1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "RISCVMatInt.h" 10 #include "MCTargetDesc/RISCVMCTargetDesc.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/MC/MCInstBuilder.h" 13 #include "llvm/Support/MathExtras.h" 14 using namespace llvm; 15 16 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) { 17 if (!HasRVC) 18 return Res.size(); 19 20 int Cost = 0; 21 for (auto Instr : Res) { 22 // Assume instructions that aren't listed aren't compressible. 23 bool Compressed = false; 24 switch (Instr.getOpcode()) { 25 case RISCV::SLLI: 26 case RISCV::SRLI: 27 Compressed = true; 28 break; 29 case RISCV::ADDI: 30 case RISCV::ADDIW: 31 case RISCV::LUI: 32 Compressed = isInt<6>(Instr.getImm()); 33 break; 34 } 35 // Two RVC instructions take the same space as one RVI instruction, but 36 // can take longer to execute than the single RVI instruction. Thus, we 37 // consider that two RVC instruction are slightly more costly than one 38 // RVI instruction. For longer sequences of RVC instructions the space 39 // savings can be worth it, though. The costs below try to model that. 40 if (!Compressed) 41 Cost += 100; // Baseline cost of one RVI instruction: 100%. 42 else 43 Cost += 70; // 70% cost of baseline. 44 } 45 return Cost; 46 } 47 48 // Recursively generate a sequence for materializing an integer. 49 static void generateInstSeqImpl(int64_t Val, const MCSubtargetInfo &STI, 50 RISCVMatInt::InstSeq &Res) { 51 bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit); 52 53 // Use BSETI for a single bit that can't be expressed by a single LUI or ADDI. 54 if (STI.hasFeature(RISCV::FeatureStdExtZbs) && isPowerOf2_64(Val) && 55 (!isInt<32>(Val) || Val == 0x800)) { 56 Res.emplace_back(RISCV::BSETI, Log2_64(Val)); 57 return; 58 } 59 60 if (isInt<32>(Val)) { 61 // Depending on the active bits in the immediate Value v, the following 62 // instruction sequences are emitted: 63 // 64 // v == 0 : ADDI 65 // v[0,12) != 0 && v[12,32) == 0 : ADDI 66 // v[0,12) == 0 && v[12,32) != 0 : LUI 67 // v[0,32) != 0 : LUI+ADDI(W) 68 int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF; 69 int64_t Lo12 = SignExtend64<12>(Val); 70 71 if (Hi20) 72 Res.emplace_back(RISCV::LUI, Hi20); 73 74 if (Lo12 || Hi20 == 0) { 75 unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI; 76 Res.emplace_back(AddiOpc, Lo12); 77 } 78 return; 79 } 80 81 assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target"); 82 83 // In the worst case, for a full 64-bit constant, a sequence of 8 instructions 84 // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note 85 // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits 86 // while the following ADDI instructions contribute up to 12 bits each. 87 // 88 // On the first glance, implementing this seems to be possible by simply 89 // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left 90 // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the 91 // fact that ADDI performs a sign extended addition, doing it like that would 92 // only be possible when at most 11 bits of the ADDI instructions are used. 93 // Using all 12 bits of the ADDI instructions, like done by GAS, actually 94 // requires that the constant is processed starting with the least significant 95 // bit. 96 // 97 // In the following, constants are processed from LSB to MSB but instruction 98 // emission is performed from MSB to LSB by recursively calling 99 // generateInstSeq. In each recursion, first the lowest 12 bits are removed 100 // from the constant and the optimal shift amount, which can be greater than 101 // 12 bits if the constant is sparse, is determined. Then, the shifted 102 // remaining constant is processed recursively and gets emitted as soon as it 103 // fits into 32 bits. The emission of the shifts and additions is subsequently 104 // performed when the recursion returns. 