1 //===-- RISCVAsmBackend.cpp - RISC-V Assembler Backend --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "RISCVAsmBackend.h" 10 #include "RISCVMCExpr.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/MC/MCAsmInfo.h" 13 #include "llvm/MC/MCAsmLayout.h" 14 #include "llvm/MC/MCAssembler.h" 15 #include "llvm/MC/MCContext.h" 16 #include "llvm/MC/MCDirectives.h" 17 #include "llvm/MC/MCELFObjectWriter.h" 18 #include "llvm/MC/MCExpr.h" 19 #include "llvm/MC/MCObjectWriter.h" 20 #include "llvm/MC/MCSymbol.h" 21 #include "llvm/MC/MCValue.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Endian.h" 24 #include "llvm/Support/EndianStream.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/LEB128.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 using namespace llvm; 30 31 static cl::opt<bool> RelaxBranches("riscv-asm-relax-branches", cl::init(true), 32 cl::Hidden); 33 // Temporary workaround for old linkers that do not support ULEB128 relocations, 34 // which are abused by DWARF v5 DW_LLE_offset_pair/DW_RLE_offset_pair 35 // implemented in Clang/LLVM. 36 static cl::opt<bool> ULEB128Reloc( 37 "riscv-uleb128-reloc", cl::init(true), cl::Hidden, 38 cl::desc("Emit R_RISCV_SET_ULEB128/E_RISCV_SUB_ULEB128 if appropriate")); 39 40 std::optional<MCFixupKind> RISCVAsmBackend::getFixupKind(StringRef Name) const { 41 if (STI.getTargetTriple().isOSBinFormatELF()) { 42 unsigned Type; 43 Type = llvm::StringSwitch<unsigned>(Name) 44 #define ELF_RELOC(X, Y) .Case(#X, Y) 45 #include "llvm/BinaryFormat/ELFRelocs/RISCV.def" 46 #undef ELF_RELOC 47 .Case("BFD_RELOC_NONE", ELF::R_RISCV_NONE) 48 .Case("BFD_RELOC_32", ELF::R_RISCV_32) 49 .Case("BFD_RELOC_64", ELF::R_RISCV_64) 50 .Default(-1u); 51 if (Type != -1u) 52 return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type); 53 } 54 return std::nullopt; 55 } 56 57 const MCFixupKindInfo & 58 RISCVAsmBackend::getFixupKindInfo(MCFixupKind Kind) const { 59 const static MCFixupKindInfo Infos[] = { 60 // This table *must* be in the order that the fixup_* kinds are defined in 61 // RISCVFixupKinds.h. 62 // 63 // name offset bits flags 64 {"fixup_riscv_hi20", 12, 20, 0}, 65 {"fixup_riscv_lo12_i", 20, 12, 0}, 66 {"fixup_riscv_12_i", 20, 12, 0}, 67 {"fixup_riscv_lo12_s", 0, 32, 0}, 68 {"fixup_riscv_pcrel_hi20", 12, 20, 69 MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsTarget}, 70 {"fixup_riscv_pcrel_lo12_i", 20, 12, 71 MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsTarget}, 72 {"fixup_riscv_pcrel_lo12_s", 0, 32, 73 MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsTarget}, 74 {"fixup_riscv_got_hi20", 12, 20, MCFixupKindInfo::FKF_IsPCRel}, 75 {"fixup_riscv_tprel_hi20", 12, 20, 0}, 76 {"fixup_riscv_tprel_lo12_i", 20, 12, 0}, 77 {"fixup_riscv_tprel_lo12_s", 0, 32, 0}, 78 {"fixup_riscv_tprel_add", 0, 0, 0}, 79 {"fixup_riscv_tls_got_hi20", 12, 20, MCFixupKindInfo::FKF_IsPCRel}, 80 {"fixup_riscv_tls_gd_hi20", 12, 20, MCFixupKindInfo::FKF_IsPCRel}, 81 {"fixup_riscv_jal", 12, 20, MCFixupKindInfo::FKF_IsPCRel}, 82 {"fixup_riscv_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 83 {"fixup_riscv_rvc_jump", 2, 11, MCFixupKindInfo::FKF_IsPCRel}, 84 {"fixup_riscv_rvc_branch", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 85 {"fixup_riscv_call", 0, 64, MCFixupKindInfo::FKF_IsPCRel}, 86 {"fixup_riscv_call_plt", 0, 64, MCFixupKindInfo::FKF_IsPCRel}, 87 {"fixup_riscv_relax", 0, 0, 0}, 88 {"fixup_riscv_align", 0, 0, 0}, 89 }; 90 static_assert((std::size(Infos)) == RISCV::NumTargetFixupKinds, 91 "Not all fixup kinds added to Infos array"); 92 93 // Fixup kinds from .reloc directive are like R_RISCV_NONE. They 94 // do not require any extra processing. 95 if (Kind >= FirstLiteralRelocationKind) 96 return MCAsmBackend::getFixupKindInfo(FK_NONE); 97 98 if (Kind < FirstTargetFixupKind) 99 return MCAsmBackend::getFixupKindInfo(Kind); 100 101 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && 102 "Invalid kind!"); 103 return Infos[Kind - FirstTargetFixupKind]; 104 } 105 106 // If linker relaxation is enabled, or the relax option had previously been 107 // enabled, always emit relocations even if the fixup can be resolved. This is 108 // necessary for correctness as offsets may change during relaxation. 109 bool RISCVAsmBackend::shouldForceRelocation(const MCAssembler &Asm, 110 const MCFixup &Fixup, 111 const MCValue &Target, 112 const MCSubtargetInfo *STI) { 113 if (Fixup.getKind() >= FirstLiteralRelocationKind) 114 return true; 115 switch (Fixup.getTargetKind()) { 116 default: 117 break; 118 case FK_Data_1: 119 case FK_Data_2: 120 case FK_Data_4: 121 case FK_Data_8: 122 case FK_Data_leb128: 123 if (Target.isAbsolute()) 124 return false; 125 break; 126 case RISCV::fixup_riscv_got_hi20: 127 case RISCV::fixup_riscv_tls_got_hi20: 128 case RISCV::fixup_riscv_tls_gd_hi20: 129 return true; 130 } 131 132 return STI->hasFeature(RISCV::FeatureRelax) || ForceRelocs; 133 } 134 135 bool RISCVAsmBackend::fixupNeedsRelaxationAdvanced(const MCFixup &Fixup, 136 bool Resolved, 137 uint64_t Value, 138 const MCRelaxableFragment *DF, 139 const MCAsmLayout &Layout, 140 const bool WasForced) const { 141 if (!RelaxBranches) 142 return false; 143 144 int64_t Offset = int64_t(Value); 145 unsigned Kind = Fixup.getTargetKind(); 146 147 // Return true if the symbol is actually unresolved. 148 // Resolved could be always false when shouldForceRelocation return true. 149 // We use !WasForced to indicate that the symbol is unresolved and not forced 150 // by shouldForceRelocation. 151 if (!Resolved && !WasForced) 152 return true; 153 154 switch (Kind) { 155 default: 156 return false; 157 case RISCV::fixup_riscv_rvc_branch: 158 // For compressed branch instructions the immediate must be 159 // in the range [-256, 254]. 160 return Offset > 254 || Offset < -256; 161 case RISCV::fixup_riscv_rvc_jump: 162 // For compressed jump instructions the immediate must be 163 // in the range [-2048, 2046]. 164 return Offset > 2046 || Offset < -2048; 165 case RISCV::fixup_riscv_branch: 166 // For conditional branch instructions the immediate must be 167 // in the range [-4096, 4095]. 