xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVAsmBackend.cpp (revision 35c0a8c449fd2b7f75029ebed5e10852240f0865)
1 //===-- RISCVAsmBackend.cpp - RISC-V Assembler Backend --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "RISCVAsmBackend.h"
10 #include "RISCVMCExpr.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/MC/MCAsmInfo.h"
13 #include "llvm/MC/MCAssembler.h"
14 #include "llvm/MC/MCContext.h"
15 #include "llvm/MC/MCDirectives.h"
16 #include "llvm/MC/MCELFObjectWriter.h"
17 #include "llvm/MC/MCExpr.h"
18 #include "llvm/MC/MCObjectWriter.h"
19 #include "llvm/MC/MCSymbol.h"
20 #include "llvm/MC/MCValue.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/EndianStream.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/LEB128.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 using namespace llvm;
29 
30 static cl::opt<bool> RelaxBranches("riscv-asm-relax-branches", cl::init(true),
31                                    cl::Hidden);
32 // Temporary workaround for old linkers that do not support ULEB128 relocations,
33 // which are abused by DWARF v5 DW_LLE_offset_pair/DW_RLE_offset_pair
34 // implemented in Clang/LLVM.
35 static cl::opt<bool> ULEB128Reloc(
36     "riscv-uleb128-reloc", cl::init(true), cl::Hidden,
37     cl::desc("Emit R_RISCV_SET_ULEB128/E_RISCV_SUB_ULEB128 if appropriate"));
38 
39 std::optional<MCFixupKind> RISCVAsmBackend::getFixupKind(StringRef Name) const {
40   if (STI.getTargetTriple().isOSBinFormatELF()) {
41     unsigned Type;
42     Type = llvm::StringSwitch<unsigned>(Name)
43 #define ELF_RELOC(X, Y) .Case(#X, Y)
44 #include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
45 #undef ELF_RELOC
46                .Case("BFD_RELOC_NONE", ELF::R_RISCV_NONE)
47                .Case("BFD_RELOC_32", ELF::R_RISCV_32)
48                .Case("BFD_RELOC_64", ELF::R_RISCV_64)
49                .Default(-1u);
50     if (Type != -1u)
51       return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
52   }
53   return std::nullopt;
54 }
55 
56 const MCFixupKindInfo &
57 RISCVAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
58   const static MCFixupKindInfo Infos[] = {
59       // This table *must* be in the order that the fixup_* kinds are defined in
60       // RISCVFixupKinds.h.
61       //
62       // name                      offset bits  flags
63       {"fixup_riscv_hi20", 12, 20, 0},
64       {"fixup_riscv_lo12_i", 20, 12, 0},
65       {"fixup_riscv_12_i", 20, 12, 0},
66       {"fixup_riscv_lo12_s", 0, 32, 0},
67       {"fixup_riscv_pcrel_hi20", 12, 20,
68        MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsTarget},
69       {"fixup_riscv_pcrel_lo12_i", 20, 12,
70        MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsTarget},
71       {"fixup_riscv_pcrel_lo12_s", 0, 32,
72        MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsTarget},
73       {"fixup_riscv_got_hi20", 12, 20, MCFixupKindInfo::FKF_IsPCRel},
74       {"fixup_riscv_tprel_hi20", 12, 20, 0},
75       {"fixup_riscv_tprel_lo12_i", 20, 12, 0},
76       {"fixup_riscv_tprel_lo12_s", 0, 32, 0},
77       {"fixup_riscv_tprel_add", 0, 0, 0},
78       {"fixup_riscv_tls_got_hi20", 12, 20, MCFixupKindInfo::FKF_IsPCRel},
79       {"fixup_riscv_tls_gd_hi20", 12, 20, MCFixupKindInfo::FKF_IsPCRel},
80       {"fixup_riscv_jal", 12, 20, MCFixupKindInfo::FKF_IsPCRel},
81       {"fixup_riscv_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
82       {"fixup_riscv_rvc_jump", 2, 11, MCFixupKindInfo::FKF_IsPCRel},
83       {"fixup_riscv_rvc_branch", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
84       {"fixup_riscv_call", 0, 64, MCFixupKindInfo::FKF_IsPCRel},
85       {"fixup_riscv_call_plt", 0, 64, MCFixupKindInfo::FKF_IsPCRel},
86       {"fixup_riscv_relax", 0, 0, 0},
87       {"fixup_riscv_align", 0, 0, 0},
88 
89       {"fixup_riscv_tlsdesc_hi20", 12, 20,
90        MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsTarget},
91       {"fixup_riscv_tlsdesc_load_lo12", 20, 12, 0},
92       {"fixup_riscv_tlsdesc_add_lo12", 20, 12, 0},
93       {"fixup_riscv_tlsdesc_call", 0, 0, 0},
94   };
95   static_assert((std::size(Infos)) == RISCV::NumTargetFixupKinds,
96                 "Not all fixup kinds added to Infos array");
97 
98   // Fixup kinds from .reloc directive are like R_RISCV_NONE. They
99   // do not require any extra processing.
