 15652 15653 // AddC needs to have at least 32 trailing zeros. 15654 if (AddC->getAPIntValue().countr_zero() < 32) 15655 return SDValue(); 15656 15657 // All users should be a shift by constant less than or equal to 32. This 15658 // ensures we'll do this optimization for each of them to produce an 15659 // add/sub+sext_inreg they can all share. 15660 for (SDNode *U : N0->uses()) { 15661 if (U->getOpcode() != ISD::SRA || 15662 !isa<ConstantSDNode>(U->getOperand(1)) || 15663 U->getConstantOperandVal(1) > 32) 15664 return SDValue(); 15665 } 15666 15667 Shl = N0.getOperand(IsAdd ? 0 : 1); 15668 } else { 15669 // Not an ADD or SUB. 15670 Shl = N0; 15671 } 15672 15673 // Look for a shift left by 32. 15674 if (Shl.getOpcode() != ISD::SHL || !isa<ConstantSDNode>(Shl.getOperand(1)) || 15675 Shl.getConstantOperandVal(1) != 32) 15676 return SDValue(); 15677 15678 // We if we didn't look through an add/sub, then the shl should have one use. 15679 // If we did look through an add/sub, the sext_inreg we create is free so 15680 // we're only creating 2 new instructions. It's enough to only remove the 15681 // original sra+add/sub. 15682 if (!AddC && !Shl.hasOneUse()) 15683 return SDValue(); 15684 15685 SDLoc DL(N); 15686 SDValue In = Shl.getOperand(0); 15687 15688 // If we looked through an ADD or SUB, we need to rebuild it with the shifted 15689 // constant. 15690 if (AddC) { 15691 SDValue ShiftedAddC = 15692 DAG.getConstant(AddC->getAPIntValue().lshr(32), DL, MVT::i64); 15693 if (IsAdd) 15694 In = DAG.getNode(ISD::ADD, DL, MVT::i64, In, ShiftedAddC); 15695 else 15696 In = DAG.getNode(ISD::SUB, DL, MVT::i64, ShiftedAddC, In); 15697 } 15698 15699 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, In, 15700 DAG.getValueType(MVT::i32)); 15701 if (ShAmt == 32) 15702 return SExt; 15703 15704 return DAG.getNode( 15705 ISD::SHL, DL, MVT::i64, SExt, 15706 DAG.getConstant(32 - ShAmt, DL, MVT::i64)); 15707 } 15708 15709 // Invert (and/or (set cc X, Y), (xor Z, 1)) to (or/and (set !cc X, Y)), Z) if 15710 // the result is used as the conditon of a br_cc or select_cc we can invert, 15711 // inverting the setcc is free, and Z is 0/1. Caller will invert the 15712 // br_cc/select_cc. 15713 static SDValue tryDemorganOfBooleanCondition(SDValue Cond, SelectionDAG &DAG) { 15714 bool IsAnd = Cond.getOpcode() == ISD::AND; 15715 if (!IsAnd && Cond.getOpcode() != ISD::OR) 15716 return SDValue(); 15717 15718 if (!Cond.hasOneUse()) 15719 return SDValue(); 15720 15721 SDValue Setcc = Cond.getOperand(0); 15722 SDValue Xor = Cond.getOperand(1); 15723 // Canonicalize setcc to LHS. 15724 if (Setcc.getOpcode() != ISD::SETCC) 15725 std::swap(Setcc, Xor); 15726 // LHS should be a setcc and RHS should be an xor. 15727 if (Setcc.getOpcode() != ISD::SETCC || !Setcc.hasOneUse() || 15728 Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) 15729 return SDValue(); 15730 15731 // If the condition is an And, SimplifyDemandedBits may have changed 15732 // (xor Z, 1) to (not Z). 15733 SDValue Xor1 = Xor.getOperand(1); 15734 if (!isOneConstant(Xor1) && !(IsAnd && isAllOnesConstant(Xor1))) 15735 return SDValue(); 15736 15737 EVT VT = Cond.getValueType(); 15738 SDValue Xor0 = Xor.getOperand(0); 15739 15740 // The LHS of the xor needs to be 0/1. 15741 APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1); 15742 if (!DAG.MaskedValueIsZero(Xor0, Mask)) 15743 return SDValue(); 15744 15745 // We can only invert integer setccs. 15746 EVT SetCCOpVT = Setcc.getOperand(0).getValueType(); 15747 if (!SetCCOpVT.isScalarInteger()) 15748 return SDValue(); 15749 15750 ISD::CondCode CCVal = cast<CondCodeSDNode>(Setcc.getOperand(2))->get(); 15751 if (ISD::isIntEqualitySetCC(CCVal)) { 15752 CCVal = ISD::getSetCCInverse(CCVal, SetCCOpVT); 15753 Setcc = DAG.getSetCC(SDLoc(Setcc), VT, Setcc.getOperand(0), 15754 Setcc.getOperand(1), CCVal); 15755 } else if (CCVal == ISD::SETLT && isNullConstant(Setcc.getOperand(0))) { 15756 // Invert (setlt 0, X) by converting to (setlt X, 1). 15757 Setcc = DAG.getSetCC(SDLoc(Setcc), VT, Setcc.getOperand(1), 15758 DAG.getConstant(1, SDLoc(Setcc), VT), CCVal); 15759 } else if (CCVal == ISD::SETLT && isOneConstant(Setcc.getOperand(1))) { 15760 // (setlt X, 1) by converting to (setlt 0, X). 15761 Setcc = DAG.getSetCC(SDLoc(Setcc), VT, 15762 DAG.getConstant(0, SDLoc(Setcc), VT), 15763 Setcc.getOperand(0), CCVal); 15764 } else 15765 return SDValue(); 15766 15767 unsigned Opc = IsAnd ? ISD::OR : ISD::AND; 15768 return DAG.getNode(Opc, SDLoc(Cond), VT, Setcc, Xor.getOperand(0)); 15769 } 15770 15771 // Perform common combines for BR_CC and SELECT_CC condtions. 15772 static bool combine_CC(SDValue &LHS, SDValue &RHS, SDValue &CC, const SDLoc &DL, 15773 SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { 15774 ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get(); 15775 15776 // As far as arithmetic right shift always saves the sign, 15777 // shift can be omitted. 15778 // Fold setlt (sra X, N), 0 -> setlt X, 0 and 15779 // setge (sra X, N), 0 -> setge X, 0 15780 if (isNullConstant(RHS) && (CCVal == ISD::SETGE || CCVal == ISD::SETLT) && 15781 LHS.getOpcode() == ISD::SRA) { 15782 LHS = LHS.getOperand(0); 15783 return true; 15784 } 15785 15786 if (!ISD::isIntEqualitySetCC(CCVal)) 15787 return false; 15788 15789 // Fold ((setlt X, Y), 0, ne) -> (X, Y, lt) 15790 // Sometimes the setcc is introduced after br_cc/select_cc has been formed. 15791 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 15792 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 15793 // If we're looking for eq 0 instead of ne 0, we need to invert the 15794 // condition. 15795 bool Invert = CCVal == ISD::SETEQ; 15796 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 15797 if (Invert) 15798 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 15799 15800 RHS = LHS.getOperand(1); 15801 LHS = LHS.getOperand(0); 15802 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 15803 15804 CC = DAG.getCondCode(CCVal); 15805 return true; 15806 } 15807 15808 // Fold ((xor X, Y), 0, eq/ne) -> (X, Y, eq/ne) 15809 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) { 15810 RHS = LHS.getOperand(1); 15811 LHS = LHS.getOperand(0); 15812 return true; 15813 } 15814 15815 // Fold ((srl (and X, 1<<C), C), 0, eq/ne) -> ((shl X, XLen-1-C), 0, ge/lt) 15816 if (isNullConstant(RHS) && LHS.getOpcode() == ISD::SRL && LHS.hasOneUse() && 15817 LHS.getOperand(1).getOpcode() == ISD::Constant) { 15818 SDValue LHS0 = LHS.getOperand(0); 15819 if (LHS0.getOpcode() == ISD::AND && 15820 LHS0.getOperand(1).getOpcode() == ISD::Constant) { 15821 uint64_t Mask = LHS0.getConstantOperandVal(1); 15822 uint64_t ShAmt = LHS.getConstantOperandVal(1); 15823 if (isPowerOf2_64(Mask) && Log2_64(Mask) == ShAmt) { 15824 CCVal = CCVal == ISD::SETEQ ? ISD::SETGE : ISD::SETLT; 15825 CC = DAG.getCondCode(CCVal); 15826 15827 ShAmt = LHS.getValueSizeInBits() - 1 - ShAmt; 15828 LHS = LHS0.getOperand(0); 15829 if (ShAmt != 0) 15830 LHS = 15831 DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS0.getOperand(0), 15832 DAG.getConstant(ShAmt, DL, LHS.getValueType())); 15833 return true; 15834 } 15835 } 15836 } 15837 15838 // (X, 1, setne) -> // (X, 0, seteq) if we can prove X is 0/1. 15839 // This can occur when legalizing some floating point comparisons. 15840 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 15841 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 15842 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 15843 CC = DAG.getCondCode(CCVal); 15844 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 15845 return true; 15846 } 15847 15848 if (isNullConstant(RHS)) { 15849 if (SDValue NewCond = tryDemorganOfBooleanCondition(LHS, DAG)) { 15850 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 15851 CC = DAG.getCondCode(CCVal); 15852 LHS = NewCond; 15853 return true; 15854 } 15855 } 15856 15857 return false; 15858 } 15859 15860 // Fold 15861 // (select C, (add Y, X), Y) -> (add Y, (select C, X, 0)). 15862 // (select C, (sub Y, X), Y) -> (sub Y, (select C, X, 0)). 15863 // (select C, (or Y, X), Y) -> (or Y, (select C, X, 0)). 15864 // (select C, (xor Y, X), Y) -> (xor Y, (select C, X, 0)). 15865 static SDValue tryFoldSelectIntoOp(SDNode *N, SelectionDAG &DAG, 15866 SDValue TrueVal, SDValue FalseVal, 15867 bool Swapped) { 15868 bool Commutative = true; 15869 unsigned Opc = TrueVal.getOpcode(); 15870 switch (Opc) { 15871 default: 15872 return SDValue(); 15873 case ISD::SHL: 15874 case ISD::SRA: 15875 case ISD::SRL: 15876 case ISD::SUB: 15877 Commutative = false; 15878 break; 15879 case ISD::ADD: 15880 case ISD::OR: 15881 case ISD::XOR: 15882 break; 15883 } 15884 15885 if (!TrueVal.hasOneUse() || isa<ConstantSDNode>(FalseVal)) 15886 return SDValue(); 15887 15888 unsigned OpToFold; 15889 if (FalseVal == TrueVal.getOperand(0)) 15890 OpToFold = 0; 15891 else if (Commutative && FalseVal == TrueVal.getOperand(1)) 15892 OpToFold = 1; 15893 else 15894 return SDValue(); 15895 15896 EVT VT = N->getValueType(0); 15897 SDLoc DL(N); 15898 SDValue OtherOp = TrueVal.getOperand(1 - OpToFold); 15899 EVT OtherOpVT = OtherOp.getValueType(); 15900 SDValue IdentityOperand = 15901 DAG.getNeutralElement(Opc, DL, OtherOpVT, N->getFlags()); 15902 if (!Commutative) 15903 IdentityOperand = DAG.getConstant(0, DL, OtherOpVT); 15904 assert(IdentityOperand && "No identity operand!"); 15905 15906 if (Swapped) 15907 std::swap(OtherOp, IdentityOperand); 15908 SDValue NewSel = 15909 DAG.getSelect(DL, OtherOpVT, N->getOperand(0), OtherOp, IdentityOperand); 15910 return DAG.getNode(TrueVal.getOpcode(), DL, VT, FalseVal, NewSel); 15911 } 15912 15913 // This tries to get rid of `select` and `icmp` that are being used to handle 15914 // `Targets` that do not support `cttz(0)`/`ctlz(0)`. 15915 static SDValue foldSelectOfCTTZOrCTLZ(SDNode *N, SelectionDAG &DAG) { 15916 SDValue Cond = N->getOperand(0); 15917 15918 // This represents either CTTZ or CTLZ instruction. 15919 SDValue CountZeroes; 15920 15921 SDValue ValOnZero; 15922 15923 if (Cond.getOpcode() != ISD::SETCC) 15924 return SDValue(); 15925 15926 if (!isNullConstant(Cond->getOperand(1))) 15927 return SDValue(); 15928 15929 ISD::CondCode CCVal = cast<CondCodeSDNode>(Cond->getOperand(2))->get(); 15930 if (CCVal == ISD::CondCode::SETEQ) { 15931 CountZeroes = N->getOperand(2); 15932 ValOnZero = N->getOperand(1); 15933 } else if (CCVal == ISD::CondCode::SETNE) { 15934 CountZeroes = N->getOperand(1); 15935 ValOnZero = N->getOperand(2); 15936 } else { 15937 return SDValue(); 15938 } 15939 15940 if (CountZeroes.getOpcode() == ISD::TRUNCATE || 15941 CountZeroes.getOpcode() == ISD::ZERO_EXTEND) 15942 CountZeroes = CountZeroes.getOperand(0); 15943 15944 if (CountZeroes.getOpcode() != ISD::CTTZ && 15945 CountZeroes.getOpcode() != ISD::CTTZ_ZERO_UNDEF && 15946 CountZeroes.getOpcode() != ISD::CTLZ && 15947 CountZeroes.getOpcode() != ISD::CTLZ_ZERO_UNDEF) 15948 return SDValue(); 15949 15950 if (!isNullConstant(ValOnZero)) 15951 return SDValue(); 15952 15953 SDValue CountZeroesArgument = CountZeroes->getOperand(0); 15954 if (Cond->getOperand(0) != CountZeroesArgument) 15955 return SDValue(); 15956 15957 if (CountZeroes.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 15958 CountZeroes = DAG.getNode(ISD::CTTZ, SDLoc(CountZeroes), 15959 CountZeroes.getValueType(), CountZeroesArgument); 15960 } else if (CountZeroes.getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 15961 CountZeroes = DAG.getNode(ISD::CTLZ, SDLoc(CountZeroes), 15962 CountZeroes.getValueType(), CountZeroesArgument); 15963 } 15964 15965 unsigned BitWidth = CountZeroes.getValueSizeInBits(); 15966 SDValue BitWidthMinusOne = 15967 DAG.getConstant(BitWidth - 1, SDLoc(N), CountZeroes.getValueType()); 15968 15969 auto AndNode = DAG.getNode(ISD::AND, SDLoc(N), CountZeroes.getValueType(), 15970 CountZeroes, BitWidthMinusOne); 15971 return DAG.getZExtOrTrunc(AndNode, SDLoc(N), N->getValueType(0)); 15972 } 15973 15974 static SDValue useInversedSetcc(SDNode *N, SelectionDAG &DAG, 15975 const RISCVSubtarget &Subtarget) { 15976 SDValue Cond = N->getOperand(0); 15977 SDValue True = N->getOperand(1); 15978 SDValue False = N->getOperand(2); 15979 SDLoc DL(N); 15980 EVT VT = N->getValueType(0); 15981 EVT CondVT = Cond.getValueType(); 15982 15983 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 15984 return SDValue(); 15985 15986 // Replace (setcc eq (and x, C)) with (setcc ne (and x, C))) to generate 15987 // BEXTI, where C is power of 2. 15988 if (Subtarget.hasStdExtZbs() && VT.isScalarInteger() && 15989 (Subtarget.hasStdExtZicond() || Subtarget.hasVendorXVentanaCondOps())) { 15990 SDValue LHS = Cond.getOperand(0); 15991 SDValue RHS = Cond.getOperand(1); 15992 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 15993 if (CC == ISD::SETEQ && LHS.getOpcode() == ISD::AND && 15994 isa<ConstantSDNode>(LHS.getOperand(1)) && isNullConstant(RHS)) { 15995 const APInt &MaskVal = LHS.getConstantOperandAPInt(1); 15996 if (MaskVal.isPowerOf2() && !MaskVal.isSignedIntN(12)) 15997 return DAG.getSelect(DL, VT, 15998 DAG.getSetCC(DL, CondVT, LHS, RHS, ISD::SETNE), 15999 False, True); 16000 } 16001 } 16002 return SDValue(); 16003 } 16004 16005 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG, 16006 const RISCVSubtarget &Subtarget) { 16007 if (SDValue Folded = foldSelectOfCTTZOrCTLZ(N, DAG)) 16008 return Folded; 16009 16010 if (SDValue V = useInversedSetcc(N, DAG, Subtarget)) 16011 return V; 16012 16013 if (Subtarget.hasConditionalMoveFusion()) 16014 return SDValue(); 16015 16016 SDValue TrueVal = N->getOperand(1); 16017 SDValue FalseVal = N->getOperand(2); 16018 if (SDValue V = tryFoldSelectIntoOp(N, DAG, TrueVal, FalseVal, /*Swapped*/false)) 16019 return V; 16020 return tryFoldSelectIntoOp(N, DAG, FalseVal, TrueVal, /*Swapped*/true); 16021 } 16022 16023 /// If we have a build_vector where each lane is binop X, C, where C 16024 /// is a constant (but not necessarily the same constant on all lanes), 16025 /// form binop (build_vector x1, x2, ...), (build_vector c1, c2, c3, ..). 16026 /// We assume that materializing a constant build vector will be no more 16027 /// expensive that performing O(n) binops. 16028 static SDValue performBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG, 16029 const RISCVSubtarget &Subtarget, 16030 const RISCVTargetLowering &TLI) { 16031 SDLoc DL(N); 16032 EVT VT = N->getValueType(0); 16033 16034 assert(!VT.isScalableVector() && "unexpected build vector"); 16035 16036 if (VT.getVectorNumElements() == 1) 16037 return SDValue(); 16038 16039 const unsigned Opcode = N->op_begin()->getNode()->getOpcode(); 16040 if (!TLI.isBinOp(Opcode)) 16041 return SDValue(); 16042 16043 if (!TLI.isOperationLegalOrCustom(Opcode, VT) || !TLI.isTypeLegal(VT)) 16044 return SDValue(); 16045 16046 // This BUILD_VECTOR involves an implicit truncation, and sinking 16047 // truncates through binops is non-trivial. 16048 if (N->op_begin()->getValueType() != VT.getVectorElementType()) 16049 return SDValue(); 16050 16051 SmallVector<SDValue> LHSOps; 16052 SmallVector<SDValue> RHSOps; 16053 for (SDValue Op : N->ops()) { 16054 if (Op.isUndef()) { 16055 // We can't form a divide or remainder from undef. 16056 if (!DAG.isSafeToSpeculativelyExecute(Opcode)) 16057 return SDValue(); 16058 16059 LHSOps.push_back(Op); 16060 RHSOps.push_back(Op); 16061 continue; 16062 } 16063 16064 // TODO: We can handle operations which have an neutral rhs value 16065 // (e.g. x + 0, a * 1 or a << 0), but we then have to keep track 16066 // of profit in a more explicit manner. 16067 if (Op.getOpcode() != Opcode || !Op.hasOneUse()) 16068 return SDValue(); 16069 16070 LHSOps.push_back(Op.getOperand(0)); 16071 if (!isa<ConstantSDNode>(Op.getOperand(1)) && 16072 !isa<ConstantFPSDNode>(Op.getOperand(1))) 16073 return SDValue(); 16074 // FIXME: Return failure if the RHS type doesn't match the LHS. Shifts may 16075 // have different LHS and RHS types. 16076 if (Op.getOperand(0).getValueType() != Op.getOperand(1).getValueType()) 16077 return SDValue(); 16078 16079 RHSOps.push_back(Op.getOperand(1)); 16080 } 16081 16082 return DAG.getNode(Opcode, DL, VT, DAG.getBuildVector(VT, DL, LHSOps), 16083 DAG.getBuildVector(VT, DL, RHSOps)); 16084 } 16085 16086 static SDValue performINSERT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, 16087 const RISCVSubtarget &Subtarget, 16088 const RISCVTargetLowering &TLI) { 16089 SDValue InVec = N->getOperand(0); 16090 SDValue InVal = N->getOperand(1); 16091 SDValue EltNo = N->getOperand(2); 16092 SDLoc DL(N); 16093 16094 EVT VT = InVec.getValueType(); 16095 if (VT.isScalableVector()) 16096 return SDValue(); 16097 16098 if (!InVec.hasOneUse()) 16099 return SDValue(); 16100 16101 // Given insert_vector_elt (binop a, VecC), (same_binop b, C2), Elt 16102 // move the insert_vector_elts into the arms of the binop. Note that 16103 // the new RHS must be a constant. 16104 const unsigned InVecOpcode = InVec->getOpcode(); 16105 if (InVecOpcode == InVal->getOpcode() && TLI.isBinOp(InVecOpcode) && 16106 InVal.hasOneUse()) { 16107 SDValue InVecLHS = InVec->getOperand(0); 16108 SDValue InVecRHS = InVec->getOperand(1); 16109 SDValue InValLHS = InVal->getOperand(0); 16110 SDValue InValRHS = InVal->getOperand(1); 16111 16112 if (!ISD::isBuildVectorOfConstantSDNodes(InVecRHS.getNode())) 16113 return SDValue(); 16114 if (!isa<ConstantSDNode>(InValRHS) && !isa<ConstantFPSDNode>(InValRHS)) 16115 return SDValue(); 16116 // FIXME: Return failure if the RHS type doesn't match the LHS. Shifts may 16117 // have different LHS and RHS types. 16118 if (InVec.getOperand(0).getValueType() != InVec.getOperand(1).getValueType()) 16119 return SDValue(); 16120 SDValue LHS = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, 16121 InVecLHS, InValLHS, EltNo); 16122 SDValue RHS = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, 16123 InVecRHS, InValRHS, EltNo); 16124 return DAG.getNode(InVecOpcode, DL, VT, LHS, RHS); 16125 } 16126 16127 // Given insert_vector_elt (concat_vectors ...), InVal, Elt 16128 // move the insert_vector_elt to the source operand of the concat_vector. 16129 if (InVec.getOpcode() != ISD::CONCAT_VECTORS) 16130 return SDValue(); 16131 16132 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); 16133 if (!IndexC) 16134 return SDValue(); 16135 unsigned Elt = IndexC->getZExtValue(); 16136 16137 EVT ConcatVT = InVec.getOperand(0).getValueType(); 16138 if (ConcatVT.getVectorElementType() != InVal.getValueType()) 16139 return SDValue(); 16140 unsigned ConcatNumElts = ConcatVT.getVectorNumElements(); 16141 SDValue NewIdx = DAG.getVectorIdxConstant(Elt % ConcatNumElts, DL); 16142 16143 unsigned ConcatOpIdx = Elt / ConcatNumElts; 16144 SDValue ConcatOp = InVec.getOperand(ConcatOpIdx); 16145 ConcatOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ConcatVT, 16146 ConcatOp, InVal, NewIdx); 16147 16148 SmallVector<SDValue> ConcatOps; 16149 ConcatOps.append(InVec->op_begin(), InVec->op_end()); 16150 ConcatOps[ConcatOpIdx] = ConcatOp; 16151 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 16152 } 16153 16154 // If we're concatenating a series of vector loads like 16155 // concat_vectors (load v4i8, p+0), (load v4i8, p+n), (load v4i8, p+n*2) ... 16156 // Then we can turn this into a strided load by widening the vector elements 16157 // vlse32 p, stride=n 16158 static SDValue performCONCAT_VECTORSCombine(SDNode *N, SelectionDAG &DAG, 16159 const RISCVSubtarget &Subtarget, 16160 const RISCVTargetLowering &TLI) { 16161 SDLoc DL(N); 16162 EVT VT = N->getValueType(0); 16163 16164 // Only perform this combine on legal MVTs. 16165 if (!TLI.isTypeLegal(VT)) 16166 return SDValue(); 16167 16168 // TODO: Potentially extend this to scalable vectors 16169 if (VT.isScalableVector()) 16170 return SDValue(); 16171 16172 auto *BaseLd = dyn_cast<LoadSDNode>(N->getOperand(0)); 16173 if (!BaseLd || !BaseLd->isSimple() || !ISD::isNormalLoad(BaseLd) || 16174 !SDValue(BaseLd, 0).hasOneUse()) 16175 return SDValue(); 16176 16177 EVT BaseLdVT = BaseLd->getValueType(0); 16178 16179 // Go through the loads and check that they're strided 16180 SmallVector<LoadSDNode *> Lds; 16181 Lds.push_back(BaseLd); 16182 Align Align = BaseLd->getAlign(); 16183 for (SDValue Op : N->ops().drop_front()) { 16184 auto *Ld = dyn_cast<LoadSDNode>(Op); 16185 if (!Ld || !Ld->isSimple() || !Op.hasOneUse() || 16186 Ld->getChain() != BaseLd->getChain() || !ISD::isNormalLoad(Ld) || 16187 Ld->getValueType(0) != BaseLdVT) 16188 return SDValue(); 16189 16190 Lds.push_back(Ld); 16191 16192 // The common alignment is the most restrictive (smallest) of all the loads 16193 Align = std::min(Align, Ld->getAlign()); 16194 } 16195 16196 using PtrDiff = std::pair<std::variant<int64_t, SDValue>, bool>; 16197 auto GetPtrDiff = [&DAG](LoadSDNode *Ld1, 16198 LoadSDNode *Ld2) -> std::optional<PtrDiff> { 16199 // If the load ptrs can be decomposed into a common (Base + Index) with a 16200 // common constant stride, then return the constant stride. 16201 BaseIndexOffset BIO1 = BaseIndexOffset::match(Ld1, DAG); 16202 BaseIndexOffset BIO2 = BaseIndexOffset::match(Ld2, DAG); 16203 if (BIO1.equalBaseIndex(BIO2, DAG)) 16204 return {{BIO2.getOffset() - BIO1.getOffset(), false}}; 16205 16206 // Otherwise try to match (add LastPtr, Stride) or (add NextPtr, Stride) 16207 SDValue P1 = Ld1->getBasePtr(); 16208 SDValue P2 = Ld2->getBasePtr(); 16209 if (P2.getOpcode() == ISD::ADD && P2.getOperand(0) == P1) 16210 return {{P2.getOperand(1), false}}; 16211 if (P1.getOpcode() == ISD::ADD && P1.getOperand(0) == P2) 16212 return {{P1.getOperand(1), true}}; 16213 16214 return std::nullopt; 16215 }; 16216 16217 // Get the distance between the first and second loads 16218 auto BaseDiff = GetPtrDiff(Lds[0], Lds[1]); 16219 if (!BaseDiff) 16220 return SDValue(); 16221 16222 // Check all the loads are the same distance apart 16223 for (auto *It = Lds.begin() + 1; It != Lds.end() - 1; It++) 16224 if (GetPtrDiff(*It, *std::next(It)) != BaseDiff) 16225 return SDValue(); 16226 16227 // TODO: At this point, we've successfully matched a generalized gather 16228 // load. Maybe we should emit that, and then move the specialized 16229 // matchers above and below into a DAG combine? 16230 16231 // Get the widened scalar type, e.g. v4i8 -> i64 16232 unsigned WideScalarBitWidth = 16233 BaseLdVT.getScalarSizeInBits() * BaseLdVT.getVectorNumElements(); 16234 MVT WideScalarVT = MVT::getIntegerVT(WideScalarBitWidth); 16235 16236 // Get the vector type for the strided load, e.g. 4 x v4i8 -> v4i64 16237 MVT WideVecVT = MVT::getVectorVT(WideScalarVT, N->getNumOperands()); 16238 if (!TLI.isTypeLegal(WideVecVT)) 16239 return SDValue(); 16240 16241 // Check that the operation is legal 16242 if (!TLI.isLegalStridedLoadStore(WideVecVT, Align)) 16243 return SDValue(); 16244 16245 auto [StrideVariant, MustNegateStride] = *BaseDiff; 16246 SDValue Stride = std::holds_alternative<SDValue>(StrideVariant) 16247 ? std::get<SDValue>(StrideVariant) 16248 : DAG.getConstant(std::get<int64_t>(StrideVariant), DL, 16249 Lds[0]->getOffset().getValueType()); 16250 if (MustNegateStride) 16251 Stride = DAG.getNegative(Stride, DL, Stride.getValueType()); 16252 16253 SDValue AllOneMask = 16254 DAG.getSplat(WideVecVT.changeVectorElementType(MVT::i1), DL, 16255 DAG.getConstant(1, DL, MVT::i1)); 16256 16257 uint64_t MemSize; 16258 if (auto *ConstStride = dyn_cast<ConstantSDNode>(Stride); 16259 ConstStride && ConstStride->getSExtValue() >= 0) 16260 // total size = (elsize * n) + (stride - elsize) * (n-1) 16261 // = elsize + stride * (n-1) 16262 MemSize = WideScalarVT.getSizeInBits() + 16263 ConstStride->getSExtValue() * (N->getNumOperands() - 1); 16264 else 16265 // If Stride isn't constant, then we can't know how much it will load 16266 MemSize = MemoryLocation::UnknownSize; 16267 16268 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 16269 BaseLd->getPointerInfo(), BaseLd->getMemOperand()->getFlags(), MemSize, 16270 Align); 16271 16272 SDValue StridedLoad = DAG.getStridedLoadVP( 16273 WideVecVT, DL, BaseLd->getChain(), BaseLd->getBasePtr(), Stride, 16274 AllOneMask, 16275 DAG.getConstant(N->getNumOperands(), DL, Subtarget.getXLenVT()), MMO); 16276 16277 for (SDValue Ld : N->ops()) 16278 DAG.makeEquivalentMemoryOrdering(cast<LoadSDNode>(Ld), StridedLoad); 16279 16280 return DAG.getBitcast(VT.getSimpleVT(), StridedLoad); 16281 } 16282 16283 static SDValue combineToVWMACC(SDNode *N, SelectionDAG &DAG, 16284 const RISCVSubtarget &Subtarget) { 16285 16286 assert(N->getOpcode() == RISCVISD::ADD_VL || N->getOpcode() == ISD::ADD); 16287 16288 if (N->getValueType(0).isFixedLengthVector()) 16289 return SDValue(); 16290 16291 SDValue Addend = N->getOperand(0); 16292 SDValue MulOp = N->getOperand(1); 16293 16294 if (N->getOpcode() == RISCVISD::ADD_VL) { 16295 SDValue AddMergeOp = N->getOperand(2); 16296 if (!AddMergeOp.isUndef()) 16297 return SDValue(); 16298 } 16299 16300 auto IsVWMulOpc = [](unsigned Opc) { 16301 switch (Opc) { 16302 case RISCVISD::VWMUL_VL: 16303 case RISCVISD::VWMULU_VL: 16304 case RISCVISD::VWMULSU_VL: 16305 return true; 16306 default: 16307 return false; 16308 } 16309 }; 16310 16311 if (!IsVWMulOpc(MulOp.getOpcode())) 16312 std::swap(Addend, MulOp); 16313 16314 if (!IsVWMulOpc(MulOp.getOpcode())) 16315 return SDValue(); 16316 16317 SDValue MulMergeOp = MulOp.getOperand(2); 16318 16319 if (!MulMergeOp.isUndef()) 16320 return SDValue(); 16321 16322 auto [AddMask, AddVL] = [](SDNode *N, SelectionDAG &DAG, 16323 const RISCVSubtarget &Subtarget) { 16324 if (N->getOpcode() == ISD::ADD) { 16325 SDLoc DL(N); 16326 return getDefaultScalableVLOps(N->getSimpleValueType(0), DL, DAG, 16327 Subtarget); 16328 } 16329 return std::make_pair(N->getOperand(3), N->getOperand(4)); 16330 }(N, DAG, Subtarget); 16331 16332 SDValue MulMask = MulOp.getOperand(3); 16333 SDValue MulVL = MulOp.getOperand(4); 16334 16335 if (AddMask != MulMask || AddVL != MulVL) 16336 return SDValue(); 16337 16338 unsigned Opc = RISCVISD::VWMACC_VL + MulOp.getOpcode() - RISCVISD::VWMUL_VL; 16339 static_assert(RISCVISD::VWMACC_VL + 1 == RISCVISD::VWMACCU_VL, 16340 "Unexpected opcode after VWMACC_VL"); 16341 static_assert(RISCVISD::VWMACC_VL + 2 == RISCVISD::VWMACCSU_VL, 16342 "Unexpected opcode after VWMACC_VL!"); 16343 static_assert(RISCVISD::VWMUL_VL + 1 == RISCVISD::VWMULU_VL, 16344 "Unexpected opcode after VWMUL_VL!"); 16345 static_assert(RISCVISD::VWMUL_VL + 2 == RISCVISD::VWMULSU_VL, 16346 "Unexpected opcode after VWMUL_VL!"); 16347 16348 SDLoc DL(N); 16349 EVT VT = N->getValueType(0); 16350 SDValue Ops[] = {MulOp.getOperand(0), MulOp.getOperand(1), Addend, AddMask, 16351 AddVL}; 16352 return DAG.getNode(Opc, DL, VT, Ops); 16353 } 16354 16355 static bool legalizeScatterGatherIndexType(SDLoc DL, SDValue &Index, 16356 ISD::MemIndexType &IndexType, 16357 RISCVTargetLowering::DAGCombinerInfo &DCI) { 16358 if (!DCI.isBeforeLegalize()) 16359 return false; 16360 16361 SelectionDAG &DAG = DCI.DAG; 16362 const MVT XLenVT = 16363 DAG.getMachineFunction().getSubtarget<RISCVSubtarget>().getXLenVT(); 16364 16365 const EVT IndexVT = Index.getValueType(); 16366 16367 // RISC-V indexed loads only support the "unsigned unscaled" addressing 16368 // mode, so anything else must be manually legalized. 16369 if (!isIndexTypeSigned(IndexType)) 16370 return false; 16371 16372 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 16373 // Any index legalization should first promote to XLenVT, so we don't lose 16374 // bits when scaling. This may create an illegal index type so we let 16375 // LLVM's legalization take care of the splitting. 16376 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 16377 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, 16378 IndexVT.changeVectorElementType(XLenVT), Index); 16379 } 16380 IndexType = ISD::UNSIGNED_SCALED; 16381 return true; 16382 } 16383 16384 /// Match the index vector of a scatter or gather node as the shuffle mask 16385 /// which performs the rearrangement if possible. Will only match if 16386 /// all lanes are touched, and thus replacing the scatter or gather with 16387 /// a unit strided access and shuffle is legal. 16388 static bool matchIndexAsShuffle(EVT VT, SDValue Index, SDValue Mask, 16389 SmallVector<int> &ShuffleMask) { 16390 if (!ISD::isConstantSplatVectorAllOnes(Mask.getNode())) 16391 return false; 16392 if (!ISD::isBuildVectorOfConstantSDNodes(Index.getNode())) 16393 return false; 16394 16395 const unsigned ElementSize = VT.getScalarStoreSize(); 16396 const unsigned NumElems = VT.getVectorNumElements(); 16397 16398 // Create the shuffle mask and check all bits active 16399 assert(ShuffleMask.empty()); 16400 BitVector ActiveLanes(NumElems); 16401 for (unsigned i = 0; i < Index->getNumOperands(); i++) { 16402 // TODO: We've found an active bit of UB, and could be 16403 // more aggressive here if desired. 16404 if (Index->getOperand(i)->isUndef()) 16405 return false; 16406 uint64_t C = Index->getConstantOperandVal(i); 16407 if (C % ElementSize != 0) 16408 return false; 16409 C = C / ElementSize; 16410 if (C >= NumElems) 16411 return false; 16412 ShuffleMask.push_back(C); 16413 ActiveLanes.set(C); 16414 } 16415 return ActiveLanes.all(); 16416 } 16417 16418 /// Match the index of a gather or scatter operation as an operation 16419 /// with twice the element width and half the number of elements. This is 16420 /// generally profitable (if legal) because these operations are linear 16421 /// in VL, so even if we cause some extract VTYPE/VL toggles, we still 16422 /// come out ahead. 16423 static bool matchIndexAsWiderOp(EVT VT, SDValue Index, SDValue Mask, 16424 Align BaseAlign, const RISCVSubtarget &ST) { 16425 if (!ISD::isConstantSplatVectorAllOnes(Mask.getNode())) 16426 return false; 16427 if (!ISD::isBuildVectorOfConstantSDNodes(Index.getNode())) 16428 return false; 16429 16430 // Attempt a doubling. If we can use a element type 4x or 8x in 16431 // size, this will happen via multiply iterations of the transform. 16432 const unsigned NumElems = VT.getVectorNumElements(); 16433 if (NumElems % 2 != 0) 16434 return false; 16435 16436 const unsigned ElementSize = VT.getScalarStoreSize(); 16437 const unsigned WiderElementSize = ElementSize * 2; 16438 if (WiderElementSize > ST.getELen()/8) 16439 return false; 16440 16441 if (!ST.enableUnalignedVectorMem() && BaseAlign < WiderElementSize) 16442 return false; 16443 16444 for (unsigned i = 0; i < Index->getNumOperands(); i++) { 16445 // TODO: We've found an active bit of UB, and could be 16446 // more aggressive here if desired. 16447 if (Index->getOperand(i)->isUndef()) 16448 return false; 16449 // TODO: This offset check is too strict if we support fully 16450 // misaligned memory operations. 16451 uint64_t C = Index->getConstantOperandVal(i); 16452 if (i % 2 == 0) { 16453 if (C % WiderElementSize != 0) 16454 return false; 16455 continue; 16456 } 16457 uint64_t Last = Index->getConstantOperandVal(i-1); 16458 if (C != Last + ElementSize) 16459 return false; 16460 } 16461 return true; 16462 } 16463 16464 // trunc (sra sext (X), zext (Y)) -> sra (X, smin (Y, scalarsize(Y) - 1)) 16465 // This would be benefit for the cases where X and Y are both the same value 16466 // type of low precision vectors. Since the truncate would be lowered into 16467 // n-levels TRUNCATE_VECTOR_VL to satisfy RVV's SEW*2->SEW truncate 16468 // restriction, such pattern would be expanded into a series of "vsetvli" 16469 // and "vnsrl" instructions later to reach this point. 