xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVMatInt.cpp (revision 86a2c910c05c65d1318aef81ddbde8ac7eab79b9)
1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "RISCVMatInt.h"
10 #include "MCTargetDesc/RISCVMCTargetDesc.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/MC/MCInstBuilder.h"
13 #include "llvm/Support/MathExtras.h"
14 using namespace llvm;
15 
16 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
17   if (!HasRVC)
18     return Res.size();
19 
20   int Cost = 0;
21   for (auto Instr : Res) {
22     // Assume instructions that aren't listed aren't compressible.
23     bool Compressed = false;
24     switch (Instr.getOpcode()) {
25     case RISCV::SLLI:
26     case RISCV::SRLI:
27       Compressed = true;
28       break;
29     case RISCV::ADDI:
30     case RISCV::ADDIW:
31     case RISCV::LUI:
32       Compressed = isInt<6>(Instr.getImm());
33       break;
34     }
35     // Two RVC instructions take the same space as one RVI instruction, but
36     // can take longer to execute than the single RVI instruction. Thus, we
37     // consider that two RVC instruction are slightly more costly than one
38     // RVI instruction. For longer sequences of RVC instructions the space
39     // savings can be worth it, though. The costs below try to model that.
40     if (!Compressed)
41       Cost += 100; // Baseline cost of one RVI instruction: 100%.
42     else
43       Cost += 70; // 70% cost of baseline.
44   }
45   return Cost;
46 }
47 
48 // Recursively generate a sequence for materializing an integer.
49 static void generateInstSeqImpl(int64_t Val, const MCSubtargetInfo &STI,
50                                 RISCVMatInt::InstSeq &Res) {
51   bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
52 
53   // Use BSETI for a single bit that can't be expressed by a single LUI or ADDI.
54   if (STI.hasFeature(RISCV::FeatureStdExtZbs) && isPowerOf2_64(Val) &&
55       (!isInt<32>(Val) || Val == 0x800)) {
56     Res.emplace_back(RISCV::BSETI, Log2_64(Val));
57     return;
58   }
59 
60   if (isInt<32>(Val)) {
61     // Depending on the active bits in the immediate Value v, the following
62     // instruction sequences are emitted:
63     //
64     // v == 0                        : ADDI
65     // v[0,12) != 0 && v[12,32) == 0 : ADDI
66     // v[0,12) == 0 && v[12,32) != 0 : LUI
67     // v[0,32) != 0                  : LUI+ADDI(W)
68     int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
69     int64_t Lo12 = SignExtend64<12>(Val);
70 
71     if (Hi20)
72       Res.emplace_back(RISCV::LUI, Hi20);
73 
74     if (Lo12 || Hi20 == 0) {
75       unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
76       Res.emplace_back(AddiOpc, Lo12);
77     }
78     return;
79   }
80 
81   assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
82 
83   // In the worst case, for a full 64-bit constant, a sequence of 8 instructions
84   // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
85   // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
86   // while the following ADDI instructions contribute up to 12 bits each.
87   //
88   // On the first glance, implementing this seems to be possible by simply
89   // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
90   // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
91   // fact that ADDI performs a sign extended addition, doing it like that would
92   // only be possible when at most 11 bits of the ADDI instructions are used.
93   // Using all 12 bits of the ADDI instructions, like done by GAS, actually
94   // requires that the constant is processed starting with the least significant
95   // bit.
96   //
97   // In the following, constants are processed from LSB to MSB but instruction
98   // emission is performed from MSB to LSB by recursively calling
99   // generateInstSeq. In each recursion, first the lowest 12 bits are removed
100   // from the constant and the optimal shift amount, which can be greater than
101   // 12 bits if the constant is sparse, is determined. Then, the shifted
102   // remaining constant is processed recursively and gets emitted as soon as it
103   // fits into 32 bits. The emission of the shifts and additions is subsequently
104   // performed when the recursion returns.
105 
106   int64_t Lo12 = SignExtend64<12>(Val);
107   Val = (uint64_t)Val - (uint64_t)Lo12;
108 
109   int ShiftAmount = 0;
110   bool Unsigned = false;
111 
112   // Val might now be valid for LUI without needing a shift.
113   if (!isInt<32>(Val)) {
114     ShiftAmount = llvm::countr_zero((uint64_t)Val);
115     Val >>= ShiftAmount;
116 
117     // If the remaining bits don't fit in 12 bits, we might be able to reduce
118     // the // shift amount in order to use LUI which will zero the lower 12
119     // bits.