100   if (Kind >= FirstLiteralRelocationKind)
101     return MCAsmBackend::getFixupKindInfo(FK_NONE);
102 
103   if (Kind < FirstTargetFixupKind)
104     return MCAsmBackend::getFixupKindInfo(Kind);
105 
106   assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
107          "Invalid kind!");
108   return Infos[Kind - FirstTargetFixupKind];
109 }
110 
111 // If linker relaxation is enabled, or the relax option had previously been
112 // enabled, always emit relocations even if the fixup can be resolved. This is
113 // necessary for correctness as offsets may change during relaxation.
114 bool RISCVAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
115                                             const MCFixup &Fixup,
116                                             const MCValue &Target,
117                                             const MCSubtargetInfo *STI) {
118   if (Fixup.getKind() >= FirstLiteralRelocationKind)
119     return true;
120   switch (Fixup.getTargetKind()) {
121   default:
122     break;
123   case FK_Data_1:
124   case FK_Data_2:
125   case FK_Data_4:
126   case FK_Data_8:
127   case FK_Data_leb128:
128     if (Target.isAbsolute())
129       return false;
130     break;
131   case RISCV::fixup_riscv_got_hi20:
132   case RISCV::fixup_riscv_tls_got_hi20:
133   case RISCV::fixup_riscv_tls_gd_hi20:
134   case RISCV::fixup_riscv_tlsdesc_hi20:
135     return true;
136   }
137 
138   return STI->hasFeature(RISCV::FeatureRelax) || ForceRelocs;
139 }
140 
141 bool RISCVAsmBackend::fixupNeedsRelaxationAdvanced(
142     const MCAssembler &Asm, const MCFixup &Fixup, bool Resolved, uint64_t Value,
143     const MCRelaxableFragment *DF, const bool WasForced) const {
144   if (!RelaxBranches)
145     return false;
146 
147   int64_t Offset = int64_t(Value);
148   unsigned Kind = Fixup.getTargetKind();
149 
150   // Return true if the symbol is actually unresolved.
151   // Resolved could be always false when shouldForceRelocation return true.
152   // We use !WasForced to indicate that the symbol is unresolved and not forced
153   // by shouldForceRelocation.
154   if (!Resolved && !WasForced)
155     return true;
156 
157   switch (Kind) {
158   default:
159     return false;
160   case RISCV::fixup_riscv_rvc_branch:
161     // For compressed branch instructions the immediate must be
162     // in the range [-256, 254].
163     return Offset > 254 || Offset < -256;
164   case RISCV::fixup_riscv_rvc_jump:
165     // For compressed jump instructions the immediate must be
166     // in the range [-2048, 2046].
167     return Offset > 2046 || Offset < -2048;
168   case RISCV::fixup_riscv_branch:
169     // For conditional branch instructions the immediate must be
170     // in the range [-4096, 4095].