105 106 int64_t Lo12 = SignExtend64<12>(Val); 107 Val = (uint64_t)Val - (uint64_t)Lo12; 108 109 int ShiftAmount = 0; 110 bool Unsigned = false; 111 112 // Val might now be valid for LUI without needing a shift. 113 if (!isInt<32>(Val)) { 114 ShiftAmount = llvm::countr_zero((uint64_t)Val); 115 Val >>= ShiftAmount; 116 117 // If the remaining bits don't fit in 12 bits, we might be able to reduce 118 // the // shift amount in order to use LUI which will zero the lower 12 119 // bits. 120 if (ShiftAmount > 12 && !isInt<12>(Val)) { 121 if (isInt<32>((uint64_t)Val << 12)) { 122 // Reduce the shift amount and add zeros to the LSBs so it will match 123 // LUI. 124 ShiftAmount -= 12; 125 Val = (uint64_t)Val << 12; 126 } else if (isUInt<32>((uint64_t)Val << 12) && 127 STI.hasFeature(RISCV::FeatureStdExtZba)) { 128 // Reduce the shift amount and add zeros to the LSBs so it will match 129 // LUI, then shift left with SLLI.UW to clear the upper 32 set bits. 130 ShiftAmount -= 12; 131 Val = ((uint64_t)Val << 12) | (0xffffffffull << 32); 132 Unsigned = true; 133 } 134 } 135 136 // Try to use SLLI_UW for Val when it is uint32 but not int32. 137 if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) && 138 STI.hasFeature(RISCV::FeatureStdExtZba)) { 139 // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with 140 // SLLI_UW. 141 Val = ((uint64_t)Val) | (0xffffffffull << 32); 142 Unsigned = true; 143 } 144 } 145 146 generateInstSeqImpl(Val, STI, Res); 147 148 // Skip shift if we were able to use LUI directly. 149 if (ShiftAmount) { 150 unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI; 151 Res.emplace_back(Opc, ShiftAmount); 152 } 153 154 if (Lo12) 155 Res.emplace_back(RISCV::ADDI, Lo12); 156 } 157 158 static unsigned extractRotateInfo(int64_t Val) { 159 // for case: 0b111..1..xxxxxx1..1.. 160 unsigned LeadingOnes = llvm::countl_one((uint64_t)Val); 161 unsigned TrailingOnes = llvm::countr_one((uint64_t)Val); 162 if (TrailingOnes > 0 && TrailingOnes < 64 && 163 (LeadingOnes + TrailingOnes) > (64 - 12)) 164 return 64 - TrailingOnes; 165 166 // for case: 0bxxx1..1..1...xxx 167 unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val)); 168 unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val)); 169 if (UpperTrailingOnes < 32 && 170 (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12)) 171 return 32 - UpperTrailingOnes; 172 173 return 0; 174 } 175 176 static void generateInstSeqLeadingZeros(int64_t Val, const MCSubtargetInfo &STI, 177 RISCVMatInt::InstSeq &Res) { 178 assert(Val > 0 && "Expected postive val"); 179 180 unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val); 181 uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros; 182 // Fill in the bits that will be shifted out with 1s. An example where this 183 // helps is trailing one masks with 32 or more ones. This will generate 184 // ADDI -1 and an SRLI. 185 ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros); 186 187 RISCVMatInt::InstSeq TmpSeq; 188 generateInstSeqImpl(ShiftedVal, STI, TmpSeq); 189 190 // Keep the new sequence if it is an improvement or the original is empty. 191 if ((TmpSeq.size() + 1) < Res.size() || 192 (Res.empty() && TmpSeq.size() < 8)) { 193 TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros); 194 Res = TmpSeq; 195 } 196 197 // Some cases can benefit from filling the lower bits with zeros instead. 198 ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros); 199 TmpSeq.clear(); 200 generateInstSeqImpl(ShiftedVal, STI, TmpSeq); 201 202 // Keep the new sequence if it is an improvement or the original is empty. 203 if ((TmpSeq.size() + 1) < Res.size() || 204 (Res.empty() && TmpSeq.size() < 8)) { 205 TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros); 206 Res = TmpSeq; 207 } 208 209 // If we have exactly 32 leading zeros and Zba, we can try using zext.w at 210 // the end of the sequence. 