xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/AsmParser/RISCVAsmParser.cpp (revision da5432eda807c4b7232d030d5157d5b417ea4f52)
1 //===-- RISCVAsmParser.cpp - Parse RISCV assembly to MCInst instructions --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCTargetDesc/RISCVAsmBackend.h"
10 #include "MCTargetDesc/RISCVBaseInfo.h"
11 #include "MCTargetDesc/RISCVInstPrinter.h"
12 #include "MCTargetDesc/RISCVMCExpr.h"
13 #include "MCTargetDesc/RISCVMCTargetDesc.h"
14 #include "MCTargetDesc/RISCVMatInt.h"
15 #include "MCTargetDesc/RISCVTargetStreamer.h"
16 #include "TargetInfo/RISCVTargetInfo.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallBitVector.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/MC/MCAssembler.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCInst.h"
26 #include "llvm/MC/MCInstBuilder.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/MC/MCObjectFileInfo.h"
29 #include "llvm/MC/MCParser/MCAsmLexer.h"
30 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
31 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCStreamer.h"
34 #include "llvm/MC/MCSubtargetInfo.h"
35 #include "llvm/MC/MCValue.h"
36 #include "llvm/MC/TargetRegistry.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/RISCVAttributes.h"
40 #include "llvm/Support/RISCVISAInfo.h"
41 
42 #include <limits>
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "riscv-asm-parser"
47 
48 STATISTIC(RISCVNumInstrsCompressed,
49           "Number of RISC-V Compressed instructions emitted");
50 
51 namespace llvm {
52 extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
53 } // namespace llvm
54 
55 namespace {
56 struct RISCVOperand;
57 
58 struct ParserOptionsSet {
59   bool IsPicEnabled;
60 };
61 
62 class RISCVAsmParser : public MCTargetAsmParser {
63   SmallVector<FeatureBitset, 4> FeatureBitStack;
64 
65   SmallVector<ParserOptionsSet, 4> ParserOptionsStack;
66   ParserOptionsSet ParserOptions;
67 
68   SMLoc getLoc() const { return getParser().getTok().getLoc(); }
69   bool isRV64() const { return getSTI().hasFeature(RISCV::Feature64Bit); }
70   bool isRV32E() const { return getSTI().hasFeature(RISCV::FeatureRV32E); }
71 
72   RISCVTargetStreamer &getTargetStreamer() {
73     assert(getParser().getStreamer().getTargetStreamer() &&
74            "do not have a target streamer");
75     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
76     return static_cast<RISCVTargetStreamer &>(TS);
77   }
78 
79   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
80                                       unsigned Kind) override;
81 
82   bool generateImmOutOfRangeError(OperandVector &Operands, uint64_t ErrorInfo,
83                                   int64_t Lower, int64_t Upper, Twine Msg);
84 
85   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
86                                OperandVector &Operands, MCStreamer &Out,
87                                uint64_t &ErrorInfo,
88                                bool MatchingInlineAsm) override;
89 
90   bool parseRegister(MCRegister &RegNo, SMLoc &StartLoc,
91                      SMLoc &EndLoc) override;
92   OperandMatchResultTy tryParseRegister(MCRegister &RegNo, SMLoc &StartLoc,
93                                         SMLoc &EndLoc) override;
94 
95   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
96                         SMLoc NameLoc, OperandVector &Operands) override;
97 
98   bool ParseDirective(AsmToken DirectiveID) override;
99 
100   // Helper to actually emit an instruction to the MCStreamer. Also, when
101   // possible, compression of the instruction is performed.
102   void emitToStreamer(MCStreamer &S, const MCInst &Inst);
103 
104   // Helper to emit a combination of LUI, ADDI(W), and SLLI instructions that
105   // synthesize the desired immedate value into the destination register.
106   void emitLoadImm(MCRegister DestReg, int64_t Value, MCStreamer &Out);
107 
108   // Helper to emit a combination of AUIPC and SecondOpcode. Used to implement
109   // helpers such as emitLoadLocalAddress and emitLoadAddress.
