xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVMatInt.cpp (revision a2464ee12761660f50d0b6f59f233949ebcacc87)
1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "RISCVMatInt.h"
10 #include "MCTargetDesc/RISCVMCTargetDesc.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/Support/MathExtras.h"
13 using namespace llvm;
14 
15 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
16   if (!HasRVC)
17     return Res.size();
18 
19   int Cost = 0;
20   for (auto Instr : Res) {
21     bool Compressed;
22     switch (Instr.Opc) {
23     default:
24       llvm_unreachable("Unexpected opcode");
25     case RISCV::SLLI:
26     case RISCV::SRLI:
27       Compressed = true;
28       break;
29     case RISCV::ADDI:
30     case RISCV::ADDIW:
31     case RISCV::LUI:
32       Compressed = isInt<6>(Instr.Imm);
33       break;
34     case RISCV::ADD_UW:
35       Compressed = false;
36       break;
37     }
38     // Two RVC instructions take the same space as one RVI instruction, but
39     // can take longer to execute than the single RVI instruction. Thus, we
40     // consider that two RVC instruction are slightly more costly than one
41     // RVI instruction. For longer sequences of RVC instructions the space
42     // savings can be worth it, though. The costs below try to model that.
43     if (!Compressed)
44       Cost += 100; // Baseline cost of one RVI instruction: 100%.
45     else
46       Cost += 70; // 70% cost of baseline.
47   }
48   return Cost;
49 }
50 
51 // Recursively generate a sequence for materializing an integer.
52 static void generateInstSeqImpl(int64_t Val,
53                                 const FeatureBitset &ActiveFeatures,
54                                 RISCVMatInt::InstSeq &Res) {
55   bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
56 
57   if (isInt<32>(Val)) {
58     // Depending on the active bits in the immediate Value v, the following
59     // instruction sequences are emitted:
60     //
61     // v == 0                        : ADDI
62     // v[0,12) != 0 && v[12,32) == 0 : ADDI
63     // v[0,12) == 0 && v[12,32) != 0 : LUI
64     // v[0,32) != 0                  : LUI+ADDI(W)
65     int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
66     int64_t Lo12 = SignExtend64<12>(Val);
67 
68     if (Hi20)
69       Res.push_back(RISCVMatInt::Inst(RISCV::LUI, Hi20));
70 
71     if (Lo12 || Hi20 == 0) {
72       unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
73       Res.push_back(RISCVMatInt::Inst(AddiOpc, Lo12));
74     }
75     return;
76   }
77 
78   assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
79 
80   // In the worst case, for a full 64-bit constant, a sequence of 8 instructions
81   // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
82   // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
83   // while the following ADDI instructions contribute up to 12 bits each.
84   //
85   // On the first glance, implementing this seems to be possible by simply
86   // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
87   // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
88   // fact that ADDI performs a sign extended addition, doing it like that would
89   // only be possible when at most 11 bits of the ADDI instructions are used.
90   // Using all 12 bits of the ADDI instructions, like done by GAS, actually
91   // requires that the constant is processed starting with the least significant
92   // bit.
93   //
94   // In the following, constants are processed from LSB to MSB but instruction
95   // emission is performed from MSB to LSB by recursively calling
96   // generateInstSeq. In each recursion, first the lowest 12 bits are removed
97   // from the constant and the optimal shift amount, which can be greater than
98   // 12 bits if the constant is sparse, is determined. Then, the shifted
99   // remaining constant is processed recursively and gets emitted as soon as it
100   // fits into 32 bits. The emission of the shifts and additions is subsequently
101   // performed when the recursion returns.
102 
103   int64_t Lo12 = SignExtend64<12>(Val);
104   int64_t Hi52 = ((uint64_t)Val + 0x800ull) >> 12;
105   int ShiftAmount = 12 + findFirstSet((uint64_t)Hi52);
106   Hi52 = SignExtend64(Hi52 >> (ShiftAmount - 12), 64 - ShiftAmount);
107 
108   // If the remaining bits don't fit in 12 bits, we might be able to reduce the
109   // shift amount in order to use LUI which will zero the lower 12 bits.
110   bool Unsigned = false;
111   if (ShiftAmount > 12 && !isInt<12>(Hi52)) {
112     if (isInt<32>((uint64_t)Hi52 << 12)) {
113       // Reduce the shift amount and add zeros to the LSBs so it will match LUI.
114       ShiftAmount -= 12;
115       Hi52 = (uint64_t)Hi52 << 12;
116     } else if (isUInt<32>((uint64_t)Hi52 << 12) &&
117                ActiveFeatures[RISCV::FeatureStdExtZba]) {
118       // Reduce the shift amount and add zeros to the LSBs so it will match
119       // LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
120       ShiftAmount -= 12;
121       Hi52 = ((uint64_t)Hi52 << 12) | (0xffffffffull << 32);
122       Unsigned = true;
123     }
124   }
125 
126   // Try to use SLLI_UW for Hi52 when it is uint32 but not int32.
