1 //===-- RISCVBaseInfo.cpp - Top level definitions for RISC-V MC -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains small standalone enum definitions for the RISC-V target 10 // useful for the compiler back-end and the MC libraries. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVBaseInfo.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/MC/MCInst.h" 17 #include "llvm/MC/MCRegisterInfo.h" 18 #include "llvm/MC/MCSubtargetInfo.h" 19 #include "llvm/Support/RISCVISAInfo.h" 20 #include "llvm/Support/raw_ostream.h" 21 #include "llvm/TargetParser/TargetParser.h" 22 #include "llvm/TargetParser/Triple.h" 23 24 namespace llvm { 25 26 extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures]; 27 28 namespace RISCVSysReg { 29 #define GET_SysRegsList_IMPL 30 #define GET_SiFiveRegsList_IMPL 31 #include "RISCVGenSearchableTables.inc" 32 } // namespace RISCVSysReg 33 34 namespace RISCVInsnOpcode { 35 #define GET_RISCVOpcodesList_IMPL 36 #include "RISCVGenSearchableTables.inc" 37 } // namespace RISCVInsnOpcode 38 39 namespace RISCVABI { 40 ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits, 41 StringRef ABIName) { 42 auto TargetABI = getTargetABI(ABIName); 43 bool IsRV64 = TT.isArch64Bit(); 44 bool IsRVE = FeatureBits[RISCV::FeatureRVE]; 45 46 if (!ABIName.empty() && TargetABI == ABI_Unknown) { 47 errs() 48 << "'" << ABIName 49 << "' is not a recognized ABI for this target (ignoring target-abi)\n"; 50 } else if (ABIName.startswith("ilp32") && IsRV64) { 51 errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring " 52 "target-abi)\n"; 53 TargetABI = ABI_Unknown; 54 } else if (ABIName.startswith("lp64") && !IsRV64) { 55 errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring " 56 "target-abi)\n"; 57 TargetABI = ABI_Unknown; 58 } else if (!IsRV64 && IsRVE && TargetABI != ABI_ILP32E && 59 TargetABI != ABI_Unknown) { 60 // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser 61 errs() 62 << "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n"; 63 TargetABI = ABI_Unknown; 64 } else if (IsRV64 && IsRVE && TargetABI != ABI_LP64E && 65 TargetABI != ABI_Unknown) { 66 // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser 67 errs() 68 << "Only the lp64e ABI is supported for RV64E (ignoring target-abi)\n"; 69 TargetABI = ABI_Unknown; 70 } 71 72 if (TargetABI != ABI_Unknown) 73 return TargetABI; 74 75 // If no explicit ABI is given, try to compute the default ABI. 76 auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits); 77 if (!ISAInfo) 78 report_fatal_error(ISAInfo.takeError()); 79 return getTargetABI((*ISAInfo)->computeDefaultABI()); 80 } 81 82 ABI getTargetABI(StringRef ABIName) { 83 auto TargetABI = StringSwitch<ABI>(ABIName) 84 .Case("ilp32", ABI_ILP32) 85 .Case("ilp32f", ABI_ILP32F) 86 .Case("ilp32d", ABI_ILP32D) 87 .Case("ilp32e", ABI_ILP32E) 88 .Case("lp64", ABI_LP64) 89 .Case("lp64f", ABI_LP64F) 90 .Case("lp64d", ABI_LP64D) 91 .Case("lp64e", ABI_LP64E) 92 .Default(ABI_Unknown); 93 return TargetABI; 94 } 95 96 // To avoid the BP value clobbered by a function call, we need to choose a 97 // callee saved register to save the value. RV32E only has X8 and X9 as callee 98 // saved registers and X8 will be used as fp. So we choose X9 as bp. 99 MCRegister getBPReg() { return RISCV::X9; } 100 101 // Returns the register holding shadow call stack pointer. 