168 return !isInt<13>(Offset); 169 } 170 } 171 172 void RISCVAsmBackend::relaxInstruction(MCInst &Inst, 173 const MCSubtargetInfo &STI) const { 174 MCInst Res; 175 switch (Inst.getOpcode()) { 176 default: 177 llvm_unreachable("Opcode not expected!"); 178 case RISCV::C_BEQZ: 179 case RISCV::C_BNEZ: 180 case RISCV::C_J: 181 case RISCV::C_JAL: { 182 bool Success = RISCVRVC::uncompress(Res, Inst, STI); 183 assert(Success && "Can't uncompress instruction"); 184 (void)Success; 185 break; 186 } 187 case RISCV::BEQ: 188 case RISCV::BNE: 189 case RISCV::BLT: 190 case RISCV::BGE: 191 case RISCV::BLTU: 192 case RISCV::BGEU: 193 Res.setOpcode(getRelaxedOpcode(Inst.getOpcode())); 194 Res.addOperand(Inst.getOperand(0)); 195 Res.addOperand(Inst.getOperand(1)); 196 Res.addOperand(Inst.getOperand(2)); 197 break; 198 } 199 Inst = std::move(Res); 200 } 201 202 bool RISCVAsmBackend::relaxDwarfLineAddr(MCDwarfLineAddrFragment &DF, 203 MCAsmLayout &Layout, 204 bool &WasRelaxed) const { 205 MCContext &C = Layout.getAssembler().getContext(); 206 207 int64_t LineDelta = DF.getLineDelta(); 208 const MCExpr &AddrDelta = DF.getAddrDelta(); 209 SmallVectorImpl<char> &Data = DF.getContents(); 210 SmallVectorImpl<MCFixup> &Fixups = DF.getFixups(); 211 size_t OldSize = Data.size(); 212 213 int64_t Value; 214 bool IsAbsolute = AddrDelta.evaluateKnownAbsolute(Value, Layout); 215 assert(IsAbsolute && "CFA with invalid expression"); 216 (void)IsAbsolute; 217 218 Data.clear(); 219 Fixups.clear(); 220 raw_svector_ostream OS(Data); 221 222 // INT64_MAX is a signal that this is actually a DW_LNE_end_sequence. 223 if (LineDelta != INT64_MAX) { 224 OS << uint8_t(dwarf::DW_LNS_advance_line); 225 encodeSLEB128(LineDelta, OS); 226 } 227 228 unsigned Offset; 229 std::pair<MCFixupKind, MCFixupKind> Fixup; 230 231 // According to the DWARF specification, the `DW_LNS_fixed_advance_pc` opcode 232 // takes a single unsigned half (unencoded) operand. The maximum encodable 233 // value is therefore 65535. Set a conservative upper bound for relaxation. 234 if (Value > 60000) { 235 unsigned PtrSize = C.getAsmInfo()->getCodePointerSize(); 236 237 OS << uint8_t(dwarf::DW_LNS_extended_op); 238 encodeULEB128(PtrSize + 1, OS); 239 240 OS << uint8_t(dwarf::DW_LNE_set_address); 241 Offset = OS.tell(); 242 assert((PtrSize == 4 || PtrSize == 8) && "Unexpected pointer size"); 243 Fixup = RISCV::getRelocPairForSize(PtrSize); 244 OS.write_zeros(PtrSize); 245 } else { 246 OS << uint8_t(dwarf::DW_LNS_fixed_advance_pc); 247 Offset = OS.tell(); 248 Fixup = RISCV::getRelocPairForSize(2); 249 support::endian::write<uint16_t>(OS, 0, llvm::endianness::little); 250 } 251 252 const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta); 253 Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(Fixup))); 254 Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(Fixup))); 255 256 if (LineDelta == INT64_MAX) { 257 OS << uint8_t(dwarf::DW_LNS_extended_op); 258 OS << uint8_t(1); 259 OS << uint8_t(dwarf::DW_LNE_end_sequence); 260 } else { 261 OS << uint8_t(dwarf::DW_LNS_copy); 262 } 263 264 WasRelaxed = OldSize != Data.size(); 265 return true; 266 } 267 268 bool RISCVAsmBackend::relaxDwarfCFA(MCDwarfCallFrameFragment &DF, 269 MCAsmLayout &Layout, 270 bool &WasRelaxed) const { 271 const MCExpr &AddrDelta = DF.getAddrDelta(); 272 SmallVectorImpl<char> &Data = DF.getContents(); 