xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVBaseInfo.cpp (revision 59144db3fca192c4637637dfe6b5a5d98632cd47)
1 //===-- RISCVBaseInfo.cpp - Top level definitions for RISC-V MC -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone enum definitions for the RISC-V target
10 // useful for the compiler back-end and the MC libraries.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVBaseInfo.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/MC/MCInst.h"
17 #include "llvm/MC/MCRegisterInfo.h"
18 #include "llvm/MC/MCSubtargetInfo.h"
19 #include "llvm/Support/RISCVISAInfo.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include "llvm/TargetParser/TargetParser.h"
22 #include "llvm/TargetParser/Triple.h"
23 
24 namespace llvm {
25 
26 extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
27 
28 namespace RISCVSysReg {
29 #define GET_SysRegsList_IMPL
30 #include "RISCVGenSearchableTables.inc"
31 } // namespace RISCVSysReg
32 
33 namespace RISCVInsnOpcode {
34 #define GET_RISCVOpcodesList_IMPL
35 #include "RISCVGenSearchableTables.inc"
36 } // namespace RISCVInsnOpcode
37 
38 namespace RISCVABI {
39 ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits,
40                      StringRef ABIName) {
41   auto TargetABI = getTargetABI(ABIName);
42   bool IsRV64 = TT.isArch64Bit();
43   bool IsRVE = FeatureBits[RISCV::FeatureRVE];
44 
45   if (!ABIName.empty() && TargetABI == ABI_Unknown) {
46     errs()
47         << "'" << ABIName
48         << "' is not a recognized ABI for this target (ignoring target-abi)\n";
49   } else if (ABIName.starts_with("ilp32") && IsRV64) {
50     errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring "
51               "target-abi)\n";
52     TargetABI = ABI_Unknown;
53   } else if (ABIName.starts_with("lp64") && !IsRV64) {
54     errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring "
55               "target-abi)\n";
56     TargetABI = ABI_Unknown;
57   } else if (!IsRV64 && IsRVE && TargetABI != ABI_ILP32E &&
58              TargetABI != ABI_Unknown) {
59     // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
60     errs()
61         << "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n";
62     TargetABI = ABI_Unknown;
63   } else if (IsRV64 && IsRVE && TargetABI != ABI_LP64E &&
64              TargetABI != ABI_Unknown) {
65     // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
66     errs()
67         << "Only the lp64e ABI is supported for RV64E (ignoring target-abi)\n";
68     TargetABI = ABI_Unknown;
69   }
70 
71   if ((TargetABI == RISCVABI::ABI::ABI_ILP32E ||
72        (TargetABI == ABI_Unknown && IsRVE && !IsRV64)) &&
73       FeatureBits[RISCV::FeatureStdExtD])
74     report_fatal_error("ILP32E cannot be used with the D ISA extension");
75 
76   if (TargetABI != ABI_Unknown)
77     return TargetABI;
78 
79   // If no explicit ABI is given, try to compute the default ABI.
80   auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits);
81   if (!ISAInfo)
82     report_fatal_error(ISAInfo.takeError());
83   return getTargetABI((*ISAInfo)->computeDefaultABI());
84 }
85 
86 ABI getTargetABI(StringRef ABIName) {
87   auto TargetABI = StringSwitch<ABI>(ABIName)
88                        .Case("ilp32", ABI_ILP32)
89                        .Case("ilp32f", ABI_ILP32F)
90                        .Case("ilp32d", ABI_ILP32D)
91                        .Case("ilp32e", ABI_ILP32E)
92                        .Case("lp64", ABI_LP64)
93                        .Case("lp64f", ABI_LP64F)
94                        .Case("lp64d", ABI_LP64D)
95                        .Case("lp64e", ABI_LP64E)
96                        .Default(ABI_Unknown);
97   return TargetABI;
98 }
99 
100 // To avoid the BP value clobbered by a function call, we need to choose a
101 // callee saved register to save the value. RV32E only has X8 and X9 as callee
102 // saved registers and X8 will be used as fp. So we choose X9 as bp.
103 MCRegister getBPReg() { return RISCV::X9; }
104 
105 // Returns the register holding shadow call stack pointer.
106 MCRegister getSCSPReg() { return RISCV::X3; }
107 
108 } // namespace RISCVABI
109 
110 namespace RISCVFeatures {
111 
112 void validate(const Triple &TT, const FeatureBitset &FeatureBits) {
113   if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit])
114     report_fatal_error("RV64 target requires an RV64 CPU");
115   if (!TT.isArch64Bit() && !FeatureBits[RISCV::Feature32Bit])
116     report_fatal_error("RV32 target requires an RV32 CPU");
117   if (FeatureBits[RISCV::Feature32Bit] &&
118       FeatureBits[RISCV::Feature64Bit])
119     report_fatal_error("RV32 and RV64 can't be combined");
120 }
121 
122 llvm::Expected<std::unique_ptr<RISCVISAInfo>>
123 parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) {
124   unsigned XLen = IsRV64 ? 64 : 32;
125   std::vector<std::string> FeatureVector;
126   // Convert FeatureBitset to FeatureVector.
