xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVISelLowering.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28 #include "llvm/CodeGen/ValueTypes.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/DiagnosticPrinter.h"
31 #include "llvm/IR/IntrinsicsRISCV.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "riscv-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
46                                          const RISCVSubtarget &STI)
47     : TargetLowering(TM), Subtarget(STI) {
48 
49   if (Subtarget.isRV32E())
50     report_fatal_error("Codegen not yet implemented for RV32E");
51 
52   RISCVABI::ABI ABI = Subtarget.getTargetABI();
53   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
54 
55   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
56       !Subtarget.hasStdExtF()) {
57     errs() << "Hard-float 'f' ABI can't be used for a target that "
58                 "doesn't support the F instruction set extension (ignoring "
59                           "target-abi)\n";
60     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
61   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
62              !Subtarget.hasStdExtD()) {
63     errs() << "Hard-float 'd' ABI can't be used for a target that "
64               "doesn't support the D instruction set extension (ignoring "
65               "target-abi)\n";
66     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
67   }
68 
69   switch (ABI) {
70   default:
71     report_fatal_error("Don't know how to lower this ABI");
72   case RISCVABI::ABI_ILP32:
73   case RISCVABI::ABI_ILP32F:
74   case RISCVABI::ABI_ILP32D:
75   case RISCVABI::ABI_LP64:
76   case RISCVABI::ABI_LP64F:
77   case RISCVABI::ABI_LP64D:
78     break;
79   }
80 
81   MVT XLenVT = Subtarget.getXLenVT();
82 
83   // Set up the register classes.
84   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
85 
86   if (Subtarget.hasStdExtZfh())
87     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
88   if (Subtarget.hasStdExtF())
89     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
90   if (Subtarget.hasStdExtD())
91     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
92 
93   static const MVT::SimpleValueType BoolVecVTs[] = {
94       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
95       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
96   static const MVT::SimpleValueType IntVecVTs[] = {
97       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
98       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
99       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
100       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
101       MVT::nxv4i64, MVT::nxv8i64};
102   static const MVT::SimpleValueType F16VecVTs[] = {
103       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
104       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
105   static const MVT::SimpleValueType F32VecVTs[] = {
106       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
107   static const MVT::SimpleValueType F64VecVTs[] = {
108       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
109 
110   if (Subtarget.hasStdExtV()) {
111     auto addRegClassForRVV = [this](MVT VT) {
112       unsigned Size = VT.getSizeInBits().getKnownMinValue();
113       assert(Size <= 512 && isPowerOf2_32(Size));
114       const TargetRegisterClass *RC;
115       if (Size <= 64)
116         RC = &RISCV::VRRegClass;
117       else if (Size == 128)
118         RC = &RISCV::VRM2RegClass;
119       else if (Size == 256)
120         RC = &RISCV::VRM4RegClass;
121       else
122         RC = &RISCV::VRM8RegClass;
123 
124       addRegisterClass(VT, RC);
125     };
126 
127     for (MVT VT : BoolVecVTs)
128       addRegClassForRVV(VT);
129     for (MVT VT : IntVecVTs)
130       addRegClassForRVV(VT);
131 
132     if (Subtarget.hasStdExtZfh())
133       for (MVT VT : F16VecVTs)
134         addRegClassForRVV(VT);
135 
136     if (Subtarget.hasStdExtF())
137       for (MVT VT : F32VecVTs)
138         addRegClassForRVV(VT);
139 
140     if (Subtarget.hasStdExtD())
141       for (MVT VT : F64VecVTs)
142         addRegClassForRVV(VT);
143 
144     if (Subtarget.useRVVForFixedLengthVectors()) {
145       auto addRegClassForFixedVectors = [this](MVT VT) {
146         MVT ContainerVT = getContainerForFixedLengthVector(VT);
147         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
148         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
149         addRegisterClass(VT, TRI.getRegClass(RCID));
150       };
151       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
152         if (useRVVForFixedLengthVectorVT(VT))
153           addRegClassForFixedVectors(VT);
154 
155       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
156         if (useRVVForFixedLengthVectorVT(VT))
157           addRegClassForFixedVectors(VT);
158     }
159   }
160 
161   // Compute derived properties from the register classes.
162   computeRegisterProperties(STI.getRegisterInfo());
163 
164   setStackPointerRegisterToSaveRestore(RISCV::X2);
165 
166   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
167     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
168 
169   // TODO: add all necessary setOperationAction calls.
170   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
171 
172   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
173   setOperationAction(ISD::BR_CC, XLenVT, Expand);
174   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
175   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
176 
177   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
178   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
179 
180   setOperationAction(ISD::VASTART, MVT::Other, Custom);
181   setOperationAction(ISD::VAARG, MVT::Other, Expand);
182   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
183   setOperationAction(ISD::VAEND, MVT::Other, Expand);
184 
185   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
186   if (!Subtarget.hasStdExtZbb()) {
187     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
188     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
189   }
190 
191   if (Subtarget.is64Bit()) {
192     setOperationAction(ISD::ADD, MVT::i32, Custom);
193     setOperationAction(ISD::SUB, MVT::i32, Custom);
194     setOperationAction(ISD::SHL, MVT::i32, Custom);
195     setOperationAction(ISD::SRA, MVT::i32, Custom);
196     setOperationAction(ISD::SRL, MVT::i32, Custom);
197 
198     setOperationAction(ISD::UADDO, MVT::i32, Custom);
199     setOperationAction(ISD::USUBO, MVT::i32, Custom);
200     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
201     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
202   }
203 
204   if (!Subtarget.hasStdExtM()) {
205     setOperationAction(ISD::MUL, XLenVT, Expand);
206     setOperationAction(ISD::MULHS, XLenVT, Expand);
207     setOperationAction(ISD::MULHU, XLenVT, Expand);
208     setOperationAction(ISD::SDIV, XLenVT, Expand);
209     setOperationAction(ISD::UDIV, XLenVT, Expand);
210     setOperationAction(ISD::SREM, XLenVT, Expand);
211     setOperationAction(ISD::UREM, XLenVT, Expand);
212   } else {
213     if (Subtarget.is64Bit()) {
214       setOperationAction(ISD::MUL, MVT::i32, Custom);
215       setOperationAction(ISD::MUL, MVT::i128, Custom);
216 
217       setOperationAction(ISD::SDIV, MVT::i8, Custom);
218       setOperationAction(ISD::UDIV, MVT::i8, Custom);
219       setOperationAction(ISD::UREM, MVT::i8, Custom);
220       setOperationAction(ISD::SDIV, MVT::i16, Custom);
221       setOperationAction(ISD::UDIV, MVT::i16, Custom);
222       setOperationAction(ISD::UREM, MVT::i16, Custom);
223       setOperationAction(ISD::SDIV, MVT::i32, Custom);
224       setOperationAction(ISD::UDIV, MVT::i32, Custom);
225       setOperationAction(ISD::UREM, MVT::i32, Custom);
226     } else {
227       setOperationAction(ISD::MUL, MVT::i64, Custom);
228     }
229   }
230 
231   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
232   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
233   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
234   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
235 
236   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
237   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
238   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
239 
240   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
241     if (Subtarget.is64Bit()) {
242       setOperationAction(ISD::ROTL, MVT::i32, Custom);
243       setOperationAction(ISD::ROTR, MVT::i32, Custom);
244     }
245   } else {
246     setOperationAction(ISD::ROTL, XLenVT, Expand);
247     setOperationAction(ISD::ROTR, XLenVT, Expand);
248   }
249 
250   if (Subtarget.hasStdExtZbp()) {
251     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
252     // more combining.
253     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
254     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
255     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
256     // BSWAP i8 doesn't exist.
257     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
258     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
259 
260     if (Subtarget.is64Bit()) {
261       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
262       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
263     }
264   } else {
265     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
266     // pattern match it directly in isel.
267     setOperationAction(ISD::BSWAP, XLenVT,
268                        Subtarget.hasStdExtZbb() ? Legal : Expand);
269   }
270 
271   if (Subtarget.hasStdExtZbb()) {
272     setOperationAction(ISD::SMIN, XLenVT, Legal);
273     setOperationAction(ISD::SMAX, XLenVT, Legal);
274     setOperationAction(ISD::UMIN, XLenVT, Legal);
275     setOperationAction(ISD::UMAX, XLenVT, Legal);
276 
277     if (Subtarget.is64Bit()) {
278       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
279       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
280       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
281       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
282     }
283   } else {
284     setOperationAction(ISD::CTTZ, XLenVT, Expand);
285     setOperationAction(ISD::CTLZ, XLenVT, Expand);
286     setOperationAction(ISD::CTPOP, XLenVT, Expand);
287   }
288 
289   if (Subtarget.hasStdExtZbt()) {
290     setOperationAction(ISD::FSHL, XLenVT, Custom);
291     setOperationAction(ISD::FSHR, XLenVT, Custom);
292     setOperationAction(ISD::SELECT, XLenVT, Legal);
293 
294     if (Subtarget.is64Bit()) {
295       setOperationAction(ISD::FSHL, MVT::i32, Custom);
296       setOperationAction(ISD::FSHR, MVT::i32, Custom);
297     }
298   } else {
299     setOperationAction(ISD::SELECT, XLenVT, Custom);
300   }
301 
302   ISD::CondCode FPCCToExpand[] = {
303       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
304       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
305       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
306 
307   ISD::NodeType FPOpToExpand[] = {
308       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
309       ISD::FP_TO_FP16};
310 
311   if (Subtarget.hasStdExtZfh())
312     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
313 
314   if (Subtarget.hasStdExtZfh()) {
315     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
316     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
317     setOperationAction(ISD::LRINT, MVT::f16, Legal);
318     setOperationAction(ISD::LLRINT, MVT::f16, Legal);
319     setOperationAction(ISD::LROUND, MVT::f16, Legal);
320     setOperationAction(ISD::LLROUND, MVT::f16, Legal);
321     for (auto CC : FPCCToExpand)
322       setCondCodeAction(CC, MVT::f16, Expand);
323     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
324     setOperationAction(ISD::SELECT, MVT::f16, Custom);
325     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
326     for (auto Op : FPOpToExpand)
327       setOperationAction(Op, MVT::f16, Expand);
328   }
329 
330   if (Subtarget.hasStdExtF()) {
331     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
332     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
333     setOperationAction(ISD::LRINT, MVT::f32, Legal);
334     setOperationAction(ISD::LLRINT, MVT::f32, Legal);
335     setOperationAction(ISD::LROUND, MVT::f32, Legal);
336     setOperationAction(ISD::LLROUND, MVT::f32, Legal);
337     for (auto CC : FPCCToExpand)
338       setCondCodeAction(CC, MVT::f32, Expand);
339     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
340     setOperationAction(ISD::SELECT, MVT::f32, Custom);
341     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
342     for (auto Op : FPOpToExpand)
343       setOperationAction(Op, MVT::f32, Expand);
344     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
345     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
346   }
347 
348   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
349     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
350 
351   if (Subtarget.hasStdExtD()) {
352     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
353     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
354     setOperationAction(ISD::LRINT, MVT::f64, Legal);
355     setOperationAction(ISD::LLRINT, MVT::f64, Legal);
356     setOperationAction(ISD::LROUND, MVT::f64, Legal);
357     setOperationAction(ISD::LLROUND, MVT::f64, Legal);
358     for (auto CC : FPCCToExpand)
359       setCondCodeAction(CC, MVT::f64, Expand);
360     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
361     setOperationAction(ISD::SELECT, MVT::f64, Custom);
362     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
363     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
364     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
365     for (auto Op : FPOpToExpand)
366       setOperationAction(Op, MVT::f64, Expand);
367     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
368     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
369   }
370 
371   if (Subtarget.is64Bit()) {
372     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
373     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
374     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
375     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
376   }
377 
378   if (Subtarget.hasStdExtF()) {
379     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
380     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
381   }
382 
383   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
384   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
385   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
386   setOperationAction(ISD::JumpTable, XLenVT, Custom);
387 
388   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
389 
390   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
391   // Unfortunately this can't be determined just from the ISA naming string.
392   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
393                      Subtarget.is64Bit() ? Legal : Custom);
394 
395   setOperationAction(ISD::TRAP, MVT::Other, Legal);
396   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
397   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
398   if (Subtarget.is64Bit())
399     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
400 
401   if (Subtarget.hasStdExtA()) {
402     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
403     setMinCmpXchgSizeInBits(32);
404   } else {
405     setMaxAtomicSizeInBitsSupported(0);
406   }
407 
408   setBooleanContents(ZeroOrOneBooleanContent);
409 
410   if (Subtarget.hasStdExtV()) {
411     setBooleanVectorContents(ZeroOrOneBooleanContent);
412 
413     setOperationAction(ISD::VSCALE, XLenVT, Custom);
414 
415     // RVV intrinsics may have illegal operands.
416     // We also need to custom legalize vmv.x.s.
417     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
418     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
419     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
420     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
421     if (Subtarget.is64Bit()) {
422       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
423     } else {
424       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
425       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
426     }
427 
428     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
429 
430     static unsigned IntegerVPOps[] = {
431         ISD::VP_ADD,  ISD::VP_SUB,  ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV,
432         ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR,   ISD::VP_XOR,
433         ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL};
434 
435     static unsigned FloatingPointVPOps[] = {ISD::VP_FADD, ISD::VP_FSUB,
436                                             ISD::VP_FMUL, ISD::VP_FDIV};
437 
438     if (!Subtarget.is64Bit()) {
439       // We must custom-lower certain vXi64 operations on RV32 due to the vector
440       // element type being illegal.
441       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
442       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
443 
444       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
445       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
446       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
447       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
448       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
449       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
450       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
451       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
452     }
453 
454     for (MVT VT : BoolVecVTs) {
455       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
456 
457       // Mask VTs are custom-expanded into a series of standard nodes
458       setOperationAction(ISD::TRUNCATE, VT, Custom);
459       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
460       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
461       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
462 
463       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
464       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
465 
466       setOperationAction(ISD::SELECT, VT, Custom);
467       setOperationAction(ISD::SELECT_CC, VT, Expand);
468       setOperationAction(ISD::VSELECT, VT, Expand);
469 
470       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
471       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
472       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
473 
474       // RVV has native int->float & float->int conversions where the
475       // element type sizes are within one power-of-two of each other. Any
476       // wider distances between type sizes have to be lowered as sequences
477       // which progressively narrow the gap in stages.
478       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
479       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
480       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
481       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
482 
483       // Expand all extending loads to types larger than this, and truncating
484       // stores from types larger than this.
485       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
486         setTruncStoreAction(OtherVT, VT, Expand);
487         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
488         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
489         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
490       }
491     }
492 
493     for (MVT VT : IntVecVTs) {
494       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
495       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
496 
497       setOperationAction(ISD::SMIN, VT, Legal);
498       setOperationAction(ISD::SMAX, VT, Legal);
499       setOperationAction(ISD::UMIN, VT, Legal);
500       setOperationAction(ISD::UMAX, VT, Legal);
501 
502       setOperationAction(ISD::ROTL, VT, Expand);
503       setOperationAction(ISD::ROTR, VT, Expand);
504 
505       // Custom-lower extensions and truncations from/to mask types.
506       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
507       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
508       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
509 
510       // RVV has native int->float & float->int conversions where the
511       // element type sizes are within one power-of-two of each other. Any
512       // wider distances between type sizes have to be lowered as sequences
513       // which progressively narrow the gap in stages.
514       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
515       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
516       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
517       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
518 
519       setOperationAction(ISD::SADDSAT, VT, Legal);
520       setOperationAction(ISD::UADDSAT, VT, Legal);
521       setOperationAction(ISD::SSUBSAT, VT, Legal);
522       setOperationAction(ISD::USUBSAT, VT, Legal);
523 
524       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
525       // nodes which truncate by one power of two at a time.
526       setOperationAction(ISD::TRUNCATE, VT, Custom);
527 
528       // Custom-lower insert/extract operations to simplify patterns.
529       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
530       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
531 
532       // Custom-lower reduction operations to set up the corresponding custom
533       // nodes' operands.
534       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
535       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
536       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
537       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
538       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
539       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
540       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
541       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
542 
543       for (unsigned VPOpc : IntegerVPOps)
544         setOperationAction(VPOpc, VT, Custom);
545 
546       setOperationAction(ISD::LOAD, VT, Custom);
547       setOperationAction(ISD::STORE, VT, Custom);
548 
549       setOperationAction(ISD::MLOAD, VT, Custom);
550       setOperationAction(ISD::MSTORE, VT, Custom);
551       setOperationAction(ISD::MGATHER, VT, Custom);
552       setOperationAction(ISD::MSCATTER, VT, Custom);
553 
554       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
555       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
556       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
557 
558       setOperationAction(ISD::SELECT, VT, Custom);
559       setOperationAction(ISD::SELECT_CC, VT, Expand);
560 
561       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
562       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
563 
564       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
565         setTruncStoreAction(VT, OtherVT, Expand);
566         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
567         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
568         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
569       }
570     }
571 
572     // Expand various CCs to best match the RVV ISA, which natively supports UNE
573     // but no other unordered comparisons, and supports all ordered comparisons
574     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
575     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
576     // and we pattern-match those back to the "original", swapping operands once
577     // more. This way we catch both operations and both "vf" and "fv" forms with
578     // fewer patterns.
579     ISD::CondCode VFPCCToExpand[] = {
580         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
581         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
582         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
583     };
584 
585     // Sets common operation actions on RVV floating-point vector types.
586     const auto SetCommonVFPActions = [&](MVT VT) {
587       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
588       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
589       // sizes are within one power-of-two of each other. Therefore conversions
590       // between vXf16 and vXf64 must be lowered as sequences which convert via
591       // vXf32.
592       setOperationAction(ISD::FP_ROUND, VT, Custom);
593       setOperationAction(ISD::FP_EXTEND, VT, Custom);
594       // Custom-lower insert/extract operations to simplify patterns.
595       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
596       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
597       // Expand various condition codes (explained above).
598       for (auto CC : VFPCCToExpand)
599         setCondCodeAction(CC, VT, Expand);
600 
601       setOperationAction(ISD::FMINNUM, VT, Legal);
602       setOperationAction(ISD::FMAXNUM, VT, Legal);
603 
604       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
605       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
606       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
607       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
608       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
609 
610       setOperationAction(ISD::LOAD, VT, Custom);
611       setOperationAction(ISD::STORE, VT, Custom);
612 
613       setOperationAction(ISD::MLOAD, VT, Custom);
614       setOperationAction(ISD::MSTORE, VT, Custom);
615       setOperationAction(ISD::MGATHER, VT, Custom);
616       setOperationAction(ISD::MSCATTER, VT, Custom);
617 
618       setOperationAction(ISD::SELECT, VT, Custom);
619       setOperationAction(ISD::SELECT_CC, VT, Expand);
620 
621       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
622       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
623       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
624 
625       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
626 
627       for (unsigned VPOpc : FloatingPointVPOps)
628         setOperationAction(VPOpc, VT, Custom);
629     };
630 
631     // Sets common extload/truncstore actions on RVV floating-point vector
632     // types.
633     const auto SetCommonVFPExtLoadTruncStoreActions =
634         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
635           for (auto SmallVT : SmallerVTs) {
636             setTruncStoreAction(VT, SmallVT, Expand);
637             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
638           }
639         };
640 
641     if (Subtarget.hasStdExtZfh())
642       for (MVT VT : F16VecVTs)
643         SetCommonVFPActions(VT);
644 
645     for (MVT VT : F32VecVTs) {
646       if (Subtarget.hasStdExtF())
647         SetCommonVFPActions(VT);
648       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
649     }
650 
651     for (MVT VT : F64VecVTs) {
652       if (Subtarget.hasStdExtD())
653         SetCommonVFPActions(VT);
654       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
655       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
656     }
657 
658     if (Subtarget.useRVVForFixedLengthVectors()) {
659       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
660         if (!useRVVForFixedLengthVectorVT(VT))
661           continue;
662 
663         // By default everything must be expanded.
664         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
665           setOperationAction(Op, VT, Expand);
666         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
667           setTruncStoreAction(VT, OtherVT, Expand);
668           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
669           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
670           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
671         }
672 
673         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
674         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
675         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
676 
677         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
678         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
679 
680         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
681         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
682 
683         setOperationAction(ISD::LOAD, VT, Custom);
684         setOperationAction(ISD::STORE, VT, Custom);
685 
686         setOperationAction(ISD::SETCC, VT, Custom);
687 
688         setOperationAction(ISD::SELECT, VT, Custom);
689 
690         setOperationAction(ISD::TRUNCATE, VT, Custom);
691 
692         setOperationAction(ISD::BITCAST, VT, Custom);
693 
694         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
695         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
696         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
697 
698         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
699         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
700         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
701         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
702 
703         // Operations below are different for between masks and other vectors.
704         if (VT.getVectorElementType() == MVT::i1) {
705           setOperationAction(ISD::AND, VT, Custom);
706           setOperationAction(ISD::OR, VT, Custom);
707           setOperationAction(ISD::XOR, VT, Custom);
708           continue;
709         }
710 
711         // Use SPLAT_VECTOR to prevent type legalization from destroying the
712         // splats when type legalizing i64 scalar on RV32.
713         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
714         // improvements first.
715         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
716           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
717           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
718         }
719 
720         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
721         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
722 
723         setOperationAction(ISD::MLOAD, VT, Custom);
724         setOperationAction(ISD::MSTORE, VT, Custom);
725         setOperationAction(ISD::MGATHER, VT, Custom);
726         setOperationAction(ISD::MSCATTER, VT, Custom);
727         setOperationAction(ISD::ADD, VT, Custom);
728         setOperationAction(ISD::MUL, VT, Custom);
729         setOperationAction(ISD::SUB, VT, Custom);
730         setOperationAction(ISD::AND, VT, Custom);
731         setOperationAction(ISD::OR, VT, Custom);
732         setOperationAction(ISD::XOR, VT, Custom);
733         setOperationAction(ISD::SDIV, VT, Custom);
734         setOperationAction(ISD::SREM, VT, Custom);
735         setOperationAction(ISD::UDIV, VT, Custom);
736         setOperationAction(ISD::UREM, VT, Custom);
737         setOperationAction(ISD::SHL, VT, Custom);
738         setOperationAction(ISD::SRA, VT, Custom);
739         setOperationAction(ISD::SRL, VT, Custom);
740 
741         setOperationAction(ISD::SMIN, VT, Custom);
742         setOperationAction(ISD::SMAX, VT, Custom);
743         setOperationAction(ISD::UMIN, VT, Custom);
744         setOperationAction(ISD::UMAX, VT, Custom);
745         setOperationAction(ISD::ABS,  VT, Custom);
746 
747         setOperationAction(ISD::MULHS, VT, Custom);
748         setOperationAction(ISD::MULHU, VT, Custom);
749 
750         setOperationAction(ISD::SADDSAT, VT, Custom);
751         setOperationAction(ISD::UADDSAT, VT, Custom);
752         setOperationAction(ISD::SSUBSAT, VT, Custom);
753         setOperationAction(ISD::USUBSAT, VT, Custom);
754 
755         setOperationAction(ISD::VSELECT, VT, Custom);
756         setOperationAction(ISD::SELECT_CC, VT, Expand);
757 
758         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
759         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
760         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
761 
762         // Custom-lower reduction operations to set up the corresponding custom
763         // nodes' operands.
764         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
765         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
766         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
767         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
768         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
769 
770         for (unsigned VPOpc : IntegerVPOps)
771           setOperationAction(VPOpc, VT, Custom);
772       }
773 
774       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
775         if (!useRVVForFixedLengthVectorVT(VT))
776           continue;
777 
778         // By default everything must be expanded.
779         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
780           setOperationAction(Op, VT, Expand);
781         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
782           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
783           setTruncStoreAction(VT, OtherVT, Expand);
784         }
785 
786         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
787         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
788         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
789 
790         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
791         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
792         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
793         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
794 
795         setOperationAction(ISD::LOAD, VT, Custom);
796         setOperationAction(ISD::STORE, VT, Custom);
797         setOperationAction(ISD::MLOAD, VT, Custom);
798         setOperationAction(ISD::MSTORE, VT, Custom);
799         setOperationAction(ISD::MGATHER, VT, Custom);
800         setOperationAction(ISD::MSCATTER, VT, Custom);
801         setOperationAction(ISD::FADD, VT, Custom);
802         setOperationAction(ISD::FSUB, VT, Custom);
803         setOperationAction(ISD::FMUL, VT, Custom);
804         setOperationAction(ISD::FDIV, VT, Custom);
805         setOperationAction(ISD::FNEG, VT, Custom);
806         setOperationAction(ISD::FABS, VT, Custom);
807         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
808         setOperationAction(ISD::FSQRT, VT, Custom);
809         setOperationAction(ISD::FMA, VT, Custom);
810         setOperationAction(ISD::FMINNUM, VT, Custom);
811         setOperationAction(ISD::FMAXNUM, VT, Custom);
812 
813         setOperationAction(ISD::FP_ROUND, VT, Custom);
814         setOperationAction(ISD::FP_EXTEND, VT, Custom);
815 
816         for (auto CC : VFPCCToExpand)
817           setCondCodeAction(CC, VT, Expand);
818 
819         setOperationAction(ISD::VSELECT, VT, Custom);
820         setOperationAction(ISD::SELECT, VT, Custom);
821         setOperationAction(ISD::SELECT_CC, VT, Expand);
822 
823         setOperationAction(ISD::BITCAST, VT, Custom);
824 
825         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
826         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
827         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
828         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
829 
830         for (unsigned VPOpc : FloatingPointVPOps)
831           setOperationAction(VPOpc, VT, Custom);
832       }
833 
834       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
835       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
836       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
837       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
838       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
839       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
840       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
841       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
842     }
843   }
844 
845   // Function alignments.
846   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
847   setMinFunctionAlignment(FunctionAlignment);
848   setPrefFunctionAlignment(FunctionAlignment);
849 
850   setMinimumJumpTableEntries(5);
851 
852   // Jumps are expensive, compared to logic
853   setJumpIsExpensive();
854 
855   // We can use any register for comparisons
856   setHasMultipleConditionRegisters();
857 
858   setTargetDAGCombine(ISD::AND);
859   setTargetDAGCombine(ISD::OR);
860   setTargetDAGCombine(ISD::XOR);
861   setTargetDAGCombine(ISD::ANY_EXTEND);
862   setTargetDAGCombine(ISD::ZERO_EXTEND);
863   if (Subtarget.hasStdExtV()) {
864     setTargetDAGCombine(ISD::FCOPYSIGN);
865     setTargetDAGCombine(ISD::MGATHER);
866     setTargetDAGCombine(ISD::MSCATTER);
867     setTargetDAGCombine(ISD::SRA);
868     setTargetDAGCombine(ISD::SRL);
869     setTargetDAGCombine(ISD::SHL);
870   }
871 }
872 
873 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
874                                             LLVMContext &Context,
875                                             EVT VT) const {
876   if (!VT.isVector())
877     return getPointerTy(DL);
878   if (Subtarget.hasStdExtV() &&
879       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
880     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
881   return VT.changeVectorElementTypeToInteger();
882 }
883 
884 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
885   return Subtarget.getXLenVT();
886 }
887 
888 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
889                                              const CallInst &I,
890                                              MachineFunction &MF,
891                                              unsigned Intrinsic) const {
892   switch (Intrinsic) {
893   default:
894     return false;
895   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
896   case Intrinsic::riscv_masked_atomicrmw_add_i32:
897   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
898   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
899   case Intrinsic::riscv_masked_atomicrmw_max_i32:
900   case Intrinsic::riscv_masked_atomicrmw_min_i32:
901   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
902   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
903   case Intrinsic::riscv_masked_cmpxchg_i32: {
904     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
905     Info.opc = ISD::INTRINSIC_W_CHAIN;
906     Info.memVT = MVT::getVT(PtrTy->getElementType());
907     Info.ptrVal = I.getArgOperand(0);
908     Info.offset = 0;
909     Info.align = Align(4);
910     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
911                  MachineMemOperand::MOVolatile;
912     return true;
913   }
914   }
915 }
916 
917 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
918                                                 const AddrMode &AM, Type *Ty,
919                                                 unsigned AS,
920                                                 Instruction *I) const {
921   // No global is ever allowed as a base.
922   if (AM.BaseGV)
923     return false;
924 
925   // Require a 12-bit signed offset.
926   if (!isInt<12>(AM.BaseOffs))
927     return false;
928 
929   switch (AM.Scale) {
930   case 0: // "r+i" or just "i", depending on HasBaseReg.
931     break;
932   case 1:
933     if (!AM.HasBaseReg) // allow "r+i".
934       break;
935     return false; // disallow "r+r" or "r+r+i".
936   default:
937     return false;
938   }
939 
940   return true;
941 }
942 
943 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
944   return isInt<12>(Imm);
945 }
946 
947 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
948   return isInt<12>(Imm);
949 }
950 
951 // On RV32, 64-bit integers are split into their high and low parts and held
952 // in two different registers, so the trunc is free since the low register can
953 // just be used.
954 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
955   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
956     return false;
957   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
958   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
959   return (SrcBits == 64 && DestBits == 32);
960 }
961 
962 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
963   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
964       !SrcVT.isInteger() || !DstVT.isInteger())
965     return false;
966   unsigned SrcBits = SrcVT.getSizeInBits();
967   unsigned DestBits = DstVT.getSizeInBits();
968   return (SrcBits == 64 && DestBits == 32);
969 }
970 
971 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
972   // Zexts are free if they can be combined with a load.
973   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
974     EVT MemVT = LD->getMemoryVT();
975     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
976          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
977         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
978          LD->getExtensionType() == ISD::ZEXTLOAD))
979       return true;
980   }
981 
982   return TargetLowering::isZExtFree(Val, VT2);
983 }
984 
985 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
986   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
987 }
988 
989 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
990   return Subtarget.hasStdExtZbb();
991 }
992 
993 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
994   return Subtarget.hasStdExtZbb();
995 }
996 
997 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
998                                        bool ForCodeSize) const {
999   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1000     return false;
1001   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1002     return false;
1003   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1004     return false;
1005   if (Imm.isNegZero())
1006     return false;
1007   return Imm.isZero();
1008 }
1009 
1010 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1011   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1012          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1013          (VT == MVT::f64 && Subtarget.hasStdExtD());
1014 }
1015 
1016 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1017                                                       CallingConv::ID CC,
1018                                                       EVT VT) const {
1019   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
1020   // end up using a GPR but that will be decided based on ABI.
1021   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1022     return MVT::f32;
1023 
1024   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1025 }
1026 
1027 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1028                                                            CallingConv::ID CC,
1029                                                            EVT VT) const {
1030   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
1031   // end up using a GPR but that will be decided based on ABI.
1032   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1033     return 1;
1034 
1035   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1036 }
1037 
1038 // Changes the condition code and swaps operands if necessary, so the SetCC
1039 // operation matches one of the comparisons supported directly by branches
1040 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1041 // with 1/-1.
1042 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1043                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1044   // Convert X > -1 to X >= 0.
1045   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1046     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1047     CC = ISD::SETGE;
1048     return;
1049   }
1050   // Convert X < 1 to 0 >= X.
1051   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1052     RHS = LHS;
1053     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1054     CC = ISD::SETGE;
1055     return;
1056   }
1057 
1058   switch (CC) {
1059   default:
1060     break;
1061   case ISD::SETGT:
1062   case ISD::SETLE:
1063   case ISD::SETUGT:
1064   case ISD::SETULE:
1065     CC = ISD::getSetCCSwappedOperands(CC);
1066     std::swap(LHS, RHS);
1067     break;
1068   }
1069 }
1070 
1071 // Return the RISC-V branch opcode that matches the given DAG integer
1072 // condition code. The CondCode must be one of those supported by the RISC-V
1073 // ISA (see translateSetCCForBranch).
1074 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
1075   switch (CC) {
1076   default:
1077     llvm_unreachable("Unsupported CondCode");
1078   case ISD::SETEQ:
1079     return RISCV::BEQ;
1080   case ISD::SETNE:
1081     return RISCV::BNE;
1082   case ISD::SETLT:
1083     return RISCV::BLT;
1084   case ISD::SETGE:
1085     return RISCV::BGE;
1086   case ISD::SETULT:
1087     return RISCV::BLTU;
1088   case ISD::SETUGE:
1089     return RISCV::BGEU;
1090   }
1091 }
1092 
1093 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1094   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1095   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1096   if (VT.getVectorElementType() == MVT::i1)
1097     KnownSize *= 8;
1098 
1099   switch (KnownSize) {
1100   default:
1101     llvm_unreachable("Invalid LMUL.");
1102   case 8:
1103     return RISCVII::VLMUL::LMUL_F8;
1104   case 16:
1105     return RISCVII::VLMUL::LMUL_F4;
1106   case 32:
1107     return RISCVII::VLMUL::LMUL_F2;
1108   case 64:
1109     return RISCVII::VLMUL::LMUL_1;
1110   case 128:
1111     return RISCVII::VLMUL::LMUL_2;
1112   case 256:
1113     return RISCVII::VLMUL::LMUL_4;
1114   case 512:
1115     return RISCVII::VLMUL::LMUL_8;
1116   }
1117 }
1118 
1119 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1120   switch (LMul) {
1121   default:
1122     llvm_unreachable("Invalid LMUL.");
1123   case RISCVII::VLMUL::LMUL_F8:
1124   case RISCVII::VLMUL::LMUL_F4:
1125   case RISCVII::VLMUL::LMUL_F2:
1126   case RISCVII::VLMUL::LMUL_1:
1127     return RISCV::VRRegClassID;
1128   case RISCVII::VLMUL::LMUL_2:
1129     return RISCV::VRM2RegClassID;
1130   case RISCVII::VLMUL::LMUL_4:
1131     return RISCV::VRM4RegClassID;
1132   case RISCVII::VLMUL::LMUL_8:
1133     return RISCV::VRM8RegClassID;
1134   }
1135 }
1136 
1137 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1138   RISCVII::VLMUL LMUL = getLMUL(VT);
1139   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1140       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1141       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1142       LMUL == RISCVII::VLMUL::LMUL_1) {
1143     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1144                   "Unexpected subreg numbering");
1145     return RISCV::sub_vrm1_0 + Index;
1146   }
1147   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1148     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1149                   "Unexpected subreg numbering");
1150     return RISCV::sub_vrm2_0 + Index;
1151   }
1152   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1153     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1154                   "Unexpected subreg numbering");
1155     return RISCV::sub_vrm4_0 + Index;
1156   }
1157   llvm_unreachable("Invalid vector type.");
1158 }
1159 
1160 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1161   if (VT.getVectorElementType() == MVT::i1)
1162     return RISCV::VRRegClassID;
1163   return getRegClassIDForLMUL(getLMUL(VT));
1164 }
1165 
1166 // Attempt to decompose a subvector insert/extract between VecVT and
1167 // SubVecVT via subregister indices. Returns the subregister index that
1168 // can perform the subvector insert/extract with the given element index, as
1169 // well as the index corresponding to any leftover subvectors that must be
1170 // further inserted/extracted within the register class for SubVecVT.
1171 std::pair<unsigned, unsigned>
1172 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1173     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1174     const RISCVRegisterInfo *TRI) {
1175   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1176                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1177                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1178                 "Register classes not ordered");
1179   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1180   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1181   // Try to compose a subregister index that takes us from the incoming
1182   // LMUL>1 register class down to the outgoing one. At each step we half
1183   // the LMUL:
1184   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1185   // Note that this is not guaranteed to find a subregister index, such as
1186   // when we are extracting from one VR type to another.
1187   unsigned SubRegIdx = RISCV::NoSubRegister;
1188   for (const unsigned RCID :
1189        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1190     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1191       VecVT = VecVT.getHalfNumVectorElementsVT();
1192       bool IsHi =
1193           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1194       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1195                                             getSubregIndexByMVT(VecVT, IsHi));
1196       if (IsHi)
1197         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1198     }
1199   return {SubRegIdx, InsertExtractIdx};
1200 }
1201 
1202 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1203 // stores for those types.
1204 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1205   return !Subtarget.useRVVForFixedLengthVectors() ||
1206          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1207 }
1208 
1209 static bool useRVVForFixedLengthVectorVT(MVT VT,
1210                                          const RISCVSubtarget &Subtarget) {
1211   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1212   if (!Subtarget.useRVVForFixedLengthVectors())
1213     return false;
1214 
1215   // We only support a set of vector types with a consistent maximum fixed size
1216   // across all supported vector element types to avoid legalization issues.
