1 //===-- RISCVBaseInfo.h - Top level definitions for RISC-V MC ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains small standalone enum definitions for the RISC-V target 10 // useful for the compiler back-end and the MC libraries. 11 // 12 //===----------------------------------------------------------------------===// 13 #ifndef LLVM_LIB_TARGET_RISCV_MCTARGETDESC_RISCVBASEINFO_H 14 #define LLVM_LIB_TARGET_RISCV_MCTARGETDESC_RISCVBASEINFO_H 15 16 #include "MCTargetDesc/RISCVMCTargetDesc.h" 17 #include "llvm/ADT/APFloat.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/MC/MCInstrDesc.h" 22 #include "llvm/Support/RISCVISAInfo.h" 23 #include "llvm/TargetParser/SubtargetFeature.h" 24 25 namespace llvm { 26 27 // RISCVII - This namespace holds all of the target specific flags that 28 // instruction info tracks. All definitions must match RISCVInstrFormats.td. 29 namespace RISCVII { 30 enum { 31 InstFormatPseudo = 0, 32 InstFormatR = 1, 33 InstFormatR4 = 2, 34 InstFormatI = 3, 35 InstFormatS = 4, 36 InstFormatB = 5, 37 InstFormatU = 6, 38 InstFormatJ = 7, 39 InstFormatCR = 8, 40 InstFormatCI = 9, 41 InstFormatCSS = 10, 42 InstFormatCIW = 11, 43 InstFormatCL = 12, 44 InstFormatCS = 13, 45 InstFormatCA = 14, 46 InstFormatCB = 15, 47 InstFormatCJ = 16, 48 InstFormatCU = 17, 49 InstFormatCLB = 18, 50 InstFormatCLH = 19, 51 InstFormatCSB = 20, 52 InstFormatCSH = 21, 53 InstFormatOther = 22, 54 55 InstFormatMask = 31, 56 InstFormatShift = 0, 57 58 ConstraintShift = InstFormatShift + 5, 59 VS2Constraint = 0b001 << ConstraintShift, 60 VS1Constraint = 0b010 << ConstraintShift, 61 VMConstraint = 0b100 << ConstraintShift, 62 ConstraintMask = 0b111 << ConstraintShift, 63 64 VLMulShift = ConstraintShift + 3, 65 VLMulMask = 0b111 << VLMulShift, 66 67 // Force a tail agnostic policy even this instruction has a tied destination. 68 ForceTailAgnosticShift = VLMulShift + 3, 69 ForceTailAgnosticMask = 1 << ForceTailAgnosticShift, 70 71 // Is this a _TIED vector pseudo instruction. For these instructions we 72 // shouldn't skip the tied operand when converting to MC instructions. 73 IsTiedPseudoShift = ForceTailAgnosticShift + 1, 74 IsTiedPseudoMask = 1 << IsTiedPseudoShift, 75 76 // Does this instruction have a SEW operand. It will be the last explicit 77 // operand unless there is a vector policy operand. Used by RVV Pseudos. 78 HasSEWOpShift = IsTiedPseudoShift + 1, 79 HasSEWOpMask = 1 << HasSEWOpShift, 80 81 // Does this instruction have a VL operand. It will be the second to last 82 // explicit operand unless there is a vector policy operand. Used by RVV 83 // Pseudos. 84 HasVLOpShift = HasSEWOpShift + 1, 85 HasVLOpMask = 1 << HasVLOpShift, 86 87 // Does this instruction have a vector policy operand. It will be the last 88 // explicit operand. Used by RVV Pseudos. 89 HasVecPolicyOpShift = HasVLOpShift + 1, 90 HasVecPolicyOpMask = 1 << HasVecPolicyOpShift, 91 92 // Is this instruction a vector widening reduction instruction. Used by RVV 93 // Pseudos. 