xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVBaseInfo.cpp (revision d30a1689f5b37e78ea189232a8b94a7011dc0dc8)
1 //===-- RISCVBaseInfo.cpp - Top level definitions for RISCV MC ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone enum definitions for the RISCV target
10 // useful for the compiler back-end and the MC libraries.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVBaseInfo.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/MC/MCSubtargetInfo.h"
18 #include "llvm/Support/RISCVISAInfo.h"
19 #include "llvm/Support/raw_ostream.h"
20 
21 namespace llvm {
22 
23 extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
24 
25 namespace RISCVSysReg {
26 #define GET_SysRegsList_IMPL
27 #include "RISCVGenSearchableTables.inc"
28 } // namespace RISCVSysReg
29 
30 namespace RISCVInsnOpcode {
31 #define GET_RISCVOpcodesList_IMPL
32 #include "RISCVGenSearchableTables.inc"
33 } // namespace RISCVInsnOpcode
34 
35 namespace RISCVABI {
36 ABI computeTargetABI(const Triple &TT, FeatureBitset FeatureBits,
37                      StringRef ABIName) {
38   auto TargetABI = getTargetABI(ABIName);
39   bool IsRV64 = TT.isArch64Bit();
40   bool IsRV32E = FeatureBits[RISCV::FeatureRV32E];
41 
42   if (!ABIName.empty() && TargetABI == ABI_Unknown) {
43     errs()
44         << "'" << ABIName
45         << "' is not a recognized ABI for this target (ignoring target-abi)\n";
46   } else if (ABIName.startswith("ilp32") && IsRV64) {
47     errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring "
48               "target-abi)\n";
49     TargetABI = ABI_Unknown;
50   } else if (ABIName.startswith("lp64") && !IsRV64) {
51     errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring "
52               "target-abi)\n";
53     TargetABI = ABI_Unknown;
54   } else if (IsRV32E && TargetABI != ABI_ILP32E && TargetABI != ABI_Unknown) {
55     // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
56     errs()
57         << "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n";
58     TargetABI = ABI_Unknown;
59   }
60 
61   if (TargetABI != ABI_Unknown)
62     return TargetABI;
63 
64   // For now, default to the ilp32/ilp32e/lp64 ABI if no explicit ABI is given
65   // or an invalid/unrecognised string is given. In the future, it might be
66   // worth changing this to default to ilp32f/lp64f and ilp32d/lp64d when
67   // hardware support for floating point is present.
68   if (IsRV32E)
69     return ABI_ILP32E;
70   if (IsRV64)
71     return ABI_LP64;
72   return ABI_ILP32;
73 }
74 
75 ABI getTargetABI(StringRef ABIName) {
76   auto TargetABI = StringSwitch<ABI>(ABIName)
77                        .Case("ilp32", ABI_ILP32)
78                        .Case("ilp32f", ABI_ILP32F)
79                        .Case("ilp32d", ABI_ILP32D)
80                        .Case("ilp32e", ABI_ILP32E)
81                        .Case("lp64", ABI_LP64)
82                        .Case("lp64f", ABI_LP64F)
83                        .Case("lp64d", ABI_LP64D)
84                        .Default(ABI_Unknown);
85   return TargetABI;
86 }
87 
88 // To avoid the BP value clobbered by a function call, we need to choose a
89 // callee saved register to save the value. RV32E only has X8 and X9 as callee
90 // saved registers and X8 will be used as fp. So we choose X9 as bp.
91 MCRegister getBPReg() { return RISCV::X9; }
92 
93 // Returns the register holding shadow call stack pointer.
94 MCRegister getSCSPReg() { return RISCV::X18; }
95 
96 } // namespace RISCVABI
97 
98 namespace RISCVFeatures {
99 
100 void validate(const Triple &TT, const FeatureBitset &FeatureBits) {
101   if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit])
102     report_fatal_error("RV64 target requires an RV64 CPU");
103   if (!TT.isArch64Bit() && FeatureBits[RISCV::Feature64Bit])
104     report_fatal_error("RV32 target requires an RV32 CPU");
105   if (TT.isArch64Bit() && FeatureBits[RISCV::FeatureRV32E])
106     report_fatal_error("RV32E can't be enabled for an RV64 target");
107 }
108 
109 void toFeatureVector(std::vector<std::string> &FeatureVector,
110                      const FeatureBitset &FeatureBits) {
111   for (auto Feature : RISCVFeatureKV) {
112     if (FeatureBits[Feature.Value] &&
113         llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
114       FeatureVector.push_back(std::string("+") + Feature.Key);
115   }
116 }
117 
118 } // namespace RISCVFeatures
119 
120 // Encode VTYPE into the binary format used by the the VSETVLI instruction which
121 // is used by our MC layer representation.
122 //
123 // Bits | Name       | Description
124 // -----+------------+------------------------------------------------
125 // 7    | vma        | Vector mask agnostic
126 // 6    | vta        | Vector tail agnostic
127 // 5:3  | vsew[2:0]  | Standard element width (SEW) setting
128 // 2:0  | vlmul[2:0] | Vector register group multiplier (LMUL) setting
129 unsigned RISCVVType::encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW,
130                                  bool TailAgnostic, bool MaskAgnostic) {
131   assert(isValidSEW(SEW) && "Invalid SEW");
132   unsigned VLMULBits = static_cast<unsigned>(VLMUL);
133   unsigned VSEWBits = Log2_32(SEW) - 3;
134   unsigned VTypeI = (VSEWBits << 3) | (VLMULBits & 0x7);
135   if (TailAgnostic)
136     VTypeI |= 0x40;
137   if (MaskAgnostic)
138     VTypeI |= 0x80;
139 
140   return VTypeI;
141 }
142 
143 std::pair<unsigned, bool> RISCVVType::decodeVLMUL(RISCVII::VLMUL VLMUL) {
144   switch (VLMUL) {
145   default:
146     llvm_unreachable("Unexpected LMUL value!");
147   case RISCVII::VLMUL::LMUL_1:
148   case RISCVII::VLMUL::LMUL_2:
149   case RISCVII::VLMUL::LMUL_4:
150   case RISCVII::VLMUL::LMUL_8:
151     return std::make_pair(1 << static_cast<unsigned>(VLMUL), false);
152   case RISCVII::VLMUL::LMUL_F2:
153   case RISCVII::VLMUL::LMUL_F4:
154   case RISCVII::VLMUL::LMUL_F8:
155     return std::make_pair(1 << (8 - static_cast<unsigned>(VLMUL)), true);
156   }
157 }
158 
159 void RISCVVType::printVType(unsigned VType, raw_ostream &OS) {
160   unsigned Sew = getSEW(VType);
161   OS << "e" << Sew;
162 
163   unsigned LMul;
164   bool Fractional;
165   std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType));
166 
167   if (Fractional)
168     OS << ", mf";
169   else
170     OS << ", m";
171   OS << LMul;
172 
173   if (isTailAgnostic(VType))
174     OS << ", ta";
175   else
176     OS << ", tu";
177 
178   if (isMaskAgnostic(VType))
179     OS << ", ma";
180   else
181     OS << ", mu";
182 }
183 
184 } // namespace llvm
185