1217   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1218   // fixed-length vector type we support is 1024 bytes.
1219   if (VT.getFixedSizeInBits() > 1024 * 8)
1220     return false;
1221 
1222   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1223 
1224   // Don't use RVV for vectors we cannot scalarize if required.
1225   switch (VT.getVectorElementType().SimpleTy) {
1226   // i1 is supported but has different rules.
1227   default:
1228     return false;
1229   case MVT::i1:
1230     // Masks can only use a single register.
1231     if (VT.getVectorNumElements() > MinVLen)
1232       return false;
1233     MinVLen /= 8;
1234     break;
1235   case MVT::i8:
1236   case MVT::i16:
1237   case MVT::i32:
1238   case MVT::i64:
1239     break;
1240   case MVT::f16:
1241     if (!Subtarget.hasStdExtZfh())
1242       return false;
1243     break;
1244   case MVT::f32:
1245     if (!Subtarget.hasStdExtF())
1246       return false;
1247     break;
1248   case MVT::f64:
1249     if (!Subtarget.hasStdExtD())
1250       return false;
1251     break;
1252   }
1253 
1254   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1255   // Don't use RVV for types that don't fit.
1256   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1257     return false;
1258 
1259   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1260   // the base fixed length RVV support in place.
1261   if (!VT.isPow2VectorType())
1262     return false;
1263 
1264   return true;
1265 }
1266 
1267 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1268   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1269 }
1270 
1271 // Return the largest legal scalable vector type that matches VT's element type.
1272 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1273                                             const RISCVSubtarget &Subtarget) {
1274   // This may be called before legal types are setup.
1275   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1276           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1277          "Expected legal fixed length vector!");
1278 
1279   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1280 
1281   MVT EltVT = VT.getVectorElementType();
1282   switch (EltVT.SimpleTy) {
1283   default:
1284     llvm_unreachable("unexpected element type for RVV container");
1285   case MVT::i1:
1286   case MVT::i8:
1287   case MVT::i16:
1288   case MVT::i32:
1289   case MVT::i64:
1290   case MVT::f16:
1291   case MVT::f32:
1292   case MVT::f64: {
1293     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1294     // narrower types, but we can't have a fractional LMUL with demoninator less
1295     // than 64/SEW.
1296     unsigned NumElts =
1297         divideCeil(VT.getVectorNumElements(), MinVLen / RISCV::RVVBitsPerBlock);
1298     return MVT::getScalableVectorVT(EltVT, NumElts);
1299   }
1300   }
1301 }
1302 
1303 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1304                                             const RISCVSubtarget &Subtarget) {
1305   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1306                                           Subtarget);
1307 }
1308 
1309 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1310   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1311 }
1312 
1313 // Grow V to consume an entire RVV register.
1314 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1315                                        const RISCVSubtarget &Subtarget) {
1316   assert(VT.isScalableVector() &&
1317          "Expected to convert into a scalable vector!");
1318   assert(V.getValueType().isFixedLengthVector() &&
1319          "Expected a fixed length vector operand!");
1320   SDLoc DL(V);
1321   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1322   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1323 }
1324 
1325 // Shrink V so it's just big enough to maintain a VT's worth of data.
1326 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1327                                          const RISCVSubtarget &Subtarget) {
1328   assert(VT.isFixedLengthVector() &&
1329          "Expected to convert into a fixed length vector!");
1330   assert(V.getValueType().isScalableVector() &&
1331          "Expected a scalable vector operand!");
1332   SDLoc DL(V);
1333   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1334   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1335 }
1336 
1337 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1338 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1339 // the vector type that it is contained in.
1340 static std::pair<SDValue, SDValue>
1341 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1342                 const RISCVSubtarget &Subtarget) {
1343   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1344   MVT XLenVT = Subtarget.getXLenVT();
1345   SDValue VL = VecVT.isFixedLengthVector()
1346                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1347                    : DAG.getRegister(RISCV::X0, XLenVT);
1348   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1349   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1350   return {Mask, VL};
1351 }
1352 
1353 // As above but assuming the given type is a scalable vector type.
1354 static std::pair<SDValue, SDValue>
1355 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1356                         const RISCVSubtarget &Subtarget) {
1357   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1358   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1359 }
1360 
1361 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1362 // of either is (currently) supported. This can get us into an infinite loop
1363 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1364 // as a ..., etc.
1365 // Until either (or both) of these can reliably lower any node, reporting that
1366 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1367 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1368 // which is not desirable.
1369 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1370     EVT VT, unsigned DefinedValues) const {
1371   return false;
1372 }
1373 
1374 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1375   // Only splats are currently supported.
1376   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1377     return true;
1378 
1379   return false;
1380 }
1381 
1382 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1383                                  const RISCVSubtarget &Subtarget) {
1384   MVT VT = Op.getSimpleValueType();
1385   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1386 
1387   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1388 
1389   SDLoc DL(Op);
1390   SDValue Mask, VL;
1391   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1392 
1393   unsigned Opc =
1394       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1395   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1396   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1397 }
1398 
1399 struct VIDSequence {
1400   int64_t Step;
1401   int64_t Addend;
1402 };
1403 
1404 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1405 // to the (non-zero) step S and start value X. This can be then lowered as the
1406 // RVV sequence (VID * S) + X, for example.
1407 // Note that this method will also match potentially unappealing index
1408 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1409 // determine whether this is worth generating code for.
1410 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1411   unsigned NumElts = Op.getNumOperands();
1412   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1413   if (!Op.getValueType().isInteger())
1414     return None;
1415 
1416   Optional<int64_t> SeqStep, SeqAddend;
1417   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1418   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1419   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1420     // Assume undef elements match the sequence; we just have to be careful
1421     // when interpolating across them.
1422     if (Op.getOperand(Idx).isUndef())
1423       continue;
1424     // The BUILD_VECTOR must be all constants.
1425     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1426       return None;
1427 
1428     uint64_t Val = Op.getConstantOperandVal(Idx) &
1429                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1430 
1431     if (PrevElt) {
1432       // Calculate the step since the last non-undef element, and ensure
1433       // it's consistent across the entire sequence.
1434       int64_t Diff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1435       // The difference must cleanly divide the element span.
1436       if (Diff % (Idx - PrevElt->second) != 0)
1437         return None;
1438       int64_t Step = Diff / (Idx - PrevElt->second);
1439       // A zero step indicates we're either a not an index sequence, or we
1440       // have a fractional step. This must be handled by a more complex
1441       // pattern recognition (undefs complicate things here).
1442       if (Step == 0)
1443         return None;
1444       if (!SeqStep)
1445         SeqStep = Step;
1446       else if (Step != SeqStep)
1447         return None;
1448     }
1449 
1450     // Record and/or check any addend.
1451     if (SeqStep) {
1452       int64_t Addend =
1453           SignExtend64(Val - (Idx * (uint64_t)*SeqStep), EltSizeInBits);
1454       if (!SeqAddend)
1455         SeqAddend = Addend;
1456       else if (SeqAddend != Addend)
1457         return None;
1458     }
1459 
1460     // Record this non-undef element for later.
1461     PrevElt = std::make_pair(Val, Idx);
1462   }
1463   // We need to have logged both a step and an addend for this to count as
1464   // a legal index sequence.
1465   if (!SeqStep || !SeqAddend)
1466     return None;
1467 
1468   return VIDSequence{*SeqStep, *SeqAddend};
1469 }
1470 
1471 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1472                                  const RISCVSubtarget &Subtarget) {
1473   MVT VT = Op.getSimpleValueType();
1474   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1475 
1476   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1477 
1478   SDLoc DL(Op);
1479   SDValue Mask, VL;
1480   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1481 
1482   MVT XLenVT = Subtarget.getXLenVT();
1483   unsigned NumElts = Op.getNumOperands();
1484 
1485   if (VT.getVectorElementType() == MVT::i1) {
1486     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1487       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1488       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1489     }
1490 
1491     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1492       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1493       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1494     }
1495 
1496     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1497     // scalar integer chunks whose bit-width depends on the number of mask
1498     // bits and XLEN.
1499     // First, determine the most appropriate scalar integer type to use. This
1500     // is at most XLenVT, but may be shrunk to a smaller vector element type
1501     // according to the size of the final vector - use i8 chunks rather than
1502     // XLenVT if we're producing a v8i1. This results in more consistent
1503     // codegen across RV32 and RV64.
1504     unsigned NumViaIntegerBits =
1505         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1506     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1507       // If we have to use more than one INSERT_VECTOR_ELT then this
1508       // optimization is likely to increase code size; avoid peforming it in
1509       // such a case. We can use a load from a constant pool in this case.
1510       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1511         return SDValue();
1512       // Now we can create our integer vector type. Note that it may be larger
1513       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1514       MVT IntegerViaVecVT =
1515           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1516                            divideCeil(NumElts, NumViaIntegerBits));
1517 
1518       uint64_t Bits = 0;
1519       unsigned BitPos = 0, IntegerEltIdx = 0;
1520       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1521 
1522       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1523         // Once we accumulate enough bits to fill our scalar type, insert into
1524         // our vector and clear our accumulated data.
1525         if (I != 0 && I % NumViaIntegerBits == 0) {
1526           if (NumViaIntegerBits <= 32)
1527             Bits = SignExtend64(Bits, 32);
1528           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1529           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1530                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1531           Bits = 0;
1532           BitPos = 0;
1533           IntegerEltIdx++;
1534         }
1535         SDValue V = Op.getOperand(I);
1536         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1537         Bits |= ((uint64_t)BitValue << BitPos);
1538       }
1539 
1540       // Insert the (remaining) scalar value into position in our integer
1541       // vector type.
1542       if (NumViaIntegerBits <= 32)
1543         Bits = SignExtend64(Bits, 32);
1544       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1545       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1546                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1547 
1548       if (NumElts < NumViaIntegerBits) {
1549         // If we're producing a smaller vector than our minimum legal integer
1550         // type, bitcast to the equivalent (known-legal) mask type, and extract
1551         // our final mask.
1552         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1553         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1554         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1555                           DAG.getConstant(0, DL, XLenVT));
1556       } else {
1557         // Else we must have produced an integer type with the same size as the
1558         // mask type; bitcast for the final result.
1559         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1560         Vec = DAG.getBitcast(VT, Vec);
1561       }
1562 
1563       return Vec;
1564     }
1565 
1566     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1567     // vector type, we have a legal equivalently-sized i8 type, so we can use
1568     // that.
1569     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
1570     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
1571 
1572     SDValue WideVec;
1573     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1574       // For a splat, perform a scalar truncate before creating the wider
1575       // vector.
1576       assert(Splat.getValueType() == XLenVT &&
1577              "Unexpected type for i1 splat value");
1578       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
1579                           DAG.getConstant(1, DL, XLenVT));
1580       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
1581     } else {
1582       SmallVector<SDValue, 8> Ops(Op->op_values());
1583       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
1584       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
1585       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
1586     }
1587 
1588     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
1589   }
1590 
1591   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1592     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1593                                         : RISCVISD::VMV_V_X_VL;
1594     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1595     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1596   }
1597 
1598   // Try and match index sequences, which we can lower to the vid instruction
1599   // with optional modifications. An all-undef vector is matched by
1600   // getSplatValue, above.
1601   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
1602     int64_t Step = SimpleVID->Step;
1603     int64_t Addend = SimpleVID->Addend;
1604     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
1605     // threshold since it's the immediate value many RVV instructions accept.
1606     if (isInt<5>(Step) && isInt<5>(Addend)) {
1607       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1608       // Convert right out of the scalable type so we can use standard ISD
1609       // nodes for the rest of the computation. If we used scalable types with
1610       // these, we'd lose the fixed-length vector info and generate worse
1611       // vsetvli code.
1612       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
1613       assert(Step != 0 && "Invalid step");
1614       bool Negate = false;
1615       if (Step != 1) {
1616         int64_t SplatStepVal = Step;
1617         unsigned Opcode = ISD::MUL;
1618         if (isPowerOf2_64(std::abs(Step))) {
1619           Negate = Step < 0;
1620           Opcode = ISD::SHL;
1621           SplatStepVal = Log2_64(std::abs(Step));
1622         }
1623         SDValue SplatStep = DAG.getSplatVector(
1624             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
1625         VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep);
1626       }
1627       if (Addend != 0 || Negate) {
1628         SDValue SplatAddend =
1629             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
1630         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
1631       }
1632       return VID;
1633     }
1634   }
1635 
1636   // Attempt to detect "hidden" splats, which only reveal themselves as splats
1637   // when re-interpreted as a vector with a larger element type. For example,
1638   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
1639   // could be instead splat as
1640   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
1641   // TODO: This optimization could also work on non-constant splats, but it
1642   // would require bit-manipulation instructions to construct the splat value.
1643   SmallVector<SDValue> Sequence;
1644   unsigned EltBitSize = VT.getScalarSizeInBits();
1645   const auto *BV = cast<BuildVectorSDNode>(Op);
1646   if (VT.isInteger() && EltBitSize < 64 &&
1647       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1648       BV->getRepeatedSequence(Sequence) &&
1649       (Sequence.size() * EltBitSize) <= 64) {
1650     unsigned SeqLen = Sequence.size();
1651     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
1652     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
1653     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
1654             ViaIntVT == MVT::i64) &&
1655            "Unexpected sequence type");
1656 
1657     unsigned EltIdx = 0;
1658     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
1659     uint64_t SplatValue = 0;
1660     // Construct the amalgamated value which can be splatted as this larger
1661     // vector type.
1662     for (const auto &SeqV : Sequence) {
1663       if (!SeqV.isUndef())
1664         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
1665                        << (EltIdx * EltBitSize));
1666       EltIdx++;
1667     }
1668 
1669     // On RV64, sign-extend from 32 to 64 bits where possible in order to
1670     // achieve better constant materializion.
1671     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
1672       SplatValue = SignExtend64(SplatValue, 32);
1673 
1674     // Since we can't introduce illegal i64 types at this stage, we can only
1675     // perform an i64 splat on RV32 if it is its own sign-extended value. That
1676     // way we can use RVV instructions to splat.
1677     assert((ViaIntVT.bitsLE(XLenVT) ||
1678             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
1679            "Unexpected bitcast sequence");
1680     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
1681       SDValue ViaVL =
1682           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
1683       MVT ViaContainerVT =
1684           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
1685       SDValue Splat =
1686           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
1687                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
1688       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
1689       return DAG.getBitcast(VT, Splat);
1690     }
1691   }
1692 
1693   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1694   // which constitute a large proportion of the elements. In such cases we can
1695   // splat a vector with the dominant element and make up the shortfall with
1696   // INSERT_VECTOR_ELTs.
1697   // Note that this includes vectors of 2 elements by association. The
1698   // upper-most element is the "dominant" one, allowing us to use a splat to
1699   // "insert" the upper element, and an insert of the lower element at position
1700   // 0, which improves codegen.
1701   SDValue DominantValue;
1702   unsigned MostCommonCount = 0;
1703   DenseMap<SDValue, unsigned> ValueCounts;
1704   unsigned NumUndefElts =
1705       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
1706 
1707   for (SDValue V : Op->op_values()) {
1708     if (V.isUndef())
1709       continue;
1710 
1711     ValueCounts.insert(std::make_pair(V, 0));
1712     unsigned &Count = ValueCounts[V];
1713 
1714     // Is this value dominant? In case of a tie, prefer the highest element as
1715     // it's cheaper to insert near the beginning of a vector than it is at the
1716     // end.
1717     if (++Count >= MostCommonCount) {
1718       DominantValue = V;
1719       MostCommonCount = Count;
1720     }
1721   }
1722 
1723   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
1724   unsigned NumDefElts = NumElts - NumUndefElts;
1725   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
1726 
1727   // Don't perform this optimization when optimizing for size, since
1728   // materializing elements and inserting them tends to cause code bloat.
1729   if (!DAG.shouldOptForSize() &&
1730       ((MostCommonCount > DominantValueCountThreshold) ||
1731        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
1732     // Start by splatting the most common element.
1733     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
1734 
1735     DenseSet<SDValue> Processed{DominantValue};
1736     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
1737     for (const auto &OpIdx : enumerate(Op->ops())) {
1738       const SDValue &V = OpIdx.value();
1739       if (V.isUndef() || !Processed.insert(V).second)
1740         continue;
1741       if (ValueCounts[V] == 1) {
1742         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
1743                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
1744       } else {
1745         // Blend in all instances of this value using a VSELECT, using a
1746         // mask where each bit signals whether that element is the one
1747         // we're after.
1748         SmallVector<SDValue> Ops;
1749         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
1750           return DAG.getConstant(V == V1, DL, XLenVT);
1751         });
1752         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
1753                           DAG.getBuildVector(SelMaskTy, DL, Ops),
1754                           DAG.getSplatBuildVector(VT, DL, V), Vec);
1755       }
1756     }
1757 
1758     return Vec;
1759   }
1760 
1761   return SDValue();
1762 }
1763 
1764 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
1765                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
1766   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
1767     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
1768     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
1769     // If Hi constant is all the same sign bit as Lo, lower this as a custom
1770     // node in order to try and match RVV vector/scalar instructions.
1771     if ((LoC >> 31) == HiC)
1772       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
1773   }
1774 
1775   // Fall back to a stack store and stride x0 vector load.
1776   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
1777 }
1778 
1779 // Called by type legalization to handle splat of i64 on RV32.
1780 // FIXME: We can optimize this when the type has sign or zero bits in one
1781 // of the halves.
1782 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
1783                                    SDValue VL, SelectionDAG &DAG) {
1784   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
1785   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1786                            DAG.getConstant(0, DL, MVT::i32));
1787   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1788                            DAG.getConstant(1, DL, MVT::i32));
1789   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
1790 }
1791 
1792 // This function lowers a splat of a scalar operand Splat with the vector
1793 // length VL. It ensures the final sequence is type legal, which is useful when
1794 // lowering a splat after type legalization.
1795 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
1796                                 SelectionDAG &DAG,
1797                                 const RISCVSubtarget &Subtarget) {
1798   if (VT.isFloatingPoint())
1799     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
1800 
1801   MVT XLenVT = Subtarget.getXLenVT();
1802 
1803   // Simplest case is that the operand needs to be promoted to XLenVT.
1804   if (Scalar.getValueType().bitsLE(XLenVT)) {
1805     // If the operand is a constant, sign extend to increase our chances
1806     // of being able to use a .vi instruction. ANY_EXTEND would become a
1807     // a zero extend and the simm5 check in isel would fail.
1808     // FIXME: Should we ignore the upper bits in isel instead?
1809     unsigned ExtOpc =
1810         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
1811     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
1812     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
1813   }
1814 
1815   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
1816          "Unexpected scalar for splat lowering!");
1817 
1818   // Otherwise use the more complicated splatting algorithm.
1819   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
1820 }
1821 
1822 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
1823                                    const RISCVSubtarget &Subtarget) {
1824   SDValue V1 = Op.getOperand(0);
1825   SDValue V2 = Op.getOperand(1);
1826   SDLoc DL(Op);
1827   MVT XLenVT = Subtarget.getXLenVT();
1828   MVT VT = Op.getSimpleValueType();
1829   unsigned NumElts = VT.getVectorNumElements();
1830   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
1831 
1832   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1833 
1834   SDValue TrueMask, VL;
1835   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1836 
1837   if (SVN->isSplat()) {
1838     const int Lane = SVN->getSplatIndex();
1839     if (Lane >= 0) {
1840       MVT SVT = VT.getVectorElementType();
1841 
1842       // Turn splatted vector load into a strided load with an X0 stride.
1843       SDValue V = V1;
1844       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
1845       // with undef.
1846       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
1847       int Offset = Lane;
1848       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
1849         int OpElements =
1850             V.getOperand(0).getSimpleValueType().getVectorNumElements();
1851         V = V.getOperand(Offset / OpElements);
1852         Offset %= OpElements;
1853       }
1854 
1855       // We need to ensure the load isn't atomic or volatile.
1856       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
1857         auto *Ld = cast<LoadSDNode>(V);
1858         Offset *= SVT.getStoreSize();
1859         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
1860                                                    TypeSize::Fixed(Offset), DL);
1861 
1862         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
1863         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
1864           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
1865           SDValue IntID =
1866               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
1867           SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
1868                            DAG.getRegister(RISCV::X0, XLenVT), VL};
1869           SDValue NewLoad = DAG.getMemIntrinsicNode(
1870               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
1871               DAG.getMachineFunction().getMachineMemOperand(
1872                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
1873           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
1874           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
1875         }
1876 
1877         // Otherwise use a scalar load and splat. This will give the best
1878         // opportunity to fold a splat into the operation. ISel can turn it into
1879         // the x0 strided load if we aren't able to fold away the select.
1880         if (SVT.isFloatingPoint())
1881           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
1882                           Ld->getPointerInfo().getWithOffset(Offset),
1883                           Ld->getOriginalAlign(),
1884                           Ld->getMemOperand()->getFlags());
1885         else
1886           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
1887                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
1888                              Ld->getOriginalAlign(),
1889                              Ld->getMemOperand()->getFlags());
1890         DAG.makeEquivalentMemoryOrdering(Ld, V);
1891 
1892         unsigned Opc =
1893             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1894         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
1895         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1896       }
1897 
1898       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1899       assert(Lane < (int)NumElts && "Unexpected lane!");
1900       SDValue Gather =
1901           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
1902                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
1903       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1904     }
1905   }
1906 
1907   // Detect shuffles which can be re-expressed as vector selects; these are
1908   // shuffles in which each element in the destination is taken from an element
1909   // at the corresponding index in either source vectors.
1910   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
1911     int MaskIndex = MaskIdx.value();
1912     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
1913   });
1914 
1915   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
1916 
1917   SmallVector<SDValue> MaskVals;
1918   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
1919   // merged with a second vrgather.
1920   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
1921 
1922   // By default we preserve the original operand order, and use a mask to
1923   // select LHS as true and RHS as false. However, since RVV vector selects may
1924   // feature splats but only on the LHS, we may choose to invert our mask and
1925   // instead select between RHS and LHS.
1926   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
1927   bool InvertMask = IsSelect == SwapOps;
1928 
1929   // Now construct the mask that will be used by the vselect or blended
1930   // vrgather operation. For vrgathers, construct the appropriate indices into
1931   // each vector.
1932   for (int MaskIndex : SVN->getMask()) {
1933     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
1934     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
1935     if (!IsSelect) {
1936       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
1937       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
1938                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
1939                                      : DAG.getUNDEF(XLenVT));
1940       GatherIndicesRHS.push_back(
1941           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
1942                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
1943     }
1944   }
1945 
1946   if (SwapOps) {
1947     std::swap(V1, V2);
1948     std::swap(GatherIndicesLHS, GatherIndicesRHS);
1949   }
1950 
1951   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
1952   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
1953   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
1954 
1955   if (IsSelect)
1956     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
1957 
1958   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
1959     // On such a large vector we're unable to use i8 as the index type.
1960     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
1961     // may involve vector splitting if we're already at LMUL=8, or our
1962     // user-supplied maximum fixed-length LMUL.
1963     return SDValue();
1964   }
1965 
1966   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
1967   MVT IndexVT = VT.changeTypeToInteger();
1968   // Since we can't introduce illegal index types at this stage, use i16 and
1969   // vrgatherei16 if the corresponding index type for plain vrgather is greater
1970   // than XLenVT.
1971   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
1972     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
1973     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
1974   }
1975 
1976   MVT IndexContainerVT =
1977       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
1978 
1979   SDValue Gather;
1980   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
1981   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
1982   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
1983     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
1984   } else {
1985     SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
1986     LHSIndices =
1987         convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
1988 
1989     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1990     Gather =
1991         DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL);
1992   }
1993 
1994   // If a second vector operand is used by this shuffle, blend it in with an
1995   // additional vrgather.
1996   if (!V2.isUndef()) {
1997     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
1998     SelectMask =
1999         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2000 
2001     SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2002     RHSIndices =
2003         convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2004 
2005     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2006     V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL);
2007     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2008                          Gather, VL);
2009   }
2010 
2011   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2012 }
2013 
2014 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2015                                      SDLoc DL, SelectionDAG &DAG,
2016                                      const RISCVSubtarget &Subtarget) {
2017   if (VT.isScalableVector())
2018     return DAG.getFPExtendOrRound(Op, DL, VT);
2019   assert(VT.isFixedLengthVector() &&
2020          "Unexpected value type for RVV FP extend/round lowering");
2021   SDValue Mask, VL;
2022   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2023   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2024                         ? RISCVISD::FP_EXTEND_VL
2025                         : RISCVISD::FP_ROUND_VL;
2026   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2027 }
2028 
2029 // While RVV has alignment restrictions, we should always be able to load as a
2030 // legal equivalently-sized byte-typed vector instead. This method is
2031 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2032 // the load is already correctly-aligned, it returns SDValue().
2033 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2034                                                     SelectionDAG &DAG) const {
2035   auto *Load = cast<LoadSDNode>(Op);
2036   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2037 
2038   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2039                                      Load->getMemoryVT(),
2040                                      *Load->getMemOperand()))
2041     return SDValue();
2042 
2043   SDLoc DL(Op);
2044   MVT VT = Op.getSimpleValueType();
2045   unsigned EltSizeBits = VT.getScalarSizeInBits();
2046   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2047          "Unexpected unaligned RVV load type");
2048   MVT NewVT =
2049       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2050   assert(NewVT.isValid() &&
2051          "Expecting equally-sized RVV vector types to be legal");
2052   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2053                           Load->getPointerInfo(), Load->getOriginalAlign(),
2054                           Load->getMemOperand()->getFlags());
2055   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2056 }
2057 
2058 // While RVV has alignment restrictions, we should always be able to store as a
2059 // legal equivalently-sized byte-typed vector instead. This method is
2060 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2061 // returns SDValue() if the store is already correctly aligned.
2062 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2063                                                      SelectionDAG &DAG) const {
2064   auto *Store = cast<StoreSDNode>(Op);
2065   assert(Store && Store->getValue().getValueType().isVector() &&
2066          "Expected vector store");
2067 
2068   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2069                                      Store->getMemoryVT(),
2070                                      *Store->getMemOperand()))
2071     return SDValue();
2072 
2073   SDLoc DL(Op);
2074   SDValue StoredVal = Store->getValue();
2075   MVT VT = StoredVal.getSimpleValueType();
2076   unsigned EltSizeBits = VT.getScalarSizeInBits();
2077   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2078          "Unexpected unaligned RVV store type");
2079   MVT NewVT =
2080       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2081   assert(NewVT.isValid() &&
2082          "Expecting equally-sized RVV vector types to be legal");
2083   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2084   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2085                       Store->getPointerInfo(), Store->getOriginalAlign(),
2086                       Store->getMemOperand()->getFlags());
2087 }
2088 
2089 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2090                                             SelectionDAG &DAG) const {
2091   switch (Op.getOpcode()) {
2092   default:
2093     report_fatal_error("unimplemented operand");
2094   case ISD::GlobalAddress:
2095     return lowerGlobalAddress(Op, DAG);
2096   case ISD::BlockAddress:
2097     return lowerBlockAddress(Op, DAG);
2098   case ISD::ConstantPool:
2099     return lowerConstantPool(Op, DAG);
2100   case ISD::JumpTable:
2101     return lowerJumpTable(Op, DAG);
2102   case ISD::GlobalTLSAddress:
2103     return lowerGlobalTLSAddress(Op, DAG);
2104   case ISD::SELECT:
2105     return lowerSELECT(Op, DAG);
2106   case ISD::BRCOND:
2107     return lowerBRCOND(Op, DAG);
2108   case ISD::VASTART:
2109     return lowerVASTART(Op, DAG);
2110   case ISD::FRAMEADDR:
2111     return lowerFRAMEADDR(Op, DAG);
2112   case ISD::RETURNADDR:
2113     return lowerRETURNADDR(Op, DAG);
2114   case ISD::SHL_PARTS:
2115     return lowerShiftLeftParts(Op, DAG);
2116   case ISD::SRA_PARTS:
2117     return lowerShiftRightParts(Op, DAG, true);
2118   case ISD::SRL_PARTS:
2119     return lowerShiftRightParts(Op, DAG, false);
2120   case ISD::BITCAST: {
2121     SDLoc DL(Op);
2122     EVT VT = Op.getValueType();
2123     SDValue Op0 = Op.getOperand(0);
2124     EVT Op0VT = Op0.getValueType();
2125     MVT XLenVT = Subtarget.getXLenVT();
2126     if (VT.isFixedLengthVector()) {
2127       // We can handle fixed length vector bitcasts with a simple replacement
2128       // in isel.
2129       if (Op0VT.isFixedLengthVector())
2130         return Op;
2131       // When bitcasting from scalar to fixed-length vector, insert the scalar
2132       // into a one-element vector of the result type, and perform a vector
2133       // bitcast.
2134       if (!Op0VT.isVector()) {
2135         auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2136         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2137                                               DAG.getUNDEF(BVT), Op0,
2138                                               DAG.getConstant(0, DL, XLenVT)));
2139       }
2140       return SDValue();
2141     }
2142     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2143     // thus: bitcast the vector to a one-element vector type whose element type
2144     // is the same as the result type, and extract the first element.
2145     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2146       LLVMContext &Context = *DAG.getContext();
2147       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
2148       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2149                          DAG.getConstant(0, DL, XLenVT));
2150     }
2151     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2152       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2153       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2154       return FPConv;
2155     }
2156     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2157         Subtarget.hasStdExtF()) {
2158       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2159       SDValue FPConv =
2160           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2161       return FPConv;
2162     }
2163     return SDValue();
2164   }
2165   case ISD::INTRINSIC_WO_CHAIN:
2166     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2167   case ISD::INTRINSIC_W_CHAIN:
2168     return LowerINTRINSIC_W_CHAIN(Op, DAG);
2169   case ISD::BSWAP:
2170   case ISD::BITREVERSE: {
2171     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
2172     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
2173     MVT VT = Op.getSimpleValueType();
2174     SDLoc DL(Op);
2175     // Start with the maximum immediate value which is the bitwidth - 1.
2176     unsigned Imm = VT.getSizeInBits() - 1;
2177     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2178     if (Op.getOpcode() == ISD::BSWAP)
2179       Imm &= ~0x7U;
2180     return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
2181                        DAG.getConstant(Imm, DL, VT));
2182   }
2183   case ISD::FSHL:
2184   case ISD::FSHR: {
2185     MVT VT = Op.getSimpleValueType();
2186     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
2187     SDLoc DL(Op);
2188     if (Op.getOperand(2).getOpcode() == ISD::Constant)
2189       return Op;
2190     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2191     // use log(XLen) bits. Mask the shift amount accordingly.
2192     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
2193     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
2194                                 DAG.getConstant(ShAmtWidth, DL, VT));
2195     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
2196     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
2197   }
2198   case ISD::TRUNCATE: {
2199     SDLoc DL(Op);
2200     MVT VT = Op.getSimpleValueType();
2201     // Only custom-lower vector truncates
2202     if (!VT.isVector())
2203       return Op;
2204 
2205     // Truncates to mask types are handled differently
2206     if (VT.getVectorElementType() == MVT::i1)
2207       return lowerVectorMaskTrunc(Op, DAG);
2208 
2209     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2210     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2211     // truncate by one power of two at a time.
2212     MVT DstEltVT = VT.getVectorElementType();
2213 
2214     SDValue Src = Op.getOperand(0);
2215     MVT SrcVT = Src.getSimpleValueType();
2216     MVT SrcEltVT = SrcVT.getVectorElementType();
2217 
2218     assert(DstEltVT.bitsLT(SrcEltVT) &&
2219            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
2220            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
2221            "Unexpected vector truncate lowering");
2222 
2223     MVT ContainerVT = SrcVT;
2224     if (SrcVT.isFixedLengthVector()) {
2225       ContainerVT = getContainerForFixedLengthVector(SrcVT);
2226       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2227     }
2228 
2229     SDValue Result = Src;
2230     SDValue Mask, VL;
2231     std::tie(Mask, VL) =
2232         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
2233     LLVMContext &Context = *DAG.getContext();
2234     const ElementCount Count = ContainerVT.getVectorElementCount();
2235     do {
2236       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
2237       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
2238       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
2239                            Mask, VL);
2240     } while (SrcEltVT != DstEltVT);
2241 
2242     if (SrcVT.isFixedLengthVector())
2243       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
2244 
2245     return Result;
2246   }
2247   case ISD::ANY_EXTEND:
2248   case ISD::ZERO_EXTEND:
2249     if (Op.getOperand(0).getValueType().isVector() &&
2250         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2251       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2252     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2253   case ISD::SIGN_EXTEND:
2254     if (Op.getOperand(0).getValueType().isVector() &&
2255         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2256       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2257     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2258   case ISD::SPLAT_VECTOR_PARTS:
2259     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2260   case ISD::INSERT_VECTOR_ELT:
2261     return lowerINSERT_VECTOR_ELT(Op, DAG);
2262   case ISD::EXTRACT_VECTOR_ELT:
2263     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2264   case ISD::VSCALE: {
2265     MVT VT = Op.getSimpleValueType();
2266     SDLoc DL(Op);
2267     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2268     // We define our scalable vector types for lmul=1 to use a 64 bit known
2269     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2270     // vscale as VLENB / 8.
2271     assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!");
2272     if (isa<ConstantSDNode>(Op.getOperand(0))) {
2273       // We assume VLENB is a multiple of 8. We manually choose the best shift
2274       // here because SimplifyDemandedBits isn't always able to simplify it.
2275       uint64_t Val = Op.getConstantOperandVal(0);
2276       if (isPowerOf2_64(Val)) {
2277         uint64_t Log2 = Log2_64(Val);
2278         if (Log2 < 3)
2279           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
2280                              DAG.getConstant(3 - Log2, DL, VT));
2281         if (Log2 > 3)
2282           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
2283                              DAG.getConstant(Log2 - 3, DL, VT));
2284         return VLENB;
2285       }
2286       // If the multiplier is a multiple of 8, scale it down to avoid needing
2287       // to shift the VLENB value.
2288       if ((Val % 8) == 0)
2289         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
2290                            DAG.getConstant(Val / 8, DL, VT));
2291     }
2292 
2293     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2294                                  DAG.getConstant(3, DL, VT));
2295     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2296   }
2297   case ISD::FP_EXTEND: {
2298     // RVV can only do fp_extend to types double the size as the source. We
2299     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2300     // via f32.
2301     SDLoc DL(Op);
2302     MVT VT = Op.getSimpleValueType();
2303     SDValue Src = Op.getOperand(0);
2304     MVT SrcVT = Src.getSimpleValueType();
2305 
2306     // Prepare any fixed-length vector operands.
2307     MVT ContainerVT = VT;
2308     if (SrcVT.isFixedLengthVector()) {
2309       ContainerVT = getContainerForFixedLengthVector(VT);
2310       MVT SrcContainerVT =
2311           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2312       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2313     }
2314 
2315     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2316         SrcVT.getVectorElementType() != MVT::f16) {
2317       // For scalable vectors, we only need to close the gap between
2318       // vXf16->vXf64.
2319       if (!VT.isFixedLengthVector())
2320         return Op;
2321       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2322       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2323       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2324     }
2325 
2326     MVT InterVT = VT.changeVectorElementType(MVT::f32);
2327     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2328     SDValue IntermediateExtend = getRVVFPExtendOrRound(
2329         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2330 
2331     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2332                                            DL, DAG, Subtarget);
2333     if (VT.isFixedLengthVector())
2334       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2335     return Extend;
2336   }
2337   case ISD::FP_ROUND: {
2338     // RVV can only do fp_round to types half the size as the source. We
2339     // custom-lower f64->f16 rounds via RVV's round-to-odd float
2340     // conversion instruction.
2341     SDLoc DL(Op);
2342     MVT VT = Op.getSimpleValueType();
2343     SDValue Src = Op.getOperand(0);
2344     MVT SrcVT = Src.getSimpleValueType();
2345 
2346     // Prepare any fixed-length vector operands.
2347     MVT ContainerVT = VT;
2348     if (VT.isFixedLengthVector()) {
2349       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2350       ContainerVT =
2351           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2352       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2353     }
2354 
2355     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2356         SrcVT.getVectorElementType() != MVT::f64) {
2357       // For scalable vectors, we only need to close the gap between
2358       // vXf64<->vXf16.
