xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVMatInt.cpp (revision ac77b2621508c6a50ab01d07fe8d43795d908f05)
1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "RISCVMatInt.h"
10 #include "MCTargetDesc/RISCVMCTargetDesc.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/Support/MathExtras.h"
13 using namespace llvm;
14 
15 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
16   if (!HasRVC)
17     return Res.size();
18 
19   int Cost = 0;
20   for (auto Instr : Res) {
21     // Assume instructions that aren't listed aren't compressible.
22     bool Compressed = false;
23     switch (Instr.getOpcode()) {
24     case RISCV::SLLI:
25     case RISCV::SRLI:
26       Compressed = true;
27       break;
28     case RISCV::ADDI:
29     case RISCV::ADDIW:
30     case RISCV::LUI:
31       Compressed = isInt<6>(Instr.getImm());
32       break;
33     }
34     // Two RVC instructions take the same space as one RVI instruction, but
35     // can take longer to execute than the single RVI instruction. Thus, we
36     // consider that two RVC instruction are slightly more costly than one
37     // RVI instruction. For longer sequences of RVC instructions the space
38     // savings can be worth it, though. The costs below try to model that.
39     if (!Compressed)
40       Cost += 100; // Baseline cost of one RVI instruction: 100%.
41     else
42       Cost += 70; // 70% cost of baseline.
43   }
44   return Cost;
45 }
46 
47 // Recursively generate a sequence for materializing an integer.
48 static void generateInstSeqImpl(int64_t Val, const MCSubtargetInfo &STI,
49                                 RISCVMatInt::InstSeq &Res) {
50   bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
51 
52   // Use BSETI for a single bit that can't be expressed by a single LUI or ADDI.
53   if (STI.hasFeature(RISCV::FeatureStdExtZbs) && isPowerOf2_64(Val) &&
54       (!isInt<32>(Val) || Val == 0x800)) {
55     Res.emplace_back(RISCV::BSETI, Log2_64(Val));
56     return;
57   }
58 
59   if (isInt<32>(Val)) {
60     // Depending on the active bits in the immediate Value v, the following
61     // instruction sequences are emitted:
62     //
63     // v == 0                        : ADDI
64     // v[0,12) != 0 && v[12,32) == 0 : ADDI
65     // v[0,12) == 0 && v[12,32) != 0 : LUI
66     // v[0,32) != 0                  : LUI+ADDI(W)
67     int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
68     int64_t Lo12 = SignExtend64<12>(Val);
69 
70     if (Hi20)
71       Res.emplace_back(RISCV::LUI, Hi20);
72 
73     if (Lo12 || Hi20 == 0) {
74       unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
75       Res.emplace_back(AddiOpc, Lo12);
76     }
77     return;
78   }
79 
80   assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
81 
82   // In the worst case, for a full 64-bit constant, a sequence of 8 instructions
83   // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
84   // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
85   // while the following ADDI instructions contribute up to 12 bits each.
86   //
87   // On the first glance, implementing this seems to be possible by simply
88   // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
89   // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
90   // fact that ADDI performs a sign extended addition, doing it like that would
91   // only be possible when at most 11 bits of the ADDI instructions are used.
92   // Using all 12 bits of the ADDI instructions, like done by GAS, actually
93   // requires that the constant is processed starting with the least significant
94   // bit.
95   //
96   // In the following, constants are processed from LSB to MSB but instruction
97   // emission is performed from MSB to LSB by recursively calling
98   // generateInstSeq. In each recursion, first the lowest 12 bits are removed
99   // from the constant and the optimal shift amount, which can be greater than
100   // 12 bits if the constant is sparse, is determined. Then, the shifted
101   // remaining constant is processed recursively and gets emitted as soon as it
102   // fits into 32 bits. The emission of the shifts and additions is subsequently
103   // performed when the recursion returns.
104 
105   int64_t Lo12 = SignExtend64<12>(Val);
106   Val = (uint64_t)Val - (uint64_t)Lo12;
107 
108   int ShiftAmount = 0;
109   bool Unsigned = false;
110 
111   // Val might now be valid for LUI without needing a shift.