16470 static SDValue combineTruncOfSraSext(SDNode *N, SelectionDAG &DAG) { 16471 SDValue Mask = N->getOperand(1); 16472 SDValue VL = N->getOperand(2); 16473 16474 bool IsVLMAX = isAllOnesConstant(VL) || 16475 (isa<RegisterSDNode>(VL) && 16476 cast<RegisterSDNode>(VL)->getReg() == RISCV::X0); 16477 if (!IsVLMAX || Mask.getOpcode() != RISCVISD::VMSET_VL || 16478 Mask.getOperand(0) != VL) 16479 return SDValue(); 16480 16481 auto IsTruncNode = [&](SDValue V) { 16482 return V.getOpcode() == RISCVISD::TRUNCATE_VECTOR_VL && 16483 V.getOperand(1) == Mask && V.getOperand(2) == VL; 16484 }; 16485 16486 SDValue Op = N->getOperand(0); 16487 16488 // We need to first find the inner level of TRUNCATE_VECTOR_VL node 16489 // to distinguish such pattern. 16490 while (IsTruncNode(Op)) { 16491 if (!Op.hasOneUse()) 16492 return SDValue(); 16493 Op = Op.getOperand(0); 16494 } 16495 16496 if (Op.getOpcode() != ISD::SRA || !Op.hasOneUse()) 16497 return SDValue(); 16498 16499 SDValue N0 = Op.getOperand(0); 16500 SDValue N1 = Op.getOperand(1); 16501 if (N0.getOpcode() != ISD::SIGN_EXTEND || !N0.hasOneUse() || 16502 N1.getOpcode() != ISD::ZERO_EXTEND || !N1.hasOneUse()) 16503 return SDValue(); 16504 16505 SDValue N00 = N0.getOperand(0); 16506 SDValue N10 = N1.getOperand(0); 16507 if (!N00.getValueType().isVector() || 16508 N00.getValueType() != N10.getValueType() || 16509 N->getValueType(0) != N10.getValueType()) 16510 return SDValue(); 16511 16512 unsigned MaxShAmt = N10.getValueType().getScalarSizeInBits() - 1; 16513 SDValue SMin = 16514 DAG.getNode(ISD::SMIN, SDLoc(N1), N->getValueType(0), N10, 16515 DAG.getConstant(MaxShAmt, SDLoc(N1), N->getValueType(0))); 16516 return DAG.getNode(ISD::SRA, SDLoc(N), N->getValueType(0), N00, SMin); 16517 } 16518 16519 // Combine (truncate_vector_vl (umin X, C)) -> (vnclipu_vl X) if C is the 16520 // maximum value for the truncated type. 16521 // Combine (truncate_vector_vl (smin (smax X, C2), C1)) -> (vnclip_vl X) if C1 16522 // is the signed maximum value for the truncated type and C2 is the signed 16523 // minimum value. 16524 static SDValue combineTruncToVnclip(SDNode *N, SelectionDAG &DAG, 16525 const RISCVSubtarget &Subtarget) { 16526 assert(N->getOpcode() == RISCVISD::TRUNCATE_VECTOR_VL); 16527 16528 MVT VT = N->getSimpleValueType(0); 16529 16530 SDValue Mask = N->getOperand(1); 16531 SDValue VL = N->getOperand(2); 16532 16533 auto MatchMinMax = [&VL, &Mask](SDValue V, unsigned Opc, unsigned OpcVL, 16534 APInt &SplatVal) { 16535 if (V.getOpcode() != Opc && 16536 !(V.getOpcode() == OpcVL && V.getOperand(2).isUndef() && 16537 V.getOperand(3) == Mask && V.getOperand(4) == VL)) 16538 return SDValue(); 16539 16540 SDValue Op = V.getOperand(1); 16541 16542 // Peek through conversion between fixed and scalable vectors. 16543 if (Op.getOpcode() == ISD::INSERT_SUBVECTOR && Op.getOperand(0).isUndef() && 16544 isNullConstant(Op.getOperand(2)) && 16545 Op.getOperand(1).getValueType().isFixedLengthVector() && 16546 Op.getOperand(1).getOpcode() == ISD::EXTRACT_SUBVECTOR && 16547 Op.getOperand(1).getOperand(0).getValueType() == Op.getValueType() && 16548 isNullConstant(Op.getOperand(1).getOperand(1))) 16549 Op = Op.getOperand(1).getOperand(0); 16550 16551 if (ISD::isConstantSplatVector(Op.getNode(), SplatVal)) 16552 return V.getOperand(0); 16553 16554 if (Op.getOpcode() == RISCVISD::VMV_V_X_VL && Op.getOperand(0).isUndef() && 16555 Op.getOperand(2) == VL) { 16556 if (auto *Op1 = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 16557 SplatVal = 16558 Op1->getAPIntValue().sextOrTrunc(Op.getScalarValueSizeInBits()); 16559 return V.getOperand(0); 16560 } 16561 } 16562 16563 return SDValue(); 16564 }; 16565 16566 SDLoc DL(N); 16567 16568 auto DetectUSatPattern = [&](SDValue V) { 16569 APInt LoC, HiC; 16570 16571 // Simple case, V is a UMIN. 16572 if (SDValue UMinOp = MatchMinMax(V, ISD::UMIN, RISCVISD::UMIN_VL, HiC)) 16573 if (HiC.isMask(VT.getScalarSizeInBits())) 16574 return UMinOp; 16575 16576 // If we have an SMAX that removes negative numbers first, then we can match 16577 // SMIN instead of UMIN. 16578 if (SDValue SMinOp = MatchMinMax(V, ISD::SMIN, RISCVISD::SMIN_VL, HiC)) 16579 if (SDValue SMaxOp = 16580 MatchMinMax(SMinOp, ISD::SMAX, RISCVISD::SMAX_VL, LoC)) 16581 if (LoC.isNonNegative() && HiC.isMask(VT.getScalarSizeInBits())) 16582 return SMinOp; 16583 16584 // If we have an SMIN before an SMAX and the SMAX constant is less than or 16585 // equal to the SMIN constant, we can use vnclipu if we insert a new SMAX 16586 // first. 16587 if (SDValue SMaxOp = MatchMinMax(V, ISD::SMAX, RISCVISD::SMAX_VL, LoC)) 16588 if (SDValue SMinOp = 16589 MatchMinMax(SMaxOp, ISD::SMIN, RISCVISD::SMIN_VL, HiC)) 16590 if (LoC.isNonNegative() && HiC.isMask(VT.getScalarSizeInBits()) && 16591 HiC.uge(LoC)) 16592 return DAG.getNode(RISCVISD::SMAX_VL, DL, V.getValueType(), SMinOp, 16593 V.getOperand(1), DAG.getUNDEF(V.getValueType()), 16594 Mask, VL); 16595 16596 return SDValue(); 16597 }; 16598 16599 auto DetectSSatPattern = [&](SDValue V) { 16600 unsigned NumDstBits = VT.getScalarSizeInBits(); 16601 unsigned NumSrcBits = V.getScalarValueSizeInBits(); 16602 APInt SignedMax = APInt::getSignedMaxValue(NumDstBits).sext(NumSrcBits); 16603 APInt SignedMin = APInt::getSignedMinValue(NumDstBits).sext(NumSrcBits); 16604 16605 APInt HiC, LoC; 16606 if (SDValue SMinOp = MatchMinMax(V, ISD::SMIN, RISCVISD::SMIN_VL, HiC)) 16607 if (SDValue SMaxOp = 16608 MatchMinMax(SMinOp, ISD::SMAX, RISCVISD::SMAX_VL, LoC)) 16609 if (HiC == SignedMax && LoC == SignedMin) 16610 return SMaxOp; 16611 16612 if (SDValue SMaxOp = MatchMinMax(V, ISD::SMAX, RISCVISD::SMAX_VL, LoC)) 16613 if (SDValue SMinOp = 16614 MatchMinMax(SMaxOp, ISD::SMIN, RISCVISD::SMIN_VL, HiC)) 16615 if (HiC == SignedMax && LoC == SignedMin) 16616 return SMinOp; 16617 16618 return SDValue(); 16619 }; 16620 16621 SDValue Src = N->getOperand(0); 16622 16623 // Look through multiple layers of truncates. 16624 while (Src.getOpcode() == RISCVISD::TRUNCATE_VECTOR_VL && 16625 Src.getOperand(1) == Mask && Src.getOperand(2) == VL && 16626 Src.hasOneUse()) 16627 Src = Src.getOperand(0); 16628 16629 SDValue Val; 16630 unsigned ClipOpc; 16631 if ((Val = DetectUSatPattern(Src))) 16632 ClipOpc = RISCVISD::VNCLIPU_VL; 16633 else if ((Val = DetectSSatPattern(Src))) 16634 ClipOpc = RISCVISD::VNCLIP_VL; 16635 else 16636 return SDValue(); 16637 16638 MVT ValVT = Val.getSimpleValueType(); 16639 16640 do { 16641 MVT ValEltVT = MVT::getIntegerVT(ValVT.getScalarSizeInBits() / 2); 16642 ValVT = ValVT.changeVectorElementType(ValEltVT); 16643 // Rounding mode here is arbitrary since we aren't shifting out any bits. 16644 Val = DAG.getNode( 16645 ClipOpc, DL, ValVT, 16646 {Val, DAG.getConstant(0, DL, ValVT), DAG.getUNDEF(VT), Mask, 16647 DAG.getTargetConstant(RISCVVXRndMode::RNU, DL, Subtarget.getXLenVT()), 16648 VL}); 16649 } while (ValVT != VT); 16650 16651 return Val; 16652 } 16653 16654 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 16655 DAGCombinerInfo &DCI) const { 16656 SelectionDAG &DAG = DCI.DAG; 16657 const MVT XLenVT = Subtarget.getXLenVT(); 16658 SDLoc DL(N); 16659 16660 // Helper to call SimplifyDemandedBits on an operand of N where only some low 16661 // bits are demanded. N will be added to the Worklist if it was not deleted. 16662 // Caller should return SDValue(N, 0) if this returns true. 16663 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 16664 SDValue Op = N->getOperand(OpNo); 16665 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 16666 if (!SimplifyDemandedBits(Op, Mask, DCI)) 16667 return false; 16668 16669 if (N->getOpcode() != ISD::DELETED_NODE) 16670 DCI.AddToWorklist(N); 16671 return true; 16672 }; 16673 16674 switch (N->getOpcode()) { 16675 default: 16676 break; 16677 case RISCVISD::SplitF64: { 16678 SDValue Op0 = N->getOperand(0); 16679 // If the input to SplitF64 is just BuildPairF64 then the operation is 16680 // redundant. Instead, use BuildPairF64's operands directly. 16681 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 16682 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 16683 16684 if (Op0->isUndef()) { 16685 SDValue Lo = DAG.getUNDEF(MVT::i32); 16686 SDValue Hi = DAG.getUNDEF(MVT::i32); 16687 return DCI.CombineTo(N, Lo, Hi); 16688 } 16689 16690 // It's cheaper to materialise two 32-bit integers than to load a double 16691 // from the constant pool and transfer it to integer registers through the 16692 // stack. 16693 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 16694 APInt V = C->getValueAPF().bitcastToAPInt(); 16695 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 16696 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 16697 return DCI.CombineTo(N, Lo, Hi); 16698 } 16699 16700 // This is a target-specific version of a DAGCombine performed in 16701 // DAGCombiner::visitBITCAST. It performs the equivalent of: 16702 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 16703 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 16704 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 16705 !Op0.getNode()->hasOneUse()) 16706 break; 16707 SDValue NewSplitF64 = 16708 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 16709 Op0.getOperand(0)); 16710 SDValue Lo = NewSplitF64.getValue(0); 16711 SDValue Hi = NewSplitF64.getValue(1); 16712 APInt SignBit = APInt::getSignMask(32); 16713 if (Op0.getOpcode() == ISD::FNEG) { 16714 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 16715 DAG.getConstant(SignBit, DL, MVT::i32)); 16716 return DCI.CombineTo(N, Lo, NewHi); 16717 } 16718 assert(Op0.getOpcode() == ISD::FABS); 16719 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 16720 DAG.getConstant(~SignBit, DL, MVT::i32)); 16721 return DCI.CombineTo(N, Lo, NewHi); 16722 } 16723 case RISCVISD::SLLW: 16724 case RISCVISD::SRAW: 16725 case RISCVISD::SRLW: 16726 case RISCVISD::RORW: 16727 case RISCVISD::ROLW: { 16728 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 16729 if (SimplifyDemandedLowBitsHelper(0, 32) || 16730 SimplifyDemandedLowBitsHelper(1, 5)) 16731 return SDValue(N, 0); 16732 16733 break; 16734 } 16735 case RISCVISD::CLZW: 16736 case RISCVISD::CTZW: { 16737 // Only the lower 32 bits of the first operand are read 16738 if (SimplifyDemandedLowBitsHelper(0, 32)) 16739 return SDValue(N, 0); 16740 break; 16741 } 16742 case RISCVISD::FMV_W_X_RV64: { 16743 // If the input to FMV_W_X_RV64 is just FMV_X_ANYEXTW_RV64 the the 16744 // conversion is unnecessary and can be replaced with the 16745 // FMV_X_ANYEXTW_RV64 operand. 16746 SDValue Op0 = N->getOperand(0); 16747 if (Op0.getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64) 16748 return Op0.getOperand(0); 16749 break; 16750 } 16751 case RISCVISD::FMV_X_ANYEXTH: 16752 case RISCVISD::FMV_X_ANYEXTW_RV64: { 16753 SDLoc DL(N); 16754 SDValue Op0 = N->getOperand(0); 16755 MVT VT = N->getSimpleValueType(0); 16756 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 16757 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 16758 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 16759 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 16760 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 16761 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 16762 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 16763 assert(Op0.getOperand(0).getValueType() == VT && 16764 "Unexpected value type!"); 16765 return Op0.getOperand(0); 16766 } 16767 16768 // This is a target-specific version of a DAGCombine performed in 16769 // DAGCombiner::visitBITCAST. It performs the equivalent of: 16770 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 16771 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 16772 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 16773 !Op0.getNode()->hasOneUse()) 16774 break; 16775 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 16776 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 16777 APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits()); 16778 if (Op0.getOpcode() == ISD::FNEG) 16779 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 16780 DAG.getConstant(SignBit, DL, VT)); 16781 16782 assert(Op0.getOpcode() == ISD::FABS); 16783 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 16784 DAG.getConstant(~SignBit, DL, VT)); 16785 } 16786 case ISD::ABS: { 16787 EVT VT = N->getValueType(0); 16788 SDValue N0 = N->getOperand(0); 16789 // abs (sext) -> zext (abs) 16790 // abs (zext) -> zext (handled elsewhere) 16791 if (VT.isVector() && N0.hasOneUse() && N0.getOpcode() == ISD::SIGN_EXTEND) { 16792 SDValue Src = N0.getOperand(0); 16793 SDLoc DL(N); 16794 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, 16795 DAG.getNode(ISD::ABS, DL, Src.getValueType(), Src)); 16796 } 16797 break; 16798 } 16799 case ISD::ADD: { 16800 if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget)) 16801 return V; 16802 if (SDValue V = combineToVWMACC(N, DAG, Subtarget)) 16803 return V; 16804 return performADDCombine(N, DCI, Subtarget); 16805 } 16806 case ISD::SUB: { 16807 if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget)) 16808 return V; 16809 return performSUBCombine(N, DAG, Subtarget); 16810 } 16811 case ISD::AND: 16812 return performANDCombine(N, DCI, Subtarget); 16813 case ISD::OR: { 16814 if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget)) 16815 return V; 16816 return performORCombine(N, DCI, Subtarget); 16817 } 16818 case ISD::XOR: 16819 return performXORCombine(N, DAG, Subtarget); 16820 case ISD::MUL: 16821 if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget)) 16822 return V; 16823 return performMULCombine(N, DAG, DCI, Subtarget); 16824 case ISD::SDIV: 16825 case ISD::UDIV: 16826 case ISD::SREM: 16827 case ISD::UREM: 16828 if (SDValue V = combineBinOpOfZExt(N, DAG)) 16829 return V; 16830 break; 16831 case ISD::FADD: 16832 case ISD::UMAX: 16833 case ISD::UMIN: 16834 case ISD::SMAX: 16835 case ISD::SMIN: 16836 case ISD::FMAXNUM: 16837 case ISD::FMINNUM: { 16838 if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget)) 16839 return V; 16840 if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget)) 16841 return V; 16842 return SDValue(); 16843 } 16844 case ISD::SETCC: 16845 return performSETCCCombine(N, DAG, Subtarget); 16846 case ISD::SIGN_EXTEND_INREG: 16847 return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); 16848 case ISD::ZERO_EXTEND: 16849 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 16850 // type legalization. This is safe because fp_to_uint produces poison if 16851 // it overflows. 16852 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 16853 SDValue Src = N->getOperand(0); 16854 if (Src.getOpcode() == ISD::FP_TO_UINT && 16855 isTypeLegal(Src.getOperand(0).getValueType())) 16856 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 16857 Src.getOperand(0)); 16858 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 16859 isTypeLegal(Src.getOperand(1).getValueType())) { 16860 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 16861 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 16862 Src.getOperand(0), Src.getOperand(1)); 16863 DCI.CombineTo(N, Res); 16864 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 16865 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 16866 return SDValue(N, 0); // Return N so it doesn't get rechecked. 16867 } 16868 } 16869 return SDValue(); 16870 case RISCVISD::TRUNCATE_VECTOR_VL: 16871 if (SDValue V = combineTruncOfSraSext(N, DAG)) 16872 return V; 16873 return combineTruncToVnclip(N, DAG, Subtarget); 16874 case ISD::TRUNCATE: 16875 return performTRUNCATECombine(N, DAG, Subtarget); 16876 case ISD::SELECT: 16877 return performSELECTCombine(N, DAG, Subtarget); 16878 case RISCVISD::CZERO_EQZ: 16879 case RISCVISD::CZERO_NEZ: { 16880 SDValue Val = N->getOperand(0); 16881 SDValue Cond = N->getOperand(1); 16882 16883 unsigned Opc = N->getOpcode(); 16884 16885 // czero_eqz x, x -> x 16886 if (Opc == RISCVISD::CZERO_EQZ && Val == Cond) 16887 return Val; 16888 16889 unsigned InvOpc = 16890 Opc == RISCVISD::CZERO_EQZ ? RISCVISD::CZERO_NEZ : RISCVISD::CZERO_EQZ; 16891 16892 // czero_eqz X, (xor Y, 1) -> czero_nez X, Y if Y is 0 or 1. 16893 // czero_nez X, (xor Y, 1) -> czero_eqz X, Y if Y is 0 or 1. 16894 if (Cond.getOpcode() == ISD::XOR && isOneConstant(Cond.getOperand(1))) { 16895 SDValue NewCond = Cond.getOperand(0); 16896 APInt Mask = APInt::getBitsSetFrom(NewCond.getValueSizeInBits(), 1); 16897 if (DAG.MaskedValueIsZero(NewCond, Mask)) 16898 return DAG.getNode(InvOpc, SDLoc(N), N->getValueType(0), Val, NewCond); 16899 } 16900 // czero_eqz x, (setcc y, 0, ne) -> czero_eqz x, y 16901 // czero_nez x, (setcc y, 0, ne) -> czero_nez x, y 16902 // czero_eqz x, (setcc y, 0, eq) -> czero_nez x, y 16903 // czero_nez x, (setcc y, 0, eq) -> czero_eqz x, y 16904 if (Cond.getOpcode() == ISD::SETCC && isNullConstant(Cond.getOperand(1))) { 16905 ISD::CondCode CCVal = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16906 if (ISD::isIntEqualitySetCC(CCVal)) 16907 return DAG.getNode(CCVal == ISD::SETNE ? Opc : InvOpc, SDLoc(N), 16908 N->getValueType(0), Val, Cond.getOperand(0)); 16909 } 16910 return SDValue(); 16911 } 16912 case RISCVISD::SELECT_CC: { 16913 // Transform 16914 SDValue LHS = N->getOperand(0); 16915 SDValue RHS = N->getOperand(1); 16916 SDValue CC = N->getOperand(2); 16917 ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get(); 16918 SDValue TrueV = N->getOperand(3); 16919 SDValue FalseV = N->getOperand(4); 16920 SDLoc DL(N); 16921 EVT VT = N->getValueType(0); 16922 16923 // If the True and False values are the same, we don't need a select_cc. 16924 if (TrueV == FalseV) 16925 return TrueV; 16926 16927 // (select (x < 0), y, z) -> x >> (XLEN - 1) & (y - z) + z 16928 // (select (x >= 0), y, z) -> x >> (XLEN - 1) & (z - y) + y 16929 if (!Subtarget.hasShortForwardBranchOpt() && isa<ConstantSDNode>(TrueV) && 16930 isa<ConstantSDNode>(FalseV) && isNullConstant(RHS) && 16931 (CCVal == ISD::CondCode::SETLT || CCVal == ISD::CondCode::SETGE)) { 16932 if (CCVal == ISD::CondCode::SETGE) 16933 std::swap(TrueV, FalseV); 16934 16935 int64_t TrueSImm = cast<ConstantSDNode>(TrueV)->getSExtValue(); 16936 int64_t FalseSImm = cast<ConstantSDNode>(FalseV)->getSExtValue(); 16937 // Only handle simm12, if it is not in this range, it can be considered as 16938 // register. 16939 if (isInt<12>(TrueSImm) && isInt<12>(FalseSImm) && 16940 isInt<12>(TrueSImm - FalseSImm)) { 16941 SDValue SRA = 16942 DAG.getNode(ISD::SRA, DL, VT, LHS, 16943 DAG.getConstant(Subtarget.getXLen() - 1, DL, VT)); 16944 SDValue AND = 16945 DAG.getNode(ISD::AND, DL, VT, SRA, 16946 DAG.getConstant(TrueSImm - FalseSImm, DL, VT)); 16947 return DAG.getNode(ISD::ADD, DL, VT, AND, FalseV); 16948 } 16949 16950 if (CCVal == ISD::CondCode::SETGE) 16951 std::swap(TrueV, FalseV); 16952 } 16953 16954 if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget)) 16955 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 16956 {LHS, RHS, CC, TrueV, FalseV}); 16957 16958 if (!Subtarget.hasConditionalMoveFusion()) { 16959 // (select c, -1, y) -> -c | y 16960 if (isAllOnesConstant(TrueV)) { 16961 SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, CCVal); 16962 SDValue Neg = DAG.getNegative(C, DL, VT); 16963 return DAG.getNode(ISD::OR, DL, VT, Neg, FalseV); 16964 } 16965 // (select c, y, -1) -> -!c | y 16966 if (isAllOnesConstant(FalseV)) { 16967 SDValue C = 16968 DAG.getSetCC(DL, VT, LHS, RHS, ISD::getSetCCInverse(CCVal, VT)); 16969 SDValue Neg = DAG.getNegative(C, DL, VT); 16970 return DAG.getNode(ISD::OR, DL, VT, Neg, TrueV); 16971 } 16972 16973 // (select c, 0, y) -> -!c & y 16974 if (isNullConstant(TrueV)) { 16975 SDValue C = 16976 DAG.getSetCC(DL, VT, LHS, RHS, ISD::getSetCCInverse(CCVal, VT)); 16977 SDValue Neg = DAG.getNegative(C, DL, VT); 16978 return DAG.getNode(ISD::AND, DL, VT, Neg, FalseV); 16979 } 16980 // (select c, y, 0) -> -c & y 16981 if (isNullConstant(FalseV)) { 16982 SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, CCVal); 16983 SDValue Neg = DAG.getNegative(C, DL, VT); 16984 return DAG.getNode(ISD::AND, DL, VT, Neg, TrueV); 16985 } 16986 // (riscvisd::select_cc x, 0, ne, x, 1) -> (add x, (setcc x, 0, eq)) 16987 // (riscvisd::select_cc x, 0, eq, 1, x) -> (add x, (setcc x, 0, eq)) 16988 if (((isOneConstant(FalseV) && LHS == TrueV && 16989 CCVal == ISD::CondCode::SETNE) || 16990 (isOneConstant(TrueV) && LHS == FalseV && 16991 CCVal == ISD::CondCode::SETEQ)) && 16992 isNullConstant(RHS)) { 16993 // freeze it to be safe. 16994 LHS = DAG.getFreeze(LHS); 16995 SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, ISD::CondCode::SETEQ); 16996 return DAG.getNode(ISD::ADD, DL, VT, LHS, C); 16997 } 16998 } 16999 17000 // If both true/false are an xor with 1, pull through the select. 17001 // This can occur after op legalization if both operands are setccs that 17002 // require an xor to invert. 17003 // FIXME: Generalize to other binary ops with identical operand? 17004 if (TrueV.getOpcode() == ISD::XOR && FalseV.getOpcode() == ISD::XOR && 17005 TrueV.getOperand(1) == FalseV.getOperand(1) && 17006 isOneConstant(TrueV.getOperand(1)) && 17007 TrueV.hasOneUse() && FalseV.hasOneUse()) { 17008 SDValue NewSel = DAG.getNode(RISCVISD::SELECT_CC, DL, VT, LHS, RHS, CC, 17009 TrueV.getOperand(0), FalseV.getOperand(0)); 17010 return DAG.getNode(ISD::XOR, DL, VT, NewSel, TrueV.getOperand(1)); 17011 } 17012 17013 return SDValue(); 17014 } 17015 case RISCVISD::BR_CC: { 17016 SDValue LHS = N->getOperand(1); 17017 SDValue RHS = N->getOperand(2); 17018 SDValue CC = N->getOperand(3); 17019 SDLoc DL(N); 17020 17021 if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget)) 17022 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 17023 N->getOperand(0), LHS, RHS, CC, N->getOperand(4)); 17024 17025 return SDValue(); 17026 } 17027 case ISD::BITREVERSE: 17028 return performBITREVERSECombine(N, DAG, Subtarget); 17029 case ISD::FP_TO_SINT: 17030 case ISD::FP_TO_UINT: 17031 return performFP_TO_INTCombine(N, DCI, Subtarget); 17032 case ISD::FP_TO_SINT_SAT: 17033 case ISD::FP_TO_UINT_SAT: 17034 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 17035 case ISD::FCOPYSIGN: { 17036 EVT VT = N->getValueType(0); 17037 if (!VT.isVector()) 17038 break; 17039 // There is a form of VFSGNJ which injects the negated sign of its second 17040 // operand. Try and bubble any FNEG up after the extend/round to produce 17041 // this optimized pattern. Avoid modifying cases where FP_ROUND and 17042 // TRUNC=1. 17043 SDValue In2 = N->getOperand(1); 17044 // Avoid cases where the extend/round has multiple uses, as duplicating 17045 // those is typically more expensive than removing a fneg. 17046 if (!In2.hasOneUse()) 17047 break; 17048 if (In2.getOpcode() != ISD::FP_EXTEND && 17049 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 17050 break; 17051 In2 = In2.getOperand(0); 17052 if (In2.getOpcode() != ISD::FNEG) 17053 break; 17054 SDLoc DL(N); 17055 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 17056 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 17057 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 17058 } 17059 case ISD::MGATHER: { 17060 const auto *MGN = cast<MaskedGatherSDNode>(N); 17061 const EVT VT = N->getValueType(0); 17062 SDValue Index = MGN->getIndex(); 17063 SDValue ScaleOp = MGN->getScale(); 17064 ISD::MemIndexType IndexType = MGN->getIndexType(); 17065 assert(!MGN->isIndexScaled() && 17066 "Scaled gather/scatter should not be formed"); 17067 17068 SDLoc DL(N); 17069 if (legalizeScatterGatherIndexType(DL, Index, IndexType, DCI)) 17070 return DAG.getMaskedGather( 17071 N->getVTList(), MGN->getMemoryVT(), DL, 17072 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 17073 MGN->getBasePtr(), Index, ScaleOp}, 17074 MGN->getMemOperand(), IndexType, MGN->getExtensionType()); 17075 17076 if (narrowIndex(Index, IndexType, DAG)) 17077 return DAG.getMaskedGather( 17078 N->getVTList(), MGN->getMemoryVT(), DL, 17079 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 17080 MGN->getBasePtr(), Index, ScaleOp}, 17081 MGN->getMemOperand(), IndexType, MGN->getExtensionType()); 17082 17083 if (Index.getOpcode() == ISD::BUILD_VECTOR && 17084 MGN->getExtensionType() == ISD::NON_EXTLOAD && isTypeLegal(VT)) { 17085 // The sequence will be XLenVT, not the type of Index. Tell 17086 // isSimpleVIDSequence this so we avoid overflow. 17087 if (std::optional<VIDSequence> SimpleVID = 17088 isSimpleVIDSequence(Index, Subtarget.getXLen()); 17089 SimpleVID && SimpleVID->StepDenominator == 1) { 17090 const int64_t StepNumerator = SimpleVID->StepNumerator; 17091 const int64_t Addend = SimpleVID->Addend; 17092 17093 // Note: We don't need to check alignment here since (by assumption 17094 // from the existance of the gather), our offsets must be sufficiently 17095 // aligned. 17096 17097 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 17098 assert(MGN->getBasePtr()->getValueType(0) == PtrVT); 17099 assert(IndexType == ISD::UNSIGNED_SCALED); 17100 SDValue BasePtr = DAG.getNode(ISD::ADD, DL, PtrVT, MGN->getBasePtr(), 17101 DAG.getConstant(Addend, DL, PtrVT)); 17102 17103 SDValue EVL = DAG.getElementCount(DL, Subtarget.getXLenVT(), 17104 VT.getVectorElementCount()); 17105 SDValue StridedLoad = 17106 DAG.getStridedLoadVP(VT, DL, MGN->getChain(), BasePtr, 17107 DAG.getConstant(StepNumerator, DL, XLenVT), 17108 MGN->getMask(), EVL, MGN->getMemOperand()); 17109 SDValue VPSelect = DAG.getNode(ISD::VP_SELECT, DL, VT, MGN->getMask(), 17110 StridedLoad, MGN->getPassThru(), EVL); 17111 return DAG.getMergeValues({VPSelect, SDValue(StridedLoad.getNode(), 1)}, 17112 DL); 17113 } 17114 } 17115 17116 SmallVector<int> ShuffleMask; 17117 if (MGN->getExtensionType() == ISD::NON_EXTLOAD && 17118 matchIndexAsShuffle(VT, Index, MGN->getMask(), ShuffleMask)) { 17119 SDValue Load = DAG.getMaskedLoad(VT, DL, MGN->getChain(), 17120 MGN->getBasePtr(), DAG.getUNDEF(XLenVT), 17121 MGN->getMask(), DAG.getUNDEF(VT), 17122 MGN->getMemoryVT(), MGN->getMemOperand(), 17123 ISD::UNINDEXED, ISD::NON_EXTLOAD); 17124 SDValue Shuffle = 17125 DAG.getVectorShuffle(VT, DL, Load, DAG.getUNDEF(VT), ShuffleMask); 17126 return DAG.getMergeValues({Shuffle, Load.getValue(1)}, DL); 17127 } 17128 17129 if (MGN->getExtensionType() == ISD::NON_EXTLOAD && 17130 matchIndexAsWiderOp(VT, Index, MGN->getMask(), 17131 MGN->getMemOperand()->getBaseAlign(), Subtarget)) { 17132 SmallVector<SDValue> NewIndices; 17133 for (unsigned i = 0; i < Index->getNumOperands(); i += 2) 17134 NewIndices.push_back(Index.getOperand(i)); 17135 EVT IndexVT = Index.getValueType() 17136 .getHalfNumVectorElementsVT(*DAG.getContext()); 17137 Index = DAG.getBuildVector(IndexVT, DL, NewIndices); 17138 17139 unsigned ElementSize = VT.getScalarStoreSize(); 17140 EVT WideScalarVT = MVT::getIntegerVT(ElementSize * 8 * 2); 17141 auto EltCnt = VT.getVectorElementCount(); 17142 assert(EltCnt.isKnownEven() && "Splitting vector, but not in half!"); 17143 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), WideScalarVT, 17144 EltCnt.divideCoefficientBy(2)); 17145 SDValue Passthru = DAG.getBitcast(WideVT, MGN->getPassThru()); 17146 EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 17147 EltCnt.divideCoefficientBy(2)); 17148 SDValue Mask = DAG.getSplat(MaskVT, DL, DAG.getConstant(1, DL, MVT::i1)); 17149 17150 SDValue Gather = 17151 DAG.getMaskedGather(DAG.getVTList(WideVT, MVT::Other), WideVT, DL, 17152 {MGN->getChain(), Passthru, Mask, MGN->getBasePtr(), 17153 Index, ScaleOp}, 17154 MGN->getMemOperand(), IndexType, ISD::NON_EXTLOAD); 17155 SDValue Result = DAG.getBitcast(VT, Gather.getValue(0)); 17156 return DAG.getMergeValues({Result, Gather.getValue(1)}, DL); 17157 } 17158 break; 17159 } 17160 case ISD::MSCATTER:{ 17161 const auto *MSN = cast<MaskedScatterSDNode>(N); 17162 SDValue Index = MSN->getIndex(); 17163 SDValue ScaleOp = MSN->getScale(); 17164 ISD::MemIndexType IndexType = MSN->getIndexType(); 17165 assert(!MSN->isIndexScaled() && 17166 "Scaled gather/scatter should not be formed"); 17167 17168 SDLoc DL(N); 17169 if (legalizeScatterGatherIndexType(DL, Index, IndexType, DCI)) 17170 return DAG.getMaskedScatter( 17171 N->getVTList(), MSN->getMemoryVT(), DL, 17172 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 17173 Index, ScaleOp}, 17174 MSN->getMemOperand(), IndexType, MSN->isTruncatingStore()); 17175 17176 if (narrowIndex(Index, IndexType, DAG)) 17177 return DAG.getMaskedScatter( 17178 N->getVTList(), MSN->getMemoryVT(), DL, 17179 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 17180 Index, ScaleOp}, 17181 MSN->getMemOperand(), IndexType, MSN->isTruncatingStore()); 17182 17183 EVT VT = MSN->getValue()->getValueType(0); 17184 SmallVector<int> ShuffleMask; 17185 if (!MSN->isTruncatingStore() && 17186 matchIndexAsShuffle(VT, Index, MSN->getMask(), ShuffleMask)) { 17187 SDValue Shuffle = DAG.getVectorShuffle(VT, DL, MSN->getValue(), 17188 DAG.getUNDEF(VT), ShuffleMask); 17189 return DAG.getMaskedStore(MSN->getChain(), DL, Shuffle, MSN->getBasePtr(), 17190 DAG.getUNDEF(XLenVT), MSN->getMask(), 17191 MSN->getMemoryVT(), MSN->getMemOperand(), 17192 ISD::UNINDEXED, false); 17193 } 17194 break; 17195 } 17196 case ISD::VP_GATHER: { 17197 const auto *VPGN = cast<VPGatherSDNode>(N); 17198 SDValue Index = VPGN->getIndex(); 17199 SDValue ScaleOp = VPGN->getScale(); 17200 ISD::MemIndexType IndexType = VPGN->getIndexType(); 17201 assert(!VPGN->isIndexScaled() && 17202 "Scaled gather/scatter should not be formed"); 17203 17204 SDLoc DL(N); 17205 if (legalizeScatterGatherIndexType(DL, Index, IndexType, DCI)) 17206 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 17207 {VPGN->getChain(), VPGN->getBasePtr(), Index, 17208 ScaleOp, VPGN->getMask(), 17209 VPGN->getVectorLength()}, 17210 VPGN->getMemOperand(), IndexType); 17211 17212 if (narrowIndex(Index, IndexType, DAG)) 17213 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 17214 {VPGN->getChain(), VPGN->getBasePtr(), Index, 17215 ScaleOp, VPGN->getMask(), 17216 VPGN->getVectorLength()}, 17217 VPGN->getMemOperand(), IndexType); 17218 17219 break; 17220 } 17221 case ISD::VP_SCATTER: { 17222 const auto *VPSN = cast<VPScatterSDNode>(N); 17223 SDValue Index = VPSN->getIndex(); 17224 SDValue ScaleOp = VPSN->getScale(); 17225 ISD::MemIndexType IndexType = VPSN->getIndexType(); 17226 assert(!VPSN->isIndexScaled() && 17227 "Scaled gather/scatter should not be formed"); 17228 17229 SDLoc DL(N); 17230 if (legalizeScatterGatherIndexType(DL, Index, IndexType, DCI)) 17231 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 17232 {VPSN->getChain(), VPSN->getValue(), 17233 VPSN->getBasePtr(), Index, ScaleOp, 17234 VPSN->getMask(), VPSN->getVectorLength()}, 17235 VPSN->getMemOperand(), IndexType); 17236 17237 if (narrowIndex(Index, IndexType, DAG)) 17238 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 17239 {VPSN->getChain(), VPSN->getValue(), 17240 VPSN->getBasePtr(), Index, ScaleOp, 17241 VPSN->getMask(), VPSN->getVectorLength()}, 17242 VPSN->getMemOperand(), IndexType); 17243 break; 17244 } 17245 case RISCVISD::SHL_VL: 17246 if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget)) 17247 return V; 17248 [[fallthrough]]; 17249 case RISCVISD::SRA_VL: 17250 case RISCVISD::SRL_VL: { 17251 SDValue ShAmt = N->getOperand(1); 17252 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 17253 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 17254 SDLoc DL(N); 17255 SDValue VL = N->getOperand(4); 17256 EVT VT = N->getValueType(0); 17257 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 17258 ShAmt.getOperand(1), VL); 17259 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 17260 N->getOperand(2), N->getOperand(3), N->getOperand(4)); 17261 } 17262 break; 17263 } 17264 case ISD::SRA: 17265 if (SDValue V = performSRACombine(N, DAG, Subtarget)) 17266 return V; 17267 [[fallthrough]]; 17268 case ISD::SRL: 17269 case ISD::SHL: { 17270 if (N->getOpcode() == ISD::SHL) { 17271 if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget)) 17272 return V; 17273 } 17274 SDValue ShAmt = N->getOperand(1); 17275 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 17276 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 17277 SDLoc DL(N); 17278 EVT VT = N->getValueType(0); 17279 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 17280 ShAmt.getOperand(1), 17281 DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); 17282 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 17283 } 17284 break; 17285 } 17286 case RISCVISD::ADD_VL: 17287 if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget)) 17288 return V; 17289 return combineToVWMACC(N, DAG, Subtarget); 17290 case RISCVISD::VWADD_W_VL: 17291 case RISCVISD::VWADDU_W_VL: 17292 case RISCVISD::VWSUB_W_VL: 17293 case RISCVISD::VWSUBU_W_VL: 17294 return performVWADDSUBW_VLCombine(N, DCI, Subtarget); 17295 case RISCVISD::SUB_VL: 17296 case RISCVISD::MUL_VL: 17297 return combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget); 17298 case RISCVISD::VFMADD_VL: 17299 case RISCVISD::VFNMADD_VL: 17300 case RISCVISD::VFMSUB_VL: 17301 case RISCVISD::VFNMSUB_VL: 17302 case RISCVISD::STRICT_VFMADD_VL: 17303 case RISCVISD::STRICT_VFNMADD_VL: 17304 case RISCVISD::STRICT_VFMSUB_VL: 17305 case RISCVISD::STRICT_VFNMSUB_VL: 17306 return performVFMADD_VLCombine(N, DAG, Subtarget); 17307 case RISCVISD::FADD_VL: 17308 case RISCVISD::FSUB_VL: 17309 case RISCVISD::FMUL_VL: 17310 case RISCVISD::VFWADD_W_VL: 17311 case RISCVISD::VFWSUB_W_VL: { 17312 if (N->getValueType(0).getVectorElementType() == MVT::f32 && 17313 !Subtarget.hasVInstructionsF16()) 17314 return SDValue(); 17315 return combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget); 17316 } 17317 case ISD::LOAD: 17318 case ISD::STORE: { 17319 if (DCI.isAfterLegalizeDAG()) 17320 if (SDValue V = performMemPairCombine(N, DCI)) 17321 return V; 17322 17323 if (N->getOpcode() != ISD::STORE) 17324 break; 17325 17326 auto *Store = cast<StoreSDNode>(N); 17327 SDValue Chain = Store->getChain(); 17328 EVT MemVT = Store->getMemoryVT(); 17329 SDValue Val = Store->getValue(); 17330 SDLoc DL(N); 17331 17332 bool IsScalarizable = 17333 MemVT.isFixedLengthVector() && ISD::isNormalStore(Store) && 17334 Store->isSimple() && 17335 MemVT.getVectorElementType().bitsLE(Subtarget.getXLenVT()) && 17336 isPowerOf2_64(MemVT.getSizeInBits()) && 17337 MemVT.getSizeInBits() <= Subtarget.getXLen(); 17338 17339 // If sufficiently aligned we can scalarize stores of constant vectors of 17340 // any power-of-two size up to XLen bits, provided that they aren't too 17341 // expensive to materialize. 