1e8d8bef9SDimitry Andric //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
2e8d8bef9SDimitry Andric //
3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6e8d8bef9SDimitry Andric //
7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
8e8d8bef9SDimitry Andric
9e8d8bef9SDimitry Andric #include "RISCVMatInt.h"
10e8d8bef9SDimitry Andric #include "MCTargetDesc/RISCVMCTargetDesc.h"
11e8d8bef9SDimitry Andric #include "llvm/ADT/APInt.h"
12*0fca6ea1SDimitry Andric #include "llvm/MC/MCInstBuilder.h"
13e8d8bef9SDimitry Andric #include "llvm/Support/MathExtras.h"
14fe6060f1SDimitry Andric using namespace llvm;
15e8d8bef9SDimitry Andric
getInstSeqCost(RISCVMatInt::InstSeq & Res,bool HasRVC)16fe6060f1SDimitry Andric static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
17fe6060f1SDimitry Andric if (!HasRVC)
18fe6060f1SDimitry Andric return Res.size();
19e8d8bef9SDimitry Andric
20fe6060f1SDimitry Andric int Cost = 0;
21fe6060f1SDimitry Andric for (auto Instr : Res) {
2281ad6265SDimitry Andric // Assume instructions that aren't listed aren't compressible.
2381ad6265SDimitry Andric bool Compressed = false;
24bdd1243dSDimitry Andric switch (Instr.getOpcode()) {
25fe6060f1SDimitry Andric case RISCV::SLLI:
26fe6060f1SDimitry Andric case RISCV::SRLI:
27fe6060f1SDimitry Andric Compressed = true;
28fe6060f1SDimitry Andric break;
29fe6060f1SDimitry Andric case RISCV::ADDI:
30fe6060f1SDimitry Andric case RISCV::ADDIW:
31fe6060f1SDimitry Andric case RISCV::LUI:
32bdd1243dSDimitry Andric Compressed = isInt<6>(Instr.getImm());
33fe6060f1SDimitry Andric break;
34fe6060f1SDimitry Andric }
35fe6060f1SDimitry Andric // Two RVC instructions take the same space as one RVI instruction, but
36fe6060f1SDimitry Andric // can take longer to execute than the single RVI instruction. Thus, we
37fe6060f1SDimitry Andric // consider that two RVC instruction are slightly more costly than one
38fe6060f1SDimitry Andric // RVI instruction. For longer sequences of RVC instructions the space
39fe6060f1SDimitry Andric // savings can be worth it, though. The costs below try to model that.
40fe6060f1SDimitry Andric if (!Compressed)
41fe6060f1SDimitry Andric Cost += 100; // Baseline cost of one RVI instruction: 100%.
42fe6060f1SDimitry Andric else
43fe6060f1SDimitry Andric Cost += 70; // 70% cost of baseline.
44fe6060f1SDimitry Andric }
45fe6060f1SDimitry Andric return Cost;
46fe6060f1SDimitry Andric }
47fe6060f1SDimitry Andric
48fe6060f1SDimitry Andric // Recursively generate a sequence for materializing an integer.
generateInstSeqImpl(int64_t Val,const MCSubtargetInfo & STI,RISCVMatInt::InstSeq & Res)495f757f3fSDimitry Andric static void generateInstSeqImpl(int64_t Val, const MCSubtargetInfo &STI,
50fe6060f1SDimitry Andric RISCVMatInt::InstSeq &Res) {
515f757f3fSDimitry Andric bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
52fe6060f1SDimitry Andric
53bdd1243dSDimitry Andric // Use BSETI for a single bit that can't be expressed by a single LUI or ADDI.
545f757f3fSDimitry Andric if (STI.hasFeature(RISCV::FeatureStdExtZbs) && isPowerOf2_64(Val) &&
55bdd1243dSDimitry Andric (!isInt<32>(Val) || Val == 0x800)) {
56bdd1243dSDimitry Andric Res.emplace_back(RISCV::BSETI, Log2_64(Val));
57bdd1243dSDimitry Andric return;
58bdd1243dSDimitry Andric }
59bdd1243dSDimitry Andric
60e8d8bef9SDimitry Andric if (isInt<32>(Val)) {
61e8d8bef9SDimitry Andric // Depending on the active bits in the immediate Value v, the following
62e8d8bef9SDimitry Andric // instruction sequences are emitted:
63e8d8bef9SDimitry Andric //
64e8d8bef9SDimitry Andric // v == 0 : ADDI
65e8d8bef9SDimitry Andric // v[0,12) != 0 && v[12,32) == 0 : ADDI
66e8d8bef9SDimitry Andric // v[0,12) == 0 && v[12,32) != 0 : LUI
67e8d8bef9SDimitry Andric // v[0,32) != 0 : LUI+ADDI(W)
68e8d8bef9SDimitry Andric int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
69e8d8bef9SDimitry Andric int64_t Lo12 = SignExtend64<12>(Val);
70e8d8bef9SDimitry Andric
71e8d8bef9SDimitry Andric if (Hi20)
72bdd1243dSDimitry Andric Res.emplace_back(RISCV::LUI, Hi20);
73e8d8bef9SDimitry Andric
74e8d8bef9SDimitry Andric if (Lo12 || Hi20 == 0) {
75e8d8bef9SDimitry Andric unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
76bdd1243dSDimitry Andric Res.emplace_back(AddiOpc, Lo12);
77e8d8bef9SDimitry Andric }
78e8d8bef9SDimitry Andric return;
79e8d8bef9SDimitry Andric }
80e8d8bef9SDimitry Andric
81e8d8bef9SDimitry Andric assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
82e8d8bef9SDimitry Andric
83e8d8bef9SDimitry Andric // In the worst case, for a full 64-bit constant, a sequence of 8 instructions
84349cc55cSDimitry Andric // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
85e8d8bef9SDimitry Andric // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
86e8d8bef9SDimitry Andric // while the following ADDI instructions contribute up to 12 bits each.