94 IsRVVWideningReductionShift = HasVecPolicyOpShift + 1, 95 IsRVVWideningReductionMask = 1 << IsRVVWideningReductionShift, 96 97 // Does this instruction care about mask policy. If it is not, the mask policy 98 // could be either agnostic or undisturbed. For example, unmasked, store, and 99 // reduction operations result would not be affected by mask policy, so 100 // compiler has free to select either one. 101 UsesMaskPolicyShift = IsRVVWideningReductionShift + 1, 102 UsesMaskPolicyMask = 1 << UsesMaskPolicyShift, 103 104 // Indicates that the result can be considered sign extended from bit 31. Some 105 // instructions with this flag aren't W instructions, but are either sign 106 // extended from a smaller size, always outputs a small integer, or put zeros 107 // in bits 63:31. Used by the SExtWRemoval pass. 108 IsSignExtendingOpWShift = UsesMaskPolicyShift + 1, 109 IsSignExtendingOpWMask = 1ULL << IsSignExtendingOpWShift, 110 111 HasRoundModeOpShift = IsSignExtendingOpWShift + 1, 112 HasRoundModeOpMask = 1 << HasRoundModeOpShift, 113 114 UsesVXRMShift = HasRoundModeOpShift + 1, 115 UsesVXRMMask = 1 << UsesVXRMShift, 116 }; 117 118 enum VLMUL : uint8_t { 119 LMUL_1 = 0, 120 LMUL_2, 121 LMUL_4, 122 LMUL_8, 123 LMUL_RESERVED, 124 LMUL_F8, 125 LMUL_F4, 126 LMUL_F2 127 }; 128 129 enum { 130 TAIL_UNDISTURBED_MASK_UNDISTURBED = 0, 131 TAIL_AGNOSTIC = 1, 132 MASK_AGNOSTIC = 2, 133 }; 134 135 // Helper functions to read TSFlags. 136 /// \returns the format of the instruction. 137 static inline unsigned getFormat(uint64_t TSFlags) { 138 return (TSFlags & InstFormatMask) >> InstFormatShift; 139 } 140 /// \returns the LMUL for the instruction. 141 static inline VLMUL getLMul(uint64_t TSFlags) { 142 return static_cast<VLMUL>((TSFlags & VLMulMask) >> VLMulShift); 143 } 144 /// \returns true if tail agnostic is enforced for the instruction. 145 static inline bool doesForceTailAgnostic(uint64_t TSFlags) { 146 return TSFlags & ForceTailAgnosticMask; 147 } 148 /// \returns true if this a _TIED pseudo. 149 static inline bool isTiedPseudo(uint64_t TSFlags) { 150 return TSFlags & IsTiedPseudoMask; 151 } 152 /// \returns true if there is a SEW operand for the instruction. 153 static inline bool hasSEWOp(uint64_t TSFlags) { 154 return TSFlags & HasSEWOpMask; 155 } 156 /// \returns true if there is a VL operand for the instruction. 157 static inline bool hasVLOp(uint64_t TSFlags) { 158 return TSFlags & HasVLOpMask; 159 } 160 /// \returns true if there is a vector policy operand for this instruction. 161 static inline bool hasVecPolicyOp(uint64_t TSFlags) { 162 return TSFlags & HasVecPolicyOpMask; 163 } 164 /// \returns true if it is a vector widening reduction instruction. 165 static inline bool isRVVWideningReduction(uint64_t TSFlags) { 166 return TSFlags & IsRVVWideningReductionMask; 167 } 168 /// \returns true if mask policy is valid for the instruction. 169 static inline bool usesMaskPolicy(uint64_t TSFlags) { 170 return TSFlags & UsesMaskPolicyMask; 171 } 172 173 /// \returns true if there is a rounding mode operand for this instruction 174 static inline bool hasRoundModeOp(uint64_t TSFlags) { 175 return TSFlags & HasRoundModeOpMask; 176 } 177 178 /// \returns true if this instruction uses vxrm 179 static inline bool usesVXRM(uint64_t TSFlags) { return TSFlags & UsesVXRMMask; } 180 181 static inline unsigned getVLOpNum(const MCInstrDesc &Desc) { 182 const uint64_t TSFlags = Desc.TSFlags; 183 // This method is only called if we expect to have a VL operand, and all 184 // instructions with VL also have SEW. 185 assert(hasSEWOp(TSFlags) && hasVLOp(TSFlags)); 186 unsigned Offset = 2; 187 if (hasVecPolicyOp(TSFlags)) 188 Offset = 3; 189 return Desc.getNumOperands() - Offset; 190 } 191 192 static inline unsigned getSEWOpNum(const MCInstrDesc &Desc) { 193 const uint64_t TSFlags = Desc.TSFlags; 194 assert(hasSEWOp(TSFlags)); 195 unsigned Offset = 1; 196 if (hasVecPolicyOp(TSFlags)) 197 Offset = 2; 198 return Desc.getNumOperands() - Offset; 199 } 200 201 static inline unsigned getVecPolicyOpNum(const MCInstrDesc &Desc) { 202 assert(hasVecPolicyOp(Desc.TSFlags)); 203 return Desc.getNumOperands() - 1; 204 } 205 206 // Is the first def operand tied to the first use operand. This is true for 207 // vector pseudo instructions that have a merge operand for tail/mask 208 // undisturbed. It's also true for vector FMA instructions where one of the 209 // operands is also the destination register. 210 static inline bool isFirstDefTiedToFirstUse(const MCInstrDesc &Desc) { 211 return Desc.getNumDefs() < Desc.getNumOperands() && 212 Desc.getOperandConstraint(Desc.getNumDefs(), MCOI::TIED_TO) == 0; 213 } 214 215 // RISC-V Specific Machine Operand Flags 216 enum { 217 MO_None = 0, 218 MO_CALL = 1, 219 MO_PLT = 2, 220 MO_LO = 3, 221 MO_HI = 4, 222 MO_PCREL_LO = 5, 223 MO_PCREL_HI = 6, 224 MO_GOT_HI = 7, 225 MO_TPREL_LO = 8, 226 MO_TPREL_HI = 9, 227 MO_TPREL_ADD = 10, 228 MO_TLS_GOT_HI = 11, 229 MO_TLS_GD_HI = 12, 230 231 // Used to differentiate between target-specific "direct" flags and "bitmask" 232 // flags. A machine operand can only have one "direct" flag, but can have 233 // multiple "bitmask" flags. 234 MO_DIRECT_FLAG_MASK = 15 235 }; 236 } // namespace RISCVII 237 238 namespace RISCVOp { 239 enum OperandType : unsigned { 240 OPERAND_FIRST_RISCV_IMM = MCOI::OPERAND_FIRST_TARGET, 241 OPERAND_UIMM1 = OPERAND_FIRST_RISCV_IMM, 242 OPERAND_UIMM2, 243 OPERAND_UIMM2_LSB0, 244 OPERAND_UIMM3, 245 OPERAND_UIMM4, 246 OPERAND_UIMM5, 247 OPERAND_UIMM6, 248 OPERAND_UIMM7, 249 OPERAND_UIMM7_LSB00, 250 OPERAND_UIMM8_LSB00, 251 OPERAND_UIMM8, 252 OPERAND_UIMM8_LSB000, 253 OPERAND_UIMM8_GE32, 254 OPERAND_UIMM9_LSB000, 255 OPERAND_UIMM10_LSB00_NONZERO, 256 OPERAND_UIMM12, 257 OPERAND_ZERO, 258 OPERAND_SIMM5, 259 OPERAND_SIMM5_PLUS1, 260 OPERAND_SIMM6, 261 OPERAND_SIMM6_NONZERO, 262 OPERAND_SIMM10_LSB0000_NONZERO, 263 OPERAND_SIMM12, 264 OPERAND_SIMM12_LSB00000, 265 OPERAND_UIMM20, 266 OPERAND_UIMMLOG2XLEN, 267 OPERAND_UIMMLOG2XLEN_NONZERO, 268 OPERAND_CLUI_IMM, 269 OPERAND_VTYPEI10, 270 OPERAND_VTYPEI11, 271 OPERAND_RVKRNUM, 272 OPERAND_RVKRNUM_0_7, 273 OPERAND_RVKRNUM_1_10, 274 OPERAND_RVKRNUM_2_14, 275 OPERAND_LAST_RISCV_IMM = OPERAND_RVKRNUM_2_14, 276 // Operand is either a register or uimm5, this is used by V extension pseudo 277 // instructions to represent a value that be passed as AVL to either vsetvli 278 // or vsetivli. 279 OPERAND_AVL, 280 }; 281 } // namespace RISCVOp 282 283 // Describes the predecessor/successor bits used in the FENCE instruction. 284 namespace RISCVFenceField { 285 enum FenceField { 286 I = 8, 287 O = 4, 288 R = 2, 289 W = 1 290 }; 291 } 292 293 // Describes the supported floating point rounding mode encodings. 