102 MCRegister getSCSPReg() { return RISCV::X3; } 103 104 } // namespace RISCVABI 105 106 namespace RISCVFeatures { 107 108 void validate(const Triple &TT, const FeatureBitset &FeatureBits) { 109 if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit]) 110 report_fatal_error("RV64 target requires an RV64 CPU"); 111 if (!TT.isArch64Bit() && !FeatureBits[RISCV::Feature32Bit]) 112 report_fatal_error("RV32 target requires an RV32 CPU"); 113 if (FeatureBits[RISCV::Feature32Bit] && 114 FeatureBits[RISCV::Feature64Bit]) 115 report_fatal_error("RV32 and RV64 can't be combined"); 116 } 117 118 llvm::Expected<std::unique_ptr<RISCVISAInfo>> 119 parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) { 120 unsigned XLen = IsRV64 ? 64 : 32; 121 std::vector<std::string> FeatureVector; 122 // Convert FeatureBitset to FeatureVector. 123 for (auto Feature : RISCVFeatureKV) { 124 if (FeatureBits[Feature.Value] && 125 llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key)) 126 FeatureVector.push_back(std::string("+") + Feature.Key); 127 } 128 return llvm::RISCVISAInfo::parseFeatures(XLen, FeatureVector); 129 } 130 131 } // namespace RISCVFeatures 132 133 // Encode VTYPE into the binary format used by the the VSETVLI instruction which 134 // is used by our MC layer representation. 135 // 136 // Bits | Name | Description 137 // -----+------------+------------------------------------------------ 138 // 7 | vma | Vector mask agnostic 139 // 6 | vta | Vector tail agnostic 140 // 5:3 | vsew[2:0] | Standard element width (SEW) setting 141 // 2:0 | vlmul[2:0] | Vector register group multiplier (LMUL) setting 142 unsigned RISCVVType::encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW, 143 bool TailAgnostic, bool MaskAgnostic) { 144 assert(isValidSEW(SEW) && "Invalid SEW"); 145 unsigned VLMULBits = static_cast<unsigned>(VLMUL); 146 unsigned VSEWBits = encodeSEW(SEW); 147 unsigned VTypeI = (VSEWBits << 3) | (VLMULBits & 0x7); 148 if (TailAgnostic) 149 VTypeI |= 0x40; 150 if (MaskAgnostic) 151 VTypeI |= 0x80; 152 153 return VTypeI; 154 } 155 156 std::pair<unsigned, bool> RISCVVType::decodeVLMUL(RISCVII::VLMUL VLMUL) { 157 switch (VLMUL) { 158 default: 159 llvm_unreachable("Unexpected LMUL value!"); 160 case RISCVII::VLMUL::LMUL_1: 161 case RISCVII::VLMUL::LMUL_2: 162 case RISCVII::VLMUL::LMUL_4: 163 case RISCVII::VLMUL::LMUL_8: 164 return std::make_pair(1 << static_cast<unsigned>(VLMUL), false); 165 case RISCVII::VLMUL::LMUL_F2: 166 case RISCVII::VLMUL::LMUL_F4: 167 case RISCVII::VLMUL::LMUL_F8: 168 return std::make_pair(1 << (8 - static_cast<unsigned>(VLMUL)), true); 169 } 170 } 171 172 void RISCVVType::printVType(unsigned VType, raw_ostream &OS) { 173 unsigned Sew = getSEW(VType); 174 OS << "e" << Sew; 175 176 unsigned LMul; 177 bool Fractional; 178 std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType)); 179 180 if (Fractional) 181 OS << ", mf"; 182 else 183 OS << ", m"; 184 OS << LMul; 185 186 if (isTailAgnostic(VType)) 187 OS << ", ta"; 188 else 189 OS << ", tu"; 190 191 if (isMaskAgnostic(VType)) 192 OS << ", ma"; 193 else 194 OS << ", mu"; 195 } 196 197 unsigned RISCVVType::getSEWLMULRatio(unsigned SEW, RISCVII::VLMUL VLMul) { 198 unsigned LMul; 199 bool Fractional; 200 std::tie(LMul, Fractional) = decodeVLMUL(VLMul); 201 202 // Convert LMul to a fixed point value with 3 fractional bits. 203 LMul = Fractional ? (8 / LMul) : (LMul * 8); 204 205 assert(SEW >= 8 && "Unexpected SEW value"); 206 return (SEW * 8) / LMul; 207 } 208 209 // Include the auto-generated portion of the compress emitter. 