87e8d8bef9SDimitry Andric //
88e8d8bef9SDimitry Andric // On the first glance, implementing this seems to be possible by simply
89e8d8bef9SDimitry Andric // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
90e8d8bef9SDimitry Andric // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
91e8d8bef9SDimitry Andric // fact that ADDI performs a sign extended addition, doing it like that would
92e8d8bef9SDimitry Andric // only be possible when at most 11 bits of the ADDI instructions are used.
93e8d8bef9SDimitry Andric // Using all 12 bits of the ADDI instructions, like done by GAS, actually
94e8d8bef9SDimitry Andric // requires that the constant is processed starting with the least significant
95e8d8bef9SDimitry Andric // bit.
96e8d8bef9SDimitry Andric //
97e8d8bef9SDimitry Andric // In the following, constants are processed from LSB to MSB but instruction
98e8d8bef9SDimitry Andric // emission is performed from MSB to LSB by recursively calling
99e8d8bef9SDimitry Andric // generateInstSeq. In each recursion, first the lowest 12 bits are removed
100e8d8bef9SDimitry Andric // from the constant and the optimal shift amount, which can be greater than
101e8d8bef9SDimitry Andric // 12 bits if the constant is sparse, is determined. Then, the shifted
102e8d8bef9SDimitry Andric // remaining constant is processed recursively and gets emitted as soon as it
103e8d8bef9SDimitry Andric // fits into 32 bits. The emission of the shifts and additions is subsequently
104e8d8bef9SDimitry Andric // performed when the recursion returns.
105e8d8bef9SDimitry Andric
106e8d8bef9SDimitry Andric int64_t Lo12 = SignExtend64<12>(Val);
10781ad6265SDimitry Andric Val = (uint64_t)Val - (uint64_t)Lo12;
10881ad6265SDimitry Andric
10981ad6265SDimitry Andric int ShiftAmount = 0;
11081ad6265SDimitry Andric bool Unsigned = false;
11181ad6265SDimitry Andric
11281ad6265SDimitry Andric // Val might now be valid for LUI without needing a shift.
11381ad6265SDimitry Andric if (!isInt<32>(Val)) {
114bdd1243dSDimitry Andric ShiftAmount = llvm::countr_zero((uint64_t)Val);
11581ad6265SDimitry Andric Val >>= ShiftAmount;
116e8d8bef9SDimitry Andric
117*0fca6ea1SDimitry Andric // If the remaining bits don't fit in 12 bits, we might be able to reduce
118*0fca6ea1SDimitry Andric // the // shift amount in order to use LUI which will zero the lower 12
119*0fca6ea1SDimitry Andric // bits.
12081ad6265SDimitry Andric if (ShiftAmount > 12 && !isInt<12>(Val)) {
12181ad6265SDimitry Andric if (isInt<32>((uint64_t)Val << 12)) {
122*0fca6ea1SDimitry Andric // Reduce the shift amount and add zeros to the LSBs so it will match
123*0fca6ea1SDimitry Andric // LUI.
124fe6060f1SDimitry Andric ShiftAmount -= 12;
12581ad6265SDimitry Andric Val = (uint64_t)Val << 12;
12681ad6265SDimitry Andric } else if (isUInt<32>((uint64_t)Val << 12) &&
1275f757f3fSDimitry Andric STI.hasFeature(RISCV::FeatureStdExtZba)) {
128349cc55cSDimitry Andric // Reduce the shift amount and add zeros to the LSBs so it will match
129349cc55cSDimitry Andric // LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
130349cc55cSDimitry Andric ShiftAmount -= 12;
13181ad6265SDimitry Andric Val = ((uint64_t)Val << 12) | (0xffffffffull << 32);
132349cc55cSDimitry Andric Unsigned = true;
133349cc55cSDimitry Andric }
134349cc55cSDimitry Andric }
135349cc55cSDimitry Andric
13681ad6265SDimitry Andric // Try to use SLLI_UW for Val when it is uint32 but not int32.
13781ad6265SDimitry Andric if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) &&
1385f757f3fSDimitry Andric STI.hasFeature(RISCV::FeatureStdExtZba)) {
1391fd87a68SDimitry Andric // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with
1401fd87a68SDimitry Andric // SLLI_UW.
