xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVBaseInfo.cpp (revision ba3c1f5972d7b90feb6e6da47905ff2757e0fe57)
1 //===-- RISCVBaseInfo.cpp - Top level definitions for RISCV MC ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone enum definitions for the RISCV target
10 // useful for the compiler back-end and the MC libraries.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVBaseInfo.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/MC/MCInst.h"
18 #include "llvm/MC/MCRegisterInfo.h"
19 #include "llvm/MC/MCSubtargetInfo.h"
20 #include "llvm/Support/RISCVISAInfo.h"
21 #include "llvm/Support/TargetParser.h"
22 #include "llvm/Support/raw_ostream.h"
23 
24 namespace llvm {
25 
26 extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
27 
28 namespace RISCVSysReg {
29 #define GET_SysRegsList_IMPL
30 #include "RISCVGenSearchableTables.inc"
31 } // namespace RISCVSysReg
32 
33 namespace RISCVInsnOpcode {
34 #define GET_RISCVOpcodesList_IMPL
35 #include "RISCVGenSearchableTables.inc"
36 } // namespace RISCVInsnOpcode
37 
38 namespace RISCVABI {
39 ABI computeTargetABI(const Triple &TT, FeatureBitset FeatureBits,
40                      StringRef ABIName) {
41   auto TargetABI = getTargetABI(ABIName);
42   bool IsRV64 = TT.isArch64Bit();
43   bool IsRV32E = FeatureBits[RISCV::FeatureRV32E];
44 
45   if (!ABIName.empty() && TargetABI == ABI_Unknown) {
46     errs()
47         << "'" << ABIName
48         << "' is not a recognized ABI for this target (ignoring target-abi)\n";
49   } else if (ABIName.startswith("ilp32") && IsRV64) {
50     errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring "
51               "target-abi)\n";
52     TargetABI = ABI_Unknown;
53   } else if (ABIName.startswith("lp64") && !IsRV64) {
54     errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring "
55               "target-abi)\n";
56     TargetABI = ABI_Unknown;
57   } else if (IsRV32E && TargetABI != ABI_ILP32E && TargetABI != ABI_Unknown) {
58     // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
59     errs()
60         << "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n";
61     TargetABI = ABI_Unknown;
62   }
63 
64   if (TargetABI != ABI_Unknown)
65     return TargetABI;
66 
67   // If no explicit ABI is given, try to compute the default ABI.
68   auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits);
69   if (!ISAInfo)
70     report_fatal_error(ISAInfo.takeError());
71   return getTargetABI((*ISAInfo)->computeDefaultABI());
72 }
73 
74 ABI getTargetABI(StringRef ABIName) {
75   auto TargetABI = StringSwitch<ABI>(ABIName)
76                        .Case("ilp32", ABI_ILP32)
77                        .Case("ilp32f", ABI_ILP32F)
78                        .Case("ilp32d", ABI_ILP32D)
79                        .Case("ilp32e", ABI_ILP32E)
80                        .Case("lp64", ABI_LP64)
81                        .Case("lp64f", ABI_LP64F)
82                        .Case("lp64d", ABI_LP64D)
83                        .Default(ABI_Unknown);
84   return TargetABI;
85 }
86 
87 // To avoid the BP value clobbered by a function call, we need to choose a
88 // callee saved register to save the value. RV32E only has X8 and X9 as callee
89 // saved registers and X8 will be used as fp. So we choose X9 as bp.
90 MCRegister getBPReg() { return RISCV::X9; }
91 
92 // Returns the register holding shadow call stack pointer.
93 MCRegister getSCSPReg() { return RISCV::X18; }
94 
95 } // namespace RISCVABI
96 
97 namespace RISCVFeatures {
98 
99 void validate(const Triple &TT, const FeatureBitset &FeatureBits) {
100   if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit])
101     report_fatal_error("RV64 target requires an RV64 CPU");
102   if (!TT.isArch64Bit() && !FeatureBits[RISCV::Feature32Bit])
103     report_fatal_error("RV32 target requires an RV32 CPU");
104   if (TT.isArch64Bit() && FeatureBits[RISCV::FeatureRV32E])
105     report_fatal_error("RV32E can't be enabled for an RV64 target");
106   if (FeatureBits[RISCV::Feature32Bit] &&
107       FeatureBits[RISCV::Feature64Bit])
108     report_fatal_error("RV32 and RV64 can't be combined");
109 }
110 
111 llvm::Expected<std::unique_ptr<RISCVISAInfo>>
112 parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) {
113   unsigned XLen = IsRV64 ? 64 : 32;
114   std::vector<std::string> FeatureVector;
115   // Convert FeatureBitset to FeatureVector.
