1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "RISCVMatInt.h" 10 #include "MCTargetDesc/RISCVMCTargetDesc.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/Support/MathExtras.h" 13 using namespace llvm; 14 15 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) { 16 if (!HasRVC) 17 return Res.size(); 18 19 int Cost = 0; 20 for (auto Instr : Res) { 21 // Assume instructions that aren't listed aren't compressible. 22 bool Compressed = false; 23 switch (Instr.getOpcode()) { 24 case RISCV::SLLI: 25 case RISCV::SRLI: 26 Compressed = true; 27 break; 28 case RISCV::ADDI: 29 case RISCV::ADDIW: 30 case RISCV::LUI: 31 Compressed = isInt<6>(Instr.getImm()); 32 break; 33 } 34 // Two RVC instructions take the same space as one RVI instruction, but 35 // can take longer to execute than the single RVI instruction. Thus, we 36 // consider that two RVC instruction are slightly more costly than one 37 // RVI instruction. For longer sequences of RVC instructions the space 38 // savings can be worth it, though. The costs below try to model that. 39 if (!Compressed) 40 Cost += 100; // Baseline cost of one RVI instruction: 100%. 41 else 42 Cost += 70; // 70% cost of baseline. 43 } 44 return Cost; 45 } 46 47 // Recursively generate a sequence for materializing an integer. 48 static void generateInstSeqImpl(int64_t Val, 49 const FeatureBitset &ActiveFeatures, 50 RISCVMatInt::InstSeq &Res) { 51 bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; 52 53 // Use BSETI for a single bit that can't be expressed by a single LUI or ADDI. 54 if (ActiveFeatures[RISCV::FeatureStdExtZbs] && isPowerOf2_64(Val) && 55 (!isInt<32>(Val) || Val == 0x800)) { 56 Res.emplace_back(RISCV::BSETI, Log2_64(Val)); 57 return; 58 } 59 60 if (isInt<32>(Val)) { 61 // Depending on the active bits in the immediate Value v, the following 62 // instruction sequences are emitted: 63 // 64 // v == 0 : ADDI 65 // v[0,12) != 0 && v[12,32) == 0 : ADDI 66 // v[0,12) == 0 && v[12,32) != 0 : LUI 67 // v[0,32) != 0 : LUI+ADDI(W) 68 int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF; 69 int64_t Lo12 = SignExtend64<12>(Val); 70 71 if (Hi20) 72 Res.emplace_back(RISCV::LUI, Hi20); 73 74 if (Lo12 || Hi20 == 0) { 75 unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI; 76 Res.emplace_back(AddiOpc, Lo12); 77 } 78 return; 79 } 80 81 assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target"); 82 83 // In the worst case, for a full 64-bit constant, a sequence of 8 instructions 84 // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note 85 // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits 86 // while the following ADDI instructions contribute up to 12 bits each. 87 // 88 // On the first glance, implementing this seems to be possible by simply 89 // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left 90 // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the 91 // fact that ADDI performs a sign extended addition, doing it like that would 92 // only be possible when at most 11 bits of the ADDI instructions are used. 93 // Using all 12 bits of the ADDI instructions, like done by GAS, actually 94 // requires that the constant is processed starting with the least significant 95 // bit. 96 // 97 // In the following, constants are processed from LSB to MSB but instruction 98 // emission is performed from MSB to LSB by recursively calling 99 // generateInstSeq. In each recursion, first the lowest 12 bits are removed 100 // from the constant and the optimal shift amount, which can be greater than 101 // 12 bits if the constant is sparse, is determined. Then, the shifted 102 // remaining constant is processed recursively and gets emitted as soon as it 103 // fits into 32 bits. The emission of the shifts and additions is subsequently 104 // performed when the recursion returns. 105 106 int64_t Lo12 = SignExtend64<12>(Val); 107 Val = (uint64_t)Val - (uint64_t)Lo12; 108 109 int ShiftAmount = 0; 110 bool Unsigned = false; 111 112 // Val might now be valid for LUI without needing a shift. 