127   for (auto Feature : RISCVFeatureKV) {
128     if (FeatureBits[Feature.Value] &&
129         llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
130       FeatureVector.push_back(std::string("+") + Feature.Key);
131   }
132   return llvm::RISCVISAInfo::parseFeatures(XLen, FeatureVector);
133 }
134 
135 } // namespace RISCVFeatures
136 
137 // Encode VTYPE into the binary format used by the the VSETVLI instruction which
138 // is used by our MC layer representation.
139 //
140 // Bits | Name       | Description
141 // -----+------------+------------------------------------------------
142 // 7    | vma        | Vector mask agnostic
143 // 6    | vta        | Vector tail agnostic
144 // 5:3  | vsew[2:0]  | Standard element width (SEW) setting
145 // 2:0  | vlmul[2:0] | Vector register group multiplier (LMUL) setting
146 unsigned RISCVVType::encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW,
147                                  bool TailAgnostic, bool MaskAgnostic) {
148   assert(isValidSEW(SEW) && "Invalid SEW");
149   unsigned VLMULBits = static_cast<unsigned>(VLMUL);
150   unsigned VSEWBits = encodeSEW(SEW);
151   unsigned VTypeI = (VSEWBits << 3) | (VLMULBits & 0x7);
152   if (TailAgnostic)
153     VTypeI |= 0x40;
154   if (MaskAgnostic)
155     VTypeI |= 0x80;
156 
157   return VTypeI;
158 }
159 
160 std::pair<unsigned, bool> RISCVVType::decodeVLMUL(RISCVII::VLMUL VLMUL) {
161   switch (VLMUL) {
162   default:
163     llvm_unreachable("Unexpected LMUL value!");
164   case RISCVII::VLMUL::LMUL_1:
165   case RISCVII::VLMUL::LMUL_2:
166   case RISCVII::VLMUL::LMUL_4:
167   case RISCVII::VLMUL::LMUL_8:
168     return std::make_pair(1 << static_cast<unsigned>(VLMUL), false);
169   case RISCVII::VLMUL::LMUL_F2:
170   case RISCVII::VLMUL::LMUL_F4:
171   case RISCVII::VLMUL::LMUL_F8:
172     return std::make_pair(1 << (8 - static_cast<unsigned>(VLMUL)), true);
173   }
174 }
175 
176 void RISCVVType::printVType(unsigned VType, raw_ostream &OS) {
177   unsigned Sew = getSEW(VType);
178   OS << "e" << Sew;
179 
180   unsigned LMul;
181   bool Fractional;
182   std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType));
183 
184   if (Fractional)
185     OS << ", mf";
186   else
187     OS << ", m";
188   OS << LMul;
189 
190   if (isTailAgnostic(VType))
191     OS << ", ta";
192   else
193     OS << ", tu";
194 
195   if (isMaskAgnostic(VType))
196     OS << ", ma";
197   else
198     OS << ", mu";
199 }
200 
201 unsigned RISCVVType::getSEWLMULRatio(unsigned SEW, RISCVII::VLMUL VLMul) {
202   unsigned LMul;
203   bool Fractional;
204   std::tie(LMul, Fractional) = decodeVLMUL(VLMul);
205 
206   // Convert LMul to a fixed point value with 3 fractional bits.
207   LMul = Fractional ? (8 / LMul) : (LMul * 8);
208 
209   assert(SEW >= 8 && "Unexpected SEW value");
210   return (SEW * 8) / LMul;
211 }
212 
213 std::optional<RISCVII::VLMUL>
214 RISCVVType::getSameRatioLMUL(unsigned SEW, RISCVII::VLMUL VLMUL, unsigned EEW) {
215   unsigned Ratio = RISCVVType::getSEWLMULRatio(SEW, VLMUL);
216   unsigned EMULFixedPoint = (EEW * 8) / Ratio;
217   bool Fractional = EMULFixedPoint < 8;
218   unsigned EMUL = Fractional ? 8 / EMULFixedPoint : EMULFixedPoint / 8;
219   if (!isValidLMUL(EMUL, Fractional))
220     return std::nullopt;
221   return RISCVVType::encodeLMUL(EMUL, Fractional);
222 }
223 
224 // Include the auto-generated portion of the compress emitter.