116   for (auto Feature : RISCVFeatureKV) {
117     if (FeatureBits[Feature.Value] &&
118         llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
119       FeatureVector.push_back(std::string("+") + Feature.Key);
120   }
121   return llvm::RISCVISAInfo::parseFeatures(XLen, FeatureVector);
122 }
123 
124 } // namespace RISCVFeatures
125 
126 // Encode VTYPE into the binary format used by the the VSETVLI instruction which
127 // is used by our MC layer representation.
128 //
129 // Bits | Name       | Description
130 // -----+------------+------------------------------------------------
131 // 7    | vma        | Vector mask agnostic
132 // 6    | vta        | Vector tail agnostic
133 // 5:3  | vsew[2:0]  | Standard element width (SEW) setting
134 // 2:0  | vlmul[2:0] | Vector register group multiplier (LMUL) setting
135 unsigned RISCVVType::encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW,
136                                  bool TailAgnostic, bool MaskAgnostic) {
137   assert(isValidSEW(SEW) && "Invalid SEW");
138   unsigned VLMULBits = static_cast<unsigned>(VLMUL);
139   unsigned VSEWBits = encodeSEW(SEW);
140   unsigned VTypeI = (VSEWBits << 3) | (VLMULBits & 0x7);
141   if (TailAgnostic)
142     VTypeI |= 0x40;
143   if (MaskAgnostic)
144     VTypeI |= 0x80;
145 
146   return VTypeI;
147 }
148 
149 std::pair<unsigned, bool> RISCVVType::decodeVLMUL(RISCVII::VLMUL VLMUL) {
150   switch (VLMUL) {
151   default:
152     llvm_unreachable("Unexpected LMUL value!");
153   case RISCVII::VLMUL::LMUL_1:
154   case RISCVII::VLMUL::LMUL_2:
155   case RISCVII::VLMUL::LMUL_4:
156   case RISCVII::VLMUL::LMUL_8:
157     return std::make_pair(1 << static_cast<unsigned>(VLMUL), false);
158   case RISCVII::VLMUL::LMUL_F2:
159   case RISCVII::VLMUL::LMUL_F4:
160   case RISCVII::VLMUL::LMUL_F8:
161     return std::make_pair(1 << (8 - static_cast<unsigned>(VLMUL)), true);
162   }
163 }
164 
165 void RISCVVType::printVType(unsigned VType, raw_ostream &OS) {
166   unsigned Sew = getSEW(VType);
167   OS << "e" << Sew;
168 
169   unsigned LMul;
170   bool Fractional;
171   std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType));
172 
173   if (Fractional)
174     OS << ", mf";
175   else
176     OS << ", m";
177   OS << LMul;
178 
179   if (isTailAgnostic(VType))
180     OS << ", ta";
181   else
182     OS << ", tu";
183 
184   if (isMaskAgnostic(VType))
185     OS << ", ma";
186   else
187     OS << ", mu";
188 }
189 
190 unsigned RISCVVType::getSEWLMULRatio(unsigned SEW, RISCVII::VLMUL VLMul) {
191   unsigned LMul;
192   bool Fractional;
193   std::tie(LMul, Fractional) = decodeVLMUL(VLMul);
194 
195   // Convert LMul to a fixed point value with 3 fractional bits.
196   LMul = Fractional ? (8 / LMul) : (LMul * 8);
197 
198   assert(SEW >= 8 && "Unexpected SEW value");
199   return (SEW * 8) / LMul;
200 }
201 
202 // Include the auto-generated portion of the compress emitter.
203 #define GEN_UNCOMPRESS_INSTR
204 #define GEN_COMPRESS_INSTR
205 #include "RISCVGenCompressInstEmitter.inc"
206 
207 bool RISCVRVC::compress(MCInst &OutInst, const MCInst &MI,
208                         const MCSubtargetInfo &STI) {
209   return compressInst(OutInst, MI, STI);
210 }
211 
212 bool RISCVRVC::uncompress(MCInst &OutInst, const MCInst &MI,
213                           const MCSubtargetInfo &STI) {
214   return uncompressInst(OutInst, MI, STI);
215 }
216 
217 } // namespace llvm
218