112   if (!isInt<32>(Val)) {
113     ShiftAmount = llvm::countr_zero((uint64_t)Val);
114     Val >>= ShiftAmount;
115 
116     // If the remaining bits don't fit in 12 bits, we might be able to reduce the
117     // shift amount in order to use LUI which will zero the lower 12 bits.
118     if (ShiftAmount > 12 && !isInt<12>(Val)) {
119       if (isInt<32>((uint64_t)Val << 12)) {
120         // Reduce the shift amount and add zeros to the LSBs so it will match LUI.
121         ShiftAmount -= 12;
122         Val = (uint64_t)Val << 12;
123       } else if (isUInt<32>((uint64_t)Val << 12) &&
124                  STI.hasFeature(RISCV::FeatureStdExtZba)) {
125         // Reduce the shift amount and add zeros to the LSBs so it will match
126         // LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
127         ShiftAmount -= 12;
128         Val = ((uint64_t)Val << 12) | (0xffffffffull << 32);
129         Unsigned = true;
130       }
131     }
132 
133     // Try to use SLLI_UW for Val when it is uint32 but not int32.
134     if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) &&
135         STI.hasFeature(RISCV::FeatureStdExtZba)) {
136       // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with
137       // SLLI_UW.
138       Val = ((uint64_t)Val) | (0xffffffffull << 32);
139       Unsigned = true;
140     }
141   }
142 
143   generateInstSeqImpl(Val, STI, Res);
144 
145   // Skip shift if we were able to use LUI directly.
146   if (ShiftAmount) {
147     unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI;
148     Res.emplace_back(Opc, ShiftAmount);
149   }
150 
151   if (Lo12)
152     Res.emplace_back(RISCV::ADDI, Lo12);
153 }
154 
155 static unsigned extractRotateInfo(int64_t Val) {
156   // for case: 0b111..1..xxxxxx1..1..
157   unsigned LeadingOnes = llvm::countl_one((uint64_t)Val);
158   unsigned TrailingOnes = llvm::countr_one((uint64_t)Val);
159   if (TrailingOnes > 0 && TrailingOnes < 64 &&
160       (LeadingOnes + TrailingOnes) > (64 - 12))
161     return 64 - TrailingOnes;
162 
163   // for case: 0bxxx1..1..1...xxx
164   unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val));
165   unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val));
166   if (UpperTrailingOnes < 32 &&
167       (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12))
168     return 32 - UpperTrailingOnes;
169 
170   return 0;
171 }
172 
173 static void generateInstSeqLeadingZeros(int64_t Val, const MCSubtargetInfo &STI,
174                                         RISCVMatInt::InstSeq &Res) {
175   assert(Val > 0 && "Expected postive val");
176 
177   unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val);
178   uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
179   // Fill in the bits that will be shifted out with 1s. An example where this
180   // helps is trailing one masks with 32 or more ones. This will generate
181   // ADDI -1 and an SRLI.
182   ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
183 
184   RISCVMatInt::InstSeq TmpSeq;
185   generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
186 
187   // Keep the new sequence if it is an improvement or the original is empty.
188   if ((TmpSeq.size() + 1) < Res.size() ||
189       (Res.empty() && TmpSeq.size() < 8)) {
190     TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
191     Res = TmpSeq;
192   }
193 
194   // Some cases can benefit from filling the lower bits with zeros instead.
195   ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
196   TmpSeq.clear();
197   generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
198 
199   // Keep the new sequence if it is an improvement or the original is empty.
200   if ((TmpSeq.size() + 1) < Res.size() ||
201       (Res.empty() && TmpSeq.size() < 8)) {
202     TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
203     Res = TmpSeq;
204   }
205 
206   // If we have exactly 32 leading zeros and Zba, we can try using zext.w at
207   // the end of the sequence.
208   if (LeadingZeros == 32 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
209     // Try replacing upper bits with 1.
210     uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
211     TmpSeq.clear();
212     generateInstSeqImpl(LeadingOnesVal, STI, TmpSeq);
213 
214     // Keep the new sequence if it is an improvement.