273 SmallVectorImpl<MCFixup> &Fixups = DF.getFixups(); 274 size_t OldSize = Data.size(); 275 276 int64_t Value; 277 if (AddrDelta.evaluateAsAbsolute(Value, Layout.getAssembler())) 278 return false; 279 bool IsAbsolute = AddrDelta.evaluateKnownAbsolute(Value, Layout); 280 assert(IsAbsolute && "CFA with invalid expression"); 281 (void)IsAbsolute; 282 283 Data.clear(); 284 Fixups.clear(); 285 raw_svector_ostream OS(Data); 286 287 assert( 288 Layout.getAssembler().getContext().getAsmInfo()->getMinInstAlignment() == 289 1 && 290 "expected 1-byte alignment"); 291 if (Value == 0) { 292 WasRelaxed = OldSize != Data.size(); 293 return true; 294 } 295 296 auto AddFixups = [&Fixups, &AddrDelta](unsigned Offset, 297 std::pair<unsigned, unsigned> Fixup) { 298 const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta); 299 Fixups.push_back( 300 MCFixup::create(Offset, MBE.getLHS(), 301 static_cast<MCFixupKind>(FirstLiteralRelocationKind + 302 std::get<0>(Fixup)))); 303 Fixups.push_back( 304 MCFixup::create(Offset, MBE.getRHS(), 305 static_cast<MCFixupKind>(FirstLiteralRelocationKind + 306 std::get<1>(Fixup)))); 307 }; 308 309 if (isUIntN(6, Value)) { 310 OS << uint8_t(dwarf::DW_CFA_advance_loc); 311 AddFixups(0, {ELF::R_RISCV_SET6, ELF::R_RISCV_SUB6}); 312 } else if (isUInt<8>(Value)) { 313 OS << uint8_t(dwarf::DW_CFA_advance_loc1); 314 support::endian::write<uint8_t>(OS, 0, llvm::endianness::little); 315 AddFixups(1, {ELF::R_RISCV_SET8, ELF::R_RISCV_SUB8}); 316 } else if (isUInt<16>(Value)) { 317 OS << uint8_t(dwarf::DW_CFA_advance_loc2); 318 support::endian::write<uint16_t>(OS, 0, llvm::endianness::little); 319 AddFixups(1, {ELF::R_RISCV_SET16, ELF::R_RISCV_SUB16}); 320 } else if (isUInt<32>(Value)) { 321 OS << uint8_t(dwarf::DW_CFA_advance_loc4); 322 support::endian::write<uint32_t>(OS, 0, llvm::endianness::little); 323 AddFixups(1, {ELF::R_RISCV_SET32, ELF::R_RISCV_SUB32}); 324 } else { 325 llvm_unreachable("unsupported CFA encoding"); 326 } 327 328 WasRelaxed = OldSize != Data.size(); 329 return true; 330 } 331 332 std::pair<bool, bool> RISCVAsmBackend::relaxLEB128(MCLEBFragment &LF, 333 MCAsmLayout &Layout, 334 int64_t &Value) const { 335 if (LF.isSigned()) 336 return std::make_pair(false, false); 337 const MCExpr &Expr = LF.getValue(); 338 if (ULEB128Reloc) { 339 LF.getFixups().push_back( 340 MCFixup::create(0, &Expr, FK_Data_leb128, Expr.getLoc())); 341 } 342 return std::make_pair(Expr.evaluateKnownAbsolute(Value, Layout), false); 343 } 344 345 // Given a compressed control flow instruction this function returns 346 // the expanded instruction. 347 unsigned RISCVAsmBackend::getRelaxedOpcode(unsigned Op) const { 348 switch (Op) { 349 default: 350 return Op; 351 case RISCV::C_BEQZ: 352 return RISCV::BEQ; 353 case RISCV::C_BNEZ: 354 return RISCV::BNE; 355 case RISCV::C_J: 356 case RISCV::C_JAL: // fall through. 