120     if (ShiftAmount > 12 && !isInt<12>(Val)) {
121       if (isInt<32>((uint64_t)Val << 12)) {
122         // Reduce the shift amount and add zeros to the LSBs so it will match
123         // LUI.
124         ShiftAmount -= 12;
125         Val = (uint64_t)Val << 12;
126       } else if (isUInt<32>((uint64_t)Val << 12) &&
127                  STI.hasFeature(RISCV::FeatureStdExtZba)) {
128         // Reduce the shift amount and add zeros to the LSBs so it will match
129         // LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
130         ShiftAmount -= 12;
131         Val = ((uint64_t)Val << 12) | (0xffffffffull << 32);
132         Unsigned = true;
133       }
134     }
135 
136     // Try to use SLLI_UW for Val when it is uint32 but not int32.
137     if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) &&
138         STI.hasFeature(RISCV::FeatureStdExtZba)) {
139       // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with
140       // SLLI_UW.
141       Val = ((uint64_t)Val) | (0xffffffffull << 32);
142       Unsigned = true;
143     }
144   }
145 
146   generateInstSeqImpl(Val, STI, Res);
147 
148   // Skip shift if we were able to use LUI directly.
149   if (ShiftAmount) {
150     unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI;
151     Res.emplace_back(Opc, ShiftAmount);
152   }
153 
154   if (Lo12)
155     Res.emplace_back(RISCV::ADDI, Lo12);
156 }
157 
158 static unsigned extractRotateInfo(int64_t Val) {
159   // for case: 0b111..1..xxxxxx1..1..
160   unsigned LeadingOnes = llvm::countl_one((uint64_t)Val);
161   unsigned TrailingOnes = llvm::countr_one((uint64_t)Val);
162   if (TrailingOnes > 0 && TrailingOnes < 64 &&
163       (LeadingOnes + TrailingOnes) > (64 - 12))
164     return 64 - TrailingOnes;
165 
166   // for case: 0bxxx1..1..1...xxx
167   unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val));
168   unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val));
169   if (UpperTrailingOnes < 32 &&
170       (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12))
171     return 32 - UpperTrailingOnes;
172 
173   return 0;
174 }
175 
176 static void generateInstSeqLeadingZeros(int64_t Val, const MCSubtargetInfo &STI,
177                                         RISCVMatInt::InstSeq &Res) {
178   assert(Val > 0 && "Expected postive val");
179 
180   unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val);
181   uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
182   // Fill in the bits that will be shifted out with 1s. An example where this
183   // helps is trailing one masks with 32 or more ones. This will generate
184   // ADDI -1 and an SRLI.
185   ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
186 
187   RISCVMatInt::InstSeq TmpSeq;
188   generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
189 
190   // Keep the new sequence if it is an improvement or the original is empty.
191   if ((TmpSeq.size() + 1) < Res.size() ||
192       (Res.empty() && TmpSeq.size() < 8)) {
193     TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
194     Res = TmpSeq;
195   }
196 
197   // Some cases can benefit from filling the lower bits with zeros instead.
198   ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
199   TmpSeq.clear();
200   generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
201 
202   // Keep the new sequence if it is an improvement or the original is empty.
203   if ((TmpSeq.size() + 1) < Res.size() ||
204       (Res.empty() && TmpSeq.size() < 8)) {
205     TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
206     Res = TmpSeq;
207   }
208 
209   // If we have exactly 32 leading zeros and Zba, we can try using zext.w at
210   // the end of the sequence.
211   if (LeadingZeros == 32 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
212     // Try replacing upper bits with 1.
213     uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
214     TmpSeq.clear();
215     generateInstSeqImpl(LeadingOnesVal, STI, TmpSeq);
216 
217     // Keep the new sequence if it is an improvement.
218     if ((TmpSeq.size() + 1) < Res.size() ||
219         (Res.empty() && TmpSeq.size() < 8)) {
220       TmpSeq.emplace_back(RISCV::ADD_UW, 0);
221       Res = TmpSeq;
222     }
223   }
224 }
225 
226 namespace llvm::RISCVMatInt {
227 InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI) {
228   RISCVMatInt::InstSeq Res;
229   generateInstSeqImpl(Val, STI, Res);
230 
231   // If the low 12 bits are non-zero, the first expansion may end with an ADDI
232   // or ADDIW. If there are trailing zeros, try generating a sign extended
233   // constant with no trailing zeros and use a final SLLI to restore them.