215     if ((TmpSeq.size() + 1) < Res.size() ||
216         (Res.empty() && TmpSeq.size() < 8)) {
217       TmpSeq.emplace_back(RISCV::ADD_UW, 0);
218       Res = TmpSeq;
219     }
220   }
221 }
222 
223 namespace llvm::RISCVMatInt {
224 InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI) {
225   RISCVMatInt::InstSeq Res;
226   generateInstSeqImpl(Val, STI, Res);
227 
228   // If the low 12 bits are non-zero, the first expansion may end with an ADDI
229   // or ADDIW. If there are trailing zeros, try generating a sign extended
230   // constant with no trailing zeros and use a final SLLI to restore them.
231   if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) {
232     unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val);
233     int64_t ShiftedVal = Val >> TrailingZeros;
234     // If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since
235     // its more compressible. But only if LUI+ADDI(W) isn't fusable.
236     // NOTE: We don't check for C extension to minimize differences in generated
237     // code.
238     bool IsShiftedCompressible =
239         isInt<6>(ShiftedVal) && !STI.hasFeature(RISCV::TuneLUIADDIFusion);
240     RISCVMatInt::InstSeq TmpSeq;
241     generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
242 
243     // Keep the new sequence if it is an improvement.
244     if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) {
245       TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros);
246       Res = TmpSeq;
247     }
248   }
249 
250   // If we have a 1 or 2 instruction sequence this is the best we can do. This
251   // will always be true for RV32 and will often be true for RV64.
252   if (Res.size() <= 2)
253     return Res;
254 
255   assert(STI.hasFeature(RISCV::Feature64Bit) &&
256          "Expected RV32 to only need 2 instructions");
257 
258   // If the lower 13 bits are something like 0x17ff, try to add 1 to change the
259   // lower 13 bits to 0x1800. We can restore this with an ADDI of -1 at the end
260   // of the sequence. Call generateInstSeqImpl on the new constant which may
261   // subtract 0xfffffffffffff800 to create another ADDI. This will leave a
262   // constant with more than 12 trailing zeros for the next recursive step.
263   if ((Val & 0xfff) != 0 && (Val & 0x1800) == 0x1000) {
264     int64_t Imm12 = -(0x800 - (Val & 0xfff));
265     int64_t AdjustedVal = Val - Imm12;
266     RISCVMatInt::InstSeq TmpSeq;
267     generateInstSeqImpl(AdjustedVal, STI, TmpSeq);
268 
269     // Keep the new sequence if it is an improvement.
270     if ((TmpSeq.size() + 1) < Res.size()) {
271       TmpSeq.emplace_back(RISCV::ADDI, Imm12);
272       Res = TmpSeq;
273     }
274   }
275 
276   // If the constant is positive we might be able to generate a shifted constant
277   // with no leading zeros and use a final SRLI to restore them.
278   if (Val > 0 && Res.size() > 2) {
279     generateInstSeqLeadingZeros(Val, STI, Res);
280   }
281 
282   // If the constant is negative, trying inverting and using our trailing zero
283   // optimizations. Use an xori to invert the final value.
284   if (Val < 0 && Res.size() > 3) {
285     uint64_t InvertedVal = ~(uint64_t)Val;
286     RISCVMatInt::InstSeq TmpSeq;
287     generateInstSeqLeadingZeros(InvertedVal, STI, TmpSeq);
288 
289     // Keep it if we found a sequence that is smaller after inverting.
290     if (!TmpSeq.empty() && (TmpSeq.size() + 1) < Res.size()) {
291       TmpSeq.emplace_back(RISCV::XORI, -1);
292       Res = TmpSeq;
293     }
294   }
295 
296   // If the Low and High halves are the same, use pack. The pack instruction
297   // packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the
298   // lower half and rs2 in the upper half.
299   if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbkb)) {
300     int64_t LoVal = SignExtend64<32>(Val);
301     int64_t HiVal = SignExtend64<32>(Val >> 32);
302     if (LoVal == HiVal) {
303       RISCVMatInt::InstSeq TmpSeq;
304       generateInstSeqImpl(LoVal, STI, TmpSeq);
305       if ((TmpSeq.size() + 1) < Res.size()) {
306         TmpSeq.emplace_back(RISCV::PACK, 0);
307         Res = TmpSeq;
308       }
309     }
310   }
311 
312   // Perform optimization with BCLRI/BSETI in the Zbs extension.
313   if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
314     // 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000,
315     //    call generateInstSeqImpl with Val|0x80000000 (which is expected be
316     //    an int32), then emit (BCLRI r, 31).