14181ad6265SDimitry Andric Val = ((uint64_t)Val) | (0xffffffffull << 32);
142349cc55cSDimitry Andric Unsigned = true;
143e8d8bef9SDimitry Andric }
14481ad6265SDimitry Andric }
145e8d8bef9SDimitry Andric
1465f757f3fSDimitry Andric generateInstSeqImpl(Val, STI, Res);
147fe6060f1SDimitry Andric
14881ad6265SDimitry Andric // Skip shift if we were able to use LUI directly.
14981ad6265SDimitry Andric if (ShiftAmount) {
150bdd1243dSDimitry Andric unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI;
151bdd1243dSDimitry Andric Res.emplace_back(Opc, ShiftAmount);
15281ad6265SDimitry Andric }
15381ad6265SDimitry Andric
154fe6060f1SDimitry Andric if (Lo12)
155bdd1243dSDimitry Andric Res.emplace_back(RISCV::ADDI, Lo12);
156fe6060f1SDimitry Andric }
157fe6060f1SDimitry Andric
extractRotateInfo(int64_t Val)15804eeddc0SDimitry Andric static unsigned extractRotateInfo(int64_t Val) {
15904eeddc0SDimitry Andric // for case: 0b111..1..xxxxxx1..1..
16006c3fb27SDimitry Andric unsigned LeadingOnes = llvm::countl_one((uint64_t)Val);
16106c3fb27SDimitry Andric unsigned TrailingOnes = llvm::countr_one((uint64_t)Val);
16204eeddc0SDimitry Andric if (TrailingOnes > 0 && TrailingOnes < 64 &&
16304eeddc0SDimitry Andric (LeadingOnes + TrailingOnes) > (64 - 12))
16404eeddc0SDimitry Andric return 64 - TrailingOnes;
16504eeddc0SDimitry Andric
16604eeddc0SDimitry Andric // for case: 0bxxx1..1..1...xxx
16706c3fb27SDimitry Andric unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val));
16806c3fb27SDimitry Andric unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val));
16904eeddc0SDimitry Andric if (UpperTrailingOnes < 32 &&
17004eeddc0SDimitry Andric (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12))
17104eeddc0SDimitry Andric return 32 - UpperTrailingOnes;
17204eeddc0SDimitry Andric
17304eeddc0SDimitry Andric return 0;
17404eeddc0SDimitry Andric }
17504eeddc0SDimitry Andric
generateInstSeqLeadingZeros(int64_t Val,const MCSubtargetInfo & STI,RISCVMatInt::InstSeq & Res)1765f757f3fSDimitry Andric static void generateInstSeqLeadingZeros(int64_t Val, const MCSubtargetInfo &STI,
1775f757f3fSDimitry Andric RISCVMatInt::InstSeq &Res) {
1785f757f3fSDimitry Andric assert(Val > 0 && "Expected postive val");
1795f757f3fSDimitry Andric
1805f757f3fSDimitry Andric unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val);
1815f757f3fSDimitry Andric uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
1825f757f3fSDimitry Andric // Fill in the bits that will be shifted out with 1s. An example where this
1835f757f3fSDimitry Andric // helps is trailing one masks with 32 or more ones. This will generate
1845f757f3fSDimitry Andric // ADDI -1 and an SRLI.
1855f757f3fSDimitry Andric ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
1865f757f3fSDimitry Andric
1875f757f3fSDimitry Andric RISCVMatInt::InstSeq TmpSeq;
1885f757f3fSDimitry Andric generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
1895f757f3fSDimitry Andric
1905f757f3fSDimitry Andric // Keep the new sequence if it is an improvement or the original is empty.
1915f757f3fSDimitry Andric if ((TmpSeq.size() + 1) < Res.size() ||
1925f757f3fSDimitry Andric (Res.empty() && TmpSeq.size() < 8)) {
1935f757f3fSDimitry Andric TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
1945f757f3fSDimitry Andric Res = TmpSeq;
1955f757f3fSDimitry Andric }
1965f757f3fSDimitry Andric
1975f757f3fSDimitry Andric // Some cases can benefit from filling the lower bits with zeros instead.
1985f757f3fSDimitry Andric ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
1995f757f3fSDimitry Andric TmpSeq.clear();
2005f757f3fSDimitry Andric generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
2015f757f3fSDimitry Andric
2025f757f3fSDimitry Andric // Keep the new sequence if it is an improvement or the original is empty.
2035f757f3fSDimitry Andric if ((TmpSeq.size() + 1) < Res.size() ||
2045f757f3fSDimitry Andric (Res.empty() && TmpSeq.size() < 8)) {
2055f757f3fSDimitry Andric TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
2065f757f3fSDimitry Andric Res = TmpSeq;
2075f757f3fSDimitry Andric }
2085f757f3fSDimitry Andric
2095f757f3fSDimitry Andric // If we have exactly 32 leading zeros and Zba, we can try using zext.w at
2105f757f3fSDimitry Andric // the end of the sequence.
2115f757f3fSDimitry Andric if (LeadingZeros == 32 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
2125f757f3fSDimitry Andric // Try replacing upper bits with 1.