127   if (isUInt<32>((uint64_t)Hi52) && !isInt<32>((uint64_t)Hi52) &&
128       ActiveFeatures[RISCV::FeatureStdExtZba]) {
129     // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with
130     // SLLI_UW.
131     Hi52 = ((uint64_t)Hi52) | (0xffffffffull << 32);
132     Unsigned = true;
133   }
134 
135   generateInstSeqImpl(Hi52, ActiveFeatures, Res);
136 
137   if (Unsigned)
138     Res.push_back(RISCVMatInt::Inst(RISCV::SLLI_UW, ShiftAmount));
139   else
140     Res.push_back(RISCVMatInt::Inst(RISCV::SLLI, ShiftAmount));
141   if (Lo12)
142     Res.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12));
143 }
144 
145 static unsigned extractRotateInfo(int64_t Val) {
146   // for case: 0b111..1..xxxxxx1..1..
147   unsigned LeadingOnes = countLeadingOnes((uint64_t)Val);
148   unsigned TrailingOnes = countTrailingOnes((uint64_t)Val);
149   if (TrailingOnes > 0 && TrailingOnes < 64 &&
150       (LeadingOnes + TrailingOnes) > (64 - 12))
151     return 64 - TrailingOnes;
152 
153   // for case: 0bxxx1..1..1...xxx
154   unsigned UpperTrailingOnes = countTrailingOnes(Hi_32(Val));
155   unsigned LowerLeadingOnes = countLeadingOnes(Lo_32(Val));
156   if (UpperTrailingOnes < 32 &&
157       (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12))
158     return 32 - UpperTrailingOnes;
159 
160   return 0;
161 }
162 
163 namespace llvm {
164 namespace RISCVMatInt {
165 InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) {
166   RISCVMatInt::InstSeq Res;
167   generateInstSeqImpl(Val, ActiveFeatures, Res);
168 
169   // If the constant is positive we might be able to generate a shifted constant
170   // with no leading zeros and use a final SRLI to restore them.
171   if (Val > 0 && Res.size() > 2) {
172     assert(ActiveFeatures[RISCV::Feature64Bit] &&
173            "Expected RV32 to only need 2 instructions");
174     unsigned LeadingZeros = countLeadingZeros((uint64_t)Val);
175     uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
176     // Fill in the bits that will be shifted out with 1s. An example where this
177     // helps is trailing one masks with 32 or more ones. This will generate
178     // ADDI -1 and an SRLI.
179     ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
180 
181     RISCVMatInt::InstSeq TmpSeq;
182     generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
183     TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros));
184 
185     // Keep the new sequence if it is an improvement.
186     if (TmpSeq.size() < Res.size()) {
187       Res = TmpSeq;
188       // A 2 instruction sequence is the best we can do.
189       if (Res.size() <= 2)
190         return Res;
191     }
192 
193     // Some cases can benefit from filling the lower bits with zeros instead.
194     ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
195     TmpSeq.clear();
196     generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
197     TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros));
198 
199     // Keep the new sequence if it is an improvement.
200     if (TmpSeq.size() < Res.size()) {
201       Res = TmpSeq;
202       // A 2 instruction sequence is the best we can do.
203       if (Res.size() <= 2)
204         return Res;
205     }
206 
207     // If we have exactly 32 leading zeros and Zba, we can try using zext.w at
208     // the end of the sequence.
209     if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureStdExtZba]) {
210       // Try replacing upper bits with 1.
211       uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
212       TmpSeq.clear();
213       generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq);
214       TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADD_UW, 0));
215 
216       // Keep the new sequence if it is an improvement.
217       if (TmpSeq.size() < Res.size()) {
218         Res = TmpSeq;
219         // A 2 instruction sequence is the best we can do.
220         if (Res.size() <= 2)
221           return Res;
222       }
223     }
224   }
225 
226   // Perform optimization with BCLRI/BSETI in the Zbs extension.
227   if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbs]) {
228     assert(ActiveFeatures[RISCV::Feature64Bit] &&
229            "Expected RV32 to only need 2 instructions");
230 
231     // 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000,
232     //    call generateInstSeqImpl with Val|0x80000000 (which is expected be
233     //    an int32), then emit (BCLRI r, 31).
234     // 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl
235     //    with Val&~0x80000000 (which is expected to be an int32), then
236     //    emit (BSETI r, 31).
237     int64_t NewVal;
238     unsigned Opc;
239     if (Val < 0) {
240       Opc = RISCV::BCLRI;
241       NewVal = Val | 0x80000000ll;
242     } else {
243       Opc = RISCV::BSETI;
244       NewVal = Val & ~0x80000000ll;
245     }
246     if (isInt<32>(NewVal)) {
247       RISCVMatInt::InstSeq TmpSeq;
248       generateInstSeqImpl(NewVal, ActiveFeatures, TmpSeq);
249       TmpSeq.push_back(RISCVMatInt::Inst(Opc, 31));
250       if (TmpSeq.size() < Res.size())
251         Res = TmpSeq;
252     }
253 
254     // Try to use BCLRI for upper 32 bits if the original lower 32 bits are
255     // negative int32, or use BSETI for upper 32 bits if the original lower
256     // 32 bits are positive int32.
