1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "RISCVMatInt.h" 10 #include "MCTargetDesc/RISCVMCTargetDesc.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/Support/MathExtras.h" 13 using namespace llvm; 14 15 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) { 16 if (!HasRVC) 17 return Res.size(); 18 19 int Cost = 0; 20 for (auto Instr : Res) { 21 bool Compressed; 22 switch (Instr.Opc) { 23 default: llvm_unreachable("Unexpected opcode"); 24 case RISCV::SLLI: 25 case RISCV::SRLI: 26 Compressed = true; 27 break; 28 case RISCV::ADDI: 29 case RISCV::ADDIW: 30 case RISCV::LUI: 31 Compressed = isInt<6>(Instr.Imm); 32 break; 33 case RISCV::ADDUW: 34 Compressed = false; 35 break; 36 } 37 // Two RVC instructions take the same space as one RVI instruction, but 38 // can take longer to execute than the single RVI instruction. Thus, we 39 // consider that two RVC instruction are slightly more costly than one 40 // RVI instruction. For longer sequences of RVC instructions the space 41 // savings can be worth it, though. The costs below try to model that. 42 if (!Compressed) 43 Cost += 100; // Baseline cost of one RVI instruction: 100%. 44 else 45 Cost += 70; // 70% cost of baseline. 46 } 47 return Cost; 48 } 49 50 // Recursively generate a sequence for materializing an integer. 51 static void generateInstSeqImpl(int64_t Val, 52 const FeatureBitset &ActiveFeatures, 53 RISCVMatInt::InstSeq &Res) { 54 bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; 55 56 if (isInt<32>(Val)) { 57 // Depending on the active bits in the immediate Value v, the following 58 // instruction sequences are emitted: 59 // 60 // v == 0 : ADDI 61 // v[0,12) != 0 && v[12,32) == 0 : ADDI 62 // v[0,12) == 0 && v[12,32) != 0 : LUI 63 // v[0,32) != 0 : LUI+ADDI(W) 64 int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF; 65 int64_t Lo12 = SignExtend64<12>(Val); 66 67 if (Hi20) 68 Res.push_back(RISCVMatInt::Inst(RISCV::LUI, Hi20)); 69 70 if (Lo12 || Hi20 == 0) { 71 unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI; 72 Res.push_back(RISCVMatInt::Inst(AddiOpc, Lo12)); 73 } 74 return; 75 } 76 77 assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target"); 78 79 // In the worst case, for a full 64-bit constant, a sequence of 8 instructions 80 // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emmitted. Note 81 // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits 82 // while the following ADDI instructions contribute up to 12 bits each. 83 // 84 // On the first glance, implementing this seems to be possible by simply 85 // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left 86 // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the 87 // fact that ADDI performs a sign extended addition, doing it like that would 88 // only be possible when at most 11 bits of the ADDI instructions are used. 89 // Using all 12 bits of the ADDI instructions, like done by GAS, actually 90 // requires that the constant is processed starting with the least significant 91 // bit. 92 // 93 // In the following, constants are processed from LSB to MSB but instruction 94 // emission is performed from MSB to LSB by recursively calling 95 // generateInstSeq. In each recursion, first the lowest 12 bits are removed 96 // from the constant and the optimal shift amount, which can be greater than 97 // 12 bits if the constant is sparse, is determined. Then, the shifted 98 // remaining constant is processed recursively and gets emitted as soon as it 99 // fits into 32 bits. The emission of the shifts and additions is subsequently 100 // performed when the recursion returns. 101 102 int64_t Lo12 = SignExtend64<12>(Val); 103 int64_t Hi52 = ((uint64_t)Val + 0x800ull) >> 12; 104 int ShiftAmount = 12 + findFirstSet((uint64_t)Hi52); 105 Hi52 = SignExtend64(Hi52 >> (ShiftAmount - 12), 64 - ShiftAmount); 106 107 // If the remaining bits don't fit in 12 bits, we might be able to reduce the 108 // shift amount in order to use LUI which will zero the lower 12 bits. 109 if (ShiftAmount > 12 && !isInt<12>(Hi52) && isInt<32>((uint64_t)Hi52 << 12)) { 110 // Reduce the shift amount and add zeros to the LSBs so it will match LUI. 111 ShiftAmount -= 12; 112 Hi52 = (uint64_t)Hi52 << 12; 113 } 114 115 generateInstSeqImpl(Hi52, ActiveFeatures, Res); 116 117 Res.push_back(RISCVMatInt::Inst(RISCV::SLLI, ShiftAmount)); 118 if (Lo12) 119 Res.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12)); 120 } 121 122 namespace llvm { 123 namespace RISCVMatInt { 124 InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) { 125 RISCVMatInt::InstSeq Res; 126 generateInstSeqImpl(Val, ActiveFeatures, Res); 127 128 // If the constant is positive we might be able to generate a shifted constant 129 // with no leading zeros and use a final SRLI to restore them. 130 if (Val > 0 && Res.size() > 2) { 131 assert(ActiveFeatures[RISCV::Feature64Bit] && 132 "Expected RV32 to only need 2 instructions"); 133 unsigned LeadingZeros = countLeadingZeros((uint64_t)Val); 134 uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros; 135 // Fill in the bits that will be shifted out with 1s. An example where this 136 // helps is trailing one masks with 32 or more ones. This will generate 137 // ADDI -1 and an SRLI. 138 ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros); 139 140 RISCVMatInt::InstSeq TmpSeq; 141 generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); 142 TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros)); 143 144 // Keep the new sequence if it is an improvement. 145 if (TmpSeq.size() < Res.size()) { 146 Res = TmpSeq; 147 // A 2 instruction sequence is the best we can do. 148 if (Res.size() <= 2) 149 return Res; 150 } 151 152 // Some cases can benefit from filling the lower bits with zeros instead. 153 ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros); 154 TmpSeq.clear(); 155 generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); 156 TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros)); 157 158 // Keep the new sequence if it is an improvement. 159 if (TmpSeq.size() < Res.size()) { 160 Res = TmpSeq; 161 // A 2 instruction sequence is the best we can do. 162 if (Res.size() <= 2) 163 return Res; 164 } 165 166 // If we have exactly 32 leading zeros and Zba, we can try using zext.w at 167 // the end of the sequence. 168 if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureExtZba]) { 169 // Try replacing upper bits with 1. 170 uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros); 171 TmpSeq.clear(); 172 generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq); 173 TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDUW, 0)); 174 175 // Keep the new sequence if it is an improvement. 176 if (TmpSeq.size() < Res.size()) { 177 Res = TmpSeq; 178 // A 2 instruction sequence is the best we can do. 179 if (Res.size() <= 2) 180 return Res; 181 } 182 } 183 } 184 185 return Res; 186 } 187 188 int getIntMatCost(const APInt &Val, unsigned Size, 189 const FeatureBitset &ActiveFeatures, 190 bool CompressionCost) { 191 bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; 192 bool HasRVC = CompressionCost && ActiveFeatures[RISCV::FeatureStdExtC]; 193 int PlatRegSize = IsRV64 ? 64 : 32; 194 195 // Split the constant into platform register sized chunks, and calculate cost 196 // of each chunk. 197 int Cost = 0; 198 for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) { 199 APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize); 200 InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures); 201 Cost += getInstSeqCost(MatSeq, HasRVC); 202 } 203 return std::max(1, Cost); 204 } 205 } // namespace RISCVMatInt 206 } // namespace llvm 207