2135f757f3fSDimitry Andric uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
2145f757f3fSDimitry Andric TmpSeq.clear();
2155f757f3fSDimitry Andric generateInstSeqImpl(LeadingOnesVal, STI, TmpSeq);
2165f757f3fSDimitry Andric
2175f757f3fSDimitry Andric // Keep the new sequence if it is an improvement.
2185f757f3fSDimitry Andric if ((TmpSeq.size() + 1) < Res.size() ||
2195f757f3fSDimitry Andric (Res.empty() && TmpSeq.size() < 8)) {
2205f757f3fSDimitry Andric TmpSeq.emplace_back(RISCV::ADD_UW, 0);
2215f757f3fSDimitry Andric Res = TmpSeq;
2225f757f3fSDimitry Andric }
2235f757f3fSDimitry Andric }
2245f757f3fSDimitry Andric }
2255f757f3fSDimitry Andric
226bdd1243dSDimitry Andric namespace llvm::RISCVMatInt {
generateInstSeq(int64_t Val,const MCSubtargetInfo & STI)2275f757f3fSDimitry Andric InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI) {
228fe6060f1SDimitry Andric RISCVMatInt::InstSeq Res;
2295f757f3fSDimitry Andric generateInstSeqImpl(Val, STI, Res);
230fe6060f1SDimitry Andric
231bdd1243dSDimitry Andric // If the low 12 bits are non-zero, the first expansion may end with an ADDI
232bdd1243dSDimitry Andric // or ADDIW. If there are trailing zeros, try generating a sign extended
233bdd1243dSDimitry Andric // constant with no trailing zeros and use a final SLLI to restore them.
234bdd1243dSDimitry Andric if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) {
23506c3fb27SDimitry Andric unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val);
23681ad6265SDimitry Andric int64_t ShiftedVal = Val >> TrailingZeros;
237bdd1243dSDimitry Andric // If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since
238bdd1243dSDimitry Andric // its more compressible. But only if LUI+ADDI(W) isn't fusable.
239bdd1243dSDimitry Andric // NOTE: We don't check for C extension to minimize differences in generated
240bdd1243dSDimitry Andric // code.
241bdd1243dSDimitry Andric bool IsShiftedCompressible =
2425f757f3fSDimitry Andric isInt<6>(ShiftedVal) && !STI.hasFeature(RISCV::TuneLUIADDIFusion);
24381ad6265SDimitry Andric RISCVMatInt::InstSeq TmpSeq;
2445f757f3fSDimitry Andric generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
24581ad6265SDimitry Andric
24681ad6265SDimitry Andric // Keep the new sequence if it is an improvement.
24706c3fb27SDimitry Andric if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) {
24806c3fb27SDimitry Andric TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros);
24981ad6265SDimitry Andric Res = TmpSeq;
25081ad6265SDimitry Andric }
25106c3fb27SDimitry Andric }
25206c3fb27SDimitry Andric
25306c3fb27SDimitry Andric // If we have a 1 or 2 instruction sequence this is the best we can do. This
25406c3fb27SDimitry Andric // will always be true for RV32 and will often be true for RV64.
25506c3fb27SDimitry Andric if (Res.size() <= 2)
25606c3fb27SDimitry Andric return Res;
25706c3fb27SDimitry Andric
2585f757f3fSDimitry Andric assert(STI.hasFeature(RISCV::Feature64Bit) &&
25906c3fb27SDimitry Andric "Expected RV32 to only need 2 instructions");
26081ad6265SDimitry Andric
2615f757f3fSDimitry Andric // If the lower 13 bits are something like 0x17ff, try to add 1 to change the
2625f757f3fSDimitry Andric // lower 13 bits to 0x1800. We can restore this with an ADDI of -1 at the end
2635f757f3fSDimitry Andric // of the sequence. Call generateInstSeqImpl on the new constant which may
2645f757f3fSDimitry Andric // subtract 0xfffffffffffff800 to create another ADDI. This will leave a
2655f757f3fSDimitry Andric // constant with more than 12 trailing zeros for the next recursive step.
2665f757f3fSDimitry Andric if ((Val & 0xfff) != 0 && (Val & 0x1800) == 0x1000) {
2675f757f3fSDimitry Andric int64_t Imm12 = -(0x800 - (Val & 0xfff));
2685f757f3fSDimitry Andric int64_t AdjustedVal = Val - Imm12;
2695f757f3fSDimitry Andric RISCVMatInt::InstSeq TmpSeq;
2705f757f3fSDimitry Andric generateInstSeqImpl(AdjustedVal, STI, TmpSeq);
2715f757f3fSDimitry Andric
2725f757f3fSDimitry Andric // Keep the new sequence if it is an improvement.
2735f757f3fSDimitry Andric if ((TmpSeq.size() + 1) < Res.size()) {
2745f757f3fSDimitry Andric TmpSeq.emplace_back(RISCV::ADDI, Imm12);
2755f757f3fSDimitry Andric Res = TmpSeq;
2765f757f3fSDimitry Andric }
2775f757f3fSDimitry Andric }
2785f757f3fSDimitry Andric
279fe6060f1SDimitry Andric // If the constant is positive we might be able to generate a shifted constant
280fe6060f1SDimitry Andric // with no leading zeros and use a final SRLI to restore them.