357 return RISCV::JAL; 358 case RISCV::BEQ: 359 return RISCV::PseudoLongBEQ; 360 case RISCV::BNE: 361 return RISCV::PseudoLongBNE; 362 case RISCV::BLT: 363 return RISCV::PseudoLongBLT; 364 case RISCV::BGE: 365 return RISCV::PseudoLongBGE; 366 case RISCV::BLTU: 367 return RISCV::PseudoLongBLTU; 368 case RISCV::BGEU: 369 return RISCV::PseudoLongBGEU; 370 } 371 } 372 373 bool RISCVAsmBackend::mayNeedRelaxation(const MCInst &Inst, 374 const MCSubtargetInfo &STI) const { 375 return getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode(); 376 } 377 378 bool RISCVAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count, 379 const MCSubtargetInfo *STI) const { 380 // We mostly follow binutils' convention here: align to even boundary with a 381 // 0-fill padding. We emit up to 1 2-byte nop, though we use c.nop if RVC is 382 // enabled or 0-fill otherwise. The remainder is now padded with 4-byte nops. 383 384 // Instructions always are at even addresses. We must be in a data area or 385 // be unaligned due to some other reason. 386 if (Count % 2) { 387 OS.write("\0", 1); 388 Count -= 1; 389 } 390 391 bool UseCompressedNop = STI->hasFeature(RISCV::FeatureStdExtC) || 392 STI->hasFeature(RISCV::FeatureStdExtZca); 393 // The canonical nop on RVC is c.nop. 394 if (Count % 4 == 2) { 395 OS.write(UseCompressedNop ? "\x01\0" : "\0\0", 2); 396 Count -= 2; 397 } 398 399 // The canonical nop on RISC-V is addi x0, x0, 0. 400 for (; Count >= 4; Count -= 4) 401 OS.write("\x13\0\0\0", 4); 402 403 return true; 404 } 405 406 static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value, 407 MCContext &Ctx) { 408 switch (Fixup.getTargetKind()) { 409 default: 410 llvm_unreachable("Unknown fixup kind!"); 411 case RISCV::fixup_riscv_got_hi20: 412 case RISCV::fixup_riscv_tls_got_hi20: 413 case RISCV::fixup_riscv_tls_gd_hi20: 414 llvm_unreachable("Relocation should be unconditionally forced\n"); 415 case FK_Data_1: 416 case FK_Data_2: 417 case FK_Data_4: 418 case FK_Data_8: 419 case FK_Data_leb128: 420 return Value; 421 case RISCV::fixup_riscv_lo12_i: 422 case RISCV::fixup_riscv_pcrel_lo12_i: 423 case RISCV::fixup_riscv_tprel_lo12_i: 424 return Value & 0xfff; 425 case RISCV::fixup_riscv_12_i: 426 if (!isInt<12>(Value)) { 427 Ctx.reportError(Fixup.getLoc(), 428 "operand must be a constant 12-bit integer"); 429 } 430 return Value & 0xfff; 431 case RISCV::fixup_riscv_lo12_s: 432 case RISCV::fixup_riscv_pcrel_lo12_s: 433 case RISCV::fixup_riscv_tprel_lo12_s: 434 return (((Value >> 5) & 0x7f) << 25) | ((Value & 0x1f) << 7); 435 case RISCV::fixup_riscv_hi20: 436 case RISCV::fixup_riscv_pcrel_hi20: 437 case RISCV::fixup_riscv_tprel_hi20: 438 // Add 1 if bit 11 is 1, to compensate for low 12 bits being negative. 439 return ((Value + 0x800) >> 12) & 0xfffff; 440 case RISCV::fixup_riscv_jal: { 441 if (!isInt<21>(Value)) 442 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 443 if (Value & 0x1) 444 Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned"); 445 // Need to produce imm[19|10:1|11|19:12] from the 21-bit Value. 446 unsigned Sbit = (Value >> 20) & 0x1; 447 unsigned Hi8 = (Value >> 12) & 0xff; 448 unsigned Mid1 = (Value >> 11) & 0x1; 449 unsigned Lo10 = (Value >> 1) & 0x3ff; 450 // Inst{31} = Sbit; 451 // Inst{30-21} = Lo10; 452 // Inst{20} = Mid1; 453 // Inst{19-12} = Hi8; 454 Value = (Sbit << 19) | (Lo10 << 9) | (Mid1 << 8) | Hi8; 455 return Value; 456 } 457 case RISCV::fixup_riscv_branch: { 458 if (!isInt<13>(Value)) 459 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 460 if (Value & 0x1) 461 Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned"); 462 // Need to extract imm[12], imm[10:5], imm[4:1], imm[11] from the 13-bit 463 // Value. 