171     return !isInt<13>(Offset);
172   }
173 }
174 
175 void RISCVAsmBackend::relaxInstruction(MCInst &Inst,
176                                        const MCSubtargetInfo &STI) const {
177   MCInst Res;
178   switch (Inst.getOpcode()) {
179   default:
180     llvm_unreachable("Opcode not expected!");
181   case RISCV::C_BEQZ:
182   case RISCV::C_BNEZ:
183   case RISCV::C_J:
184   case RISCV::C_JAL: {
185     [[maybe_unused]] bool Success = RISCVRVC::uncompress(Res, Inst, STI);
186     assert(Success && "Can't uncompress instruction");
187     break;
188   }
189   case RISCV::BEQ:
190   case RISCV::BNE:
191   case RISCV::BLT:
192   case RISCV::BGE:
193   case RISCV::BLTU:
194   case RISCV::BGEU:
195     Res.setOpcode(getRelaxedOpcode(Inst.getOpcode()));
196     Res.addOperand(Inst.getOperand(0));
197     Res.addOperand(Inst.getOperand(1));
198     Res.addOperand(Inst.getOperand(2));
199     break;
200   }
201   Inst = std::move(Res);
202 }
203 
204 bool RISCVAsmBackend::relaxDwarfLineAddr(const MCAssembler &Asm,
205                                          MCDwarfLineAddrFragment &DF,
206                                          bool &WasRelaxed) const {
207   MCContext &C = Asm.getContext();
208 
209   int64_t LineDelta = DF.getLineDelta();
210   const MCExpr &AddrDelta = DF.getAddrDelta();
211   SmallVectorImpl<char> &Data = DF.getContents();
212   SmallVectorImpl<MCFixup> &Fixups = DF.getFixups();
213   size_t OldSize = Data.size();
214 
215   int64_t Value;
216   [[maybe_unused]] bool IsAbsolute =
217       AddrDelta.evaluateKnownAbsolute(Value, Asm);
218   assert(IsAbsolute && "CFA with invalid expression");
219 
220   Data.clear();
221   Fixups.clear();
222   raw_svector_ostream OS(Data);
223 
224   // INT64_MAX is a signal that this is actually a DW_LNE_end_sequence.
225   if (LineDelta != INT64_MAX) {
226     OS << uint8_t(dwarf::DW_LNS_advance_line);
227     encodeSLEB128(LineDelta, OS);
228   }
229 
230   unsigned Offset;
231   std::pair<MCFixupKind, MCFixupKind> Fixup;
232 
233   // According to the DWARF specification, the `DW_LNS_fixed_advance_pc` opcode
234   // takes a single unsigned half (unencoded) operand. The maximum encodable
235   // value is therefore 65535.  Set a conservative upper bound for relaxation.
236   if (Value > 60000) {
237     unsigned PtrSize = C.getAsmInfo()->getCodePointerSize();
238 
239     OS << uint8_t(dwarf::DW_LNS_extended_op);
240     encodeULEB128(PtrSize + 1, OS);
241 
242     OS << uint8_t(dwarf::DW_LNE_set_address);
243     Offset = OS.tell();
244     assert((PtrSize == 4 || PtrSize == 8) && "Unexpected pointer size");
245     Fixup = RISCV::getRelocPairForSize(PtrSize);
246     OS.write_zeros(PtrSize);
247   } else {
248     OS << uint8_t(dwarf::DW_LNS_fixed_advance_pc);
249     Offset = OS.tell();
250     Fixup = RISCV::getRelocPairForSize(2);
251     support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
252   }
253 
254   const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
255   Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(Fixup)));
256   Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(Fixup)));
257 
258   if (LineDelta == INT64_MAX) {
259     OS << uint8_t(dwarf::DW_LNS_extended_op);
260     OS << uint8_t(1);
261     OS << uint8_t(dwarf::DW_LNE_end_sequence);
262   } else {
263     OS << uint8_t(dwarf::DW_LNS_copy);
264   }
265 
266   WasRelaxed = OldSize != Data.size();
267   return true;
268 }
269 
270 bool RISCVAsmBackend::relaxDwarfCFA(const MCAssembler &Asm,
