xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVBaseInfo.cpp (revision db33c6f3ae9d1231087710068ee4ea5398aacca7)
1 //===-- RISCVBaseInfo.cpp - Top level definitions for RISC-V MC -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone enum definitions for the RISC-V target
10 // useful for the compiler back-end and the MC libraries.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVBaseInfo.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/MC/MCInst.h"
17 #include "llvm/MC/MCRegisterInfo.h"
18 #include "llvm/MC/MCSubtargetInfo.h"
19 #include "llvm/Support/raw_ostream.h"
20 #include "llvm/TargetParser/TargetParser.h"
21 #include "llvm/TargetParser/Triple.h"
22 
23 namespace llvm {
24 
25 extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
26 
27 namespace RISCVSysReg {
28 #define GET_SysRegsList_IMPL
29 #include "RISCVGenSearchableTables.inc"
30 } // namespace RISCVSysReg
31 
32 namespace RISCVInsnOpcode {
33 #define GET_RISCVOpcodesList_IMPL
34 #include "RISCVGenSearchableTables.inc"
35 } // namespace RISCVInsnOpcode
36 
37 namespace RISCVABI {
38 ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits,
39                      StringRef ABIName) {
40   auto TargetABI = getTargetABI(ABIName);
41   bool IsRV64 = TT.isArch64Bit();
42   bool IsRVE = FeatureBits[RISCV::FeatureStdExtE];
43 
44   if (!ABIName.empty() && TargetABI == ABI_Unknown) {
45     errs()
46         << "'" << ABIName
47         << "' is not a recognized ABI for this target (ignoring target-abi)\n";
48   } else if (ABIName.starts_with("ilp32") && IsRV64) {
49     errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring "
50               "target-abi)\n";
51     TargetABI = ABI_Unknown;
52   } else if (ABIName.starts_with("lp64") && !IsRV64) {
53     errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring "
54               "target-abi)\n";
55     TargetABI = ABI_Unknown;
56   } else if (!IsRV64 && IsRVE && TargetABI != ABI_ILP32E &&
57              TargetABI != ABI_Unknown) {
58     // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
59     errs()
60         << "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n";
61     TargetABI = ABI_Unknown;
62   } else if (IsRV64 && IsRVE && TargetABI != ABI_LP64E &&
63              TargetABI != ABI_Unknown) {
64     // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
65     errs()
66         << "Only the lp64e ABI is supported for RV64E (ignoring target-abi)\n";
67     TargetABI = ABI_Unknown;
68   }
69 
70   if ((TargetABI == RISCVABI::ABI::ABI_ILP32E ||
71        (TargetABI == ABI_Unknown && IsRVE && !IsRV64)) &&
72       FeatureBits[RISCV::FeatureStdExtD])
73     report_fatal_error("ILP32E cannot be used with the D ISA extension");
74 
75   if (TargetABI != ABI_Unknown)
76     return TargetABI;
77 
78   // If no explicit ABI is given, try to compute the default ABI.
79   auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits);
80   if (!ISAInfo)
81     report_fatal_error(ISAInfo.takeError());
82   return getTargetABI((*ISAInfo)->computeDefaultABI());
83 }
84 
85 ABI getTargetABI(StringRef ABIName) {
86   auto TargetABI = StringSwitch<ABI>(ABIName)
87                        .Case("ilp32", ABI_ILP32)
88                        .Case("ilp32f", ABI_ILP32F)
89                        .Case("ilp32d", ABI_ILP32D)
90                        .Case("ilp32e", ABI_ILP32E)
91                        .Case("lp64", ABI_LP64)
92                        .Case("lp64f", ABI_LP64F)
93                        .Case("lp64d", ABI_LP64D)
94                        .Case("lp64e", ABI_LP64E)
95                        .Default(ABI_Unknown);
96   return TargetABI;
97 }
98 
99 // To avoid the BP value clobbered by a function call, we need to choose a
100 // callee saved register to save the value. RV32E only has X8 and X9 as callee
101 // saved registers and X8 will be used as fp. So we choose X9 as bp.
102 MCRegister getBPReg() { return RISCV::X9; }
103 
104 // Returns the register holding shadow call stack pointer.
105 MCRegister getSCSPReg() { return RISCV::X3; }
106 
107 } // namespace RISCVABI
108 
109 namespace RISCVFeatures {
110 
111 void validate(const Triple &TT, const FeatureBitset &FeatureBits) {
112   if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit])
113     report_fatal_error("RV64 target requires an RV64 CPU");
114   if (!TT.isArch64Bit() && !FeatureBits[RISCV::Feature32Bit])
115     report_fatal_error("RV32 target requires an RV32 CPU");
116   if (FeatureBits[RISCV::Feature32Bit] &&
117       FeatureBits[RISCV::Feature64Bit])
118     report_fatal_error("RV32 and RV64 can't be combined");
119 }
120 
121 llvm::Expected<std::unique_ptr<RISCVISAInfo>>
122 parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) {
123   unsigned XLen = IsRV64 ? 64 : 32;
124   std::vector<std::string> FeatureVector;
125   // Convert FeatureBitset to FeatureVector.