17342 // vsetivli zero, 2, e8, m1, ta, ma 17343 // vmv.v.i v8, 4 17344 // vse64.v v8, (a0) 17345 // -> 17346 // li a1, 1028 17347 // sh a1, 0(a0) 17348 if (DCI.isBeforeLegalize() && IsScalarizable && 17349 ISD::isBuildVectorOfConstantSDNodes(Val.getNode())) { 17350 // Get the constant vector bits 17351 APInt NewC(Val.getValueSizeInBits(), 0); 17352 uint64_t EltSize = Val.getScalarValueSizeInBits(); 17353 for (unsigned i = 0; i < Val.getNumOperands(); i++) { 17354 if (Val.getOperand(i).isUndef()) 17355 continue; 17356 NewC.insertBits(Val.getConstantOperandAPInt(i).trunc(EltSize), 17357 i * EltSize); 17358 } 17359 MVT NewVT = MVT::getIntegerVT(MemVT.getSizeInBits()); 17360 17361 if (RISCVMatInt::getIntMatCost(NewC, Subtarget.getXLen(), Subtarget, 17362 true) <= 2 && 17363 allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 17364 NewVT, *Store->getMemOperand())) { 17365 SDValue NewV = DAG.getConstant(NewC, DL, NewVT); 17366 return DAG.getStore(Chain, DL, NewV, Store->getBasePtr(), 17367 Store->getPointerInfo(), Store->getOriginalAlign(), 17368 Store->getMemOperand()->getFlags()); 17369 } 17370 } 17371 17372 // Similarly, if sufficiently aligned we can scalarize vector copies, e.g. 17373 // vsetivli zero, 2, e16, m1, ta, ma 17374 // vle16.v v8, (a0) 17375 // vse16.v v8, (a1) 17376 if (auto *L = dyn_cast<LoadSDNode>(Val); 17377 L && DCI.isBeforeLegalize() && IsScalarizable && L->isSimple() && 17378 L->hasNUsesOfValue(1, 0) && L->hasNUsesOfValue(1, 1) && 17379 Store->getChain() == SDValue(L, 1) && ISD::isNormalLoad(L) && 17380 L->getMemoryVT() == MemVT) { 17381 MVT NewVT = MVT::getIntegerVT(MemVT.getSizeInBits()); 17382 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 17383 NewVT, *Store->getMemOperand()) && 17384 allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 17385 NewVT, *L->getMemOperand())) { 17386 SDValue NewL = DAG.getLoad(NewVT, DL, L->getChain(), L->getBasePtr(), 17387 L->getPointerInfo(), L->getOriginalAlign(), 17388 L->getMemOperand()->getFlags()); 17389 return DAG.getStore(Chain, DL, NewL, Store->getBasePtr(), 17390 Store->getPointerInfo(), Store->getOriginalAlign(), 17391 Store->getMemOperand()->getFlags()); 17392 } 17393 } 17394 17395 // Combine store of vmv.x.s/vfmv.f.s to vse with VL of 1. 17396 // vfmv.f.s is represented as extract element from 0. Match it late to avoid 17397 // any illegal types. 17398 if (Val.getOpcode() == RISCVISD::VMV_X_S || 17399 (DCI.isAfterLegalizeDAG() && 17400 Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 17401 isNullConstant(Val.getOperand(1)))) { 17402 SDValue Src = Val.getOperand(0); 17403 MVT VecVT = Src.getSimpleValueType(); 17404 // VecVT should be scalable and memory VT should match the element type. 17405 if (!Store->isIndexed() && VecVT.isScalableVector() && 17406 MemVT == VecVT.getVectorElementType()) { 17407 SDLoc DL(N); 17408 MVT MaskVT = getMaskTypeFor(VecVT); 17409 return DAG.getStoreVP( 17410 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 17411 DAG.getConstant(1, DL, MaskVT), 17412 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 17413 Store->getMemOperand(), Store->getAddressingMode(), 17414 Store->isTruncatingStore(), /*IsCompress*/ false); 17415 } 17416 } 17417 17418 break; 17419 } 17420 case ISD::SPLAT_VECTOR: { 17421 EVT VT = N->getValueType(0); 17422 // Only perform this combine on legal MVT types. 17423 if (!isTypeLegal(VT)) 17424 break; 17425 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, 17426 DAG, Subtarget)) 17427 return Gather; 17428 break; 17429 } 17430 case ISD::BUILD_VECTOR: 17431 if (SDValue V = performBUILD_VECTORCombine(N, DAG, Subtarget, *this)) 17432 return V; 17433 break; 17434 case ISD::CONCAT_VECTORS: 17435 if (SDValue V = performCONCAT_VECTORSCombine(N, DAG, Subtarget, *this)) 17436 return V; 17437 break; 17438 case ISD::INSERT_VECTOR_ELT: 17439 if (SDValue V = performINSERT_VECTOR_ELTCombine(N, DAG, Subtarget, *this)) 17440 return V; 17441 break; 17442 case RISCVISD::VFMV_V_F_VL: { 17443 const MVT VT = N->getSimpleValueType(0); 17444 SDValue Passthru = N->getOperand(0); 17445 SDValue Scalar = N->getOperand(1); 17446 SDValue VL = N->getOperand(2); 17447 17448 // If VL is 1, we can use vfmv.s.f. 17449 if (isOneConstant(VL)) 17450 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL); 17451 break; 17452 } 17453 case RISCVISD::VMV_V_X_VL: { 17454 const MVT VT = N->getSimpleValueType(0); 17455 SDValue Passthru = N->getOperand(0); 17456 SDValue Scalar = N->getOperand(1); 17457 SDValue VL = N->getOperand(2); 17458 17459 // Tail agnostic VMV.V.X only demands the vector element bitwidth from the 17460 // scalar input. 17461 unsigned ScalarSize = Scalar.getValueSizeInBits(); 17462 unsigned EltWidth = VT.getScalarSizeInBits(); 17463 if (ScalarSize > EltWidth && Passthru.isUndef()) 17464 if (SimplifyDemandedLowBitsHelper(1, EltWidth)) 17465 return SDValue(N, 0); 17466 17467 // If VL is 1 and the scalar value won't benefit from immediate, we can 17468 // use vmv.s.x. 17469 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 17470 if (isOneConstant(VL) && 17471 (!Const || Const->isZero() || 17472 !Const->getAPIntValue().sextOrTrunc(EltWidth).isSignedIntN(5))) 17473 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL); 17474 17475 break; 17476 } 17477 case RISCVISD::VFMV_S_F_VL: { 17478 SDValue Src = N->getOperand(1); 17479 // Try to remove vector->scalar->vector if the scalar->vector is inserting 17480 // into an undef vector. 17481 // TODO: Could use a vslide or vmv.v.v for non-undef. 17482 if (N->getOperand(0).isUndef() && 17483 Src.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 17484 isNullConstant(Src.getOperand(1)) && 17485 Src.getOperand(0).getValueType().isScalableVector()) { 17486 EVT VT = N->getValueType(0); 17487 EVT SrcVT = Src.getOperand(0).getValueType(); 17488 assert(SrcVT.getVectorElementType() == VT.getVectorElementType()); 17489 // Widths match, just return the original vector. 17490 if (SrcVT == VT) 17491 return Src.getOperand(0); 17492 // TODO: Use insert_subvector/extract_subvector to change widen/narrow? 17493 } 17494 [[fallthrough]]; 17495 } 17496 case RISCVISD::VMV_S_X_VL: { 17497 const MVT VT = N->getSimpleValueType(0); 17498 SDValue Passthru = N->getOperand(0); 17499 SDValue Scalar = N->getOperand(1); 17500 SDValue VL = N->getOperand(2); 17501 17502 if (Scalar.getOpcode() == RISCVISD::VMV_X_S && Passthru.isUndef() && 17503 Scalar.getOperand(0).getValueType() == N->getValueType(0)) 17504 return Scalar.getOperand(0); 17505 17506 // Use M1 or smaller to avoid over constraining register allocation 17507 const MVT M1VT = getLMUL1VT(VT); 17508 if (M1VT.bitsLT(VT)) { 17509 SDValue M1Passthru = 17510 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, M1VT, Passthru, 17511 DAG.getVectorIdxConstant(0, DL)); 17512 SDValue Result = 17513 DAG.getNode(N->getOpcode(), DL, M1VT, M1Passthru, Scalar, VL); 17514 Result = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Passthru, Result, 17515 DAG.getVectorIdxConstant(0, DL)); 17516 return Result; 17517 } 17518 17519 // We use a vmv.v.i if possible. We limit this to LMUL1. LMUL2 or 17520 // higher would involve overly constraining the register allocator for 17521 // no purpose. 17522 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 17523 Const && !Const->isZero() && isInt<5>(Const->getSExtValue()) && 17524 VT.bitsLE(getLMUL1VT(VT)) && Passthru.isUndef()) 17525 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); 17526 17527 break; 17528 } 17529 case RISCVISD::VMV_X_S: { 17530 SDValue Vec = N->getOperand(0); 17531 MVT VecVT = N->getOperand(0).getSimpleValueType(); 17532 const MVT M1VT = getLMUL1VT(VecVT); 17533 if (M1VT.bitsLT(VecVT)) { 17534 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, M1VT, Vec, 17535 DAG.getVectorIdxConstant(0, DL)); 17536 return DAG.getNode(RISCVISD::VMV_X_S, DL, N->getSimpleValueType(0), Vec); 17537 } 17538 break; 17539 } 17540 case ISD::INTRINSIC_VOID: 17541 case ISD::INTRINSIC_W_CHAIN: 17542 case ISD::INTRINSIC_WO_CHAIN: { 17543 unsigned IntOpNo = N->getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1; 17544 unsigned IntNo = N->getConstantOperandVal(IntOpNo); 17545 switch (IntNo) { 17546 // By default we do not combine any intrinsic. 17547 default: 17548 return SDValue(); 17549 case Intrinsic::riscv_masked_strided_load: { 17550 MVT VT = N->getSimpleValueType(0); 17551 auto *Load = cast<MemIntrinsicSDNode>(N); 17552 SDValue PassThru = N->getOperand(2); 17553 SDValue Base = N->getOperand(3); 17554 SDValue Stride = N->getOperand(4); 17555 SDValue Mask = N->getOperand(5); 17556 17557 // If the stride is equal to the element size in bytes, we can use 17558 // a masked.load. 17559 const unsigned ElementSize = VT.getScalarStoreSize(); 17560 if (auto *StrideC = dyn_cast<ConstantSDNode>(Stride); 17561 StrideC && StrideC->getZExtValue() == ElementSize) 17562 return DAG.getMaskedLoad(VT, DL, Load->getChain(), Base, 17563 DAG.getUNDEF(XLenVT), Mask, PassThru, 17564 Load->getMemoryVT(), Load->getMemOperand(), 17565 ISD::UNINDEXED, ISD::NON_EXTLOAD); 17566 return SDValue(); 17567 } 17568 case Intrinsic::riscv_masked_strided_store: { 17569 auto *Store = cast<MemIntrinsicSDNode>(N); 17570 SDValue Value = N->getOperand(2); 17571 SDValue Base = N->getOperand(3); 17572 SDValue Stride = N->getOperand(4); 17573 SDValue Mask = N->getOperand(5); 17574 17575 // If the stride is equal to the element size in bytes, we can use 17576 // a masked.store. 17577 const unsigned ElementSize = Value.getValueType().getScalarStoreSize(); 17578 if (auto *StrideC = dyn_cast<ConstantSDNode>(Stride); 17579 StrideC && StrideC->getZExtValue() == ElementSize) 17580 return DAG.getMaskedStore(Store->getChain(), DL, Value, Base, 17581 DAG.getUNDEF(XLenVT), Mask, 17582 Value.getValueType(), Store->getMemOperand(), 17583 ISD::UNINDEXED, false); 17584 return SDValue(); 17585 } 17586 case Intrinsic::riscv_vcpop: 17587 case Intrinsic::riscv_vcpop_mask: 17588 case Intrinsic::riscv_vfirst: 17589 case Intrinsic::riscv_vfirst_mask: { 17590 SDValue VL = N->getOperand(2); 17591 if (IntNo == Intrinsic::riscv_vcpop_mask || 17592 IntNo == Intrinsic::riscv_vfirst_mask) 17593 VL = N->getOperand(3); 17594 if (!isNullConstant(VL)) 17595 return SDValue(); 17596 // If VL is 0, vcpop -> li 0, vfirst -> li -1. 17597 SDLoc DL(N); 17598 EVT VT = N->getValueType(0); 17599 if (IntNo == Intrinsic::riscv_vfirst || 17600 IntNo == Intrinsic::riscv_vfirst_mask) 17601 return DAG.getConstant(-1, DL, VT); 17602 return DAG.getConstant(0, DL, VT); 17603 } 17604 } 17605 } 17606 case ISD::BITCAST: { 17607 assert(Subtarget.useRVVForFixedLengthVectors()); 17608 SDValue N0 = N->getOperand(0); 17609 EVT VT = N->getValueType(0); 17610 EVT SrcVT = N0.getValueType(); 17611 // If this is a bitcast between a MVT::v4i1/v2i1/v1i1 and an illegal integer 17612 // type, widen both sides to avoid a trip through memory. 17613 if ((SrcVT == MVT::v1i1 || SrcVT == MVT::v2i1 || SrcVT == MVT::v4i1) && 17614 VT.isScalarInteger()) { 17615 unsigned NumConcats = 8 / SrcVT.getVectorNumElements(); 17616 SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT)); 17617 Ops[0] = N0; 17618 SDLoc DL(N); 17619 N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i1, Ops); 17620 N0 = DAG.getBitcast(MVT::i8, N0); 17621 return DAG.getNode(ISD::TRUNCATE, DL, VT, N0); 17622 } 17623 17624 return SDValue(); 17625 } 17626 } 17627 17628 return SDValue(); 17629 } 17630 17631 bool RISCVTargetLowering::shouldTransformSignedTruncationCheck( 17632 EVT XVT, unsigned KeptBits) const { 17633 // For vectors, we don't have a preference.. 17634 if (XVT.isVector()) 17635 return false; 17636 17637 if (XVT != MVT::i32 && XVT != MVT::i64) 17638 return false; 17639 17640 // We can use sext.w for RV64 or an srai 31 on RV32. 17641 if (KeptBits == 32 || KeptBits == 64) 17642 return true; 17643 17644 // With Zbb we can use sext.h/sext.b. 17645 return Subtarget.hasStdExtZbb() && 17646 ((KeptBits == 8 && XVT == MVT::i64 && !Subtarget.is64Bit()) || 17647 KeptBits == 16); 17648 } 17649 17650 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 17651 const SDNode *N, CombineLevel Level) const { 17652 assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA || 17653 N->getOpcode() == ISD::SRL) && 17654 "Expected shift op"); 17655 17656 // The following folds are only desirable if `(OP _, c1 << c2)` can be 17657 // materialised in fewer instructions than `(OP _, c1)`: 17658 // 17659 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 17660 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 17661 SDValue N0 = N->getOperand(0); 17662 EVT Ty = N0.getValueType(); 17663 if (Ty.isScalarInteger() && 17664 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 17665 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 17666 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 17667 if (C1 && C2) { 17668 const APInt &C1Int = C1->getAPIntValue(); 17669 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 17670 17671 // We can materialise `c1 << c2` into an add immediate, so it's "free", 17672 // and the combine should happen, to potentially allow further combines 17673 // later. 17674 if (ShiftedC1Int.getSignificantBits() <= 64 && 17675 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 17676 return true; 17677 17678 // We can materialise `c1` in an add immediate, so it's "free", and the 17679 // combine should be prevented. 17680 if (C1Int.getSignificantBits() <= 64 && 17681 isLegalAddImmediate(C1Int.getSExtValue())) 17682 return false; 17683 17684 // Neither constant will fit into an immediate, so find materialisation 17685 // costs. 17686 int C1Cost = 17687 RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), Subtarget, 17688 /*CompressionCost*/ true); 17689 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 17690 ShiftedC1Int, Ty.getSizeInBits(), Subtarget, 17691 /*CompressionCost*/ true); 17692 17693 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 17694 // combine should be prevented. 17695 if (C1Cost < ShiftedC1Cost) 17696 return false; 17697 } 17698 } 17699 return true; 17700 } 17701 17702 bool RISCVTargetLowering::targetShrinkDemandedConstant( 17703 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 17704 TargetLoweringOpt &TLO) const { 17705 // Delay this optimization as late as possible. 17706 if (!TLO.LegalOps) 17707 return false; 17708 17709 EVT VT = Op.getValueType(); 17710 if (VT.isVector()) 17711 return false; 17712 17713 unsigned Opcode = Op.getOpcode(); 17714 if (Opcode != ISD::AND && Opcode != ISD::OR && Opcode != ISD::XOR) 17715 return false; 17716 17717 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 17718 if (!C) 17719 return false; 17720 17721 const APInt &Mask = C->getAPIntValue(); 17722 17723 // Clear all non-demanded bits initially. 17724 APInt ShrunkMask = Mask & DemandedBits; 17725 17726 // Try to make a smaller immediate by setting undemanded bits. 17727 17728 APInt ExpandedMask = Mask | ~DemandedBits; 17729 17730 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 17731 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 17732 }; 17733 auto UseMask = [Mask, Op, &TLO](const APInt &NewMask) -> bool { 17734 if (NewMask == Mask) 17735 return true; 17736 SDLoc DL(Op); 17737 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, Op.getValueType()); 17738 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), DL, Op.getValueType(), 17739 Op.getOperand(0), NewC); 17740 return TLO.CombineTo(Op, NewOp); 17741 }; 17742 17743 // If the shrunk mask fits in sign extended 12 bits, let the target 17744 // independent code apply it. 17745 if (ShrunkMask.isSignedIntN(12)) 17746 return false; 17747 17748 // And has a few special cases for zext. 17749 if (Opcode == ISD::AND) { 17750 // Preserve (and X, 0xffff), if zext.h exists use zext.h, 17751 // otherwise use SLLI + SRLI. 17752 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 17753 if (IsLegalMask(NewMask)) 17754 return UseMask(NewMask); 17755 17756 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 17757 if (VT == MVT::i64) { 17758 APInt NewMask = APInt(64, 0xffffffff); 17759 if (IsLegalMask(NewMask)) 17760 return UseMask(NewMask); 17761 } 17762 } 17763 17764 // For the remaining optimizations, we need to be able to make a negative 17765 // number through a combination of mask and undemanded bits. 17766 if (!ExpandedMask.isNegative()) 17767 return false; 17768 17769 // What is the fewest number of bits we need to represent the negative number. 17770 unsigned MinSignedBits = ExpandedMask.getSignificantBits(); 17771 17772 // Try to make a 12 bit negative immediate. If that fails try to make a 32 17773 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 17774 // If we can't create a simm12, we shouldn't change opaque constants. 17775 APInt NewMask = ShrunkMask; 17776 if (MinSignedBits <= 12) 17777 NewMask.setBitsFrom(11); 17778 else if (!C->isOpaque() && MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 17779 NewMask.setBitsFrom(31); 17780 else 17781 return false; 17782 17783 // Check that our new mask is a subset of the demanded mask. 17784 assert(IsLegalMask(NewMask)); 17785 return UseMask(NewMask); 17786 } 17787 17788 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) { 17789 static const uint64_t GREVMasks[] = { 17790 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 17791 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 17792 17793 for (unsigned Stage = 0; Stage != 6; ++Stage) { 17794 unsigned Shift = 1 << Stage; 17795 if (ShAmt & Shift) { 17796 uint64_t Mask = GREVMasks[Stage]; 17797 uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask); 17798 if (IsGORC) 17799 Res |= x; 17800 x = Res; 17801 } 17802 } 17803 17804 return x; 17805 } 17806 17807 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 17808 KnownBits &Known, 17809 const APInt &DemandedElts, 17810 const SelectionDAG &DAG, 17811 unsigned Depth) const { 17812 unsigned BitWidth = Known.getBitWidth(); 17813 unsigned Opc = Op.getOpcode(); 17814 assert((Opc >= ISD::BUILTIN_OP_END || 17815 Opc == ISD::INTRINSIC_WO_CHAIN || 17816 Opc == ISD::INTRINSIC_W_CHAIN || 17817 Opc == ISD::INTRINSIC_VOID) && 17818 "Should use MaskedValueIsZero if you don't know whether Op" 17819 " is a target node!"); 17820 17821 Known.resetAll(); 17822 switch (Opc) { 17823 default: break; 17824 case RISCVISD::SELECT_CC: { 17825 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 17826 // If we don't know any bits, early out. 17827 if (Known.isUnknown()) 17828 break; 17829 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 17830 17831 // Only known if known in both the LHS and RHS. 17832 Known = Known.intersectWith(Known2); 17833 break; 17834 } 17835 case RISCVISD::CZERO_EQZ: 17836 case RISCVISD::CZERO_NEZ: 17837 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 17838 // Result is either all zero or operand 0. We can propagate zeros, but not 17839 // ones. 17840 Known.One.clearAllBits(); 17841 break; 17842 case RISCVISD::REMUW: { 17843 KnownBits Known2; 17844 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 17845 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 17846 // We only care about the lower 32 bits. 17847 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 17848 // Restore the original width by sign extending. 17849 Known = Known.sext(BitWidth); 17850 break; 17851 } 17852 case RISCVISD::DIVUW: { 17853 KnownBits Known2; 17854 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 17855 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 17856 // We only care about the lower 32 bits. 17857 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 17858 // Restore the original width by sign extending. 17859 Known = Known.sext(BitWidth); 17860 break; 17861 } 17862 case RISCVISD::SLLW: { 17863 KnownBits Known2; 17864 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 17865 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 17866 Known = KnownBits::shl(Known.trunc(32), Known2.trunc(5).zext(32)); 17867 // Restore the original width by sign extending. 17868 Known = Known.sext(BitWidth); 17869 break; 17870 } 17871 case RISCVISD::CTZW: { 17872 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 17873 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 17874 unsigned LowBits = llvm::bit_width(PossibleTZ); 17875 Known.Zero.setBitsFrom(LowBits); 17876 break; 17877 } 17878 case RISCVISD::CLZW: { 17879 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 17880 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 17881 unsigned LowBits = llvm::bit_width(PossibleLZ); 17882 Known.Zero.setBitsFrom(LowBits); 17883 break; 17884 } 17885 case RISCVISD::BREV8: 17886 case RISCVISD::ORC_B: { 17887 // FIXME: This is based on the non-ratified Zbp GREV and GORC where a 17888 // control value of 7 is equivalent to brev8 and orc.b. 17889 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 17890 bool IsGORC = Op.getOpcode() == RISCVISD::ORC_B; 17891 // To compute zeros, we need to invert the value and invert it back after. 17892 Known.Zero = 17893 ~computeGREVOrGORC(~Known.Zero.getZExtValue(), 7, IsGORC); 17894 Known.One = computeGREVOrGORC(Known.One.getZExtValue(), 7, IsGORC); 17895 break; 17896 } 17897 case RISCVISD::READ_VLENB: { 17898 // We can use the minimum and maximum VLEN values to bound VLENB. We 17899 // know VLEN must be a power of two. 17900 const unsigned MinVLenB = Subtarget.getRealMinVLen() / 8; 17901 const unsigned MaxVLenB = Subtarget.getRealMaxVLen() / 8; 17902 assert(MinVLenB > 0 && "READ_VLENB without vector extension enabled?"); 17903 Known.Zero.setLowBits(Log2_32(MinVLenB)); 17904 Known.Zero.setBitsFrom(Log2_32(MaxVLenB)+1); 17905 if (MaxVLenB == MinVLenB) 17906 Known.One.setBit(Log2_32(MinVLenB)); 17907 break; 17908 } 17909 case RISCVISD::FCLASS: { 17910 // fclass will only set one of the low 10 bits. 17911 Known.Zero.setBitsFrom(10); 17912 break; 17913 } 17914 case ISD::INTRINSIC_W_CHAIN: 17915 case ISD::INTRINSIC_WO_CHAIN: { 17916 unsigned IntNo = 17917 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 17918 switch (IntNo) { 17919 default: 17920 // We can't do anything for most intrinsics. 17921 break; 17922 case Intrinsic::riscv_vsetvli: 17923 case Intrinsic::riscv_vsetvlimax: { 17924 bool HasAVL = IntNo == Intrinsic::riscv_vsetvli; 17925 unsigned VSEW = Op.getConstantOperandVal(HasAVL + 1); 17926 RISCVII::VLMUL VLMUL = 17927 static_cast<RISCVII::VLMUL>(Op.getConstantOperandVal(HasAVL + 2)); 17928 unsigned SEW = RISCVVType::decodeVSEW(VSEW); 17929 auto [LMul, Fractional] = RISCVVType::decodeVLMUL(VLMUL); 17930 uint64_t MaxVL = Subtarget.getRealMaxVLen() / SEW; 17931 MaxVL = (Fractional) ? MaxVL / LMul : MaxVL * LMul; 17932 17933 // Result of vsetvli must be not larger than AVL. 17934 if (HasAVL && isa<ConstantSDNode>(Op.getOperand(1))) 17935 MaxVL = std::min(MaxVL, Op.getConstantOperandVal(1)); 17936 17937 unsigned KnownZeroFirstBit = Log2_32(MaxVL) + 1; 17938 if (BitWidth > KnownZeroFirstBit) 17939 Known.Zero.setBitsFrom(KnownZeroFirstBit); 17940 break; 17941 } 17942 } 17943 break; 17944 } 17945 } 17946 } 17947 17948 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 17949 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 17950 unsigned Depth) const { 17951 switch (Op.getOpcode()) { 17952 default: 17953 break; 17954 case RISCVISD::SELECT_CC: { 17955 unsigned Tmp = 17956 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 17957 if (Tmp == 1) return 1; // Early out. 17958 unsigned Tmp2 = 17959 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 17960 return std::min(Tmp, Tmp2); 17961 } 17962 case RISCVISD::CZERO_EQZ: 17963 case RISCVISD::CZERO_NEZ: 17964 // Output is either all zero or operand 0. We can propagate sign bit count 17965 // from operand 0. 17966 return DAG.ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 17967 case RISCVISD::ABSW: { 17968 // We expand this at isel to negw+max. The result will have 33 sign bits 17969 // if the input has at least 33 sign bits. 17970 unsigned Tmp = 17971 DAG.ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 17972 if (Tmp < 33) return 1; 17973 return 33; 17974 } 17975 case RISCVISD::SLLW: 17976 case RISCVISD::SRAW: 17977 case RISCVISD::SRLW: 17978 case RISCVISD::DIVW: 17979 case RISCVISD::DIVUW: 17980 case RISCVISD::REMUW: 17981 case RISCVISD::ROLW: 17982 case RISCVISD::RORW: 17983 case RISCVISD::FCVT_W_RV64: 17984 case RISCVISD::FCVT_WU_RV64: 17985 case RISCVISD::STRICT_FCVT_W_RV64: 17986 case RISCVISD::STRICT_FCVT_WU_RV64: 17987 // TODO: As the result is sign-extended, this is conservatively correct. A 17988 // more precise answer could be calculated for SRAW depending on known 17989 // bits in the shift amount. 17990 return 33; 17991 case RISCVISD::VMV_X_S: { 17992 // The number of sign bits of the scalar result is computed by obtaining the 17993 // element type of the input vector operand, subtracting its width from the 17994 // XLEN, and then adding one (sign bit within the element type). If the 17995 // element type is wider than XLen, the least-significant XLEN bits are 17996 // taken. 17997 unsigned XLen = Subtarget.getXLen(); 17998 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 17999 if (EltBits <= XLen) 18000 return XLen - EltBits + 1; 18001 break; 18002 } 18003 case ISD::INTRINSIC_W_CHAIN: { 18004 unsigned IntNo = Op.getConstantOperandVal(1); 18005 switch (IntNo) { 18006 default: 18007 break; 18008 case Intrinsic::riscv_masked_atomicrmw_xchg_i64: 18009 case Intrinsic::riscv_masked_atomicrmw_add_i64: 18010 case Intrinsic::riscv_masked_atomicrmw_sub_i64: 18011 case Intrinsic::riscv_masked_atomicrmw_nand_i64: 18012 case Intrinsic::riscv_masked_atomicrmw_max_i64: 18013 case Intrinsic::riscv_masked_atomicrmw_min_i64: 18014 case Intrinsic::riscv_masked_atomicrmw_umax_i64: 18015 case Intrinsic::riscv_masked_atomicrmw_umin_i64: 18016 case Intrinsic::riscv_masked_cmpxchg_i64: 18017 // riscv_masked_{atomicrmw_*,cmpxchg} intrinsics represent an emulated 18018 // narrow atomic operation. These are implemented using atomic 18019 // operations at the minimum supported atomicrmw/cmpxchg width whose 18020 // result is then sign extended to XLEN. With +A, the minimum width is 18021 // 32 for both 64 and 32. 18022 assert(Subtarget.getXLen() == 64); 18023 assert(getMinCmpXchgSizeInBits() == 32); 18024 assert(Subtarget.hasStdExtA()); 18025 return 33; 18026 } 18027 break; 18028 } 18029 } 18030 18031 return 1; 18032 } 18033 18034 bool RISCVTargetLowering::canCreateUndefOrPoisonForTargetNode( 18035 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 18036 bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const { 18037 18038 // TODO: Add more target nodes. 18039 switch (Op.getOpcode()) { 18040 case RISCVISD::SELECT_CC: 18041 // Integer select_cc cannot create poison. 18042 // TODO: What are the FP poison semantics? 18043 // TODO: This instruction blocks poison from the unselected operand, can 18044 // we do anything with that? 18045 return !Op.getValueType().isInteger(); 18046 } 18047 return TargetLowering::canCreateUndefOrPoisonForTargetNode( 18048 Op, DemandedElts, DAG, PoisonOnly, ConsiderFlags, Depth); 18049 } 18050 18051 const Constant * 18052 RISCVTargetLowering::getTargetConstantFromLoad(LoadSDNode *Ld) const { 18053 assert(Ld && "Unexpected null LoadSDNode"); 18054 if (!ISD::isNormalLoad(Ld)) 18055 return nullptr; 18056 18057 SDValue Ptr = Ld->getBasePtr(); 18058 18059 // Only constant pools with no offset are supported. 18060 auto GetSupportedConstantPool = [](SDValue Ptr) -> ConstantPoolSDNode * { 18061 auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr); 18062 if (!CNode || CNode->isMachineConstantPoolEntry() || 18063 CNode->getOffset() != 0) 18064 return nullptr; 18065 18066 return CNode; 18067 }; 18068 18069 // Simple case, LLA. 18070 if (Ptr.getOpcode() == RISCVISD::LLA) { 18071 auto *CNode = GetSupportedConstantPool(Ptr); 18072 if (!CNode || CNode->getTargetFlags() != 0) 18073 return nullptr; 18074 18075 return CNode->getConstVal(); 18076 } 18077 18078 // Look for a HI and ADD_LO pair. 18079 if (Ptr.getOpcode() != RISCVISD::ADD_LO || 18080 Ptr.getOperand(0).getOpcode() != RISCVISD::HI) 18081 return nullptr; 18082 18083 auto *CNodeLo = GetSupportedConstantPool(Ptr.getOperand(1)); 18084 auto *CNodeHi = GetSupportedConstantPool(Ptr.getOperand(0).getOperand(0)); 18085 18086 if (!CNodeLo || CNodeLo->getTargetFlags() != RISCVII::MO_LO || 18087 !CNodeHi || CNodeHi->getTargetFlags() != RISCVII::MO_HI) 18088 return nullptr; 18089 18090 if (CNodeLo->getConstVal() != CNodeHi->getConstVal()) 18091 return nullptr; 18092 18093 return CNodeLo->getConstVal(); 18094 } 18095 18096 static MachineBasicBlock *emitReadCounterWidePseudo(MachineInstr &MI, 18097 MachineBasicBlock *BB) { 18098 assert(MI.getOpcode() == RISCV::ReadCounterWide && "Unexpected instruction"); 18099 18100 // To read a 64-bit counter CSR on a 32-bit target, we read the two halves. 18101 // Should the count have wrapped while it was being read, we need to try 18102 // again. 