113 if (!isInt<32>(Val)) { 114 ShiftAmount = llvm::countr_zero((uint64_t)Val); 115 Val >>= ShiftAmount; 116 117 // If the remaining bits don't fit in 12 bits, we might be able to reduce the 118 // shift amount in order to use LUI which will zero the lower 12 bits. 119 if (ShiftAmount > 12 && !isInt<12>(Val)) { 120 if (isInt<32>((uint64_t)Val << 12)) { 121 // Reduce the shift amount and add zeros to the LSBs so it will match LUI. 122 ShiftAmount -= 12; 123 Val = (uint64_t)Val << 12; 124 } else if (isUInt<32>((uint64_t)Val << 12) && 125 ActiveFeatures[RISCV::FeatureStdExtZba]) { 126 // Reduce the shift amount and add zeros to the LSBs so it will match 127 // LUI, then shift left with SLLI.UW to clear the upper 32 set bits. 128 ShiftAmount -= 12; 129 Val = ((uint64_t)Val << 12) | (0xffffffffull << 32); 130 Unsigned = true; 131 } 132 } 133 134 // Try to use SLLI_UW for Val when it is uint32 but not int32. 135 if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) && 136 ActiveFeatures[RISCV::FeatureStdExtZba]) { 137 // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with 138 // SLLI_UW. 139 Val = ((uint64_t)Val) | (0xffffffffull << 32); 140 Unsigned = true; 141 } 142 } 143 144 generateInstSeqImpl(Val, ActiveFeatures, Res); 145 146 // Skip shift if we were able to use LUI directly. 147 if (ShiftAmount) { 148 unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI; 149 Res.emplace_back(Opc, ShiftAmount); 150 } 151 152 if (Lo12) 153 Res.emplace_back(RISCV::ADDI, Lo12); 154 } 155 156 static unsigned extractRotateInfo(int64_t Val) { 157 // for case: 0b111..1..xxxxxx1..1.. 158 unsigned LeadingOnes = llvm::countl_one((uint64_t)Val); 159 unsigned TrailingOnes = llvm::countr_one((uint64_t)Val); 160 if (TrailingOnes > 0 && TrailingOnes < 64 && 161 (LeadingOnes + TrailingOnes) > (64 - 12)) 162 return 64 - TrailingOnes; 163 164 // for case: 0bxxx1..1..1...xxx 165 unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val)); 166 unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val)); 167 if (UpperTrailingOnes < 32 && 168 (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12)) 169 return 32 - UpperTrailingOnes; 170 171 return 0; 172 } 173 174 namespace llvm::RISCVMatInt { 175 InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) { 176 RISCVMatInt::InstSeq Res; 177 generateInstSeqImpl(Val, ActiveFeatures, Res); 178 179 // If the low 12 bits are non-zero, the first expansion may end with an ADDI 180 // or ADDIW. If there are trailing zeros, try generating a sign extended 181 // constant with no trailing zeros and use a final SLLI to restore them. 182 if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) { 183 unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val); 184 int64_t ShiftedVal = Val >> TrailingZeros; 185 // If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since 186 // its more compressible. But only if LUI+ADDI(W) isn't fusable. 187 // NOTE: We don't check for C extension to minimize differences in generated 188 // code. 189 bool IsShiftedCompressible = 190 isInt<6>(ShiftedVal) && !ActiveFeatures[RISCV::TuneLUIADDIFusion]; 191 RISCVMatInt::InstSeq TmpSeq; 192 generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); 193 194 // Keep the new sequence if it is an improvement. 195 if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) { 196 TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros); 197 Res = TmpSeq; 198 } 199 } 200 201 // If we have a 1 or 2 instruction sequence this is the best we can do. This 202 // will always be true for RV32 and will often be true for RV64. 