464 unsigned Sbit = (Value >> 12) & 0x1; 465 unsigned Hi1 = (Value >> 11) & 0x1; 466 unsigned Mid6 = (Value >> 5) & 0x3f; 467 unsigned Lo4 = (Value >> 1) & 0xf; 468 // Inst{31} = Sbit; 469 // Inst{30-25} = Mid6; 470 // Inst{11-8} = Lo4; 471 // Inst{7} = Hi1; 472 Value = (Sbit << 31) | (Mid6 << 25) | (Lo4 << 8) | (Hi1 << 7); 473 return Value; 474 } 475 case RISCV::fixup_riscv_call: 476 case RISCV::fixup_riscv_call_plt: { 477 // Jalr will add UpperImm with the sign-extended 12-bit LowerImm, 478 // we need to add 0x800ULL before extract upper bits to reflect the 479 // effect of the sign extension. 480 uint64_t UpperImm = (Value + 0x800ULL) & 0xfffff000ULL; 481 uint64_t LowerImm = Value & 0xfffULL; 482 return UpperImm | ((LowerImm << 20) << 32); 483 } 484 case RISCV::fixup_riscv_rvc_jump: { 485 if (!isInt<12>(Value)) 486 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 487 // Need to produce offset[11|4|9:8|10|6|7|3:1|5] from the 11-bit Value. 488 unsigned Bit11 = (Value >> 11) & 0x1; 489 unsigned Bit4 = (Value >> 4) & 0x1; 490 unsigned Bit9_8 = (Value >> 8) & 0x3; 491 unsigned Bit10 = (Value >> 10) & 0x1; 492 unsigned Bit6 = (Value >> 6) & 0x1; 493 unsigned Bit7 = (Value >> 7) & 0x1; 494 unsigned Bit3_1 = (Value >> 1) & 0x7; 495 unsigned Bit5 = (Value >> 5) & 0x1; 496 Value = (Bit11 << 10) | (Bit4 << 9) | (Bit9_8 << 7) | (Bit10 << 6) | 497 (Bit6 << 5) | (Bit7 << 4) | (Bit3_1 << 1) | Bit5; 498 return Value; 499 } 500 case RISCV::fixup_riscv_rvc_branch: { 501 if (!isInt<9>(Value)) 502 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 503 // Need to produce offset[8|4:3], [reg 3 bit], offset[7:6|2:1|5] 504 unsigned Bit8 = (Value >> 8) & 0x1; 505 unsigned Bit7_6 = (Value >> 6) & 0x3; 506 unsigned Bit5 = (Value >> 5) & 0x1; 507 unsigned Bit4_3 = (Value >> 3) & 0x3; 508 unsigned Bit2_1 = (Value >> 1) & 0x3; 509 Value = (Bit8 << 12) | (Bit4_3 << 10) | (Bit7_6 << 5) | (Bit2_1 << 3) | 510 (Bit5 << 2); 511 return Value; 512 } 513 514 } 515 } 516 517 bool RISCVAsmBackend::evaluateTargetFixup( 518 const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFixup &Fixup, 519 const MCFragment *DF, const MCValue &Target, const MCSubtargetInfo *STI, 520 uint64_t &Value, bool &WasForced) { 521 const MCFixup *AUIPCFixup; 522 const MCFragment *AUIPCDF; 523 MCValue AUIPCTarget; 524 switch (Fixup.getTargetKind()) { 525 default: 526 llvm_unreachable("Unexpected fixup kind!"); 527 case RISCV::fixup_riscv_pcrel_hi20: 528 AUIPCFixup = &Fixup; 529 AUIPCDF = DF; 530 AUIPCTarget = Target; 531 break; 532 case RISCV::fixup_riscv_pcrel_lo12_i: 533 case RISCV::fixup_riscv_pcrel_lo12_s: { 534 AUIPCFixup = cast<RISCVMCExpr>(Fixup.getValue())->getPCRelHiFixup(&AUIPCDF); 535 if (!AUIPCFixup) { 536 Asm.getContext().reportError(Fixup.getLoc(), 537 "could not find corresponding %pcrel_hi"); 538 return true; 539 } 540 541 // MCAssembler::evaluateFixup will