18103 // For example: 18104 // ``` 18105 // read: 18106 // csrrs x3, counterh # load high word of counter 18107 // csrrs x2, counter # load low word of counter 18108 // csrrs x4, counterh # load high word of counter 18109 // bne x3, x4, read # check if high word reads match, otherwise try again 18110 // ``` 18111 18112 MachineFunction &MF = *BB->getParent(); 18113 const BasicBlock *LLVMBB = BB->getBasicBlock(); 18114 MachineFunction::iterator It = ++BB->getIterator(); 18115 18116 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVMBB); 18117 MF.insert(It, LoopMBB); 18118 18119 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVMBB); 18120 MF.insert(It, DoneMBB); 18121 18122 // Transfer the remainder of BB and its successor edges to DoneMBB. 18123 DoneMBB->splice(DoneMBB->begin(), BB, 18124 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 18125 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 18126 18127 BB->addSuccessor(LoopMBB); 18128 18129 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 18130 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 18131 Register LoReg = MI.getOperand(0).getReg(); 18132 Register HiReg = MI.getOperand(1).getReg(); 18133 int64_t LoCounter = MI.getOperand(2).getImm(); 18134 int64_t HiCounter = MI.getOperand(3).getImm(); 18135 DebugLoc DL = MI.getDebugLoc(); 18136 18137 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 18138 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 18139 .addImm(HiCounter) 18140 .addReg(RISCV::X0); 18141 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 18142 .addImm(LoCounter) 18143 .addReg(RISCV::X0); 18144 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 18145 .addImm(HiCounter) 18146 .addReg(RISCV::X0); 18147 18148 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 18149 .addReg(HiReg) 18150 .addReg(ReadAgainReg) 18151 .addMBB(LoopMBB); 18152 18153 LoopMBB->addSuccessor(LoopMBB); 18154 LoopMBB->addSuccessor(DoneMBB); 18155 18156 MI.eraseFromParent(); 18157 18158 return DoneMBB; 18159 } 18160 18161 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 18162 MachineBasicBlock *BB, 18163 const RISCVSubtarget &Subtarget) { 18164 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 18165 18166 MachineFunction &MF = *BB->getParent(); 18167 DebugLoc DL = MI.getDebugLoc(); 18168 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 18169 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 18170 Register LoReg = MI.getOperand(0).getReg(); 18171 Register HiReg = MI.getOperand(1).getReg(); 18172 Register SrcReg = MI.getOperand(2).getReg(); 18173 18174 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 18175 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 18176 18177 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 18178 RI, Register()); 18179 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 18180 MachineMemOperand *MMOLo = 18181 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 18182 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 18183 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 18184 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 18185 .addFrameIndex(FI) 18186 .addImm(0) 18187 .addMemOperand(MMOLo); 18188 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 18189 .addFrameIndex(FI) 18190 .addImm(4) 18191 .addMemOperand(MMOHi); 18192 MI.eraseFromParent(); // The pseudo instruction is gone now. 18193 return BB; 18194 } 18195 18196 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 18197 MachineBasicBlock *BB, 18198 const RISCVSubtarget &Subtarget) { 18199 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 18200 "Unexpected instruction"); 18201 18202 MachineFunction &MF = *BB->getParent(); 18203 DebugLoc DL = MI.getDebugLoc(); 18204 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 18205 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 18206 Register DstReg = MI.getOperand(0).getReg(); 18207 Register LoReg = MI.getOperand(1).getReg(); 18208 Register HiReg = MI.getOperand(2).getReg(); 18209 18210 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 18211 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 18212 18213 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 18214 MachineMemOperand *MMOLo = 18215 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 18216 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 18217 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 18218 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 18219 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 18220 .addFrameIndex(FI) 18221 .addImm(0) 18222 .addMemOperand(MMOLo); 18223 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 18224 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 18225 .addFrameIndex(FI) 18226 .addImm(4) 18227 .addMemOperand(MMOHi); 18228 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI, Register()); 18229 MI.eraseFromParent(); // The pseudo instruction is gone now. 18230 return BB; 18231 } 18232 18233 static bool isSelectPseudo(MachineInstr &MI) { 18234 switch (MI.getOpcode()) { 18235 default: 18236 return false; 18237 case RISCV::Select_GPR_Using_CC_GPR: 18238 case RISCV::Select_GPR_Using_CC_Imm: 18239 case RISCV::Select_FPR16_Using_CC_GPR: 18240 case RISCV::Select_FPR16INX_Using_CC_GPR: 18241 case RISCV::Select_FPR32_Using_CC_GPR: 18242 case RISCV::Select_FPR32INX_Using_CC_GPR: 18243 case RISCV::Select_FPR64_Using_CC_GPR: 18244 case RISCV::Select_FPR64INX_Using_CC_GPR: 18245 case RISCV::Select_FPR64IN32X_Using_CC_GPR: 18246 return true; 18247 } 18248 } 18249 18250 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 18251 unsigned RelOpcode, unsigned EqOpcode, 18252 const RISCVSubtarget &Subtarget) { 18253 DebugLoc DL = MI.getDebugLoc(); 18254 Register DstReg = MI.getOperand(0).getReg(); 18255 Register Src1Reg = MI.getOperand(1).getReg(); 18256 Register Src2Reg = MI.getOperand(2).getReg(); 18257 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 18258 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 18259 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 18260 18261 // Save the current FFLAGS. 18262 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 18263 18264 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 18265 .addReg(Src1Reg) 18266 .addReg(Src2Reg); 18267 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 18268 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 18269 18270 // Restore the FFLAGS. 18271 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 18272 .addReg(SavedFFlags, RegState::Kill); 18273 18274 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 18275 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 18276 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 18277 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 18278 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 18279 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 18280 18281 // Erase the pseudoinstruction. 18282 MI.eraseFromParent(); 18283 return BB; 18284 } 18285 18286 static MachineBasicBlock * 18287 EmitLoweredCascadedSelect(MachineInstr &First, MachineInstr &Second, 18288 MachineBasicBlock *ThisMBB, 18289 const RISCVSubtarget &Subtarget) { 18290 // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5) 18291 // Without this, custom-inserter would have generated: 18292 // 18293 // A 18294 // | \ 18295 // | B 18296 // | / 18297 // C 18298 // | \ 18299 // | D 18300 // | / 18301 // E 18302 // 18303 // A: X = ...; Y = ... 18304 // B: empty 18305 // C: Z = PHI [X, A], [Y, B] 18306 // D: empty 18307 // E: PHI [X, C], [Z, D] 18308 // 18309 // If we lower both Select_FPRX_ in a single step, we can instead generate: 18310 // 18311 // A 18312 // | \ 18313 // | C 18314 // | /| 18315 // |/ | 18316 // | | 18317 // | D 18318 // | / 18319 // E 18320 // 18321 // A: X = ...; Y = ... 18322 // D: empty 18323 // E: PHI [X, A], [X, C], [Y, D] 18324 18325 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 18326 const DebugLoc &DL = First.getDebugLoc(); 18327 const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock(); 18328 MachineFunction *F = ThisMBB->getParent(); 18329 MachineBasicBlock *FirstMBB = F->CreateMachineBasicBlock(LLVM_BB); 18330 MachineBasicBlock *SecondMBB = F->CreateMachineBasicBlock(LLVM_BB); 18331 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 18332 MachineFunction::iterator It = ++ThisMBB->getIterator(); 18333 F->insert(It, FirstMBB); 18334 F->insert(It, SecondMBB); 18335 F->insert(It, SinkMBB); 18336 18337 // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. 18338 SinkMBB->splice(SinkMBB->begin(), ThisMBB, 18339 std::next(MachineBasicBlock::iterator(First)), 18340 ThisMBB->end()); 18341 SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); 18342 18343 // Fallthrough block for ThisMBB. 18344 ThisMBB->addSuccessor(FirstMBB); 18345 // Fallthrough block for FirstMBB. 18346 FirstMBB->addSuccessor(SecondMBB); 18347 ThisMBB->addSuccessor(SinkMBB); 18348 FirstMBB->addSuccessor(SinkMBB); 18349 // This is fallthrough. 18350 SecondMBB->addSuccessor(SinkMBB); 18351 18352 auto FirstCC = static_cast<RISCVCC::CondCode>(First.getOperand(3).getImm()); 18353 Register FLHS = First.getOperand(1).getReg(); 18354 Register FRHS = First.getOperand(2).getReg(); 18355 // Insert appropriate branch. 18356 BuildMI(FirstMBB, DL, TII.getBrCond(FirstCC)) 18357 .addReg(FLHS) 18358 .addReg(FRHS) 18359 .addMBB(SinkMBB); 18360 18361 Register SLHS = Second.getOperand(1).getReg(); 18362 Register SRHS = Second.getOperand(2).getReg(); 18363 Register Op1Reg4 = First.getOperand(4).getReg(); 18364 Register Op1Reg5 = First.getOperand(5).getReg(); 18365 18366 auto SecondCC = static_cast<RISCVCC::CondCode>(Second.getOperand(3).getImm()); 18367 // Insert appropriate branch. 18368 BuildMI(ThisMBB, DL, TII.getBrCond(SecondCC)) 18369 .addReg(SLHS) 18370 .addReg(SRHS) 18371 .addMBB(SinkMBB); 18372 18373 Register DestReg = Second.getOperand(0).getReg(); 18374 Register Op2Reg4 = Second.getOperand(4).getReg(); 18375 BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII.get(RISCV::PHI), DestReg) 18376 .addReg(Op2Reg4) 18377 .addMBB(ThisMBB) 18378 .addReg(Op1Reg4) 18379 .addMBB(FirstMBB) 18380 .addReg(Op1Reg5) 18381 .addMBB(SecondMBB); 18382 18383 // Now remove the Select_FPRX_s. 18384 First.eraseFromParent(); 18385 Second.eraseFromParent(); 18386 return SinkMBB; 18387 } 18388 18389 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 18390 MachineBasicBlock *BB, 18391 const RISCVSubtarget &Subtarget) { 18392 // To "insert" Select_* instructions, we actually have to insert the triangle 18393 // control-flow pattern. The incoming instructions know the destination vreg 18394 // to set, the condition code register to branch on, the true/false values to 18395 // select between, and the condcode to use to select the appropriate branch. 18396 // 18397 // We produce the following control flow: 18398 // HeadMBB 18399 // | \ 18400 // | IfFalseMBB 18401 // | / 18402 // TailMBB 18403 // 18404 // When we find a sequence of selects we attempt to optimize their emission 18405 // by sharing the control flow. Currently we only handle cases where we have 18406 // multiple selects with the exact same condition (same LHS, RHS and CC). 18407 // The selects may be interleaved with other instructions if the other 18408 // instructions meet some requirements we deem safe: 18409 // - They are not pseudo instructions. 18410 // - They are debug instructions. Otherwise, 18411 // - They do not have side-effects, do not access memory and their inputs do 18412 // not depend on the results of the select pseudo-instructions. 18413 // The TrueV/FalseV operands of the selects cannot depend on the result of 18414 // previous selects in the sequence. 18415 // These conditions could be further relaxed. See the X86 target for a 18416 // related approach and more information. 18417 // 18418 // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5)) 18419 // is checked here and handled by a separate function - 18420 // EmitLoweredCascadedSelect. 18421 18422 auto Next = next_nodbg(MI.getIterator(), BB->instr_end()); 18423 if ((MI.getOpcode() != RISCV::Select_GPR_Using_CC_GPR && 18424 MI.getOpcode() != RISCV::Select_GPR_Using_CC_Imm) && 18425 Next != BB->end() && Next->getOpcode() == MI.getOpcode() && 18426 Next->getOperand(5).getReg() == MI.getOperand(0).getReg() && 18427 Next->getOperand(5).isKill()) 18428 return EmitLoweredCascadedSelect(MI, *Next, BB, Subtarget); 18429 18430 Register LHS = MI.getOperand(1).getReg(); 18431 Register RHS; 18432 if (MI.getOperand(2).isReg()) 18433 RHS = MI.getOperand(2).getReg(); 18434 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 18435 18436 SmallVector<MachineInstr *, 4> SelectDebugValues; 18437 SmallSet<Register, 4> SelectDests; 18438 SelectDests.insert(MI.getOperand(0).getReg()); 18439 18440 MachineInstr *LastSelectPseudo = &MI; 18441 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 18442 SequenceMBBI != E; ++SequenceMBBI) { 18443 if (SequenceMBBI->isDebugInstr()) 18444 continue; 18445 if (isSelectPseudo(*SequenceMBBI)) { 18446 if (SequenceMBBI->getOperand(1).getReg() != LHS || 18447 !SequenceMBBI->getOperand(2).isReg() || 18448 SequenceMBBI->getOperand(2).getReg() != RHS || 18449 SequenceMBBI->getOperand(3).getImm() != CC || 18450 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 18451 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 18452 break; 18453 LastSelectPseudo = &*SequenceMBBI; 18454 SequenceMBBI->collectDebugValues(SelectDebugValues); 18455 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 18456 continue; 18457 } 18458 if (SequenceMBBI->hasUnmodeledSideEffects() || 18459 SequenceMBBI->mayLoadOrStore() || 18460 SequenceMBBI->usesCustomInsertionHook()) 18461 break; 18462 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 18463 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 18464 })) 18465 break; 18466 } 18467 18468 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 18469 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 18470 DebugLoc DL = MI.getDebugLoc(); 18471 MachineFunction::iterator I = ++BB->getIterator(); 18472 18473 MachineBasicBlock *HeadMBB = BB; 18474 MachineFunction *F = BB->getParent(); 18475 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 18476 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 18477 18478 F->insert(I, IfFalseMBB); 18479 F->insert(I, TailMBB); 18480 18481 // Set the call frame size on entry to the new basic blocks. 18482 unsigned CallFrameSize = TII.getCallFrameSizeAt(*LastSelectPseudo); 18483 IfFalseMBB->setCallFrameSize(CallFrameSize); 18484 TailMBB->setCallFrameSize(CallFrameSize); 18485 18486 // Transfer debug instructions associated with the selects to TailMBB. 18487 for (MachineInstr *DebugInstr : SelectDebugValues) { 18488 TailMBB->push_back(DebugInstr->removeFromParent()); 18489 } 18490 18491 // Move all instructions after the sequence to TailMBB. 18492 TailMBB->splice(TailMBB->end(), HeadMBB, 18493 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 18494 // Update machine-CFG edges by transferring all successors of the current 18495 // block to the new block which will contain the Phi nodes for the selects. 18496 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 18497 // Set the successors for HeadMBB. 18498 HeadMBB->addSuccessor(IfFalseMBB); 18499 HeadMBB->addSuccessor(TailMBB); 18500 18501 // Insert appropriate branch. 18502 if (MI.getOperand(2).isImm()) 18503 BuildMI(HeadMBB, DL, TII.getBrCond(CC, MI.getOperand(2).isImm())) 18504 .addReg(LHS) 18505 .addImm(MI.getOperand(2).getImm()) 18506 .addMBB(TailMBB); 18507 else 18508 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 18509 .addReg(LHS) 18510 .addReg(RHS) 18511 .addMBB(TailMBB); 18512 18513 // IfFalseMBB just falls through to TailMBB. 18514 IfFalseMBB->addSuccessor(TailMBB); 18515 18516 // Create PHIs for all of the select pseudo-instructions. 18517 auto SelectMBBI = MI.getIterator(); 18518 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 18519 auto InsertionPoint = TailMBB->begin(); 18520 while (SelectMBBI != SelectEnd) { 18521 auto Next = std::next(SelectMBBI); 18522 if (isSelectPseudo(*SelectMBBI)) { 18523 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 18524 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 18525 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 18526 .addReg(SelectMBBI->getOperand(4).getReg()) 18527 .addMBB(HeadMBB) 18528 .addReg(SelectMBBI->getOperand(5).getReg()) 18529 .addMBB(IfFalseMBB); 18530 SelectMBBI->eraseFromParent(); 18531 } 18532 SelectMBBI = Next; 18533 } 18534 18535 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 18536 return TailMBB; 18537 } 18538 18539 // Helper to find Masked Pseudo instruction from MC instruction, LMUL and SEW. 18540 static const RISCV::RISCVMaskedPseudoInfo * 18541 lookupMaskedIntrinsic(uint16_t MCOpcode, RISCVII::VLMUL LMul, unsigned SEW) { 18542 const RISCVVInversePseudosTable::PseudoInfo *Inverse = 18543 RISCVVInversePseudosTable::getBaseInfo(MCOpcode, LMul, SEW); 18544 assert(Inverse && "Unexpected LMUL and SEW pair for instruction"); 18545 const RISCV::RISCVMaskedPseudoInfo *Masked = 18546 RISCV::lookupMaskedIntrinsicByUnmasked(Inverse->Pseudo); 18547 assert(Masked && "Could not find masked instruction for LMUL and SEW pair"); 18548 return Masked; 18549 } 18550 18551 static MachineBasicBlock *emitVFROUND_NOEXCEPT_MASK(MachineInstr &MI, 18552 MachineBasicBlock *BB, 18553 unsigned CVTXOpc) { 18554 DebugLoc DL = MI.getDebugLoc(); 18555 18556 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 18557 18558 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 18559 Register SavedFFLAGS = MRI.createVirtualRegister(&RISCV::GPRRegClass); 18560 18561 // Save the old value of FFLAGS. 18562 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFLAGS); 18563 18564 assert(MI.getNumOperands() == 7); 18565 18566 // Emit a VFCVT_X_F 18567 const TargetRegisterInfo *TRI = 18568 BB->getParent()->getSubtarget().getRegisterInfo(); 18569 const TargetRegisterClass *RC = MI.getRegClassConstraint(0, &TII, TRI); 18570 Register Tmp = MRI.createVirtualRegister(RC); 18571 BuildMI(*BB, MI, DL, TII.get(CVTXOpc), Tmp) 18572 .add(MI.getOperand(1)) 18573 .add(MI.getOperand(2)) 18574 .add(MI.getOperand(3)) 18575 .add(MachineOperand::CreateImm(7)) // frm = DYN 18576 .add(MI.getOperand(4)) 18577 .add(MI.getOperand(5)) 18578 .add(MI.getOperand(6)) 18579 .add(MachineOperand::CreateReg(RISCV::FRM, 18580 /*IsDef*/ false, 18581 /*IsImp*/ true)); 18582 18583 // Emit a VFCVT_F_X 18584 RISCVII::VLMUL LMul = RISCVII::getLMul(MI.getDesc().TSFlags); 18585 unsigned Log2SEW = MI.getOperand(RISCVII::getSEWOpNum(MI.getDesc())).getImm(); 18586 // There is no E8 variant for VFCVT_F_X. 18587 assert(Log2SEW >= 4); 18588 unsigned CVTFOpc = 18589 lookupMaskedIntrinsic(RISCV::VFCVT_F_X_V, LMul, 1 << Log2SEW) 18590 ->MaskedPseudo; 18591 18592 BuildMI(*BB, MI, DL, TII.get(CVTFOpc)) 18593 .add(MI.getOperand(0)) 18594 .add(MI.getOperand(1)) 18595 .addReg(Tmp) 18596 .add(MI.getOperand(3)) 18597 .add(MachineOperand::CreateImm(7)) // frm = DYN 18598 .add(MI.getOperand(4)) 18599 .add(MI.getOperand(5)) 18600 .add(MI.getOperand(6)) 18601 .add(MachineOperand::CreateReg(RISCV::FRM, 18602 /*IsDef*/ false, 18603 /*IsImp*/ true)); 18604 18605 // Restore FFLAGS. 18606 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 18607 .addReg(SavedFFLAGS, RegState::Kill); 18608 18609 // Erase the pseudoinstruction. 18610 MI.eraseFromParent(); 18611 return BB; 18612 } 18613 18614 static MachineBasicBlock *emitFROUND(MachineInstr &MI, MachineBasicBlock *MBB, 18615 const RISCVSubtarget &Subtarget) { 18616 unsigned CmpOpc, F2IOpc, I2FOpc, FSGNJOpc, FSGNJXOpc; 18617 const TargetRegisterClass *RC; 18618 switch (MI.getOpcode()) { 18619 default: 18620 llvm_unreachable("Unexpected opcode"); 18621 case RISCV::PseudoFROUND_H: 18622 CmpOpc = RISCV::FLT_H; 18623 F2IOpc = RISCV::FCVT_W_H; 18624 I2FOpc = RISCV::FCVT_H_W; 18625 FSGNJOpc = RISCV::FSGNJ_H; 18626 FSGNJXOpc = RISCV::FSGNJX_H; 18627 RC = &RISCV::FPR16RegClass; 18628 break; 18629 case RISCV::PseudoFROUND_H_INX: 18630 CmpOpc = RISCV::FLT_H_INX; 18631 F2IOpc = RISCV::FCVT_W_H_INX; 18632 I2FOpc = RISCV::FCVT_H_W_INX; 18633 FSGNJOpc = RISCV::FSGNJ_H_INX; 18634 FSGNJXOpc = RISCV::FSGNJX_H_INX; 18635 RC = &RISCV::GPRF16RegClass; 18636 break; 18637 case RISCV::PseudoFROUND_S: 18638 CmpOpc = RISCV::FLT_S; 18639 F2IOpc = RISCV::FCVT_W_S; 18640 I2FOpc = RISCV::FCVT_S_W; 18641 FSGNJOpc = RISCV::FSGNJ_S; 18642 FSGNJXOpc = RISCV::FSGNJX_S; 18643 RC = &RISCV::FPR32RegClass; 18644 break; 18645 case RISCV::PseudoFROUND_S_INX: 18646 CmpOpc = RISCV::FLT_S_INX; 18647 F2IOpc = RISCV::FCVT_W_S_INX; 18648 I2FOpc = RISCV::FCVT_S_W_INX; 18649 FSGNJOpc = RISCV::FSGNJ_S_INX; 18650 FSGNJXOpc = RISCV::FSGNJX_S_INX; 18651 RC = &RISCV::GPRF32RegClass; 18652 break; 18653 case RISCV::PseudoFROUND_D: 18654 assert(Subtarget.is64Bit() && "Expected 64-bit GPR."); 18655 CmpOpc = RISCV::FLT_D; 18656 F2IOpc = RISCV::FCVT_L_D; 18657 I2FOpc = RISCV::FCVT_D_L; 18658 FSGNJOpc = RISCV::FSGNJ_D; 18659 FSGNJXOpc = RISCV::FSGNJX_D; 18660 RC = &RISCV::FPR64RegClass; 18661 break; 18662 case RISCV::PseudoFROUND_D_INX: 18663 assert(Subtarget.is64Bit() && "Expected 64-bit GPR."); 18664 CmpOpc = RISCV::FLT_D_INX; 18665 F2IOpc = RISCV::FCVT_L_D_INX; 18666 I2FOpc = RISCV::FCVT_D_L_INX; 18667 FSGNJOpc = RISCV::FSGNJ_D_INX; 18668 FSGNJXOpc = RISCV::FSGNJX_D_INX; 18669 RC = &RISCV::GPRRegClass; 18670 break; 18671 } 18672 18673 const BasicBlock *BB = MBB->getBasicBlock(); 18674 DebugLoc DL = MI.getDebugLoc(); 18675 MachineFunction::iterator I = ++MBB->getIterator(); 18676 18677 MachineFunction *F = MBB->getParent(); 18678 MachineBasicBlock *CvtMBB = F->CreateMachineBasicBlock(BB); 18679 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(BB); 18680 18681 F->insert(I, CvtMBB); 18682 F->insert(I, DoneMBB); 18683 // Move all instructions after the sequence to DoneMBB. 18684 DoneMBB->splice(DoneMBB->end(), MBB, MachineBasicBlock::iterator(MI), 18685 MBB->end()); 18686 // Update machine-CFG edges by transferring all successors of the current 18687 // block to the new block which will contain the Phi nodes for the selects. 18688 DoneMBB->transferSuccessorsAndUpdatePHIs(MBB); 18689 // Set the successors for MBB. 18690 MBB->addSuccessor(CvtMBB); 18691 MBB->addSuccessor(DoneMBB); 18692 18693 Register DstReg = MI.getOperand(0).getReg(); 18694 Register SrcReg = MI.getOperand(1).getReg(); 18695 Register MaxReg = MI.getOperand(2).getReg(); 18696 int64_t FRM = MI.getOperand(3).getImm(); 18697 18698 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 18699 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 18700 18701 Register FabsReg = MRI.createVirtualRegister(RC); 18702 BuildMI(MBB, DL, TII.get(FSGNJXOpc), FabsReg).addReg(SrcReg).addReg(SrcReg); 18703 18704 // Compare the FP value to the max value. 18705 Register CmpReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 18706 auto MIB = 18707 BuildMI(MBB, DL, TII.get(CmpOpc), CmpReg).addReg(FabsReg).addReg(MaxReg); 18708 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 18709 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 18710 18711 // Insert branch. 18712 BuildMI(MBB, DL, TII.get(RISCV::BEQ)) 18713 .addReg(CmpReg) 18714 .addReg(RISCV::X0) 18715 .addMBB(DoneMBB); 18716 18717 CvtMBB->addSuccessor(DoneMBB); 18718 18719 // Convert to integer. 18720 Register F2IReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 18721 MIB = BuildMI(CvtMBB, DL, TII.get(F2IOpc), F2IReg).addReg(SrcReg).addImm(FRM); 18722 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 18723 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 18724 18725 // Convert back to FP. 18726 Register I2FReg = MRI.createVirtualRegister(RC); 18727 MIB = BuildMI(CvtMBB, DL, TII.get(I2FOpc), I2FReg).addReg(F2IReg).addImm(FRM); 18728 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 18729 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 18730 18731 // Restore the sign bit. 18732 Register CvtReg = MRI.createVirtualRegister(RC); 18733 BuildMI(CvtMBB, DL, TII.get(FSGNJOpc), CvtReg).addReg(I2FReg).addReg(SrcReg); 18734 18735 // Merge the results. 18736 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(RISCV::PHI), DstReg) 18737 .addReg(SrcReg) 18738 .addMBB(MBB) 18739 .addReg(CvtReg) 18740 .addMBB(CvtMBB); 18741 18742 MI.eraseFromParent(); 18743 return DoneMBB; 18744 } 18745 18746 MachineBasicBlock * 18747 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 18748 MachineBasicBlock *BB) const { 18749 switch (MI.getOpcode()) { 18750 default: 18751 llvm_unreachable("Unexpected instr type to insert"); 18752 case RISCV::ReadCounterWide: 18753 assert(!Subtarget.is64Bit() && 18754 "ReadCounterWide is only to be used on riscv32"); 18755 return emitReadCounterWidePseudo(MI, BB); 18756 case RISCV::Select_GPR_Using_CC_GPR: 18757 case RISCV::Select_GPR_Using_CC_Imm: 18758 case RISCV::Select_FPR16_Using_CC_GPR: 18759 case RISCV::Select_FPR16INX_Using_CC_GPR: 18760 case RISCV::Select_FPR32_Using_CC_GPR: 18761 case RISCV::Select_FPR32INX_Using_CC_GPR: 18762 case RISCV::Select_FPR64_Using_CC_GPR: 18763 case RISCV::Select_FPR64INX_Using_CC_GPR: 18764 case RISCV::Select_FPR64IN32X_Using_CC_GPR: 18765 return emitSelectPseudo(MI, BB, Subtarget); 18766 case RISCV::BuildPairF64Pseudo: 18767 return emitBuildPairF64Pseudo(MI, BB, Subtarget); 18768 case RISCV::SplitF64Pseudo: 18769 return emitSplitF64Pseudo(MI, BB, Subtarget); 18770 case RISCV::PseudoQuietFLE_H: 18771 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 18772 case RISCV::PseudoQuietFLE_H_INX: 18773 return emitQuietFCMP(MI, BB, RISCV::FLE_H_INX, RISCV::FEQ_H_INX, Subtarget); 18774 case RISCV::PseudoQuietFLT_H: 18775 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 18776 case RISCV::PseudoQuietFLT_H_INX: 18777 return emitQuietFCMP(MI, BB, RISCV::FLT_H_INX, RISCV::FEQ_H_INX, Subtarget); 18778 case RISCV::PseudoQuietFLE_S: 18779 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 18780 case RISCV::PseudoQuietFLE_S_INX: 18781 return emitQuietFCMP(MI, BB, RISCV::FLE_S_INX, RISCV::FEQ_S_INX, Subtarget); 18782 case RISCV::PseudoQuietFLT_S: 18783 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 18784 case RISCV::PseudoQuietFLT_S_INX: 18785 return emitQuietFCMP(MI, BB, RISCV::FLT_S_INX, RISCV::FEQ_S_INX, Subtarget); 18786 case RISCV::PseudoQuietFLE_D: 18787 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 18788 case RISCV::PseudoQuietFLE_D_INX: 18789 return emitQuietFCMP(MI, BB, RISCV::FLE_D_INX, RISCV::FEQ_D_INX, Subtarget); 18790 case RISCV::PseudoQuietFLE_D_IN32X: 18791 return emitQuietFCMP(MI, BB, RISCV::FLE_D_IN32X, RISCV::FEQ_D_IN32X, 18792 Subtarget); 18793 case RISCV::PseudoQuietFLT_D: 18794 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 18795 case RISCV::PseudoQuietFLT_D_INX: 18796 return emitQuietFCMP(MI, BB, RISCV::FLT_D_INX, RISCV::FEQ_D_INX, Subtarget); 18797 case RISCV::PseudoQuietFLT_D_IN32X: 18798 return emitQuietFCMP(MI, BB, RISCV::FLT_D_IN32X, RISCV::FEQ_D_IN32X, 18799 Subtarget); 18800 18801 case RISCV::PseudoVFROUND_NOEXCEPT_V_M1_MASK: 18802 return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M1_MASK); 18803 case RISCV::PseudoVFROUND_NOEXCEPT_V_M2_MASK: 18804 return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M2_MASK); 18805 case RISCV::PseudoVFROUND_NOEXCEPT_V_M4_MASK: 18806 return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M4_MASK); 18807 case RISCV::PseudoVFROUND_NOEXCEPT_V_M8_MASK: 18808 return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M8_MASK); 18809 case RISCV::PseudoVFROUND_NOEXCEPT_V_MF2_MASK: 18810 return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF2_MASK); 18811 case RISCV::PseudoVFROUND_NOEXCEPT_V_MF4_MASK: 18812 return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF4_MASK); 18813 case RISCV::PseudoFROUND_H: 18814 case RISCV::PseudoFROUND_H_INX: 18815 case RISCV::PseudoFROUND_S: 18816 case RISCV::PseudoFROUND_S_INX: 18817 case RISCV::PseudoFROUND_D: 18818 case RISCV::PseudoFROUND_D_INX: 18819 case RISCV::PseudoFROUND_D_IN32X: 18820 return emitFROUND(MI, BB, Subtarget); 18821 case TargetOpcode::STATEPOINT: 18822 // STATEPOINT is a pseudo instruction which has no implicit defs/uses 18823 // while jal call instruction (where statepoint will be lowered at the end) 18824 // has implicit def. This def is early-clobber as it will be set at 18825 // the moment of the call and earlier than any use is read. 18826 // Add this implicit dead def here as a workaround. 18827 MI.addOperand(*MI.getMF(), 18828 MachineOperand::CreateReg( 18829 RISCV::X1, /*isDef*/ true, 18830 /*isImp*/ true, /*isKill*/ false, /*isDead*/ true, 18831 /*isUndef*/ false, /*isEarlyClobber*/ true)); 18832 [[fallthrough]]; 18833 case TargetOpcode::STACKMAP: 18834 case TargetOpcode::PATCHPOINT: 18835 if (!Subtarget.is64Bit()) 18836 report_fatal_error("STACKMAP, PATCHPOINT and STATEPOINT are only " 18837 "supported on 64-bit targets"); 18838 return emitPatchPoint(MI, BB); 18839 } 18840 } 18841 18842 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 18843 SDNode *Node) const { 18844 // Add FRM dependency to any instructions with dynamic rounding mode. 18845 int Idx = RISCV::getNamedOperandIdx(MI.getOpcode(), RISCV::OpName::frm); 18846 if (Idx < 0) { 18847 // Vector pseudos have FRM index indicated by TSFlags. 18848 Idx = RISCVII::getFRMOpNum(MI.getDesc()); 18849 if (Idx < 0) 18850 return; 18851 } 18852 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 18853 return; 18854 // If the instruction already reads FRM, don't add another read. 18855 if (MI.readsRegister(RISCV::FRM, /*TRI=*/nullptr)) 18856 return; 18857 MI.addOperand( 18858 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 18859 } 18860 18861 // Calling Convention Implementation. 18862 // The expectations for frontend ABI lowering vary from target to target. 18863 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 18864 // details, but this is a longer term goal. For now, we simply try to keep the 18865 // role of the frontend as simple and well-defined as possible. The rules can 18866 // be summarised as: 18867 // * Never split up large scalar arguments. We handle them here. 18868 // * If a hardfloat calling convention is being used, and the struct may be 18869 // passed in a pair of registers (fp+fp, int+fp), and both registers are 18870 // available, then pass as two separate arguments. If either the GPRs or FPRs 18871 // are exhausted, then pass according to the rule below. 18872 // * If a struct could never be passed in registers or directly in a stack 18873 // slot (as it is larger than 2*XLEN and the floating point rules don't 18874 // apply), then pass it using a pointer with the byval attribute. 18875 // * If a struct is less than 2*XLEN, then coerce to either a two-element 18876 // word-sized array or a 2*XLEN scalar (depending on alignment). 18877 // * The frontend can determine whether a struct is returned by reference or 18878 // not based on its size and fields. If it will be returned by reference, the 18879 // frontend must modify the prototype so a pointer with the sret annotation is 18880 // passed as the first argument. This is not necessary for large scalar 18881 // returns. 18882 // * Struct return values and varargs should be coerced to structs containing 18883 // register-size fields in the same situations they would be for fixed 18884 // arguments. 18885 18886 static const MCPhysReg ArgFPR16s[] = { 18887 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 18888 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 18889 }; 18890 static const MCPhysReg ArgFPR32s[] = { 18891 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 18892 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 18893 }; 18894 static const MCPhysReg ArgFPR64s[] = { 18895 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 18896 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 18897 }; 18898 // This is an interim calling convention and it may be changed in the future. 