2359       if (!VT.isFixedLengthVector())
2360         return Op;
2361       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2362       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2363       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2364     }
2365 
2366     SDValue Mask, VL;
2367     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2368 
2369     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2370     SDValue IntermediateRound =
2371         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2372     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2373                                           DL, DAG, Subtarget);
2374 
2375     if (VT.isFixedLengthVector())
2376       return convertFromScalableVector(VT, Round, DAG, Subtarget);
2377     return Round;
2378   }
2379   case ISD::FP_TO_SINT:
2380   case ISD::FP_TO_UINT:
2381   case ISD::SINT_TO_FP:
2382   case ISD::UINT_TO_FP: {
2383     // RVV can only do fp<->int conversions to types half/double the size as
2384     // the source. We custom-lower any conversions that do two hops into
2385     // sequences.
2386     MVT VT = Op.getSimpleValueType();
2387     if (!VT.isVector())
2388       return Op;
2389     SDLoc DL(Op);
2390     SDValue Src = Op.getOperand(0);
2391     MVT EltVT = VT.getVectorElementType();
2392     MVT SrcVT = Src.getSimpleValueType();
2393     MVT SrcEltVT = SrcVT.getVectorElementType();
2394     unsigned EltSize = EltVT.getSizeInBits();
2395     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2396     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2397            "Unexpected vector element types");
2398 
2399     bool IsInt2FP = SrcEltVT.isInteger();
2400     // Widening conversions
2401     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2402       if (IsInt2FP) {
2403         // Do a regular integer sign/zero extension then convert to float.
2404         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2405                                       VT.getVectorElementCount());
2406         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2407                                  ? ISD::ZERO_EXTEND
2408                                  : ISD::SIGN_EXTEND;
2409         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2410         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2411       }
2412       // FP2Int
2413       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2414       // Do one doubling fp_extend then complete the operation by converting
2415       // to int.
2416       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2417       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2418       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2419     }
2420 
2421     // Narrowing conversions
2422     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2423       if (IsInt2FP) {
2424         // One narrowing int_to_fp, then an fp_round.
2425         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2426         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2427         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2428         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2429       }
2430       // FP2Int
2431       // One narrowing fp_to_int, then truncate the integer. If the float isn't
2432       // representable by the integer, the result is poison.
2433       MVT IVecVT =
2434           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
2435                            VT.getVectorElementCount());
2436       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
2437       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
2438     }
2439 
2440     // Scalable vectors can exit here. Patterns will handle equally-sized
2441     // conversions halving/doubling ones.
2442     if (!VT.isFixedLengthVector())
2443       return Op;
2444 
2445     // For fixed-length vectors we lower to a custom "VL" node.
2446     unsigned RVVOpc = 0;
2447     switch (Op.getOpcode()) {
2448     default:
2449       llvm_unreachable("Impossible opcode");
2450     case ISD::FP_TO_SINT:
2451       RVVOpc = RISCVISD::FP_TO_SINT_VL;
2452       break;
2453     case ISD::FP_TO_UINT:
2454       RVVOpc = RISCVISD::FP_TO_UINT_VL;
2455       break;
2456     case ISD::SINT_TO_FP:
2457       RVVOpc = RISCVISD::SINT_TO_FP_VL;
2458       break;
2459     case ISD::UINT_TO_FP:
2460       RVVOpc = RISCVISD::UINT_TO_FP_VL;
2461       break;
2462     }
2463 
2464     MVT ContainerVT, SrcContainerVT;
2465     // Derive the reference container type from the larger vector type.
2466     if (SrcEltSize > EltSize) {
2467       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2468       ContainerVT =
2469           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2470     } else {
2471       ContainerVT = getContainerForFixedLengthVector(VT);
2472       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
2473     }
2474 
2475     SDValue Mask, VL;
2476     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2477 
2478     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2479     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
2480     return convertFromScalableVector(VT, Src, DAG, Subtarget);
2481   }
2482   case ISD::VECREDUCE_ADD:
2483   case ISD::VECREDUCE_UMAX:
2484   case ISD::VECREDUCE_SMAX:
2485   case ISD::VECREDUCE_UMIN:
2486   case ISD::VECREDUCE_SMIN:
2487     return lowerVECREDUCE(Op, DAG);
2488   case ISD::VECREDUCE_AND:
2489   case ISD::VECREDUCE_OR:
2490   case ISD::VECREDUCE_XOR:
2491     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2492       return lowerVectorMaskVECREDUCE(Op, DAG);
2493     return lowerVECREDUCE(Op, DAG);
2494   case ISD::VECREDUCE_FADD:
2495   case ISD::VECREDUCE_SEQ_FADD:
2496   case ISD::VECREDUCE_FMIN:
2497   case ISD::VECREDUCE_FMAX:
2498     return lowerFPVECREDUCE(Op, DAG);
2499   case ISD::INSERT_SUBVECTOR:
2500     return lowerINSERT_SUBVECTOR(Op, DAG);
2501   case ISD::EXTRACT_SUBVECTOR:
2502     return lowerEXTRACT_SUBVECTOR(Op, DAG);
2503   case ISD::STEP_VECTOR:
2504     return lowerSTEP_VECTOR(Op, DAG);
2505   case ISD::VECTOR_REVERSE:
2506     return lowerVECTOR_REVERSE(Op, DAG);
2507   case ISD::BUILD_VECTOR:
2508     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
2509   case ISD::SPLAT_VECTOR:
2510     if (Op.getValueType().getVectorElementType() == MVT::i1)
2511       return lowerVectorMaskSplat(Op, DAG);
2512     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
2513   case ISD::VECTOR_SHUFFLE:
2514     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
2515   case ISD::CONCAT_VECTORS: {
2516     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
2517     // better than going through the stack, as the default expansion does.
2518     SDLoc DL(Op);
2519     MVT VT = Op.getSimpleValueType();
2520     unsigned NumOpElts =
2521         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
2522     SDValue Vec = DAG.getUNDEF(VT);
2523     for (const auto &OpIdx : enumerate(Op->ops()))
2524       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
2525                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
2526     return Vec;
2527   }
2528   case ISD::LOAD:
2529     if (auto V = expandUnalignedRVVLoad(Op, DAG))
2530       return V;
2531     if (Op.getValueType().isFixedLengthVector())
2532       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
2533     return Op;
2534   case ISD::STORE:
2535     if (auto V = expandUnalignedRVVStore(Op, DAG))
2536       return V;
2537     if (Op.getOperand(1).getValueType().isFixedLengthVector())
2538       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
2539     return Op;
2540   case ISD::MLOAD:
2541     return lowerMLOAD(Op, DAG);
2542   case ISD::MSTORE:
2543     return lowerMSTORE(Op, DAG);
2544   case ISD::SETCC:
2545     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
2546   case ISD::ADD:
2547     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
2548   case ISD::SUB:
2549     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
2550   case ISD::MUL:
2551     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
2552   case ISD::MULHS:
2553     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
2554   case ISD::MULHU:
2555     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
2556   case ISD::AND:
2557     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
2558                                               RISCVISD::AND_VL);
2559   case ISD::OR:
2560     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
2561                                               RISCVISD::OR_VL);
2562   case ISD::XOR:
2563     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
2564                                               RISCVISD::XOR_VL);
2565   case ISD::SDIV:
2566     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
2567   case ISD::SREM:
2568     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
2569   case ISD::UDIV:
2570     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
2571   case ISD::UREM:
2572     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
2573   case ISD::SHL:
2574   case ISD::SRA:
2575   case ISD::SRL:
2576     if (Op.getSimpleValueType().isFixedLengthVector())
2577       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
2578     // This can be called for an i32 shift amount that needs to be promoted.
2579     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
2580            "Unexpected custom legalisation");
2581     return SDValue();
2582   case ISD::SADDSAT:
2583     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
2584   case ISD::UADDSAT:
2585     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
2586   case ISD::SSUBSAT:
2587     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
2588   case ISD::USUBSAT:
2589     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
2590   case ISD::FADD:
2591     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
2592   case ISD::FSUB:
2593     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
2594   case ISD::FMUL:
2595     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
2596   case ISD::FDIV:
2597     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
2598   case ISD::FNEG:
2599     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
2600   case ISD::FABS:
2601     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
2602   case ISD::FSQRT:
2603     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
2604   case ISD::FMA:
2605     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
2606   case ISD::SMIN:
2607     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
2608   case ISD::SMAX:
2609     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
2610   case ISD::UMIN:
2611     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
2612   case ISD::UMAX:
2613     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
2614   case ISD::FMINNUM:
2615     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
2616   case ISD::FMAXNUM:
2617     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
2618   case ISD::ABS:
2619     return lowerABS(Op, DAG);
2620   case ISD::VSELECT:
2621     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
2622   case ISD::FCOPYSIGN:
2623     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
2624   case ISD::MGATHER:
2625     return lowerMGATHER(Op, DAG);
2626   case ISD::MSCATTER:
2627     return lowerMSCATTER(Op, DAG);
2628   case ISD::FLT_ROUNDS_:
2629     return lowerGET_ROUNDING(Op, DAG);
2630   case ISD::SET_ROUNDING:
2631     return lowerSET_ROUNDING(Op, DAG);
2632   case ISD::VP_ADD:
2633     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
2634   case ISD::VP_SUB:
2635     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
2636   case ISD::VP_MUL:
2637     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
2638   case ISD::VP_SDIV:
2639     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
2640   case ISD::VP_UDIV:
2641     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
2642   case ISD::VP_SREM:
2643     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
2644   case ISD::VP_UREM:
2645     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
2646   case ISD::VP_AND:
2647     return lowerVPOp(Op, DAG, RISCVISD::AND_VL);
2648   case ISD::VP_OR:
2649     return lowerVPOp(Op, DAG, RISCVISD::OR_VL);
2650   case ISD::VP_XOR:
2651     return lowerVPOp(Op, DAG, RISCVISD::XOR_VL);
2652   case ISD::VP_ASHR:
2653     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
2654   case ISD::VP_LSHR:
2655     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
2656   case ISD::VP_SHL:
2657     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
2658   case ISD::VP_FADD:
2659     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
2660   case ISD::VP_FSUB:
2661     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
2662   case ISD::VP_FMUL:
2663     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
2664   case ISD::VP_FDIV:
2665     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
2666   }
2667 }
2668 
2669 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
2670                              SelectionDAG &DAG, unsigned Flags) {
2671   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
2672 }
2673 
2674 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
2675                              SelectionDAG &DAG, unsigned Flags) {
2676   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
2677                                    Flags);
2678 }
2679 
2680 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
2681                              SelectionDAG &DAG, unsigned Flags) {
2682   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
2683                                    N->getOffset(), Flags);
2684 }
2685 
2686 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
2687                              SelectionDAG &DAG, unsigned Flags) {
2688   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
2689 }
2690 
2691 template <class NodeTy>
2692 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
2693                                      bool IsLocal) const {
2694   SDLoc DL(N);
2695   EVT Ty = getPointerTy(DAG.getDataLayout());
2696 
2697   if (isPositionIndependent()) {
2698     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2699     if (IsLocal)
2700       // Use PC-relative addressing to access the symbol. This generates the
2701       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
2702       // %pcrel_lo(auipc)).
2703       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2704 
2705     // Use PC-relative addressing to access the GOT for this symbol, then load
2706     // the address from the GOT. This generates the pattern (PseudoLA sym),
2707     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
2708     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
2709   }
2710 
2711   switch (getTargetMachine().getCodeModel()) {
2712   default:
2713     report_fatal_error("Unsupported code model for lowering");
2714   case CodeModel::Small: {
2715     // Generate a sequence for accessing addresses within the first 2 GiB of
2716     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
2717     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
2718     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
2719     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2720     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
2721   }
2722   case CodeModel::Medium: {
2723     // Generate a sequence for accessing addresses within any 2GiB range within
2724     // the address space. This generates the pattern (PseudoLLA sym), which
2725     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
2726     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2727     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2728   }
2729   }
2730 }
2731 
2732 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
2733                                                 SelectionDAG &DAG) const {
2734   SDLoc DL(Op);
2735   EVT Ty = Op.getValueType();
2736   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2737   int64_t Offset = N->getOffset();
2738   MVT XLenVT = Subtarget.getXLenVT();
2739 
2740   const GlobalValue *GV = N->getGlobal();
2741   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
2742   SDValue Addr = getAddr(N, DAG, IsLocal);
2743 
2744   // In order to maximise the opportunity for common subexpression elimination,
2745   // emit a separate ADD node for the global address offset instead of folding
2746   // it in the global address node. Later peephole optimisations may choose to
2747   // fold it back in when profitable.
2748   if (Offset != 0)
2749     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2750                        DAG.getConstant(Offset, DL, XLenVT));
2751   return Addr;
2752 }
2753 
2754 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
2755                                                SelectionDAG &DAG) const {
2756   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2757 
2758   return getAddr(N, DAG);
2759 }
2760 
2761 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
2762                                                SelectionDAG &DAG) const {
2763   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2764 
2765   return getAddr(N, DAG);
2766 }
2767 
2768 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
2769                                             SelectionDAG &DAG) const {
2770   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2771 
2772   return getAddr(N, DAG);
2773 }
2774 
2775 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
2776                                               SelectionDAG &DAG,
2777                                               bool UseGOT) const {
2778   SDLoc DL(N);
2779   EVT Ty = getPointerTy(DAG.getDataLayout());
2780   const GlobalValue *GV = N->getGlobal();
2781   MVT XLenVT = Subtarget.getXLenVT();
2782 
2783   if (UseGOT) {
2784     // Use PC-relative addressing to access the GOT for this TLS symbol, then
2785     // load the address from the GOT and add the thread pointer. This generates
2786     // the pattern (PseudoLA_TLS_IE sym), which expands to
2787     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
2788     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2789     SDValue Load =
2790         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
2791 
2792     // Add the thread pointer.
2793     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2794     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
2795   }
2796 
2797   // Generate a sequence for accessing the address relative to the thread
2798   // pointer, with the appropriate adjustment for the thread pointer offset.
2799   // This generates the pattern
2800   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
2801   SDValue AddrHi =
2802       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
2803   SDValue AddrAdd =
2804       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
2805   SDValue AddrLo =
2806       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
2807 
2808   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2809   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2810   SDValue MNAdd = SDValue(
2811       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
2812       0);
2813   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
2814 }
2815 
2816 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
2817                                                SelectionDAG &DAG) const {
2818   SDLoc DL(N);
2819   EVT Ty = getPointerTy(DAG.getDataLayout());
2820   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
2821   const GlobalValue *GV = N->getGlobal();
2822 
2823   // Use a PC-relative addressing mode to access the global dynamic GOT address.
2824   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
2825   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
2826   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2827   SDValue Load =
2828       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
2829 
2830   // Prepare argument list to generate call.
2831   ArgListTy Args;
2832   ArgListEntry Entry;
2833   Entry.Node = Load;
2834   Entry.Ty = CallTy;
2835   Args.push_back(Entry);
2836 
2837   // Setup call to __tls_get_addr.
2838   TargetLowering::CallLoweringInfo CLI(DAG);
2839   CLI.setDebugLoc(DL)
2840       .setChain(DAG.getEntryNode())
2841       .setLibCallee(CallingConv::C, CallTy,
2842                     DAG.getExternalSymbol("__tls_get_addr", Ty),
2843                     std::move(Args));
2844 
2845   return LowerCallTo(CLI).first;
2846 }
2847 
2848 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
2849                                                    SelectionDAG &DAG) const {
2850   SDLoc DL(Op);
2851   EVT Ty = Op.getValueType();
2852   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2853   int64_t Offset = N->getOffset();
2854   MVT XLenVT = Subtarget.getXLenVT();
2855 
2856   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
2857 
2858   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
2859       CallingConv::GHC)
2860     report_fatal_error("In GHC calling convention TLS is not supported");
2861 
2862   SDValue Addr;
2863   switch (Model) {
2864   case TLSModel::LocalExec:
2865     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
2866     break;
2867   case TLSModel::InitialExec:
2868     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
2869     break;
2870   case TLSModel::LocalDynamic:
2871   case TLSModel::GeneralDynamic:
2872     Addr = getDynamicTLSAddr(N, DAG);
2873     break;
2874   }
2875 
2876   // In order to maximise the opportunity for common subexpression elimination,
2877   // emit a separate ADD node for the global address offset instead of folding
2878   // it in the global address node. Later peephole optimisations may choose to
2879   // fold it back in when profitable.
2880   if (Offset != 0)
2881     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2882                        DAG.getConstant(Offset, DL, XLenVT));
2883   return Addr;
2884 }
2885 
2886 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2887   SDValue CondV = Op.getOperand(0);
2888   SDValue TrueV = Op.getOperand(1);
2889   SDValue FalseV = Op.getOperand(2);
2890   SDLoc DL(Op);
2891   MVT VT = Op.getSimpleValueType();
2892   MVT XLenVT = Subtarget.getXLenVT();
2893 
2894   // Lower vector SELECTs to VSELECTs by splatting the condition.
2895   if (VT.isVector()) {
2896     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
2897     SDValue CondSplat = VT.isScalableVector()
2898                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
2899                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
2900     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
2901   }
2902 
2903   // If the result type is XLenVT and CondV is the output of a SETCC node
2904   // which also operated on XLenVT inputs, then merge the SETCC node into the
2905   // lowered RISCVISD::SELECT_CC to take advantage of the integer
2906   // compare+branch instructions. i.e.:
2907   // (select (setcc lhs, rhs, cc), truev, falsev)
2908   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
2909   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
2910       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
2911     SDValue LHS = CondV.getOperand(0);
2912     SDValue RHS = CondV.getOperand(1);
2913     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
2914     ISD::CondCode CCVal = CC->get();
2915 
2916     // Special case for a select of 2 constants that have a diffence of 1.
2917     // Normally this is done by DAGCombine, but if the select is introduced by
2918     // type legalization or op legalization, we miss it. Restricting to SETLT
2919     // case for now because that is what signed saturating add/sub need.
2920     // FIXME: We don't need the condition to be SETLT or even a SETCC,
2921     // but we would probably want to swap the true/false values if the condition
2922     // is SETGE/SETLE to avoid an XORI.
2923     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
2924         CCVal == ISD::SETLT) {
2925       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
2926       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
2927       if (TrueVal - 1 == FalseVal)
2928         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
2929       if (TrueVal + 1 == FalseVal)
2930         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
2931     }
2932 
2933     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2934 
2935     SDValue TargetCC = DAG.getTargetConstant(CCVal, DL, XLenVT);
2936     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
2937     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2938   }
2939 
2940   // Otherwise:
2941   // (select condv, truev, falsev)
2942   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
2943   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
2944   SDValue SetNE = DAG.getTargetConstant(ISD::SETNE, DL, XLenVT);
2945 
2946   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
2947 
2948   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2949 }
2950 
2951 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
2952   SDValue CondV = Op.getOperand(1);
2953   SDLoc DL(Op);
2954   MVT XLenVT = Subtarget.getXLenVT();
2955 
2956   if (CondV.getOpcode() == ISD::SETCC &&
2957       CondV.getOperand(0).getValueType() == XLenVT) {
2958     SDValue LHS = CondV.getOperand(0);
2959     SDValue RHS = CondV.getOperand(1);
2960     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
2961 
2962     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2963 
2964     SDValue TargetCC = DAG.getCondCode(CCVal);
2965     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2966                        LHS, RHS, TargetCC, Op.getOperand(2));
2967   }
2968 
2969   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2970                      CondV, DAG.getConstant(0, DL, XLenVT),
2971                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
2972 }
2973 
2974 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2975   MachineFunction &MF = DAG.getMachineFunction();
2976   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
2977 
2978   SDLoc DL(Op);
2979   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2980                                  getPointerTy(MF.getDataLayout()));
2981 
2982   // vastart just stores the address of the VarArgsFrameIndex slot into the
2983   // memory location argument.
2984   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2985   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2986                       MachinePointerInfo(SV));
2987 }
2988 
2989 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
2990                                             SelectionDAG &DAG) const {
2991   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2992   MachineFunction &MF = DAG.getMachineFunction();
2993   MachineFrameInfo &MFI = MF.getFrameInfo();
2994   MFI.setFrameAddressIsTaken(true);
2995   Register FrameReg = RI.getFrameRegister(MF);
2996   int XLenInBytes = Subtarget.getXLen() / 8;
2997 
2998   EVT VT = Op.getValueType();
2999   SDLoc DL(Op);
3000   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3001   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3002   while (Depth--) {
3003     int Offset = -(XLenInBytes * 2);
3004     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3005                               DAG.getIntPtrConstant(Offset, DL));
3006     FrameAddr =
3007         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3008   }
3009   return FrameAddr;
3010 }
3011 
3012 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3013                                              SelectionDAG &DAG) const {
3014   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3015   MachineFunction &MF = DAG.getMachineFunction();
3016   MachineFrameInfo &MFI = MF.getFrameInfo();
3017   MFI.setReturnAddressIsTaken(true);
3018   MVT XLenVT = Subtarget.getXLenVT();
3019   int XLenInBytes = Subtarget.getXLen() / 8;
3020 
3021   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3022     return SDValue();
3023 
3024   EVT VT = Op.getValueType();
3025   SDLoc DL(Op);
3026   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3027   if (Depth) {
3028     int Off = -XLenInBytes;
3029     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3030     SDValue Offset = DAG.getConstant(Off, DL, VT);
3031     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3032                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3033                        MachinePointerInfo());
3034   }
3035 
3036   // Return the value of the return address register, marking it an implicit
3037   // live-in.
3038   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3039   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3040 }
3041 
3042 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3043                                                  SelectionDAG &DAG) const {
3044   SDLoc DL(Op);
3045   SDValue Lo = Op.getOperand(0);
3046   SDValue Hi = Op.getOperand(1);
3047   SDValue Shamt = Op.getOperand(2);
3048   EVT VT = Lo.getValueType();
3049 
3050   // if Shamt-XLEN < 0: // Shamt < XLEN
3051   //   Lo = Lo << Shamt
3052   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
3053   // else:
3054   //   Lo = 0
3055   //   Hi = Lo << (Shamt-XLEN)
3056 
3057   SDValue Zero = DAG.getConstant(0, DL, VT);
3058   SDValue One = DAG.getConstant(1, DL, VT);
3059   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3060   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3061   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3062   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3063 
3064   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3065   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3066   SDValue ShiftRightLo =
3067       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3068   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3069   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3070   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3071 
3072   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3073 
3074   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3075   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3076 
3077   SDValue Parts[2] = {Lo, Hi};
3078   return DAG.getMergeValues(Parts, DL);
3079 }
3080 
3081 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3082                                                   bool IsSRA) const {
3083   SDLoc DL(Op);
3084   SDValue Lo = Op.getOperand(0);
3085   SDValue Hi = Op.getOperand(1);
3086   SDValue Shamt = Op.getOperand(2);
3087   EVT VT = Lo.getValueType();
3088 
3089   // SRA expansion:
3090   //   if Shamt-XLEN < 0: // Shamt < XLEN
3091   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3092   //     Hi = Hi >>s Shamt
3093   //   else:
3094   //     Lo = Hi >>s (Shamt-XLEN);
3095   //     Hi = Hi >>s (XLEN-1)
3096   //
3097   // SRL expansion:
3098   //   if Shamt-XLEN < 0: // Shamt < XLEN
3099   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3100   //     Hi = Hi >>u Shamt
3101   //   else:
3102   //     Lo = Hi >>u (Shamt-XLEN);
3103   //     Hi = 0;
3104 
3105   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3106 
3107   SDValue Zero = DAG.getConstant(0, DL, VT);
3108   SDValue One = DAG.getConstant(1, DL, VT);
3109   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3110   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3111   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3112   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3113 
3114   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3115   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3116   SDValue ShiftLeftHi =
3117       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3118   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3119   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3120   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3121   SDValue HiFalse =
3122       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3123 
3124   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3125 
3126   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3127   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3128 
3129   SDValue Parts[2] = {Lo, Hi};
3130   return DAG.getMergeValues(Parts, DL);
3131 }
3132 
3133 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3134 // legal equivalently-sized i8 type, so we can use that as a go-between.
3135 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3136                                                   SelectionDAG &DAG) const {
3137   SDLoc DL(Op);
3138   MVT VT = Op.getSimpleValueType();
3139   SDValue SplatVal = Op.getOperand(0);
3140   // All-zeros or all-ones splats are handled specially.
3141   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
3142     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3143     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
3144   }
3145   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
3146     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3147     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
3148   }
3149   MVT XLenVT = Subtarget.getXLenVT();
3150   assert(SplatVal.getValueType() == XLenVT &&
3151          "Unexpected type for i1 splat value");
3152   MVT InterVT = VT.changeVectorElementType(MVT::i8);
3153   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
3154                          DAG.getConstant(1, DL, XLenVT));
3155   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
3156   SDValue Zero = DAG.getConstant(0, DL, InterVT);
3157   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
3158 }
3159 
3160 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
3161 // illegal (currently only vXi64 RV32).
3162 // FIXME: We could also catch non-constant sign-extended i32 values and lower
3163 // them to SPLAT_VECTOR_I64
3164 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
3165                                                      SelectionDAG &DAG) const {
3166   SDLoc DL(Op);
3167   MVT VecVT = Op.getSimpleValueType();
3168   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
3169          "Unexpected SPLAT_VECTOR_PARTS lowering");
3170 
3171   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
3172   SDValue Lo = Op.getOperand(0);
3173   SDValue Hi = Op.getOperand(1);
3174 
3175   if (VecVT.isFixedLengthVector()) {
3176     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3177     SDLoc DL(Op);
3178     SDValue Mask, VL;
3179     std::tie(Mask, VL) =
3180         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3181 
3182     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
3183     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
3184   }
3185 
3186   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
3187     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
3188     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
3189     // If Hi constant is all the same sign bit as Lo, lower this as a custom
3190     // node in order to try and match RVV vector/scalar instructions.
3191     if ((LoC >> 31) == HiC)
3192       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3193   }
3194 
3195   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
3196   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
3197       isa<ConstantSDNode>(Hi.getOperand(1)) &&
3198       Hi.getConstantOperandVal(1) == 31)
3199     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3200 
3201   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
3202   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
3203                      DAG.getRegister(RISCV::X0, MVT::i64));
3204 }
3205 
3206 // Custom-lower extensions from mask vectors by using a vselect either with 1
3207 // for zero/any-extension or -1 for sign-extension:
3208 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
3209 // Note that any-extension is lowered identically to zero-extension.
3210 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
3211                                                 int64_t ExtTrueVal) const {
3212   SDLoc DL(Op);
3213   MVT VecVT = Op.getSimpleValueType();
3214   SDValue Src = Op.getOperand(0);
3215   // Only custom-lower extensions from mask types
3216   assert(Src.getValueType().isVector() &&
3217          Src.getValueType().getVectorElementType() == MVT::i1);
3218 
3219   MVT XLenVT = Subtarget.getXLenVT();
3220   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
3221   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
3222 
3223   if (VecVT.isScalableVector()) {
3224     // Be careful not to introduce illegal scalar types at this stage, and be
3225     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
3226     // illegal and must be expanded. Since we know that the constants are
3227     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
3228     bool IsRV32E64 =
3229         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
3230 
3231     if (!IsRV32E64) {
3232       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
3233       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
3234     } else {
3235       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
3236       SplatTrueVal =
3237           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
3238     }
3239 
3240     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
3241   }
3242 
3243   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3244   MVT I1ContainerVT =
3245       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3246 
3247   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
3248 
3249   SDValue Mask, VL;
3250   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3251 
3252   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
3253   SplatTrueVal =
3254       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
3255   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
3256                                SplatTrueVal, SplatZero, VL);
3257 
3258   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
3259 }
3260 
3261 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3262     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
3263   MVT ExtVT = Op.getSimpleValueType();
3264   // Only custom-lower extensions from fixed-length vector types.
3265   if (!ExtVT.isFixedLengthVector())
3266     return Op;
3267   MVT VT = Op.getOperand(0).getSimpleValueType();
3268   // Grab the canonical container type for the extended type. Infer the smaller
3269   // type from that to ensure the same number of vector elements, as we know
3270   // the LMUL will be sufficient to hold the smaller type.
3271   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
3272   // Get the extended container type manually to ensure the same number of
3273   // vector elements between source and dest.
3274   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
3275                                      ContainerExtVT.getVectorElementCount());
3276 
3277   SDValue Op1 =
3278       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3279 
3280   SDLoc DL(Op);
3281   SDValue Mask, VL;
3282   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3283 
3284   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
3285 
3286   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
3287 }
3288 
3289 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3290 // setcc operation:
3291 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
3292 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
3293                                                   SelectionDAG &DAG) const {
3294   SDLoc DL(Op);
3295   EVT MaskVT = Op.getValueType();
3296   // Only expect to custom-lower truncations to mask types
3297   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
3298          "Unexpected type for vector mask lowering");
3299   SDValue Src = Op.getOperand(0);
3300   MVT VecVT = Src.getSimpleValueType();
3301 
3302   // If this is a fixed vector, we need to convert it to a scalable vector.
3303   MVT ContainerVT = VecVT;
3304   if (VecVT.isFixedLengthVector()) {
3305     ContainerVT = getContainerForFixedLengthVector(VecVT);
3306     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3307   }
3308 
3309   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
3310   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
3311 
3312   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
3313   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
3314 
3315   if (VecVT.isScalableVector()) {
3316     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
3317     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
3318   }
3319 
3320   SDValue Mask, VL;
3321   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3322 
3323   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3324   SDValue Trunc =
3325       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
3326   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
3327                       DAG.getCondCode(ISD::SETNE), Mask, VL);
3328   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
3329 }
3330 
3331 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3332 // first position of a vector, and that vector is slid up to the insert index.
3333 // By limiting the active vector length to index+1 and merging with the
3334 // original vector (with an undisturbed tail policy for elements >= VL), we
3335 // achieve the desired result of leaving all elements untouched except the one
3336 // at VL-1, which is replaced with the desired value.
3337 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3338                                                     SelectionDAG &DAG) const {
3339   SDLoc DL(Op);
3340   MVT VecVT = Op.getSimpleValueType();
3341   SDValue Vec = Op.getOperand(0);
3342   SDValue Val = Op.getOperand(1);
3343   SDValue Idx = Op.getOperand(2);
3344 
3345   if (VecVT.getVectorElementType() == MVT::i1) {
3346     // FIXME: For now we just promote to an i8 vector and insert into that,
3347     // but this is probably not optimal.
3348     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3349     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3350     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
3351     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
3352   }
3353 
3354   MVT ContainerVT = VecVT;
3355   // If the operand is a fixed-length vector, convert to a scalable one.
3356   if (VecVT.isFixedLengthVector()) {
3357     ContainerVT = getContainerForFixedLengthVector(VecVT);
3358     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3359   }
3360 
3361   MVT XLenVT = Subtarget.getXLenVT();
3362 
3363   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3364   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
3365   // Even i64-element vectors on RV32 can be lowered without scalar
3366   // legalization if the most-significant 32 bits of the value are not affected
3367   // by the sign-extension of the lower 32 bits.
3368   // TODO: We could also catch sign extensions of a 32-bit value.
3369   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
3370     const auto *CVal = cast<ConstantSDNode>(Val);
3371     if (isInt<32>(CVal->getSExtValue())) {
3372       IsLegalInsert = true;
3373       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3374     }
3375   }
3376 
3377   SDValue Mask, VL;
3378   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3379 
3380   SDValue ValInVec;
3381 
3382   if (IsLegalInsert) {
3383     unsigned Opc =
3384         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
3385     if (isNullConstant(Idx)) {
3386       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
3387       if (!VecVT.isFixedLengthVector())
3388         return Vec;
3389       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
3390     }
3391     ValInVec =
3392         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
3393   } else {
3394     // On RV32, i64-element vectors must be specially handled to place the
3395     // value at element 0, by using two vslide1up instructions in sequence on
3396     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3397     // this.
3398     SDValue One = DAG.getConstant(1, DL, XLenVT);
3399     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
3400     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
3401     MVT I32ContainerVT =
3402         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
3403     SDValue I32Mask =
3404         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
3405     // Limit the active VL to two.
3406     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
3407     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
3408     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
3409     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
3410                            InsertI64VL);
3411     // First slide in the hi value, then the lo in underneath it.
3412     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3413                            ValHi, I32Mask, InsertI64VL);
3414     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3415                            ValLo, I32Mask, InsertI64VL);
3416     // Bitcast back to the right container type.
3417     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
3418   }
3419 
3420   // Now that the value is in a vector, slide it into position.
3421   SDValue InsertVL =
3422       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
3423   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3424                                 ValInVec, Idx, Mask, InsertVL);
3425   if (!VecVT.isFixedLengthVector())
3426     return Slideup;
3427   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3428 }
3429 
3430 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
3431 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
3432 // types this is done using VMV_X_S to allow us to glean information about the
3433 // sign bits of the result.
3434 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
3435                                                      SelectionDAG &DAG) const {
3436   SDLoc DL(Op);
3437   SDValue Idx = Op.getOperand(1);
3438   SDValue Vec = Op.getOperand(0);
3439   EVT EltVT = Op.getValueType();
3440   MVT VecVT = Vec.getSimpleValueType();
3441   MVT XLenVT = Subtarget.getXLenVT();
3442 
3443   if (VecVT.getVectorElementType() == MVT::i1) {
3444     // FIXME: For now we just promote to an i8 vector and extract from that,
3445     // but this is probably not optimal.
3446     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3447     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3448     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
3449   }
3450 
3451   // If this is a fixed vector, we need to convert it to a scalable vector.
3452   MVT ContainerVT = VecVT;
3453   if (VecVT.isFixedLengthVector()) {
3454     ContainerVT = getContainerForFixedLengthVector(VecVT);
3455     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3456   }
3457 
3458   // If the index is 0, the vector is already in the right position.
3459   if (!isNullConstant(Idx)) {
3460     // Use a VL of 1 to avoid processing more elements than we need.
3461     SDValue VL = DAG.getConstant(1, DL, XLenVT);
3462     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3463     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3464     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3465                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
3466   }
3467 
3468   if (!EltVT.isInteger()) {
3469     // Floating-point extracts are handled in TableGen.
3470     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
3471                        DAG.getConstant(0, DL, XLenVT));
3472   }
3473 
3474   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3475   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
3476 }
3477 
3478 // Some RVV intrinsics may claim that they want an integer operand to be
3479 // promoted or expanded.
3480 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
3481                                           const RISCVSubtarget &Subtarget) {
3482   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3483           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
3484          "Unexpected opcode");
3485 
3486   if (!Subtarget.hasStdExtV())
3487     return SDValue();
3488 
3489   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
3490   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
3491   SDLoc DL(Op);
3492 
3493   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
3494       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
3495   if (!II || !II->SplatOperand)
3496     return SDValue();
3497 
3498   unsigned SplatOp = II->SplatOperand + HasChain;
3499   assert(SplatOp < Op.getNumOperands());
3500 
3501   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
3502   SDValue &ScalarOp = Operands[SplatOp];
3503   MVT OpVT = ScalarOp.getSimpleValueType();
3504   MVT XLenVT = Subtarget.getXLenVT();
3505 
3506   // If this isn't a scalar, or its type is XLenVT we're done.
3507   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
3508     return SDValue();
3509 
3510   // Simplest case is that the operand needs to be promoted to XLenVT.
3511   if (OpVT.bitsLT(XLenVT)) {
3512     // If the operand is a constant, sign extend to increase our chances
3513     // of being able to use a .vi instruction. ANY_EXTEND would become a
3514     // a zero extend and the simm5 check in isel would fail.
3515     // FIXME: Should we ignore the upper bits in isel instead?
3516     unsigned ExtOpc =
3517         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
3518     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
3519     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3520   }
3521 
3522   // Use the previous operand to get the vXi64 VT. The result might be a mask
3523   // VT for compares. Using the previous operand assumes that the previous
3524   // operand will never have a smaller element size than a scalar operand and
3525   // that a widening operation never uses SEW=64.
3526   // NOTE: If this fails the below assert, we can probably just find the
3527   // element count from any operand or result and use it to construct the VT.
3528   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
3529   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
3530 
3531   // The more complex case is when the scalar is larger than XLenVT.
3532   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
3533          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
3534 
3535   // If this is a sign-extended 32-bit constant, we can truncate it and rely
3536   // on the instruction to sign-extend since SEW>XLEN.
3537   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
3538     if (isInt<32>(CVal->getSExtValue())) {
3539       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3540       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3541     }
3542   }
3543 
3544   // We need to convert the scalar to a splat vector.
3545   // FIXME: Can we implicitly truncate the scalar if it is known to
3546   // be sign extended?
3547   // VL should be the last operand.