2815f757f3fSDimitry Andric if (Val > 0 && Res.size() > 2) {
2825f757f3fSDimitry Andric generateInstSeqLeadingZeros(Val, STI, Res);
2835f757f3fSDimitry Andric }
284fe6060f1SDimitry Andric
2855f757f3fSDimitry Andric // If the constant is negative, trying inverting and using our trailing zero
2865f757f3fSDimitry Andric // optimizations. Use an xori to invert the final value.
2875f757f3fSDimitry Andric if (Val < 0 && Res.size() > 3) {
2885f757f3fSDimitry Andric uint64_t InvertedVal = ~(uint64_t)Val;
289fe6060f1SDimitry Andric RISCVMatInt::InstSeq TmpSeq;
2905f757f3fSDimitry Andric generateInstSeqLeadingZeros(InvertedVal, STI, TmpSeq);
291fe6060f1SDimitry Andric
2925f757f3fSDimitry Andric // Keep it if we found a sequence that is smaller after inverting.
2935f757f3fSDimitry Andric if (!TmpSeq.empty() && (TmpSeq.size() + 1) < Res.size()) {
2945f757f3fSDimitry Andric TmpSeq.emplace_back(RISCV::XORI, -1);
295fe6060f1SDimitry Andric Res = TmpSeq;
29606c3fb27SDimitry Andric }
29706c3fb27SDimitry Andric }
29806c3fb27SDimitry Andric
29906c3fb27SDimitry Andric // If the Low and High halves are the same, use pack. The pack instruction
30006c3fb27SDimitry Andric // packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the
30106c3fb27SDimitry Andric // lower half and rs2 in the upper half.
3025f757f3fSDimitry Andric if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbkb)) {
30306c3fb27SDimitry Andric int64_t LoVal = SignExtend64<32>(Val);
30406c3fb27SDimitry Andric int64_t HiVal = SignExtend64<32>(Val >> 32);
30506c3fb27SDimitry Andric if (LoVal == HiVal) {
30606c3fb27SDimitry Andric RISCVMatInt::InstSeq TmpSeq;
3075f757f3fSDimitry Andric generateInstSeqImpl(LoVal, STI, TmpSeq);
30806c3fb27SDimitry Andric if ((TmpSeq.size() + 1) < Res.size()) {
30906c3fb27SDimitry Andric TmpSeq.emplace_back(RISCV::PACK, 0);
31006c3fb27SDimitry Andric Res = TmpSeq;
31106c3fb27SDimitry Andric }
31206c3fb27SDimitry Andric }
31306c3fb27SDimitry Andric }
314fe6060f1SDimitry Andric
315*0fca6ea1SDimitry Andric // Perform optimization with BSETI in the Zbs extension.
3165f757f3fSDimitry Andric if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
317*0fca6ea1SDimitry Andric // Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to zero.
318*0fca6ea1SDimitry Andric // Xor that with original value to get which bits should be set by BSETI.
319*0fca6ea1SDimitry Andric uint64_t Lo = Val & 0x7fffffff;
320*0fca6ea1SDimitry Andric uint64_t Hi = Val ^ Lo;
321*0fca6ea1SDimitry Andric assert(Hi != 0);
322349cc55cSDimitry Andric RISCVMatInt::InstSeq TmpSeq;
323*0fca6ea1SDimitry Andric
324*0fca6ea1SDimitry Andric if (Lo != 0)
325*0fca6ea1SDimitry Andric generateInstSeqImpl(Lo, STI, TmpSeq);
326*0fca6ea1SDimitry Andric
327*0fca6ea1SDimitry Andric if (TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
328*0fca6ea1SDimitry Andric do {
329*0fca6ea1SDimitry Andric TmpSeq.emplace_back(RISCV::BSETI, llvm::countr_zero(Hi));
330*0fca6ea1SDimitry Andric Hi &= (Hi - 1); // Clear lowest set bit.
331*0fca6ea1SDimitry Andric } while (Hi != 0);
332349cc55cSDimitry Andric Res = TmpSeq;
333349cc55cSDimitry Andric }
33406c3fb27SDimitry Andric }
335349cc55cSDimitry Andric
336*0fca6ea1SDimitry Andric // Perform optimization with BCLRI in the Zbs extension.
337*0fca6ea1SDimitry Andric if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
338*0fca6ea1SDimitry Andric // Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to one.
339*0fca6ea1SDimitry Andric // Xor that with original value to get which bits should be cleared by
340*0fca6ea1SDimitry Andric // BCLRI.
341*0fca6ea1SDimitry Andric uint64_t Lo = Val | 0xffffffff80000000;
342*0fca6ea1SDimitry Andric uint64_t Hi = Val ^ Lo;
343*0fca6ea1SDimitry Andric assert(Hi != 0);
344*0fca6ea1SDimitry Andric
345349cc55cSDimitry Andric RISCVMatInt::InstSeq TmpSeq;
3465f757f3fSDimitry Andric generateInstSeqImpl(Lo, STI, TmpSeq);
347*0fca6ea1SDimitry Andric
348*0fca6ea1SDimitry Andric if (TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
349*0fca6ea1SDimitry Andric do {
350*0fca6ea1SDimitry Andric TmpSeq.emplace_back(RISCV::BCLRI, llvm::countr_zero(Hi));
351bdd1243dSDimitry Andric Hi &= (Hi - 1); // Clear lowest set bit.