234   if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) {
235     unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val);
236     int64_t ShiftedVal = Val >> TrailingZeros;
237     // If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since
238     // its more compressible. But only if LUI+ADDI(W) isn't fusable.
239     // NOTE: We don't check for C extension to minimize differences in generated
240     // code.
241     bool IsShiftedCompressible =
242         isInt<6>(ShiftedVal) && !STI.hasFeature(RISCV::TuneLUIADDIFusion);
243     RISCVMatInt::InstSeq TmpSeq;
244     generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
245 
246     // Keep the new sequence if it is an improvement.
247     if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) {
248       TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros);
249       Res = TmpSeq;
250     }
251   }
252 
253   // If we have a 1 or 2 instruction sequence this is the best we can do. This
254   // will always be true for RV32 and will often be true for RV64.
255   if (Res.size() <= 2)
256     return Res;
257 
258   assert(STI.hasFeature(RISCV::Feature64Bit) &&
259          "Expected RV32 to only need 2 instructions");
260 
261   // If the lower 13 bits are something like 0x17ff, try to add 1 to change the
262   // lower 13 bits to 0x1800. We can restore this with an ADDI of -1 at the end
263   // of the sequence. Call generateInstSeqImpl on the new constant which may
264   // subtract 0xfffffffffffff800 to create another ADDI. This will leave a
265   // constant with more than 12 trailing zeros for the next recursive step.
266   if ((Val & 0xfff) != 0 && (Val & 0x1800) == 0x1000) {
267     int64_t Imm12 = -(0x800 - (Val & 0xfff));
268     int64_t AdjustedVal = Val - Imm12;
269     RISCVMatInt::InstSeq TmpSeq;
270     generateInstSeqImpl(AdjustedVal, STI, TmpSeq);
271 
272     // Keep the new sequence if it is an improvement.
273     if ((TmpSeq.size() + 1) < Res.size()) {
274       TmpSeq.emplace_back(RISCV::ADDI, Imm12);
275       Res = TmpSeq;
276     }
277   }
278 
279   // If the constant is positive we might be able to generate a shifted constant
280   // with no leading zeros and use a final SRLI to restore them.
281   if (Val > 0 && Res.size() > 2) {
282     generateInstSeqLeadingZeros(Val, STI, Res);
283   }
284 
285   // If the constant is negative, trying inverting and using our trailing zero
286   // optimizations. Use an xori to invert the final value.
287   if (Val < 0 && Res.size() > 3) {
288     uint64_t InvertedVal = ~(uint64_t)Val;
289     RISCVMatInt::InstSeq TmpSeq;
290     generateInstSeqLeadingZeros(InvertedVal, STI, TmpSeq);
291 
292     // Keep it if we found a sequence that is smaller after inverting.
293     if (!TmpSeq.empty() && (TmpSeq.size() + 1) < Res.size()) {
294       TmpSeq.emplace_back(RISCV::XORI, -1);
295       Res = TmpSeq;
296     }
297   }
298 
299   // If the Low and High halves are the same, use pack. The pack instruction
300   // packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the
301   // lower half and rs2 in the upper half.
302   if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbkb)) {
303     int64_t LoVal = SignExtend64<32>(Val);
304     int64_t HiVal = SignExtend64<32>(Val >> 32);
305     if (LoVal == HiVal) {
306       RISCVMatInt::InstSeq TmpSeq;
307       generateInstSeqImpl(LoVal, STI, TmpSeq);
308       if ((TmpSeq.size() + 1) < Res.size()) {
309         TmpSeq.emplace_back(RISCV::PACK, 0);
310         Res = TmpSeq;
311       }
312     }
313   }
314 
315   // Perform optimization with BSETI in the Zbs extension.
316   if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
317     // Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to zero.
318     // Xor that with original value to get which bits should be set by BSETI.
319     uint64_t Lo = Val & 0x7fffffff;
320     uint64_t Hi = Val ^ Lo;
321     assert(Hi != 0);
322     RISCVMatInt::InstSeq TmpSeq;
323 
324     if (Lo != 0)
325       generateInstSeqImpl(Lo, STI, TmpSeq);
326 
327     if (TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
328       do {
329         TmpSeq.emplace_back(RISCV::BSETI, llvm::countr_zero(Hi));
330         Hi &= (Hi - 1); // Clear lowest set bit.
331       } while (Hi != 0);
332       Res = TmpSeq;
333     }
334   }
335 
336   // Perform optimization with BCLRI in the Zbs extension.