294 namespace RISCVFPRndMode { 295 enum RoundingMode { 296 RNE = 0, 297 RTZ = 1, 298 RDN = 2, 299 RUP = 3, 300 RMM = 4, 301 DYN = 7, 302 Invalid 303 }; 304 305 inline static StringRef roundingModeToString(RoundingMode RndMode) { 306 switch (RndMode) { 307 default: 308 llvm_unreachable("Unknown floating point rounding mode"); 309 case RISCVFPRndMode::RNE: 310 return "rne"; 311 case RISCVFPRndMode::RTZ: 312 return "rtz"; 313 case RISCVFPRndMode::RDN: 314 return "rdn"; 315 case RISCVFPRndMode::RUP: 316 return "rup"; 317 case RISCVFPRndMode::RMM: 318 return "rmm"; 319 case RISCVFPRndMode::DYN: 320 return "dyn"; 321 } 322 } 323 324 inline static RoundingMode stringToRoundingMode(StringRef Str) { 325 return StringSwitch<RoundingMode>(Str) 326 .Case("rne", RISCVFPRndMode::RNE) 327 .Case("rtz", RISCVFPRndMode::RTZ) 328 .Case("rdn", RISCVFPRndMode::RDN) 329 .Case("rup", RISCVFPRndMode::RUP) 330 .Case("rmm", RISCVFPRndMode::RMM) 331 .Case("dyn", RISCVFPRndMode::DYN) 332 .Default(RISCVFPRndMode::Invalid); 333 } 334 335 inline static bool isValidRoundingMode(unsigned Mode) { 336 switch (Mode) { 337 default: 338 return false; 339 case RISCVFPRndMode::RNE: 340 case RISCVFPRndMode::RTZ: 341 case RISCVFPRndMode::RDN: 342 case RISCVFPRndMode::RUP: 343 case RISCVFPRndMode::RMM: 344 case RISCVFPRndMode::DYN: 345 return true; 346 } 347 } 348 } // namespace RISCVFPRndMode 349 350 //===----------------------------------------------------------------------===// 351 // Floating-point Immediates 352 // 353 354 namespace RISCVLoadFPImm { 355 float getFPImm(unsigned Imm); 356 357 /// getLoadFPImm - Return a 5-bit binary encoding of the floating-point 358 /// immediate value. If the value cannot be represented as a 5-bit binary 359 /// encoding, then return -1. 360 int getLoadFPImm(APFloat FPImm); 361 } // namespace RISCVLoadFPImm 362 363 namespace RISCVSysReg { 364 struct SysReg { 365 const char *Name; 366 const char *DeprecatedName; 367 unsigned Encoding; 368 // FIXME: add these additional fields when needed. 369 // Privilege Access: Read, Write, Read-Only. 370 // unsigned ReadWrite; 371 // Privilege Mode: User, System or Machine. 372 // unsigned Mode; 373 // Check field name. 374 // unsigned Extra; 375 // Register number without the privilege bits. 376 // unsigned Number; 377 FeatureBitset FeaturesRequired; 378 bool isRV32Only; 379 380 bool haveRequiredFeatures(const FeatureBitset &ActiveFeatures) const { 381 // Not in 32-bit mode. 382 if (isRV32Only && ActiveFeatures[RISCV::Feature64Bit]) 383 return false; 384 // No required feature associated with the system register. 385 if (FeaturesRequired.none()) 386 return true; 387 return (FeaturesRequired & ActiveFeatures) == FeaturesRequired; 388 } 389 390 bool haveVendorRequiredFeatures(const FeatureBitset &ActiveFeatures) const { 391 // Not in 32-bit mode. 392 if (isRV32Only && ActiveFeatures[RISCV::Feature64Bit]) 393 return false; 394 // No required feature associated with the system register. 