352*0fca6ea1SDimitry Andric } while (Hi != 0);
353349cc55cSDimitry Andric Res = TmpSeq;
354349cc55cSDimitry Andric }
355349cc55cSDimitry Andric }
356349cc55cSDimitry Andric
357349cc55cSDimitry Andric // Perform optimization with SH*ADD in the Zba extension.
3585f757f3fSDimitry Andric if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
359349cc55cSDimitry Andric int64_t Div = 0;
360349cc55cSDimitry Andric unsigned Opc = 0;
361349cc55cSDimitry Andric RISCVMatInt::InstSeq TmpSeq;
362349cc55cSDimitry Andric // Select the opcode and divisor.
363349cc55cSDimitry Andric if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
364349cc55cSDimitry Andric Div = 3;
365349cc55cSDimitry Andric Opc = RISCV::SH1ADD;
366349cc55cSDimitry Andric } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
367349cc55cSDimitry Andric Div = 5;
368349cc55cSDimitry Andric Opc = RISCV::SH2ADD;
369349cc55cSDimitry Andric } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
370349cc55cSDimitry Andric Div = 9;
371349cc55cSDimitry Andric Opc = RISCV::SH3ADD;
372349cc55cSDimitry Andric }
373349cc55cSDimitry Andric // Build the new instruction sequence.
374349cc55cSDimitry Andric if (Div > 0) {
3755f757f3fSDimitry Andric generateInstSeqImpl(Val / Div, STI, TmpSeq);
37606c3fb27SDimitry Andric if ((TmpSeq.size() + 1) < Res.size()) {
377bdd1243dSDimitry Andric TmpSeq.emplace_back(Opc, 0);
378349cc55cSDimitry Andric Res = TmpSeq;
37906c3fb27SDimitry Andric }
3803a9a9c0cSDimitry Andric } else {
381349cc55cSDimitry Andric // Try to use LUI+SH*ADD+ADDI.
382349cc55cSDimitry Andric int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
383349cc55cSDimitry Andric int64_t Lo12 = SignExtend64<12>(Val);
384349cc55cSDimitry Andric Div = 0;
385349cc55cSDimitry Andric if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
386349cc55cSDimitry Andric Div = 3;
387349cc55cSDimitry Andric Opc = RISCV::SH1ADD;
388349cc55cSDimitry Andric } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
389349cc55cSDimitry Andric Div = 5;
390349cc55cSDimitry Andric Opc = RISCV::SH2ADD;
391349cc55cSDimitry Andric } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
392349cc55cSDimitry Andric Div = 9;
393349cc55cSDimitry Andric Opc = RISCV::SH3ADD;
394349cc55cSDimitry Andric }
395349cc55cSDimitry Andric // Build the new instruction sequence.
396349cc55cSDimitry Andric if (Div > 0) {
397349cc55cSDimitry Andric // For Val that has zero Lo12 (implies Val equals to Hi52) should has
398349cc55cSDimitry Andric // already been processed to LUI+SH*ADD by previous optimization.
399349cc55cSDimitry Andric assert(Lo12 != 0 &&
400349cc55cSDimitry Andric "unexpected instruction sequence for immediate materialisation");
4013a9a9c0cSDimitry Andric assert(TmpSeq.empty() && "Expected empty TmpSeq");
4025f757f3fSDimitry Andric generateInstSeqImpl(Hi52 / Div, STI, TmpSeq);
40306c3fb27SDimitry Andric if ((TmpSeq.size() + 2) < Res.size()) {
404bdd1243dSDimitry Andric TmpSeq.emplace_back(Opc, 0);
405bdd1243dSDimitry Andric TmpSeq.emplace_back(RISCV::ADDI, Lo12);
406349cc55cSDimitry Andric Res = TmpSeq;
407349cc55cSDimitry Andric }
408349cc55cSDimitry Andric }
4093a9a9c0cSDimitry Andric }
41006c3fb27SDimitry Andric }
411349cc55cSDimitry Andric
41206c3fb27SDimitry Andric // Perform optimization with rori in the Zbb and th.srri in the XTheadBb
41306c3fb27SDimitry Andric // extension.