3548   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
3549   assert(VL.getValueType() == XLenVT);
3550   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
3551   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3552 }
3553 
3554 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3555                                                      SelectionDAG &DAG) const {
3556   unsigned IntNo = Op.getConstantOperandVal(0);
3557   SDLoc DL(Op);
3558   MVT XLenVT = Subtarget.getXLenVT();
3559 
3560   switch (IntNo) {
3561   default:
3562     break; // Don't custom lower most intrinsics.
3563   case Intrinsic::thread_pointer: {
3564     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3565     return DAG.getRegister(RISCV::X4, PtrVT);
3566   }
3567   case Intrinsic::riscv_orc_b:
3568     // Lower to the GORCI encoding for orc.b.
3569     return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
3570                        DAG.getConstant(7, DL, XLenVT));
3571   case Intrinsic::riscv_grev:
3572   case Intrinsic::riscv_gorc: {
3573     unsigned Opc =
3574         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
3575     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3576   }
3577   case Intrinsic::riscv_shfl:
3578   case Intrinsic::riscv_unshfl: {
3579     unsigned Opc =
3580         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
3581     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3582   }
3583   case Intrinsic::riscv_bcompress:
3584   case Intrinsic::riscv_bdecompress: {
3585     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
3586                                                        : RISCVISD::BDECOMPRESS;
3587     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3588   }
3589   case Intrinsic::riscv_vmv_x_s:
3590     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
3591     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
3592                        Op.getOperand(1));
3593   case Intrinsic::riscv_vmv_v_x:
3594     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
3595                             Op.getSimpleValueType(), DL, DAG, Subtarget);
3596   case Intrinsic::riscv_vfmv_v_f:
3597     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
3598                        Op.getOperand(1), Op.getOperand(2));
3599   case Intrinsic::riscv_vmv_s_x: {
3600     SDValue Scalar = Op.getOperand(2);
3601 
3602     if (Scalar.getValueType().bitsLE(XLenVT)) {
3603       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
3604       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
3605                          Op.getOperand(1), Scalar, Op.getOperand(3));
3606     }
3607 
3608     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
3609 
3610     // This is an i64 value that lives in two scalar registers. We have to
3611     // insert this in a convoluted way. First we build vXi64 splat containing
3612     // the/ two values that we assemble using some bit math. Next we'll use
3613     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
3614     // to merge element 0 from our splat into the source vector.
3615     // FIXME: This is probably not the best way to do this, but it is
3616     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
3617     // point.
3618     //   sw lo, (a0)
3619     //   sw hi, 4(a0)
3620     //   vlse vX, (a0)
3621     //
3622     //   vid.v      vVid
3623     //   vmseq.vx   mMask, vVid, 0
3624     //   vmerge.vvm vDest, vSrc, vVal, mMask
3625     MVT VT = Op.getSimpleValueType();
3626     SDValue Vec = Op.getOperand(1);
3627     SDValue VL = Op.getOperand(3);
3628 
3629     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
3630     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
3631                                       DAG.getConstant(0, DL, MVT::i32), VL);
3632 
3633     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
3634     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3635     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3636     SDValue SelectCond =
3637         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
3638                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
3639     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
3640                        Vec, VL);
3641   }
3642   case Intrinsic::riscv_vslide1up:
3643   case Intrinsic::riscv_vslide1down:
3644   case Intrinsic::riscv_vslide1up_mask:
3645   case Intrinsic::riscv_vslide1down_mask: {
3646     // We need to special case these when the scalar is larger than XLen.
3647     unsigned NumOps = Op.getNumOperands();
3648     bool IsMasked = NumOps == 6;
3649     unsigned OpOffset = IsMasked ? 1 : 0;
3650     SDValue Scalar = Op.getOperand(2 + OpOffset);
3651     if (Scalar.getValueType().bitsLE(XLenVT))
3652       break;
3653 
3654     // Splatting a sign extended constant is fine.
3655     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
3656       if (isInt<32>(CVal->getSExtValue()))
3657         break;
3658 
3659     MVT VT = Op.getSimpleValueType();
3660     assert(VT.getVectorElementType() == MVT::i64 &&
3661            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
3662 
3663     // Convert the vector source to the equivalent nxvXi32 vector.
3664     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
3665     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
3666 
3667     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3668                                    DAG.getConstant(0, DL, XLenVT));
3669     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3670                                    DAG.getConstant(1, DL, XLenVT));
3671 
3672     // Double the VL since we halved SEW.
3673     SDValue VL = Op.getOperand(NumOps - 1);
3674     SDValue I32VL =
3675         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
3676 
3677     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
3678     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
3679 
3680     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
3681     // instructions.
3682     if (IntNo == Intrinsic::riscv_vslide1up ||
3683         IntNo == Intrinsic::riscv_vslide1up_mask) {
3684       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
3685                         I32Mask, I32VL);
3686       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
3687                         I32Mask, I32VL);
3688     } else {
3689       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
3690                         I32Mask, I32VL);
3691       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
3692                         I32Mask, I32VL);
3693     }
3694 
3695     // Convert back to nxvXi64.
3696     Vec = DAG.getBitcast(VT, Vec);
3697 
3698     if (!IsMasked)
3699       return Vec;
3700 
3701     // Apply mask after the operation.
3702     SDValue Mask = Op.getOperand(NumOps - 2);
3703     SDValue MaskedOff = Op.getOperand(1);
3704     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
3705   }
3706   }
3707 
3708   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3709 }
3710 
3711 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
3712                                                     SelectionDAG &DAG) const {
3713   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3714 }
3715 
3716 static MVT getLMUL1VT(MVT VT) {
3717   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
3718          "Unexpected vector MVT");
3719   return MVT::getScalableVectorVT(
3720       VT.getVectorElementType(),
3721       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
3722 }
3723 
3724 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
3725   switch (ISDOpcode) {
3726   default:
3727     llvm_unreachable("Unhandled reduction");
3728   case ISD::VECREDUCE_ADD:
3729     return RISCVISD::VECREDUCE_ADD_VL;
3730   case ISD::VECREDUCE_UMAX:
3731     return RISCVISD::VECREDUCE_UMAX_VL;
3732   case ISD::VECREDUCE_SMAX:
3733     return RISCVISD::VECREDUCE_SMAX_VL;
3734   case ISD::VECREDUCE_UMIN:
3735     return RISCVISD::VECREDUCE_UMIN_VL;
3736   case ISD::VECREDUCE_SMIN:
3737     return RISCVISD::VECREDUCE_SMIN_VL;
3738   case ISD::VECREDUCE_AND:
3739     return RISCVISD::VECREDUCE_AND_VL;
3740   case ISD::VECREDUCE_OR:
3741     return RISCVISD::VECREDUCE_OR_VL;
3742   case ISD::VECREDUCE_XOR:
3743     return RISCVISD::VECREDUCE_XOR_VL;
3744   }
3745 }
3746 
3747 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op,
3748                                                       SelectionDAG &DAG) const {
3749   SDLoc DL(Op);
3750   SDValue Vec = Op.getOperand(0);
3751   MVT VecVT = Vec.getSimpleValueType();
3752   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
3753           Op.getOpcode() == ISD::VECREDUCE_OR ||
3754           Op.getOpcode() == ISD::VECREDUCE_XOR) &&
3755          "Unexpected reduction lowering");
3756 
3757   MVT XLenVT = Subtarget.getXLenVT();
3758   assert(Op.getValueType() == XLenVT &&
3759          "Expected reduction output to be legalized to XLenVT");
3760 
3761   MVT ContainerVT = VecVT;
3762   if (VecVT.isFixedLengthVector()) {
3763     ContainerVT = getContainerForFixedLengthVector(VecVT);
3764     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3765   }
3766 
3767   SDValue Mask, VL;
3768   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3769   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3770 
3771   switch (Op.getOpcode()) {
3772   default:
3773     llvm_unreachable("Unhandled reduction");
3774   case ISD::VECREDUCE_AND:
3775     // vpopc ~x == 0
3776     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL);
3777     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3778     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ);
3779   case ISD::VECREDUCE_OR:
3780     // vpopc x != 0
3781     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3782     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3783   case ISD::VECREDUCE_XOR: {
3784     // ((vpopc x) & 1) != 0
3785     SDValue One = DAG.getConstant(1, DL, XLenVT);
3786     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3787     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
3788     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3789   }
3790   }
3791 }
3792 
3793 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
3794                                             SelectionDAG &DAG) const {
3795   SDLoc DL(Op);
3796   SDValue Vec = Op.getOperand(0);
3797   EVT VecEVT = Vec.getValueType();
3798 
3799   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
3800 
3801   // Due to ordering in legalize types we may have a vector type that needs to
3802   // be split. Do that manually so we can get down to a legal type.
3803   while (getTypeAction(*DAG.getContext(), VecEVT) ==
3804          TargetLowering::TypeSplitVector) {
3805     SDValue Lo, Hi;
3806     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
3807     VecEVT = Lo.getValueType();
3808     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
3809   }
3810 
3811   // TODO: The type may need to be widened rather than split. Or widened before
3812   // it can be split.
3813   if (!isTypeLegal(VecEVT))
3814     return SDValue();
3815 
3816   MVT VecVT = VecEVT.getSimpleVT();
3817   MVT VecEltVT = VecVT.getVectorElementType();
3818   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
3819 
3820   MVT ContainerVT = VecVT;
3821   if (VecVT.isFixedLengthVector()) {
3822     ContainerVT = getContainerForFixedLengthVector(VecVT);
3823     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3824   }
3825 
3826   MVT M1VT = getLMUL1VT(ContainerVT);
3827 
3828   SDValue Mask, VL;
3829   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3830 
3831   // FIXME: This is a VLMAX splat which might be too large and can prevent
3832   // vsetvli removal.
3833   SDValue NeutralElem =
3834       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
3835   SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
3836   SDValue Reduction =
3837       DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL);
3838   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3839                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3840   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
3841 }
3842 
3843 // Given a reduction op, this function returns the matching reduction opcode,
3844 // the vector SDValue and the scalar SDValue required to lower this to a
3845 // RISCVISD node.
3846 static std::tuple<unsigned, SDValue, SDValue>
3847 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
3848   SDLoc DL(Op);
3849   auto Flags = Op->getFlags();
3850   unsigned Opcode = Op.getOpcode();
3851   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
3852   switch (Opcode) {
3853   default:
3854     llvm_unreachable("Unhandled reduction");
3855   case ISD::VECREDUCE_FADD:
3856     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
3857                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3858   case ISD::VECREDUCE_SEQ_FADD:
3859     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
3860                            Op.getOperand(0));
3861   case ISD::VECREDUCE_FMIN:
3862     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
3863                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3864   case ISD::VECREDUCE_FMAX:
3865     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
3866                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3867   }
3868 }
3869 
3870 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
3871                                               SelectionDAG &DAG) const {
3872   SDLoc DL(Op);
3873   MVT VecEltVT = Op.getSimpleValueType();
3874 
3875   unsigned RVVOpcode;
3876   SDValue VectorVal, ScalarVal;
3877   std::tie(RVVOpcode, VectorVal, ScalarVal) =
3878       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
3879   MVT VecVT = VectorVal.getSimpleValueType();
3880 
3881   MVT ContainerVT = VecVT;
3882   if (VecVT.isFixedLengthVector()) {
3883     ContainerVT = getContainerForFixedLengthVector(VecVT);
3884     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
3885   }
3886 
3887   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
3888 
3889   SDValue Mask, VL;
3890   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3891 
3892   // FIXME: This is a VLMAX splat which might be too large and can prevent
3893   // vsetvli removal.
3894   SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
3895   SDValue Reduction =
3896       DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL);
3897   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3898                      DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3899 }
3900 
3901 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
3902                                                    SelectionDAG &DAG) const {
3903   SDValue Vec = Op.getOperand(0);
3904   SDValue SubVec = Op.getOperand(1);
3905   MVT VecVT = Vec.getSimpleValueType();
3906   MVT SubVecVT = SubVec.getSimpleValueType();
3907 
3908   SDLoc DL(Op);
3909   MVT XLenVT = Subtarget.getXLenVT();
3910   unsigned OrigIdx = Op.getConstantOperandVal(2);
3911   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3912 
3913   // We don't have the ability to slide mask vectors up indexed by their i1
3914   // elements; the smallest we can do is i8. Often we are able to bitcast to
3915   // equivalent i8 vectors. Note that when inserting a fixed-length vector
3916   // into a scalable one, we might not necessarily have enough scalable
3917   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
3918   if (SubVecVT.getVectorElementType() == MVT::i1 &&
3919       (OrigIdx != 0 || !Vec.isUndef())) {
3920     if (VecVT.getVectorMinNumElements() >= 8 &&
3921         SubVecVT.getVectorMinNumElements() >= 8) {
3922       assert(OrigIdx % 8 == 0 && "Invalid index");
3923       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
3924              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
3925              "Unexpected mask vector lowering");
3926       OrigIdx /= 8;
3927       SubVecVT =
3928           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
3929                            SubVecVT.isScalableVector());
3930       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
3931                                VecVT.isScalableVector());
3932       Vec = DAG.getBitcast(VecVT, Vec);
3933       SubVec = DAG.getBitcast(SubVecVT, SubVec);
3934     } else {
3935       // We can't slide this mask vector up indexed by its i1 elements.
3936       // This poses a problem when we wish to insert a scalable vector which
3937       // can't be re-expressed as a larger type. Just choose the slow path and
3938       // extend to a larger type, then truncate back down.
3939       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
3940       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
3941       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
3942       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
3943       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
3944                         Op.getOperand(2));
3945       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
3946       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
3947     }
3948   }
3949 
3950   // If the subvector vector is a fixed-length type, we cannot use subregister
3951   // manipulation to simplify the codegen; we don't know which register of a
3952   // LMUL group contains the specific subvector as we only know the minimum
3953   // register size. Therefore we must slide the vector group up the full
3954   // amount.
3955   if (SubVecVT.isFixedLengthVector()) {
3956     if (OrigIdx == 0 && Vec.isUndef())
3957       return Op;
3958     MVT ContainerVT = VecVT;
3959     if (VecVT.isFixedLengthVector()) {
3960       ContainerVT = getContainerForFixedLengthVector(VecVT);
3961       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3962     }
3963     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
3964                          DAG.getUNDEF(ContainerVT), SubVec,
3965                          DAG.getConstant(0, DL, XLenVT));
3966     SDValue Mask =
3967         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
3968     // Set the vector length to only the number of elements we care about. Note
3969     // that for slideup this includes the offset.
3970     SDValue VL =
3971         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
3972     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
3973     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3974                                   SubVec, SlideupAmt, Mask, VL);
3975     if (VecVT.isFixedLengthVector())
3976       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3977     return DAG.getBitcast(Op.getValueType(), Slideup);
3978   }
3979 
3980   unsigned SubRegIdx, RemIdx;
3981   std::tie(SubRegIdx, RemIdx) =
3982       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
3983           VecVT, SubVecVT, OrigIdx, TRI);
3984 
3985   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
3986   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
3987                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
3988                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
3989 
3990   // 1. If the Idx has been completely eliminated and this subvector's size is
3991   // a vector register or a multiple thereof, or the surrounding elements are
3992   // undef, then this is a subvector insert which naturally aligns to a vector
3993   // register. These can easily be handled using subregister manipulation.
3994   // 2. If the subvector is smaller than a vector register, then the insertion
3995   // must preserve the undisturbed elements of the register. We do this by
3996   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
3997   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
3998   // subvector within the vector register, and an INSERT_SUBVECTOR of that
3999   // LMUL=1 type back into the larger vector (resolving to another subregister
4000   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
4001   // to avoid allocating a large register group to hold our subvector.
4002   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
4003     return Op;
4004 
4005   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
4006   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
4007   // (in our case undisturbed). This means we can set up a subvector insertion
4008   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
4009   // size of the subvector.
4010   MVT InterSubVT = VecVT;
4011   SDValue AlignedExtract = Vec;
4012   unsigned AlignedIdx = OrigIdx - RemIdx;
4013   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4014     InterSubVT = getLMUL1VT(VecVT);
4015     // Extract a subvector equal to the nearest full vector register type. This
4016     // should resolve to a EXTRACT_SUBREG instruction.
4017     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4018                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
4019   }
4020 
4021   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4022   // For scalable vectors this must be further multiplied by vscale.
4023   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
4024 
4025   SDValue Mask, VL;
4026   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4027 
4028   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
4029   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
4030   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
4031   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
4032 
4033   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
4034                        DAG.getUNDEF(InterSubVT), SubVec,
4035                        DAG.getConstant(0, DL, XLenVT));
4036 
4037   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
4038                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
4039 
4040   // If required, insert this subvector back into the correct vector register.
4041   // This should resolve to an INSERT_SUBREG instruction.
4042   if (VecVT.bitsGT(InterSubVT))
4043     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
4044                           DAG.getConstant(AlignedIdx, DL, XLenVT));
4045 
4046   // We might have bitcast from a mask type: cast back to the original type if
4047   // required.
4048   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
4049 }
4050 
4051 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
4052                                                     SelectionDAG &DAG) const {
4053   SDValue Vec = Op.getOperand(0);
4054   MVT SubVecVT = Op.getSimpleValueType();
4055   MVT VecVT = Vec.getSimpleValueType();
4056 
4057   SDLoc DL(Op);
4058   MVT XLenVT = Subtarget.getXLenVT();
4059   unsigned OrigIdx = Op.getConstantOperandVal(1);
4060   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4061 
4062   // We don't have the ability to slide mask vectors down indexed by their i1
4063   // elements; the smallest we can do is i8. Often we are able to bitcast to
4064   // equivalent i8 vectors. Note that when extracting a fixed-length vector
4065   // from a scalable one, we might not necessarily have enough scalable
4066   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
4067   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
4068     if (VecVT.getVectorMinNumElements() >= 8 &&
4069         SubVecVT.getVectorMinNumElements() >= 8) {
4070       assert(OrigIdx % 8 == 0 && "Invalid index");
4071       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4072              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4073              "Unexpected mask vector lowering");
4074       OrigIdx /= 8;
4075       SubVecVT =
4076           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4077                            SubVecVT.isScalableVector());
4078       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4079                                VecVT.isScalableVector());
4080       Vec = DAG.getBitcast(VecVT, Vec);
4081     } else {
4082       // We can't slide this mask vector down, indexed by its i1 elements.
4083       // This poses a problem when we wish to extract a scalable vector which
4084       // can't be re-expressed as a larger type. Just choose the slow path and
4085       // extend to a larger type, then truncate back down.
4086       // TODO: We could probably improve this when extracting certain fixed
4087       // from fixed, where we can extract as i8 and shift the correct element
4088       // right to reach the desired subvector?
4089       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4090       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4091       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4092       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
4093                         Op.getOperand(1));
4094       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
4095       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
4096     }
4097   }
4098 
4099   // If the subvector vector is a fixed-length type, we cannot use subregister
4100   // manipulation to simplify the codegen; we don't know which register of a
4101   // LMUL group contains the specific subvector as we only know the minimum
4102   // register size. Therefore we must slide the vector group down the full
4103   // amount.
4104   if (SubVecVT.isFixedLengthVector()) {
4105     // With an index of 0 this is a cast-like subvector, which can be performed
4106     // with subregister operations.
4107     if (OrigIdx == 0)
4108       return Op;
4109     MVT ContainerVT = VecVT;
4110     if (VecVT.isFixedLengthVector()) {
4111       ContainerVT = getContainerForFixedLengthVector(VecVT);
4112       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4113     }
4114     SDValue Mask =
4115         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4116     // Set the vector length to only the number of elements we care about. This
4117     // avoids sliding down elements we're going to discard straight away.
4118     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
4119     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4120     SDValue Slidedown =
4121         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4122                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
4123     // Now we can use a cast-like subvector extract to get the result.
4124     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4125                             DAG.getConstant(0, DL, XLenVT));
4126     return DAG.getBitcast(Op.getValueType(), Slidedown);
4127   }
4128 
4129   unsigned SubRegIdx, RemIdx;
4130   std::tie(SubRegIdx, RemIdx) =
4131       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4132           VecVT, SubVecVT, OrigIdx, TRI);
4133 
4134   // If the Idx has been completely eliminated then this is a subvector extract
4135   // which naturally aligns to a vector register. These can easily be handled
4136   // using subregister manipulation.
4137   if (RemIdx == 0)
4138     return Op;
4139 
4140   // Else we must shift our vector register directly to extract the subvector.
4141   // Do this using VSLIDEDOWN.
4142 
4143   // If the vector type is an LMUL-group type, extract a subvector equal to the
4144   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
4145   // instruction.
4146   MVT InterSubVT = VecVT;
4147   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4148     InterSubVT = getLMUL1VT(VecVT);
4149     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4150                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
4151   }
4152 
4153   // Slide this vector register down by the desired number of elements in order
4154   // to place the desired subvector starting at element 0.
4155   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4156   // For scalable vectors this must be further multiplied by vscale.
4157   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
4158 
4159   SDValue Mask, VL;
4160   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
4161   SDValue Slidedown =
4162       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
4163                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
4164 
4165   // Now the vector is in the right position, extract our final subvector. This
4166   // should resolve to a COPY.
4167   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4168                           DAG.getConstant(0, DL, XLenVT));
4169 
4170   // We might have bitcast from a mask type: cast back to the original type if
4171   // required.
4172   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
4173 }
4174 
4175 // Lower step_vector to the vid instruction. Any non-identity step value must
4176 // be accounted for my manual expansion.
4177 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
4178                                               SelectionDAG &DAG) const {
4179   SDLoc DL(Op);
4180   MVT VT = Op.getSimpleValueType();
4181   MVT XLenVT = Subtarget.getXLenVT();
4182   SDValue Mask, VL;
4183   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
4184   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4185   uint64_t StepValImm = Op.getConstantOperandVal(0);
4186   if (StepValImm != 1) {
4187     if (isPowerOf2_64(StepValImm)) {
4188       SDValue StepVal =
4189           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4190                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
4191       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
4192     } else {
4193       SDValue StepVal = lowerScalarSplat(
4194           DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT,
4195           DL, DAG, Subtarget);
4196       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
4197     }
4198   }
4199   return StepVec;
4200 }
4201 
4202 // Implement vector_reverse using vrgather.vv with indices determined by
4203 // subtracting the id of each element from (VLMAX-1). This will convert
4204 // the indices like so:
4205 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
4206 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
4207 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
4208                                                  SelectionDAG &DAG) const {
4209   SDLoc DL(Op);
4210   MVT VecVT = Op.getSimpleValueType();
4211   unsigned EltSize = VecVT.getScalarSizeInBits();
4212   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
4213 
4214   unsigned MaxVLMAX = 0;
4215   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
4216   if (VectorBitsMax != 0)
4217     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
4218 
4219   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
4220   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
4221 
4222   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
4223   // to use vrgatherei16.vv.
4224   // TODO: It's also possible to use vrgatherei16.vv for other types to
4225   // decrease register width for the index calculation.
4226   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
4227     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
4228     // Reverse each half, then reassemble them in reverse order.
4229     // NOTE: It's also possible that after splitting that VLMAX no longer
4230     // requires vrgatherei16.vv.
4231     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
4232       SDValue Lo, Hi;
4233       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4234       EVT LoVT, HiVT;
4235       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
4236       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
4237       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
4238       // Reassemble the low and high pieces reversed.
4239       // FIXME: This is a CONCAT_VECTORS.
4240       SDValue Res =
4241           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
4242                       DAG.getIntPtrConstant(0, DL));
4243       return DAG.getNode(
4244           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
4245           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
4246     }
4247 
4248     // Just promote the int type to i16 which will double the LMUL.
4249     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
4250     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
4251   }
4252 
4253   MVT XLenVT = Subtarget.getXLenVT();
4254   SDValue Mask, VL;
4255   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4256 
4257   // Calculate VLMAX-1 for the desired SEW.
4258   unsigned MinElts = VecVT.getVectorMinNumElements();
4259   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
4260                               DAG.getConstant(MinElts, DL, XLenVT));
4261   SDValue VLMinus1 =
4262       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
4263 
4264   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
4265   bool IsRV32E64 =
4266       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
4267   SDValue SplatVL;
4268   if (!IsRV32E64)
4269     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
4270   else
4271     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
4272 
4273   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
4274   SDValue Indices =
4275       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
4276 
4277   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
4278 }
4279 
4280 SDValue
4281 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
4282                                                      SelectionDAG &DAG) const {
4283   SDLoc DL(Op);
4284   auto *Load = cast<LoadSDNode>(Op);
4285 
4286   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4287                                         Load->getMemoryVT(),
4288                                         *Load->getMemOperand()) &&
4289          "Expecting a correctly-aligned load");
4290 
4291   MVT VT = Op.getSimpleValueType();
4292   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4293 
4294   SDValue VL =
4295       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4296 
4297   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4298   SDValue NewLoad = DAG.getMemIntrinsicNode(
4299       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
4300       Load->getMemoryVT(), Load->getMemOperand());
4301 
4302   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
4303   return DAG.getMergeValues({Result, Load->getChain()}, DL);
4304 }
4305 
4306 SDValue
4307 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
4308                                                       SelectionDAG &DAG) const {
4309   SDLoc DL(Op);
4310   auto *Store = cast<StoreSDNode>(Op);
4311 
4312   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4313                                         Store->getMemoryVT(),
4314                                         *Store->getMemOperand()) &&
4315          "Expecting a correctly-aligned store");
4316 
4317   SDValue StoreVal = Store->getValue();
4318   MVT VT = StoreVal.getSimpleValueType();
4319 
4320   // If the size less than a byte, we need to pad with zeros to make a byte.
4321   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
4322     VT = MVT::v8i1;
4323     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
4324                            DAG.getConstant(0, DL, VT), StoreVal,
4325                            DAG.getIntPtrConstant(0, DL));
4326   }
4327 
4328   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4329 
4330   SDValue VL =
4331       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4332 
4333   SDValue NewValue =
4334       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
4335   return DAG.getMemIntrinsicNode(
4336       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
4337       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
4338       Store->getMemoryVT(), Store->getMemOperand());
4339 }
4340 
4341 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const {
4342   auto *Load = cast<MaskedLoadSDNode>(Op);
4343 
4344   SDLoc DL(Op);
4345   MVT VT = Op.getSimpleValueType();
4346   MVT XLenVT = Subtarget.getXLenVT();
4347 
4348   SDValue Mask = Load->getMask();
4349   SDValue PassThru = Load->getPassThru();
4350   SDValue VL;
4351 
4352   MVT ContainerVT = VT;
4353   if (VT.isFixedLengthVector()) {
4354     ContainerVT = getContainerForFixedLengthVector(VT);
4355     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4356 
4357     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4358     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4359     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4360   } else
4361     VL = DAG.getRegister(RISCV::X0, XLenVT);
4362 
4363   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4364   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT);
4365   SDValue Ops[] = {Load->getChain(),   IntID, PassThru,
4366                    Load->getBasePtr(), Mask,  VL};
4367   SDValue Result =
4368       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4369                               Load->getMemoryVT(), Load->getMemOperand());
4370   SDValue Chain = Result.getValue(1);
4371 
4372   if (VT.isFixedLengthVector())
4373     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4374 
4375   return DAG.getMergeValues({Result, Chain}, DL);
4376 }
4377 
4378 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const {
4379   auto *Store = cast<MaskedStoreSDNode>(Op);
4380 
4381   SDLoc DL(Op);
4382   SDValue Val = Store->getValue();
4383   SDValue Mask = Store->getMask();
4384   MVT VT = Val.getSimpleValueType();
4385   MVT XLenVT = Subtarget.getXLenVT();
4386   SDValue VL;
4387 
4388   MVT ContainerVT = VT;
4389   if (VT.isFixedLengthVector()) {
4390     ContainerVT = getContainerForFixedLengthVector(VT);
4391     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4392 
4393     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4394     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4395     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4396   } else
4397     VL = DAG.getRegister(RISCV::X0, XLenVT);
4398 
4399   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT);
4400   return DAG.getMemIntrinsicNode(
4401       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
4402       {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL},
4403       Store->getMemoryVT(), Store->getMemOperand());
4404 }
4405 
4406 SDValue
4407 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
4408                                                       SelectionDAG &DAG) const {
4409   MVT InVT = Op.getOperand(0).getSimpleValueType();
4410   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
4411 
4412   MVT VT = Op.getSimpleValueType();
4413 
4414   SDValue Op1 =
4415       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4416   SDValue Op2 =
4417       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4418 
4419   SDLoc DL(Op);
4420   SDValue VL =
4421       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4422 
4423   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4424   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4425 
4426   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
4427                             Op.getOperand(2), Mask, VL);
4428 
4429   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
4430 }
4431 
4432 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
4433     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
4434   MVT VT = Op.getSimpleValueType();
4435 
4436   if (VT.getVectorElementType() == MVT::i1)
4437     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
4438 
4439   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
4440 }
4441 
4442 SDValue
4443 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
4444                                                       SelectionDAG &DAG) const {
4445   unsigned Opc;
4446   switch (Op.getOpcode()) {
4447   default: llvm_unreachable("Unexpected opcode!");
4448   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
4449   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
4450   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
4451   }
4452 
4453   return lowerToScalableOp(Op, DAG, Opc);
4454 }
4455 
4456 // Lower vector ABS to smax(X, sub(0, X)).
4457 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
4458   SDLoc DL(Op);
4459   MVT VT = Op.getSimpleValueType();
4460   SDValue X = Op.getOperand(0);
4461 
4462   assert(VT.isFixedLengthVector() && "Unexpected type");
4463 
4464   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4465   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
4466 
4467   SDValue Mask, VL;
4468   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4469 
4470   SDValue SplatZero =
4471       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4472                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4473   SDValue NegX =
4474       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
4475   SDValue Max =
4476       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
4477 
4478   return convertFromScalableVector(VT, Max, DAG, Subtarget);
4479 }
4480 
4481 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
4482     SDValue Op, SelectionDAG &DAG) const {
4483   SDLoc DL(Op);
4484   MVT VT = Op.getSimpleValueType();
4485   SDValue Mag = Op.getOperand(0);
4486   SDValue Sign = Op.getOperand(1);
4487   assert(Mag.getValueType() == Sign.getValueType() &&
4488          "Can only handle COPYSIGN with matching types.");
4489 
4490   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4491   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
4492   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
4493 
4494   SDValue Mask, VL;
4495   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4496 
4497   SDValue CopySign =
4498       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
4499 
4500   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
4501 }
4502 
4503 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
4504     SDValue Op, SelectionDAG &DAG) const {
4505   MVT VT = Op.getSimpleValueType();
4506   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4507 
4508   MVT I1ContainerVT =
4509       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4510 
4511   SDValue CC =
4512       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
4513   SDValue Op1 =
4514       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4515   SDValue Op2 =
4516       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
4517 
4518   SDLoc DL(Op);
4519   SDValue Mask, VL;
4520   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4521 
4522   SDValue Select =
4523       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
4524 
4525   return convertFromScalableVector(VT, Select, DAG, Subtarget);
4526 }
4527 
4528 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
4529                                                unsigned NewOpc,
4530                                                bool HasMask) const {
4531   MVT VT = Op.getSimpleValueType();
4532   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4533 
4534   // Create list of operands by converting existing ones to scalable types.
4535   SmallVector<SDValue, 6> Ops;
4536   for (const SDValue &V : Op->op_values()) {
4537     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
4538 
4539     // Pass through non-vector operands.
4540     if (!V.getValueType().isVector()) {
4541       Ops.push_back(V);
4542       continue;
4543     }
4544 
4545     // "cast" fixed length vector to a scalable vector.
4546     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
4547            "Only fixed length vectors are supported!");
4548     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
4549   }
4550 
4551   SDLoc DL(Op);
4552   SDValue Mask, VL;
4553   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4554   if (HasMask)
4555     Ops.push_back(Mask);
4556   Ops.push_back(VL);
4557 
4558   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
4559   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
4560 }
4561 
4562 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
4563 // * Operands of each node are assumed to be in the same order.
4564 // * The EVL operand is promoted from i32 to i64 on RV64.
4565 // * Fixed-length vectors are converted to their scalable-vector container
4566 //   types.
4567 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
4568                                        unsigned RISCVISDOpc) const {
4569   SDLoc DL(Op);
4570   MVT VT = Op.getSimpleValueType();
4571   SmallVector<SDValue, 4> Ops;
4572 
4573   for (const auto &OpIdx : enumerate(Op->ops())) {
4574     SDValue V = OpIdx.value();
4575     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
4576     // Pass through operands which aren't fixed-length vectors.
4577     if (!V.getValueType().isFixedLengthVector()) {
4578       Ops.push_back(V);
4579       continue;
4580     }
4581     // "cast" fixed length vector to a scalable vector.
4582     MVT OpVT = V.getSimpleValueType();
4583     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
4584     assert(useRVVForFixedLengthVectorVT(OpVT) &&
4585            "Only fixed length vectors are supported!");
4586     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
4587   }
4588 
4589   if (!VT.isFixedLengthVector())
4590     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
4591 
4592   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4593 
4594   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
4595 
4596   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
4597 }
4598 
4599 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to
4600 // a RVV indexed load. The RVV indexed load instructions only support the
4601 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4602 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4603 // indexing is extended to the XLEN value type and scaled accordingly.
4604 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const {
4605   auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
4606   SDLoc DL(Op);
4607 
4608   SDValue Index = MGN->getIndex();
4609   SDValue Mask = MGN->getMask();
4610   SDValue PassThru = MGN->getPassThru();
4611 
4612   MVT VT = Op.getSimpleValueType();
4613   MVT IndexVT = Index.getSimpleValueType();
4614   MVT XLenVT = Subtarget.getXLenVT();
4615 
4616   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4617          "Unexpected VTs!");
4618   assert(MGN->getBasePtr().getSimpleValueType() == XLenVT &&
4619          "Unexpected pointer type");
4620   // Targets have to explicitly opt-in for extending vector loads.
4621   assert(MGN->getExtensionType() == ISD::NON_EXTLOAD &&
4622          "Unexpected extending MGATHER");
4623 
4624   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4625   // the selection of the masked intrinsics doesn't do this for us.
4626   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4627 
4628   SDValue VL;
4629   MVT ContainerVT = VT;
4630   if (VT.isFixedLengthVector()) {
4631     // We need to use the larger of the result and index type to determine the
4632     // scalable type to use so we don't increase LMUL for any operand/result.
4633     if (VT.bitsGE(IndexVT)) {
4634       ContainerVT = getContainerForFixedLengthVector(VT);
4635       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4636                                  ContainerVT.getVectorElementCount());
4637     } else {
4638       IndexVT = getContainerForFixedLengthVector(IndexVT);
4639       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
4640                                      IndexVT.getVectorElementCount());
4641     }
4642 
4643     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4644 
4645     if (!IsUnmasked) {
4646       MVT MaskVT =
4647           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4648       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4649       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4650     }
4651 
4652     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4653   } else
4654     VL = DAG.getRegister(RISCV::X0, XLenVT);
4655 
4656   unsigned IntID =
4657       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
4658   SmallVector<SDValue, 8> Ops{MGN->getChain(),
4659                               DAG.getTargetConstant(IntID, DL, XLenVT)};
4660   if (!IsUnmasked)
4661     Ops.push_back(PassThru);
4662   Ops.push_back(MGN->getBasePtr());
4663   Ops.push_back(Index);
4664   if (!IsUnmasked)
4665     Ops.push_back(Mask);
4666   Ops.push_back(VL);
4667 
4668   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4669   SDValue Result =
4670       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4671                               MGN->getMemoryVT(), MGN->getMemOperand());
4672   SDValue Chain = Result.getValue(1);
4673 
4674   if (VT.isFixedLengthVector())
4675     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4676 
4677   return DAG.getMergeValues({Result, Chain}, DL);
4678 }
4679 
4680 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to
4681 // a RVV indexed store. The RVV indexed store instructions only support the
4682 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4683 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4684 // indexing is extended to the XLEN value type and scaled accordingly.
4685 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op,
4686                                            SelectionDAG &DAG) const {
4687   auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
4688   SDLoc DL(Op);
4689   SDValue Index = MSN->getIndex();
4690   SDValue Mask = MSN->getMask();
4691   SDValue Val = MSN->getValue();
4692 
4693   MVT VT = Val.getSimpleValueType();
4694   MVT IndexVT = Index.getSimpleValueType();
4695   MVT XLenVT = Subtarget.getXLenVT();
4696 
4697   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4698          "Unexpected VTs!");
4699   assert(MSN->getBasePtr().getSimpleValueType() == XLenVT &&
4700          "Unexpected pointer type");
4701   // Targets have to explicitly opt-in for extending vector loads and
4702   // truncating vector stores.