337   if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
338     // Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to one.
339     // Xor that with original value to get which bits should be cleared by
340     // BCLRI.
341     uint64_t Lo = Val | 0xffffffff80000000;
342     uint64_t Hi = Val ^ Lo;
343     assert(Hi != 0);
344 
345     RISCVMatInt::InstSeq TmpSeq;
346     generateInstSeqImpl(Lo, STI, TmpSeq);
347 
348     if (TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
349       do {
350         TmpSeq.emplace_back(RISCV::BCLRI, llvm::countr_zero(Hi));
351         Hi &= (Hi - 1); // Clear lowest set bit.
352       } while (Hi != 0);
353       Res = TmpSeq;
354     }
355   }
356 
357   // Perform optimization with SH*ADD in the Zba extension.
358   if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
359     int64_t Div = 0;
360     unsigned Opc = 0;
361     RISCVMatInt::InstSeq TmpSeq;
362     // Select the opcode and divisor.
363     if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
364       Div = 3;
365       Opc = RISCV::SH1ADD;
366     } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
367       Div = 5;
368       Opc = RISCV::SH2ADD;
369     } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
370       Div = 9;
371       Opc = RISCV::SH3ADD;
372     }
373     // Build the new instruction sequence.
374     if (Div > 0) {
375       generateInstSeqImpl(Val / Div, STI, TmpSeq);
376       if ((TmpSeq.size() + 1) < Res.size()) {
377         TmpSeq.emplace_back(Opc, 0);
378         Res = TmpSeq;
379       }
380     } else {
381       // Try to use LUI+SH*ADD+ADDI.
382       int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
383       int64_t Lo12 = SignExtend64<12>(Val);
384       Div = 0;
385       if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
386         Div = 3;
387         Opc = RISCV::SH1ADD;
388       } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
389         Div = 5;
390         Opc = RISCV::SH2ADD;
391       } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
392         Div = 9;
393         Opc = RISCV::SH3ADD;
394       }
395       // Build the new instruction sequence.
396       if (Div > 0) {
397         // For Val that has zero Lo12 (implies Val equals to Hi52) should has
398         // already been processed to LUI+SH*ADD by previous optimization.
399         assert(Lo12 != 0 &&
400                "unexpected instruction sequence for immediate materialisation");
401         assert(TmpSeq.empty() && "Expected empty TmpSeq");
402         generateInstSeqImpl(Hi52 / Div, STI, TmpSeq);
403         if ((TmpSeq.size() + 2) < Res.size()) {
404           TmpSeq.emplace_back(Opc, 0);
405           TmpSeq.emplace_back(RISCV::ADDI, Lo12);
406           Res = TmpSeq;
407         }
408       }
409     }
410   }
411 
412   // Perform optimization with rori in the Zbb and th.srri in the XTheadBb
413   // extension.
414   if (Res.size() > 2 && (STI.hasFeature(RISCV::FeatureStdExtZbb) ||
415                          STI.hasFeature(RISCV::FeatureVendorXTHeadBb))) {
416     if (unsigned Rotate = extractRotateInfo(Val)) {
417       RISCVMatInt::InstSeq TmpSeq;
418       uint64_t NegImm12 = llvm::rotl<uint64_t>(Val, Rotate);
419       assert(isInt<12>(NegImm12));
420       TmpSeq.emplace_back(RISCV::ADDI, NegImm12);
421       TmpSeq.emplace_back(STI.hasFeature(RISCV::FeatureStdExtZbb)
422                               ? RISCV::RORI
423                               : RISCV::TH_SRRI,
424                           Rotate);
425       Res = TmpSeq;
426     }
427   }
428   return Res;
429 }
430 
431 void generateMCInstSeq(int64_t Val, const MCSubtargetInfo &STI,
432                        MCRegister DestReg, SmallVectorImpl<MCInst> &Insts) {
433   RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, STI);
434 
435   MCRegister SrcReg = RISCV::X0;
436   for (RISCVMatInt::Inst &Inst : Seq) {
437     switch (Inst.getOpndKind()) {
438     case RISCVMatInt::Imm:
439       Insts.push_back(MCInstBuilder(Inst.getOpcode())
440                           .addReg(DestReg)
441                           .addImm(Inst.getImm()));
442       break;
443     case RISCVMatInt::RegX0:
444       Insts.push_back(MCInstBuilder(Inst.getOpcode())
445                           .addReg(DestReg)
446                           .addReg(SrcReg)
447                           .addReg(RISCV::X0));
448       break;
449     case RISCVMatInt::RegReg:
450       Insts.push_back(MCInstBuilder(Inst.getOpcode())
451                           .addReg(DestReg)
452                           .addReg(SrcReg)
453                           .addReg(SrcReg));
454       break;
455     case RISCVMatInt::RegImm:
456       Insts.push_back(MCInstBuilder(Inst.getOpcode())
457                           .addReg(DestReg)
458                           .addReg(SrcReg)
459                           .addImm(Inst.getImm()));
460       break;
461     }
462 
463     // Only the first instruction has X0 as its source.