4145f757f3fSDimitry Andric if (Res.size() > 2 && (STI.hasFeature(RISCV::FeatureStdExtZbb) ||
4155f757f3fSDimitry Andric STI.hasFeature(RISCV::FeatureVendorXTHeadBb))) {
41604eeddc0SDimitry Andric if (unsigned Rotate = extractRotateInfo(Val)) {
41704eeddc0SDimitry Andric RISCVMatInt::InstSeq TmpSeq;
41806c3fb27SDimitry Andric uint64_t NegImm12 = llvm::rotl<uint64_t>(Val, Rotate);
41904eeddc0SDimitry Andric assert(isInt<12>(NegImm12));
420bdd1243dSDimitry Andric TmpSeq.emplace_back(RISCV::ADDI, NegImm12);
4215f757f3fSDimitry Andric TmpSeq.emplace_back(STI.hasFeature(RISCV::FeatureStdExtZbb)
42206c3fb27SDimitry Andric ? RISCV::RORI
42306c3fb27SDimitry Andric : RISCV::TH_SRRI,
42406c3fb27SDimitry Andric Rotate);
42504eeddc0SDimitry Andric Res = TmpSeq;
42604eeddc0SDimitry Andric }
42704eeddc0SDimitry Andric }
428fe6060f1SDimitry Andric return Res;
429fe6060f1SDimitry Andric }
430fe6060f1SDimitry Andric
generateMCInstSeq(int64_t Val,const MCSubtargetInfo & STI,MCRegister DestReg,SmallVectorImpl<MCInst> & Insts)431*0fca6ea1SDimitry Andric void generateMCInstSeq(int64_t Val, const MCSubtargetInfo &STI,
432*0fca6ea1SDimitry Andric MCRegister DestReg, SmallVectorImpl<MCInst> &Insts) {
433*0fca6ea1SDimitry Andric RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, STI);
434*0fca6ea1SDimitry Andric
435*0fca6ea1SDimitry Andric MCRegister SrcReg = RISCV::X0;
436*0fca6ea1SDimitry Andric for (RISCVMatInt::Inst &Inst : Seq) {
437*0fca6ea1SDimitry Andric switch (Inst.getOpndKind()) {
438*0fca6ea1SDimitry Andric case RISCVMatInt::Imm:
439*0fca6ea1SDimitry Andric Insts.push_back(MCInstBuilder(Inst.getOpcode())
440*0fca6ea1SDimitry Andric .addReg(DestReg)
441*0fca6ea1SDimitry Andric .addImm(Inst.getImm()));
442*0fca6ea1SDimitry Andric break;
443*0fca6ea1SDimitry Andric case RISCVMatInt::RegX0:
444*0fca6ea1SDimitry Andric Insts.push_back(MCInstBuilder(Inst.getOpcode())
445*0fca6ea1SDimitry Andric .addReg(DestReg)
446*0fca6ea1SDimitry Andric .addReg(SrcReg)
447*0fca6ea1SDimitry Andric .addReg(RISCV::X0));
448*0fca6ea1SDimitry Andric break;
449*0fca6ea1SDimitry Andric case RISCVMatInt::RegReg:
450*0fca6ea1SDimitry Andric Insts.push_back(MCInstBuilder(Inst.getOpcode())
451*0fca6ea1SDimitry Andric .addReg(DestReg)
452*0fca6ea1SDimitry Andric .addReg(SrcReg)
453*0fca6ea1SDimitry Andric .addReg(SrcReg));
454*0fca6ea1SDimitry Andric break;
455*0fca6ea1SDimitry Andric case RISCVMatInt::RegImm:
456*0fca6ea1SDimitry Andric Insts.push_back(MCInstBuilder(Inst.getOpcode())
457*0fca6ea1SDimitry Andric .addReg(DestReg)
458*0fca6ea1SDimitry Andric .addReg(SrcReg)
459*0fca6ea1SDimitry Andric .addImm(Inst.getImm()));
460*0fca6ea1SDimitry Andric break;
461*0fca6ea1SDimitry Andric }
462*0fca6ea1SDimitry Andric
463*0fca6ea1SDimitry Andric // Only the first instruction has X0 as its source.
464*0fca6ea1SDimitry Andric SrcReg = DestReg;
465*0fca6ea1SDimitry Andric }
466*0fca6ea1SDimitry Andric }
467*0fca6ea1SDimitry Andric
generateTwoRegInstSeq(int64_t Val,const MCSubtargetInfo & STI,unsigned & ShiftAmt,unsigned & AddOpc)4685f757f3fSDimitry Andric InstSeq generateTwoRegInstSeq(int64_t Val, const MCSubtargetInfo &STI,
4695f757f3fSDimitry Andric unsigned &ShiftAmt, unsigned &AddOpc) {
4705f757f3fSDimitry Andric int64_t LoVal = SignExtend64<32>(Val);
4715f757f3fSDimitry Andric if (LoVal == 0)
4725f757f3fSDimitry Andric return RISCVMatInt::InstSeq();
4735f757f3fSDimitry Andric
4745f757f3fSDimitry Andric // Subtract the LoVal to emulate the effect of the final ADD.
4755f757f3fSDimitry Andric uint64_t Tmp = (uint64_t)Val - (uint64_t)LoVal;
4765f757f3fSDimitry Andric assert(Tmp != 0);
4775f757f3fSDimitry Andric
4785f757f3fSDimitry Andric // Use trailing zero counts to figure how far we need to shift LoVal to line
4795f757f3fSDimitry Andric // up with the remaining constant.
4805f757f3fSDimitry Andric // TODO: This algorithm assumes all non-zero bits in the low 32 bits of the
4815f757f3fSDimitry Andric // final constant come from LoVal.