225 #define GEN_UNCOMPRESS_INSTR
226 #define GEN_COMPRESS_INSTR
227 #include "RISCVGenCompressInstEmitter.inc"
228 
229 bool RISCVRVC::compress(MCInst &OutInst, const MCInst &MI,
230                         const MCSubtargetInfo &STI) {
231   return compressInst(OutInst, MI, STI);
232 }
233 
234 bool RISCVRVC::uncompress(MCInst &OutInst, const MCInst &MI,
235                           const MCSubtargetInfo &STI) {
236   return uncompressInst(OutInst, MI, STI);
237 }
238 
239 // Lookup table for fli.s for entries 2-31.
240 static constexpr std::pair<uint8_t, uint8_t> LoadFP32ImmArr[] = {
241     {0b01101111, 0b00}, {0b01110000, 0b00}, {0b01110111, 0b00},
242     {0b01111000, 0b00}, {0b01111011, 0b00}, {0b01111100, 0b00},
243     {0b01111101, 0b00}, {0b01111101, 0b01}, {0b01111101, 0b10},
244     {0b01111101, 0b11}, {0b01111110, 0b00}, {0b01111110, 0b01},
245     {0b01111110, 0b10}, {0b01111110, 0b11}, {0b01111111, 0b00},
246     {0b01111111, 0b01}, {0b01111111, 0b10}, {0b01111111, 0b11},
247     {0b10000000, 0b00}, {0b10000000, 0b01}, {0b10000000, 0b10},
248     {0b10000001, 0b00}, {0b10000010, 0b00}, {0b10000011, 0b00},
249     {0b10000110, 0b00}, {0b10000111, 0b00}, {0b10001110, 0b00},
250     {0b10001111, 0b00}, {0b11111111, 0b00}, {0b11111111, 0b10},
251 };
252 
253 int RISCVLoadFPImm::getLoadFPImm(APFloat FPImm) {
254   assert((&FPImm.getSemantics() == &APFloat::IEEEsingle() ||
255           &FPImm.getSemantics() == &APFloat::IEEEdouble() ||
256           &FPImm.getSemantics() == &APFloat::IEEEhalf()) &&
257          "Unexpected semantics");
258 
259   // Handle the minimum normalized value which is different for each type.
260   if (FPImm.isSmallestNormalized() && !FPImm.isNegative())
261     return 1;
262 
263   // Convert to single precision to use its lookup table.
264   bool LosesInfo;
265   APFloat::opStatus Status = FPImm.convert(
266       APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &LosesInfo);
267   if (Status != APFloat::opOK || LosesInfo)
268     return -1;
269 
270   APInt Imm = FPImm.bitcastToAPInt();
271 
272   if (Imm.extractBitsAsZExtValue(21, 0) != 0)
273     return -1;
274 
275   bool Sign = Imm.extractBitsAsZExtValue(1, 31);
276   uint8_t Mantissa = Imm.extractBitsAsZExtValue(2, 21);
277   uint8_t Exp = Imm.extractBitsAsZExtValue(8, 23);
278 
279   auto EMI = llvm::lower_bound(LoadFP32ImmArr, std::make_pair(Exp, Mantissa));
280   if (EMI == std::end(LoadFP32ImmArr) || EMI->first != Exp ||
281       EMI->second != Mantissa)
282     return -1;
283 
284   // Table doesn't have entry 0 or 1.
285   int Entry = std::distance(std::begin(LoadFP32ImmArr), EMI) + 2;
286 
287   // The only legal negative value is -1.0(entry 0). 1.0 is entry 16.
288   if (Sign) {
289     if (Entry == 16)
290       return 0;
291     return -1;
292   }
293 
294   return Entry;
295 }
296 
297 float RISCVLoadFPImm::getFPImm(unsigned Imm) {
298   assert(Imm != 1 && Imm != 30 && Imm != 31 && "Unsupported immediate");
299 
300   // Entry 0 is -1.0, the only negative value. Entry 16 is 1.0.
301   uint32_t Sign = 0;
302   if (Imm == 0) {
303     Sign = 0b1;
304     Imm = 16;
305   }
306 
307   uint32_t Exp = LoadFP32ImmArr[Imm - 2].first;
308   uint32_t Mantissa = LoadFP32ImmArr[Imm - 2].second;
309 
310   uint32_t I = Sign << 31 | Exp << 23 | Mantissa << 21;
311   return bit_cast<float>(I);
312 }
313 
314 void RISCVZC::printRlist(unsigned SlistEncode, raw_ostream &OS) {
315   OS << "{ra";
316   if (SlistEncode > 4) {
317     OS << ", s0";
318     if (SlistEncode == 15)
319       OS << "-s11";
320     else if (SlistEncode > 5 && SlistEncode <= 14)
321       OS << "-s" << (SlistEncode - 5);
322   }
323   OS << "}";
324 }
325 
326 void RISCVZC::printSpimm(int64_t Spimm, raw_ostream &OS) { OS << Spimm; }
327 
328 } // namespace llvm
329