395 if (FeaturesRequired.none()) 396 return false; 397 return (FeaturesRequired & ActiveFeatures) == FeaturesRequired; 398 } 399 }; 400 401 struct SiFiveReg : SysReg {}; 402 403 #define GET_SysRegsList_DECL 404 #define GET_SiFiveRegsList_DECL 405 #include "RISCVGenSearchableTables.inc" 406 } // end namespace RISCVSysReg 407 408 namespace RISCVInsnOpcode { 409 struct RISCVOpcode { 410 const char *Name; 411 unsigned Value; 412 }; 413 414 #define GET_RISCVOpcodesList_DECL 415 #include "RISCVGenSearchableTables.inc" 416 } // end namespace RISCVInsnOpcode 417 418 namespace RISCVABI { 419 420 enum ABI { 421 ABI_ILP32, 422 ABI_ILP32F, 423 ABI_ILP32D, 424 ABI_ILP32E, 425 ABI_LP64, 426 ABI_LP64F, 427 ABI_LP64D, 428 ABI_LP64E, 429 ABI_Unknown 430 }; 431 432 // Returns the target ABI, or else a StringError if the requested ABIName is 433 // not supported for the given TT and FeatureBits combination. 434 ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits, 435 StringRef ABIName); 436 437 ABI getTargetABI(StringRef ABIName); 438 439 // Returns the register used to hold the stack pointer after realignment. 440 MCRegister getBPReg(); 441 442 // Returns the register holding shadow call stack pointer. 443 MCRegister getSCSPReg(); 444 445 } // namespace RISCVABI 446 447 namespace RISCVFeatures { 448 449 // Validates if the given combination of features are valid for the target 450 // triple. Exits with report_fatal_error if not. 451 void validate(const Triple &TT, const FeatureBitset &FeatureBits); 452 453 llvm::Expected<std::unique_ptr<RISCVISAInfo>> 454 parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits); 455 456 } // namespace RISCVFeatures 457 458 namespace RISCVVType { 459 // Is this a SEW value that can be encoded into the VTYPE format. 460 inline static bool isValidSEW(unsigned SEW) { 461 return isPowerOf2_32(SEW) && SEW >= 8 && SEW <= 1024; 462 } 463 464 // Is this a LMUL value that can be encoded into the VTYPE format. 465 inline static bool isValidLMUL(unsigned LMUL, bool Fractional) { 466 return isPowerOf2_32(LMUL) && LMUL <= 8 && (!Fractional || LMUL != 1); 467 } 468 469 unsigned encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW, bool TailAgnostic, 470 bool MaskAgnostic); 471 472 inline static RISCVII::VLMUL getVLMUL(unsigned VType) { 473 unsigned VLMUL = VType & 0x7; 474 return static_cast<RISCVII::VLMUL>(VLMUL); 475 } 476 477 // Decode VLMUL into 1,2,4,8 and fractional indicator. 478 std::pair<unsigned, bool> decodeVLMUL(RISCVII::VLMUL VLMUL); 479 480 inline static RISCVII::VLMUL encodeLMUL(unsigned LMUL, bool Fractional) { 481 assert(isValidLMUL(LMUL, Fractional) && "Unsupported LMUL"); 482 unsigned LmulLog2 = Log2_32(LMUL); 483 return static_cast<RISCVII::VLMUL>(Fractional ? 8 - LmulLog2 : LmulLog2); 484 } 485 486 inline static unsigned decodeVSEW(unsigned VSEW) { 487 assert(VSEW < 8 && "Unexpected VSEW value"); 488 return 1 << (VSEW + 3); 489 } 490 491 inline static unsigned encodeSEW(unsigned SEW) { 492 assert(isValidSEW(SEW) && "Unexpected SEW value"); 493 return Log2_32(SEW) - 3; 494 } 495 496 inline static unsigned getSEW(unsigned VType) { 497 unsigned VSEW = (VType >> 3) & 0x7; 498 return decodeVSEW(VSEW); 499 } 500 501 inline static bool isTailAgnostic(unsigned VType) { return VType & 0x40; } 502 503 inline static bool isMaskAgnostic(unsigned VType) { return VType & 0x80; } 504 505 void printVType(unsigned VType, raw_ostream &OS); 506 507 unsigned getSEWLMULRatio(unsigned SEW, RISCVII::VLMUL VLMul); 508 509 } // namespace RISCVVType 510 511 namespace RISCVRVC { 512 bool compress(MCInst &OutInst, const MCInst &MI, const