317     // 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl
318     //    with Val&~0x80000000 (which is expected to be an int32), then
319     //    emit (BSETI r, 31).
320     int64_t NewVal;
321     unsigned Opc;
322     if (Val < 0) {
323       Opc = RISCV::BCLRI;
324       NewVal = Val | 0x80000000ll;
325     } else {
326       Opc = RISCV::BSETI;
327       NewVal = Val & ~0x80000000ll;
328     }
329     if (isInt<32>(NewVal)) {
330       RISCVMatInt::InstSeq TmpSeq;
331       generateInstSeqImpl(NewVal, STI, TmpSeq);
332       if ((TmpSeq.size() + 1) < Res.size()) {
333         TmpSeq.emplace_back(Opc, 31);
334         Res = TmpSeq;
335       }
336     }
337 
338     // Try to use BCLRI for upper 32 bits if the original lower 32 bits are
339     // negative int32, or use BSETI for upper 32 bits if the original lower
340     // 32 bits are positive int32.
341     int32_t Lo = Lo_32(Val);
342     uint32_t Hi = Hi_32(Val);
343     Opc = 0;
344     RISCVMatInt::InstSeq TmpSeq;
345     generateInstSeqImpl(Lo, STI, TmpSeq);
346     // Check if it is profitable to use BCLRI/BSETI.
347     if (Lo > 0 && TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
348       Opc = RISCV::BSETI;
349     } else if (Lo < 0 && TmpSeq.size() + llvm::popcount(~Hi) < Res.size()) {
350       Opc = RISCV::BCLRI;
351       Hi = ~Hi;
352     }
353     // Search for each bit and build corresponding BCLRI/BSETI.
354     if (Opc > 0) {
355       while (Hi != 0) {
356         unsigned Bit = llvm::countr_zero(Hi);
357         TmpSeq.emplace_back(Opc, Bit + 32);
358         Hi &= (Hi - 1); // Clear lowest set bit.
359       }
360       if (TmpSeq.size() < Res.size())
361         Res = TmpSeq;
362     }
363   }
364 
365   // Perform optimization with SH*ADD in the Zba extension.
366   if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
367     int64_t Div = 0;
368     unsigned Opc = 0;
369     RISCVMatInt::InstSeq TmpSeq;
370     // Select the opcode and divisor.
371     if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
372       Div = 3;
373       Opc = RISCV::SH1ADD;
374     } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
375       Div = 5;
376       Opc = RISCV::SH2ADD;
377     } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
378       Div = 9;
379       Opc = RISCV::SH3ADD;
380     }
381     // Build the new instruction sequence.
382     if (Div > 0) {
383       generateInstSeqImpl(Val / Div, STI, TmpSeq);
384       if ((TmpSeq.size() + 1) < Res.size()) {
385         TmpSeq.emplace_back(Opc, 0);
386         Res = TmpSeq;
387       }
388     } else {
389       // Try to use LUI+SH*ADD+ADDI.
390       int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
391       int64_t Lo12 = SignExtend64<12>(Val);
392       Div = 0;
393       if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
394         Div = 3;
395         Opc = RISCV::SH1ADD;
396       } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
397         Div = 5;
398         Opc = RISCV::SH2ADD;
399       } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
400         Div = 9;
401         Opc = RISCV::SH3ADD;
402       }
403       // Build the new instruction sequence.
404       if (Div > 0) {
405         // For Val that has zero Lo12 (implies Val equals to Hi52) should has
406         // already been processed to LUI+SH*ADD by previous optimization.
407         assert(Lo12 != 0 &&
408                "unexpected instruction sequence for immediate materialisation");
409         assert(TmpSeq.empty() && "Expected empty TmpSeq");
410         generateInstSeqImpl(Hi52 / Div, STI, TmpSeq);
411         if ((TmpSeq.size() + 2) < Res.size()) {
412           TmpSeq.emplace_back(Opc, 0);
413           TmpSeq.emplace_back(RISCV::ADDI, Lo12);
414           Res = TmpSeq;
415         }
416       }
417     }
418   }
419 
420   // Perform optimization with rori in the Zbb and th.srri in the XTheadBb
421   // extension.