18899 static const MCPhysReg ArgVRs[] = { 18900 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 18901 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 18902 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 18903 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 18904 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 18905 RISCV::V20M2, RISCV::V22M2}; 18906 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 18907 RISCV::V20M4}; 18908 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 18909 18910 ArrayRef<MCPhysReg> RISCV::getArgGPRs(const RISCVABI::ABI ABI) { 18911 // The GPRs used for passing arguments in the ILP32* and LP64* ABIs, except 18912 // the ILP32E ABI. 18913 static const MCPhysReg ArgIGPRs[] = {RISCV::X10, RISCV::X11, RISCV::X12, 18914 RISCV::X13, RISCV::X14, RISCV::X15, 18915 RISCV::X16, RISCV::X17}; 18916 // The GPRs used for passing arguments in the ILP32E/ILP64E ABI. 18917 static const MCPhysReg ArgEGPRs[] = {RISCV::X10, RISCV::X11, RISCV::X12, 18918 RISCV::X13, RISCV::X14, RISCV::X15}; 18919 18920 if (ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E) 18921 return ArrayRef(ArgEGPRs); 18922 18923 return ArrayRef(ArgIGPRs); 18924 } 18925 18926 static ArrayRef<MCPhysReg> getFastCCArgGPRs(const RISCVABI::ABI ABI) { 18927 // The GPRs used for passing arguments in the FastCC, X5 and X6 might be used 18928 // for save-restore libcall, so we don't use them. 18929 // Don't use X7 for fastcc, since Zicfilp uses X7 as the label register. 18930 static const MCPhysReg FastCCIGPRs[] = { 18931 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, RISCV::X15, 18932 RISCV::X16, RISCV::X17, RISCV::X28, RISCV::X29, RISCV::X30, RISCV::X31}; 18933 18934 // The GPRs used for passing arguments in the FastCC when using ILP32E/ILP64E. 18935 static const MCPhysReg FastCCEGPRs[] = {RISCV::X10, RISCV::X11, RISCV::X12, 18936 RISCV::X13, RISCV::X14, RISCV::X15}; 18937 18938 if (ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E) 18939 return ArrayRef(FastCCEGPRs); 18940 18941 return ArrayRef(FastCCIGPRs); 18942 } 18943 18944 // Pass a 2*XLEN argument that has been split into two XLEN values through 18945 // registers or the stack as necessary. 18946 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 18947 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 18948 MVT ValVT2, MVT LocVT2, 18949 ISD::ArgFlagsTy ArgFlags2, bool EABI) { 18950 unsigned XLenInBytes = XLen / 8; 18951 const RISCVSubtarget &STI = 18952 State.getMachineFunction().getSubtarget<RISCVSubtarget>(); 18953 ArrayRef<MCPhysReg> ArgGPRs = RISCV::getArgGPRs(STI.getTargetABI()); 18954 18955 if (Register Reg = State.AllocateReg(ArgGPRs)) { 18956 // At least one half can be passed via register. 18957 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 18958 VA1.getLocVT(), CCValAssign::Full)); 18959 } else { 18960 // Both halves must be passed on the stack, with proper alignment. 18961 // TODO: To be compatible with GCC's behaviors, we force them to have 4-byte 18962 // alignment. This behavior may be changed when RV32E/ILP32E is ratified. 18963 Align StackAlign(XLenInBytes); 18964 if (!EABI || XLen != 32) 18965 StackAlign = std::max(StackAlign, ArgFlags1.getNonZeroOrigAlign()); 18966 State.addLoc( 18967 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 18968 State.AllocateStack(XLenInBytes, StackAlign), 18969 VA1.getLocVT(), CCValAssign::Full)); 18970 State.addLoc(CCValAssign::getMem( 18971 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 18972 LocVT2, CCValAssign::Full)); 18973 return false; 18974 } 18975 18976 if (Register Reg = State.AllocateReg(ArgGPRs)) { 18977 // The second half can also be passed via register. 18978 State.addLoc( 18979 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 18980 } else { 18981 // The second half is passed via the stack, without additional alignment. 18982 State.addLoc(CCValAssign::getMem( 18983 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 18984 LocVT2, CCValAssign::Full)); 18985 } 18986 18987 return false; 18988 } 18989 18990 // Implements the RISC-V calling convention. Returns true upon failure. 18991 bool RISCV::CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 18992 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 18993 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 18994 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 18995 RVVArgDispatcher &RVVDispatcher) { 18996 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 18997 assert(XLen == 32 || XLen == 64); 18998 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 18999 19000 // Static chain parameter must not be passed in normal argument registers, 19001 // so we assign t2 for it as done in GCC's __builtin_call_with_static_chain 19002 if (ArgFlags.isNest()) { 19003 if (unsigned Reg = State.AllocateReg(RISCV::X7)) { 19004 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 19005 return false; 19006 } 19007 } 19008 19009 // Any return value split in to more than two values can't be returned 19010 // directly. Vectors are returned via the available vector registers. 19011 if (!LocVT.isVector() && IsRet && ValNo > 1) 19012 return true; 19013 19014 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 19015 // variadic argument, or if no F16/F32 argument registers are available. 19016 bool UseGPRForF16_F32 = true; 19017 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 19018 // variadic argument, or if no F64 argument registers are available. 19019 bool UseGPRForF64 = true; 19020 19021 switch (ABI) { 19022 default: 19023 llvm_unreachable("Unexpected ABI"); 19024 case RISCVABI::ABI_ILP32: 19025 case RISCVABI::ABI_ILP32E: 19026 case RISCVABI::ABI_LP64: 19027 case RISCVABI::ABI_LP64E: 19028 break; 19029 case RISCVABI::ABI_ILP32F: 19030 case RISCVABI::ABI_LP64F: 19031 UseGPRForF16_F32 = !IsFixed; 19032 break; 19033 case RISCVABI::ABI_ILP32D: 19034 case RISCVABI::ABI_LP64D: 19035 UseGPRForF16_F32 = !IsFixed; 19036 UseGPRForF64 = !IsFixed; 19037 break; 19038 } 19039 19040 // FPR16, FPR32, and FPR64 alias each other. 19041 if (State.getFirstUnallocated(ArgFPR32s) == std::size(ArgFPR32s)) { 19042 UseGPRForF16_F32 = true; 19043 UseGPRForF64 = true; 19044 } 19045 19046 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 19047 // similar local variables rather than directly checking against the target 19048 // ABI. 19049 19050 if (UseGPRForF16_F32 && 19051 (ValVT == MVT::f16 || ValVT == MVT::bf16 || ValVT == MVT::f32)) { 19052 LocVT = XLenVT; 19053 LocInfo = CCValAssign::BCvt; 19054 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 19055 LocVT = MVT::i64; 19056 LocInfo = CCValAssign::BCvt; 19057 } 19058 19059 ArrayRef<MCPhysReg> ArgGPRs = RISCV::getArgGPRs(ABI); 19060 19061 // If this is a variadic argument, the RISC-V calling convention requires 19062 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 19063 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 19064 // be used regardless of whether the original argument was split during 19065 // legalisation or not. The argument will not be passed by registers if the 19066 // original type is larger than 2*XLEN, so the register alignment rule does 19067 // not apply. 19068 // TODO: To be compatible with GCC's behaviors, we don't align registers 19069 // currently if we are using ILP32E calling convention. This behavior may be 19070 // changed when RV32E/ILP32E is ratified. 19071 unsigned TwoXLenInBytes = (2 * XLen) / 8; 19072 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 19073 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes && 19074 ABI != RISCVABI::ABI_ILP32E) { 19075 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 19076 // Skip 'odd' register if necessary. 19077 if (RegIdx != std::size(ArgGPRs) && RegIdx % 2 == 1) 19078 State.AllocateReg(ArgGPRs); 19079 } 19080 19081 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 19082 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 19083 State.getPendingArgFlags(); 19084 19085 assert(PendingLocs.size() == PendingArgFlags.size() && 19086 "PendingLocs and PendingArgFlags out of sync"); 19087 19088 // Handle passing f64 on RV32D with a soft float ABI or when floating point 19089 // registers are exhausted. 19090 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 19091 assert(PendingLocs.empty() && "Can't lower f64 if it is split"); 19092 // Depending on available argument GPRS, f64 may be passed in a pair of 19093 // GPRs, split between a GPR and the stack, or passed completely on the 19094 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 19095 // cases. 19096 Register Reg = State.AllocateReg(ArgGPRs); 19097 if (!Reg) { 19098 unsigned StackOffset = State.AllocateStack(8, Align(8)); 19099 State.addLoc( 19100 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 19101 return false; 19102 } 19103 LocVT = MVT::i32; 19104 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 19105 Register HiReg = State.AllocateReg(ArgGPRs); 19106 if (HiReg) { 19107 State.addLoc( 19108 CCValAssign::getCustomReg(ValNo, ValVT, HiReg, LocVT, LocInfo)); 19109 } else { 19110 unsigned StackOffset = State.AllocateStack(4, Align(4)); 19111 State.addLoc( 19112 CCValAssign::getCustomMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 19113 } 19114 return false; 19115 } 19116 19117 // Fixed-length vectors are located in the corresponding scalable-vector 19118 // container types. 19119 if (ValVT.isFixedLengthVector()) 19120 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 19121 19122 // Split arguments might be passed indirectly, so keep track of the pending 19123 // values. Split vectors are passed via a mix of registers and indirectly, so 19124 // treat them as we would any other argument. 19125 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 19126 LocVT = XLenVT; 19127 LocInfo = CCValAssign::Indirect; 19128 PendingLocs.push_back( 19129 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 19130 PendingArgFlags.push_back(ArgFlags); 19131 if (!ArgFlags.isSplitEnd()) { 19132 return false; 19133 } 19134 } 19135 19136 // If the split argument only had two elements, it should be passed directly 19137 // in registers or on the stack. 19138 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 19139 PendingLocs.size() <= 2) { 19140 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 19141 // Apply the normal calling convention rules to the first half of the 19142 // split argument. 19143 CCValAssign VA = PendingLocs[0]; 19144 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 19145 PendingLocs.clear(); 19146 PendingArgFlags.clear(); 19147 return CC_RISCVAssign2XLen( 19148 XLen, State, VA, AF, ValNo, ValVT, LocVT, ArgFlags, 19149 ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E); 19150 } 19151 19152 // Allocate to a register if possible, or else a stack slot. 19153 Register Reg; 19154 unsigned StoreSizeBytes = XLen / 8; 19155 Align StackAlign = Align(XLen / 8); 19156 19157 if ((ValVT == MVT::f16 || ValVT == MVT::bf16) && !UseGPRForF16_F32) 19158 Reg = State.AllocateReg(ArgFPR16s); 19159 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 19160 Reg = State.AllocateReg(ArgFPR32s); 19161 else if (ValVT == MVT::f64 && !UseGPRForF64) 19162 Reg = State.AllocateReg(ArgFPR64s); 19163 else if (ValVT.isVector()) { 19164 Reg = RVVDispatcher.getNextPhysReg(); 19165 if (!Reg) { 19166 // For return values, the vector must be passed fully via registers or 19167 // via the stack. 19168 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 19169 // but we're using all of them. 19170 if (IsRet) 19171 return true; 19172 // Try using a GPR to pass the address 19173 if ((Reg = State.AllocateReg(ArgGPRs))) { 19174 LocVT = XLenVT; 19175 LocInfo = CCValAssign::Indirect; 19176 } else if (ValVT.isScalableVector()) { 19177 LocVT = XLenVT; 19178 LocInfo = CCValAssign::Indirect; 19179 } else { 19180 // Pass fixed-length vectors on the stack. 19181 LocVT = ValVT; 19182 StoreSizeBytes = ValVT.getStoreSize(); 19183 // Align vectors to their element sizes, being careful for vXi1 19184 // vectors. 19185 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 19186 } 19187 } 19188 } else { 19189 Reg = State.AllocateReg(ArgGPRs); 19190 } 19191 19192 unsigned StackOffset = 19193 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 19194 19195 // If we reach this point and PendingLocs is non-empty, we must be at the 19196 // end of a split argument that must be passed indirectly. 19197 if (!PendingLocs.empty()) { 19198 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 19199 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 19200 19201 for (auto &It : PendingLocs) { 19202 if (Reg) 19203 It.convertToReg(Reg); 19204 else 19205 It.convertToMem(StackOffset); 19206 State.addLoc(It); 19207 } 19208 PendingLocs.clear(); 19209 PendingArgFlags.clear(); 19210 return false; 19211 } 19212 19213 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 19214 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 19215 "Expected an XLenVT or vector types at this stage"); 19216 19217 if (Reg) { 19218 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 19219 return false; 19220 } 19221 19222 // When a scalar floating-point value is passed on the stack, no 19223 // bit-conversion is needed. 19224 if (ValVT.isFloatingPoint() && LocInfo != CCValAssign::Indirect) { 19225 assert(!ValVT.isVector()); 19226 LocVT = ValVT; 19227 LocInfo = CCValAssign::Full; 19228 } 19229 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 19230 return false; 19231 } 19232 19233 template <typename ArgTy> 19234 static std::optional<unsigned> preAssignMask(const ArgTy &Args) { 19235 for (const auto &ArgIdx : enumerate(Args)) { 19236 MVT ArgVT = ArgIdx.value().VT; 19237 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 19238 return ArgIdx.index(); 19239 } 19240 return std::nullopt; 19241 } 19242 19243 void RISCVTargetLowering::analyzeInputArgs( 19244 MachineFunction &MF, CCState &CCInfo, 19245 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 19246 RISCVCCAssignFn Fn) const { 19247 unsigned NumArgs = Ins.size(); 19248 FunctionType *FType = MF.getFunction().getFunctionType(); 19249 19250 RVVArgDispatcher Dispatcher; 19251 if (IsRet) { 19252 Dispatcher = RVVArgDispatcher{&MF, this, ArrayRef(Ins)}; 19253 } else { 19254 SmallVector<Type *, 4> TypeList; 19255 for (const Argument &Arg : MF.getFunction().args()) 19256 TypeList.push_back(Arg.getType()); 19257 Dispatcher = RVVArgDispatcher{&MF, this, ArrayRef(TypeList)}; 19258 } 19259 19260 for (unsigned i = 0; i != NumArgs; ++i) { 19261 MVT ArgVT = Ins[i].VT; 19262 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 19263 19264 Type *ArgTy = nullptr; 19265 if (IsRet) 19266 ArgTy = FType->getReturnType(); 19267 else if (Ins[i].isOrigArg()) 19268 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 19269 19270 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 19271 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 19272 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 19273 Dispatcher)) { 19274 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 19275 << ArgVT << '\n'); 19276 llvm_unreachable(nullptr); 19277 } 19278 } 19279 } 19280 19281 void RISCVTargetLowering::analyzeOutputArgs( 19282 MachineFunction &MF, CCState &CCInfo, 19283 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 19284 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 19285 unsigned NumArgs = Outs.size(); 19286 19287 SmallVector<Type *, 4> TypeList; 19288 if (IsRet) 19289 TypeList.push_back(MF.getFunction().getReturnType()); 19290 else if (CLI) 19291 for (const TargetLowering::ArgListEntry &Arg : CLI->getArgs()) 19292 TypeList.push_back(Arg.Ty); 19293 RVVArgDispatcher Dispatcher{&MF, this, ArrayRef(TypeList)}; 19294 19295 for (unsigned i = 0; i != NumArgs; i++) { 19296 MVT ArgVT = Outs[i].VT; 19297 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 19298 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 19299 19300 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 19301 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 19302 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 19303 Dispatcher)) { 19304 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 19305 << ArgVT << "\n"); 19306 llvm_unreachable(nullptr); 19307 } 19308 } 19309 } 19310 19311 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 19312 // values. 19313 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 19314 const CCValAssign &VA, const SDLoc &DL, 19315 const RISCVSubtarget &Subtarget) { 19316 switch (VA.getLocInfo()) { 19317 default: 19318 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 19319 case CCValAssign::Full: 19320 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 19321 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 19322 break; 19323 case CCValAssign::BCvt: 19324 if (VA.getLocVT().isInteger() && 19325 (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) { 19326 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, VA.getValVT(), Val); 19327 } else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 19328 if (RV64LegalI32) { 19329 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Val); 19330 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 19331 } else { 19332 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 19333 } 19334 } else { 19335 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 19336 } 19337 break; 19338 } 19339 return Val; 19340 } 19341 19342 // The caller is responsible for loading the full value if the argument is 19343 // passed with CCValAssign::Indirect. 19344 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 19345 const CCValAssign &VA, const SDLoc &DL, 19346 const ISD::InputArg &In, 19347 const RISCVTargetLowering &TLI) { 19348 MachineFunction &MF = DAG.getMachineFunction(); 19349 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 19350 EVT LocVT = VA.getLocVT(); 19351 SDValue Val; 19352 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 19353 Register VReg = RegInfo.createVirtualRegister(RC); 19354 RegInfo.addLiveIn(VA.getLocReg(), VReg); 19355 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 19356 19357 // If input is sign extended from 32 bits, note it for the SExtWRemoval pass. 19358 if (In.isOrigArg()) { 19359 Argument *OrigArg = MF.getFunction().getArg(In.getOrigArgIndex()); 19360 if (OrigArg->getType()->isIntegerTy()) { 19361 unsigned BitWidth = OrigArg->getType()->getIntegerBitWidth(); 19362 // An input zero extended from i31 can also be considered sign extended. 19363 if ((BitWidth <= 32 && In.Flags.isSExt()) || 19364 (BitWidth < 32 && In.Flags.isZExt())) { 19365 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 19366 RVFI->addSExt32Register(VReg); 19367 } 19368 } 19369 } 19370 19371 if (VA.getLocInfo() == CCValAssign::Indirect) 19372 return Val; 19373 19374 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 19375 } 19376 19377 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 19378 const CCValAssign &VA, const SDLoc &DL, 19379 const RISCVSubtarget &Subtarget) { 19380 EVT LocVT = VA.getLocVT(); 19381 19382 switch (VA.getLocInfo()) { 19383 default: 19384 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 19385 case CCValAssign::Full: 19386 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 19387 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 19388 break; 19389 case CCValAssign::BCvt: 19390 if (LocVT.isInteger() && 19391 (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) { 19392 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, LocVT, Val); 19393 } else if (LocVT == MVT::i64 && VA.getValVT() == MVT::f32) { 19394 if (RV64LegalI32) { 19395 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 19396 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val); 19397 } else { 19398 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 19399 } 19400 } else { 19401 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 19402 } 19403 break; 19404 } 19405 return Val; 19406 } 19407 19408 // The caller is responsible for loading the full value if the argument is 19409 // passed with CCValAssign::Indirect. 19410 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 19411 const CCValAssign &VA, const SDLoc &DL) { 19412 MachineFunction &MF = DAG.getMachineFunction(); 19413 MachineFrameInfo &MFI = MF.getFrameInfo(); 19414 EVT LocVT = VA.getLocVT(); 19415 EVT ValVT = VA.getValVT(); 19416 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 19417 if (ValVT.isScalableVector()) { 19418 // When the value is a scalable vector, we save the pointer which points to 19419 // the scalable vector value in the stack. The ValVT will be the pointer 19420 // type, instead of the scalable vector type. 19421 ValVT = LocVT; 19422 } 19423 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 19424 /*IsImmutable=*/true); 19425 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 19426 SDValue Val; 19427 19428 ISD::LoadExtType ExtType; 19429 switch (VA.getLocInfo()) { 19430 default: 19431 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 19432 case CCValAssign::Full: 19433 case CCValAssign::Indirect: 19434 case CCValAssign::BCvt: 19435 ExtType = ISD::NON_EXTLOAD; 19436 break; 19437 } 19438 Val = DAG.getExtLoad( 19439 ExtType, DL, LocVT, Chain, FIN, 19440 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 19441 return Val; 19442 } 19443 19444 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 19445 const CCValAssign &VA, 19446 const CCValAssign &HiVA, 19447 const SDLoc &DL) { 19448 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 19449 "Unexpected VA"); 19450 MachineFunction &MF = DAG.getMachineFunction(); 19451 MachineFrameInfo &MFI = MF.getFrameInfo(); 19452 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 19453 19454 assert(VA.isRegLoc() && "Expected register VA assignment"); 19455 19456 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 19457 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 19458 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 19459 SDValue Hi; 19460 if (HiVA.isMemLoc()) { 19461 // Second half of f64 is passed on the stack. 19462 int FI = MFI.CreateFixedObject(4, HiVA.getLocMemOffset(), 19463 /*IsImmutable=*/true); 19464 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 19465 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 19466 MachinePointerInfo::getFixedStack(MF, FI)); 19467 } else { 19468 // Second half of f64 is passed in another GPR. 19469 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 19470 RegInfo.addLiveIn(HiVA.getLocReg(), HiVReg); 19471 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 19472 } 19473 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 19474 } 19475 19476 // FastCC has less than 1% performance improvement for some particular 19477 // benchmark. But theoretically, it may has benenfit for some cases. 19478 bool RISCV::CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 19479 unsigned ValNo, MVT ValVT, MVT LocVT, 19480 CCValAssign::LocInfo LocInfo, 19481 ISD::ArgFlagsTy ArgFlags, CCState &State, 19482 bool IsFixed, bool IsRet, Type *OrigTy, 19483 const RISCVTargetLowering &TLI, 19484 RVVArgDispatcher &RVVDispatcher) { 19485 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 19486 if (unsigned Reg = State.AllocateReg(getFastCCArgGPRs(ABI))) { 19487 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 19488 return false; 19489 } 19490 } 19491 19492 const RISCVSubtarget &Subtarget = TLI.getSubtarget(); 19493 19494 if (LocVT == MVT::f16 && 19495 (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZfhmin())) { 19496 static const MCPhysReg FPR16List[] = { 19497 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 19498 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 19499 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 19500 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 19501 if (unsigned Reg = State.AllocateReg(FPR16List)) { 19502 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 19503 return false; 19504 } 19505 } 19506 19507 if (LocVT == MVT::f32 && Subtarget.hasStdExtF()) { 19508 static const MCPhysReg FPR32List[] = { 19509 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 19510 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 19511 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 19512 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 19513 if (unsigned Reg = State.AllocateReg(FPR32List)) { 19514 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 19515 return false; 19516 } 19517 } 19518 19519 if (LocVT == MVT::f64 && Subtarget.hasStdExtD()) { 19520 static const MCPhysReg FPR64List[] = { 19521 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 19522 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 19523 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 19524 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 19525 if (unsigned Reg = State.AllocateReg(FPR64List)) { 19526 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 19527 return false; 19528 } 19529 } 19530 19531 // Check if there is an available GPR before hitting the stack. 19532 if ((LocVT == MVT::f16 && 19533 (Subtarget.hasStdExtZhinx() || Subtarget.hasStdExtZhinxmin())) || 19534 (LocVT == MVT::f32 && Subtarget.hasStdExtZfinx()) || 19535 (LocVT == MVT::f64 && Subtarget.is64Bit() && 19536 Subtarget.hasStdExtZdinx())) { 19537 if (unsigned Reg = State.AllocateReg(getFastCCArgGPRs(ABI))) { 19538 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 19539 return false; 19540 } 19541 } 19542 19543 if (LocVT == MVT::f16) { 19544 unsigned Offset2 = State.AllocateStack(2, Align(2)); 19545 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset2, LocVT, LocInfo)); 19546 return false; 19547 } 19548 19549 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 19550 unsigned Offset4 = State.AllocateStack(4, Align(4)); 19551 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 19552 return false; 19553 } 19554 19555 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 19556 unsigned Offset5 = State.AllocateStack(8, Align(8)); 19557 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 19558 return false; 19559 } 19560 19561 if (LocVT.isVector()) { 19562 MCPhysReg AllocatedVReg = RVVDispatcher.getNextPhysReg(); 19563 if (AllocatedVReg) { 19564 // Fixed-length vectors are located in the corresponding scalable-vector 19565 // container types. 19566 if (ValVT.isFixedLengthVector()) 19567 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 19568 State.addLoc( 19569 CCValAssign::getReg(ValNo, ValVT, AllocatedVReg, LocVT, LocInfo)); 19570 } else { 19571 // Try and pass the address via a "fast" GPR. 19572 if (unsigned GPRReg = State.AllocateReg(getFastCCArgGPRs(ABI))) { 19573 LocInfo = CCValAssign::Indirect; 19574 LocVT = TLI.getSubtarget().getXLenVT(); 19575 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 19576 } else if (ValVT.isFixedLengthVector()) { 19577 auto StackAlign = 19578 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 19579 unsigned StackOffset = 19580 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 19581 State.addLoc( 19582 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 19583 } else { 19584 // Can't pass scalable vectors on the stack. 19585 return true; 19586 } 19587 } 19588 19589 return false; 19590 } 19591 19592 return true; // CC didn't match. 19593 } 19594 19595 bool RISCV::CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 19596 CCValAssign::LocInfo LocInfo, 19597 ISD::ArgFlagsTy ArgFlags, CCState &State) { 19598 if (ArgFlags.isNest()) { 19599 report_fatal_error( 19600 "Attribute 'nest' is not supported in GHC calling convention"); 19601 } 19602 19603 static const MCPhysReg GPRList[] = { 19604 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 19605 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 19606 19607 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 19608 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 19609 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 19610 if (unsigned Reg = State.AllocateReg(GPRList)) { 19611 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 19612 return false; 19613 } 19614 } 19615 19616 const RISCVSubtarget &Subtarget = 19617 State.getMachineFunction().getSubtarget<RISCVSubtarget>(); 19618 19619 if (LocVT == MVT::f32 && Subtarget.hasStdExtF()) { 19620 // Pass in STG registers: F1, ..., F6 19621 // fs0 ... fs5 19622 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 19623 RISCV::F18_F, RISCV::F19_F, 19624 RISCV::F20_F, RISCV::F21_F}; 19625 if (unsigned Reg = State.AllocateReg(FPR32List)) { 19626 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 19627 return false; 19628 } 19629 } 19630 19631 if (LocVT == MVT::f64 && Subtarget.hasStdExtD()) { 19632 // Pass in STG registers: D1, ..., D6 19633 // fs6 ... fs11 19634 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 19635 RISCV::F24_D, RISCV::F25_D, 19636 RISCV::F26_D, RISCV::F27_D}; 19637 if (unsigned Reg = State.AllocateReg(FPR64List)) { 19638 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 19639 return false; 19640 } 19641 } 19642 19643 if ((LocVT == MVT::f32 && Subtarget.hasStdExtZfinx()) || 19644 (LocVT == MVT::f64 && Subtarget.hasStdExtZdinx() && 19645 Subtarget.is64Bit())) { 19646 if (unsigned Reg = State.AllocateReg(GPRList)) { 19647 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 19648 return false; 19649 } 19650 } 19651 19652 report_fatal_error("No registers left in GHC calling convention"); 19653 return true; 19654 } 19655 19656 // Transform physical registers into virtual registers. 19657 SDValue RISCVTargetLowering::LowerFormalArguments( 19658 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 19659 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 19660 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 19661 19662 MachineFunction &MF = DAG.getMachineFunction(); 19663 19664 switch (CallConv) { 19665 default: 19666 report_fatal_error("Unsupported calling convention"); 19667 case CallingConv::C: 19668 case CallingConv::Fast: 19669 case CallingConv::SPIR_KERNEL: 19670 case CallingConv::GRAAL: 19671 case CallingConv::RISCV_VectorCall: 19672 break; 19673 case CallingConv::GHC: 19674 if (Subtarget.hasStdExtE()) 19675 report_fatal_error("GHC calling convention is not supported on RVE!"); 19676 if (!Subtarget.hasStdExtFOrZfinx() || !Subtarget.hasStdExtDOrZdinx()) 19677 report_fatal_error("GHC calling convention requires the (Zfinx/F) and " 19678 "(Zdinx/D) instruction set extensions"); 19679 } 19680 19681 const Function &Func = MF.getFunction(); 19682 if (Func.hasFnAttribute("interrupt")) { 19683 if (!Func.arg_empty()) 19684 report_fatal_error( 19685 "Functions with the interrupt attribute cannot have arguments!"); 19686 19687 StringRef Kind = 19688 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 19689 19690 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 19691 report_fatal_error( 19692 "Function interrupt attribute argument not supported!"); 19693 } 19694 19695 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 19696 MVT XLenVT = Subtarget.getXLenVT(); 19697 unsigned XLenInBytes = Subtarget.getXLen() / 8; 19698 // Used with vargs to acumulate store chains. 19699 std::vector<SDValue> OutChains; 19700 19701 // Assign locations to all of the incoming arguments. 