211 if (LeadingZeros == 32 && STI.hasFeature(RISCV::FeatureStdExtZba)) { 212 // Try replacing upper bits with 1. 213 uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros); 214 TmpSeq.clear(); 215 generateInstSeqImpl(LeadingOnesVal, STI, TmpSeq); 216 217 // Keep the new sequence if it is an improvement. 218 if ((TmpSeq.size() + 1) < Res.size() || 219 (Res.empty() && TmpSeq.size() < 8)) { 220 TmpSeq.emplace_back(RISCV::ADD_UW, 0); 221 Res = TmpSeq; 222 } 223 } 224 } 225 226 namespace llvm::RISCVMatInt { 227 InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI) { 228 RISCVMatInt::InstSeq Res; 229 generateInstSeqImpl(Val, STI, Res); 230 231 // If the low 12 bits are non-zero, the first expansion may end with an ADDI 232 // or ADDIW. If there are trailing zeros, try generating a sign extended 233 // constant with no trailing zeros and use a final SLLI to restore them. 234 if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) { 235 unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val); 236 int64_t ShiftedVal = Val >> TrailingZeros; 237 // If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since 238 // its more compressible. But only if LUI+ADDI(W) isn't fusable. 239 // NOTE: We don't check for C extension to minimize differences in generated 240 // code. 241 bool IsShiftedCompressible = 242 isInt<6>(ShiftedVal) && !STI.hasFeature(RISCV::TuneLUIADDIFusion); 243 RISCVMatInt::InstSeq TmpSeq; 244 generateInstSeqImpl(ShiftedVal, STI, TmpSeq); 245 246 // Keep the new sequence if it is an improvement. 247 if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) { 248 TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros); 249 Res = TmpSeq; 250 } 251 } 252 253 // If we have a 1 or 2 instruction sequence this is the best we can do. This 254 // will always be true for RV32 and will often be true for RV64. 255 if (Res.size() <= 2) 256 return Res; 257 258 assert(STI.hasFeature(RISCV::Feature64Bit) && 259 "Expected RV32 to only need 2 instructions"); 260 261 // If the lower 13 bits are something like 0x17ff, try to add 1 to change the 262 // lower 13 bits to 0x1800. We can restore this with an ADDI of -1 at the end 263 // of the sequence. Call generateInstSeqImpl on the new constant which may 264 // subtract 0xfffffffffffff800 to create another ADDI. This will leave a 265 // constant with more than 12 trailing zeros for the next recursive step. 266 if ((Val & 0xfff) != 0 && (Val & 0x1800) == 0x1000) { 267 int64_t Imm12 = -(0x800 - (Val & 0xfff)); 268 int64_t AdjustedVal = Val - Imm12; 269 RISCVMatInt::InstSeq TmpSeq; 270 generateInstSeqImpl(AdjustedVal, STI, TmpSeq); 271 272 // Keep the new sequence if it is an improvement. 273 if ((TmpSeq.size() + 1) < Res.size()) { 274 TmpSeq.emplace_back(RISCV::ADDI, Imm12); 275 Res = TmpSeq; 276 } 277 } 278 279 // If the constant is positive we might be able to generate a shifted constant 280 // with no leading zeros and use a final SRLI to restore them. 281 if (Val > 0 && Res.size() > 2) { 282 generateInstSeqLeadingZeros(Val, STI, Res); 283 } 284 285 // If the constant is negative, trying inverting and using our trailing zero 286 // optimizations. Use an xori to invert the final value. 287 if (Val < 0 && Res.size() > 3) { 288 uint64_t InvertedVal = ~(uint64_t)Val; 289 RISCVMatInt::InstSeq TmpSeq; 290 generateInstSeqLeadingZeros(InvertedVal, STI, TmpSeq); 291 292 // Keep it if we found a sequence that is smaller after inverting. 293 if (!TmpSeq.empty() && (TmpSeq.size() + 1) < Res.size()) { 294 TmpSeq.emplace_back(RISCV::XORI, -1); 295 Res = TmpSeq; 296 } 297 } 298 299 // If the Low and High halves are the same, use pack. The pack instruction 300 // packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the 301 // lower half and rs2 in the upper half. 302 if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbkb)) { 303 int64_t LoVal = SignExtend64<32>(Val); 304 int64_t HiVal = SignExtend64<32>(Val >> 32); 305 if (LoVal == HiVal) { 306 RISCVMatInt::InstSeq TmpSeq; 307 generateInstSeqImpl(LoVal, STI, TmpSeq); 308 if ((TmpSeq.size() + 1) < Res.size()) { 309 TmpSeq.emplace_back(RISCV::PACK, 0); 310 Res = TmpSeq; 311 } 312 } 313 } 314 315 // Perform optimization with BSETI in the Zbs extension. 