422   if (Res.size() > 2 && (STI.hasFeature(RISCV::FeatureStdExtZbb) ||
423                          STI.hasFeature(RISCV::FeatureVendorXTHeadBb))) {
424     if (unsigned Rotate = extractRotateInfo(Val)) {
425       RISCVMatInt::InstSeq TmpSeq;
426       uint64_t NegImm12 = llvm::rotl<uint64_t>(Val, Rotate);
427       assert(isInt<12>(NegImm12));
428       TmpSeq.emplace_back(RISCV::ADDI, NegImm12);
429       TmpSeq.emplace_back(STI.hasFeature(RISCV::FeatureStdExtZbb)
430                               ? RISCV::RORI
431                               : RISCV::TH_SRRI,
432                           Rotate);
433       Res = TmpSeq;
434     }
435   }
436   return Res;
437 }
438 
439 InstSeq generateTwoRegInstSeq(int64_t Val, const MCSubtargetInfo &STI,
440                               unsigned &ShiftAmt, unsigned &AddOpc) {
441   int64_t LoVal = SignExtend64<32>(Val);
442   if (LoVal == 0)
443     return RISCVMatInt::InstSeq();
444 
445   // Subtract the LoVal to emulate the effect of the final ADD.
446   uint64_t Tmp = (uint64_t)Val - (uint64_t)LoVal;
447   assert(Tmp != 0);
448 
449   // Use trailing zero counts to figure how far we need to shift LoVal to line
450   // up with the remaining constant.
451   // TODO: This algorithm assumes all non-zero bits in the low 32 bits of the
452   // final constant come from LoVal.
453   unsigned TzLo = llvm::countr_zero((uint64_t)LoVal);
454   unsigned TzHi = llvm::countr_zero(Tmp);
455   assert(TzLo < 32 && TzHi >= 32);
456   ShiftAmt = TzHi - TzLo;
457   AddOpc = RISCV::ADD;
458 
459   if (Tmp == ((uint64_t)LoVal << ShiftAmt))
460     return RISCVMatInt::generateInstSeq(LoVal, STI);
461 
462   // If we have Zba, we can use (ADD_UW X, (SLLI X, 32)).
463   if (STI.hasFeature(RISCV::FeatureStdExtZba) && Lo_32(Val) == Hi_32(Val)) {
464     ShiftAmt = 32;
465     AddOpc = RISCV::ADD_UW;
466     return RISCVMatInt::generateInstSeq(LoVal, STI);
467   }
468 
469   return RISCVMatInt::InstSeq();
470 }
471 
472 int getIntMatCost(const APInt &Val, unsigned Size, const MCSubtargetInfo &STI,
473                   bool CompressionCost) {
474   bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
475   bool HasRVC = CompressionCost && (STI.hasFeature(RISCV::FeatureStdExtC) ||
476                                     STI.hasFeature(RISCV::FeatureStdExtZca));
477   int PlatRegSize = IsRV64 ? 64 : 32;
478 
479   // Split the constant into platform register sized chunks, and calculate cost
480   // of each chunk.
481   int Cost = 0;
482   for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
483     APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
484     InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), STI);
485     Cost += getInstSeqCost(MatSeq, HasRVC);
486   }
487   return std::max(1, Cost);
488 }
489 
490 OpndKind Inst::getOpndKind() const {
491   switch (Opc) {
492   default:
493     llvm_unreachable("Unexpected opcode!");
494   case RISCV::LUI:
495     return RISCVMatInt::Imm;
496   case RISCV::ADD_UW:
497     return RISCVMatInt::RegX0;
498   case RISCV::SH1ADD:
499   case RISCV::SH2ADD:
500   case RISCV::SH3ADD:
501   case RISCV::PACK:
502     return RISCVMatInt::RegReg;
503   case RISCV::ADDI:
504   case RISCV::ADDIW:
505   case RISCV::XORI:
506   case RISCV::SLLI:
507   case RISCV::SRLI:
508   case RISCV::SLLI_UW:
509   case RISCV::RORI:
510   case RISCV::BSETI:
511   case RISCV::BCLRI:
512   case RISCV::TH_SRRI:
513     return RISCVMatInt::RegImm;
514   }
515 }
516 
517 } // namespace llvm::RISCVMatInt
518