271                                     MCDwarfCallFrameFragment &DF,
272                                     bool &WasRelaxed) const {
273   const MCExpr &AddrDelta = DF.getAddrDelta();
274   SmallVectorImpl<char> &Data = DF.getContents();
275   SmallVectorImpl<MCFixup> &Fixups = DF.getFixups();
276   size_t OldSize = Data.size();
277 
278   int64_t Value;
279   if (AddrDelta.evaluateAsAbsolute(Value, Asm))
280     return false;
281   [[maybe_unused]] bool IsAbsolute =
282       AddrDelta.evaluateKnownAbsolute(Value, Asm);
283   assert(IsAbsolute && "CFA with invalid expression");
284 
285   Data.clear();
286   Fixups.clear();
287   raw_svector_ostream OS(Data);
288 
289   assert(Asm.getContext().getAsmInfo()->getMinInstAlignment() == 1 &&
290          "expected 1-byte alignment");
291   if (Value == 0) {
292     WasRelaxed = OldSize != Data.size();
293     return true;
294   }
295 
296   auto AddFixups = [&Fixups, &AddrDelta](unsigned Offset,
297                                          std::pair<unsigned, unsigned> Fixup) {
298     const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
299     Fixups.push_back(
300         MCFixup::create(Offset, MBE.getLHS(),
301                         static_cast<MCFixupKind>(FirstLiteralRelocationKind +
302                                                  std::get<0>(Fixup))));
303     Fixups.push_back(
304         MCFixup::create(Offset, MBE.getRHS(),
305                         static_cast<MCFixupKind>(FirstLiteralRelocationKind +
306                                                  std::get<1>(Fixup))));
307   };
308 
309   if (isUIntN(6, Value)) {
310     OS << uint8_t(dwarf::DW_CFA_advance_loc);
311     AddFixups(0, {ELF::R_RISCV_SET6, ELF::R_RISCV_SUB6});
312   } else if (isUInt<8>(Value)) {
313     OS << uint8_t(dwarf::DW_CFA_advance_loc1);
314     support::endian::write<uint8_t>(OS, 0, llvm::endianness::little);
315     AddFixups(1, {ELF::R_RISCV_SET8, ELF::R_RISCV_SUB8});
316   } else if (isUInt<16>(Value)) {
317     OS << uint8_t(dwarf::DW_CFA_advance_loc2);
318     support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
319     AddFixups(1, {ELF::R_RISCV_SET16, ELF::R_RISCV_SUB16});
320   } else if (isUInt<32>(Value)) {
321     OS << uint8_t(dwarf::DW_CFA_advance_loc4);
322     support::endian::write<uint32_t>(OS, 0, llvm::endianness::little);
323     AddFixups(1, {ELF::R_RISCV_SET32, ELF::R_RISCV_SUB32});
324   } else {
325     llvm_unreachable("unsupported CFA encoding");
326   }
327 
328   WasRelaxed = OldSize != Data.size();
329   return true;
330 }
331 
332 std::pair<bool, bool> RISCVAsmBackend::relaxLEB128(const MCAssembler &Asm,
333                                                    MCLEBFragment &LF,
334                                                    int64_t &Value) const {
335   if (LF.isSigned())
336     return std::make_pair(false, false);
337   const MCExpr &Expr = LF.getValue();
338   if (ULEB128Reloc) {
339     LF.getFixups().push_back(
340         MCFixup::create(0, &Expr, FK_Data_leb128, Expr.getLoc()));
341   }
342   return std::make_pair(Expr.evaluateKnownAbsolute(Value, Asm), false);
343 }
344 
345 // Given a compressed control flow instruction this function returns
346 // the expanded instruction.
347 unsigned RISCVAsmBackend::getRelaxedOpcode(unsigned Op) const {
348   switch (Op) {
349   default:
350     return Op;
351   case RISCV::C_BEQZ:
352     return RISCV::BEQ;
353   case RISCV::C_BNEZ:
354     return RISCV::BNE;
355   case RISCV::C_J:
356   case RISCV::C_JAL: // fall through.