4825f757f3fSDimitry Andric unsigned TzLo = llvm::countr_zero((uint64_t)LoVal);
4835f757f3fSDimitry Andric unsigned TzHi = llvm::countr_zero(Tmp);
4845f757f3fSDimitry Andric assert(TzLo < 32 && TzHi >= 32);
4855f757f3fSDimitry Andric ShiftAmt = TzHi - TzLo;
4865f757f3fSDimitry Andric AddOpc = RISCV::ADD;
4875f757f3fSDimitry Andric
4885f757f3fSDimitry Andric if (Tmp == ((uint64_t)LoVal << ShiftAmt))
4895f757f3fSDimitry Andric return RISCVMatInt::generateInstSeq(LoVal, STI);
4905f757f3fSDimitry Andric
4915f757f3fSDimitry Andric // If we have Zba, we can use (ADD_UW X, (SLLI X, 32)).
4925f757f3fSDimitry Andric if (STI.hasFeature(RISCV::FeatureStdExtZba) && Lo_32(Val) == Hi_32(Val)) {
4935f757f3fSDimitry Andric ShiftAmt = 32;
4945f757f3fSDimitry Andric AddOpc = RISCV::ADD_UW;
4955f757f3fSDimitry Andric return RISCVMatInt::generateInstSeq(LoVal, STI);
4965f757f3fSDimitry Andric }
4975f757f3fSDimitry Andric
4985f757f3fSDimitry Andric return RISCVMatInt::InstSeq();
4995f757f3fSDimitry Andric }
5005f757f3fSDimitry Andric
getIntMatCost(const APInt & Val,unsigned Size,const MCSubtargetInfo & STI,bool CompressionCost,bool FreeZeroes)5015f757f3fSDimitry Andric int getIntMatCost(const APInt &Val, unsigned Size, const MCSubtargetInfo &STI,
502*0fca6ea1SDimitry Andric bool CompressionCost, bool FreeZeroes) {
5035f757f3fSDimitry Andric bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
5045f757f3fSDimitry Andric bool HasRVC = CompressionCost && (STI.hasFeature(RISCV::FeatureStdExtC) ||
5055f757f3fSDimitry Andric STI.hasFeature(RISCV::FeatureStdExtZca));
506e8d8bef9SDimitry Andric int PlatRegSize = IsRV64 ? 64 : 32;
507e8d8bef9SDimitry Andric
508e8d8bef9SDimitry Andric // Split the constant into platform register sized chunks, and calculate cost
509e8d8bef9SDimitry Andric // of each chunk.
510e8d8bef9SDimitry Andric int Cost = 0;
511e8d8bef9SDimitry Andric for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
512e8d8bef9SDimitry Andric APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
513*0fca6ea1SDimitry Andric if (FreeZeroes && Chunk.getSExtValue() == 0)
514*0fca6ea1SDimitry Andric continue;
5155f757f3fSDimitry Andric InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), STI);
516fe6060f1SDimitry Andric Cost += getInstSeqCost(MatSeq, HasRVC);
517e8d8bef9SDimitry Andric }
518*0fca6ea1SDimitry Andric return std::max(FreeZeroes ? 0 : 1, Cost);
519e8d8bef9SDimitry Andric }
52081ad6265SDimitry Andric
getOpndKind() const52181ad6265SDimitry Andric OpndKind Inst::getOpndKind() const {
52281ad6265SDimitry Andric switch (Opc) {
52381ad6265SDimitry Andric default:
52481ad6265SDimitry Andric llvm_unreachable("Unexpected opcode!");
52581ad6265SDimitry Andric case RISCV::LUI:
52681ad6265SDimitry Andric return RISCVMatInt::Imm;
52781ad6265SDimitry Andric case RISCV::ADD_UW:
52881ad6265SDimitry Andric return RISCVMatInt::RegX0;
52981ad6265SDimitry Andric case RISCV::SH1ADD:
53081ad6265SDimitry Andric case RISCV::SH2ADD:
53181ad6265SDimitry Andric case RISCV::SH3ADD:
53206c3fb27SDimitry Andric case RISCV::PACK:
53381ad6265SDimitry Andric return RISCVMatInt::RegReg;
53481ad6265SDimitry Andric case RISCV::ADDI:
53581ad6265SDimitry Andric case RISCV::ADDIW:
5365f757f3fSDimitry Andric case RISCV::XORI:
53781ad6265SDimitry Andric case RISCV::SLLI:
53881ad6265SDimitry Andric case RISCV::SRLI:
53981ad6265SDimitry Andric case RISCV::SLLI_UW:
54081ad6265SDimitry Andric case RISCV::RORI:
54181ad6265SDimitry Andric case RISCV::BSETI:
54281ad6265SDimitry Andric case RISCV::BCLRI:
54306c3fb27SDimitry Andric case RISCV::TH_SRRI:
54481ad6265SDimitry Andric return RISCVMatInt::RegImm;
54581ad6265SDimitry Andric }
54681ad6265SDimitry Andric }
54781ad6265SDimitry Andric
548bdd1243dSDimitry Andric } // namespace llvm::RISCVMatInt
549