19702 SmallVector<CCValAssign, 16> ArgLocs; 19703 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 19704 19705 if (CallConv == CallingConv::GHC) 19706 CCInfo.AnalyzeFormalArguments(Ins, RISCV::CC_RISCV_GHC); 19707 else 19708 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 19709 CallConv == CallingConv::Fast ? RISCV::CC_RISCV_FastCC 19710 : RISCV::CC_RISCV); 19711 19712 for (unsigned i = 0, e = ArgLocs.size(), InsIdx = 0; i != e; ++i, ++InsIdx) { 19713 CCValAssign &VA = ArgLocs[i]; 19714 SDValue ArgValue; 19715 // Passing f64 on RV32D with a soft float ABI must be handled as a special 19716 // case. 19717 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 19718 assert(VA.needsCustom()); 19719 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, ArgLocs[++i], DL); 19720 } else if (VA.isRegLoc()) 19721 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, Ins[InsIdx], *this); 19722 else 19723 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 19724 19725 if (VA.getLocInfo() == CCValAssign::Indirect) { 19726 // If the original argument was split and passed by reference (e.g. i128 19727 // on RV32), we need to load all parts of it here (using the same 19728 // address). Vectors may be partly split to registers and partly to the 19729 // stack, in which case the base address is partly offset and subsequent 19730 // stores are relative to that. 19731 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 19732 MachinePointerInfo())); 19733 unsigned ArgIndex = Ins[InsIdx].OrigArgIndex; 19734 unsigned ArgPartOffset = Ins[InsIdx].PartOffset; 19735 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 19736 while (i + 1 != e && Ins[InsIdx + 1].OrigArgIndex == ArgIndex) { 19737 CCValAssign &PartVA = ArgLocs[i + 1]; 19738 unsigned PartOffset = Ins[InsIdx + 1].PartOffset - ArgPartOffset; 19739 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 19740 if (PartVA.getValVT().isScalableVector()) 19741 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 19742 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 19743 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 19744 MachinePointerInfo())); 19745 ++i; 19746 ++InsIdx; 19747 } 19748 continue; 19749 } 19750 InVals.push_back(ArgValue); 19751 } 19752 19753 if (any_of(ArgLocs, 19754 [](CCValAssign &VA) { return VA.getLocVT().isScalableVector(); })) 19755 MF.getInfo<RISCVMachineFunctionInfo>()->setIsVectorCall(); 19756 19757 if (IsVarArg) { 19758 ArrayRef<MCPhysReg> ArgRegs = RISCV::getArgGPRs(Subtarget.getTargetABI()); 19759 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 19760 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 19761 MachineFrameInfo &MFI = MF.getFrameInfo(); 19762 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 19763 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 19764 19765 // Size of the vararg save area. For now, the varargs save area is either 19766 // zero or large enough to hold a0-a7. 19767 int VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 19768 int FI; 19769 19770 // If all registers are allocated, then all varargs must be passed on the 19771 // stack and we don't need to save any argregs. 19772 if (VarArgsSaveSize == 0) { 19773 int VaArgOffset = CCInfo.getStackSize(); 19774 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 19775 } else { 19776 int VaArgOffset = -VarArgsSaveSize; 19777 FI = MFI.CreateFixedObject(VarArgsSaveSize, VaArgOffset, true); 19778 19779 // If saving an odd number of registers then create an extra stack slot to 19780 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 19781 // offsets to even-numbered registered remain 2*XLEN-aligned. 19782 if (Idx % 2) { 19783 MFI.CreateFixedObject( 19784 XLenInBytes, VaArgOffset - static_cast<int>(XLenInBytes), true); 19785 VarArgsSaveSize += XLenInBytes; 19786 } 19787 19788 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 19789 19790 // Copy the integer registers that may have been used for passing varargs 19791 // to the vararg save area. 19792 for (unsigned I = Idx; I < ArgRegs.size(); ++I) { 19793 const Register Reg = RegInfo.createVirtualRegister(RC); 19794 RegInfo.addLiveIn(ArgRegs[I], Reg); 19795 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 19796 SDValue Store = DAG.getStore( 19797 Chain, DL, ArgValue, FIN, 19798 MachinePointerInfo::getFixedStack(MF, FI, (I - Idx) * XLenInBytes)); 19799 OutChains.push_back(Store); 19800 FIN = 19801 DAG.getMemBasePlusOffset(FIN, TypeSize::getFixed(XLenInBytes), DL); 19802 } 19803 } 19804 19805 // Record the frame index of the first variable argument 19806 // which is a value necessary to VASTART. 19807 RVFI->setVarArgsFrameIndex(FI); 19808 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 19809 } 19810 19811 // All stores are grouped in one node to allow the matching between 19812 // the size of Ins and InVals. This only happens for vararg functions. 19813 if (!OutChains.empty()) { 19814 OutChains.push_back(Chain); 19815 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 19816 } 19817 19818 return Chain; 19819 } 19820 19821 /// isEligibleForTailCallOptimization - Check whether the call is eligible 19822 /// for tail call optimization. 19823 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 19824 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 19825 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 19826 const SmallVector<CCValAssign, 16> &ArgLocs) const { 19827 19828 auto CalleeCC = CLI.CallConv; 19829 auto &Outs = CLI.Outs; 19830 auto &Caller = MF.getFunction(); 19831 auto CallerCC = Caller.getCallingConv(); 19832 19833 // Exception-handling functions need a special set of instructions to 19834 // indicate a return to the hardware. Tail-calling another function would 19835 // probably break this. 19836 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 19837 // should be expanded as new function attributes are introduced. 19838 if (Caller.hasFnAttribute("interrupt")) 19839 return false; 19840 19841 // Do not tail call opt if the stack is used to pass parameters. 19842 if (CCInfo.getStackSize() != 0) 19843 return false; 19844 19845 // Do not tail call opt if any parameters need to be passed indirectly. 19846 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 19847 // passed indirectly. So the address of the value will be passed in a 19848 // register, or if not available, then the address is put on the stack. In 19849 // order to pass indirectly, space on the stack often needs to be allocated 19850 // in order to store the value. In this case the CCInfo.getNextStackOffset() 19851 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 19852 // are passed CCValAssign::Indirect. 19853 for (auto &VA : ArgLocs) 19854 if (VA.getLocInfo() == CCValAssign::Indirect) 19855 return false; 19856 19857 // Do not tail call opt if either caller or callee uses struct return 19858 // semantics. 19859 auto IsCallerStructRet = Caller.hasStructRetAttr(); 19860 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 19861 if (IsCallerStructRet || IsCalleeStructRet) 19862 return false; 19863 19864 // The callee has to preserve all registers the caller needs to preserve. 19865 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 19866 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 19867 if (CalleeCC != CallerCC) { 19868 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 19869 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 19870 return false; 19871 } 19872 19873 // Byval parameters hand the function a pointer directly into the stack area 19874 // we want to reuse during a tail call. Working around this *is* possible 19875 // but less efficient and uglier in LowerCall. 19876 for (auto &Arg : Outs) 19877 if (Arg.Flags.isByVal()) 19878 return false; 19879 19880 return true; 19881 } 19882 19883 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 19884 return DAG.getDataLayout().getPrefTypeAlign( 19885 VT.getTypeForEVT(*DAG.getContext())); 19886 } 19887 19888 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 19889 // and output parameter nodes. 19890 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 19891 SmallVectorImpl<SDValue> &InVals) const { 19892 SelectionDAG &DAG = CLI.DAG; 19893 SDLoc &DL = CLI.DL; 19894 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 19895 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 19896 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 19897 SDValue Chain = CLI.Chain; 19898 SDValue Callee = CLI.Callee; 19899 bool &IsTailCall = CLI.IsTailCall; 19900 CallingConv::ID CallConv = CLI.CallConv; 19901 bool IsVarArg = CLI.IsVarArg; 19902 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 19903 MVT XLenVT = Subtarget.getXLenVT(); 19904 19905 MachineFunction &MF = DAG.getMachineFunction(); 19906 19907 // Analyze the operands of the call, assigning locations to each operand. 19908 SmallVector<CCValAssign, 16> ArgLocs; 19909 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 19910 19911 if (CallConv == CallingConv::GHC) { 19912 if (Subtarget.hasStdExtE()) 19913 report_fatal_error("GHC calling convention is not supported on RVE!"); 19914 ArgCCInfo.AnalyzeCallOperands(Outs, RISCV::CC_RISCV_GHC); 19915 } else 19916 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 19917 CallConv == CallingConv::Fast ? RISCV::CC_RISCV_FastCC 19918 : RISCV::CC_RISCV); 19919 19920 // Check if it's really possible to do a tail call. 19921 if (IsTailCall) 19922 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 19923 19924 if (IsTailCall) 19925 ++NumTailCalls; 19926 else if (CLI.CB && CLI.CB->isMustTailCall()) 19927 report_fatal_error("failed to perform tail call elimination on a call " 19928 "site marked musttail"); 19929 19930 // Get a count of how many bytes are to be pushed on the stack. 19931 unsigned NumBytes = ArgCCInfo.getStackSize(); 19932 19933 // Create local copies for byval args 19934 SmallVector<SDValue, 8> ByValArgs; 19935 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 19936 ISD::ArgFlagsTy Flags = Outs[i].Flags; 19937 if (!Flags.isByVal()) 19938 continue; 19939 19940 SDValue Arg = OutVals[i]; 19941 unsigned Size = Flags.getByValSize(); 19942 Align Alignment = Flags.getNonZeroByValAlign(); 19943 19944 int FI = 19945 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 19946 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 19947 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 19948 19949 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 19950 /*IsVolatile=*/false, 19951 /*AlwaysInline=*/false, /*CI*/ nullptr, IsTailCall, 19952 MachinePointerInfo(), MachinePointerInfo()); 19953 ByValArgs.push_back(FIPtr); 19954 } 19955 19956 if (!IsTailCall) 19957 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 19958 19959 // Copy argument values to their designated locations. 19960 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 19961 SmallVector<SDValue, 8> MemOpChains; 19962 SDValue StackPtr; 19963 for (unsigned i = 0, j = 0, e = ArgLocs.size(), OutIdx = 0; i != e; 19964 ++i, ++OutIdx) { 19965 CCValAssign &VA = ArgLocs[i]; 19966 SDValue ArgValue = OutVals[OutIdx]; 19967 ISD::ArgFlagsTy Flags = Outs[OutIdx].Flags; 19968 19969 // Handle passing f64 on RV32D with a soft float ABI as a special case. 19970 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 19971 assert(VA.isRegLoc() && "Expected register VA assignment"); 19972 assert(VA.needsCustom()); 19973 SDValue SplitF64 = DAG.getNode( 19974 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 19975 SDValue Lo = SplitF64.getValue(0); 19976 SDValue Hi = SplitF64.getValue(1); 19977 19978 Register RegLo = VA.getLocReg(); 19979 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 19980 19981 // Get the CCValAssign for the Hi part. 19982 CCValAssign &HiVA = ArgLocs[++i]; 19983 19984 if (HiVA.isMemLoc()) { 19985 // Second half of f64 is passed on the stack. 19986 if (!StackPtr.getNode()) 19987 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 19988 SDValue Address = 19989 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 19990 DAG.getIntPtrConstant(HiVA.getLocMemOffset(), DL)); 19991 // Emit the store. 19992 MemOpChains.push_back( 19993 DAG.getStore(Chain, DL, Hi, Address, MachinePointerInfo())); 19994 } else { 19995 // Second half of f64 is passed in another GPR. 19996 Register RegHigh = HiVA.getLocReg(); 19997 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 19998 } 19999 continue; 20000 } 20001 20002 // Promote the value if needed. 20003 // For now, only handle fully promoted and indirect arguments. 20004 if (VA.getLocInfo() == CCValAssign::Indirect) { 20005 // Store the argument in a stack slot and pass its address. 20006 Align StackAlign = 20007 std::max(getPrefTypeAlign(Outs[OutIdx].ArgVT, DAG), 20008 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 20009 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 20010 // If the original argument was split (e.g. i128), we need 20011 // to store the required parts of it here (and pass just one address). 20012 // Vectors may be partly split to registers and partly to the stack, in 20013 // which case the base address is partly offset and subsequent stores are 20014 // relative to that. 20015 unsigned ArgIndex = Outs[OutIdx].OrigArgIndex; 20016 unsigned ArgPartOffset = Outs[OutIdx].PartOffset; 20017 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 20018 // Calculate the total size to store. We don't have access to what we're 20019 // actually storing other than performing the loop and collecting the 20020 // info. 20021 SmallVector<std::pair<SDValue, SDValue>> Parts; 20022 while (i + 1 != e && Outs[OutIdx + 1].OrigArgIndex == ArgIndex) { 20023 SDValue PartValue = OutVals[OutIdx + 1]; 20024 unsigned PartOffset = Outs[OutIdx + 1].PartOffset - ArgPartOffset; 20025 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 20026 EVT PartVT = PartValue.getValueType(); 20027 if (PartVT.isScalableVector()) 20028 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 20029 StoredSize += PartVT.getStoreSize(); 20030 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 20031 Parts.push_back(std::make_pair(PartValue, Offset)); 20032 ++i; 20033 ++OutIdx; 20034 } 20035 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 20036 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 20037 MemOpChains.push_back( 20038 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 20039 MachinePointerInfo::getFixedStack(MF, FI))); 20040 for (const auto &Part : Parts) { 20041 SDValue PartValue = Part.first; 20042 SDValue PartOffset = Part.second; 20043 SDValue Address = 20044 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 20045 MemOpChains.push_back( 20046 DAG.getStore(Chain, DL, PartValue, Address, 20047 MachinePointerInfo::getFixedStack(MF, FI))); 20048 } 20049 ArgValue = SpillSlot; 20050 } else { 20051 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 20052 } 20053 20054 // Use local copy if it is a byval arg. 20055 if (Flags.isByVal()) 20056 ArgValue = ByValArgs[j++]; 20057 20058 if (VA.isRegLoc()) { 20059 // Queue up the argument copies and emit them at the end. 20060 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 20061 } else { 20062 assert(VA.isMemLoc() && "Argument not register or memory"); 20063 assert(!IsTailCall && "Tail call not allowed if stack is used " 20064 "for passing parameters"); 20065 20066 // Work out the address of the stack slot. 20067 if (!StackPtr.getNode()) 20068 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 20069 SDValue Address = 20070 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 20071 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 20072 20073 // Emit the store. 20074 MemOpChains.push_back( 20075 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 20076 } 20077 } 20078 20079 // Join the stores, which are independent of one another. 20080 if (!MemOpChains.empty()) 20081 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 20082 20083 SDValue Glue; 20084 20085 // Build a sequence of copy-to-reg nodes, chained and glued together. 20086 for (auto &Reg : RegsToPass) { 20087 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 20088 Glue = Chain.getValue(1); 20089 } 20090 20091 // Validate that none of the argument registers have been marked as 20092 // reserved, if so report an error. Do the same for the return address if this 20093 // is not a tailcall. 20094 validateCCReservedRegs(RegsToPass, MF); 20095 if (!IsTailCall && 20096 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 20097 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 20098 MF.getFunction(), 20099 "Return address register required, but has been reserved."}); 20100 20101 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 20102 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 20103 // split it and then direct call can be matched by PseudoCALL. 20104 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 20105 const GlobalValue *GV = S->getGlobal(); 20106 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, RISCVII::MO_CALL); 20107 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 20108 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, RISCVII::MO_CALL); 20109 } 20110 20111 // The first call operand is the chain and the second is the target address. 20112 SmallVector<SDValue, 8> Ops; 20113 Ops.push_back(Chain); 20114 Ops.push_back(Callee); 20115 20116 // Add argument registers to the end of the list so that they are 20117 // known live into the call. 20118 for (auto &Reg : RegsToPass) 20119 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 20120 20121 if (!IsTailCall) { 20122 // Add a register mask operand representing the call-preserved registers. 20123 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 20124 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 20125 assert(Mask && "Missing call preserved mask for calling convention"); 20126 Ops.push_back(DAG.getRegisterMask(Mask)); 20127 } 20128 20129 // Glue the call to the argument copies, if any. 20130 if (Glue.getNode()) 20131 Ops.push_back(Glue); 20132 20133 assert((!CLI.CFIType || CLI.CB->isIndirectCall()) && 20134 "Unexpected CFI type for a direct call"); 20135 20136 // Emit the call. 20137 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 20138 20139 if (IsTailCall) { 20140 MF.getFrameInfo().setHasTailCall(); 20141 SDValue Ret = DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 20142 if (CLI.CFIType) 20143 Ret.getNode()->setCFIType(CLI.CFIType->getZExtValue()); 20144 DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge); 20145 return Ret; 20146 } 20147 20148 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 20149 if (CLI.CFIType) 20150 Chain.getNode()->setCFIType(CLI.CFIType->getZExtValue()); 20151 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 20152 Glue = Chain.getValue(1); 20153 20154 // Mark the end of the call, which is glued to the call itself. 20155 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL); 20156 Glue = Chain.getValue(1); 20157 20158 // Assign locations to each value returned by this call. 20159 SmallVector<CCValAssign, 16> RVLocs; 20160 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 20161 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, RISCV::CC_RISCV); 20162 20163 // Copy all of the result registers out of their specified physreg. 20164 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 20165 auto &VA = RVLocs[i]; 20166 // Copy the value out 20167 SDValue RetValue = 20168 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 20169 // Glue the RetValue to the end of the call sequence 20170 Chain = RetValue.getValue(1); 20171 Glue = RetValue.getValue(2); 20172 20173 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 20174 assert(VA.needsCustom()); 20175 SDValue RetValue2 = DAG.getCopyFromReg(Chain, DL, RVLocs[++i].getLocReg(), 20176 MVT::i32, Glue); 20177 Chain = RetValue2.getValue(1); 20178 Glue = RetValue2.getValue(2); 20179 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 20180 RetValue2); 20181 } 20182 20183 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 20184 20185 InVals.push_back(RetValue); 20186 } 20187 20188 return Chain; 20189 } 20190 20191 bool RISCVTargetLowering::CanLowerReturn( 20192 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 20193 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 20194 SmallVector<CCValAssign, 16> RVLocs; 20195 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 20196 20197 RVVArgDispatcher Dispatcher{&MF, this, ArrayRef(Outs)}; 20198 20199 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 20200 MVT VT = Outs[i].VT; 20201 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 20202 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 20203 if (RISCV::CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 20204 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, 20205 nullptr, *this, Dispatcher)) 20206 return false; 20207 } 20208 return true; 20209 } 20210 20211 SDValue 20212 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 20213 bool IsVarArg, 20214 const SmallVectorImpl<ISD::OutputArg> &Outs, 20215 const SmallVectorImpl<SDValue> &OutVals, 20216 const SDLoc &DL, SelectionDAG &DAG) const { 20217 MachineFunction &MF = DAG.getMachineFunction(); 20218 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 20219 20220 // Stores the assignment of the return value to a location. 20221 SmallVector<CCValAssign, 16> RVLocs; 20222 20223 // Info about the registers and stack slot. 20224 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 20225 *DAG.getContext()); 20226 20227 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 20228 nullptr, RISCV::CC_RISCV); 20229 20230 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 20231 report_fatal_error("GHC functions return void only"); 20232 20233 SDValue Glue; 20234 SmallVector<SDValue, 4> RetOps(1, Chain); 20235 20236 // Copy the result values into the output registers. 20237 for (unsigned i = 0, e = RVLocs.size(), OutIdx = 0; i < e; ++i, ++OutIdx) { 20238 SDValue Val = OutVals[OutIdx]; 20239 CCValAssign &VA = RVLocs[i]; 20240 assert(VA.isRegLoc() && "Can only return in registers!"); 20241 20242 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 20243 // Handle returning f64 on RV32D with a soft float ABI. 20244 assert(VA.isRegLoc() && "Expected return via registers"); 20245 assert(VA.needsCustom()); 20246 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 20247 DAG.getVTList(MVT::i32, MVT::i32), Val); 20248 SDValue Lo = SplitF64.getValue(0); 20249 SDValue Hi = SplitF64.getValue(1); 20250 Register RegLo = VA.getLocReg(); 20251 Register RegHi = RVLocs[++i].getLocReg(); 20252 20253 if (STI.isRegisterReservedByUser(RegLo) || 20254 STI.isRegisterReservedByUser(RegHi)) 20255 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 20256 MF.getFunction(), 20257 "Return value register required, but has been reserved."}); 20258 20259 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 20260 Glue = Chain.getValue(1); 20261 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 20262 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 20263 Glue = Chain.getValue(1); 20264 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 20265 } else { 20266 // Handle a 'normal' return. 20267 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 20268 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 20269 20270 if (STI.isRegisterReservedByUser(VA.getLocReg())) 20271 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 20272 MF.getFunction(), 20273 "Return value register required, but has been reserved."}); 20274 20275 // Guarantee that all emitted copies are stuck together. 20276 Glue = Chain.getValue(1); 20277 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 20278 } 20279 } 20280 20281 RetOps[0] = Chain; // Update chain. 20282 20283 // Add the glue node if we have it. 20284 if (Glue.getNode()) { 20285 RetOps.push_back(Glue); 20286 } 20287 20288 if (any_of(RVLocs, 20289 [](CCValAssign &VA) { return VA.getLocVT().isScalableVector(); })) 20290 MF.getInfo<RISCVMachineFunctionInfo>()->setIsVectorCall(); 20291 20292 unsigned RetOpc = RISCVISD::RET_GLUE; 20293 // Interrupt service routines use different return instructions. 20294 const Function &Func = DAG.getMachineFunction().getFunction(); 20295 if (Func.hasFnAttribute("interrupt")) { 20296 if (!Func.getReturnType()->isVoidTy()) 20297 report_fatal_error( 20298 "Functions with the interrupt attribute must have void return type!"); 20299 20300 MachineFunction &MF = DAG.getMachineFunction(); 20301 StringRef Kind = 20302 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 20303 20304 if (Kind == "supervisor") 20305 RetOpc = RISCVISD::SRET_GLUE; 20306 else 20307 RetOpc = RISCVISD::MRET_GLUE; 20308 } 20309 20310 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 20311 } 20312 20313 void RISCVTargetLowering::validateCCReservedRegs( 20314 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 20315 MachineFunction &MF) const { 20316 const Function &F = MF.getFunction(); 20317 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 20318 20319 if (llvm::any_of(Regs, [&STI](auto Reg) { 20320 return STI.isRegisterReservedByUser(Reg.first); 20321 })) 20322 F.getContext().diagnose(DiagnosticInfoUnsupported{ 20323 F, "Argument register required, but has been reserved."}); 20324 } 20325 20326 // Check if the result of the node is only used as a return value, as 20327 // otherwise we can't perform a tail-call. 20328 bool RISCVTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { 20329 if (N->getNumValues() != 1) 20330 return false; 20331 if (!N->hasNUsesOfValue(1, 0)) 20332 return false; 20333 20334 SDNode *Copy = *N->use_begin(); 20335 20336 if (Copy->getOpcode() == ISD::BITCAST) { 20337 return isUsedByReturnOnly(Copy, Chain); 20338 } 20339 20340 // TODO: Handle additional opcodes in order to support tail-calling libcalls 20341 // with soft float ABIs. 20342 if (Copy->getOpcode() != ISD::CopyToReg) { 20343 return false; 20344 } 20345 20346 // If the ISD::CopyToReg has a glue operand, we conservatively assume it 20347 // isn't safe to perform a tail call. 20348 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == MVT::Glue) 20349 return false; 20350 20351 // The copy must be used by a RISCVISD::RET_GLUE, and nothing else. 20352 bool HasRet = false; 20353 for (SDNode *Node : Copy->uses()) { 20354 if (Node->getOpcode() != RISCVISD::RET_GLUE) 20355 return false; 20356 HasRet = true; 20357 } 20358 if (!HasRet) 20359 return false; 20360 20361 Chain = Copy->getOperand(0); 20362 return true; 20363 } 20364 20365 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 20366 return CI->isTailCall(); 20367 } 20368 20369 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 20370 #define NODE_NAME_CASE(NODE) \ 20371 case RISCVISD::NODE: \ 20372 return "RISCVISD::" #NODE; 20373 // clang-format off 20374 switch ((RISCVISD::NodeType)Opcode) { 20375 case RISCVISD::FIRST_NUMBER: 20376 break; 20377 NODE_NAME_CASE(RET_GLUE) 20378 NODE_NAME_CASE(SRET_GLUE) 20379 NODE_NAME_CASE(MRET_GLUE) 20380 NODE_NAME_CASE(CALL) 20381 NODE_NAME_CASE(SELECT_CC) 20382 NODE_NAME_CASE(BR_CC) 20383 NODE_NAME_CASE(BuildPairF64) 20384 NODE_NAME_CASE(SplitF64) 20385 NODE_NAME_CASE(TAIL) 20386 NODE_NAME_CASE(ADD_LO) 20387 NODE_NAME_CASE(HI) 20388 NODE_NAME_CASE(LLA) 20389 NODE_NAME_CASE(ADD_TPREL) 20390 NODE_NAME_CASE(MULHSU) 20391 NODE_NAME_CASE(SHL_ADD) 20392 NODE_NAME_CASE(SLLW) 20393 NODE_NAME_CASE(SRAW) 20394 NODE_NAME_CASE(SRLW) 20395 NODE_NAME_CASE(DIVW) 20396 NODE_NAME_CASE(DIVUW) 20397 NODE_NAME_CASE(REMUW) 20398 NODE_NAME_CASE(ROLW) 20399 NODE_NAME_CASE(RORW) 20400 NODE_NAME_CASE(CLZW) 20401 NODE_NAME_CASE(CTZW) 20402 NODE_NAME_CASE(ABSW) 20403 NODE_NAME_CASE(FMV_H_X) 20404 NODE_NAME_CASE(FMV_X_ANYEXTH) 20405 NODE_NAME_CASE(FMV_X_SIGNEXTH) 20406 NODE_NAME_CASE(FMV_W_X_RV64) 20407 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 20408 NODE_NAME_CASE(FCVT_X) 20409 NODE_NAME_CASE(FCVT_XU) 20410 NODE_NAME_CASE(FCVT_W_RV64) 20411 NODE_NAME_CASE(FCVT_WU_RV64) 20412 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 20413 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 20414 NODE_NAME_CASE(FP_ROUND_BF16) 20415 NODE_NAME_CASE(FP_EXTEND_BF16) 20416 NODE_NAME_CASE(FROUND) 20417 NODE_NAME_CASE(FCLASS) 20418 NODE_NAME_CASE(FMAX) 20419 NODE_NAME_CASE(FMIN) 20420 NODE_NAME_CASE(READ_COUNTER_WIDE) 20421 NODE_NAME_CASE(BREV8) 20422 NODE_NAME_CASE(ORC_B) 20423 NODE_NAME_CASE(ZIP) 20424 NODE_NAME_CASE(UNZIP) 20425 NODE_NAME_CASE(CLMUL) 20426 NODE_NAME_CASE(CLMULH) 20427 NODE_NAME_CASE(CLMULR) 20428 NODE_NAME_CASE(MOPR) 20429 NODE_NAME_CASE(MOPRR) 20430 NODE_NAME_CASE(SHA256SIG0) 20431 NODE_NAME_CASE(SHA256SIG1) 20432 NODE_NAME_CASE(SHA256SUM0) 20433 NODE_NAME_CASE(SHA256SUM1) 20434 NODE_NAME_CASE(SM4KS) 20435 NODE_NAME_CASE(SM4ED) 20436 NODE_NAME_CASE(SM3P0) 20437 NODE_NAME_CASE(SM3P1) 20438 NODE_NAME_CASE(TH_LWD) 20439 NODE_NAME_CASE(TH_LWUD) 20440 NODE_NAME_CASE(TH_LDD) 20441 NODE_NAME_CASE(TH_SWD) 20442 NODE_NAME_CASE(TH_SDD) 20443 NODE_NAME_CASE(VMV_V_V_VL) 20444 NODE_NAME_CASE(VMV_V_X_VL) 20445 NODE_NAME_CASE(VFMV_V_F_VL) 20446 NODE_NAME_CASE(VMV_X_S) 20447 NODE_NAME_CASE(VMV_S_X_VL) 20448 NODE_NAME_CASE(VFMV_S_F_VL) 20449 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 20450 NODE_NAME_CASE(READ_VLENB) 20451 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 20452 NODE_NAME_CASE(VSLIDEUP_VL) 20453 NODE_NAME_CASE(VSLIDE1UP_VL) 20454 NODE_NAME_CASE(VSLIDEDOWN_VL) 20455 NODE_NAME_CASE(VSLIDE1DOWN_VL) 20456 NODE_NAME_CASE(VFSLIDE1UP_VL) 20457 NODE_NAME_CASE(VFSLIDE1DOWN_VL) 20458 NODE_NAME_CASE(VID_VL) 20459 NODE_NAME_CASE(VFNCVT_ROD_VL) 20460 NODE_NAME_CASE(VECREDUCE_ADD_VL) 20461 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 20462 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 20463 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 20464 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 20465 NODE_NAME_CASE(VECREDUCE_AND_VL) 20466 NODE_NAME_CASE(VECREDUCE_OR_VL) 20467 NODE_NAME_CASE(VECREDUCE_XOR_VL) 20468 NODE_NAME_CASE(VECREDUCE_FADD_VL) 20469 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 20470 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 20471 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 20472 NODE_NAME_CASE(ADD_VL) 20473 NODE_NAME_CASE(AND_VL) 20474 NODE_NAME_CASE(MUL_VL) 20475 NODE_NAME_CASE(OR_VL) 20476 NODE_NAME_CASE(SDIV_VL) 20477 NODE_NAME_CASE(SHL_VL) 20478 NODE_NAME_CASE(SREM_VL) 20479 NODE_NAME_CASE(SRA_VL) 20480 NODE_NAME_CASE(SRL_VL) 20481 NODE_NAME_CASE(ROTL_VL) 20482 NODE_NAME_CASE(ROTR_VL) 20483 NODE_NAME_CASE(SUB_VL) 20484 NODE_NAME_CASE(UDIV_VL) 20485 NODE_NAME_CASE(UREM_VL) 20486 NODE_NAME_CASE(XOR_VL) 20487 NODE_NAME_CASE(AVGFLOORS_VL) 20488 NODE_NAME_CASE(AVGFLOORU_VL) 20489 NODE_NAME_CASE(AVGCEILS_VL) 20490 NODE_NAME_CASE(AVGCEILU_VL) 20491 NODE_NAME_CASE(SADDSAT_VL) 20492 NODE_NAME_CASE(UADDSAT_VL) 20493 NODE_NAME_CASE(SSUBSAT_VL) 20494 NODE_NAME_CASE(USUBSAT_VL) 20495 NODE_NAME_CASE(VNCLIP_VL) 20496 NODE_NAME_CASE(VNCLIPU_VL) 20497 NODE_NAME_CASE(FADD_VL) 20498 NODE_NAME_CASE(FSUB_VL) 20499 NODE_NAME_CASE(FMUL_VL) 20500 NODE_NAME_CASE(FDIV_VL) 20501 NODE_NAME_CASE(FNEG_VL) 20502 NODE_NAME_CASE(FABS_VL) 20503 NODE_NAME_CASE(FSQRT_VL) 20504 NODE_NAME_CASE(FCLASS_VL) 20505 NODE_NAME_CASE(VFMADD_VL) 20506 NODE_NAME_CASE(VFNMADD_VL) 20507 NODE_NAME_CASE(VFMSUB_VL) 20508 NODE_NAME_CASE(VFNMSUB_VL) 20509 NODE_NAME_CASE(VFWMADD_VL) 20510 NODE_NAME_CASE(VFWNMADD_VL) 20511 NODE_NAME_CASE(VFWMSUB_VL) 20512 NODE_NAME_CASE(VFWNMSUB_VL) 20513 NODE_NAME_CASE(FCOPYSIGN_VL) 20514 NODE_NAME_CASE(SMIN_VL) 20515 NODE_NAME_CASE(SMAX_VL) 20516 NODE_NAME_CASE(UMIN_VL) 20517 NODE_NAME_CASE(UMAX_VL) 20518 NODE_NAME_CASE(BITREVERSE_VL) 20519 NODE_NAME_CASE(BSWAP_VL) 20520 NODE_NAME_CASE(CTLZ_VL) 20521 NODE_NAME_CASE(CTTZ_VL) 20522 NODE_NAME_CASE(CTPOP_VL) 20523 NODE_NAME_CASE(VFMIN_VL) 20524 NODE_NAME_CASE(VFMAX_VL) 20525 NODE_NAME_CASE(MULHS_VL) 20526 NODE_NAME_CASE(MULHU_VL) 20527 NODE_NAME_CASE(VFCVT_RTZ_X_F_VL) 20528 NODE_NAME_CASE(VFCVT_RTZ_XU_F_VL) 20529 NODE_NAME_CASE(VFCVT_RM_X_F_VL) 20530 NODE_NAME_CASE(VFCVT_RM_XU_F_VL) 20531 NODE_NAME_CASE(VFCVT_X_F_VL) 20532 NODE_NAME_CASE(VFCVT_XU_F_VL) 20533 NODE_NAME_CASE(VFROUND_NOEXCEPT_VL) 20534 NODE_NAME_CASE(SINT_TO_FP_VL) 20535 NODE_NAME_CASE(UINT_TO_FP_VL) 20536 NODE_NAME_CASE(VFCVT_RM_F_XU_VL) 20537 NODE_NAME_CASE(VFCVT_RM_F_X_VL) 20538 NODE_NAME_CASE(FP_EXTEND_VL) 20539 NODE_NAME_CASE(FP_ROUND_VL) 20540 NODE_NAME_CASE(STRICT_FADD_VL) 20541 NODE_NAME_CASE(STRICT_FSUB_VL) 20542 NODE_NAME_CASE(STRICT_FMUL_VL) 20543 NODE_NAME_CASE(STRICT_FDIV_VL) 20544 NODE_NAME_CASE(STRICT_FSQRT_VL) 20545 NODE_NAME_CASE(STRICT_VFMADD_VL) 20546 NODE_NAME_CASE(STRICT_VFNMADD_VL) 20547 NODE_NAME_CASE(STRICT_VFMSUB_VL) 20548 NODE_NAME_CASE(STRICT_VFNMSUB_VL) 20549 NODE_NAME_CASE(STRICT_FP_ROUND_VL) 20550 NODE_NAME_CASE(STRICT_FP_EXTEND_VL) 20551 NODE_NAME_CASE(STRICT_VFNCVT_ROD_VL) 20552 NODE_NAME_CASE(STRICT_SINT_TO_FP_VL) 20553 NODE_NAME_CASE(STRICT_UINT_TO_FP_VL) 20554 NODE_NAME_CASE(STRICT_VFCVT_RM_X_F_VL) 20555 NODE_NAME_CASE(STRICT_VFCVT_RTZ_X_F_VL) 20556 NODE_NAME_CASE(STRICT_VFCVT_RTZ_XU_F_VL) 20557 NODE_NAME_CASE(STRICT_FSETCC_VL) 20558 NODE_NAME_CASE(STRICT_FSETCCS_VL) 20559 NODE_NAME_CASE(STRICT_VFROUND_NOEXCEPT_VL) 20560 NODE_NAME_CASE(VWMUL_VL) 20561 NODE_NAME_CASE(VWMULU_VL) 20562 NODE_NAME_CASE(VWMULSU_VL) 20563 NODE_NAME_CASE(VWADD_VL) 20564 NODE_NAME_CASE(VWADDU_VL) 20565 NODE_NAME_CASE(VWSUB_VL) 20566 NODE_NAME_CASE(VWSUBU_VL) 20567 NODE_NAME_CASE(VWADD_W_VL) 20568 NODE_NAME_CASE(VWADDU_W_VL) 20569 NODE_NAME_CASE(VWSUB_W_VL) 20570 NODE_NAME_CASE(VWSUBU_W_VL) 20571 NODE_NAME_CASE(VWSLL_VL) 20572 NODE_NAME_CASE(VFWMUL_VL) 20573 NODE_NAME_CASE(VFWADD_VL) 20574 NODE_NAME_CASE(VFWSUB_VL) 20575 NODE_NAME_CASE(VFWADD_W_VL) 20576 NODE_NAME_CASE(VFWSUB_W_VL) 20577 NODE_NAME_CASE(VWMACC_VL) 20578 NODE_NAME_CASE(VWMACCU_VL) 20579 NODE_NAME_CASE(VWMACCSU_VL) 20580 NODE_NAME_CASE(VNSRL_VL) 20581 NODE_NAME_CASE(SETCC_VL) 20582 NODE_NAME_CASE(VMERGE_VL) 20583 NODE_NAME_CASE(VMAND_VL) 20584 NODE_NAME_CASE(VMOR_VL) 20585 NODE_NAME_CASE(VMXOR_VL) 20586 NODE_NAME_CASE(VMCLR_VL) 20587 NODE_NAME_CASE(VMSET_VL) 20588 NODE_NAME_CASE(VRGATHER_VX_VL) 20589 NODE_NAME_CASE(VRGATHER_VV_VL) 20590 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 20591 NODE_NAME_CASE(VSEXT_VL) 20592 NODE_NAME_CASE(VZEXT_VL) 20593 NODE_NAME_CASE(VCPOP_VL) 20594 NODE_NAME_CASE(VFIRST_VL) 20595 NODE_NAME_CASE(READ_CSR) 20596 NODE_NAME_CASE(WRITE_CSR) 20597 NODE_NAME_CASE(SWAP_CSR) 20598 NODE_NAME_CASE(CZERO_EQZ) 20599 NODE_NAME_CASE(CZERO_NEZ) 20600 NODE_NAME_CASE(SW_GUARDED_BRIND) 20601 NODE_NAME_CASE(SF_VC_XV_SE) 20602 NODE_NAME_CASE(SF_VC_IV_SE) 20603 NODE_NAME_CASE(SF_VC_VV_SE) 20604 NODE_NAME_CASE(SF_VC_FV_SE) 20605 NODE_NAME_CASE(SF_VC_XVV_SE) 20606 NODE_NAME_CASE(SF_VC_IVV_SE) 20607 NODE_NAME_CASE(SF_VC_VVV_SE) 20608 NODE_NAME_CASE(SF_VC_FVV_SE) 20609 NODE_NAME_CASE(SF_VC_XVW_SE) 20610 NODE_NAME_CASE(SF_VC_IVW_SE) 20611 NODE_NAME_CASE(SF_VC_VVW_SE) 20612 NODE_NAME_CASE(SF_VC_FVW_SE) 20613 NODE_NAME_CASE(SF_VC_V_X_SE) 20614 NODE_NAME_CASE(SF_VC_V_I_SE) 20615 NODE_NAME_CASE(SF_VC_V_XV_SE) 20616 NODE_NAME_CASE(SF_VC_V_IV_SE) 20617 NODE_NAME_CASE(SF_VC_V_VV_SE) 20618 NODE_NAME_CASE(SF_VC_V_FV_SE) 20619 NODE_NAME_CASE(SF_VC_V_XVV_SE) 20620 NODE_NAME_CASE(SF_VC_V_IVV_SE) 20621 NODE_NAME_CASE(SF_VC_V_VVV_SE) 20622 NODE_NAME_CASE(SF_VC_V_FVV_SE) 20623 NODE_NAME_CASE(SF_VC_V_XVW_SE) 20624 NODE_NAME_CASE(SF_VC_V_IVW_SE) 20625 NODE_NAME_CASE(SF_VC_V_VVW_SE) 20626 NODE_NAME_CASE(SF_VC_V_FVW_SE) 20627 } 20628 // clang-format on 20629 return nullptr; 20630 #undef NODE_NAME_CASE 20631 } 20632 20633 /// getConstraintType - Given a constraint letter, return the type of 20634 /// constraint it is for this target. 