357     return RISCV::JAL;
358   case RISCV::BEQ:
359     return RISCV::PseudoLongBEQ;
360   case RISCV::BNE:
361     return RISCV::PseudoLongBNE;
362   case RISCV::BLT:
363     return RISCV::PseudoLongBLT;
364   case RISCV::BGE:
365     return RISCV::PseudoLongBGE;
366   case RISCV::BLTU:
367     return RISCV::PseudoLongBLTU;
368   case RISCV::BGEU:
369     return RISCV::PseudoLongBGEU;
370   }
371 }
372 
373 bool RISCVAsmBackend::mayNeedRelaxation(const MCInst &Inst,
374                                         const MCSubtargetInfo &STI) const {
375   return getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode();
376 }
377 
378 bool RISCVAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
379                                    const MCSubtargetInfo *STI) const {
380   // We mostly follow binutils' convention here: align to even boundary with a
381   // 0-fill padding.  We emit up to 1 2-byte nop, though we use c.nop if RVC is
382   // enabled or 0-fill otherwise.  The remainder is now padded with 4-byte nops.
383 
384   // Instructions always are at even addresses.  We must be in a data area or
385   // be unaligned due to some other reason.
386   if (Count % 2) {
387     OS.write("\0", 1);
388     Count -= 1;
389   }
390 
391   bool UseCompressedNop = STI->hasFeature(RISCV::FeatureStdExtC) ||
392                           STI->hasFeature(RISCV::FeatureStdExtZca);
393   // The canonical nop on RVC is c.nop.
394   if (Count % 4 == 2) {
395     OS.write(UseCompressedNop ? "\x01\0" : "\0\0", 2);
396     Count -= 2;
397   }
398 
399   // The canonical nop on RISC-V is addi x0, x0, 0.
400   for (; Count >= 4; Count -= 4)
401     OS.write("\x13\0\0\0", 4);
402 
403   return true;
404 }
405 
406 static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
407                                  MCContext &Ctx) {
408   switch (Fixup.getTargetKind()) {
409   default:
410     llvm_unreachable("Unknown fixup kind!");
411   case RISCV::fixup_riscv_got_hi20:
412   case RISCV::fixup_riscv_tls_got_hi20:
413   case RISCV::fixup_riscv_tls_gd_hi20:
414   case RISCV::fixup_riscv_tlsdesc_hi20:
415     llvm_unreachable("Relocation should be unconditionally forced\n");
416   case FK_Data_1:
417   case FK_Data_2:
418   case FK_Data_4:
419   case FK_Data_8:
420   case FK_Data_leb128:
421     return Value;
422   case RISCV::fixup_riscv_lo12_i:
423   case RISCV::fixup_riscv_pcrel_lo12_i:
424   case RISCV::fixup_riscv_tprel_lo12_i:
425   case RISCV::fixup_riscv_tlsdesc_load_lo12:
426     return Value & 0xfff;
427   case RISCV::fixup_riscv_12_i:
428     if (!isInt<12>(Value)) {
429       Ctx.reportError(Fixup.getLoc(),
430                       "operand must be a constant 12-bit integer");
431     }
432     return Value & 0xfff;
433   case RISCV::fixup_riscv_lo12_s:
434   case RISCV::fixup_riscv_pcrel_lo12_s:
435   case RISCV::fixup_riscv_tprel_lo12_s:
436     return (((Value >> 5) & 0x7f) << 25) | ((Value & 0x1f) << 7);
437   case RISCV::fixup_riscv_hi20:
438   case RISCV::fixup_riscv_pcrel_hi20:
439   case RISCV::fixup_riscv_tprel_hi20:
440     // Add 1 if bit 11 is 1, to compensate for low 12 bits being negative.
441     return ((Value + 0x800) >> 12) & 0xfffff;
442   case RISCV::fixup_riscv_jal: {
443     if (!isInt<21>(Value))
444       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
445     if (Value & 0x1)
446       Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
447     // Need to produce imm[19|10:1|11|19:12] from the 21-bit Value.
448     unsigned Sbit = (Value >> 20) & 0x1;
449     unsigned Hi8 = (Value >> 12) & 0xff;
450     unsigned Mid1 = (Value >> 11) & 0x1;
451     unsigned Lo10 = (Value >> 1) & 0x3ff;
452     // Inst{31} = Sbit;
453     // Inst{30-21} = Lo10;
454     // Inst{20} = Mid1;
455     // Inst{19-12} = Hi8;
456     Value = (Sbit << 19) | (Lo10 << 9) | (Mid1 << 8) | Hi8;
457     return Value;
458   }
459   case RISCV::fixup_riscv_branch: {
460     if (!isInt<13>(Value))
461       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
462     if (Value & 0x1)
463       Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
464     // Need to extract imm[12], imm[10:5], imm[4:1], imm[11] from the 13-bit
465     // Value.