4703   assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER");
4704 
4705   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4706   // the selection of the masked intrinsics doesn't do this for us.
4707   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4708 
4709   SDValue VL;
4710   if (VT.isFixedLengthVector()) {
4711     // We need to use the larger of the value and index type to determine the
4712     // scalable type to use so we don't increase LMUL for any operand/result.
4713     MVT ContainerVT;
4714     if (VT.bitsGE(IndexVT)) {
4715       ContainerVT = getContainerForFixedLengthVector(VT);
4716       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4717                                  ContainerVT.getVectorElementCount());
4718     } else {
4719       IndexVT = getContainerForFixedLengthVector(IndexVT);
4720       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4721                                      IndexVT.getVectorElementCount());
4722     }
4723 
4724     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4725     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4726 
4727     if (!IsUnmasked) {
4728       MVT MaskVT =
4729           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4730       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4731     }
4732 
4733     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4734   } else
4735     VL = DAG.getRegister(RISCV::X0, XLenVT);
4736 
4737   unsigned IntID =
4738       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
4739   SmallVector<SDValue, 8> Ops{MSN->getChain(),
4740                               DAG.getTargetConstant(IntID, DL, XLenVT)};
4741   Ops.push_back(Val);
4742   Ops.push_back(MSN->getBasePtr());
4743   Ops.push_back(Index);
4744   if (!IsUnmasked)
4745     Ops.push_back(Mask);
4746   Ops.push_back(VL);
4747 
4748   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops,
4749                                  MSN->getMemoryVT(), MSN->getMemOperand());
4750 }
4751 
4752 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
4753                                                SelectionDAG &DAG) const {
4754   const MVT XLenVT = Subtarget.getXLenVT();
4755   SDLoc DL(Op);
4756   SDValue Chain = Op->getOperand(0);
4757   SDValue SysRegNo = DAG.getConstant(
4758       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4759   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
4760   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
4761 
4762   // Encoding used for rounding mode in RISCV differs from that used in
4763   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
4764   // table, which consists of a sequence of 4-bit fields, each representing
4765   // corresponding FLT_ROUNDS mode.
4766   static const int Table =
4767       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
4768       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
4769       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
4770       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
4771       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
4772 
4773   SDValue Shift =
4774       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
4775   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4776                                 DAG.getConstant(Table, DL, XLenVT), Shift);
4777   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4778                                DAG.getConstant(7, DL, XLenVT));
4779 
4780   return DAG.getMergeValues({Masked, Chain}, DL);
4781 }
4782 
4783 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
4784                                                SelectionDAG &DAG) const {
4785   const MVT XLenVT = Subtarget.getXLenVT();
4786   SDLoc DL(Op);
4787   SDValue Chain = Op->getOperand(0);
4788   SDValue RMValue = Op->getOperand(1);
4789   SDValue SysRegNo = DAG.getConstant(
4790       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4791 
4792   // Encoding used for rounding mode in RISCV differs from that used in
4793   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
4794   // a table, which consists of a sequence of 4-bit fields, each representing
4795   // corresponding RISCV mode.
4796   static const unsigned Table =
4797       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
4798       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
4799       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
4800       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
4801       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
4802 
4803   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
4804                               DAG.getConstant(2, DL, XLenVT));
4805   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4806                                 DAG.getConstant(Table, DL, XLenVT), Shift);
4807   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4808                         DAG.getConstant(0x7, DL, XLenVT));
4809   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
4810                      RMValue);
4811 }
4812 
4813 // Returns the opcode of the target-specific SDNode that implements the 32-bit
4814 // form of the given Opcode.
4815 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
4816   switch (Opcode) {
4817   default:
4818     llvm_unreachable("Unexpected opcode");
4819   case ISD::SHL:
4820     return RISCVISD::SLLW;
4821   case ISD::SRA:
4822     return RISCVISD::SRAW;
4823   case ISD::SRL:
4824     return RISCVISD::SRLW;
4825   case ISD::SDIV:
4826     return RISCVISD::DIVW;
4827   case ISD::UDIV:
4828     return RISCVISD::DIVUW;
4829   case ISD::UREM:
4830     return RISCVISD::REMUW;
4831   case ISD::ROTL:
4832     return RISCVISD::ROLW;
4833   case ISD::ROTR:
4834     return RISCVISD::RORW;
4835   case RISCVISD::GREV:
4836     return RISCVISD::GREVW;
4837   case RISCVISD::GORC:
4838     return RISCVISD::GORCW;
4839   }
4840 }
4841 
4842 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
4843 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
4844 // otherwise be promoted to i64, making it difficult to select the
4845 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
4846 // type i8/i16/i32 is lost.
4847 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
4848                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
4849   SDLoc DL(N);
4850   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
4851   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
4852   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
4853   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
4854   // ReplaceNodeResults requires we maintain the same type for the return value.
4855   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
4856 }
4857 
4858 // Converts the given 32-bit operation to a i64 operation with signed extension
4859 // semantic to reduce the signed extension instructions.
4860 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
4861   SDLoc DL(N);
4862   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4863   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4864   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
4865   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
4866                                DAG.getValueType(MVT::i32));
4867   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
4868 }
4869 
4870 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
4871                                              SmallVectorImpl<SDValue> &Results,
4872                                              SelectionDAG &DAG) const {
4873   SDLoc DL(N);
4874   switch (N->getOpcode()) {
4875   default:
4876     llvm_unreachable("Don't know how to custom type legalize this operation!");
4877   case ISD::STRICT_FP_TO_SINT:
4878   case ISD::STRICT_FP_TO_UINT:
4879   case ISD::FP_TO_SINT:
4880   case ISD::FP_TO_UINT: {
4881     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4882            "Unexpected custom legalisation");
4883     bool IsStrict = N->isStrictFPOpcode();
4884     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
4885                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
4886     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
4887     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
4888         TargetLowering::TypeSoftenFloat) {
4889       // FIXME: Support strict FP.
4890       if (IsStrict)
4891         return;
4892       if (!isTypeLegal(Op0.getValueType()))
4893         return;
4894       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
4895       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0);
4896       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4897       return;
4898     }
4899     // If the FP type needs to be softened, emit a library call using the 'si'
4900     // version. If we left it to default legalization we'd end up with 'di'. If
4901     // the FP type doesn't need to be softened just let generic type
4902     // legalization promote the result type.
4903     RTLIB::Libcall LC;
4904     if (IsSigned)
4905       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
4906     else
4907       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
4908     MakeLibCallOptions CallOptions;
4909     EVT OpVT = Op0.getValueType();
4910     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
4911     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4912     SDValue Result;
4913     std::tie(Result, Chain) =
4914         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
4915     Results.push_back(Result);
4916     if (IsStrict)
4917       Results.push_back(Chain);
4918     break;
4919   }
4920   case ISD::READCYCLECOUNTER: {
4921     assert(!Subtarget.is64Bit() &&
4922            "READCYCLECOUNTER only has custom type legalization on riscv32");
4923 
4924     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4925     SDValue RCW =
4926         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
4927 
4928     Results.push_back(
4929         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
4930     Results.push_back(RCW.getValue(2));
4931     break;
4932   }
4933   case ISD::MUL: {
4934     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
4935     unsigned XLen = Subtarget.getXLen();
4936     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
4937     if (Size > XLen) {
4938       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
4939       SDValue LHS = N->getOperand(0);
4940       SDValue RHS = N->getOperand(1);
4941       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
4942 
4943       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
4944       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
4945       // We need exactly one side to be unsigned.
4946       if (LHSIsU == RHSIsU)
4947         return;
4948 
4949       auto MakeMULPair = [&](SDValue S, SDValue U) {
4950         MVT XLenVT = Subtarget.getXLenVT();
4951         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
4952         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
4953         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
4954         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
4955         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
4956       };
4957 
4958       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
4959       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
4960 
4961       // The other operand should be signed, but still prefer MULH when
4962       // possible.
4963       if (RHSIsU && LHSIsS && !RHSIsS)
4964         Results.push_back(MakeMULPair(LHS, RHS));
4965       else if (LHSIsU && RHSIsS && !LHSIsS)
4966         Results.push_back(MakeMULPair(RHS, LHS));
4967 
4968       return;
4969     }
4970     LLVM_FALLTHROUGH;
4971   }
4972   case ISD::ADD:
4973   case ISD::SUB:
4974     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4975            "Unexpected custom legalisation");
4976     if (N->getOperand(1).getOpcode() == ISD::Constant)
4977       return;
4978     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
4979     break;
4980   case ISD::SHL:
4981   case ISD::SRA:
4982   case ISD::SRL:
4983     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4984            "Unexpected custom legalisation");
4985     if (N->getOperand(1).getOpcode() == ISD::Constant)
4986       return;
4987     Results.push_back(customLegalizeToWOp(N, DAG));
4988     break;
4989   case ISD::ROTL:
4990   case ISD::ROTR:
4991     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4992            "Unexpected custom legalisation");
4993     Results.push_back(customLegalizeToWOp(N, DAG));
4994     break;
4995   case ISD::CTTZ:
4996   case ISD::CTTZ_ZERO_UNDEF:
4997   case ISD::CTLZ:
4998   case ISD::CTLZ_ZERO_UNDEF: {
4999     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5000            "Unexpected custom legalisation");
5001 
5002     SDValue NewOp0 =
5003         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5004     bool IsCTZ =
5005         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
5006     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
5007     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
5008     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5009     return;
5010   }
5011   case ISD::SDIV:
5012   case ISD::UDIV:
5013   case ISD::UREM: {
5014     MVT VT = N->getSimpleValueType(0);
5015     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
5016            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
5017            "Unexpected custom legalisation");
5018     // Don't promote division/remainder by constant since we should expand those
5019     // to multiply by magic constant.
5020     // FIXME: What if the expansion is disabled for minsize.
5021     if (N->getOperand(1).getOpcode() == ISD::Constant)
5022       return;
5023 
5024     // If the input is i32, use ANY_EXTEND since the W instructions don't read
5025     // the upper 32 bits. For other types we need to sign or zero extend
5026     // based on the opcode.
5027     unsigned ExtOpc = ISD::ANY_EXTEND;
5028     if (VT != MVT::i32)
5029       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
5030                                            : ISD::ZERO_EXTEND;
5031 
5032     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
5033     break;
5034   }
5035   case ISD::UADDO:
5036   case ISD::USUBO: {
5037     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5038            "Unexpected custom legalisation");
5039     bool IsAdd = N->getOpcode() == ISD::UADDO;
5040     // Create an ADDW or SUBW.
5041     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5042     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5043     SDValue Res =
5044         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
5045     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
5046                       DAG.getValueType(MVT::i32));
5047 
5048     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
5049     // Since the inputs are sign extended from i32, this is equivalent to
5050     // comparing the lower 32 bits.
5051     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5052     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
5053                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
5054 
5055     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5056     Results.push_back(Overflow);
5057     return;
5058   }
5059   case ISD::UADDSAT:
5060   case ISD::USUBSAT: {
5061     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5062            "Unexpected custom legalisation");
5063     if (Subtarget.hasStdExtZbb()) {
5064       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
5065       // sign extend allows overflow of the lower 32 bits to be detected on
5066       // the promoted size.
5067       SDValue LHS =
5068           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5069       SDValue RHS =
5070           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
5071       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
5072       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5073       return;
5074     }
5075 
5076     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
5077     // promotion for UADDO/USUBO.
5078     Results.push_back(expandAddSubSat(N, DAG));
5079     return;
5080   }
5081   case ISD::BITCAST: {
5082     EVT VT = N->getValueType(0);
5083     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
5084     SDValue Op0 = N->getOperand(0);
5085     EVT Op0VT = Op0.getValueType();
5086     MVT XLenVT = Subtarget.getXLenVT();
5087     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
5088       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
5089       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
5090     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
5091                Subtarget.hasStdExtF()) {
5092       SDValue FPConv =
5093           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
5094       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
5095     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
5096                isTypeLegal(Op0VT)) {
5097       // Custom-legalize bitcasts from fixed-length vector types to illegal
5098       // scalar types in order to improve codegen. Bitcast the vector to a
5099       // one-element vector type whose element type is the same as the result
5100       // type, and extract the first element.
5101       LLVMContext &Context = *DAG.getContext();
5102       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
5103       Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
5104                                     DAG.getConstant(0, DL, XLenVT)));
5105     }
5106     break;
5107   }
5108   case RISCVISD::GREV:
5109   case RISCVISD::GORC: {
5110     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5111            "Unexpected custom legalisation");
5112     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5113     // This is similar to customLegalizeToWOp, except that we pass the second
5114     // operand (a TargetConstant) straight through: it is already of type
5115     // XLenVT.
5116     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5117     SDValue NewOp0 =
5118         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5119     SDValue NewOp1 =
5120         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5121     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5122     // ReplaceNodeResults requires we maintain the same type for the return
5123     // value.
5124     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5125     break;
5126   }
5127   case RISCVISD::SHFL: {
5128     // There is no SHFLIW instruction, but we can just promote the operation.
5129     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5130            "Unexpected custom legalisation");
5131     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5132     SDValue NewOp0 =
5133         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5134     SDValue NewOp1 =
5135         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5136     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
5137     // ReplaceNodeResults requires we maintain the same type for the return
5138     // value.
5139     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5140     break;
5141   }
5142   case ISD::BSWAP:
5143   case ISD::BITREVERSE: {
5144     MVT VT = N->getSimpleValueType(0);
5145     MVT XLenVT = Subtarget.getXLenVT();
5146     assert((VT == MVT::i8 || VT == MVT::i16 ||
5147             (VT == MVT::i32 && Subtarget.is64Bit())) &&
5148            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
5149     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
5150     unsigned Imm = VT.getSizeInBits() - 1;
5151     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
5152     if (N->getOpcode() == ISD::BSWAP)
5153       Imm &= ~0x7U;
5154     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
5155     SDValue GREVI =
5156         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
5157     // ReplaceNodeResults requires we maintain the same type for the return
5158     // value.
5159     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
5160     break;
5161   }
5162   case ISD::FSHL:
5163   case ISD::FSHR: {
5164     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5165            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
5166     SDValue NewOp0 =
5167         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5168     SDValue NewOp1 =
5169         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5170     SDValue NewOp2 =
5171         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5172     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
5173     // Mask the shift amount to 5 bits.
5174     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5175                          DAG.getConstant(0x1f, DL, MVT::i64));
5176     unsigned Opc =
5177         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
5178     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
5179     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
5180     break;
5181   }
5182   case ISD::EXTRACT_VECTOR_ELT: {
5183     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
5184     // type is illegal (currently only vXi64 RV32).
5185     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
5186     // transferred to the destination register. We issue two of these from the
5187     // upper- and lower- halves of the SEW-bit vector element, slid down to the
5188     // first element.
5189     SDValue Vec = N->getOperand(0);
5190     SDValue Idx = N->getOperand(1);
5191 
5192     // The vector type hasn't been legalized yet so we can't issue target
5193     // specific nodes if it needs legalization.
5194     // FIXME: We would manually legalize if it's important.
5195     if (!isTypeLegal(Vec.getValueType()))
5196       return;
5197 
5198     MVT VecVT = Vec.getSimpleValueType();
5199 
5200     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
5201            VecVT.getVectorElementType() == MVT::i64 &&
5202            "Unexpected EXTRACT_VECTOR_ELT legalization");
5203 
5204     // If this is a fixed vector, we need to convert it to a scalable vector.
5205     MVT ContainerVT = VecVT;
5206     if (VecVT.isFixedLengthVector()) {
5207       ContainerVT = getContainerForFixedLengthVector(VecVT);
5208       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5209     }
5210 
5211     MVT XLenVT = Subtarget.getXLenVT();
5212 
5213     // Use a VL of 1 to avoid processing more elements than we need.
5214     MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5215     SDValue VL = DAG.getConstant(1, DL, XLenVT);
5216     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5217 
5218     // Unless the index is known to be 0, we must slide the vector down to get
5219     // the desired element into index 0.
5220     if (!isNullConstant(Idx)) {
5221       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5222                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
5223     }
5224 
5225     // Extract the lower XLEN bits of the correct vector element.
5226     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5227 
5228     // To extract the upper XLEN bits of the vector element, shift the first
5229     // element right by 32 bits and re-extract the lower XLEN bits.
5230     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5231                                      DAG.getConstant(32, DL, XLenVT), VL);
5232     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
5233                                  ThirtyTwoV, Mask, VL);
5234 
5235     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5236 
5237     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5238     break;
5239   }
5240   case ISD::INTRINSIC_WO_CHAIN: {
5241     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5242     switch (IntNo) {
5243     default:
5244       llvm_unreachable(
5245           "Don't know how to custom type legalize this intrinsic!");
5246     case Intrinsic::riscv_orc_b: {
5247       // Lower to the GORCI encoding for orc.b with the operand extended.
5248       SDValue NewOp =
5249           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5250       // If Zbp is enabled, use GORCIW which will sign extend the result.
5251       unsigned Opc =
5252           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
5253       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
5254                                 DAG.getConstant(7, DL, MVT::i64));
5255       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5256       return;
5257     }
5258     case Intrinsic::riscv_grev:
5259     case Intrinsic::riscv_gorc: {
5260       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5261              "Unexpected custom legalisation");
5262       SDValue NewOp1 =
5263           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5264       SDValue NewOp2 =
5265           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5266       unsigned Opc =
5267           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
5268       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5269       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5270       break;
5271     }
5272     case Intrinsic::riscv_shfl:
5273     case Intrinsic::riscv_unshfl: {
5274       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5275              "Unexpected custom legalisation");
5276       SDValue NewOp1 =
5277           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5278       SDValue NewOp2 =
5279           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5280       unsigned Opc =
5281           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
5282       if (isa<ConstantSDNode>(N->getOperand(2))) {
5283         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5284                              DAG.getConstant(0xf, DL, MVT::i64));
5285         Opc =
5286             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
5287       }
5288       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5289       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5290       break;
5291     }
5292     case Intrinsic::riscv_bcompress:
5293     case Intrinsic::riscv_bdecompress: {
5294       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5295              "Unexpected custom legalisation");
5296       SDValue NewOp1 =
5297           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5298       SDValue NewOp2 =
5299           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5300       unsigned Opc = IntNo == Intrinsic::riscv_bcompress
5301                          ? RISCVISD::BCOMPRESSW
5302                          : RISCVISD::BDECOMPRESSW;
5303       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5304       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5305       break;
5306     }
5307     case Intrinsic::riscv_vmv_x_s: {
5308       EVT VT = N->getValueType(0);
5309       MVT XLenVT = Subtarget.getXLenVT();
5310       if (VT.bitsLT(XLenVT)) {
5311         // Simple case just extract using vmv.x.s and truncate.
5312         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
5313                                       Subtarget.getXLenVT(), N->getOperand(1));
5314         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
5315         return;
5316       }
5317 
5318       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
5319              "Unexpected custom legalization");
5320 
5321       // We need to do the move in two steps.
5322       SDValue Vec = N->getOperand(1);
5323       MVT VecVT = Vec.getSimpleValueType();
5324 
5325       // First extract the lower XLEN bits of the element.
5326       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5327 
5328       // To extract the upper XLEN bits of the vector element, shift the first
5329       // element right by 32 bits and re-extract the lower XLEN bits.
5330       SDValue VL = DAG.getConstant(1, DL, XLenVT);
5331       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5332       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5333       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
5334                                        DAG.getConstant(32, DL, XLenVT), VL);
5335       SDValue LShr32 =
5336           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
5337       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5338 
5339       Results.push_back(
5340           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5341       break;
5342     }
5343     }
5344     break;
5345   }
5346   case ISD::VECREDUCE_ADD:
5347   case ISD::VECREDUCE_AND:
5348   case ISD::VECREDUCE_OR:
5349   case ISD::VECREDUCE_XOR:
5350   case ISD::VECREDUCE_SMAX:
5351   case ISD::VECREDUCE_UMAX:
5352   case ISD::VECREDUCE_SMIN:
5353   case ISD::VECREDUCE_UMIN:
5354     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
5355       Results.push_back(V);
5356     break;
5357   case ISD::FLT_ROUNDS_: {
5358     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
5359     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
5360     Results.push_back(Res.getValue(0));
5361     Results.push_back(Res.getValue(1));
5362     break;
5363   }
5364   }
5365 }
5366 
5367 // A structure to hold one of the bit-manipulation patterns below. Together, a
5368 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
5369 //   (or (and (shl x, 1), 0xAAAAAAAA),
5370 //       (and (srl x, 1), 0x55555555))
5371 struct RISCVBitmanipPat {
5372   SDValue Op;
5373   unsigned ShAmt;
5374   bool IsSHL;
5375 
5376   bool formsPairWith(const RISCVBitmanipPat &Other) const {
5377     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
5378   }
5379 };
5380 
5381 // Matches patterns of the form
5382 //   (and (shl x, C2), (C1 << C2))
5383 //   (and (srl x, C2), C1)
5384 //   (shl (and x, C1), C2)
5385 //   (srl (and x, (C1 << C2)), C2)
5386 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
5387 // The expected masks for each shift amount are specified in BitmanipMasks where
5388 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
5389 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
5390 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
5391 // XLen is 64.
5392 static Optional<RISCVBitmanipPat>
5393 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
5394   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
5395          "Unexpected number of masks");
5396   Optional<uint64_t> Mask;
5397   // Optionally consume a mask around the shift operation.
5398   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
5399     Mask = Op.getConstantOperandVal(1);
5400     Op = Op.getOperand(0);
5401   }
5402   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
5403     return None;
5404   bool IsSHL = Op.getOpcode() == ISD::SHL;
5405 
5406   if (!isa<ConstantSDNode>(Op.getOperand(1)))
5407     return None;
5408   uint64_t ShAmt = Op.getConstantOperandVal(1);
5409 
5410   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
5411   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
5412     return None;
5413   // If we don't have enough masks for 64 bit, then we must be trying to
5414   // match SHFL so we're only allowed to shift 1/4 of the width.
5415   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
5416     return None;
5417 
5418   SDValue Src = Op.getOperand(0);
5419 
5420   // The expected mask is shifted left when the AND is found around SHL
5421   // patterns.
5422   //   ((x >> 1) & 0x55555555)
5423   //   ((x << 1) & 0xAAAAAAAA)
5424   bool SHLExpMask = IsSHL;
5425 
5426   if (!Mask) {
5427     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
5428     // the mask is all ones: consume that now.
5429     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
5430       Mask = Src.getConstantOperandVal(1);
5431       Src = Src.getOperand(0);
5432       // The expected mask is now in fact shifted left for SRL, so reverse the
5433       // decision.
5434       //   ((x & 0xAAAAAAAA) >> 1)
5435       //   ((x & 0x55555555) << 1)
5436       SHLExpMask = !SHLExpMask;
5437     } else {
5438       // Use a default shifted mask of all-ones if there's no AND, truncated
5439       // down to the expected width. This simplifies the logic later on.
5440       Mask = maskTrailingOnes<uint64_t>(Width);
5441       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
5442     }
5443   }
5444 
5445   unsigned MaskIdx = Log2_32(ShAmt);
5446   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
5447 
5448   if (SHLExpMask)
5449     ExpMask <<= ShAmt;
5450 
5451   if (Mask != ExpMask)
5452     return None;
5453 
5454   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
5455 }
5456 
5457 // Matches any of the following bit-manipulation patterns:
5458 //   (and (shl x, 1), (0x55555555 << 1))
5459 //   (and (srl x, 1), 0x55555555)
5460 //   (shl (and x, 0x55555555), 1)
5461 //   (srl (and x, (0x55555555 << 1)), 1)
5462 // where the shift amount and mask may vary thus:
5463 //   [1]  = 0x55555555 / 0xAAAAAAAA
5464 //   [2]  = 0x33333333 / 0xCCCCCCCC
5465 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
5466 //   [8]  = 0x00FF00FF / 0xFF00FF00
5467 //   [16] = 0x0000FFFF / 0xFFFFFFFF
5468 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
5469 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
5470   // These are the unshifted masks which we use to match bit-manipulation
5471   // patterns. They may be shifted left in certain circumstances.
5472   static const uint64_t BitmanipMasks[] = {
5473       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
5474       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
5475 
5476   return matchRISCVBitmanipPat(Op, BitmanipMasks);
5477 }
5478 
5479 // Match the following pattern as a GREVI(W) operation
5480 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
5481 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
5482                                const RISCVSubtarget &Subtarget) {
5483   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5484   EVT VT = Op.getValueType();
5485 
5486   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
5487     auto LHS = matchGREVIPat(Op.getOperand(0));
5488     auto RHS = matchGREVIPat(Op.getOperand(1));
5489     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
5490       SDLoc DL(Op);
5491       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
5492                          DAG.getConstant(LHS->ShAmt, DL, VT));
5493     }
5494   }
5495   return SDValue();
5496 }
5497 
5498 // Matches any the following pattern as a GORCI(W) operation
5499 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
5500 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
5501 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
5502 // Note that with the variant of 3.,
5503 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
5504 // the inner pattern will first be matched as GREVI and then the outer
5505 // pattern will be matched to GORC via the first rule above.
5506 // 4.  (or (rotl/rotr x, bitwidth/2), x)
5507 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
5508                                const RISCVSubtarget &Subtarget) {
5509   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5510   EVT VT = Op.getValueType();
5511 
5512   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
5513     SDLoc DL(Op);
5514     SDValue Op0 = Op.getOperand(0);
5515     SDValue Op1 = Op.getOperand(1);
5516 
5517     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
5518       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
5519           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
5520           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
5521         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
5522       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
5523       if ((Reverse.getOpcode() == ISD::ROTL ||
5524            Reverse.getOpcode() == ISD::ROTR) &&
5525           Reverse.getOperand(0) == X &&
5526           isa<ConstantSDNode>(Reverse.getOperand(1))) {
5527         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
5528         if (RotAmt == (VT.getSizeInBits() / 2))
5529           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
5530                              DAG.getConstant(RotAmt, DL, VT));
5531       }
5532       return SDValue();
5533     };
5534 
5535     // Check for either commutable permutation of (or (GREVI x, shamt), x)
5536     if (SDValue V = MatchOROfReverse(Op0, Op1))
5537       return V;
5538     if (SDValue V = MatchOROfReverse(Op1, Op0))
5539       return V;
5540 
5541     // OR is commutable so canonicalize its OR operand to the left
5542     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
5543       std::swap(Op0, Op1);
5544     if (Op0.getOpcode() != ISD::OR)
5545       return SDValue();
5546     SDValue OrOp0 = Op0.getOperand(0);
5547     SDValue OrOp1 = Op0.getOperand(1);
5548     auto LHS = matchGREVIPat(OrOp0);
5549     // OR is commutable so swap the operands and try again: x might have been
5550     // on the left
5551     if (!LHS) {
5552       std::swap(OrOp0, OrOp1);
5553       LHS = matchGREVIPat(OrOp0);
5554     }
5555     auto RHS = matchGREVIPat(Op1);
5556     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
5557       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
5558                          DAG.getConstant(LHS->ShAmt, DL, VT));
5559     }
5560   }
5561   return SDValue();
5562 }
5563 
5564 // Matches any of the following bit-manipulation patterns:
5565 //   (and (shl x, 1), (0x22222222 << 1))
5566 //   (and (srl x, 1), 0x22222222)
5567 //   (shl (and x, 0x22222222), 1)
5568 //   (srl (and x, (0x22222222 << 1)), 1)
5569 // where the shift amount and mask may vary thus:
5570 //   [1]  = 0x22222222 / 0x44444444
5571 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
5572 //   [4]  = 0x00F000F0 / 0x0F000F00
5573 //   [8]  = 0x0000FF00 / 0x00FF0000
5574 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
5575 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
5576   // These are the unshifted masks which we use to match bit-manipulation
5577   // patterns. They may be shifted left in certain circumstances.
5578   static const uint64_t BitmanipMasks[] = {
5579       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
5580       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
5581 
5582   return matchRISCVBitmanipPat(Op, BitmanipMasks);
5583 }
5584 
5585 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
5586 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
5587                                const RISCVSubtarget &Subtarget) {
5588   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5589   EVT VT = Op.getValueType();
5590 
5591   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
5592     return SDValue();
5593 
5594   SDValue Op0 = Op.getOperand(0);
5595   SDValue Op1 = Op.getOperand(1);
5596 
5597   // Or is commutable so canonicalize the second OR to the LHS.
5598   if (Op0.getOpcode() != ISD::OR)
5599     std::swap(Op0, Op1);
5600   if (Op0.getOpcode() != ISD::OR)
5601     return SDValue();
5602 
5603   // We found an inner OR, so our operands are the operands of the inner OR
5604   // and the other operand of the outer OR.
5605   SDValue A = Op0.getOperand(0);
5606   SDValue B = Op0.getOperand(1);
5607   SDValue C = Op1;
5608 
5609   auto Match1 = matchSHFLPat(A);
5610   auto Match2 = matchSHFLPat(B);
5611 
5612   // If neither matched, we failed.
5613   if (!Match1 && !Match2)
5614     return SDValue();
5615 
5616   // We had at least one match. if one failed, try the remaining C operand.
5617   if (!Match1) {
5618     std::swap(A, C);
5619     Match1 = matchSHFLPat(A);
5620     if (!Match1)
5621       return SDValue();
5622   } else if (!Match2) {
5623     std::swap(B, C);
5624     Match2 = matchSHFLPat(B);
5625     if (!Match2)
5626       return SDValue();
5627   }
5628   assert(Match1 && Match2);
5629 
5630   // Make sure our matches pair up.
5631   if (!Match1->formsPairWith(*Match2))
5632     return SDValue();
5633 
5634   // All the remains is to make sure C is an AND with the same input, that masks
5635   // out the bits that are being shuffled.
5636   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
5637       C.getOperand(0) != Match1->Op)
5638     return SDValue();
5639 
5640   uint64_t Mask = C.getConstantOperandVal(1);
5641 
5642   static const uint64_t BitmanipMasks[] = {
5643       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
5644       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
5645   };
5646 
5647   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
5648   unsigned MaskIdx = Log2_32(Match1->ShAmt);
5649   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
5650 
5651   if (Mask != ExpMask)
5652     return SDValue();
5653 
5654   SDLoc DL(Op);
5655   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
5656                      DAG.getConstant(Match1->ShAmt, DL, VT));
5657 }
5658 
5659 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
5660 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
5661 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
5662 // not undo itself, but they are redundant.
5663 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
5664   SDValue Src = N->getOperand(0);
5665 
5666   if (Src.getOpcode() != N->getOpcode())
5667     return SDValue();
5668 
5669   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
5670       !isa<ConstantSDNode>(Src.getOperand(1)))
5671     return SDValue();
5672 
5673   unsigned ShAmt1 = N->getConstantOperandVal(1);
5674   unsigned ShAmt2 = Src.getConstantOperandVal(1);
5675   Src = Src.getOperand(0);
5676 
5677   unsigned CombinedShAmt;
5678   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
5679     CombinedShAmt = ShAmt1 | ShAmt2;
5680   else
5681     CombinedShAmt = ShAmt1 ^ ShAmt2;
5682 
5683   if (CombinedShAmt == 0)
5684     return Src;
5685 
5686   SDLoc DL(N);
5687   return DAG.getNode(
5688       N->getOpcode(), DL, N->getValueType(0), Src,
5689       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
5690 }
5691 
5692 // Combine a constant select operand into its use:
5693 //
5694 // (and (select_cc lhs, rhs, cc, -1, c), x)
5695 //   -> (select_cc lhs, rhs, cc, x, (and, x, c))  [AllOnes=1]
5696 // (or  (select_cc lhs, rhs, cc, 0, c), x)
5697 //   -> (select_cc lhs, rhs, cc, x, (or, x, c))  [AllOnes=0]
5698 // (xor (select_cc lhs, rhs, cc, 0, c), x)
5699 //   -> (select_cc lhs, rhs, cc, x, (xor, x, c))  [AllOnes=0]
5700 static SDValue combineSelectCCAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
5701                                      SelectionDAG &DAG, bool AllOnes) {
5702   EVT VT = N->getValueType(0);
5703 
5704   if (Slct.getOpcode() != RISCVISD::SELECT_CC || !Slct.hasOneUse())
5705     return SDValue();
5706 
5707   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
5708     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
5709   };
5710 
5711   bool SwapSelectOps;
5712   SDValue TrueVal = Slct.getOperand(3);
5713   SDValue FalseVal = Slct.getOperand(4);
5714   SDValue NonConstantVal;
5715   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
5716     SwapSelectOps = false;
5717     NonConstantVal = FalseVal;
5718   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
5719     SwapSelectOps = true;
5720     NonConstantVal = TrueVal;
5721   } else
5722     return SDValue();
5723 
5724   // Slct is now know to be the desired identity constant when CC is true.
5725   TrueVal = OtherOp;
5726   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
5727   // Unless SwapSelectOps says CC should be false.
5728   if (SwapSelectOps)
5729     std::swap(TrueVal, FalseVal);
5730 
5731   return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
5732                      {Slct.getOperand(0), Slct.getOperand(1),
5733                       Slct.getOperand(2), TrueVal, FalseVal});
5734 }
5735 
5736 // Attempt combineSelectAndUse on each operand of a commutative operator N.
5737 static SDValue combineSelectCCAndUseCommutative(SDNode *N, SelectionDAG &DAG,
5738                                                 bool AllOnes) {
5739   SDValue N0 = N->getOperand(0);
5740   SDValue N1 = N->getOperand(1);
5741   if (SDValue Result = combineSelectCCAndUse(N, N0, N1, DAG, AllOnes))
5742     return Result;
5743   if (SDValue Result = combineSelectCCAndUse(N, N1, N0, DAG, AllOnes))
5744     return Result;
5745   return SDValue();
5746 }
5747 
5748 static SDValue performANDCombine(SDNode *N,
5749                                  TargetLowering::DAGCombinerInfo &DCI,
5750                                  const RISCVSubtarget &Subtarget) {
5751   SelectionDAG &DAG = DCI.DAG;
5752 
5753   // fold (and (select_cc lhs, rhs, cc, -1, y), x) ->
5754   //      (select lhs, rhs, cc, x, (and x, y))
5755   return combineSelectCCAndUseCommutative(N, DAG, true);
5756 }
5757 
5758 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
5759                                 const RISCVSubtarget &Subtarget) {
5760   SelectionDAG &DAG = DCI.DAG;
5761   if (Subtarget.hasStdExtZbp()) {
5762     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
5763       return GREV;
5764     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
5765       return GORC;
5766     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
5767       return SHFL;
5768   }
5769 
5770   // fold (or (select_cc lhs, rhs, cc, 0, y), x) ->
5771   //      (select lhs, rhs, cc, x, (or x, y))
5772   return combineSelectCCAndUseCommutative(N, DAG, false);
5773 }
5774 
5775 static SDValue performXORCombine(SDNode *N,
5776                                  TargetLowering::DAGCombinerInfo &DCI,
5777                                  const RISCVSubtarget &Subtarget) {
5778   SelectionDAG &DAG = DCI.DAG;
5779 
5780   // fold (xor (select_cc lhs, rhs, cc, 0, y), x) ->
5781   //      (select lhs, rhs, cc, x, (xor x, y))
5782   return combineSelectCCAndUseCommutative(N, DAG, false);
5783 }
5784 
5785 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
5786 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
5787 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
5788 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
5789 // ADDW/SUBW/MULW.
5790 static SDValue performANY_EXTENDCombine(SDNode *N,
5791                                         TargetLowering::DAGCombinerInfo &DCI,
5792                                         const RISCVSubtarget &Subtarget) {
5793   if (!Subtarget.is64Bit())
5794     return SDValue();
5795 
5796   SelectionDAG &DAG = DCI.DAG;
5797 
5798   SDValue Src = N->getOperand(0);
5799   EVT VT = N->getValueType(0);
5800   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
5801     return SDValue();
5802 
5803   // The opcode must be one that can implicitly sign_extend.
5804   // FIXME: Additional opcodes.
5805   switch (Src.getOpcode()) {
5806   default:
5807     return SDValue();
5808   case ISD::MUL:
5809     if (!Subtarget.hasStdExtM())
5810       return SDValue();
5811     LLVM_FALLTHROUGH;
5812   case ISD::ADD:
5813   case ISD::SUB:
5814     break;
5815   }
5816 
5817   // Only handle cases where the result is used by a CopyToReg that likely
5818   // means the value is a liveout of the basic block. This helps prevent
5819   // infinite combine loops like PR51206.