20635 RISCVTargetLowering::ConstraintType 20636 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 20637 if (Constraint.size() == 1) { 20638 switch (Constraint[0]) { 20639 default: 20640 break; 20641 case 'f': 20642 return C_RegisterClass; 20643 case 'I': 20644 case 'J': 20645 case 'K': 20646 return C_Immediate; 20647 case 'A': 20648 return C_Memory; 20649 case 's': 20650 case 'S': // A symbolic address 20651 return C_Other; 20652 } 20653 } else { 20654 if (Constraint == "vr" || Constraint == "vm") 20655 return C_RegisterClass; 20656 } 20657 return TargetLowering::getConstraintType(Constraint); 20658 } 20659 20660 std::pair<unsigned, const TargetRegisterClass *> 20661 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 20662 StringRef Constraint, 20663 MVT VT) const { 20664 // First, see if this is a constraint that directly corresponds to a RISC-V 20665 // register class. 20666 if (Constraint.size() == 1) { 20667 switch (Constraint[0]) { 20668 case 'r': 20669 // TODO: Support fixed vectors up to XLen for P extension? 20670 if (VT.isVector()) 20671 break; 20672 if (VT == MVT::f16 && Subtarget.hasStdExtZhinxmin()) 20673 return std::make_pair(0U, &RISCV::GPRF16RegClass); 20674 if (VT == MVT::f32 && Subtarget.hasStdExtZfinx()) 20675 return std::make_pair(0U, &RISCV::GPRF32RegClass); 20676 if (VT == MVT::f64 && Subtarget.hasStdExtZdinx() && !Subtarget.is64Bit()) 20677 return std::make_pair(0U, &RISCV::GPRPairRegClass); 20678 return std::make_pair(0U, &RISCV::GPRNoX0RegClass); 20679 case 'f': 20680 if (Subtarget.hasStdExtZfhmin() && VT == MVT::f16) 20681 return std::make_pair(0U, &RISCV::FPR16RegClass); 20682 if (Subtarget.hasStdExtF() && VT == MVT::f32) 20683 return std::make_pair(0U, &RISCV::FPR32RegClass); 20684 if (Subtarget.hasStdExtD() && VT == MVT::f64) 20685 return std::make_pair(0U, &RISCV::FPR64RegClass); 20686 break; 20687 default: 20688 break; 20689 } 20690 } else if (Constraint == "vr") { 20691 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 20692 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 20693 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 20694 return std::make_pair(0U, RC); 20695 } 20696 } else if (Constraint == "vm") { 20697 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 20698 return std::make_pair(0U, &RISCV::VMV0RegClass); 20699 } 20700 20701 // Clang will correctly decode the usage of register name aliases into their 20702 // official names. However, other frontends like `rustc` do not. This allows 20703 // users of these frontends to use the ABI names for registers in LLVM-style 20704 // register constraints. 20705 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 20706 .Case("{zero}", RISCV::X0) 20707 .Case("{ra}", RISCV::X1) 20708 .Case("{sp}", RISCV::X2) 20709 .Case("{gp}", RISCV::X3) 20710 .Case("{tp}", RISCV::X4) 20711 .Case("{t0}", RISCV::X5) 20712 .Case("{t1}", RISCV::X6) 20713 .Case("{t2}", RISCV::X7) 20714 .Cases("{s0}", "{fp}", RISCV::X8) 20715 .Case("{s1}", RISCV::X9) 20716 .Case("{a0}", RISCV::X10) 20717 .Case("{a1}", RISCV::X11) 20718 .Case("{a2}", RISCV::X12) 20719 .Case("{a3}", RISCV::X13) 20720 .Case("{a4}", RISCV::X14) 20721 .Case("{a5}", RISCV::X15) 20722 .Case("{a6}", RISCV::X16) 20723 .Case("{a7}", RISCV::X17) 20724 .Case("{s2}", RISCV::X18) 20725 .Case("{s3}", RISCV::X19) 20726 .Case("{s4}", RISCV::X20) 20727 .Case("{s5}", RISCV::X21) 20728 .Case("{s6}", RISCV::X22) 20729 .Case("{s7}", RISCV::X23) 20730 .Case("{s8}", RISCV::X24) 20731 .Case("{s9}", RISCV::X25) 20732 .Case("{s10}", RISCV::X26) 20733 .Case("{s11}", RISCV::X27) 20734 .Case("{t3}", RISCV::X28) 20735 .Case("{t4}", RISCV::X29) 20736 .Case("{t5}", RISCV::X30) 20737 .Case("{t6}", RISCV::X31) 20738 .Default(RISCV::NoRegister); 20739 if (XRegFromAlias != RISCV::NoRegister) 20740 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 20741 20742 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 20743 // TableGen record rather than the AsmName to choose registers for InlineAsm 20744 // constraints, plus we want to match those names to the widest floating point 20745 // register type available, manually select floating point registers here. 20746 // 20747 // The second case is the ABI name of the register, so that frontends can also 20748 // use the ABI names in register constraint lists. 20749 if (Subtarget.hasStdExtF()) { 20750 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 20751 .Cases("{f0}", "{ft0}", RISCV::F0_F) 20752 .Cases("{f1}", "{ft1}", RISCV::F1_F) 20753 .Cases("{f2}", "{ft2}", RISCV::F2_F) 20754 .Cases("{f3}", "{ft3}", RISCV::F3_F) 20755 .Cases("{f4}", "{ft4}", RISCV::F4_F) 20756 .Cases("{f5}", "{ft5}", RISCV::F5_F) 20757 .Cases("{f6}", "{ft6}", RISCV::F6_F) 20758 .Cases("{f7}", "{ft7}", RISCV::F7_F) 20759 .Cases("{f8}", "{fs0}", RISCV::F8_F) 20760 .Cases("{f9}", "{fs1}", RISCV::F9_F) 20761 .Cases("{f10}", "{fa0}", RISCV::F10_F) 20762 .Cases("{f11}", "{fa1}", RISCV::F11_F) 20763 .Cases("{f12}", "{fa2}", RISCV::F12_F) 20764 .Cases("{f13}", "{fa3}", RISCV::F13_F) 20765 .Cases("{f14}", "{fa4}", RISCV::F14_F) 20766 .Cases("{f15}", "{fa5}", RISCV::F15_F) 20767 .Cases("{f16}", "{fa6}", RISCV::F16_F) 20768 .Cases("{f17}", "{fa7}", RISCV::F17_F) 20769 .Cases("{f18}", "{fs2}", RISCV::F18_F) 20770 .Cases("{f19}", "{fs3}", RISCV::F19_F) 20771 .Cases("{f20}", "{fs4}", RISCV::F20_F) 20772 .Cases("{f21}", "{fs5}", RISCV::F21_F) 20773 .Cases("{f22}", "{fs6}", RISCV::F22_F) 20774 .Cases("{f23}", "{fs7}", RISCV::F23_F) 20775 .Cases("{f24}", "{fs8}", RISCV::F24_F) 20776 .Cases("{f25}", "{fs9}", RISCV::F25_F) 20777 .Cases("{f26}", "{fs10}", RISCV::F26_F) 20778 .Cases("{f27}", "{fs11}", RISCV::F27_F) 20779 .Cases("{f28}", "{ft8}", RISCV::F28_F) 20780 .Cases("{f29}", "{ft9}", RISCV::F29_F) 20781 .Cases("{f30}", "{ft10}", RISCV::F30_F) 20782 .Cases("{f31}", "{ft11}", RISCV::F31_F) 20783 .Default(RISCV::NoRegister); 20784 if (FReg != RISCV::NoRegister) { 20785 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 20786 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 20787 unsigned RegNo = FReg - RISCV::F0_F; 20788 unsigned DReg = RISCV::F0_D + RegNo; 20789 return std::make_pair(DReg, &RISCV::FPR64RegClass); 20790 } 20791 if (VT == MVT::f32 || VT == MVT::Other) 20792 return std::make_pair(FReg, &RISCV::FPR32RegClass); 20793 if (Subtarget.hasStdExtZfhmin() && VT == MVT::f16) { 20794 unsigned RegNo = FReg - RISCV::F0_F; 20795 unsigned HReg = RISCV::F0_H + RegNo; 20796 return std::make_pair(HReg, &RISCV::FPR16RegClass); 20797 } 20798 } 20799 } 20800 20801 if (Subtarget.hasVInstructions()) { 20802 Register VReg = StringSwitch<Register>(Constraint.lower()) 20803 .Case("{v0}", RISCV::V0) 20804 .Case("{v1}", RISCV::V1) 20805 .Case("{v2}", RISCV::V2) 20806 .Case("{v3}", RISCV::V3) 20807 .Case("{v4}", RISCV::V4) 20808 .Case("{v5}", RISCV::V5) 20809 .Case("{v6}", RISCV::V6) 20810 .Case("{v7}", RISCV::V7) 20811 .Case("{v8}", RISCV::V8) 20812 .Case("{v9}", RISCV::V9) 20813 .Case("{v10}", RISCV::V10) 20814 .Case("{v11}", RISCV::V11) 20815 .Case("{v12}", RISCV::V12) 20816 .Case("{v13}", RISCV::V13) 20817 .Case("{v14}", RISCV::V14) 20818 .Case("{v15}", RISCV::V15) 20819 .Case("{v16}", RISCV::V16) 20820 .Case("{v17}", RISCV::V17) 20821 .Case("{v18}", RISCV::V18) 20822 .Case("{v19}", RISCV::V19) 20823 .Case("{v20}", RISCV::V20) 20824 .Case("{v21}", RISCV::V21) 20825 .Case("{v22}", RISCV::V22) 20826 .Case("{v23}", RISCV::V23) 20827 .Case("{v24}", RISCV::V24) 20828 .Case("{v25}", RISCV::V25) 20829 .Case("{v26}", RISCV::V26) 20830 .Case("{v27}", RISCV::V27) 20831 .Case("{v28}", RISCV::V28) 20832 .Case("{v29}", RISCV::V29) 20833 .Case("{v30}", RISCV::V30) 20834 .Case("{v31}", RISCV::V31) 20835 .Default(RISCV::NoRegister); 20836 if (VReg != RISCV::NoRegister) { 20837 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 20838 return std::make_pair(VReg, &RISCV::VMRegClass); 20839 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 20840 return std::make_pair(VReg, &RISCV::VRRegClass); 20841 for (const auto *RC : 20842 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 20843 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 20844 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 20845 return std::make_pair(VReg, RC); 20846 } 20847 } 20848 } 20849 } 20850 20851 std::pair<Register, const TargetRegisterClass *> Res = 20852 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 20853 20854 // If we picked one of the Zfinx register classes, remap it to the GPR class. 20855 // FIXME: When Zfinx is supported in CodeGen this will need to take the 20856 // Subtarget into account. 20857 if (Res.second == &RISCV::GPRF16RegClass || 20858 Res.second == &RISCV::GPRF32RegClass || 20859 Res.second == &RISCV::GPRPairRegClass) 20860 return std::make_pair(Res.first, &RISCV::GPRRegClass); 20861 20862 return Res; 20863 } 20864 20865 InlineAsm::ConstraintCode 20866 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 20867 // Currently only support length 1 constraints. 20868 if (ConstraintCode.size() == 1) { 20869 switch (ConstraintCode[0]) { 20870 case 'A': 20871 return InlineAsm::ConstraintCode::A; 20872 default: 20873 break; 20874 } 20875 } 20876 20877 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 20878 } 20879 20880 void RISCVTargetLowering::LowerAsmOperandForConstraint( 20881 SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops, 20882 SelectionDAG &DAG) const { 20883 // Currently only support length 1 constraints. 20884 if (Constraint.size() == 1) { 20885 switch (Constraint[0]) { 20886 case 'I': 20887 // Validate & create a 12-bit signed immediate operand. 20888 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 20889 uint64_t CVal = C->getSExtValue(); 20890 if (isInt<12>(CVal)) 20891 Ops.push_back( 20892 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 20893 } 20894 return; 20895 case 'J': 20896 // Validate & create an integer zero operand. 20897 if (isNullConstant(Op)) 20898 Ops.push_back( 20899 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 20900 return; 20901 case 'K': 20902 // Validate & create a 5-bit unsigned immediate operand. 20903 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 20904 uint64_t CVal = C->getZExtValue(); 20905 if (isUInt<5>(CVal)) 20906 Ops.push_back( 20907 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 20908 } 20909 return; 20910 case 'S': 20911 TargetLowering::LowerAsmOperandForConstraint(Op, "s", Ops, DAG); 20912 return; 20913 default: 20914 break; 20915 } 20916 } 20917 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 20918 } 20919 20920 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 20921 Instruction *Inst, 20922 AtomicOrdering Ord) const { 20923 if (Subtarget.hasStdExtZtso()) { 20924 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 20925 return Builder.CreateFence(Ord); 20926 return nullptr; 20927 } 20928 20929 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 20930 return Builder.CreateFence(Ord); 20931 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 20932 return Builder.CreateFence(AtomicOrdering::Release); 20933 return nullptr; 20934 } 20935 20936 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 20937 Instruction *Inst, 20938 AtomicOrdering Ord) const { 20939 if (Subtarget.hasStdExtZtso()) { 20940 if (isa<StoreInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 20941 return Builder.CreateFence(Ord); 20942 return nullptr; 20943 } 20944 20945 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 20946 return Builder.CreateFence(AtomicOrdering::Acquire); 20947 if (Subtarget.enableTrailingSeqCstFence() && isa<StoreInst>(Inst) && 20948 Ord == AtomicOrdering::SequentiallyConsistent) 20949 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 20950 return nullptr; 20951 } 20952 20953 TargetLowering::AtomicExpansionKind 20954 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 20955 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 20956 // point operations can't be used in an lr/sc sequence without breaking the 20957 // forward-progress guarantee. 20958 if (AI->isFloatingPointOperation() || 20959 AI->getOperation() == AtomicRMWInst::UIncWrap || 20960 AI->getOperation() == AtomicRMWInst::UDecWrap) 20961 return AtomicExpansionKind::CmpXChg; 20962 20963 // Don't expand forced atomics, we want to have __sync libcalls instead. 20964 if (Subtarget.hasForcedAtomics()) 20965 return AtomicExpansionKind::None; 20966 20967 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 20968 if (AI->getOperation() == AtomicRMWInst::Nand) { 20969 if (Subtarget.hasStdExtZacas() && 20970 (Size >= 32 || Subtarget.hasStdExtZabha())) 20971 return AtomicExpansionKind::CmpXChg; 20972 if (Size < 32) 20973 return AtomicExpansionKind::MaskedIntrinsic; 20974 } 20975 20976 if (Size < 32 && !Subtarget.hasStdExtZabha()) 20977 return AtomicExpansionKind::MaskedIntrinsic; 20978 20979 return AtomicExpansionKind::None; 20980 } 20981 20982 static Intrinsic::ID 20983 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 20984 if (XLen == 32) { 20985 switch (BinOp) { 20986 default: 20987 llvm_unreachable("Unexpected AtomicRMW BinOp"); 20988 case AtomicRMWInst::Xchg: 20989 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 20990 case AtomicRMWInst::Add: 20991 return Intrinsic::riscv_masked_atomicrmw_add_i32; 20992 case AtomicRMWInst::Sub: 20993 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 20994 case AtomicRMWInst::Nand: 20995 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 20996 case AtomicRMWInst::Max: 20997 return Intrinsic::riscv_masked_atomicrmw_max_i32; 20998 case AtomicRMWInst::Min: 20999 return Intrinsic::riscv_masked_atomicrmw_min_i32; 21000 case AtomicRMWInst::UMax: 21001 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 21002 case AtomicRMWInst::UMin: 21003 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 21004 } 21005 } 21006 21007 if (XLen == 64) { 21008 switch (BinOp) { 21009 default: 21010 llvm_unreachable("Unexpected AtomicRMW BinOp"); 21011 case AtomicRMWInst::Xchg: 21012 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 21013 case AtomicRMWInst::Add: 21014 return Intrinsic::riscv_masked_atomicrmw_add_i64; 21015 case AtomicRMWInst::Sub: 21016 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 21017 case AtomicRMWInst::Nand: 21018 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 21019 case AtomicRMWInst::Max: 21020 return Intrinsic::riscv_masked_atomicrmw_max_i64; 21021 case AtomicRMWInst::Min: 21022 return Intrinsic::riscv_masked_atomicrmw_min_i64; 21023 case AtomicRMWInst::UMax: 21024 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 21025 case AtomicRMWInst::UMin: 21026 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 21027 } 21028 } 21029 21030 llvm_unreachable("Unexpected XLen\n"); 21031 } 21032 21033 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 21034 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 21035 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 21036 // In the case of an atomicrmw xchg with a constant 0/-1 operand, replace 21037 // the atomic instruction with an AtomicRMWInst::And/Or with appropriate 21038 // mask, as this produces better code than the LR/SC loop emitted by 21039 // int_riscv_masked_atomicrmw_xchg. 21040 if (AI->getOperation() == AtomicRMWInst::Xchg && 21041 isa<ConstantInt>(AI->getValOperand())) { 21042 ConstantInt *CVal = cast<ConstantInt>(AI->getValOperand()); 21043 if (CVal->isZero()) 21044 return Builder.CreateAtomicRMW(AtomicRMWInst::And, AlignedAddr, 21045 Builder.CreateNot(Mask, "Inv_Mask"), 21046 AI->getAlign(), Ord); 21047 if (CVal->isMinusOne()) 21048 return Builder.CreateAtomicRMW(AtomicRMWInst::Or, AlignedAddr, Mask, 21049 AI->getAlign(), Ord); 21050 } 21051 21052 unsigned XLen = Subtarget.getXLen(); 21053 Value *Ordering = 21054 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 21055 Type *Tys[] = {AlignedAddr->getType()}; 21056 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 21057 AI->getModule(), 21058 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 21059 21060 if (XLen == 64) { 21061 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 21062 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 21063 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 21064 } 21065 21066 Value *Result; 21067 21068 // Must pass the shift amount needed to sign extend the loaded value prior 21069 // to performing a signed comparison for min/max. ShiftAmt is the number of 21070 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 21071 // is the number of bits to left+right shift the value in order to 21072 // sign-extend. 21073 if (AI->getOperation() == AtomicRMWInst::Min || 21074 AI->getOperation() == AtomicRMWInst::Max) { 21075 const DataLayout &DL = AI->getDataLayout(); 21076 unsigned ValWidth = 21077 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 21078 Value *SextShamt = 21079 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 21080 Result = Builder.CreateCall(LrwOpScwLoop, 21081 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 21082 } else { 21083 Result = 21084 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 21085 } 21086 21087 if (XLen == 64) 21088 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 21089 return Result; 21090 } 21091 21092 TargetLowering::AtomicExpansionKind 21093 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 21094 AtomicCmpXchgInst *CI) const { 21095 // Don't expand forced atomics, we want to have __sync libcalls instead. 21096 if (Subtarget.hasForcedAtomics()) 21097 return AtomicExpansionKind::None; 21098 21099 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 21100 if (!(Subtarget.hasStdExtZabha() && Subtarget.hasStdExtZacas()) && 21101 (Size == 8 || Size == 16)) 21102 return AtomicExpansionKind::MaskedIntrinsic; 21103 return AtomicExpansionKind::None; 21104 } 21105 21106 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 21107 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 21108 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 21109 unsigned XLen = Subtarget.getXLen(); 21110 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 21111 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 21112 if (XLen == 64) { 21113 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 21114 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 21115 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 21116 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 21117 } 21118 Type *Tys[] = {AlignedAddr->getType()}; 21119 Function *MaskedCmpXchg = 21120 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 21121 Value *Result = Builder.CreateCall( 21122 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 21123 if (XLen == 64) 21124 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 21125 return Result; 21126 } 21127 21128 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(SDValue Extend, 21129 EVT DataVT) const { 21130 // We have indexed loads for all supported EEW types. Indices are always 21131 // zero extended. 21132 return Extend.getOpcode() == ISD::ZERO_EXTEND && 21133 isTypeLegal(Extend.getValueType()) && 21134 isTypeLegal(Extend.getOperand(0).getValueType()) && 21135 Extend.getOperand(0).getValueType().getVectorElementType() != MVT::i1; 21136 } 21137 21138 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 21139 EVT VT) const { 21140 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 21141 return false; 21142 21143 switch (FPVT.getSimpleVT().SimpleTy) { 21144 case MVT::f16: 21145 return Subtarget.hasStdExtZfhmin(); 21146 case MVT::f32: 21147 return Subtarget.hasStdExtF(); 21148 case MVT::f64: 21149 return Subtarget.hasStdExtD(); 21150 default: 21151 return false; 21152 } 21153 } 21154 21155 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 21156 // If we are using the small code model, we can reduce size of jump table 21157 // entry to 4 bytes. 21158 if (Subtarget.is64Bit() && !isPositionIndependent() && 21159 getTargetMachine().getCodeModel() == CodeModel::Small) { 21160 return MachineJumpTableInfo::EK_Custom32; 21161 } 21162 return TargetLowering::getJumpTableEncoding(); 21163 } 21164 21165 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 21166 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 21167 unsigned uid, MCContext &Ctx) const { 21168 assert(Subtarget.is64Bit() && !isPositionIndependent() && 21169 getTargetMachine().getCodeModel() == CodeModel::Small); 21170 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 21171 } 21172 21173 bool RISCVTargetLowering::isVScaleKnownToBeAPowerOfTwo() const { 21174 // We define vscale to be VLEN/RVVBitsPerBlock. VLEN is always a power 21175 // of two >= 64, and RVVBitsPerBlock is 64. Thus, vscale must be 21176 // a power of two as well. 21177 // FIXME: This doesn't work for zve32, but that's already broken 21178 // elsewhere for the same reason. 21179 assert(Subtarget.getRealMinVLen() >= 64 && "zve32* unsupported"); 21180 static_assert(RISCV::RVVBitsPerBlock == 64, 21181 "RVVBitsPerBlock changed, audit needed"); 21182 return true; 21183 } 21184 21185 bool RISCVTargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base, 21186 SDValue &Offset, 21187 ISD::MemIndexedMode &AM, 21188 SelectionDAG &DAG) const { 21189 // Target does not support indexed loads. 21190 if (!Subtarget.hasVendorXTHeadMemIdx()) 21191 return false; 21192 21193 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) 21194 return false; 21195 21196 Base = Op->getOperand(0); 21197 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { 21198 int64_t RHSC = RHS->getSExtValue(); 21199 if (Op->getOpcode() == ISD::SUB) 21200 RHSC = -(uint64_t)RHSC; 21201 21202 // The constants that can be encoded in the THeadMemIdx instructions 21203 // are of the form (sign_extend(imm5) << imm2). 21204 bool isLegalIndexedOffset = false; 21205 for (unsigned i = 0; i < 4; i++) 21206 if (isInt<5>(RHSC >> i) && ((RHSC % (1LL << i)) == 0)) { 21207 isLegalIndexedOffset = true; 21208 break; 21209 } 21210 21211 if (!isLegalIndexedOffset) 21212 return false; 21213 21214 Offset = Op->getOperand(1); 21215 return true; 21216 } 21217 21218 return false; 21219 } 21220 21221 bool RISCVTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 21222 SDValue &Offset, 21223 ISD::MemIndexedMode &AM, 21224 SelectionDAG &DAG) const { 21225 EVT VT; 21226 SDValue Ptr; 21227 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 21228 VT = LD->getMemoryVT(); 21229 Ptr = LD->getBasePtr(); 21230 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 21231 VT = ST->getMemoryVT(); 21232 Ptr = ST->getBasePtr(); 21233 } else 21234 return false; 21235 21236 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, DAG)) 21237 return false; 21238 21239 AM = ISD::PRE_INC; 21240 return true; 21241 } 21242 21243 bool RISCVTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, 21244 SDValue &Base, 21245 SDValue &Offset, 21246 ISD::MemIndexedMode &AM, 21247 SelectionDAG &DAG) const { 21248 if (Subtarget.hasVendorXCVmem()) { 21249 if (Op->getOpcode() != ISD::ADD) 21250 return false; 21251 21252 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) 21253 Base = LS->getBasePtr(); 21254 else 21255 return false; 21256 21257 if (Base == Op->getOperand(0)) 21258 Offset = Op->getOperand(1); 21259 else if (Base == Op->getOperand(1)) 21260 Offset = Op->getOperand(0); 21261 else 21262 return false; 21263 21264 AM = ISD::POST_INC; 21265 return true; 21266 } 21267 21268 EVT VT; 21269 SDValue Ptr; 21270 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 21271 VT = LD->getMemoryVT(); 21272 Ptr = LD->getBasePtr(); 21273 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 21274 VT = ST->getMemoryVT(); 21275 Ptr = ST->getBasePtr(); 21276 } else 21277 return false; 21278 21279 if (!getIndexedAddressParts(Op, Base, Offset, AM, DAG)) 21280 return false; 21281 // Post-indexing updates the base, so it's not a valid transform 21282 // if that's not the same as the load's pointer. 21283 if (Ptr != Base) 21284 return false; 21285 21286 AM = ISD::POST_INC; 21287 return true; 21288 } 21289 21290 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 21291 EVT VT) const { 21292 EVT SVT = VT.getScalarType(); 21293 21294 if (!SVT.isSimple()) 21295 return false; 21296 21297 switch (SVT.getSimpleVT().SimpleTy) { 21298 case MVT::f16: 21299 return VT.isVector() ? Subtarget.hasVInstructionsF16() 21300 : Subtarget.hasStdExtZfhOrZhinx(); 21301 case MVT::f32: 21302 return Subtarget.hasStdExtFOrZfinx(); 21303 case MVT::f64: 21304 return Subtarget.hasStdExtDOrZdinx(); 21305 default: 21306 break; 21307 } 21308 21309 return false; 21310 } 21311 21312 ISD::NodeType RISCVTargetLowering::getExtendForAtomicCmpSwapArg() const { 21313 // Zacas will use amocas.w which does not require extension. 21314 return Subtarget.hasStdExtZacas() ? ISD::ANY_EXTEND : ISD::SIGN_EXTEND; 21315 } 21316 21317 Register RISCVTargetLowering::getExceptionPointerRegister( 21318 const Constant *PersonalityFn) const { 21319 return RISCV::X10; 21320 } 21321 21322 Register RISCVTargetLowering::getExceptionSelectorRegister( 21323 const Constant *PersonalityFn) const { 21324 return RISCV::X11; 21325 } 21326 21327 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 21328 // Return false to suppress the unnecessary extensions if the LibCall 21329 // arguments or return value is a float narrower than XLEN on a soft FP ABI. 21330 if (Subtarget.isSoftFPABI() && (Type.isFloatingPoint() && !Type.isVector() && 21331 Type.getSizeInBits() < Subtarget.getXLen())) 21332 return false; 21333 21334 return true; 21335 } 21336 21337 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 21338 if (Subtarget.is64Bit() && Type == MVT::i32) 21339 return true; 21340 21341 return IsSigned; 21342 } 21343 21344 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 21345 SDValue C) const { 21346 // Check integral scalar types. 21347 const bool HasZmmul = Subtarget.hasStdExtZmmul(); 21348 if (!VT.isScalarInteger()) 21349 return false; 21350 21351 // Omit the optimization if the sub target has the M extension and the data 21352 // size exceeds XLen. 21353 if (HasZmmul && VT.getSizeInBits() > Subtarget.getXLen()) 21354 return false; 21355 21356 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 21357 // Break the MUL to a SLLI and an ADD/SUB. 21358 const APInt &Imm = ConstNode->getAPIntValue(); 21359 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 21360 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 21361 return true; 21362 21363 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 21364 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 21365 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 21366 (Imm - 8).isPowerOf2())) 21367 return true; 21368 21369 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 21370 // a pair of LUI/ADDI. 21371 if (!Imm.isSignedIntN(12) && Imm.countr_zero() < 12 && 21372 ConstNode->hasOneUse()) { 21373 APInt ImmS = Imm.ashr(Imm.countr_zero()); 21374 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 21375 (1 - ImmS).isPowerOf2()) 21376 return true; 21377 } 21378 } 21379 21380 return false; 21381 } 21382 21383 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode, 21384 SDValue ConstNode) const { 21385 // Let the DAGCombiner decide for vectors. 21386 EVT VT = AddNode.getValueType(); 21387 if (VT.isVector()) 21388 return true; 21389 21390 // Let the DAGCombiner decide for larger types. 21391 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 21392 return true; 21393 21394 // It is worse if c1 is simm12 while c1*c2 is not. 21395 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 21396 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 21397 const APInt &C1 = C1Node->getAPIntValue(); 21398 const APInt &C2 = C2Node->getAPIntValue(); 21399 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 21400 return false; 21401 21402 // Default to true and let the DAGCombiner decide. 