466     unsigned Sbit = (Value >> 12) & 0x1;
467     unsigned Hi1 = (Value >> 11) & 0x1;
468     unsigned Mid6 = (Value >> 5) & 0x3f;
469     unsigned Lo4 = (Value >> 1) & 0xf;
470     // Inst{31} = Sbit;
471     // Inst{30-25} = Mid6;
472     // Inst{11-8} = Lo4;
473     // Inst{7} = Hi1;
474     Value = (Sbit << 31) | (Mid6 << 25) | (Lo4 << 8) | (Hi1 << 7);
475     return Value;
476   }
477   case RISCV::fixup_riscv_call:
478   case RISCV::fixup_riscv_call_plt: {
479     // Jalr will add UpperImm with the sign-extended 12-bit LowerImm,
480     // we need to add 0x800ULL before extract upper bits to reflect the
481     // effect of the sign extension.
482     uint64_t UpperImm = (Value + 0x800ULL) & 0xfffff000ULL;
483     uint64_t LowerImm = Value & 0xfffULL;
484     return UpperImm | ((LowerImm << 20) << 32);
485   }
486   case RISCV::fixup_riscv_rvc_jump: {
487     if (!isInt<12>(Value))
488       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
489     // Need to produce offset[11|4|9:8|10|6|7|3:1|5] from the 11-bit Value.
490     unsigned Bit11  = (Value >> 11) & 0x1;
491     unsigned Bit4   = (Value >> 4) & 0x1;
492     unsigned Bit9_8 = (Value >> 8) & 0x3;
493     unsigned Bit10  = (Value >> 10) & 0x1;
494     unsigned Bit6   = (Value >> 6) & 0x1;
495     unsigned Bit7   = (Value >> 7) & 0x1;
496     unsigned Bit3_1 = (Value >> 1) & 0x7;
497     unsigned Bit5   = (Value >> 5) & 0x1;
498     Value = (Bit11 << 10) | (Bit4 << 9) | (Bit9_8 << 7) | (Bit10 << 6) |
499             (Bit6 << 5) | (Bit7 << 4) | (Bit3_1 << 1) | Bit5;
500     return Value;
501   }
502   case RISCV::fixup_riscv_rvc_branch: {
503     if (!isInt<9>(Value))
504       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
505     // Need to produce offset[8|4:3], [reg 3 bit], offset[7:6|2:1|5]
506     unsigned Bit8   = (Value >> 8) & 0x1;
507     unsigned Bit7_6 = (Value >> 6) & 0x3;
508     unsigned Bit5   = (Value >> 5) & 0x1;
509     unsigned Bit4_3 = (Value >> 3) & 0x3;
510     unsigned Bit2_1 = (Value >> 1) & 0x3;
511     Value = (Bit8 << 12) | (Bit4_3 << 10) | (Bit7_6 << 5) | (Bit2_1 << 3) |
512             (Bit5 << 2);
513     return Value;
514   }
515 
516   }
517 }
518 
519 bool RISCVAsmBackend::evaluateTargetFixup(const MCAssembler &Asm,
520                                           const MCFixup &Fixup,
521                                           const MCFragment *DF,
522                                           const MCValue &Target,
523                                           const MCSubtargetInfo *STI,
524                                           uint64_t &Value, bool &WasForced) {
525   const MCFixup *AUIPCFixup;
526   const MCFragment *AUIPCDF;
527   MCValue AUIPCTarget;
528   switch (Fixup.getTargetKind()) {
529   default:
530     llvm_unreachable("Unexpected fixup kind!");
531   case RISCV::fixup_riscv_tlsdesc_hi20:
532   case RISCV::fixup_riscv_pcrel_hi20:
533     AUIPCFixup = &Fixup;
534     AUIPCDF = DF;
535     AUIPCTarget = Target;
536     break;
537   case RISCV::fixup_riscv_pcrel_lo12_i:
538   case RISCV::fixup_riscv_pcrel_lo12_s: {
539     AUIPCFixup = cast<RISCVMCExpr>(Fixup.getValue())->getPCRelHiFixup(&AUIPCDF);
540     if (!AUIPCFixup) {
541       Asm.getContext().reportError(Fixup.getLoc(),
542                                    "could not find corresponding %pcrel_hi");
543       return true;
544     }
545 
546     // MCAssembler::evaluateFixup will emit an error for this case when it sees
547     // the %pcrel_hi, so don't duplicate it when also seeing the %pcrel_lo.