203 if (Res.size() <= 2) 204 return Res; 205 206 assert(ActiveFeatures[RISCV::Feature64Bit] && 207 "Expected RV32 to only need 2 instructions"); 208 209 // If the constant is positive we might be able to generate a shifted constant 210 // with no leading zeros and use a final SRLI to restore them. 211 if (Val > 0) { 212 assert(Res.size() > 2 && "Expected longer sequence"); 213 unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val); 214 uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros; 215 // Fill in the bits that will be shifted out with 1s. An example where this 216 // helps is trailing one masks with 32 or more ones. This will generate 217 // ADDI -1 and an SRLI. 218 ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros); 219 220 RISCVMatInt::InstSeq TmpSeq; 221 generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); 222 223 // Keep the new sequence if it is an improvement. 224 if ((TmpSeq.size() + 1) < Res.size()) { 225 TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros); 226 Res = TmpSeq; 227 } 228 229 // Some cases can benefit from filling the lower bits with zeros instead. 230 ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros); 231 TmpSeq.clear(); 232 generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); 233 234 // Keep the new sequence if it is an improvement. 235 if ((TmpSeq.size() + 1) < Res.size()) { 236 TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros); 237 Res = TmpSeq; 238 } 239 240 // If we have exactly 32 leading zeros and Zba, we can try using zext.w at 241 // the end of the sequence. 242 if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureStdExtZba]) { 243 // Try replacing upper bits with 1. 244 uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros); 245 TmpSeq.clear(); 246 generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq); 247 248 // Keep the new sequence if it is an improvement. 249 if ((TmpSeq.size() + 1) < Res.size()) { 250 TmpSeq.emplace_back(RISCV::ADD_UW, 0); 251 Res = TmpSeq; 252 } 253 } 254 } 255 256 // If the Low and High halves are the same, use pack. The pack instruction 257 // packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the 258 // lower half and rs2 in the upper half. 259 if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbkb]) { 260 int64_t LoVal = SignExtend64<32>(Val); 261 int64_t HiVal = SignExtend64<32>(Val >> 32); 262 if (LoVal == HiVal) { 263 RISCVMatInt::InstSeq TmpSeq; 264 generateInstSeqImpl(LoVal, ActiveFeatures, TmpSeq); 265 if ((TmpSeq.size() + 1) < Res.size()) { 266 TmpSeq.emplace_back(RISCV::PACK, 0); 267 Res = TmpSeq; 268 } 269 } 270 } 271 272 // Perform optimization with BCLRI/BSETI in the Zbs extension. 273 if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbs]) { 274 // 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000, 275 // call generateInstSeqImpl with Val|0x80000000 (which is expected be 276 // an int32), then emit (BCLRI r, 31). 277 // 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl 278 // with Val&~0x80000000 (which is expected to be an int32), then 279 // emit (BSETI r, 31). 280 int64_t NewVal; 281 unsigned Opc; 282 if (Val < 0) { 283 Opc = RISCV::BCLRI; 284 NewVal = Val | 0x80000000ll; 285 } else { 286 Opc = RISCV::BSETI; 287 NewVal = Val & ~0x80000000ll; 288 } 289 if (isInt<32>(NewVal)) { 290 RISCVMatInt::InstSeq TmpSeq; 291 generateInstSeqImpl(NewVal, ActiveFeatures, TmpSeq); 292 if ((TmpSeq.size() + 1) < Res.size()) { 293 TmpSeq.emplace_back(Opc, 31); 294 Res = TmpSeq; 295 } 296 } 297 298 // Try to use BCLRI for upper 32 bits if the original lower 32 bits are 299 // negative int32, or use BSETI for upper 32 bits if the original lower 300 // 32 bits are positive int32. 301 int32_t Lo = Lo_32(Val); 302 uint32_t Hi = Hi_32(Val); 303 Opc = 0; 304 RISCVMatInt::InstSeq TmpSeq; 305 generateInstSeqImpl(Lo, ActiveFeatures, TmpSeq); 306 // Check if it is profitable to use BCLRI/BSETI. 307 if (Lo > 0 && TmpSeq.size() + llvm::popcount(Hi) < Res.size()) { 308 Opc = RISCV::BSETI; 309 } else if (Lo < 0 && TmpSeq.size() + llvm::popcount(~Hi) < Res.size()) { 310 Opc = RISCV::BCLRI; 311 Hi = ~Hi; 312 } 313 // Search for each bit and build corresponding BCLRI/BSETI. 