126   for (auto Feature : RISCVFeatureKV) {
127     if (FeatureBits[Feature.Value] &&
128         llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
129       FeatureVector.push_back(std::string("+") + Feature.Key);
130   }
131   return llvm::RISCVISAInfo::parseFeatures(XLen, FeatureVector);
132 }
133 
134 } // namespace RISCVFeatures
135 
136 // Include the auto-generated portion of the compress emitter.
137 #define GEN_UNCOMPRESS_INSTR
138 #define GEN_COMPRESS_INSTR
139 #include "RISCVGenCompressInstEmitter.inc"
140 
141 bool RISCVRVC::compress(MCInst &OutInst, const MCInst &MI,
142                         const MCSubtargetInfo &STI) {
143   return compressInst(OutInst, MI, STI);
144 }
145 
146 bool RISCVRVC::uncompress(MCInst &OutInst, const MCInst &MI,
147                           const MCSubtargetInfo &STI) {
148   return uncompressInst(OutInst, MI, STI);
149 }
150 
151 // Lookup table for fli.s for entries 2-31.
152 static constexpr std::pair<uint8_t, uint8_t> LoadFP32ImmArr[] = {
153     {0b01101111, 0b00}, {0b01110000, 0b00}, {0b01110111, 0b00},
154     {0b01111000, 0b00}, {0b01111011, 0b00}, {0b01111100, 0b00},
155     {0b01111101, 0b00}, {0b01111101, 0b01}, {0b01111101, 0b10},
156     {0b01111101, 0b11}, {0b01111110, 0b00}, {0b01111110, 0b01},
157     {0b01111110, 0b10}, {0b01111110, 0b11}, {0b01111111, 0b00},
158     {0b01111111, 0b01}, {0b01111111, 0b10}, {0b01111111, 0b11},
159     {0b10000000, 0b00}, {0b10000000, 0b01}, {0b10000000, 0b10},
160     {0b10000001, 0b00}, {0b10000010, 0b00}, {0b10000011, 0b00},
161     {0b10000110, 0b00}, {0b10000111, 0b00}, {0b10001110, 0b00},
162     {0b10001111, 0b00}, {0b11111111, 0b00}, {0b11111111, 0b10},
163 };
164 
165 int RISCVLoadFPImm::getLoadFPImm(APFloat FPImm) {
166   assert((&FPImm.getSemantics() == &APFloat::IEEEsingle() ||
167           &FPImm.getSemantics() == &APFloat::IEEEdouble() ||
168           &FPImm.getSemantics() == &APFloat::IEEEhalf()) &&
169          "Unexpected semantics");
170 
171   // Handle the minimum normalized value which is different for each type.
172   if (FPImm.isSmallestNormalized() && !FPImm.isNegative())
173     return 1;
174 
175   // Convert to single precision to use its lookup table.
176   bool LosesInfo;
177   APFloat::opStatus Status = FPImm.convert(
178       APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &LosesInfo);
179   if (Status != APFloat::opOK || LosesInfo)
180     return -1;
181 
182   APInt Imm = FPImm.bitcastToAPInt();
183 
184   if (Imm.extractBitsAsZExtValue(21, 0) != 0)
185     return -1;
186 
187   bool Sign = Imm.extractBitsAsZExtValue(1, 31);
188   uint8_t Mantissa = Imm.extractBitsAsZExtValue(2, 21);
189   uint8_t Exp = Imm.extractBitsAsZExtValue(8, 23);
190 
191   auto EMI = llvm::lower_bound(LoadFP32ImmArr, std::make_pair(Exp, Mantissa));
192   if (EMI == std::end(LoadFP32ImmArr) || EMI->first != Exp ||
193       EMI->second != Mantissa)
194     return -1;
195 
196   // Table doesn't have entry 0 or 1.
197   int Entry = std::distance(std::begin(LoadFP32ImmArr), EMI) + 2;
198 
199   // The only legal negative value is -1.0(entry 0). 1.0 is entry 16.
200   if (Sign) {
201     if (Entry == 16)
202       return 0;
203     return -1;
204   }
205 
206   return Entry;
207 }
208 
209 float RISCVLoadFPImm::getFPImm(unsigned Imm) {
210   assert(Imm != 1 && Imm != 30 && Imm != 31 && "Unsupported immediate");
211 
212   // Entry 0 is -1.0, the only negative value. Entry 16 is 1.0.
213   uint32_t Sign = 0;
214   if (Imm == 0) {
215     Sign = 0b1;
216     Imm = 16;
217   }
218 
219   uint32_t Exp = LoadFP32ImmArr[Imm - 2].first;
220   uint32_t Mantissa = LoadFP32ImmArr[Imm - 2].second;
221 
222   uint32_t I = Sign << 31 | Exp << 23 | Mantissa << 21;
223   return bit_cast<float>(I);
224 }
225 
226 void RISCVZC::printRlist(unsigned SlistEncode, raw_ostream &OS) {
227   OS << "{ra";
228   if (SlistEncode > 4) {
229     OS << ", s0";
230     if (SlistEncode == 15)
231       OS << "-s11";
232     else if (SlistEncode > 5 && SlistEncode <= 14)
233       OS << "-s" << (SlistEncode - 5);
234   }
235   OS << "}";
236 }
237 
238 } // namespace llvm
239