emit an error for this case when it sees 542 // the %pcrel_hi, so don't duplicate it when also seeing the %pcrel_lo. 543 const MCExpr *AUIPCExpr = AUIPCFixup->getValue(); 544 if (!AUIPCExpr->evaluateAsRelocatable(AUIPCTarget, &Layout, AUIPCFixup)) 545 return true; 546 break; 547 } 548 } 549 550 if (!AUIPCTarget.getSymA() || AUIPCTarget.getSymB()) 551 return false; 552 553 const MCSymbolRefExpr *A = AUIPCTarget.getSymA(); 554 const MCSymbol &SA = A->getSymbol(); 555 if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) 556 return false; 557 558 auto *Writer = Asm.getWriterPtr(); 559 if (!Writer) 560 return false; 561 562 bool IsResolved = Writer->isSymbolRefDifferenceFullyResolvedImpl( 563 Asm, SA, *AUIPCDF, false, true); 564 if (!IsResolved) 565 return false; 566 567 Value = Layout.getSymbolOffset(SA) + AUIPCTarget.getConstant(); 568 Value -= Layout.getFragmentOffset(AUIPCDF) + AUIPCFixup->getOffset(); 569 570 if (shouldForceRelocation(Asm, *AUIPCFixup, AUIPCTarget, STI)) { 571 WasForced = true; 572 return false; 573 } 574 575 return true; 576 } 577 578 bool RISCVAsmBackend::handleAddSubRelocations(const MCAsmLayout &Layout, 579 const MCFragment &F, 580 const MCFixup &Fixup, 581 const MCValue &Target, 582 uint64_t &FixedValue) const { 583 uint64_t FixedValueA, FixedValueB; 584 unsigned TA = 0, TB = 0; 585 switch (Fixup.getKind()) { 586 case llvm::FK_Data_1: 587 TA = ELF::R_RISCV_ADD8; 588 TB = ELF::R_RISCV_SUB8; 589 break; 590 case llvm::FK_Data_2: 591 TA = ELF::R_RISCV_ADD16; 592 TB = ELF::R_RISCV_SUB16; 593 break; 594 case llvm::FK_Data_4: 595 TA = ELF::R_RISCV_ADD32; 596 TB = ELF::R_RISCV_SUB32; 597 break; 598 case llvm::FK_Data_8: 599 TA = ELF::R_RISCV_ADD64; 600 TB = ELF::R_RISCV_SUB64; 601 break; 602 case llvm::FK_Data_leb128: 603 TA = ELF::R_RISCV_SET_ULEB128; 604 TB = ELF::R_RISCV_SUB_ULEB128; 605 break; 606 default: 607 llvm_unreachable("unsupported fixup size"); 608 } 609 MCValue A = MCValue::get(Target.getSymA(), nullptr, Target.getConstant()); 610 MCValue B = MCValue::get(Target.getSymB()); 611 auto FA = MCFixup::create( 612 Fixup.getOffset(), nullptr, 613 static_cast<MCFixupKind>(FirstLiteralRelocationKind + TA)); 614 auto FB = MCFixup::create( 615 Fixup.getOffset(), nullptr, 616 static_cast<MCFixupKind>(FirstLiteralRelocationKind + TB)); 617 auto &Asm = Layout.getAssembler(); 618 Asm.getWriter().recordRelocation(Asm, Layout, &F, FA, A, FixedValueA); 619 Asm.getWriter().recordRelocation(Asm, Layout, &F, FB, B, FixedValueB); 620 FixedValue = FixedValueA - FixedValueB; 621 return true; 622 } 623 624 void RISCVAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, 625 const MCValue &Target, 626 MutableArrayRef<char> Data, uint64_t Value, 627 bool IsResolved, 628 const MCSubtargetInfo *STI) const { 629 MCFixupKind Kind = Fixup.getKind(); 630 if (Kind >= FirstLiteralRelocationKind) 631 return; 632 MCContext &Ctx = Asm.getContext(); 633 MCFixupKindInfo Info = getFixupKindInfo(Kind); 634 if (!Value) 635 return; // Doesn't change encoding. 636 // Apply any target-specific value adjustments. 637 Value = adjustFixupValue(Fixup, Value, Ctx); 638 639 // Shift the value into position. 