21403 return true; 21404 } 21405 21406 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 21407 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 21408 unsigned *Fast) const { 21409 if (!VT.isVector()) { 21410 if (Fast) 21411 *Fast = Subtarget.enableUnalignedScalarMem(); 21412 return Subtarget.enableUnalignedScalarMem(); 21413 } 21414 21415 // All vector implementations must support element alignment 21416 EVT ElemVT = VT.getVectorElementType(); 21417 if (Alignment >= ElemVT.getStoreSize()) { 21418 if (Fast) 21419 *Fast = 1; 21420 return true; 21421 } 21422 21423 // Note: We lower an unmasked unaligned vector access to an equally sized 21424 // e8 element type access. Given this, we effectively support all unmasked 21425 // misaligned accesses. TODO: Work through the codegen implications of 21426 // allowing such accesses to be formed, and considered fast. 21427 if (Fast) 21428 *Fast = Subtarget.enableUnalignedVectorMem(); 21429 return Subtarget.enableUnalignedVectorMem(); 21430 } 21431 21432 21433 EVT RISCVTargetLowering::getOptimalMemOpType(const MemOp &Op, 21434 const AttributeList &FuncAttributes) const { 21435 if (!Subtarget.hasVInstructions()) 21436 return MVT::Other; 21437 21438 if (FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat)) 21439 return MVT::Other; 21440 21441 // We use LMUL1 memory operations here for a non-obvious reason. Our caller 21442 // has an expansion threshold, and we want the number of hardware memory 21443 // operations to correspond roughly to that threshold. LMUL>1 operations 21444 // are typically expanded linearly internally, and thus correspond to more 21445 // than one actual memory operation. Note that store merging and load 21446 // combining will typically form larger LMUL operations from the LMUL1 21447 // operations emitted here, and that's okay because combining isn't 21448 // introducing new memory operations; it's just merging existing ones. 21449 const unsigned MinVLenInBytes = Subtarget.getRealMinVLen()/8; 21450 if (Op.size() < MinVLenInBytes) 21451 // TODO: Figure out short memops. For the moment, do the default thing 21452 // which ends up using scalar sequences. 21453 return MVT::Other; 21454 21455 // Prefer i8 for non-zero memset as it allows us to avoid materializing 21456 // a large scalar constant and instead use vmv.v.x/i to do the 21457 // broadcast. For everything else, prefer ELenVT to minimize VL and thus 21458 // maximize the chance we can encode the size in the vsetvli. 21459 MVT ELenVT = MVT::getIntegerVT(Subtarget.getELen()); 21460 MVT PreferredVT = (Op.isMemset() && !Op.isZeroMemset()) ? MVT::i8 : ELenVT; 21461 21462 // Do we have sufficient alignment for our preferred VT? If not, revert 21463 // to largest size allowed by our alignment criteria. 21464 if (PreferredVT != MVT::i8 && !Subtarget.enableUnalignedVectorMem()) { 21465 Align RequiredAlign(PreferredVT.getStoreSize()); 21466 if (Op.isFixedDstAlign()) 21467 RequiredAlign = std::min(RequiredAlign, Op.getDstAlign()); 21468 if (Op.isMemcpy()) 21469 RequiredAlign = std::min(RequiredAlign, Op.getSrcAlign()); 21470 PreferredVT = MVT::getIntegerVT(RequiredAlign.value() * 8); 21471 } 21472 return MVT::getVectorVT(PreferredVT, MinVLenInBytes/PreferredVT.getStoreSize()); 21473 } 21474 21475 bool RISCVTargetLowering::splitValueIntoRegisterParts( 21476 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 21477 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { 21478 bool IsABIRegCopy = CC.has_value(); 21479 EVT ValueVT = Val.getValueType(); 21480 if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) && 21481 PartVT == MVT::f32) { 21482 // Cast the [b]f16 to i16, extend to i32, pad with ones to make a float 21483 // nan, and cast to f32. 21484 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 21485 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 21486 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 21487 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 21488 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 21489 Parts[0] = Val; 21490 return true; 21491 } 21492 21493 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 21494 LLVMContext &Context = *DAG.getContext(); 21495 EVT ValueEltVT = ValueVT.getVectorElementType(); 21496 EVT PartEltVT = PartVT.getVectorElementType(); 21497 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinValue(); 21498 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinValue(); 21499 if (PartVTBitSize % ValueVTBitSize == 0) { 21500 assert(PartVTBitSize >= ValueVTBitSize); 21501 // If the element types are different, bitcast to the same element type of 21502 // PartVT first. 21503 // Give an example here, we want copy a <vscale x 1 x i8> value to 21504 // <vscale x 4 x i16>. 21505 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 21506 // subvector, then we can bitcast to <vscale x 4 x i16>. 21507 if (ValueEltVT != PartEltVT) { 21508 if (PartVTBitSize > ValueVTBitSize) { 21509 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 21510 assert(Count != 0 && "The number of element should not be zero."); 21511 EVT SameEltTypeVT = 21512 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 21513 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 21514 DAG.getUNDEF(SameEltTypeVT), Val, 21515 DAG.getVectorIdxConstant(0, DL)); 21516 } 21517 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 21518 } else { 21519 Val = 21520 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 21521 Val, DAG.getVectorIdxConstant(0, DL)); 21522 } 21523 Parts[0] = Val; 21524 return true; 21525 } 21526 } 21527 return false; 21528 } 21529 21530 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 21531 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 21532 MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const { 21533 bool IsABIRegCopy = CC.has_value(); 21534 if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) && 21535 PartVT == MVT::f32) { 21536 SDValue Val = Parts[0]; 21537 21538 // Cast the f32 to i32, truncate to i16, and cast back to [b]f16. 21539 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 21540 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 21541 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 21542 return Val; 21543 } 21544 21545 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 21546 LLVMContext &Context = *DAG.getContext(); 21547 SDValue Val = Parts[0]; 21548 EVT ValueEltVT = ValueVT.getVectorElementType(); 21549 EVT PartEltVT = PartVT.getVectorElementType(); 21550 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinValue(); 21551 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinValue(); 21552 if (PartVTBitSize % ValueVTBitSize == 0) { 21553 assert(PartVTBitSize >= ValueVTBitSize); 21554 EVT SameEltTypeVT = ValueVT; 21555 // If the element types are different, convert it to the same element type 21556 // of PartVT. 21557 // Give an example here, we want copy a <vscale x 1 x i8> value from 21558 // <vscale x 4 x i16>. 21559 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 21560 // then we can extract <vscale x 1 x i8>. 21561 if (ValueEltVT != PartEltVT) { 21562 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 21563 assert(Count != 0 && "The number of element should not be zero."); 21564 SameEltTypeVT = 21565 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 21566 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 21567 } 21568 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 21569 DAG.getVectorIdxConstant(0, DL)); 21570 return Val; 21571 } 21572 } 21573 return SDValue(); 21574 } 21575 21576 bool RISCVTargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const { 21577 // When aggressively optimizing for code size, we prefer to use a div 21578 // instruction, as it is usually smaller than the alternative sequence. 21579 // TODO: Add vector division? 21580 bool OptSize = Attr.hasFnAttr(Attribute::MinSize); 21581 return OptSize && !VT.isVector(); 21582 } 21583 21584 bool RISCVTargetLowering::preferScalarizeSplat(SDNode *N) const { 21585 // Scalarize zero_ext and sign_ext might stop match to widening instruction in 21586 // some situation. 21587 unsigned Opc = N->getOpcode(); 21588 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND) 21589 return false; 21590 return true; 21591 } 21592 21593 static Value *useTpOffset(IRBuilderBase &IRB, unsigned Offset) { 21594 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 21595 Function *ThreadPointerFunc = 21596 Intrinsic::getDeclaration(M, Intrinsic::thread_pointer); 21597 return IRB.CreateConstGEP1_32(IRB.getInt8Ty(), 21598 IRB.CreateCall(ThreadPointerFunc), Offset); 21599 } 21600 21601 Value *RISCVTargetLowering::getIRStackGuard(IRBuilderBase &IRB) const { 21602 // Fuchsia provides a fixed TLS slot for the stack cookie. 21603 // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value. 21604 if (Subtarget.isTargetFuchsia()) 21605 return useTpOffset(IRB, -0x10); 21606 21607 // Android provides a fixed TLS slot for the stack cookie. See the definition 21608 // of TLS_SLOT_STACK_GUARD in 21609 // https://android.googlesource.com/platform/bionic/+/main/libc/platform/bionic/tls_defines.h 21610 if (Subtarget.isTargetAndroid()) 21611 return useTpOffset(IRB, -0x18); 21612 21613 return TargetLowering::getIRStackGuard(IRB); 21614 } 21615 21616 bool RISCVTargetLowering::isLegalInterleavedAccessType( 21617 VectorType *VTy, unsigned Factor, Align Alignment, unsigned AddrSpace, 21618 const DataLayout &DL) const { 21619 EVT VT = getValueType(DL, VTy); 21620 // Don't lower vlseg/vsseg for vector types that can't be split. 21621 if (!isTypeLegal(VT)) 21622 return false; 21623 21624 if (!isLegalElementTypeForRVV(VT.getScalarType()) || 21625 !allowsMemoryAccessForAlignment(VTy->getContext(), DL, VT, AddrSpace, 21626 Alignment)) 21627 return false; 21628 21629 MVT ContainerVT = VT.getSimpleVT(); 21630 21631 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 21632 if (!Subtarget.useRVVForFixedLengthVectors()) 21633 return false; 21634 // Sometimes the interleaved access pass picks up splats as interleaves of 21635 // one element. Don't lower these. 21636 if (FVTy->getNumElements() < 2) 21637 return false; 21638 21639 ContainerVT = getContainerForFixedLengthVector(VT.getSimpleVT()); 21640 } else { 21641 // The intrinsics for scalable vectors are not overloaded on pointer type 21642 // and can only handle the default address space. 21643 if (AddrSpace) 21644 return false; 21645 } 21646 21647 // Need to make sure that EMUL * NFIELDS ≤ 8 21648 auto [LMUL, Fractional] = RISCVVType::decodeVLMUL(getLMUL(ContainerVT)); 21649 if (Fractional) 21650 return true; 21651 return Factor * LMUL <= 8; 21652 } 21653 21654 bool RISCVTargetLowering::isLegalStridedLoadStore(EVT DataType, 21655 Align Alignment) const { 21656 if (!Subtarget.hasVInstructions()) 21657 return false; 21658 21659 // Only support fixed vectors if we know the minimum vector size. 21660 if (DataType.isFixedLengthVector() && !Subtarget.useRVVForFixedLengthVectors()) 21661 return false; 21662 21663 EVT ScalarType = DataType.getScalarType(); 21664 if (!isLegalElementTypeForRVV(ScalarType)) 21665 return false; 21666 21667 if (!Subtarget.enableUnalignedVectorMem() && 21668 Alignment < ScalarType.getStoreSize()) 21669 return false; 21670 21671 return true; 21672 } 21673 21674 static const Intrinsic::ID FixedVlsegIntrIds[] = { 21675 Intrinsic::riscv_seg2_load, Intrinsic::riscv_seg3_load, 21676 Intrinsic::riscv_seg4_load, Intrinsic::riscv_seg5_load, 21677 Intrinsic::riscv_seg6_load, Intrinsic::riscv_seg7_load, 21678 Intrinsic::riscv_seg8_load}; 21679 21680 /// Lower an interleaved load into a vlsegN intrinsic. 21681 /// 21682 /// E.g. Lower an interleaved load (Factor = 2): 21683 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr 21684 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements 21685 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements 21686 /// 21687 /// Into: 21688 /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.riscv.seg2.load.v4i32.p0.i64( 21689 /// %ptr, i64 4) 21690 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0 21691 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1 21692 bool RISCVTargetLowering::lowerInterleavedLoad( 21693 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, 21694 ArrayRef<unsigned> Indices, unsigned Factor) const { 21695 IRBuilder<> Builder(LI); 21696 21697 auto *VTy = cast<FixedVectorType>(Shuffles[0]->getType()); 21698 if (!isLegalInterleavedAccessType(VTy, Factor, LI->getAlign(), 21699 LI->getPointerAddressSpace(), 21700 LI->getDataLayout())) 21701 return false; 21702 21703 auto *XLenTy = Type::getIntNTy(LI->getContext(), Subtarget.getXLen()); 21704 21705 Function *VlsegNFunc = 21706 Intrinsic::getDeclaration(LI->getModule(), FixedVlsegIntrIds[Factor - 2], 21707 {VTy, LI->getPointerOperandType(), XLenTy}); 21708 21709 Value *VL = ConstantInt::get(XLenTy, VTy->getNumElements()); 21710 21711 CallInst *VlsegN = 21712 Builder.CreateCall(VlsegNFunc, {LI->getPointerOperand(), VL}); 21713 21714 for (unsigned i = 0; i < Shuffles.size(); i++) { 21715 Value *SubVec = Builder.CreateExtractValue(VlsegN, Indices[i]); 21716 Shuffles[i]->replaceAllUsesWith(SubVec); 21717 } 21718 21719 return true; 21720 } 21721 21722 static const Intrinsic::ID FixedVssegIntrIds[] = { 21723 Intrinsic::riscv_seg2_store, Intrinsic::riscv_seg3_store, 21724 Intrinsic::riscv_seg4_store, Intrinsic::riscv_seg5_store, 21725 Intrinsic::riscv_seg6_store, Intrinsic::riscv_seg7_store, 21726 Intrinsic::riscv_seg8_store}; 21727 21728 /// Lower an interleaved store into a vssegN intrinsic. 21729 /// 21730 /// E.g. Lower an interleaved store (Factor = 3): 21731 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, 21732 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> 21733 /// store <12 x i32> %i.vec, <12 x i32>* %ptr 21734 /// 21735 /// Into: 21736 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3> 21737 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7> 21738 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11> 21739 /// call void llvm.riscv.seg3.store.v4i32.p0.i64(%sub.v0, %sub.v1, %sub.v2, 21740 /// %ptr, i32 4) 21741 /// 21742 /// Note that the new shufflevectors will be removed and we'll only generate one 21743 /// vsseg3 instruction in CodeGen. 21744 bool RISCVTargetLowering::lowerInterleavedStore(StoreInst *SI, 21745 ShuffleVectorInst *SVI, 21746 unsigned Factor) const { 21747 IRBuilder<> Builder(SI); 21748 auto *ShuffleVTy = cast<FixedVectorType>(SVI->getType()); 21749 // Given SVI : <n*factor x ty>, then VTy : <n x ty> 21750 auto *VTy = FixedVectorType::get(ShuffleVTy->getElementType(), 21751 ShuffleVTy->getNumElements() / Factor); 21752 if (!isLegalInterleavedAccessType(VTy, Factor, SI->getAlign(), 21753 SI->getPointerAddressSpace(), 21754 SI->getDataLayout())) 21755 return false; 21756 21757 auto *XLenTy = Type::getIntNTy(SI->getContext(), Subtarget.getXLen()); 21758 21759 Function *VssegNFunc = 21760 Intrinsic::getDeclaration(SI->getModule(), FixedVssegIntrIds[Factor - 2], 21761 {VTy, SI->getPointerOperandType(), XLenTy}); 21762 21763 auto Mask = SVI->getShuffleMask(); 21764 SmallVector<Value *, 10> Ops; 21765 21766 for (unsigned i = 0; i < Factor; i++) { 21767 Value *Shuffle = Builder.CreateShuffleVector( 21768 SVI->getOperand(0), SVI->getOperand(1), 21769 createSequentialMask(Mask[i], VTy->getNumElements(), 0)); 21770 Ops.push_back(Shuffle); 21771 } 21772 // This VL should be OK (should be executable in one vsseg instruction, 21773 // potentially under larger LMULs) because we checked that the fixed vector 21774 // type fits in isLegalInterleavedAccessType 21775 Value *VL = ConstantInt::get(XLenTy, VTy->getNumElements()); 21776 Ops.append({SI->getPointerOperand(), VL}); 21777 21778 Builder.CreateCall(VssegNFunc, Ops); 21779 21780 return true; 21781 } 21782 21783 bool RISCVTargetLowering::lowerDeinterleaveIntrinsicToLoad(IntrinsicInst *DI, 21784 LoadInst *LI) const { 21785 assert(LI->isSimple()); 21786 IRBuilder<> Builder(LI); 21787 21788 // Only deinterleave2 supported at present. 21789 if (DI->getIntrinsicID() != Intrinsic::vector_deinterleave2) 21790 return false; 21791 21792 unsigned Factor = 2; 21793 21794 VectorType *VTy = cast<VectorType>(DI->getOperand(0)->getType()); 21795 VectorType *ResVTy = cast<VectorType>(DI->getType()->getContainedType(0)); 21796 21797 if (!isLegalInterleavedAccessType(ResVTy, Factor, LI->getAlign(), 21798 LI->getPointerAddressSpace(), 21799 LI->getDataLayout())) 21800 return false; 21801 21802 Function *VlsegNFunc; 21803 Value *VL; 21804 Type *XLenTy = Type::getIntNTy(LI->getContext(), Subtarget.getXLen()); 21805 SmallVector<Value *, 10> Ops; 21806 21807 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 21808 VlsegNFunc = Intrinsic::getDeclaration( 21809 LI->getModule(), FixedVlsegIntrIds[Factor - 2], 21810 {ResVTy, LI->getPointerOperandType(), XLenTy}); 21811 VL = ConstantInt::get(XLenTy, FVTy->getNumElements()); 21812 } else { 21813 static const Intrinsic::ID IntrIds[] = { 21814 Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, 21815 Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, 21816 Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, 21817 Intrinsic::riscv_vlseg8}; 21818 21819 VlsegNFunc = Intrinsic::getDeclaration(LI->getModule(), IntrIds[Factor - 2], 21820 {ResVTy, XLenTy}); 21821 VL = Constant::getAllOnesValue(XLenTy); 21822 Ops.append(Factor, PoisonValue::get(ResVTy)); 21823 } 21824 21825 Ops.append({LI->getPointerOperand(), VL}); 21826 21827 Value *Vlseg = Builder.CreateCall(VlsegNFunc, Ops); 21828 DI->replaceAllUsesWith(Vlseg); 21829 21830 return true; 21831 } 21832 21833 bool RISCVTargetLowering::lowerInterleaveIntrinsicToStore(IntrinsicInst *II, 21834 StoreInst *SI) const { 21835 assert(SI->isSimple()); 21836 IRBuilder<> Builder(SI); 21837 21838 // Only interleave2 supported at present. 21839 if (II->getIntrinsicID() != Intrinsic::vector_interleave2) 21840 return false; 21841 21842 unsigned Factor = 2; 21843 21844 VectorType *VTy = cast<VectorType>(II->getType()); 21845 VectorType *InVTy = cast<VectorType>(II->getOperand(0)->getType()); 21846 21847 if (!isLegalInterleavedAccessType(InVTy, Factor, SI->getAlign(), 21848 SI->getPointerAddressSpace(), 21849 SI->getDataLayout())) 21850 return false; 21851 21852 Function *VssegNFunc; 21853 Value *VL; 21854 Type *XLenTy = Type::getIntNTy(SI->getContext(), Subtarget.getXLen()); 21855 21856 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 21857 VssegNFunc = Intrinsic::getDeclaration( 21858 SI->getModule(), FixedVssegIntrIds[Factor - 2], 21859 {InVTy, SI->getPointerOperandType(), XLenTy}); 21860 VL = ConstantInt::get(XLenTy, FVTy->getNumElements()); 21861 } else { 21862 static const Intrinsic::ID IntrIds[] = { 21863 Intrinsic::riscv_vsseg2, Intrinsic::riscv_vsseg3, 21864 Intrinsic::riscv_vsseg4, Intrinsic::riscv_vsseg5, 21865 Intrinsic::riscv_vsseg6, Intrinsic::riscv_vsseg7, 21866 Intrinsic::riscv_vsseg8}; 21867 21868 VssegNFunc = Intrinsic::getDeclaration(SI->getModule(), IntrIds[Factor - 2], 21869 {InVTy, XLenTy}); 21870 VL = Constant::getAllOnesValue(XLenTy); 21871 } 21872 21873 Builder.CreateCall(VssegNFunc, {II->getOperand(0), II->getOperand(1), 21874 SI->getPointerOperand(), VL}); 21875 21876 return true; 21877 } 21878 21879 MachineInstr * 21880 RISCVTargetLowering::EmitKCFICheck(MachineBasicBlock &MBB, 21881 MachineBasicBlock::instr_iterator &MBBI, 21882 const TargetInstrInfo *TII) const { 21883 assert(MBBI->isCall() && MBBI->getCFIType() && 21884 "Invalid call instruction for a KCFI check"); 21885 assert(is_contained({RISCV::PseudoCALLIndirect, RISCV::PseudoTAILIndirect}, 21886 MBBI->getOpcode())); 21887 21888 MachineOperand &Target = MBBI->getOperand(0); 21889 Target.setIsRenamable(false); 21890 21891 return BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(RISCV::KCFI_CHECK)) 21892 .addReg(Target.getReg()) 21893 .addImm(MBBI->getCFIType()) 21894 .getInstr(); 21895 } 21896 21897 #define GET_REGISTER_MATCHER 21898 #include "RISCVGenAsmMatcher.inc" 21899 21900 Register 21901 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 21902 const MachineFunction &MF) const { 21903 Register Reg = MatchRegisterAltName(RegName); 21904 if (Reg == RISCV::NoRegister) 21905 Reg = MatchRegisterName(RegName); 21906 if (Reg == RISCV::NoRegister) 21907 report_fatal_error( 21908 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 21909 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 21910 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 21911 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 21912 StringRef(RegName) + "\".")); 21913 return Reg; 21914 } 21915 21916 MachineMemOperand::Flags 21917 RISCVTargetLowering::getTargetMMOFlags(const Instruction &I) const { 21918 const MDNode *NontemporalInfo = I.getMetadata(LLVMContext::MD_nontemporal); 21919 21920 if (NontemporalInfo == nullptr) 21921 return MachineMemOperand::MONone; 21922 21923 // 1 for default value work as __RISCV_NTLH_ALL 21924 // 2 -> __RISCV_NTLH_INNERMOST_PRIVATE 21925 // 3 -> __RISCV_NTLH_ALL_PRIVATE 21926 // 4 -> __RISCV_NTLH_INNERMOST_SHARED 21927 // 5 -> __RISCV_NTLH_ALL 21928 int NontemporalLevel = 5; 21929 const MDNode *RISCVNontemporalInfo = 21930 I.getMetadata("riscv-nontemporal-domain"); 21931 if (RISCVNontemporalInfo != nullptr) 21932 NontemporalLevel = 21933 cast<ConstantInt>( 21934 cast<ConstantAsMetadata>(RISCVNontemporalInfo->getOperand(0)) 21935 ->getValue()) 21936 ->getZExtValue(); 21937 21938 assert((1 <= NontemporalLevel && NontemporalLevel <= 5) && 21939 "RISC-V target doesn't support this non-temporal domain."); 21940 21941 NontemporalLevel -= 2; 21942 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 21943 if (NontemporalLevel & 0b1) 21944 Flags |= MONontemporalBit0; 21945 if (NontemporalLevel & 0b10) 21946 Flags |= MONontemporalBit1; 21947 21948 return Flags; 21949 } 21950 21951 MachineMemOperand::Flags 21952 RISCVTargetLowering::getTargetMMOFlags(const MemSDNode &Node) const { 21953 21954 MachineMemOperand::Flags NodeFlags = Node.getMemOperand()->getFlags(); 21955 MachineMemOperand::Flags TargetFlags = MachineMemOperand::MONone; 21956 TargetFlags |= (NodeFlags & MONontemporalBit0); 21957 TargetFlags |= (NodeFlags & MONontemporalBit1); 21958 return TargetFlags; 21959 } 21960 21961 bool RISCVTargetLowering::areTwoSDNodeTargetMMOFlagsMergeable( 21962 const MemSDNode &NodeX, const MemSDNode &NodeY) const { 21963 return getTargetMMOFlags(NodeX) == getTargetMMOFlags(NodeY); 21964 } 21965 21966 bool RISCVTargetLowering::isCtpopFast(EVT VT) const { 21967 if (VT.isScalableVector()) 21968 return isTypeLegal(VT) && Subtarget.hasStdExtZvbb(); 21969 if (VT.isFixedLengthVector() && Subtarget.hasStdExtZvbb()) 21970 return true; 21971 return Subtarget.hasStdExtZbb() && 21972 (VT == MVT::i32 || VT == MVT::i64 || VT.isFixedLengthVector()); 21973 } 21974 21975 unsigned RISCVTargetLowering::getCustomCtpopCost(EVT VT, 21976 ISD::CondCode Cond) const { 21977 return isCtpopFast(VT) ? 0 : 1; 21978 } 21979 21980 bool RISCVTargetLowering::fallBackToDAGISel(const Instruction &Inst) const { 21981 21982 // GISel support is in progress or complete for these opcodes. 21983 unsigned Op = Inst.getOpcode(); 21984 if (Op == Instruction::Add || Op == Instruction::Sub || 21985 Op == Instruction::And || Op == Instruction::Or || 21986 Op == Instruction::Xor || Op == Instruction::InsertElement || 21987 Op == Instruction::ShuffleVector || Op == Instruction::Load || 21988 Op == Instruction::Freeze || Op == Instruction::Store) 21989 return false; 21990 21991 if (Inst.getType()->isScalableTy()) 21992 return true; 21993 21994 for (unsigned i = 0; i < Inst.getNumOperands(); ++i) 21995 if (Inst.getOperand(i)->getType()->isScalableTy() && 21996 !isa<ReturnInst>(&Inst)) 21997 return true; 21998 21999 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&Inst)) { 22000 if (AI->getAllocatedType()->isScalableTy()) 22001 return true; 22002 } 22003 22004 return false; 22005 } 22006 22007 SDValue 22008 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 22009 SelectionDAG &DAG, 22010 SmallVectorImpl<SDNode *> &Created) const { 22011 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 22012 if (isIntDivCheap(N->getValueType(0), Attr)) 22013 return SDValue(N, 0); // Lower SDIV as SDIV 22014 22015 // Only perform this transform if short forward branch opt is supported. 22016 if (!Subtarget.hasShortForwardBranchOpt()) 22017 return SDValue(); 22018 EVT VT = N->getValueType(0); 22019 if (!(VT == MVT::i32 || (VT == MVT::i64 && Subtarget.is64Bit()))) 22020 return SDValue(); 22021 22022 // Ensure 2**k-1 < 2048 so that we can just emit a single addi/addiw. 22023 if (Divisor.sgt(2048) || Divisor.slt(-2048)) 22024 return SDValue(); 22025 return TargetLowering::buildSDIVPow2WithCMov(N, Divisor, DAG, Created); 22026 } 22027 22028 bool RISCVTargetLowering::shouldFoldSelectWithSingleBitTest( 22029 EVT VT, const APInt &AndMask) const { 22030 if (Subtarget.hasStdExtZicond() || Subtarget.hasVendorXVentanaCondOps()) 22031 return !Subtarget.hasStdExtZbs() && AndMask.ugt(1024); 22032 return TargetLowering::shouldFoldSelectWithSingleBitTest(VT, AndMask); 22033 } 22034 22035 unsigned RISCVTargetLowering::getMinimumJumpTableEntries() const { 22036 return Subtarget.getMinimumJumpTableEntries(); 22037 } 22038 22039 // Handle single arg such as return value. 22040 template <typename Arg> 22041 void RVVArgDispatcher::constructArgInfos(ArrayRef<Arg> ArgList) { 22042 // This lambda determines whether an array of types are constructed by 22043 // homogeneous vector types. 22044 auto isHomogeneousScalableVectorType = [](ArrayRef<Arg> ArgList) { 22045 // First, extract the first element in the argument type. 22046 auto It = ArgList.begin(); 22047 MVT FirstArgRegType = It->VT; 22048 22049 // Return if there is no return or the type needs split. 22050 if (It == ArgList.end() || It->Flags.isSplit()) 22051 return false; 22052 22053 ++It; 22054 22055 // Return if this argument type contains only 1 element, or it's not a 22056 // vector type. 22057 if (It == ArgList.end() || !FirstArgRegType.isScalableVector()) 22058 return false; 22059 22060 // Second, check if the following elements in this argument type are all the 22061 // same. 22062 for (; It != ArgList.end(); ++It) 22063 if (It->Flags.isSplit() || It->VT != FirstArgRegType) 22064 return false; 22065 22066 return true; 22067 }; 22068 22069 if (isHomogeneousScalableVectorType(ArgList)) { 22070 // Handle as tuple type 22071 RVVArgInfos.push_back({(unsigned)ArgList.size(), ArgList[0].VT, false}); 22072 } else { 22073 // Handle as normal vector type 22074 bool FirstVMaskAssigned = false; 22075 for (const auto &OutArg : ArgList) { 22076 MVT RegisterVT = OutArg.VT; 22077 22078 // Skip non-RVV register type 22079 if (!RegisterVT.isVector()) 22080 continue; 22081 22082 if (RegisterVT.isFixedLengthVector()) 22083 RegisterVT = TLI->getContainerForFixedLengthVector(RegisterVT); 22084 22085 if (!FirstVMaskAssigned && RegisterVT.getVectorElementType() == MVT::i1) { 22086 RVVArgInfos.push_back({1, RegisterVT, true}); 22087 FirstVMaskAssigned = true; 22088 continue; 22089 } 22090 22091 RVVArgInfos.push_back({1, RegisterVT, false}); 22092 } 22093 } 22094 } 22095 22096 // Handle multiple args. 22097 template <> 22098 void RVVArgDispatcher::constructArgInfos<Type *>(ArrayRef<Type *> TypeList) { 22099 const DataLayout &DL = MF->getDataLayout(); 22100 const Function &F = MF->getFunction(); 22101 LLVMContext &Context = F.getContext(); 22102 22103 bool FirstVMaskAssigned = false; 22104 for (Type *Ty : TypeList) { 22105 StructType *STy = dyn_cast<StructType>(Ty); 22106 if (STy && STy->containsHomogeneousScalableVectorTypes()) { 22107 Type *ElemTy = STy->getTypeAtIndex(0U); 22108 EVT VT = TLI->getValueType(DL, ElemTy); 22109 MVT RegisterVT = 22110 TLI->getRegisterTypeForCallingConv(Context, F.getCallingConv(), VT); 22111 unsigned NumRegs = 22112 TLI->getNumRegistersForCallingConv(Context, F.getCallingConv(), VT); 22113 22114 RVVArgInfos.push_back( 22115 {NumRegs * STy->getNumElements(), RegisterVT, false}); 22116 } else { 22117 SmallVector<EVT, 4> ValueVTs; 22118 ComputeValueVTs(*TLI, DL, Ty, ValueVTs); 22119 22120 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 22121 ++Value) { 22122 EVT VT = ValueVTs[Value]; 22123 MVT RegisterVT = 22124 TLI->getRegisterTypeForCallingConv(Context, F.getCallingConv(), VT); 22125 unsigned NumRegs = 22126 TLI->getNumRegistersForCallingConv(Context, F.getCallingConv(), VT); 22127 22128 // Skip non-RVV register type 22129 if (!RegisterVT.isVector()) 22130 continue; 22131 22132 if (RegisterVT.isFixedLengthVector()) 22133 RegisterVT = TLI->getContainerForFixedLengthVector(RegisterVT); 22134 22135 if (!FirstVMaskAssigned && 22136 RegisterVT.getVectorElementType() == MVT::i1) { 22137 RVVArgInfos.push_back({1, RegisterVT, true}); 22138 FirstVMaskAssigned = true; 22139 --NumRegs; 22140 } 22141 22142 RVVArgInfos.insert(RVVArgInfos.end(), NumRegs, {1, RegisterVT, false}); 22143 } 22144 } 22145 } 22146 } 22147 22148 void RVVArgDispatcher::allocatePhysReg(unsigned NF, unsigned LMul, 22149 unsigned StartReg) { 22150 assert((StartReg % LMul) == 0 && 22151 "Start register number should be multiple of lmul"); 22152 const MCPhysReg *VRArrays; 22153 switch (LMul) { 22154 default: 22155 report_fatal_error("Invalid lmul"); 22156 case 1: 22157 VRArrays = ArgVRs; 22158 break; 22159 case 2: 22160 VRArrays = ArgVRM2s; 22161 break; 22162 case 4: 22163 VRArrays = ArgVRM4s; 22164 break; 22165 case 8: 22166 VRArrays = ArgVRM8s; 22167 break; 22168 } 22169 22170 for (unsigned i = 0; i < NF; ++i) 22171 if (StartReg) 22172 AllocatedPhysRegs.push_back(VRArrays[(StartReg - 8) / LMul + i]); 22173 else 22174 AllocatedPhysRegs.push_back(MCPhysReg()); 22175 } 22176 22177 /// This function determines if each RVV argument is passed by register, if the 22178 /// argument can be assigned to a VR, then give it a specific register. 22179 /// Otherwise, assign the argument to 0 which is a invalid MCPhysReg. 22180 void RVVArgDispatcher::compute() { 22181 uint32_t AssignedMap = 0; 22182 auto allocate = [&](const RVVArgInfo &ArgInfo) { 22183 // Allocate first vector mask argument to V0. 22184 if (ArgInfo.FirstVMask) { 22185 AllocatedPhysRegs.push_back(RISCV::V0); 22186 return; 22187 } 22188 22189 unsigned RegsNeeded = divideCeil( 22190 ArgInfo.VT.getSizeInBits().getKnownMinValue(), RISCV::RVVBitsPerBlock); 22191 unsigned TotalRegsNeeded = ArgInfo.NF * RegsNeeded; 22192 for (unsigned StartReg = 0; StartReg + TotalRegsNeeded <= NumArgVRs; 22193 StartReg += RegsNeeded) { 22194 uint32_t Map = ((1 << TotalRegsNeeded) - 1) << StartReg; 22195 if ((AssignedMap & Map) == 0) { 22196 allocatePhysReg(ArgInfo.NF, RegsNeeded, StartReg + 8); 22197 AssignedMap |= Map; 22198 return; 22199 } 22200 } 22201 22202 allocatePhysReg(ArgInfo.NF, RegsNeeded, 0); 22203 }; 22204 22205 for (unsigned i = 0; i < RVVArgInfos.size(); ++i) 22206 allocate(RVVArgInfos[i]); 22207 } 22208 22209 MCPhysReg RVVArgDispatcher::getNextPhysReg() { 22210 assert(CurIdx < AllocatedPhysRegs.size() && "Index out of range"); 22211 return AllocatedPhysRegs[CurIdx++]; 22212 } 22213 22214 SDValue RISCVTargetLowering::expandIndirectJTBranch(const SDLoc &dl, 22215 SDValue Value, SDValue Addr, 22216 int JTI, 22217 SelectionDAG &DAG) const { 22218 if (Subtarget.hasStdExtZicfilp()) { 22219 // When Zicfilp enabled, we need to use software guarded branch for jump 22220 // table branch. 22221 SDValue JTInfo = DAG.getJumpTableDebugInfo(JTI, Value, dl); 22222 return DAG.getNode(RISCVISD::SW_GUARDED_BRIND, dl, MVT::Other, JTInfo, 22223 Addr); 22224 } 22225 return TargetLowering::expandIndirectJTBranch(dl, Value, Addr, JTI, DAG); 22226 } 22227 22228 namespace llvm::RISCVVIntrinsicsTable { 22229 22230 #define GET_RISCVVIntrinsicsTable_IMPL 22231 #include "RISCVGenSearchableTables.inc" 22232 22233 } // namespace llvm::RISCVVIntrinsicsTable 22234