MCSubtargetInfo &STI); 513 bool uncompress(MCInst &OutInst, const MCInst &MI, const MCSubtargetInfo &STI); 514 } // namespace RISCVRVC 515 516 namespace RISCVZC { 517 enum RLISTENCODE { 518 RA = 4, 519 RA_S0, 520 RA_S0_S1, 521 RA_S0_S2, 522 RA_S0_S3, 523 RA_S0_S4, 524 RA_S0_S5, 525 RA_S0_S6, 526 RA_S0_S7, 527 RA_S0_S8, 528 RA_S0_S9, 529 // note - to include s10, s11 must also be included 530 RA_S0_S11, 531 INVALID_RLIST, 532 }; 533 534 inline unsigned encodeRlist(MCRegister EndReg, bool IsRV32E = false) { 535 assert((!IsRV32E || EndReg <= RISCV::X9) && "Invalid Rlist for RV32E"); 536 switch (EndReg) { 537 case RISCV::X1: 538 return RLISTENCODE::RA; 539 case RISCV::X8: 540 return RLISTENCODE::RA_S0; 541 case RISCV::X9: 542 return RLISTENCODE::RA_S0_S1; 543 case RISCV::X18: 544 return RLISTENCODE::RA_S0_S2; 545 case RISCV::X19: 546 return RLISTENCODE::RA_S0_S3; 547 case RISCV::X20: 548 return RLISTENCODE::RA_S0_S4; 549 case RISCV::X21: 550 return RLISTENCODE::RA_S0_S5; 551 case RISCV::X22: 552 return RLISTENCODE::RA_S0_S6; 553 case RISCV::X23: 554 return RLISTENCODE::RA_S0_S7; 555 case RISCV::X24: 556 return RLISTENCODE::RA_S0_S8; 557 case RISCV::X25: 558 return RLISTENCODE::RA_S0_S9; 559 case RISCV::X26: 560 return RLISTENCODE::INVALID_RLIST; 561 case RISCV::X27: 562 return RLISTENCODE::RA_S0_S11; 563 default: 564 llvm_unreachable("Undefined input."); 565 } 566 } 567 568 inline static unsigned getStackAdjBase(unsigned RlistVal, bool IsRV64, 569 bool IsEABI) { 570 assert(RlistVal != RLISTENCODE::INVALID_RLIST && 571 "{ra, s0-s10} is not supported, s11 must be included."); 572 if (IsEABI) 573 return 16; 574 if (!IsRV64) { 575 switch (RlistVal) { 576 case RLISTENCODE::RA: 577 case RLISTENCODE::RA_S0: 578 case RLISTENCODE::RA_S0_S1: 579 case RLISTENCODE::RA_S0_S2: 580 return 16; 581 case RLISTENCODE::RA_S0_S3: 582 case RLISTENCODE::RA_S0_S4: 583 case RLISTENCODE::RA_S0_S5: 584 case RLISTENCODE::RA_S0_S6: 585 return 32; 586 case RLISTENCODE::RA_S0_S7: 587 case RLISTENCODE::RA_S0_S8: 588 case RLISTENCODE::RA_S0_S9: 589 return 48; 590 case RLISTENCODE::RA_S0_S11: 591 return 64; 592 } 593 } else { 594 switch (RlistVal) { 595 case RLISTENCODE::RA: 596 case RLISTENCODE::RA_S0: 597 return 16; 598 case RLISTENCODE::RA_S0_S1: 599 case RLISTENCODE::RA_S0_S2: 600 return 32; 601 case RLISTENCODE::RA_S0_S3: 602 case RLISTENCODE::RA_S0_S4: 603 return 48; 604 case RLISTENCODE::RA_S0_S5: 605 case RLISTENCODE::RA_S0_S6: 606 return 64; 607 case RLISTENCODE::RA_S0_S7: 608 case RLISTENCODE::RA_S0_S8: 609 return 80; 610 case RLISTENCODE::RA_S0_S9: 611 return 96; 612 case RLISTENCODE::RA_S0_S11: 613 return 112; 614 } 615 } 616 llvm_unreachable("Unexpected RlistVal"); 617 } 618 619 inline static bool getSpimm(unsigned RlistVal, unsigned &SpimmVal, 620 int64_t StackAdjustment, bool IsRV64, bool IsEABI) { 621 if (RlistVal == RLISTENCODE::INVALID_RLIST) 622 return false; 623 unsigned stackAdj = getStackAdjBase(RlistVal, IsRV64, IsEABI); 624 SpimmVal = (StackAdjustment - stackAdj) / 16; 625 if (SpimmVal > 3) 626 return false; 627 return true; 628 } 629 630 void printRlist(unsigned SlistEncode, raw_ostream &OS); 631 void printSpimm(int64_t Spimm, raw_ostream &OS); 632 } // namespace RISCVZC 633 634 } // namespace llvm 635 636 #endif 637