640 Value <<= Info.TargetOffset; 641 642 unsigned Offset = Fixup.getOffset(); 643 unsigned NumBytes = alignTo(Info.TargetSize + Info.TargetOffset, 8) / 8; 644 645 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!"); 646 647 // For each byte of the fragment that the fixup touches, mask in the 648 // bits from the fixup value. 649 for (unsigned i = 0; i != NumBytes; ++i) { 650 Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff); 651 } 652 } 653 654 // Linker relaxation may change code size. We have to insert Nops 655 // for .align directive when linker relaxation enabled. So then Linker 656 // could satisfy alignment by removing Nops. 657 // The function return the total Nops Size we need to insert. 658 bool RISCVAsmBackend::shouldInsertExtraNopBytesForCodeAlign( 659 const MCAlignFragment &AF, unsigned &Size) { 660 // Calculate Nops Size only when linker relaxation enabled. 661 const MCSubtargetInfo *STI = AF.getSubtargetInfo(); 662 if (!STI->hasFeature(RISCV::FeatureRelax)) 663 return false; 664 665 bool UseCompressedNop = STI->hasFeature(RISCV::FeatureStdExtC) || 666 STI->hasFeature(RISCV::FeatureStdExtZca); 667 unsigned MinNopLen = UseCompressedNop ? 2 : 4; 668 669 if (AF.getAlignment() <= MinNopLen) { 670 return false; 671 } else { 672 Size = AF.getAlignment().value() - MinNopLen; 673 return true; 674 } 675 } 676 677 // We need to insert R_RISCV_ALIGN relocation type to indicate the 678 // position of Nops and the total bytes of the Nops have been inserted 679 // when linker relaxation enabled. 680 // The function insert fixup_riscv_align fixup which eventually will 681 // transfer to R_RISCV_ALIGN relocation type. 682 bool RISCVAsmBackend::shouldInsertFixupForCodeAlign(MCAssembler &Asm, 683 const MCAsmLayout &Layout, 684 MCAlignFragment &AF) { 685 // Insert the fixup only when linker relaxation enabled. 686 const MCSubtargetInfo *STI = AF.getSubtargetInfo(); 687 if (!STI->hasFeature(RISCV::FeatureRelax)) 688 return false; 689 690 // Calculate total Nops we need to insert. If there are none to insert 691 // then simply return. 692 unsigned Count; 693 if (!shouldInsertExtraNopBytesForCodeAlign(AF, Count) || (Count == 0)) 694 return false; 695 696 MCContext &Ctx = Asm.getContext(); 697 const MCExpr *Dummy = MCConstantExpr::create(0, Ctx); 698 // Create fixup_riscv_align fixup. 699 MCFixup Fixup = 700 MCFixup::create(0, Dummy, MCFixupKind(RISCV::fixup_riscv_align), SMLoc()); 701 702 uint64_t FixedValue = 0; 703 MCValue NopBytes = MCValue::get(Count); 704 705 Asm.getWriter().recordRelocation(Asm, Layout, &AF, Fixup, NopBytes, 706 FixedValue); 707 708 return true; 709 } 710 711 std::unique_ptr<MCObjectTargetWriter> 712 RISCVAsmBackend::createObjectTargetWriter() const { 713 return createRISCVELFObjectWriter(OSABI, Is64Bit); 714 } 715 716 MCAsmBackend *llvm::createRISCVAsmBackend(const Target &T, 717 const MCSubtargetInfo &STI, 718 const MCRegisterInfo &MRI, 719 const MCTargetOptions &Options) { 720 const Triple &TT = STI.getTargetTriple(); 721 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS()); 722 return new RISCVAsmBackend(STI, OSABI, TT.isArch64Bit(), Options); 723 } 724