464     SrcReg = DestReg;
465   }
466 }
467 
468 InstSeq generateTwoRegInstSeq(int64_t Val, const MCSubtargetInfo &STI,
469                               unsigned &ShiftAmt, unsigned &AddOpc) {
470   int64_t LoVal = SignExtend64<32>(Val);
471   if (LoVal == 0)
472     return RISCVMatInt::InstSeq();
473 
474   // Subtract the LoVal to emulate the effect of the final ADD.
475   uint64_t Tmp = (uint64_t)Val - (uint64_t)LoVal;
476   assert(Tmp != 0);
477 
478   // Use trailing zero counts to figure how far we need to shift LoVal to line
479   // up with the remaining constant.
480   // TODO: This algorithm assumes all non-zero bits in the low 32 bits of the
481   // final constant come from LoVal.
482   unsigned TzLo = llvm::countr_zero((uint64_t)LoVal);
483   unsigned TzHi = llvm::countr_zero(Tmp);
484   assert(TzLo < 32 && TzHi >= 32);
485   ShiftAmt = TzHi - TzLo;
486   AddOpc = RISCV::ADD;
487 
488   if (Tmp == ((uint64_t)LoVal << ShiftAmt))
489     return RISCVMatInt::generateInstSeq(LoVal, STI);
490 
491   // If we have Zba, we can use (ADD_UW X, (SLLI X, 32)).
492   if (STI.hasFeature(RISCV::FeatureStdExtZba) && Lo_32(Val) == Hi_32(Val)) {
493     ShiftAmt = 32;
494     AddOpc = RISCV::ADD_UW;
495     return RISCVMatInt::generateInstSeq(LoVal, STI);
496   }
497 
498   return RISCVMatInt::InstSeq();
499 }
500 
501 int getIntMatCost(const APInt &Val, unsigned Size, const MCSubtargetInfo &STI,
502                   bool CompressionCost, bool FreeZeroes) {
503   bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
504   bool HasRVC = CompressionCost && (STI.hasFeature(RISCV::FeatureStdExtC) ||
505                                     STI.hasFeature(RISCV::FeatureStdExtZca));
506   int PlatRegSize = IsRV64 ? 64 : 32;
507 
508   // Split the constant into platform register sized chunks, and calculate cost
509   // of each chunk.
510   int Cost = 0;
511   for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
512     APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
513     if (FreeZeroes && Chunk.getSExtValue() == 0)
514       continue;
515     InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), STI);
516     Cost += getInstSeqCost(MatSeq, HasRVC);
517   }
518   return std::max(FreeZeroes ? 0 : 1, Cost);
519 }
520 
521 OpndKind Inst::getOpndKind() const {
522   switch (Opc) {
523   default:
524     llvm_unreachable("Unexpected opcode!");
525   case RISCV::LUI:
526     return RISCVMatInt::Imm;
527   case RISCV::ADD_UW:
528     return RISCVMatInt::RegX0;
529   case RISCV::SH1ADD:
530   case RISCV::SH2ADD:
531   case RISCV::SH3ADD:
532   case RISCV::PACK:
533     return RISCVMatInt::RegReg;
534   case RISCV::ADDI:
535   case RISCV::ADDIW:
536   case RISCV::XORI:
537   case RISCV::SLLI:
538   case RISCV::SRLI:
539   case RISCV::SLLI_UW:
540   case RISCV::RORI:
541   case RISCV::BSETI:
542   case RISCV::BCLRI:
543   case RISCV::TH_SRRI:
544     return RISCVMatInt::RegImm;
545   }
546 }
547 
548 } // namespace llvm::RISCVMatInt
549