5820   if (none_of(N->uses(),
5821               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
5822     return SDValue();
5823 
5824   SmallVector<SDNode *, 4> SetCCs;
5825   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
5826                             UE = Src.getNode()->use_end();
5827        UI != UE; ++UI) {
5828     SDNode *User = *UI;
5829     if (User == N)
5830       continue;
5831     if (UI.getUse().getResNo() != Src.getResNo())
5832       continue;
5833     // All i32 setccs are legalized by sign extending operands.
5834     if (User->getOpcode() == ISD::SETCC) {
5835       SetCCs.push_back(User);
5836       continue;
5837     }
5838     // We don't know if we can extend this user.
5839     break;
5840   }
5841 
5842   // If we don't have any SetCCs, this isn't worthwhile.
5843   if (SetCCs.empty())
5844     return SDValue();
5845 
5846   SDLoc DL(N);
5847   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
5848   DCI.CombineTo(N, SExt);
5849 
5850   // Promote all the setccs.
5851   for (SDNode *SetCC : SetCCs) {
5852     SmallVector<SDValue, 4> Ops;
5853 
5854     for (unsigned j = 0; j != 2; ++j) {
5855       SDValue SOp = SetCC->getOperand(j);
5856       if (SOp == Src)
5857         Ops.push_back(SExt);
5858       else
5859         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
5860     }
5861 
5862     Ops.push_back(SetCC->getOperand(2));
5863     DCI.CombineTo(SetCC,
5864                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
5865   }
5866   return SDValue(N, 0);
5867 }
5868 
5869 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
5870                                                DAGCombinerInfo &DCI) const {
5871   SelectionDAG &DAG = DCI.DAG;
5872 
5873   switch (N->getOpcode()) {
5874   default:
5875     break;
5876   case RISCVISD::SplitF64: {
5877     SDValue Op0 = N->getOperand(0);
5878     // If the input to SplitF64 is just BuildPairF64 then the operation is
5879     // redundant. Instead, use BuildPairF64's operands directly.
5880     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
5881       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
5882 
5883     SDLoc DL(N);
5884 
5885     // It's cheaper to materialise two 32-bit integers than to load a double
5886     // from the constant pool and transfer it to integer registers through the
5887     // stack.
5888     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
5889       APInt V = C->getValueAPF().bitcastToAPInt();
5890       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
5891       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
5892       return DCI.CombineTo(N, Lo, Hi);
5893     }
5894 
5895     // This is a target-specific version of a DAGCombine performed in
5896     // DAGCombiner::visitBITCAST. It performs the equivalent of:
5897     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5898     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5899     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
5900         !Op0.getNode()->hasOneUse())
5901       break;
5902     SDValue NewSplitF64 =
5903         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
5904                     Op0.getOperand(0));
5905     SDValue Lo = NewSplitF64.getValue(0);
5906     SDValue Hi = NewSplitF64.getValue(1);
5907     APInt SignBit = APInt::getSignMask(32);
5908     if (Op0.getOpcode() == ISD::FNEG) {
5909       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
5910                                   DAG.getConstant(SignBit, DL, MVT::i32));
5911       return DCI.CombineTo(N, Lo, NewHi);
5912     }
5913     assert(Op0.getOpcode() == ISD::FABS);
5914     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
5915                                 DAG.getConstant(~SignBit, DL, MVT::i32));
5916     return DCI.CombineTo(N, Lo, NewHi);
5917   }
5918   case RISCVISD::SLLW:
5919   case RISCVISD::SRAW:
5920   case RISCVISD::SRLW:
5921   case RISCVISD::ROLW:
5922   case RISCVISD::RORW: {
5923     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5924     SDValue LHS = N->getOperand(0);
5925     SDValue RHS = N->getOperand(1);
5926     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5927     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
5928     if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) ||
5929         SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) {
5930       if (N->getOpcode() != ISD::DELETED_NODE)
5931         DCI.AddToWorklist(N);
5932       return SDValue(N, 0);
5933     }
5934     break;
5935   }
5936   case RISCVISD::CLZW:
5937   case RISCVISD::CTZW: {
5938     // Only the lower 32 bits of the first operand are read
5939     SDValue Op0 = N->getOperand(0);
5940     APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
5941     if (SimplifyDemandedBits(Op0, Mask, DCI)) {
5942       if (N->getOpcode() != ISD::DELETED_NODE)
5943         DCI.AddToWorklist(N);
5944       return SDValue(N, 0);
5945     }
5946     break;
5947   }
5948   case RISCVISD::FSL:
5949   case RISCVISD::FSR: {
5950     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
5951     SDValue ShAmt = N->getOperand(2);
5952     unsigned BitWidth = ShAmt.getValueSizeInBits();
5953     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5954     APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1);
5955     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5956       if (N->getOpcode() != ISD::DELETED_NODE)
5957         DCI.AddToWorklist(N);
5958       return SDValue(N, 0);
5959     }
5960     break;
5961   }
5962   case RISCVISD::FSLW:
5963   case RISCVISD::FSRW: {
5964     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
5965     // read.
5966     SDValue Op0 = N->getOperand(0);
5967     SDValue Op1 = N->getOperand(1);
5968     SDValue ShAmt = N->getOperand(2);
5969     APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
5970     APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6);
5971     if (SimplifyDemandedBits(Op0, OpMask, DCI) ||
5972         SimplifyDemandedBits(Op1, OpMask, DCI) ||
5973         SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5974       if (N->getOpcode() != ISD::DELETED_NODE)
5975         DCI.AddToWorklist(N);
5976       return SDValue(N, 0);
5977     }
5978     break;
5979   }
5980   case RISCVISD::GREV:
5981   case RISCVISD::GORC: {
5982     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
5983     SDValue ShAmt = N->getOperand(1);
5984     unsigned BitWidth = ShAmt.getValueSizeInBits();
5985     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5986     APInt ShAmtMask(BitWidth, BitWidth - 1);
5987     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5988       if (N->getOpcode() != ISD::DELETED_NODE)
5989         DCI.AddToWorklist(N);
5990       return SDValue(N, 0);
5991     }
5992 
5993     return combineGREVI_GORCI(N, DCI.DAG);
5994   }
5995   case RISCVISD::GREVW:
5996   case RISCVISD::GORCW: {
5997     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5998     SDValue LHS = N->getOperand(0);
5999     SDValue RHS = N->getOperand(1);
6000     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
6001     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
6002     if (SimplifyDemandedBits(LHS, LHSMask, DCI) ||
6003         SimplifyDemandedBits(RHS, RHSMask, DCI)) {
6004       if (N->getOpcode() != ISD::DELETED_NODE)
6005         DCI.AddToWorklist(N);
6006       return SDValue(N, 0);
6007     }
6008 
6009     return combineGREVI_GORCI(N, DCI.DAG);
6010   }
6011   case RISCVISD::SHFL:
6012   case RISCVISD::UNSHFL: {
6013     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
6014     SDValue ShAmt = N->getOperand(1);
6015     unsigned BitWidth = ShAmt.getValueSizeInBits();
6016     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6017     APInt ShAmtMask(BitWidth, (BitWidth / 2) - 1);
6018     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
6019       if (N->getOpcode() != ISD::DELETED_NODE)
6020         DCI.AddToWorklist(N);
6021       return SDValue(N, 0);
6022     }
6023 
6024     break;
6025   }
6026   case RISCVISD::SHFLW:
6027   case RISCVISD::UNSHFLW: {
6028     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6029     SDValue LHS = N->getOperand(0);
6030     SDValue RHS = N->getOperand(1);
6031     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
6032     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
6033     if (SimplifyDemandedBits(LHS, LHSMask, DCI) ||
6034         SimplifyDemandedBits(RHS, RHSMask, DCI)) {
6035       if (N->getOpcode() != ISD::DELETED_NODE)
6036         DCI.AddToWorklist(N);
6037       return SDValue(N, 0);
6038     }
6039 
6040     break;
6041   }
6042   case RISCVISD::BCOMPRESSW:
6043   case RISCVISD::BDECOMPRESSW: {
6044     // Only the lower 32 bits of LHS and RHS are read.
6045     SDValue LHS = N->getOperand(0);
6046     SDValue RHS = N->getOperand(1);
6047     APInt Mask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
6048     if (SimplifyDemandedBits(LHS, Mask, DCI) ||
6049         SimplifyDemandedBits(RHS, Mask, DCI)) {
6050       if (N->getOpcode() != ISD::DELETED_NODE)
6051         DCI.AddToWorklist(N);
6052       return SDValue(N, 0);
6053     }
6054 
6055     break;
6056   }
6057   case RISCVISD::FMV_X_ANYEXTW_RV64: {
6058     SDLoc DL(N);
6059     SDValue Op0 = N->getOperand(0);
6060     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
6061     // conversion is unnecessary and can be replaced with an ANY_EXTEND
6062     // of the FMV_W_X_RV64 operand.
6063     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
6064       assert(Op0.getOperand(0).getValueType() == MVT::i64 &&
6065              "Unexpected value type!");
6066       return Op0.getOperand(0);
6067     }
6068 
6069     // This is a target-specific version of a DAGCombine performed in
6070     // DAGCombiner::visitBITCAST. It performs the equivalent of:
6071     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6072     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6073     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
6074         !Op0.getNode()->hasOneUse())
6075       break;
6076     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
6077                                  Op0.getOperand(0));
6078     APInt SignBit = APInt::getSignMask(32).sext(64);
6079     if (Op0.getOpcode() == ISD::FNEG)
6080       return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
6081                          DAG.getConstant(SignBit, DL, MVT::i64));
6082 
6083     assert(Op0.getOpcode() == ISD::FABS);
6084     return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
6085                        DAG.getConstant(~SignBit, DL, MVT::i64));
6086   }
6087   case ISD::AND:
6088     return performANDCombine(N, DCI, Subtarget);
6089   case ISD::OR:
6090     return performORCombine(N, DCI, Subtarget);
6091   case ISD::XOR:
6092     return performXORCombine(N, DCI, Subtarget);
6093   case ISD::ANY_EXTEND:
6094     return performANY_EXTENDCombine(N, DCI, Subtarget);
6095   case ISD::ZERO_EXTEND:
6096     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
6097     // type legalization. This is safe because fp_to_uint produces poison if
6098     // it overflows.
6099     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() &&
6100         N->getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
6101         isTypeLegal(N->getOperand(0).getOperand(0).getValueType()))
6102       return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
6103                          N->getOperand(0).getOperand(0));
6104     return SDValue();
6105   case RISCVISD::SELECT_CC: {
6106     // Transform
6107     SDValue LHS = N->getOperand(0);
6108     SDValue RHS = N->getOperand(1);
6109     auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2));
6110     if (!ISD::isIntEqualitySetCC(CCVal))
6111       break;
6112 
6113     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
6114     //      (select_cc X, Y, lt, trueV, falseV)
6115     // Sometimes the setcc is introduced after select_cc has been formed.
6116     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
6117         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
6118       // If we're looking for eq 0 instead of ne 0, we need to invert the
6119       // condition.
6120       bool Invert = CCVal == ISD::SETEQ;
6121       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
6122       if (Invert)
6123         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6124 
6125       SDLoc DL(N);
6126       RHS = LHS.getOperand(1);
6127       LHS = LHS.getOperand(0);
6128       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
6129 
6130       SDValue TargetCC =
6131           DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT());
6132       return DAG.getNode(
6133           RISCVISD::SELECT_CC, DL, N->getValueType(0),
6134           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
6135     }
6136 
6137     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
6138     //      (select_cc X, Y, eq/ne, trueV, falseV)
6139     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
6140       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
6141                          {LHS.getOperand(0), LHS.getOperand(1),
6142                           N->getOperand(2), N->getOperand(3),
6143                           N->getOperand(4)});
6144     // (select_cc X, 1, setne, trueV, falseV) ->
6145     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
6146     // This can occur when legalizing some floating point comparisons.
6147     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
6148     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
6149       SDLoc DL(N);
6150       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6151       SDValue TargetCC =
6152           DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT());
6153       RHS = DAG.getConstant(0, DL, LHS.getValueType());
6154       return DAG.getNode(
6155           RISCVISD::SELECT_CC, DL, N->getValueType(0),
6156           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
6157     }
6158 
6159     break;
6160   }
6161   case RISCVISD::BR_CC: {
6162     SDValue LHS = N->getOperand(1);
6163     SDValue RHS = N->getOperand(2);
6164     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
6165     if (!ISD::isIntEqualitySetCC(CCVal))
6166       break;
6167 
6168     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
6169     //      (br_cc X, Y, lt, dest)
6170     // Sometimes the setcc is introduced after br_cc has been formed.
6171     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
6172         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
6173       // If we're looking for eq 0 instead of ne 0, we need to invert the
6174       // condition.
6175       bool Invert = CCVal == ISD::SETEQ;
6176       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
6177       if (Invert)
6178         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6179 
6180       SDLoc DL(N);
6181       RHS = LHS.getOperand(1);
6182       LHS = LHS.getOperand(0);
6183       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
6184 
6185       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
6186                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
6187                          N->getOperand(4));
6188     }
6189 
6190     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
6191     //      (br_cc X, Y, eq/ne, trueV, falseV)
6192     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
6193       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
6194                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
6195                          N->getOperand(3), N->getOperand(4));
6196 
6197     // (br_cc X, 1, setne, br_cc) ->
6198     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
6199     // This can occur when legalizing some floating point comparisons.
6200     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
6201     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
6202       SDLoc DL(N);
6203       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6204       SDValue TargetCC = DAG.getCondCode(CCVal);
6205       RHS = DAG.getConstant(0, DL, LHS.getValueType());
6206       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
6207                          N->getOperand(0), LHS, RHS, TargetCC,
6208                          N->getOperand(4));
6209     }
6210     break;
6211   }
6212   case ISD::FCOPYSIGN: {
6213     EVT VT = N->getValueType(0);
6214     if (!VT.isVector())
6215       break;
6216     // There is a form of VFSGNJ which injects the negated sign of its second
6217     // operand. Try and bubble any FNEG up after the extend/round to produce
6218     // this optimized pattern. Avoid modifying cases where FP_ROUND and
6219     // TRUNC=1.
6220     SDValue In2 = N->getOperand(1);
6221     // Avoid cases where the extend/round has multiple uses, as duplicating
6222     // those is typically more expensive than removing a fneg.
6223     if (!In2.hasOneUse())
6224       break;
6225     if (In2.getOpcode() != ISD::FP_EXTEND &&
6226         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
6227       break;
6228     In2 = In2.getOperand(0);
6229     if (In2.getOpcode() != ISD::FNEG)
6230       break;
6231     SDLoc DL(N);
6232     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
6233     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
6234                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
6235   }
6236   case ISD::MGATHER:
6237   case ISD::MSCATTER: {
6238     if (!DCI.isBeforeLegalize())
6239       break;
6240     MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N);
6241     SDValue Index = MGSN->getIndex();
6242     EVT IndexVT = Index.getValueType();
6243     MVT XLenVT = Subtarget.getXLenVT();
6244     // RISCV indexed loads only support the "unsigned unscaled" addressing
6245     // mode, so anything else must be manually legalized.
6246     bool NeedsIdxLegalization = MGSN->isIndexScaled() ||
6247                                 (MGSN->isIndexSigned() &&
6248                                  IndexVT.getVectorElementType().bitsLT(XLenVT));
6249     if (!NeedsIdxLegalization)
6250       break;
6251 
6252     SDLoc DL(N);
6253 
6254     // Any index legalization should first promote to XLenVT, so we don't lose
6255     // bits when scaling. This may create an illegal index type so we let
6256     // LLVM's legalization take care of the splitting.
6257     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
6258       IndexVT = IndexVT.changeVectorElementType(XLenVT);
6259       Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND
6260                                                 : ISD::ZERO_EXTEND,
6261                           DL, IndexVT, Index);
6262     }
6263 
6264     unsigned Scale = N->getConstantOperandVal(5);
6265     if (MGSN->isIndexScaled() && Scale != 1) {
6266       // Manually scale the indices by the element size.
6267       // TODO: Sanitize the scale operand here?
6268       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
6269       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
6270       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
6271     }
6272 
6273     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
6274     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) {
6275       return DAG.getMaskedGather(
6276           N->getVTList(), MGSN->getMemoryVT(), DL,
6277           {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(),
6278            MGSN->getBasePtr(), Index, MGN->getScale()},
6279           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
6280     }
6281     const auto *MSN = cast<MaskedScatterSDNode>(N);
6282     return DAG.getMaskedScatter(
6283         N->getVTList(), MGSN->getMemoryVT(), DL,
6284         {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(),
6285          Index, MGSN->getScale()},
6286         MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
6287   }
6288   case RISCVISD::SRA_VL:
6289   case RISCVISD::SRL_VL:
6290   case RISCVISD::SHL_VL: {
6291     SDValue ShAmt = N->getOperand(1);
6292     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
6293       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
6294       SDLoc DL(N);
6295       SDValue VL = N->getOperand(3);
6296       EVT VT = N->getValueType(0);
6297       ShAmt =
6298           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
6299       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
6300                          N->getOperand(2), N->getOperand(3));
6301     }
6302     break;
6303   }
6304   case ISD::SRA:
6305   case ISD::SRL:
6306   case ISD::SHL: {
6307     SDValue ShAmt = N->getOperand(1);
6308     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
6309       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
6310       SDLoc DL(N);
6311       EVT VT = N->getValueType(0);
6312       ShAmt =
6313           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0));
6314       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
6315     }
6316     break;
6317   }
6318   case RISCVISD::MUL_VL: {
6319     // Try to form VWMUL or VWMULU.
6320     // FIXME: Look for splat of extended scalar as well.
6321     // FIXME: Support VWMULSU.
6322     SDValue Op0 = N->getOperand(0);
6323     SDValue Op1 = N->getOperand(1);
6324     bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
6325     bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
6326     if ((!IsSignExt && !IsZeroExt) || Op0.getOpcode() != Op1.getOpcode())
6327       return SDValue();
6328 
6329     // Make sure the extends have a single use.
6330     if (!Op0.hasOneUse() || !Op1.hasOneUse())
6331       return SDValue();
6332 
6333     SDValue Mask = N->getOperand(2);
6334     SDValue VL = N->getOperand(3);
6335     if (Op0.getOperand(1) != Mask || Op1.getOperand(1) != Mask ||
6336         Op0.getOperand(2) != VL || Op1.getOperand(2) != VL)
6337       return SDValue();
6338 
6339     Op0 = Op0.getOperand(0);
6340     Op1 = Op1.getOperand(0);
6341 
6342     MVT VT = N->getSimpleValueType(0);
6343     MVT NarrowVT =
6344         MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits() / 2),
6345                          VT.getVectorElementCount());
6346 
6347     SDLoc DL(N);
6348 
6349     // Re-introduce narrower extends if needed.
6350     unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
6351     if (Op0.getValueType() != NarrowVT)
6352       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
6353     if (Op1.getValueType() != NarrowVT)
6354       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
6355 
6356     unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
6357     return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
6358   }
6359   }
6360 
6361   return SDValue();
6362 }
6363 
6364 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
6365     const SDNode *N, CombineLevel Level) const {
6366   // The following folds are only desirable if `(OP _, c1 << c2)` can be
6367   // materialised in fewer instructions than `(OP _, c1)`:
6368   //
6369   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
6370   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
6371   SDValue N0 = N->getOperand(0);
6372   EVT Ty = N0.getValueType();
6373   if (Ty.isScalarInteger() &&
6374       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
6375     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6376     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
6377     if (C1 && C2) {
6378       const APInt &C1Int = C1->getAPIntValue();
6379       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
6380 
6381       // We can materialise `c1 << c2` into an add immediate, so it's "free",
6382       // and the combine should happen, to potentially allow further combines
6383       // later.
6384       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
6385           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
6386         return true;
6387 
6388       // We can materialise `c1` in an add immediate, so it's "free", and the
6389       // combine should be prevented.
6390       if (C1Int.getMinSignedBits() <= 64 &&
6391           isLegalAddImmediate(C1Int.getSExtValue()))
6392         return false;
6393 
6394       // Neither constant will fit into an immediate, so find materialisation
6395       // costs.
6396       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
6397                                               Subtarget.getFeatureBits(),
6398                                               /*CompressionCost*/true);
6399       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
6400           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
6401           /*CompressionCost*/true);
6402 
6403       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
6404       // combine should be prevented.
6405       if (C1Cost < ShiftedC1Cost)
6406         return false;
6407     }
6408   }
6409   return true;
6410 }
6411 
6412 bool RISCVTargetLowering::targetShrinkDemandedConstant(
6413     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
6414     TargetLoweringOpt &TLO) const {
6415   // Delay this optimization as late as possible.
6416   if (!TLO.LegalOps)
6417     return false;
6418 
6419   EVT VT = Op.getValueType();
6420   if (VT.isVector())
6421     return false;
6422 
6423   // Only handle AND for now.
6424   if (Op.getOpcode() != ISD::AND)
6425     return false;
6426 
6427   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6428   if (!C)
6429     return false;
6430 
6431   const APInt &Mask = C->getAPIntValue();
6432 
6433   // Clear all non-demanded bits initially.
6434   APInt ShrunkMask = Mask & DemandedBits;
6435 
6436   // Try to make a smaller immediate by setting undemanded bits.
6437 
6438   APInt ExpandedMask = Mask | ~DemandedBits;
6439 
6440   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
6441     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
6442   };
6443   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
6444     if (NewMask == Mask)
6445       return true;
6446     SDLoc DL(Op);
6447     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
6448     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
6449     return TLO.CombineTo(Op, NewOp);
6450   };
6451 
6452   // If the shrunk mask fits in sign extended 12 bits, let the target
6453   // independent code apply it.
6454   if (ShrunkMask.isSignedIntN(12))
6455     return false;
6456 
6457   // Preserve (and X, 0xffff) when zext.h is supported.
6458   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
6459     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
6460     if (IsLegalMask(NewMask))
6461       return UseMask(NewMask);
6462   }
6463 
6464   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
6465   if (VT == MVT::i64) {
6466     APInt NewMask = APInt(64, 0xffffffff);
6467     if (IsLegalMask(NewMask))
6468       return UseMask(NewMask);
6469   }
6470 
6471   // For the remaining optimizations, we need to be able to make a negative
6472   // number through a combination of mask and undemanded bits.
6473   if (!ExpandedMask.isNegative())
6474     return false;
6475 
6476   // What is the fewest number of bits we need to represent the negative number.
6477   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
6478 
6479   // Try to make a 12 bit negative immediate. If that fails try to make a 32
6480   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
6481   APInt NewMask = ShrunkMask;
6482   if (MinSignedBits <= 12)
6483     NewMask.setBitsFrom(11);
6484   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
6485     NewMask.setBitsFrom(31);
6486   else
6487     return false;
6488 
6489   // Sanity check that our new mask is a subset of the demanded mask.
6490   assert(IsLegalMask(NewMask));
6491   return UseMask(NewMask);
6492 }
6493 
6494 static void computeGREV(APInt &Src, unsigned ShAmt) {
6495   ShAmt &= Src.getBitWidth() - 1;
6496   uint64_t x = Src.getZExtValue();
6497   if (ShAmt & 1)
6498     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
6499   if (ShAmt & 2)
6500     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
6501   if (ShAmt & 4)
6502     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
6503   if (ShAmt & 8)
6504     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
6505   if (ShAmt & 16)
6506     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
6507   if (ShAmt & 32)
6508     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
6509   Src = x;
6510 }
6511 
6512 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6513                                                         KnownBits &Known,
6514                                                         const APInt &DemandedElts,
6515                                                         const SelectionDAG &DAG,
6516                                                         unsigned Depth) const {
6517   unsigned BitWidth = Known.getBitWidth();
6518   unsigned Opc = Op.getOpcode();
6519   assert((Opc >= ISD::BUILTIN_OP_END ||
6520           Opc == ISD::INTRINSIC_WO_CHAIN ||
6521           Opc == ISD::INTRINSIC_W_CHAIN ||
6522           Opc == ISD::INTRINSIC_VOID) &&
6523          "Should use MaskedValueIsZero if you don't know whether Op"
6524          " is a target node!");
6525 
6526   Known.resetAll();
6527   switch (Opc) {
6528   default: break;
6529   case RISCVISD::SELECT_CC: {
6530     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
6531     // If we don't know any bits, early out.
6532     if (Known.isUnknown())
6533       break;
6534     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
6535 
6536     // Only known if known in both the LHS and RHS.
6537     Known = KnownBits::commonBits(Known, Known2);
6538     break;
6539   }
6540   case RISCVISD::REMUW: {
6541     KnownBits Known2;
6542     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
6543     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
6544     // We only care about the lower 32 bits.
6545     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
6546     // Restore the original width by sign extending.
6547     Known = Known.sext(BitWidth);
6548     break;
6549   }
6550   case RISCVISD::DIVUW: {
6551     KnownBits Known2;
6552     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
6553     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
6554     // We only care about the lower 32 bits.
6555     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
6556     // Restore the original width by sign extending.
6557     Known = Known.sext(BitWidth);
6558     break;
6559   }
6560   case RISCVISD::CTZW: {
6561     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6562     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
6563     unsigned LowBits = Log2_32(PossibleTZ) + 1;
6564     Known.Zero.setBitsFrom(LowBits);
6565     break;
6566   }
6567   case RISCVISD::CLZW: {
6568     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6569     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
6570     unsigned LowBits = Log2_32(PossibleLZ) + 1;
6571     Known.Zero.setBitsFrom(LowBits);
6572     break;
6573   }
6574   case RISCVISD::GREV:
6575   case RISCVISD::GREVW: {
6576     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6577       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6578       if (Opc == RISCVISD::GREVW)
6579         Known = Known.trunc(32);
6580       unsigned ShAmt = C->getZExtValue();
6581       computeGREV(Known.Zero, ShAmt);
6582       computeGREV(Known.One, ShAmt);
6583       if (Opc == RISCVISD::GREVW)
6584         Known = Known.sext(BitWidth);
6585     }
6586     break;
6587   }
6588   case RISCVISD::READ_VLENB:
6589     // We assume VLENB is at least 16 bytes.
6590     Known.Zero.setLowBits(4);
6591     // We assume VLENB is no more than 65536 / 8 bytes.
6592     Known.Zero.setBitsFrom(14);
6593     break;
6594   case ISD::INTRINSIC_W_CHAIN: {
6595     unsigned IntNo = Op.getConstantOperandVal(1);
6596     switch (IntNo) {
6597     default:
6598       // We can't do anything for most intrinsics.
6599       break;
6600     case Intrinsic::riscv_vsetvli:
6601     case Intrinsic::riscv_vsetvlimax:
6602       // Assume that VL output is positive and would fit in an int32_t.
6603       // TODO: VLEN might be capped at 16 bits in a future V spec update.
6604       if (BitWidth >= 32)
6605         Known.Zero.setBitsFrom(31);
6606       break;
6607     }
6608     break;
6609   }
6610   }
6611 }
6612 
6613 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
6614     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6615     unsigned Depth) const {
6616   switch (Op.getOpcode()) {
6617   default:
6618     break;
6619   case RISCVISD::SLLW:
6620   case RISCVISD::SRAW:
6621   case RISCVISD::SRLW:
6622   case RISCVISD::DIVW:
6623   case RISCVISD::DIVUW:
6624   case RISCVISD::REMUW:
6625   case RISCVISD::ROLW:
6626   case RISCVISD::RORW:
6627   case RISCVISD::GREVW:
6628   case RISCVISD::GORCW:
6629   case RISCVISD::FSLW:
6630   case RISCVISD::FSRW:
6631   case RISCVISD::SHFLW:
6632   case RISCVISD::UNSHFLW:
6633   case RISCVISD::BCOMPRESSW:
6634   case RISCVISD::BDECOMPRESSW:
6635   case RISCVISD::FCVT_W_RV64:
6636   case RISCVISD::FCVT_WU_RV64:
6637     // TODO: As the result is sign-extended, this is conservatively correct. A
6638     // more precise answer could be calculated for SRAW depending on known
6639     // bits in the shift amount.
6640     return 33;
6641   case RISCVISD::SHFL:
6642   case RISCVISD::UNSHFL: {
6643     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
6644     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
6645     // will stay within the upper 32 bits. If there were more than 32 sign bits
6646     // before there will be at least 33 sign bits after.
6647     if (Op.getValueType() == MVT::i64 &&
6648         isa<ConstantSDNode>(Op.getOperand(1)) &&
6649         (Op.getConstantOperandVal(1) & 0x10) == 0) {
6650       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
6651       if (Tmp > 32)
6652         return 33;
6653     }
6654     break;
6655   }
6656   case RISCVISD::VMV_X_S:
6657     // The number of sign bits of the scalar result is computed by obtaining the
6658     // element type of the input vector operand, subtracting its width from the
6659     // XLEN, and then adding one (sign bit within the element type). If the
6660     // element type is wider than XLen, the least-significant XLEN bits are
6661     // taken.
6662     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
6663       return 1;
6664     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
6665   }
6666 
6667   return 1;
6668 }
6669 
6670 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
6671                                                   MachineBasicBlock *BB) {
6672   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
6673 
6674   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
6675   // Should the count have wrapped while it was being read, we need to try
6676   // again.
6677   // ...
6678   // read:
6679   // rdcycleh x3 # load high word of cycle
6680   // rdcycle  x2 # load low word of cycle
6681   // rdcycleh x4 # load high word of cycle
6682   // bne x3, x4, read # check if high word reads match, otherwise try again
6683   // ...
6684 
6685   MachineFunction &MF = *BB->getParent();
6686   const BasicBlock *LLVM_BB = BB->getBasicBlock();
6687   MachineFunction::iterator It = ++BB->getIterator();
6688 
6689   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
6690   MF.insert(It, LoopMBB);
6691 
6692   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
6693   MF.insert(It, DoneMBB);
6694 
6695   // Transfer the remainder of BB and its successor edges to DoneMBB.
6696   DoneMBB->splice(DoneMBB->begin(), BB,
6697                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
6698   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
6699 
6700   BB->addSuccessor(LoopMBB);
6701 
6702   MachineRegisterInfo &RegInfo = MF.getRegInfo();
6703   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
6704   Register LoReg = MI.getOperand(0).getReg();
6705   Register HiReg = MI.getOperand(1).getReg();
6706   DebugLoc DL = MI.getDebugLoc();
6707 
6708   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
6709   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
6710       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
6711       .addReg(RISCV::X0);
6712   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
6713       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
6714       .addReg(RISCV::X0);
6715   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
6716       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
6717       .addReg(RISCV::X0);
6718 
6719   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
6720       .addReg(HiReg)
6721       .addReg(ReadAgainReg)
6722       .addMBB(LoopMBB);
6723 
6724   LoopMBB->addSuccessor(LoopMBB);
6725   LoopMBB->addSuccessor(DoneMBB);
6726 
6727   MI.eraseFromParent();
6728 
6729   return DoneMBB;
6730 }
6731 
6732 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
6733                                              MachineBasicBlock *BB) {
6734   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
6735 
6736   MachineFunction &MF = *BB->getParent();
6737   DebugLoc DL = MI.getDebugLoc();
6738   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6739   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
6740   Register LoReg = MI.getOperand(0).getReg();
6741   Register HiReg = MI.getOperand(1).getReg();
6742   Register SrcReg = MI.getOperand(2).getReg();
6743   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
6744   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
6745 
6746   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
6747                           RI);
6748   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
6749   MachineMemOperand *MMOLo =
6750       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
6751   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
6752       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
6753   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
6754       .addFrameIndex(FI)
6755       .addImm(0)
6756       .addMemOperand(MMOLo);
6757   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
6758       .addFrameIndex(FI)
6759       .addImm(4)
6760       .addMemOperand(MMOHi);
6761   MI.eraseFromParent(); // The pseudo instruction is gone now.
6762   return BB;
6763 }
6764 
6765 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
6766                                                  MachineBasicBlock *BB) {
6767   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
6768          "Unexpected instruction");
6769 
6770   MachineFunction &MF = *BB->getParent();
6771   DebugLoc DL = MI.getDebugLoc();
6772   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6773   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
6774   Register DstReg = MI.getOperand(0).getReg();
6775   Register LoReg = MI.getOperand(1).getReg();
6776   Register HiReg = MI.getOperand(2).getReg();
6777   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
6778   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
6779 
6780   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
6781   MachineMemOperand *MMOLo =
6782       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
6783   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
6784       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
6785   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
6786       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
6787       .addFrameIndex(FI)
6788       .addImm(0)
6789       .addMemOperand(MMOLo);
6790   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
6791       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
6792       .addFrameIndex(FI)
6793       .addImm(4)
6794       .addMemOperand(MMOHi);
6795   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
6796   MI.eraseFromParent(); // The pseudo instruction is gone now.
6797   return BB;
6798 }
6799 
6800 static bool isSelectPseudo(MachineInstr &MI) {
6801   switch (MI.getOpcode()) {
6802   default:
6803     return false;
6804   case RISCV::Select_GPR_Using_CC_GPR:
6805   case RISCV::Select_FPR16_Using_CC_GPR:
6806   case RISCV::Select_FPR32_Using_CC_GPR:
6807   case RISCV::Select_FPR64_Using_CC_GPR:
6808     return true;
6809   }
6810 }
6811 
6812 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
6813                                            MachineBasicBlock *BB) {
6814   // To "insert" Select_* instructions, we actually have to insert the triangle
6815   // control-flow pattern.  The incoming instructions know the destination vreg
6816   // to set, the condition code register to branch on, the true/false values to
6817   // select between, and the condcode to use to select the appropriate branch.
6818   //
6819   // We produce the following control flow:
6820   //     HeadMBB
6821   //     |  \
6822   //     |  IfFalseMBB
6823   //     | /
6824   //    TailMBB
6825   //
6826   // When we find a sequence of selects we attempt to optimize their emission
6827   // by sharing the control flow. Currently we only handle cases where we have
6828   // multiple selects with the exact same condition (same LHS, RHS and CC).
6829   // The selects may be interleaved with other instructions if the other
6830   // instructions meet some requirements we deem safe:
6831   // - They are debug instructions. Otherwise,
6832   // - They do not have side-effects, do not access memory and their inputs do
6833   //   not depend on the results of the select pseudo-instructions.
6834   // The TrueV/FalseV operands of the selects cannot depend on the result of
6835   // previous selects in the sequence.
6836   // These conditions could be further relaxed. See the X86 target for a
6837   // related approach and more information.
6838   Register LHS = MI.getOperand(1).getReg();
6839   Register RHS = MI.getOperand(2).getReg();
6840   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
6841 
6842   SmallVector<MachineInstr *, 4> SelectDebugValues;
6843   SmallSet<Register, 4> SelectDests;
6844   SelectDests.insert(MI.getOperand(0).getReg());
6845 
6846   MachineInstr *LastSelectPseudo = &MI;
6847 
6848   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
6849        SequenceMBBI != E; ++SequenceMBBI) {
6850     if (SequenceMBBI->isDebugInstr())
6851       continue;
6852     else if (isSelectPseudo(*SequenceMBBI)) {
6853       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
6854           SequenceMBBI->getOperand(2).getReg() != RHS ||
6855           SequenceMBBI->getOperand(3).getImm() != CC ||
6856           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
6857           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
6858         break;
6859       LastSelectPseudo = &*SequenceMBBI;
6860       SequenceMBBI->collectDebugValues(SelectDebugValues);
6861       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
6862     } else {
6863       if (SequenceMBBI->hasUnmodeledSideEffects() ||
6864           SequenceMBBI->mayLoadOrStore())
6865         break;
6866       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
6867             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
6868           }))
6869         break;
6870     }
6871   }
6872 
6873   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
6874   const BasicBlock *LLVM_BB = BB->getBasicBlock();
6875   DebugLoc DL = MI.getDebugLoc();
6876   MachineFunction::iterator I = ++BB->getIterator();
6877 
6878   MachineBasicBlock *HeadMBB = BB;
6879   MachineFunction *F = BB->getParent();
6880   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
6881   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
6882 
6883   F->insert(I, IfFalseMBB);
6884   F->insert(I, TailMBB);
6885 
6886   // Transfer debug instructions associated with the selects to TailMBB.
6887   for (MachineInstr *DebugInstr : SelectDebugValues) {
6888     TailMBB->push_back(DebugInstr->removeFromParent());
6889   }
6890 
6891   // Move all instructions after the sequence to TailMBB.
6892   TailMBB->splice(TailMBB->end(), HeadMBB,
6893                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
6894   // Update machine-CFG edges by transferring all successors of the current
6895   // block to the new block which will contain the Phi nodes for the selects.