548     const MCExpr *AUIPCExpr = AUIPCFixup->getValue();
549     if (!AUIPCExpr->evaluateAsRelocatable(AUIPCTarget, &Asm, AUIPCFixup))
550       return true;
551     break;
552   }
553   }
554 
555   if (!AUIPCTarget.getSymA() || AUIPCTarget.getSymB())
556     return false;
557 
558   const MCSymbolRefExpr *A = AUIPCTarget.getSymA();
559   const MCSymbol &SA = A->getSymbol();
560   if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined())
561     return false;
562 
563   bool IsResolved = Asm.getWriter().isSymbolRefDifferenceFullyResolvedImpl(
564       Asm, SA, *AUIPCDF, false, true);
565   if (!IsResolved)
566     return false;
567 
568   Value = Asm.getSymbolOffset(SA) + AUIPCTarget.getConstant();
569   Value -= Asm.getFragmentOffset(*AUIPCDF) + AUIPCFixup->getOffset();
570 
571   if (shouldForceRelocation(Asm, *AUIPCFixup, AUIPCTarget, STI)) {
572     WasForced = true;
573     return false;
574   }
575 
576   return true;
577 }
578 
579 bool RISCVAsmBackend::handleAddSubRelocations(const MCAssembler &Asm,
580                                               const MCFragment &F,
581                                               const MCFixup &Fixup,
582                                               const MCValue &Target,
583                                               uint64_t &FixedValue) const {
584   uint64_t FixedValueA, FixedValueB;
585   unsigned TA = 0, TB = 0;
586   switch (Fixup.getKind()) {
587   case llvm::FK_Data_1:
588     TA = ELF::R_RISCV_ADD8;
589     TB = ELF::R_RISCV_SUB8;
590     break;
591   case llvm::FK_Data_2:
592     TA = ELF::R_RISCV_ADD16;
593     TB = ELF::R_RISCV_SUB16;
594     break;
595   case llvm::FK_Data_4:
596     TA = ELF::R_RISCV_ADD32;
597     TB = ELF::R_RISCV_SUB32;
598     break;
599   case llvm::FK_Data_8:
600     TA = ELF::R_RISCV_ADD64;
601     TB = ELF::R_RISCV_SUB64;
602     break;
603   case llvm::FK_Data_leb128:
604     TA = ELF::R_RISCV_SET_ULEB128;
605     TB = ELF::R_RISCV_SUB_ULEB128;
606     break;
607   default:
608     llvm_unreachable("unsupported fixup size");
609   }
610   MCValue A = MCValue::get(Target.getSymA(), nullptr, Target.getConstant());
611   MCValue B = MCValue::get(Target.getSymB());
612   auto FA = MCFixup::create(
613       Fixup.getOffset(), nullptr,
614       static_cast<MCFixupKind>(FirstLiteralRelocationKind + TA));
615   auto FB = MCFixup::create(
616       Fixup.getOffset(), nullptr,
617       static_cast<MCFixupKind>(FirstLiteralRelocationKind + TB));
618   auto &Assembler = const_cast<MCAssembler &>(Asm);
619   Asm.getWriter().recordRelocation(Assembler, &F, FA, A, FixedValueA);
620   Asm.getWriter().recordRelocation(Assembler, &F, FB, B, FixedValueB);
621   FixedValue = FixedValueA - FixedValueB;
622   return true;
623 }
624 
625 void RISCVAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
626                                  const MCValue &Target,
627                                  MutableArrayRef<char> Data, uint64_t Value,
628                                  bool IsResolved,
629                                  const MCSubtargetInfo *STI) const {
630   MCFixupKind Kind = Fixup.getKind();
631   if (Kind >= FirstLiteralRelocationKind)
632     return;
633   MCContext &Ctx = Asm.getContext();
634   MCFixupKindInfo Info = getFixupKindInfo(Kind);
635   if (!Value)
636     return; // Doesn't change encoding.