257     int32_t Lo = Val;
258     uint32_t Hi = Val >> 32;
259     Opc = 0;
260     RISCVMatInt::InstSeq TmpSeq;
261     generateInstSeqImpl(Lo, ActiveFeatures, TmpSeq);
262     // Check if it is profitable to use BCLRI/BSETI.
263     if (Lo > 0 && TmpSeq.size() + countPopulation(Hi) < Res.size()) {
264       Opc = RISCV::BSETI;
265     } else if (Lo < 0 && TmpSeq.size() + countPopulation(~Hi) < Res.size()) {
266       Opc = RISCV::BCLRI;
267       Hi = ~Hi;
268     }
269     // Search for each bit and build corresponding BCLRI/BSETI.
270     if (Opc > 0) {
271       while (Hi != 0) {
272         unsigned Bit = countTrailingZeros(Hi);
273         TmpSeq.push_back(RISCVMatInt::Inst(Opc, Bit + 32));
274         Hi &= ~(1 << Bit);
275       }
276       if (TmpSeq.size() < Res.size())
277         Res = TmpSeq;
278     }
279   }
280 
281   // Perform optimization with SH*ADD in the Zba extension.
282   if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZba]) {
283     assert(ActiveFeatures[RISCV::Feature64Bit] &&
284            "Expected RV32 to only need 2 instructions");
285     int64_t Div = 0;
286     unsigned Opc = 0;
287     RISCVMatInt::InstSeq TmpSeq;
288     // Select the opcode and divisor.
289     if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
290       Div = 3;
291       Opc = RISCV::SH1ADD;
292     } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
293       Div = 5;
294       Opc = RISCV::SH2ADD;
295     } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
296       Div = 9;
297       Opc = RISCV::SH3ADD;
298     }
299     // Build the new instruction sequence.
300     if (Div > 0) {
301       generateInstSeqImpl(Val / Div, ActiveFeatures, TmpSeq);
302       TmpSeq.push_back(RISCVMatInt::Inst(Opc, 0));
303       if (TmpSeq.size() < Res.size())
304         Res = TmpSeq;
305     } else {
306       // Try to use LUI+SH*ADD+ADDI.
307       int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
308       int64_t Lo12 = SignExtend64<12>(Val);
309       Div = 0;
310       if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
311         Div = 3;
312         Opc = RISCV::SH1ADD;
313       } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
314         Div = 5;
315         Opc = RISCV::SH2ADD;
316       } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
317         Div = 9;
318         Opc = RISCV::SH3ADD;
319       }
320       // Build the new instruction sequence.
321       if (Div > 0) {
322         // For Val that has zero Lo12 (implies Val equals to Hi52) should has
323         // already been processed to LUI+SH*ADD by previous optimization.
324         assert(Lo12 != 0 &&
325                "unexpected instruction sequence for immediate materialisation");
326         assert(TmpSeq.empty() && "Expected empty TmpSeq");
327         generateInstSeqImpl(Hi52 / Div, ActiveFeatures, TmpSeq);
328         TmpSeq.push_back(RISCVMatInt::Inst(Opc, 0));
329         TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12));
330         if (TmpSeq.size() < Res.size())
331           Res = TmpSeq;
332       }
333     }
334   }
335 
336   // Perform optimization with rori in the Zbb extension.
337   if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbb]) {
338     if (unsigned Rotate = extractRotateInfo(Val)) {
339       RISCVMatInt::InstSeq TmpSeq;
340       uint64_t NegImm12 =
341           ((uint64_t)Val >> (64 - Rotate)) | ((uint64_t)Val << Rotate);
342       assert(isInt<12>(NegImm12));
343       TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDI, NegImm12));
344       TmpSeq.push_back(RISCVMatInt::Inst(RISCV::RORI, Rotate));
345       Res = TmpSeq;
346     }
347   }
348   return Res;
349 }
350 
351 int getIntMatCost(const APInt &Val, unsigned Size,
352                   const FeatureBitset &ActiveFeatures, bool CompressionCost) {
353   bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
354   bool HasRVC = CompressionCost && ActiveFeatures[RISCV::FeatureStdExtC];
355   int PlatRegSize = IsRV64 ? 64 : 32;
356 
357   // Split the constant into platform register sized chunks, and calculate cost
358   // of each chunk.
359   int Cost = 0;
360   for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
361     APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
362     InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures);
363     Cost += getInstSeqCost(MatSeq, HasRVC);
364   }
365   return std::max(1, Cost);
366 }
367 } // namespace RISCVMatInt
368 } // namespace llvm
369