6896   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
6897   // Set the successors for HeadMBB.
6898   HeadMBB->addSuccessor(IfFalseMBB);
6899   HeadMBB->addSuccessor(TailMBB);
6900 
6901   // Insert appropriate branch.
6902   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
6903 
6904   BuildMI(HeadMBB, DL, TII.get(Opcode))
6905     .addReg(LHS)
6906     .addReg(RHS)
6907     .addMBB(TailMBB);
6908 
6909   // IfFalseMBB just falls through to TailMBB.
6910   IfFalseMBB->addSuccessor(TailMBB);
6911 
6912   // Create PHIs for all of the select pseudo-instructions.
6913   auto SelectMBBI = MI.getIterator();
6914   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
6915   auto InsertionPoint = TailMBB->begin();
6916   while (SelectMBBI != SelectEnd) {
6917     auto Next = std::next(SelectMBBI);
6918     if (isSelectPseudo(*SelectMBBI)) {
6919       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
6920       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
6921               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
6922           .addReg(SelectMBBI->getOperand(4).getReg())
6923           .addMBB(HeadMBB)
6924           .addReg(SelectMBBI->getOperand(5).getReg())
6925           .addMBB(IfFalseMBB);
6926       SelectMBBI->eraseFromParent();
6927     }
6928     SelectMBBI = Next;
6929   }
6930 
6931   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6932   return TailMBB;
6933 }
6934 
6935 MachineBasicBlock *
6936 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
6937                                                  MachineBasicBlock *BB) const {
6938   switch (MI.getOpcode()) {
6939   default:
6940     llvm_unreachable("Unexpected instr type to insert");
6941   case RISCV::ReadCycleWide:
6942     assert(!Subtarget.is64Bit() &&
6943            "ReadCycleWrite is only to be used on riscv32");
6944     return emitReadCycleWidePseudo(MI, BB);
6945   case RISCV::Select_GPR_Using_CC_GPR:
6946   case RISCV::Select_FPR16_Using_CC_GPR:
6947   case RISCV::Select_FPR32_Using_CC_GPR:
6948   case RISCV::Select_FPR64_Using_CC_GPR:
6949     return emitSelectPseudo(MI, BB);
6950   case RISCV::BuildPairF64Pseudo:
6951     return emitBuildPairF64Pseudo(MI, BB);
6952   case RISCV::SplitF64Pseudo:
6953     return emitSplitF64Pseudo(MI, BB);
6954   }
6955 }
6956 
6957 // Calling Convention Implementation.
6958 // The expectations for frontend ABI lowering vary from target to target.
6959 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
6960 // details, but this is a longer term goal. For now, we simply try to keep the
6961 // role of the frontend as simple and well-defined as possible. The rules can
6962 // be summarised as:
6963 // * Never split up large scalar arguments. We handle them here.
6964 // * If a hardfloat calling convention is being used, and the struct may be
6965 // passed in a pair of registers (fp+fp, int+fp), and both registers are
6966 // available, then pass as two separate arguments. If either the GPRs or FPRs
6967 // are exhausted, then pass according to the rule below.
6968 // * If a struct could never be passed in registers or directly in a stack
6969 // slot (as it is larger than 2*XLEN and the floating point rules don't
6970 // apply), then pass it using a pointer with the byval attribute.
6971 // * If a struct is less than 2*XLEN, then coerce to either a two-element
6972 // word-sized array or a 2*XLEN scalar (depending on alignment).
6973 // * The frontend can determine whether a struct is returned by reference or
6974 // not based on its size and fields. If it will be returned by reference, the
6975 // frontend must modify the prototype so a pointer with the sret annotation is
6976 // passed as the first argument. This is not necessary for large scalar
6977 // returns.
6978 // * Struct return values and varargs should be coerced to structs containing
6979 // register-size fields in the same situations they would be for fixed
6980 // arguments.
6981 
6982 static const MCPhysReg ArgGPRs[] = {
6983   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
6984   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
6985 };
6986 static const MCPhysReg ArgFPR16s[] = {
6987   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
6988   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
6989 };
6990 static const MCPhysReg ArgFPR32s[] = {
6991   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
6992   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
6993 };
6994 static const MCPhysReg ArgFPR64s[] = {
6995   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
6996   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
6997 };
6998 // This is an interim calling convention and it may be changed in the future.
6999 static const MCPhysReg ArgVRs[] = {
7000     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
7001     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
7002     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
7003 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
7004                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
7005                                      RISCV::V20M2, RISCV::V22M2};
7006 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
7007                                      RISCV::V20M4};
7008 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
7009 
7010 // Pass a 2*XLEN argument that has been split into two XLEN values through
7011 // registers or the stack as necessary.
7012 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
7013                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
7014                                 MVT ValVT2, MVT LocVT2,
7015                                 ISD::ArgFlagsTy ArgFlags2) {
7016   unsigned XLenInBytes = XLen / 8;
7017   if (Register Reg = State.AllocateReg(ArgGPRs)) {
7018     // At least one half can be passed via register.
7019     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
7020                                      VA1.getLocVT(), CCValAssign::Full));
7021   } else {
7022     // Both halves must be passed on the stack, with proper alignment.
7023     Align StackAlign =
7024         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
7025     State.addLoc(
7026         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
7027                             State.AllocateStack(XLenInBytes, StackAlign),
7028                             VA1.getLocVT(), CCValAssign::Full));
7029     State.addLoc(CCValAssign::getMem(
7030         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7031         LocVT2, CCValAssign::Full));
7032     return false;
7033   }
7034 
7035   if (Register Reg = State.AllocateReg(ArgGPRs)) {
7036     // The second half can also be passed via register.
7037     State.addLoc(
7038         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
7039   } else {
7040     // The second half is passed via the stack, without additional alignment.
7041     State.addLoc(CCValAssign::getMem(
7042         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7043         LocVT2, CCValAssign::Full));
7044   }
7045 
7046   return false;
7047 }
7048 
7049 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
7050                                Optional<unsigned> FirstMaskArgument,
7051                                CCState &State, const RISCVTargetLowering &TLI) {
7052   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
7053   if (RC == &RISCV::VRRegClass) {
7054     // Assign the first mask argument to V0.
7055     // This is an interim calling convention and it may be changed in the
7056     // future.
7057     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
7058       return State.AllocateReg(RISCV::V0);
7059     return State.AllocateReg(ArgVRs);
7060   }
7061   if (RC == &RISCV::VRM2RegClass)
7062     return State.AllocateReg(ArgVRM2s);
7063   if (RC == &RISCV::VRM4RegClass)
7064     return State.AllocateReg(ArgVRM4s);
7065   if (RC == &RISCV::VRM8RegClass)
7066     return State.AllocateReg(ArgVRM8s);
7067   llvm_unreachable("Unhandled register class for ValueType");
7068 }
7069 
7070 // Implements the RISC-V calling convention. Returns true upon failure.
7071 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
7072                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
7073                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
7074                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
7075                      Optional<unsigned> FirstMaskArgument) {
7076   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
7077   assert(XLen == 32 || XLen == 64);
7078   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
7079 
7080   // Any return value split in to more than two values can't be returned
7081   // directly. Vectors are returned via the available vector registers.
7082   if (!LocVT.isVector() && IsRet && ValNo > 1)
7083     return true;
7084 
7085   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
7086   // variadic argument, or if no F16/F32 argument registers are available.
7087   bool UseGPRForF16_F32 = true;
7088   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
7089   // variadic argument, or if no F64 argument registers are available.
7090   bool UseGPRForF64 = true;
7091 
7092   switch (ABI) {
7093   default:
7094     llvm_unreachable("Unexpected ABI");
7095   case RISCVABI::ABI_ILP32:
7096   case RISCVABI::ABI_LP64:
7097     break;
7098   case RISCVABI::ABI_ILP32F:
7099   case RISCVABI::ABI_LP64F:
7100     UseGPRForF16_F32 = !IsFixed;
7101     break;
7102   case RISCVABI::ABI_ILP32D:
7103   case RISCVABI::ABI_LP64D:
7104     UseGPRForF16_F32 = !IsFixed;
7105     UseGPRForF64 = !IsFixed;
7106     break;
7107   }
7108 
7109   // FPR16, FPR32, and FPR64 alias each other.
7110   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
7111     UseGPRForF16_F32 = true;
7112     UseGPRForF64 = true;
7113   }
7114 
7115   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
7116   // similar local variables rather than directly checking against the target
7117   // ABI.
7118 
7119   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
7120     LocVT = XLenVT;
7121     LocInfo = CCValAssign::BCvt;
7122   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
7123     LocVT = MVT::i64;
7124     LocInfo = CCValAssign::BCvt;
7125   }
7126 
7127   // If this is a variadic argument, the RISC-V calling convention requires
7128   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
7129   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
7130   // be used regardless of whether the original argument was split during
7131   // legalisation or not. The argument will not be passed by registers if the
7132   // original type is larger than 2*XLEN, so the register alignment rule does
7133   // not apply.
7134   unsigned TwoXLenInBytes = (2 * XLen) / 8;
7135   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
7136       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
7137     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
7138     // Skip 'odd' register if necessary.
7139     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
7140       State.AllocateReg(ArgGPRs);
7141   }
7142 
7143   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
7144   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
7145       State.getPendingArgFlags();
7146 
7147   assert(PendingLocs.size() == PendingArgFlags.size() &&
7148          "PendingLocs and PendingArgFlags out of sync");
7149 
7150   // Handle passing f64 on RV32D with a soft float ABI or when floating point
7151   // registers are exhausted.
7152   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
7153     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
7154            "Can't lower f64 if it is split");
7155     // Depending on available argument GPRS, f64 may be passed in a pair of
7156     // GPRs, split between a GPR and the stack, or passed completely on the
7157     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
7158     // cases.
7159     Register Reg = State.AllocateReg(ArgGPRs);
7160     LocVT = MVT::i32;
7161     if (!Reg) {
7162       unsigned StackOffset = State.AllocateStack(8, Align(8));
7163       State.addLoc(
7164           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
7165       return false;
7166     }
7167     if (!State.AllocateReg(ArgGPRs))
7168       State.AllocateStack(4, Align(4));
7169     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7170     return false;
7171   }
7172 
7173   // Fixed-length vectors are located in the corresponding scalable-vector
7174   // container types.
7175   if (ValVT.isFixedLengthVector())
7176     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
7177 
7178   // Split arguments might be passed indirectly, so keep track of the pending
7179   // values. Split vectors are passed via a mix of registers and indirectly, so
7180   // treat them as we would any other argument.
7181   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
7182     LocVT = XLenVT;
7183     LocInfo = CCValAssign::Indirect;
7184     PendingLocs.push_back(
7185         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
7186     PendingArgFlags.push_back(ArgFlags);
7187     if (!ArgFlags.isSplitEnd()) {
7188       return false;
7189     }
7190   }
7191 
7192   // If the split argument only had two elements, it should be passed directly
7193   // in registers or on the stack.
7194   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
7195       PendingLocs.size() <= 2) {
7196     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
7197     // Apply the normal calling convention rules to the first half of the
7198     // split argument.
7199     CCValAssign VA = PendingLocs[0];
7200     ISD::ArgFlagsTy AF = PendingArgFlags[0];
7201     PendingLocs.clear();
7202     PendingArgFlags.clear();
7203     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
7204                                ArgFlags);
7205   }
7206 
7207   // Allocate to a register if possible, or else a stack slot.
7208   Register Reg;
7209   unsigned StoreSizeBytes = XLen / 8;
7210   Align StackAlign = Align(XLen / 8);
7211 
7212   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
7213     Reg = State.AllocateReg(ArgFPR16s);
7214   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
7215     Reg = State.AllocateReg(ArgFPR32s);
7216   else if (ValVT == MVT::f64 && !UseGPRForF64)
7217     Reg = State.AllocateReg(ArgFPR64s);
7218   else if (ValVT.isVector()) {
7219     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
7220     if (!Reg) {
7221       // For return values, the vector must be passed fully via registers or
7222       // via the stack.
7223       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
7224       // but we're using all of them.
7225       if (IsRet)
7226         return true;
7227       // Try using a GPR to pass the address
7228       if ((Reg = State.AllocateReg(ArgGPRs))) {
7229         LocVT = XLenVT;
7230         LocInfo = CCValAssign::Indirect;
7231       } else if (ValVT.isScalableVector()) {
7232         report_fatal_error("Unable to pass scalable vector types on the stack");
7233       } else {
7234         // Pass fixed-length vectors on the stack.
7235         LocVT = ValVT;
7236         StoreSizeBytes = ValVT.getStoreSize();
7237         // Align vectors to their element sizes, being careful for vXi1
7238         // vectors.
7239         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
7240       }
7241     }
7242   } else {
7243     Reg = State.AllocateReg(ArgGPRs);
7244   }
7245 
7246   unsigned StackOffset =
7247       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
7248 
7249   // If we reach this point and PendingLocs is non-empty, we must be at the
7250   // end of a split argument that must be passed indirectly.
7251   if (!PendingLocs.empty()) {
7252     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
7253     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
7254 
7255     for (auto &It : PendingLocs) {
7256       if (Reg)
7257         It.convertToReg(Reg);
7258       else
7259         It.convertToMem(StackOffset);
7260       State.addLoc(It);
7261     }
7262     PendingLocs.clear();
7263     PendingArgFlags.clear();
7264     return false;
7265   }
7266 
7267   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
7268           (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) &&
7269          "Expected an XLenVT or vector types at this stage");
7270 
7271   if (Reg) {
7272     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7273     return false;
7274   }
7275 
7276   // When a floating-point value is passed on the stack, no bit-conversion is
7277   // needed.
7278   if (ValVT.isFloatingPoint()) {
7279     LocVT = ValVT;
7280     LocInfo = CCValAssign::Full;
7281   }
7282   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
7283   return false;
7284 }
7285 
7286 template <typename ArgTy>
7287 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
7288   for (const auto &ArgIdx : enumerate(Args)) {
7289     MVT ArgVT = ArgIdx.value().VT;
7290     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
7291       return ArgIdx.index();
7292   }
7293   return None;
7294 }
7295 
7296 void RISCVTargetLowering::analyzeInputArgs(
7297     MachineFunction &MF, CCState &CCInfo,
7298     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
7299     RISCVCCAssignFn Fn) const {
7300   unsigned NumArgs = Ins.size();
7301   FunctionType *FType = MF.getFunction().getFunctionType();
7302 
7303   Optional<unsigned> FirstMaskArgument;
7304   if (Subtarget.hasStdExtV())
7305     FirstMaskArgument = preAssignMask(Ins);
7306 
7307   for (unsigned i = 0; i != NumArgs; ++i) {
7308     MVT ArgVT = Ins[i].VT;
7309     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
7310 
7311     Type *ArgTy = nullptr;
7312     if (IsRet)
7313       ArgTy = FType->getReturnType();
7314     else if (Ins[i].isOrigArg())
7315       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
7316 
7317     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
7318     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
7319            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
7320            FirstMaskArgument)) {
7321       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
7322                         << EVT(ArgVT).getEVTString() << '\n');
7323       llvm_unreachable(nullptr);
7324     }
7325   }
7326 }
7327 
7328 void RISCVTargetLowering::analyzeOutputArgs(
7329     MachineFunction &MF, CCState &CCInfo,
7330     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
7331     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
7332   unsigned NumArgs = Outs.size();
7333 
7334   Optional<unsigned> FirstMaskArgument;
7335   if (Subtarget.hasStdExtV())
7336     FirstMaskArgument = preAssignMask(Outs);
7337 
7338   for (unsigned i = 0; i != NumArgs; i++) {
7339     MVT ArgVT = Outs[i].VT;
7340     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
7341     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
7342 
7343     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
7344     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
7345            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
7346            FirstMaskArgument)) {
7347       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
7348                         << EVT(ArgVT).getEVTString() << "\n");
7349       llvm_unreachable(nullptr);
7350     }
7351   }
7352 }
7353 
7354 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
7355 // values.
7356 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
7357                                    const CCValAssign &VA, const SDLoc &DL,
7358                                    const RISCVSubtarget &Subtarget) {
7359   switch (VA.getLocInfo()) {
7360   default:
7361     llvm_unreachable("Unexpected CCValAssign::LocInfo");
7362   case CCValAssign::Full:
7363     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
7364       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
7365     break;
7366   case CCValAssign::BCvt:
7367     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
7368       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
7369     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
7370       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
7371     else
7372       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
7373     break;
7374   }
7375   return Val;
7376 }
7377 
7378 // The caller is responsible for loading the full value if the argument is
7379 // passed with CCValAssign::Indirect.
7380 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
7381                                 const CCValAssign &VA, const SDLoc &DL,
7382                                 const RISCVTargetLowering &TLI) {
7383   MachineFunction &MF = DAG.getMachineFunction();
7384   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7385   EVT LocVT = VA.getLocVT();
7386   SDValue Val;
7387   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
7388   Register VReg = RegInfo.createVirtualRegister(RC);
7389   RegInfo.addLiveIn(VA.getLocReg(), VReg);
7390   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
7391 
7392   if (VA.getLocInfo() == CCValAssign::Indirect)
7393     return Val;
7394 
7395   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
7396 }
7397 
7398 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
7399                                    const CCValAssign &VA, const SDLoc &DL,
7400                                    const RISCVSubtarget &Subtarget) {
7401   EVT LocVT = VA.getLocVT();
7402 
7403   switch (VA.getLocInfo()) {
7404   default:
7405     llvm_unreachable("Unexpected CCValAssign::LocInfo");
7406   case CCValAssign::Full:
7407     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
7408       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
7409     break;
7410   case CCValAssign::BCvt:
7411     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
7412       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
7413     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
7414       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
7415     else
7416       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
7417     break;
7418   }
7419   return Val;
7420 }
7421 
7422 // The caller is responsible for loading the full value if the argument is
7423 // passed with CCValAssign::Indirect.
7424 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
7425                                 const CCValAssign &VA, const SDLoc &DL) {
7426   MachineFunction &MF = DAG.getMachineFunction();
7427   MachineFrameInfo &MFI = MF.getFrameInfo();
7428   EVT LocVT = VA.getLocVT();
7429   EVT ValVT = VA.getValVT();
7430   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
7431   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
7432                                  /*Immutable=*/true);
7433   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7434   SDValue Val;
7435 
7436   ISD::LoadExtType ExtType;
7437   switch (VA.getLocInfo()) {
7438   default:
7439     llvm_unreachable("Unexpected CCValAssign::LocInfo");
7440   case CCValAssign::Full:
7441   case CCValAssign::Indirect:
7442   case CCValAssign::BCvt:
7443     ExtType = ISD::NON_EXTLOAD;
7444     break;
7445   }
7446   Val = DAG.getExtLoad(
7447       ExtType, DL, LocVT, Chain, FIN,
7448       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
7449   return Val;
7450 }
7451 
7452 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
7453                                        const CCValAssign &VA, const SDLoc &DL) {
7454   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
7455          "Unexpected VA");
7456   MachineFunction &MF = DAG.getMachineFunction();
7457   MachineFrameInfo &MFI = MF.getFrameInfo();
7458   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7459 
7460   if (VA.isMemLoc()) {
7461     // f64 is passed on the stack.
7462     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
7463     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
7464     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
7465                        MachinePointerInfo::getFixedStack(MF, FI));
7466   }
7467 
7468   assert(VA.isRegLoc() && "Expected register VA assignment");
7469 
7470   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7471   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
7472   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
7473   SDValue Hi;
7474   if (VA.getLocReg() == RISCV::X17) {
7475     // Second half of f64 is passed on the stack.
7476     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
7477     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
7478     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
7479                      MachinePointerInfo::getFixedStack(MF, FI));
7480   } else {
7481     // Second half of f64 is passed in another GPR.
7482     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7483     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
7484     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
7485   }
7486   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
7487 }
7488 
7489 // FastCC has less than 1% performance improvement for some particular
7490 // benchmark. But theoretically, it may has benenfit for some cases.
7491 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
7492                             unsigned ValNo, MVT ValVT, MVT LocVT,
7493                             CCValAssign::LocInfo LocInfo,
7494                             ISD::ArgFlagsTy ArgFlags, CCState &State,
7495                             bool IsFixed, bool IsRet, Type *OrigTy,
7496                             const RISCVTargetLowering &TLI,
7497                             Optional<unsigned> FirstMaskArgument) {
7498 
7499   // X5 and X6 might be used for save-restore libcall.
7500   static const MCPhysReg GPRList[] = {
7501       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
7502       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
7503       RISCV::X29, RISCV::X30, RISCV::X31};
7504 
7505   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7506     if (unsigned Reg = State.AllocateReg(GPRList)) {
7507       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7508       return false;
7509     }
7510   }
7511 
7512   if (LocVT == MVT::f16) {
7513     static const MCPhysReg FPR16List[] = {
7514         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
7515         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
7516         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
7517         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
7518     if (unsigned Reg = State.AllocateReg(FPR16List)) {
7519       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7520       return false;
7521     }
7522   }
7523 
7524   if (LocVT == MVT::f32) {
7525     static const MCPhysReg FPR32List[] = {
7526         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
7527         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
7528         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
7529         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
7530     if (unsigned Reg = State.AllocateReg(FPR32List)) {
7531       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7532       return false;
7533     }
7534   }
7535 
7536   if (LocVT == MVT::f64) {
7537     static const MCPhysReg FPR64List[] = {
7538         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
7539         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
7540         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
7541         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
7542     if (unsigned Reg = State.AllocateReg(FPR64List)) {
7543       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7544       return false;
7545     }
7546   }
7547 
7548   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
7549     unsigned Offset4 = State.AllocateStack(4, Align(4));
7550     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
7551     return false;
7552   }
7553 
7554   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
7555     unsigned Offset5 = State.AllocateStack(8, Align(8));
7556     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
7557     return false;
7558   }
7559 
7560   if (LocVT.isVector()) {
7561     if (unsigned Reg =
7562             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
7563       // Fixed-length vectors are located in the corresponding scalable-vector
7564       // container types.
7565       if (ValVT.isFixedLengthVector())
7566         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
7567       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7568     } else {
7569       // Try and pass the address via a "fast" GPR.
7570       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
7571         LocInfo = CCValAssign::Indirect;
7572         LocVT = TLI.getSubtarget().getXLenVT();
7573         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
7574       } else if (ValVT.isFixedLengthVector()) {
7575         auto StackAlign =
7576             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
7577         unsigned StackOffset =
7578             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
7579         State.addLoc(
7580             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
7581       } else {
7582         // Can't pass scalable vectors on the stack.
7583         return true;
7584       }
7585     }
7586 
7587     return false;
7588   }
7589 
7590   return true; // CC didn't match.
7591 }
7592 
7593 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
7594                          CCValAssign::LocInfo LocInfo,
7595                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
7596 
7597   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7598     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
7599     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
7600     static const MCPhysReg GPRList[] = {
7601         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
7602         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
7603     if (unsigned Reg = State.AllocateReg(GPRList)) {
7604       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7605       return false;
7606     }
7607   }
7608 
7609   if (LocVT == MVT::f32) {
7610     // Pass in STG registers: F1, ..., F6
7611     //                        fs0 ... fs5
7612     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
7613                                           RISCV::F18_F, RISCV::F19_F,
7614                                           RISCV::F20_F, RISCV::F21_F};
7615     if (unsigned Reg = State.AllocateReg(FPR32List)) {
7616       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7617       return false;
7618     }
7619   }
7620 
7621   if (LocVT == MVT::f64) {
7622     // Pass in STG registers: D1, ..., D6
7623     //                        fs6 ... fs11
7624     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
7625                                           RISCV::F24_D, RISCV::F25_D,
7626                                           RISCV::F26_D, RISCV::F27_D};
7627     if (unsigned Reg = State.AllocateReg(FPR64List)) {
7628       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7629       return false;
7630     }
7631   }
7632 
7633   report_fatal_error("No registers left in GHC calling convention");
7634   return true;
7635 }
7636 
7637 // Transform physical registers into virtual registers.
7638 SDValue RISCVTargetLowering::LowerFormalArguments(
7639     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
7640     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
7641     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7642 
7643   MachineFunction &MF = DAG.getMachineFunction();
7644 
7645   switch (CallConv) {
7646   default:
7647     report_fatal_error("Unsupported calling convention");
7648   case CallingConv::C:
7649   case CallingConv::Fast:
7650     break;
7651   case CallingConv::GHC:
7652     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
7653         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
7654       report_fatal_error(
7655         "GHC calling convention requires the F and D instruction set extensions");
7656   }
7657 
7658   const Function &Func = MF.getFunction();
7659   if (Func.hasFnAttribute("interrupt")) {
7660     if (!Func.arg_empty())
7661       report_fatal_error(
7662         "Functions with the interrupt attribute cannot have arguments!");
7663 
7664     StringRef Kind =
7665       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
7666 
7667     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
7668       report_fatal_error(
7669         "Function interrupt attribute argument not supported!");
7670   }
7671 
7672   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7673   MVT XLenVT = Subtarget.getXLenVT();
7674   unsigned XLenInBytes = Subtarget.getXLen() / 8;
7675   // Used with vargs to acumulate store chains.
7676   std::vector<SDValue> OutChains;
7677 
7678   // Assign locations to all of the incoming arguments.
7679   SmallVector<CCValAssign, 16> ArgLocs;
7680   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
7681 
7682   if (CallConv == CallingConv::GHC)
7683     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
7684   else
7685     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
7686                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
7687                                                    : CC_RISCV);
7688 
7689   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
7690     CCValAssign &VA = ArgLocs[i];
7691     SDValue ArgValue;
7692     // Passing f64 on RV32D with a soft float ABI must be handled as a special
7693     // case.
7694     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
7695       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
7696     else if (VA.isRegLoc())
7697       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
7698     else
7699       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
7700 
7701     if (VA.getLocInfo() == CCValAssign::Indirect) {
7702       // If the original argument was split and passed by reference (e.g. i128
7703       // on RV32), we need to load all parts of it here (using the same
7704       // address). Vectors may be partly split to registers and partly to the
7705       // stack, in which case the base address is partly offset and subsequent
7706       // stores are relative to that.
7707       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
7708                                    MachinePointerInfo()));
7709       unsigned ArgIndex = Ins[i].OrigArgIndex;
7710       unsigned ArgPartOffset = Ins[i].PartOffset;
7711       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
7712       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
7713         CCValAssign &PartVA = ArgLocs[i + 1];
7714         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
7715         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
7716         if (PartVA.getValVT().isScalableVector())
7717           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
7718         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
7719         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
7720                                      MachinePointerInfo()));
7721         ++i;
7722       }
7723       continue;
7724     }
7725     InVals.push_back(ArgValue);
7726   }
7727 
7728   if (IsVarArg) {
7729     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
7730     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
7731     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
7732     MachineFrameInfo &MFI = MF.getFrameInfo();
7733     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7734     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
7735 
7736     // Offset of the first variable argument from stack pointer, and size of
7737     // the vararg save area. For now, the varargs save area is either zero or
7738     // large enough to hold a0-a7.
7739     int VaArgOffset, VarArgsSaveSize;
7740 
7741     // If all registers are allocated, then all varargs must be passed on the
7742     // stack and we don't need to save any argregs.
7743     if (ArgRegs.size() == Idx) {
7744       VaArgOffset = CCInfo.getNextStackOffset();
7745       VarArgsSaveSize = 0;
7746     } else {
7747       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
7748       VaArgOffset = -VarArgsSaveSize;
7749     }
7750 
7751     // Record the frame index of the first variable argument
7752     // which is a value necessary to VASTART.
7753     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
7754     RVFI->setVarArgsFrameIndex(FI);
7755 
7756     // If saving an odd number of registers then create an extra stack slot to
7757     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
7758     // offsets to even-numbered registered remain 2*XLEN-aligned.
7759     if (Idx % 2) {
7760       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
7761       VarArgsSaveSize += XLenInBytes;
7762     }
7763 
7764     // Copy the integer registers that may have been used for passing varargs
7765     // to the vararg save area.
7766     for (unsigned I = Idx; I < ArgRegs.size();
7767          ++I, VaArgOffset += XLenInBytes) {
7768       const Register Reg = RegInfo.createVirtualRegister(RC);
7769       RegInfo.addLiveIn(ArgRegs[I], Reg);
7770       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
7771       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
7772       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
7773       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
7774                                    MachinePointerInfo::getFixedStack(MF, FI));
7775       cast<StoreSDNode>(Store.getNode())
7776           ->getMemOperand()
7777           ->setValue((Value *)nullptr);
7778       OutChains.push_back(Store);
7779     }
7780     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
7781   }
7782 
7783   // All stores are grouped in one node to allow the matching between
7784   // the size of Ins and InVals. This only happens for vararg functions.
7785   if (!OutChains.empty()) {
7786     OutChains.push_back(Chain);
7787     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
7788   }
7789 
7790   return Chain;
7791 }
7792 
7793 /// isEligibleForTailCallOptimization - Check whether the call is eligible
7794 /// for tail call optimization.
7795 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
7796 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
7797     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
7798     const SmallVector<CCValAssign, 16> &ArgLocs) const {
7799 
7800   auto &Callee = CLI.Callee;
7801   auto CalleeCC = CLI.CallConv;
7802   auto &Outs = CLI.Outs;
7803   auto &Caller = MF.getFunction();
7804   auto CallerCC = Caller.getCallingConv();
7805 
7806   // Exception-handling functions need a special set of instructions to
7807   // indicate a return to the hardware. Tail-calling another function would
7808   // probably break this.
7809   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
7810   // should be expanded as new function attributes are introduced.
7811   if (Caller.hasFnAttribute("interrupt"))
7812     return false;
7813 
7814   // Do not tail call opt if the stack is used to pass parameters.
7815   if (CCInfo.getNextStackOffset() != 0)
7816     return false;
7817 
7818   // Do not tail call opt if any parameters need to be passed indirectly.
7819   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
7820   // passed indirectly. So the address of the value will be passed in a
7821   // register, or if not available, then the address is put on the stack. In
7822   // order to pass indirectly, space on the stack often needs to be allocated
7823   // in order to store the value. In this case the CCInfo.getNextStackOffset()
7824   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
7825   // are passed CCValAssign::Indirect.
7826   for (auto &VA : ArgLocs)
7827     if (VA.getLocInfo() == CCValAssign::Indirect)
7828       return false;
7829 
7830   // Do not tail call opt if either caller or callee uses struct return
7831   // semantics.
7832   auto IsCallerStructRet = Caller.hasStructRetAttr();
7833   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
7834   if (IsCallerStructRet || IsCalleeStructRet)
7835     return false;
7836 
7837   // Externally-defined functions with weak linkage should not be
7838   // tail-called. The behaviour of branch instructions in this situation (as
7839   // used for tail calls) is implementation-defined, so we cannot rely on the
7840   // linker replacing the tail call with a return.
7841   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
7842     const GlobalValue *GV = G->getGlobal();
7843     if (GV->hasExternalWeakLinkage())
7844       return false;
7845   }
7846 
7847   // The callee has to preserve all registers the caller needs to preserve.
7848   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
7849   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
7850   if (CalleeCC != CallerCC) {
7851     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
7852     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
7853       return false;
7854   }
7855 
7856   // Byval parameters hand the function a pointer directly into the stack area
7857   // we want to reuse during a tail call. Working around this *is* possible
7858   // but less efficient and uglier in LowerCall.
7859   for (auto &Arg : Outs)
7860     if (Arg.Flags.isByVal())
7861       return false;
7862 
7863   return true;
7864 }
7865 
7866 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
7867   return DAG.getDataLayout().getPrefTypeAlign(
7868       VT.getTypeForEVT(*DAG.getContext()));
7869 }
7870 
7871 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
7872 // and output parameter nodes.
7873 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
7874                                        SmallVectorImpl<SDValue> &InVals) const {
7875   SelectionDAG &DAG = CLI.DAG;
7876   SDLoc &DL = CLI.DL;
7877   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
7878   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
7879   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
7880   SDValue Chain = CLI.Chain;
7881   SDValue Callee = CLI.Callee;
7882   bool &IsTailCall = CLI.IsTailCall;
7883   CallingConv::ID CallConv = CLI.CallConv;
7884   bool IsVarArg = CLI.IsVarArg;
7885   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7886   MVT XLenVT = Subtarget.getXLenVT();
7887 
7888   MachineFunction &MF = DAG.getMachineFunction();
7889 
7890   // Analyze the operands of the call, assigning locations to each operand.
7891   SmallVector<CCValAssign, 16> ArgLocs;
7892   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
7893 
7894   if (CallConv == CallingConv::GHC)
7895     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
7896   else
7897     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
7898                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
7899                                                     : CC_RISCV);
7900 
7901   // Check if it's really possible to do a tail call.
7902   if (IsTailCall)
7903     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
7904 
7905   if (IsTailCall)
7906     ++NumTailCalls;
7907   else if (CLI.CB && CLI.CB->isMustTailCall())
7908     report_fatal_error("failed to perform tail call elimination on a call "
7909                        "site marked musttail");
7910 
7911   // Get a count of how many bytes are to be pushed on the stack.
7912   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
7913 
7914   // Create local copies for byval args
7915   SmallVector<SDValue, 8> ByValArgs;
7916   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
7917     ISD::ArgFlagsTy Flags = Outs[i].Flags;
7918     if (!Flags.isByVal())
7919       continue;
7920 
7921     SDValue Arg = OutVals[i];
7922     unsigned Size = Flags.getByValSize();
7923     Align Alignment = Flags.getNonZeroByValAlign();
7924 
7925     int FI =
7926         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
7927     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
7928     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
7929 
7930     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
7931                           /*IsVolatile=*/false,
7932                           /*AlwaysInline=*/false, IsTailCall,
7933                           MachinePointerInfo(), MachinePointerInfo());
7934     ByValArgs.push_back(FIPtr);
7935   }
7936 
7937   if (!IsTailCall)
7938     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
7939 
7940   // Copy argument values to their designated locations.
7941   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
7942   SmallVector<SDValue, 8> MemOpChains;
7943   SDValue StackPtr;
7944   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
7945     CCValAssign &VA = ArgLocs[i];
7946     SDValue ArgValue = OutVals[i];
7947     ISD::ArgFlagsTy Flags = Outs[i].Flags;
7948 
7949     // Handle passing f64 on RV32D with a soft float ABI as a special case.
7950     bool IsF64OnRV32DSoftABI =
7951         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
7952     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
7953       SDValue SplitF64 = DAG.getNode(
7954           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
7955       SDValue Lo = SplitF64.getValue(0);
7956       SDValue Hi = SplitF64.getValue(1);
7957 
7958       Register RegLo = VA.getLocReg();
7959       RegsToPass.push_back(std::make_pair(RegLo, Lo));
7960 
7961       if (RegLo == RISCV::X17) {
7962         // Second half of f64 is passed on the stack.
7963         // Work out the address of the stack slot.
7964         if (!StackPtr.getNode())
7965           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
7966         // Emit the store.
7967         MemOpChains.push_back(
7968             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
7969       } else {
7970         // Second half of f64 is passed in another GPR.
7971         assert(RegLo < RISCV::X31 && "Invalid register pair");
7972         Register RegHigh = RegLo + 1;
7973         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
7974       }
7975       continue;
7976     }
7977 
7978     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
7979     // as any other MemLoc.
7980 
7981     // Promote the value if needed.
7982     // For now, only handle fully promoted and indirect arguments.
7983     if (VA.getLocInfo() == CCValAssign::Indirect) {
7984       // Store the argument in a stack slot and pass its address.
7985       Align StackAlign =
7986           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
7987                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
7988       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
7989       // If the original argument was split (e.g. i128), we need
7990       // to store the required parts of it here (and pass just one address).
7991       // Vectors may be partly split to registers and partly to the stack, in
7992       // which case the base address is partly offset and subsequent stores are
7993       // relative to that.
7994       unsigned ArgIndex = Outs[i].OrigArgIndex;
7995       unsigned ArgPartOffset = Outs[i].PartOffset;
7996       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
7997       // Calculate the total size to store. We don't have access to what we're
7998       // actually storing other than performing the loop and collecting the
7999       // info.