637   // Apply any target-specific value adjustments.
638   Value = adjustFixupValue(Fixup, Value, Ctx);
639 
640   // Shift the value into position.
641   Value <<= Info.TargetOffset;
642 
643   unsigned Offset = Fixup.getOffset();
644   unsigned NumBytes = alignTo(Info.TargetSize + Info.TargetOffset, 8) / 8;
645 
646   assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
647 
648   // For each byte of the fragment that the fixup touches, mask in the
649   // bits from the fixup value.
650   for (unsigned i = 0; i != NumBytes; ++i) {
651     Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
652   }
653 }
654 
655 // Linker relaxation may change code size. We have to insert Nops
656 // for .align directive when linker relaxation enabled. So then Linker
657 // could satisfy alignment by removing Nops.
658 // The function return the total Nops Size we need to insert.
659 bool RISCVAsmBackend::shouldInsertExtraNopBytesForCodeAlign(
660     const MCAlignFragment &AF, unsigned &Size) {
661   // Calculate Nops Size only when linker relaxation enabled.
662   const MCSubtargetInfo *STI = AF.getSubtargetInfo();
663   if (!STI->hasFeature(RISCV::FeatureRelax))
664     return false;
665 
666   bool UseCompressedNop = STI->hasFeature(RISCV::FeatureStdExtC) ||
667                           STI->hasFeature(RISCV::FeatureStdExtZca);
668   unsigned MinNopLen = UseCompressedNop ? 2 : 4;
669 
670   if (AF.getAlignment() <= MinNopLen) {
671     return false;
672   } else {
673     Size = AF.getAlignment().value() - MinNopLen;
674     return true;
675   }
676 }
677 
678 // We need to insert R_RISCV_ALIGN relocation type to indicate the
679 // position of Nops and the total bytes of the Nops have been inserted
680 // when linker relaxation enabled.
681 // The function insert fixup_riscv_align fixup which eventually will
682 // transfer to R_RISCV_ALIGN relocation type.
683 bool RISCVAsmBackend::shouldInsertFixupForCodeAlign(MCAssembler &Asm,
684                                                     MCAlignFragment &AF) {
685   // Insert the fixup only when linker relaxation enabled.
686   const MCSubtargetInfo *STI = AF.getSubtargetInfo();
687   if (!STI->hasFeature(RISCV::FeatureRelax))
688     return false;
689 
690   // Calculate total Nops we need to insert. If there are none to insert
691   // then simply return.
692   unsigned Count;
693   if (!shouldInsertExtraNopBytesForCodeAlign(AF, Count) || (Count == 0))
694     return false;
695 
696   MCContext &Ctx = Asm.getContext();
697   const MCExpr *Dummy = MCConstantExpr::create(0, Ctx);
698   // Create fixup_riscv_align fixup.
699   MCFixup Fixup =
700       MCFixup::create(0, Dummy, MCFixupKind(RISCV::fixup_riscv_align), SMLoc());
701 
702   uint64_t FixedValue = 0;
703   MCValue NopBytes = MCValue::get(Count);
704 
705   Asm.getWriter().recordRelocation(Asm, &AF, Fixup, NopBytes, FixedValue);
706 
707   return true;
708 }
709 
710 std::unique_ptr<MCObjectTargetWriter>
711 RISCVAsmBackend::createObjectTargetWriter() const {
712   return createRISCVELFObjectWriter(OSABI, Is64Bit);
713 }
714 
715 MCAsmBackend *llvm::createRISCVAsmBackend(const Target &T,
716                                           const MCSubtargetInfo &STI,
717                                           const MCRegisterInfo &MRI,
718                                           const MCTargetOptions &Options) {
719   const Triple &TT = STI.getTargetTriple();
720   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
721   return new RISCVAsmBackend(STI, OSABI, TT.isArch64Bit(), Options);
722 }
723