314 if (Opc > 0) { 315 while (Hi != 0) { 316 unsigned Bit = llvm::countr_zero(Hi); 317 TmpSeq.emplace_back(Opc, Bit + 32); 318 Hi &= (Hi - 1); // Clear lowest set bit. 319 } 320 if (TmpSeq.size() < Res.size()) 321 Res = TmpSeq; 322 } 323 } 324 325 // Perform optimization with SH*ADD in the Zba extension. 326 if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZba]) { 327 int64_t Div = 0; 328 unsigned Opc = 0; 329 RISCVMatInt::InstSeq TmpSeq; 330 // Select the opcode and divisor. 331 if ((Val % 3) == 0 && isInt<32>(Val / 3)) { 332 Div = 3; 333 Opc = RISCV::SH1ADD; 334 } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) { 335 Div = 5; 336 Opc = RISCV::SH2ADD; 337 } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) { 338 Div = 9; 339 Opc = RISCV::SH3ADD; 340 } 341 // Build the new instruction sequence. 342 if (Div > 0) { 343 generateInstSeqImpl(Val / Div, ActiveFeatures, TmpSeq); 344 if ((TmpSeq.size() + 1) < Res.size()) { 345 TmpSeq.emplace_back(Opc, 0); 346 Res = TmpSeq; 347 } 348 } else { 349 // Try to use LUI+SH*ADD+ADDI. 350 int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull; 351 int64_t Lo12 = SignExtend64<12>(Val); 352 Div = 0; 353 if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) { 354 Div = 3; 355 Opc = RISCV::SH1ADD; 356 } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) { 357 Div = 5; 358 Opc = RISCV::SH2ADD; 359 } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) { 360 Div = 9; 361 Opc = RISCV::SH3ADD; 362 } 363 // Build the new instruction sequence. 364 if (Div > 0) { 365 // For Val that has zero Lo12 (implies Val equals to Hi52) should has 366 // already been processed to LUI+SH*ADD by previous optimization. 367 assert(Lo12 != 0 && 368 "unexpected instruction sequence for immediate materialisation"); 369 assert(TmpSeq.empty() && "Expected empty TmpSeq"); 370 generateInstSeqImpl(Hi52 / Div, ActiveFeatures, TmpSeq); 371 if ((TmpSeq.size() + 2) < Res.size()) { 372 TmpSeq.emplace_back(Opc, 0); 373 TmpSeq.emplace_back(RISCV::ADDI, Lo12); 374 Res = TmpSeq; 375 } 376 } 377 } 378 } 379 380 // Perform optimization with rori in the Zbb and th.srri in the XTheadBb 381 // extension. 382 if (Res.size() > 2 && (ActiveFeatures[RISCV::FeatureStdExtZbb] || 383 ActiveFeatures[RISCV::FeatureVendorXTHeadBb])) { 384 if (unsigned Rotate = extractRotateInfo(Val)) { 385 RISCVMatInt::InstSeq TmpSeq; 386 uint64_t NegImm12 = llvm::rotl<uint64_t>(Val, Rotate); 387 assert(isInt<12>(NegImm12)); 388 TmpSeq.emplace_back(RISCV::ADDI, NegImm12); 389 TmpSeq.emplace_back(ActiveFeatures[RISCV::FeatureStdExtZbb] 390 ? RISCV::RORI 391 : RISCV::TH_SRRI, 392 Rotate); 393 Res = TmpSeq; 394 } 395 } 396 return Res; 397 } 398 399 int getIntMatCost(const APInt &Val, unsigned Size, 400 const FeatureBitset &ActiveFeatures, bool CompressionCost) { 401 bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; 402 bool HasRVC = CompressionCost && (ActiveFeatures[RISCV::FeatureStdExtC] || 403 ActiveFeatures[RISCV::FeatureStdExtZca]); 404 int PlatRegSize = IsRV64 ? 64 : 32; 405 406 // Split the constant into platform register sized chunks, and calculate cost 407 // of each chunk. 408 int Cost = 0; 409 for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) { 410 APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize); 411 InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures); 412 Cost += getInstSeqCost(MatSeq, HasRVC); 413 } 414 return std::max(1, Cost); 415 } 416 417 OpndKind Inst::getOpndKind() const { 418 switch (Opc) { 419 default: 420 llvm_unreachable("Unexpected opcode!"); 421 case RISCV::LUI: 422 return RISCVMatInt::Imm; 423 case RISCV::ADD_UW: 424 return RISCVMatInt::RegX0; 425 case RISCV::SH1ADD: 426 case RISCV::SH2ADD: 427 case RISCV::SH3ADD: 428 case RISCV::PACK: 429 return RISCVMatInt::RegReg; 430 case RISCV::ADDI: 431 case RISCV::ADDIW: 432 case RISCV::SLLI: 433 case RISCV::SRLI: 434 case RISCV::SLLI_UW: 435 case RISCV::RORI: 436 case RISCV::BSETI: 437 case RISCV::BCLRI: 438 case RISCV::TH_SRRI: 439 return RISCVMatInt::RegImm; 440 } 441 } 442 443 } // namespace llvm::RISCVMatInt 444