8000       SmallVector<std::pair<SDValue, SDValue>> Parts;
8001       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
8002         SDValue PartValue = OutVals[i + 1];
8003         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
8004         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
8005         EVT PartVT = PartValue.getValueType();
8006         if (PartVT.isScalableVector())
8007           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
8008         StoredSize += PartVT.getStoreSize();
8009         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
8010         Parts.push_back(std::make_pair(PartValue, Offset));
8011         ++i;
8012       }
8013       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
8014       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
8015       MemOpChains.push_back(
8016           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
8017                        MachinePointerInfo::getFixedStack(MF, FI)));
8018       for (const auto &Part : Parts) {
8019         SDValue PartValue = Part.first;
8020         SDValue PartOffset = Part.second;
8021         SDValue Address =
8022             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
8023         MemOpChains.push_back(
8024             DAG.getStore(Chain, DL, PartValue, Address,
8025                          MachinePointerInfo::getFixedStack(MF, FI)));
8026       }
8027       ArgValue = SpillSlot;
8028     } else {
8029       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
8030     }
8031 
8032     // Use local copy if it is a byval arg.
8033     if (Flags.isByVal())
8034       ArgValue = ByValArgs[j++];
8035 
8036     if (VA.isRegLoc()) {
8037       // Queue up the argument copies and emit them at the end.
8038       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
8039     } else {
8040       assert(VA.isMemLoc() && "Argument not register or memory");
8041       assert(!IsTailCall && "Tail call not allowed if stack is used "
8042                             "for passing parameters");
8043 
8044       // Work out the address of the stack slot.
8045       if (!StackPtr.getNode())
8046         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
8047       SDValue Address =
8048           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
8049                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
8050 
8051       // Emit the store.
8052       MemOpChains.push_back(
8053           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
8054     }
8055   }
8056 
8057   // Join the stores, which are independent of one another.
8058   if (!MemOpChains.empty())
8059     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
8060 
8061   SDValue Glue;
8062 
8063   // Build a sequence of copy-to-reg nodes, chained and glued together.
8064   for (auto &Reg : RegsToPass) {
8065     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
8066     Glue = Chain.getValue(1);
8067   }
8068 
8069   // Validate that none of the argument registers have been marked as
8070   // reserved, if so report an error. Do the same for the return address if this
8071   // is not a tailcall.
8072   validateCCReservedRegs(RegsToPass, MF);
8073   if (!IsTailCall &&
8074       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
8075     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
8076         MF.getFunction(),
8077         "Return address register required, but has been reserved."});
8078 
8079   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
8080   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
8081   // split it and then direct call can be matched by PseudoCALL.
8082   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
8083     const GlobalValue *GV = S->getGlobal();
8084 
8085     unsigned OpFlags = RISCVII::MO_CALL;
8086     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
8087       OpFlags = RISCVII::MO_PLT;
8088 
8089     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
8090   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
8091     unsigned OpFlags = RISCVII::MO_CALL;
8092 
8093     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
8094                                                  nullptr))
8095       OpFlags = RISCVII::MO_PLT;
8096 
8097     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
8098   }
8099 
8100   // The first call operand is the chain and the second is the target address.
8101   SmallVector<SDValue, 8> Ops;
8102   Ops.push_back(Chain);
8103   Ops.push_back(Callee);
8104 
8105   // Add argument registers to the end of the list so that they are
8106   // known live into the call.
8107   for (auto &Reg : RegsToPass)
8108     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
8109 
8110   if (!IsTailCall) {
8111     // Add a register mask operand representing the call-preserved registers.
8112     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
8113     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
8114     assert(Mask && "Missing call preserved mask for calling convention");
8115     Ops.push_back(DAG.getRegisterMask(Mask));
8116   }
8117 
8118   // Glue the call to the argument copies, if any.
8119   if (Glue.getNode())
8120     Ops.push_back(Glue);
8121 
8122   // Emit the call.
8123   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8124 
8125   if (IsTailCall) {
8126     MF.getFrameInfo().setHasTailCall();
8127     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
8128   }
8129 
8130   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
8131   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
8132   Glue = Chain.getValue(1);
8133 
8134   // Mark the end of the call, which is glued to the call itself.
8135   Chain = DAG.getCALLSEQ_END(Chain,
8136                              DAG.getConstant(NumBytes, DL, PtrVT, true),
8137                              DAG.getConstant(0, DL, PtrVT, true),
8138                              Glue, DL);
8139   Glue = Chain.getValue(1);
8140 
8141   // Assign locations to each value returned by this call.
8142   SmallVector<CCValAssign, 16> RVLocs;
8143   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
8144   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
8145 
8146   // Copy all of the result registers out of their specified physreg.
8147   for (auto &VA : RVLocs) {
8148     // Copy the value out
8149     SDValue RetValue =
8150         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
8151     // Glue the RetValue to the end of the call sequence
8152     Chain = RetValue.getValue(1);
8153     Glue = RetValue.getValue(2);
8154 
8155     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
8156       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
8157       SDValue RetValue2 =
8158           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
8159       Chain = RetValue2.getValue(1);
8160       Glue = RetValue2.getValue(2);
8161       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
8162                              RetValue2);
8163     }
8164 
8165     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
8166 
8167     InVals.push_back(RetValue);
8168   }
8169 
8170   return Chain;
8171 }
8172 
8173 bool RISCVTargetLowering::CanLowerReturn(
8174     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
8175     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
8176   SmallVector<CCValAssign, 16> RVLocs;
8177   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
8178 
8179   Optional<unsigned> FirstMaskArgument;
8180   if (Subtarget.hasStdExtV())
8181     FirstMaskArgument = preAssignMask(Outs);
8182 
8183   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
8184     MVT VT = Outs[i].VT;
8185     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
8186     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8187     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
8188                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
8189                  *this, FirstMaskArgument))
8190       return false;
8191   }
8192   return true;
8193 }
8194 
8195 SDValue
8196 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
8197                                  bool IsVarArg,
8198                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
8199                                  const SmallVectorImpl<SDValue> &OutVals,
8200                                  const SDLoc &DL, SelectionDAG &DAG) const {
8201   const MachineFunction &MF = DAG.getMachineFunction();
8202   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
8203 
8204   // Stores the assignment of the return value to a location.
8205   SmallVector<CCValAssign, 16> RVLocs;
8206 
8207   // Info about the registers and stack slot.
8208   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
8209                  *DAG.getContext());
8210 
8211   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
8212                     nullptr, CC_RISCV);
8213 
8214   if (CallConv == CallingConv::GHC && !RVLocs.empty())
8215     report_fatal_error("GHC functions return void only");
8216 
8217   SDValue Glue;
8218   SmallVector<SDValue, 4> RetOps(1, Chain);
8219 
8220   // Copy the result values into the output registers.
8221   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
8222     SDValue Val = OutVals[i];
8223     CCValAssign &VA = RVLocs[i];
8224     assert(VA.isRegLoc() && "Can only return in registers!");
8225 
8226     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
8227       // Handle returning f64 on RV32D with a soft float ABI.
8228       assert(VA.isRegLoc() && "Expected return via registers");
8229       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
8230                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
8231       SDValue Lo = SplitF64.getValue(0);
8232       SDValue Hi = SplitF64.getValue(1);
8233       Register RegLo = VA.getLocReg();
8234       assert(RegLo < RISCV::X31 && "Invalid register pair");
8235       Register RegHi = RegLo + 1;
8236 
8237       if (STI.isRegisterReservedByUser(RegLo) ||
8238           STI.isRegisterReservedByUser(RegHi))
8239         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
8240             MF.getFunction(),
8241             "Return value register required, but has been reserved."});
8242 
8243       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
8244       Glue = Chain.getValue(1);
8245       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
8246       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
8247       Glue = Chain.getValue(1);
8248       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
8249     } else {
8250       // Handle a 'normal' return.
8251       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
8252       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
8253 
8254       if (STI.isRegisterReservedByUser(VA.getLocReg()))
8255         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
8256             MF.getFunction(),
8257             "Return value register required, but has been reserved."});
8258 
8259       // Guarantee that all emitted copies are stuck together.
8260       Glue = Chain.getValue(1);
8261       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
8262     }
8263   }
8264 
8265   RetOps[0] = Chain; // Update chain.
8266 
8267   // Add the glue node if we have it.
8268   if (Glue.getNode()) {
8269     RetOps.push_back(Glue);
8270   }
8271 
8272   unsigned RetOpc = RISCVISD::RET_FLAG;
8273   // Interrupt service routines use different return instructions.
8274   const Function &Func = DAG.getMachineFunction().getFunction();
8275   if (Func.hasFnAttribute("interrupt")) {
8276     if (!Func.getReturnType()->isVoidTy())
8277       report_fatal_error(
8278           "Functions with the interrupt attribute must have void return type!");
8279 
8280     MachineFunction &MF = DAG.getMachineFunction();
8281     StringRef Kind =
8282       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
8283 
8284     if (Kind == "user")
8285       RetOpc = RISCVISD::URET_FLAG;
8286     else if (Kind == "supervisor")
8287       RetOpc = RISCVISD::SRET_FLAG;
8288     else
8289       RetOpc = RISCVISD::MRET_FLAG;
8290   }
8291 
8292   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
8293 }
8294 
8295 void RISCVTargetLowering::validateCCReservedRegs(
8296     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
8297     MachineFunction &MF) const {
8298   const Function &F = MF.getFunction();
8299   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
8300 
8301   if (llvm::any_of(Regs, [&STI](auto Reg) {
8302         return STI.isRegisterReservedByUser(Reg.first);
8303       }))
8304     F.getContext().diagnose(DiagnosticInfoUnsupported{
8305         F, "Argument register required, but has been reserved."});
8306 }
8307 
8308 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
8309   return CI->isTailCall();
8310 }
8311 
8312 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
8313 #define NODE_NAME_CASE(NODE)                                                   \
8314   case RISCVISD::NODE:                                                         \
8315     return "RISCVISD::" #NODE;
8316   // clang-format off
8317   switch ((RISCVISD::NodeType)Opcode) {
8318   case RISCVISD::FIRST_NUMBER:
8319     break;
8320   NODE_NAME_CASE(RET_FLAG)
8321   NODE_NAME_CASE(URET_FLAG)
8322   NODE_NAME_CASE(SRET_FLAG)
8323   NODE_NAME_CASE(MRET_FLAG)
8324   NODE_NAME_CASE(CALL)
8325   NODE_NAME_CASE(SELECT_CC)
8326   NODE_NAME_CASE(BR_CC)
8327   NODE_NAME_CASE(BuildPairF64)
8328   NODE_NAME_CASE(SplitF64)
8329   NODE_NAME_CASE(TAIL)
8330   NODE_NAME_CASE(MULHSU)
8331   NODE_NAME_CASE(SLLW)
8332   NODE_NAME_CASE(SRAW)
8333   NODE_NAME_CASE(SRLW)
8334   NODE_NAME_CASE(DIVW)
8335   NODE_NAME_CASE(DIVUW)
8336   NODE_NAME_CASE(REMUW)
8337   NODE_NAME_CASE(ROLW)
8338   NODE_NAME_CASE(RORW)
8339   NODE_NAME_CASE(CLZW)
8340   NODE_NAME_CASE(CTZW)
8341   NODE_NAME_CASE(FSLW)
8342   NODE_NAME_CASE(FSRW)
8343   NODE_NAME_CASE(FSL)
8344   NODE_NAME_CASE(FSR)
8345   NODE_NAME_CASE(FMV_H_X)
8346   NODE_NAME_CASE(FMV_X_ANYEXTH)
8347   NODE_NAME_CASE(FMV_W_X_RV64)
8348   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
8349   NODE_NAME_CASE(FCVT_W_RV64)
8350   NODE_NAME_CASE(FCVT_WU_RV64)
8351   NODE_NAME_CASE(READ_CYCLE_WIDE)
8352   NODE_NAME_CASE(GREV)
8353   NODE_NAME_CASE(GREVW)
8354   NODE_NAME_CASE(GORC)
8355   NODE_NAME_CASE(GORCW)
8356   NODE_NAME_CASE(SHFL)
8357   NODE_NAME_CASE(SHFLW)
8358   NODE_NAME_CASE(UNSHFL)
8359   NODE_NAME_CASE(UNSHFLW)
8360   NODE_NAME_CASE(BCOMPRESS)
8361   NODE_NAME_CASE(BCOMPRESSW)
8362   NODE_NAME_CASE(BDECOMPRESS)
8363   NODE_NAME_CASE(BDECOMPRESSW)
8364   NODE_NAME_CASE(VMV_V_X_VL)
8365   NODE_NAME_CASE(VFMV_V_F_VL)
8366   NODE_NAME_CASE(VMV_X_S)
8367   NODE_NAME_CASE(VMV_S_X_VL)
8368   NODE_NAME_CASE(VFMV_S_F_VL)
8369   NODE_NAME_CASE(SPLAT_VECTOR_I64)
8370   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
8371   NODE_NAME_CASE(READ_VLENB)
8372   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
8373   NODE_NAME_CASE(VSLIDEUP_VL)
8374   NODE_NAME_CASE(VSLIDE1UP_VL)
8375   NODE_NAME_CASE(VSLIDEDOWN_VL)
8376   NODE_NAME_CASE(VSLIDE1DOWN_VL)
8377   NODE_NAME_CASE(VID_VL)
8378   NODE_NAME_CASE(VFNCVT_ROD_VL)
8379   NODE_NAME_CASE(VECREDUCE_ADD_VL)
8380   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
8381   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
8382   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
8383   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
8384   NODE_NAME_CASE(VECREDUCE_AND_VL)
8385   NODE_NAME_CASE(VECREDUCE_OR_VL)
8386   NODE_NAME_CASE(VECREDUCE_XOR_VL)
8387   NODE_NAME_CASE(VECREDUCE_FADD_VL)
8388   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
8389   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
8390   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
8391   NODE_NAME_CASE(ADD_VL)
8392   NODE_NAME_CASE(AND_VL)
8393   NODE_NAME_CASE(MUL_VL)
8394   NODE_NAME_CASE(OR_VL)
8395   NODE_NAME_CASE(SDIV_VL)
8396   NODE_NAME_CASE(SHL_VL)
8397   NODE_NAME_CASE(SREM_VL)
8398   NODE_NAME_CASE(SRA_VL)
8399   NODE_NAME_CASE(SRL_VL)
8400   NODE_NAME_CASE(SUB_VL)
8401   NODE_NAME_CASE(UDIV_VL)
8402   NODE_NAME_CASE(UREM_VL)
8403   NODE_NAME_CASE(XOR_VL)
8404   NODE_NAME_CASE(SADDSAT_VL)
8405   NODE_NAME_CASE(UADDSAT_VL)
8406   NODE_NAME_CASE(SSUBSAT_VL)
8407   NODE_NAME_CASE(USUBSAT_VL)
8408   NODE_NAME_CASE(FADD_VL)
8409   NODE_NAME_CASE(FSUB_VL)
8410   NODE_NAME_CASE(FMUL_VL)
8411   NODE_NAME_CASE(FDIV_VL)
8412   NODE_NAME_CASE(FNEG_VL)
8413   NODE_NAME_CASE(FABS_VL)
8414   NODE_NAME_CASE(FSQRT_VL)
8415   NODE_NAME_CASE(FMA_VL)
8416   NODE_NAME_CASE(FCOPYSIGN_VL)
8417   NODE_NAME_CASE(SMIN_VL)
8418   NODE_NAME_CASE(SMAX_VL)
8419   NODE_NAME_CASE(UMIN_VL)
8420   NODE_NAME_CASE(UMAX_VL)
8421   NODE_NAME_CASE(FMINNUM_VL)
8422   NODE_NAME_CASE(FMAXNUM_VL)
8423   NODE_NAME_CASE(MULHS_VL)
8424   NODE_NAME_CASE(MULHU_VL)
8425   NODE_NAME_CASE(FP_TO_SINT_VL)
8426   NODE_NAME_CASE(FP_TO_UINT_VL)
8427   NODE_NAME_CASE(SINT_TO_FP_VL)
8428   NODE_NAME_CASE(UINT_TO_FP_VL)
8429   NODE_NAME_CASE(FP_EXTEND_VL)
8430   NODE_NAME_CASE(FP_ROUND_VL)
8431   NODE_NAME_CASE(VWMUL_VL)
8432   NODE_NAME_CASE(VWMULU_VL)
8433   NODE_NAME_CASE(SETCC_VL)
8434   NODE_NAME_CASE(VSELECT_VL)
8435   NODE_NAME_CASE(VMAND_VL)
8436   NODE_NAME_CASE(VMOR_VL)
8437   NODE_NAME_CASE(VMXOR_VL)
8438   NODE_NAME_CASE(VMCLR_VL)
8439   NODE_NAME_CASE(VMSET_VL)
8440   NODE_NAME_CASE(VRGATHER_VX_VL)
8441   NODE_NAME_CASE(VRGATHER_VV_VL)
8442   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
8443   NODE_NAME_CASE(VSEXT_VL)
8444   NODE_NAME_CASE(VZEXT_VL)
8445   NODE_NAME_CASE(VPOPC_VL)
8446   NODE_NAME_CASE(VLE_VL)
8447   NODE_NAME_CASE(VSE_VL)
8448   NODE_NAME_CASE(READ_CSR)
8449   NODE_NAME_CASE(WRITE_CSR)
8450   NODE_NAME_CASE(SWAP_CSR)
8451   }
8452   // clang-format on
8453   return nullptr;
8454 #undef NODE_NAME_CASE
8455 }
8456 
8457 /// getConstraintType - Given a constraint letter, return the type of
8458 /// constraint it is for this target.
8459 RISCVTargetLowering::ConstraintType
8460 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
8461   if (Constraint.size() == 1) {
8462     switch (Constraint[0]) {
8463     default:
8464       break;
8465     case 'f':
8466     case 'v':
8467       return C_RegisterClass;
8468     case 'I':
8469     case 'J':
8470     case 'K':
8471       return C_Immediate;
8472     case 'A':
8473       return C_Memory;
8474     case 'S': // A symbolic address
8475       return C_Other;
8476     }
8477   }
8478   return TargetLowering::getConstraintType(Constraint);
8479 }
8480 
8481 std::pair<unsigned, const TargetRegisterClass *>
8482 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
8483                                                   StringRef Constraint,
8484                                                   MVT VT) const {
8485   // First, see if this is a constraint that directly corresponds to a
8486   // RISCV register class.
8487   if (Constraint.size() == 1) {
8488     switch (Constraint[0]) {
8489     case 'r':
8490       return std::make_pair(0U, &RISCV::GPRRegClass);
8491     case 'f':
8492       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
8493         return std::make_pair(0U, &RISCV::FPR16RegClass);
8494       if (Subtarget.hasStdExtF() && VT == MVT::f32)
8495         return std::make_pair(0U, &RISCV::FPR32RegClass);
8496       if (Subtarget.hasStdExtD() && VT == MVT::f64)
8497         return std::make_pair(0U, &RISCV::FPR64RegClass);
8498       break;
8499     case 'v':
8500       for (const auto *RC :
8501            {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass,
8502             &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
8503         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
8504           return std::make_pair(0U, RC);
8505       }
8506       break;
8507     default:
8508       break;
8509     }
8510   }
8511 
8512   // Clang will correctly decode the usage of register name aliases into their
8513   // official names. However, other frontends like `rustc` do not. This allows
8514   // users of these frontends to use the ABI names for registers in LLVM-style
8515   // register constraints.
8516   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
8517                                .Case("{zero}", RISCV::X0)
8518                                .Case("{ra}", RISCV::X1)
8519                                .Case("{sp}", RISCV::X2)
8520                                .Case("{gp}", RISCV::X3)
8521                                .Case("{tp}", RISCV::X4)
8522                                .Case("{t0}", RISCV::X5)
8523                                .Case("{t1}", RISCV::X6)
8524                                .Case("{t2}", RISCV::X7)
8525                                .Cases("{s0}", "{fp}", RISCV::X8)
8526                                .Case("{s1}", RISCV::X9)
8527                                .Case("{a0}", RISCV::X10)
8528                                .Case("{a1}", RISCV::X11)
8529                                .Case("{a2}", RISCV::X12)
8530                                .Case("{a3}", RISCV::X13)
8531                                .Case("{a4}", RISCV::X14)
8532                                .Case("{a5}", RISCV::X15)
8533                                .Case("{a6}", RISCV::X16)
8534                                .Case("{a7}", RISCV::X17)
8535                                .Case("{s2}", RISCV::X18)
8536                                .Case("{s3}", RISCV::X19)
8537                                .Case("{s4}", RISCV::X20)
8538                                .Case("{s5}", RISCV::X21)
8539                                .Case("{s6}", RISCV::X22)
8540                                .Case("{s7}", RISCV::X23)
8541                                .Case("{s8}", RISCV::X24)
8542                                .Case("{s9}", RISCV::X25)
8543                                .Case("{s10}", RISCV::X26)
8544                                .Case("{s11}", RISCV::X27)
8545                                .Case("{t3}", RISCV::X28)
8546                                .Case("{t4}", RISCV::X29)
8547                                .Case("{t5}", RISCV::X30)
8548                                .Case("{t6}", RISCV::X31)
8549                                .Default(RISCV::NoRegister);
8550   if (XRegFromAlias != RISCV::NoRegister)
8551     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
8552 
8553   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
8554   // TableGen record rather than the AsmName to choose registers for InlineAsm
8555   // constraints, plus we want to match those names to the widest floating point
8556   // register type available, manually select floating point registers here.
8557   //
8558   // The second case is the ABI name of the register, so that frontends can also
8559   // use the ABI names in register constraint lists.
8560   if (Subtarget.hasStdExtF()) {
8561     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
8562                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
8563                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
8564                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
8565                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
8566                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
8567                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
8568                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
8569                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
8570                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
8571                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
8572                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
8573                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
8574                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
8575                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
8576                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
8577                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
8578                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
8579                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
8580                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
8581                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
8582                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
8583                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
8584                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
8585                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
8586                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
8587                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
8588                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
8589                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
8590                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
8591                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
8592                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
8593                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
8594                         .Default(RISCV::NoRegister);
8595     if (FReg != RISCV::NoRegister) {
8596       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
8597       if (Subtarget.hasStdExtD()) {
8598         unsigned RegNo = FReg - RISCV::F0_F;
8599         unsigned DReg = RISCV::F0_D + RegNo;
8600         return std::make_pair(DReg, &RISCV::FPR64RegClass);
8601       }
8602       return std::make_pair(FReg, &RISCV::FPR32RegClass);
8603     }
8604   }
8605 
8606   if (Subtarget.hasStdExtV()) {
8607     Register VReg = StringSwitch<Register>(Constraint.lower())
8608                         .Case("{v0}", RISCV::V0)
8609                         .Case("{v1}", RISCV::V1)
8610                         .Case("{v2}", RISCV::V2)
8611                         .Case("{v3}", RISCV::V3)
8612                         .Case("{v4}", RISCV::V4)
8613                         .Case("{v5}", RISCV::V5)
8614                         .Case("{v6}", RISCV::V6)
8615                         .Case("{v7}", RISCV::V7)
8616                         .Case("{v8}", RISCV::V8)
8617                         .Case("{v9}", RISCV::V9)
8618                         .Case("{v10}", RISCV::V10)
8619                         .Case("{v11}", RISCV::V11)
8620                         .Case("{v12}", RISCV::V12)
8621                         .Case("{v13}", RISCV::V13)
8622                         .Case("{v14}", RISCV::V14)
8623                         .Case("{v15}", RISCV::V15)
8624                         .Case("{v16}", RISCV::V16)
8625                         .Case("{v17}", RISCV::V17)
8626                         .Case("{v18}", RISCV::V18)
8627                         .Case("{v19}", RISCV::V19)
8628                         .Case("{v20}", RISCV::V20)
8629                         .Case("{v21}", RISCV::V21)
8630                         .Case("{v22}", RISCV::V22)
8631                         .Case("{v23}", RISCV::V23)
8632                         .Case("{v24}", RISCV::V24)
8633                         .Case("{v25}", RISCV::V25)
8634                         .Case("{v26}", RISCV::V26)
8635                         .Case("{v27}", RISCV::V27)
8636                         .Case("{v28}", RISCV::V28)
8637                         .Case("{v29}", RISCV::V29)
8638                         .Case("{v30}", RISCV::V30)
8639                         .Case("{v31}", RISCV::V31)
8640                         .Default(RISCV::NoRegister);
8641     if (VReg != RISCV::NoRegister) {
8642       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
8643         return std::make_pair(VReg, &RISCV::VMRegClass);
8644       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
8645         return std::make_pair(VReg, &RISCV::VRRegClass);
8646       for (const auto *RC :
8647            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
8648         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
8649           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
8650           return std::make_pair(VReg, RC);
8651         }
8652       }
8653     }
8654   }
8655 
8656   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
8657 }
8658 
8659 unsigned
8660 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
8661   // Currently only support length 1 constraints.
8662   if (ConstraintCode.size() == 1) {
8663     switch (ConstraintCode[0]) {
8664     case 'A':
8665       return InlineAsm::Constraint_A;
8666     default:
8667       break;
8668     }
8669   }
8670 
8671   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
8672 }
8673 
8674 void RISCVTargetLowering::LowerAsmOperandForConstraint(
8675     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
8676     SelectionDAG &DAG) const {
8677   // Currently only support length 1 constraints.
8678   if (Constraint.length() == 1) {
8679     switch (Constraint[0]) {
8680     case 'I':
8681       // Validate & create a 12-bit signed immediate operand.
8682       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
8683         uint64_t CVal = C->getSExtValue();
8684         if (isInt<12>(CVal))
8685           Ops.push_back(
8686               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
8687       }
8688       return;
8689     case 'J':
8690       // Validate & create an integer zero operand.
8691       if (auto *C = dyn_cast<ConstantSDNode>(Op))
8692         if (C->getZExtValue() == 0)
8693           Ops.push_back(
8694               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
8695       return;
8696     case 'K':
8697       // Validate & create a 5-bit unsigned immediate operand.
8698       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
8699         uint64_t CVal = C->getZExtValue();
8700         if (isUInt<5>(CVal))
8701           Ops.push_back(
8702               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
8703       }
8704       return;
8705     case 'S':
8706       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
8707         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
8708                                                  GA->getValueType(0)));
8709       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
8710         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
8711                                                 BA->getValueType(0)));
8712       }
8713       return;
8714     default:
8715       break;
8716     }
8717   }
8718   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8719 }
8720 
8721 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
8722                                                    Instruction *Inst,
8723                                                    AtomicOrdering Ord) const {
8724   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
8725     return Builder.CreateFence(Ord);
8726   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
8727     return Builder.CreateFence(AtomicOrdering::Release);
8728   return nullptr;
8729 }
8730 
8731 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
8732                                                     Instruction *Inst,
8733                                                     AtomicOrdering Ord) const {
8734   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
8735     return Builder.CreateFence(AtomicOrdering::Acquire);
8736   return nullptr;
8737 }
8738 
8739 TargetLowering::AtomicExpansionKind
8740 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
8741   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
8742   // point operations can't be used in an lr/sc sequence without breaking the
8743   // forward-progress guarantee.
8744   if (AI->isFloatingPointOperation())
8745     return AtomicExpansionKind::CmpXChg;
8746 
8747   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
8748   if (Size == 8 || Size == 16)
8749     return AtomicExpansionKind::MaskedIntrinsic;
8750   return AtomicExpansionKind::None;
8751 }
8752 
8753 static Intrinsic::ID
8754 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
8755   if (XLen == 32) {
8756     switch (BinOp) {
8757     default:
8758       llvm_unreachable("Unexpected AtomicRMW BinOp");
8759     case AtomicRMWInst::Xchg:
8760       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
8761     case AtomicRMWInst::Add:
8762       return Intrinsic::riscv_masked_atomicrmw_add_i32;
8763     case AtomicRMWInst::Sub:
8764       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
8765     case AtomicRMWInst::Nand:
8766       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
8767     case AtomicRMWInst::Max:
8768       return Intrinsic::riscv_masked_atomicrmw_max_i32;
8769     case AtomicRMWInst::Min:
8770       return Intrinsic::riscv_masked_atomicrmw_min_i32;
8771     case AtomicRMWInst::UMax:
8772       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
8773     case AtomicRMWInst::UMin:
8774       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
8775     }
8776   }
8777 
8778   if (XLen == 64) {
8779     switch (BinOp) {
8780     default:
8781       llvm_unreachable("Unexpected AtomicRMW BinOp");
8782     case AtomicRMWInst::Xchg:
8783       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
8784     case AtomicRMWInst::Add:
8785       return Intrinsic::riscv_masked_atomicrmw_add_i64;
8786     case AtomicRMWInst::Sub:
8787       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
8788     case AtomicRMWInst::Nand:
8789       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
8790     case AtomicRMWInst::Max:
8791       return Intrinsic::riscv_masked_atomicrmw_max_i64;
8792     case AtomicRMWInst::Min:
8793       return Intrinsic::riscv_masked_atomicrmw_min_i64;
8794     case AtomicRMWInst::UMax:
8795       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
8796     case AtomicRMWInst::UMin:
8797       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
8798     }
8799   }
8800 
8801   llvm_unreachable("Unexpected XLen\n");
8802 }
8803 
8804 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
8805     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
8806     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
8807   unsigned XLen = Subtarget.getXLen();
8808   Value *Ordering =
8809       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
8810   Type *Tys[] = {AlignedAddr->getType()};
8811   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
8812       AI->getModule(),
8813       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
8814 
8815   if (XLen == 64) {
8816     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
8817     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8818     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
8819   }
8820 
8821   Value *Result;
8822 
8823   // Must pass the shift amount needed to sign extend the loaded value prior
8824   // to performing a signed comparison for min/max. ShiftAmt is the number of
8825   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
8826   // is the number of bits to left+right shift the value in order to
8827   // sign-extend.
8828   if (AI->getOperation() == AtomicRMWInst::Min ||
8829       AI->getOperation() == AtomicRMWInst::Max) {
8830     const DataLayout &DL = AI->getModule()->getDataLayout();
8831     unsigned ValWidth =
8832         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
8833     Value *SextShamt =
8834         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
8835     Result = Builder.CreateCall(LrwOpScwLoop,
8836                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
8837   } else {
8838     Result =
8839         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
8840   }
8841 
8842   if (XLen == 64)
8843     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8844   return Result;
8845 }
8846 
8847 TargetLowering::AtomicExpansionKind
8848 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
8849     AtomicCmpXchgInst *CI) const {
8850   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
8851   if (Size == 8 || Size == 16)
8852     return AtomicExpansionKind::MaskedIntrinsic;
8853   return AtomicExpansionKind::None;
8854 }
8855 
8856 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
8857     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
8858     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
8859   unsigned XLen = Subtarget.getXLen();
8860   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
8861   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
8862   if (XLen == 64) {
8863     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
8864     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
8865     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8866     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
8867   }
8868   Type *Tys[] = {AlignedAddr->getType()};
8869   Function *MaskedCmpXchg =
8870       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
8871   Value *Result = Builder.CreateCall(
8872       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
8873   if (XLen == 64)
8874     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8875   return Result;
8876 }
8877 
8878 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
8879   return false;
8880 }
8881 
8882 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
8883                                                      EVT VT) const {
8884   VT = VT.getScalarType();
8885 
8886   if (!VT.isSimple())
8887     return false;
8888 
8889   switch (VT.getSimpleVT().SimpleTy) {
8890   case MVT::f16:
8891     return Subtarget.hasStdExtZfh();
8892   case MVT::f32:
8893     return Subtarget.hasStdExtF();
8894   case MVT::f64:
8895     return Subtarget.hasStdExtD();
8896   default:
8897     break;
8898   }
8899 
8900   return false;
8901 }
8902 
8903 Register RISCVTargetLowering::getExceptionPointerRegister(
8904     const Constant *PersonalityFn) const {
8905   return RISCV::X10;
8906 }
8907 
8908 Register RISCVTargetLowering::getExceptionSelectorRegister(
8909     const Constant *PersonalityFn) const {
8910   return RISCV::X11;
8911 }
8912 
8913 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
8914   // Return false to suppress the unnecessary extensions if the LibCall
8915   // arguments or return value is f32 type for LP64 ABI.
8916   RISCVABI::ABI ABI = Subtarget.getTargetABI();
8917   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
8918     return false;
8919 
8920   return true;
8921 }
8922 
8923 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
8924   if (Subtarget.is64Bit() && Type == MVT::i32)
8925     return true;
8926 
8927   return IsSigned;
8928 }
8929 
8930 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
8931                                                  SDValue C) const {
8932   // Check integral scalar types.
8933   if (VT.isScalarInteger()) {
8934     // Omit the optimization if the sub target has the M extension and the data
8935     // size exceeds XLen.
8936     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
8937       return false;
8938     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
8939       // Break the MUL to a SLLI and an ADD/SUB.
8940       const APInt &Imm = ConstNode->getAPIntValue();
8941       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
8942           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
8943         return true;
8944       // Omit the following optimization if the sub target has the M extension
8945       // and the data size >= XLen.
8946       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
8947         return false;
8948       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
8949       // a pair of LUI/ADDI.
8950       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
8951         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
8952         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
8953             (1 - ImmS).isPowerOf2())
8954         return true;
8955       }
8956     }
8957   }
8958 
8959   return false;
8960 }
8961 
8962 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
8963     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
8964     bool *Fast) const {
8965   if (!VT.isVector())
8966     return false;
8967 
8968   EVT ElemVT = VT.getVectorElementType();
8969   if (Alignment >= ElemVT.getStoreSize()) {
8970     if (Fast)
8971       *Fast = true;
8972     return true;
8973   }
8974 
8975   return false;
8976 }
8977 
8978 bool RISCVTargetLowering::splitValueIntoRegisterParts(
8979     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
8980     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
8981   bool IsABIRegCopy = CC.hasValue();
8982   EVT ValueVT = Val.getValueType();
8983   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
8984     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
8985     // and cast to f32.
8986     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
8987     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
8988     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
8989                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
8990     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
8991     Parts[0] = Val;
8992     return true;
8993   }
8994 
8995   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
8996     LLVMContext &Context = *DAG.getContext();
8997     EVT ValueEltVT = ValueVT.getVectorElementType();
8998     EVT PartEltVT = PartVT.getVectorElementType();
8999     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
9000     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
9001     if (PartVTBitSize % ValueVTBitSize == 0) {
9002       // If the element types are different, bitcast to the same element type of
9003       // PartVT first.
9004       if (ValueEltVT != PartEltVT) {
9005         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
9006         assert(Count != 0 && "The number of element should not be zero.");
9007         EVT SameEltTypeVT =
9008             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
9009         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
9010       }
9011       Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
9012                         Val, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
9013       Parts[0] = Val;
9014       return true;
9015     }
9016   }
9017   return false;
9018 }
9019 
9020 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
9021     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
9022     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
9023   bool IsABIRegCopy = CC.hasValue();
9024   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
9025     SDValue Val = Parts[0];
9026 
9027     // Cast the f32 to i32, truncate to i16, and cast back to f16.
9028     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
9029     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
9030     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
9031     return Val;
9032   }
9033 
9034   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
9035     LLVMContext &Context = *DAG.getContext();
9036     SDValue Val = Parts[0];
9037     EVT ValueEltVT = ValueVT.getVectorElementType();
9038     EVT PartEltVT = PartVT.getVectorElementType();
9039     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
9040     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
9041     if (PartVTBitSize % ValueVTBitSize == 0) {
9042       EVT SameEltTypeVT = ValueVT;
9043       // If the element types are different, convert it to the same element type
9044       // of PartVT.
9045       if (ValueEltVT != PartEltVT) {
9046         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
9047         assert(Count != 0 && "The number of element should not be zero.");
9048         SameEltTypeVT =
9049             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
9050       }
9051       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val,
9052                         DAG.getConstant(0, DL, Subtarget.getXLenVT()));
9053       if (ValueEltVT != PartEltVT)
9054         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
9055       return Val;
9056     }
9057   }
9058   return SDValue();
9059 }
9060 
9061 #define GET_REGISTER_MATCHER
9062 #include "RISCVGenAsmMatcher.inc"
9063 
9064 Register
9065 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
9066                                        const MachineFunction &MF) const {
9067   Register Reg = MatchRegisterAltName(RegName);
9068   if (Reg == RISCV::NoRegister)
9069     Reg = MatchRegisterName(RegName);
9070   if (Reg == RISCV::NoRegister)
9071     report_fatal_error(
9072         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
9073   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
9074   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
9075     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
9076                              StringRef(RegName) + "\"."));
9077   return Reg;
9078 }
9079 
9080 namespace llvm {
9081 namespace RISCVVIntrinsicsTable {
9082 
9083 #define GET_RISCVVIntrinsicsTable_IMPL
9084 #include "RISCVGenSearchableTables.inc"
9085 
9086 } // namespace RISCVVIntrinsicsTable
9087 
9088 } // namespace llvm
9089