316 if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) { 317 // Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to zero. 318 // Xor that with original value to get which bits should be set by BSETI. 319 uint64_t Lo = Val & 0x7fffffff; 320 uint64_t Hi = Val ^ Lo; 321 assert(Hi != 0); 322 RISCVMatInt::InstSeq TmpSeq; 323 324 if (Lo != 0) 325 generateInstSeqImpl(Lo, STI, TmpSeq); 326 327 if (TmpSeq.size() + llvm::popcount(Hi) < Res.size()) { 328 do { 329 TmpSeq.emplace_back(RISCV::BSETI, llvm::countr_zero(Hi)); 330 Hi &= (Hi - 1); // Clear lowest set bit. 331 } while (Hi != 0); 332 Res = TmpSeq; 333 } 334 } 335 336 // Perform optimization with BCLRI in the Zbs extension. 337 if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) { 338 // Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to one. 339 // Xor that with original value to get which bits should be cleared by 340 // BCLRI. 341 uint64_t Lo = Val | 0xffffffff80000000; 342 uint64_t Hi = Val ^ Lo; 343 assert(Hi != 0); 344 345 RISCVMatInt::InstSeq TmpSeq; 346 generateInstSeqImpl(Lo, STI, TmpSeq); 347 348 if (TmpSeq.size() + llvm::popcount(Hi) < Res.size()) { 349 do { 350 TmpSeq.emplace_back(RISCV::BCLRI, llvm::countr_zero(Hi)); 351 Hi &= (Hi - 1); // Clear lowest set bit. 352 } while (Hi != 0); 353 Res = TmpSeq; 354 } 355 } 356 357 // Perform optimization with SH*ADD in the Zba extension. 358 if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZba)) { 359 int64_t Div = 0; 360 unsigned Opc = 0; 361 RISCVMatInt::InstSeq TmpSeq; 362 // Select the opcode and divisor. 363 if ((Val % 3) == 0 && isInt<32>(Val / 3)) { 364 Div = 3; 365 Opc = RISCV::SH1ADD; 366 } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) { 367 Div = 5; 368 Opc = RISCV::SH2ADD; 369 } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) { 370 Div = 9; 371 Opc = RISCV::SH3ADD; 372 } 373 // Build the new instruction sequence. 374 if (Div > 0) { 375 generateInstSeqImpl(Val / Div, STI, TmpSeq); 376 if ((TmpSeq.size() + 1) < Res.size()) { 377 TmpSeq.emplace_back(Opc, 0); 378 Res = TmpSeq; 379 } 380 } else { 381 // Try to use LUI+SH*ADD+ADDI. 382 int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull; 383 int64_t Lo12 = SignExtend64<12>(Val); 384 Div = 0; 385 if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) { 386 Div = 3; 387 Opc = RISCV::SH1ADD; 388 } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) { 389 Div = 5; 390 Opc = RISCV::SH2ADD; 391 } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) { 392 Div = 9; 393 Opc = RISCV::SH3ADD; 394 } 395 // Build the new instruction sequence. 396 if (Div > 0) { 397 // For Val that has zero Lo12 (implies Val equals to Hi52) should has 398 // already been processed to LUI+SH*ADD by previous optimization. 399 assert(Lo12 != 0 && 400 "unexpected instruction sequence for immediate materialisation"); 401 assert(TmpSeq.empty() && "Expected empty TmpSeq"); 402 generateInstSeqImpl(Hi52 / Div, STI, TmpSeq); 403 if ((TmpSeq.size() + 2) < Res.size()) { 404 TmpSeq.emplace_back(Opc, 0); 405 TmpSeq.emplace_back(RISCV::ADDI, Lo12); 406 Res = TmpSeq; 407 } 408 } 409 } 410 } 411 412 // Perform optimization with rori in the Zbb and th.srri in the XTheadBb 413 // extension. 