210 #define GEN_UNCOMPRESS_INSTR 211 #define GEN_COMPRESS_INSTR 212 #include "RISCVGenCompressInstEmitter.inc" 213 214 bool RISCVRVC::compress(MCInst &OutInst, const MCInst &MI, 215 const MCSubtargetInfo &STI) { 216 return compressInst(OutInst, MI, STI); 217 } 218 219 bool RISCVRVC::uncompress(MCInst &OutInst, const MCInst &MI, 220 const MCSubtargetInfo &STI) { 221 return uncompressInst(OutInst, MI, STI); 222 } 223 224 // Lookup table for fli.s for entries 2-31. 225 static constexpr std::pair<uint8_t, uint8_t> LoadFP32ImmArr[] = { 226 {0b01101111, 0b00}, {0b01110000, 0b00}, {0b01110111, 0b00}, 227 {0b01111000, 0b00}, {0b01111011, 0b00}, {0b01111100, 0b00}, 228 {0b01111101, 0b00}, {0b01111101, 0b01}, {0b01111101, 0b10}, 229 {0b01111101, 0b11}, {0b01111110, 0b00}, {0b01111110, 0b01}, 230 {0b01111110, 0b10}, {0b01111110, 0b11}, {0b01111111, 0b00}, 231 {0b01111111, 0b01}, {0b01111111, 0b10}, {0b01111111, 0b11}, 232 {0b10000000, 0b00}, {0b10000000, 0b01}, {0b10000000, 0b10}, 233 {0b10000001, 0b00}, {0b10000010, 0b00}, {0b10000011, 0b00}, 234 {0b10000110, 0b00}, {0b10000111, 0b00}, {0b10001110, 0b00}, 235 {0b10001111, 0b00}, {0b11111111, 0b00}, {0b11111111, 0b10}, 236 }; 237 238 int RISCVLoadFPImm::getLoadFPImm(APFloat FPImm) { 239 assert((&FPImm.getSemantics() == &APFloat::IEEEsingle() || 240 &FPImm.getSemantics() == &APFloat::IEEEdouble() || 241 &FPImm.getSemantics() == &APFloat::IEEEhalf()) && 242 "Unexpected semantics"); 243 244 // Handle the minimum normalized value which is different for each type. 245 if (FPImm.isSmallestNormalized()) 246 return 1; 247 248 // Convert to single precision to use its lookup table. 249 bool LosesInfo; 250 APFloat::opStatus Status = FPImm.convert( 251 APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &LosesInfo); 252 if (Status != APFloat::opOK || LosesInfo) 253 return -1; 254 255 APInt Imm = FPImm.bitcastToAPInt(); 256 257 if (Imm.extractBitsAsZExtValue(21, 0) != 0) 258 return -1; 259 260 bool Sign = Imm.extractBitsAsZExtValue(1, 31); 261 uint8_t Mantissa = Imm.extractBitsAsZExtValue(2, 21); 262 uint8_t Exp = Imm.extractBitsAsZExtValue(8, 23); 263 264 auto EMI = llvm::lower_bound(LoadFP32ImmArr, std::make_pair(Exp, Mantissa)); 265 if (EMI == std::end(LoadFP32ImmArr) || EMI->first != Exp || 266 EMI->second != Mantissa) 267 return -1; 268 269 // Table doesn't have entry 0 or 1. 270 int Entry = std::distance(std::begin(LoadFP32ImmArr), EMI) + 2; 271 272 // The only legal negative value is -1.0(entry 0). 1.0 is entry 16. 273 if (Sign) { 274 if (Entry == 16) 275 return 0; 276 return false; 277 } 278 279 return Entry; 280 } 281 282 float RISCVLoadFPImm::getFPImm(unsigned Imm) { 283 assert(Imm != 1 && Imm != 30 && Imm != 31 && "Unsupported immediate"); 284 285 // Entry 0 is -1.0, the only negative value. Entry 16 is 1.0. 286 uint32_t Sign = 0; 287 if (Imm == 0) { 288 Sign = 0b1; 289 Imm = 16; 290 } 291 292 uint32_t Exp = LoadFP32ImmArr[Imm - 2].first; 293 uint32_t Mantissa = LoadFP32ImmArr[Imm - 2].second; 294 295 uint32_t I = Sign << 31 | Exp << 23 | Mantissa << 21; 296 return bit_cast<float>(I); 297 } 298 299 void RISCVZC::printRlist(unsigned SlistEncode, raw_ostream &OS) { 300 OS << "{ra"; 301 if (SlistEncode > 4) { 302 OS << ", s0"; 303 if (SlistEncode == 15) 304 OS << "-s11"; 305 else if (SlistEncode > 5 && SlistEncode <= 14) 306 OS << "-s" << (SlistEncode - 5); 307 } 308 OS << "}"; 309 } 310 311 void RISCVZC::printSpimm(int64_t Spimm, raw_ostream &OS) { OS << Spimm; } 312 313 } // namespace llvm 314