414 if (Res.size() > 2 && (STI.hasFeature(RISCV::FeatureStdExtZbb) || 415 STI.hasFeature(RISCV::FeatureVendorXTHeadBb))) { 416 if (unsigned Rotate = extractRotateInfo(Val)) { 417 RISCVMatInt::InstSeq TmpSeq; 418 uint64_t NegImm12 = llvm::rotl<uint64_t>(Val, Rotate); 419 assert(isInt<12>(NegImm12)); 420 TmpSeq.emplace_back(RISCV::ADDI, NegImm12); 421 TmpSeq.emplace_back(STI.hasFeature(RISCV::FeatureStdExtZbb) 422 ? RISCV::RORI 423 : RISCV::TH_SRRI, 424 Rotate); 425 Res = TmpSeq; 426 } 427 } 428 return Res; 429 } 430 431 void generateMCInstSeq(int64_t Val, const MCSubtargetInfo &STI, 432 MCRegister DestReg, SmallVectorImpl<MCInst> &Insts) { 433 RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, STI); 434 435 MCRegister SrcReg = RISCV::X0; 436 for (RISCVMatInt::Inst &Inst : Seq) { 437 switch (Inst.getOpndKind()) { 438 case RISCVMatInt::Imm: 439 Insts.push_back(MCInstBuilder(Inst.getOpcode()) 440 .addReg(DestReg) 441 .addImm(Inst.getImm())); 442 break; 443 case RISCVMatInt::RegX0: 444 Insts.push_back(MCInstBuilder(Inst.getOpcode()) 445 .addReg(DestReg) 446 .addReg(SrcReg) 447 .addReg(RISCV::X0)); 448 break; 449 case RISCVMatInt::RegReg: 450 Insts.push_back(MCInstBuilder(Inst.getOpcode()) 451 .addReg(DestReg) 452 .addReg(SrcReg) 453 .addReg(SrcReg)); 454 break; 455 case RISCVMatInt::RegImm: 456 Insts.push_back(MCInstBuilder(Inst.getOpcode()) 457 .addReg(DestReg) 458 .addReg(SrcReg) 459 .addImm(Inst.getImm())); 460 break; 461 } 462 463 // Only the first instruction has X0 as its source. 464 SrcReg = DestReg; 465 } 466 } 467 468 InstSeq generateTwoRegInstSeq(int64_t Val, const MCSubtargetInfo &STI, 469 unsigned &ShiftAmt, unsigned &AddOpc) { 470 int64_t LoVal = SignExtend64<32>(Val); 471 if (LoVal == 0) 472 return RISCVMatInt::InstSeq(); 473 474 // Subtract the LoVal to emulate the effect of the final ADD. 475 uint64_t Tmp = (uint64_t)Val - (uint64_t)LoVal; 476 assert(Tmp != 0); 477 478 // Use trailing zero counts to figure how far we need to shift LoVal to line 479 // up with the remaining constant. 480 // TODO: This algorithm assumes all non-zero bits in the low 32 bits of the 481 // final constant come from LoVal. 482 unsigned TzLo = llvm::countr_zero((uint64_t)LoVal); 483 unsigned TzHi = llvm::countr_zero(Tmp); 484 assert(TzLo < 32 && TzHi >= 32); 485 ShiftAmt = TzHi - TzLo; 486 AddOpc = RISCV::ADD; 487 488 if (Tmp == ((uint64_t)LoVal << ShiftAmt)) 489 return RISCVMatInt::generateInstSeq(LoVal, STI); 490 491 // If we have Zba, we can use (ADD_UW X, (SLLI X, 32)). 492 if (STI.hasFeature(RISCV::FeatureStdExtZba) && Lo_32(Val) == Hi_32(Val)) { 493 ShiftAmt = 32; 494 AddOpc = RISCV::ADD_UW; 495 return RISCVMatInt::generateInstSeq(LoVal, STI); 496 } 497 498 return RISCVMatInt::InstSeq(); 499 } 500 501 int getIntMatCost(const APInt &Val, unsigned Size, const MCSubtargetInfo &STI, 502 bool CompressionCost, bool FreeZeroes) { 503 bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit); 504 bool HasRVC = CompressionCost && (STI.hasFeature(RISCV::FeatureStdExtC) || 505 STI.hasFeature(RISCV::FeatureStdExtZca)); 506 int PlatRegSize = IsRV64 ? 64 : 32; 507 508 // Split the constant into platform register sized chunks, and calculate cost 509 // of each chunk. 510 int Cost = 0; 511 for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) { 512 APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize); 513 if (FreeZeroes && Chunk.getSExtValue() == 0) 514 continue; 515 InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), STI); 516 Cost += getInstSeqCost(MatSeq, HasRVC); 517 } 518 return std::max(FreeZeroes ? 0 : 1, Cost); 519 } 520 521 OpndKind Inst::getOpndKind() const { 522 switch (Opc) { 523 default: 524 llvm_unreachable("Unexpected opcode!"); 525 case RISCV::LUI: 526 return RISCVMatInt::Imm; 527 case RISCV::ADD_UW: 528 return RISCVMatInt::RegX0; 529 case RISCV::SH1ADD: 530 case RISCV::SH2ADD: 531 case RISCV::SH3ADD: 532 case RISCV::PACK: 533 return RISCVMatInt::RegReg; 534 case RISCV::ADDI: 535 case RISCV::ADDIW: 536 case RISCV::XORI: 537 case RISCV::SLLI: 538 case RISCV::SRLI: 539 case RISCV::SLLI_UW: 540 case RISCV::RORI: 541 case RISCV::BSETI: 542 case RISCV::BCLRI: 543 case RISCV::TH_SRRI: 544 return RISCVMatInt::RegImm; 545 } 546 } 547 548 } // namespace llvm::RISCVMatInt 549