110   void emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
111                          const MCExpr *Symbol, RISCVMCExpr::VariantKind VKHi,
112                          unsigned SecondOpcode, SMLoc IDLoc, MCStreamer &Out);
113 
114   // Helper to emit pseudo instruction "lla" used in PC-rel addressing.
115   void emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
116 
117   // Helper to emit pseudo instruction "la" used in GOT/PC-rel addressing.
118   void emitLoadAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
119 
120   // Helper to emit pseudo instruction "la.tls.ie" used in initial-exec TLS
121   // addressing.
122   void emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
123 
124   // Helper to emit pseudo instruction "la.tls.gd" used in global-dynamic TLS
125   // addressing.
126   void emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
127 
128   // Helper to emit pseudo load/store instruction with a symbol.
129   void emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
130                            MCStreamer &Out, bool HasTmpReg);
131 
132   // Helper to emit pseudo sign/zero extend instruction.
133   void emitPseudoExtend(MCInst &Inst, bool SignExtend, int64_t Width,
134                         SMLoc IDLoc, MCStreamer &Out);
135 
136   // Helper to emit pseudo vmsge{u}.vx instruction.
137   void emitVMSGE(MCInst &Inst, unsigned Opcode, SMLoc IDLoc, MCStreamer &Out);
138 
139   // Checks that a PseudoAddTPRel is using x4/tp in its second input operand.
140   // Enforcing this using a restricted register class for the second input
141   // operand of PseudoAddTPRel results in a poor diagnostic due to the fact
142   // 'add' is an overloaded mnemonic.
143   bool checkPseudoAddTPRel(MCInst &Inst, OperandVector &Operands);
144 
145   // Check instruction constraints.
146   bool validateInstruction(MCInst &Inst, OperandVector &Operands);
147 
148   /// Helper for processing MC instructions that have been successfully matched
149   /// by MatchAndEmitInstruction. Modifications to the emitted instructions,
150   /// like the expansion of pseudo instructions (e.g., "li"), can be performed
151   /// in this method.
152   bool processInstruction(MCInst &Inst, SMLoc IDLoc, OperandVector &Operands,
153                           MCStreamer &Out);
154 
155 // Auto-generated instruction matching functions
156 #define GET_ASSEMBLER_HEADER
157 #include "RISCVGenAsmMatcher.inc"
158 
159   OperandMatchResultTy parseCSRSystemRegister(OperandVector &Operands);
160   OperandMatchResultTy parseImmediate(OperandVector &Operands);
161   OperandMatchResultTy parseRegister(OperandVector &Operands,
162                                      bool AllowParens = false);
163   OperandMatchResultTy parseMemOpBaseReg(OperandVector &Operands);
164   OperandMatchResultTy parseZeroOffsetMemOp(OperandVector &Operands);
165   OperandMatchResultTy parseOperandWithModifier(OperandVector &Operands);
166   OperandMatchResultTy parseBareSymbol(OperandVector &Operands);
167   OperandMatchResultTy parseCallSymbol(OperandVector &Operands);
168   OperandMatchResultTy parsePseudoJumpSymbol(OperandVector &Operands);
169   OperandMatchResultTy parseJALOffset(OperandVector &Operands);
170   OperandMatchResultTy parseVTypeI(OperandVector &Operands);
171   OperandMatchResultTy parseMaskReg(OperandVector &Operands);
172   OperandMatchResultTy parseInsnDirectiveOpcode(OperandVector &Operands);
173   OperandMatchResultTy parseGPRAsFPR(OperandVector &Operands);
174 
175   bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
176 
177   bool parseDirectiveOption();
178   bool parseDirectiveAttribute();
179   bool parseDirectiveInsn(SMLoc L);
180   bool parseDirectiveVariantCC();
181 
182   void setFeatureBits(uint64_t Feature, StringRef FeatureString) {
183     if (!(getSTI().getFeatureBits()[Feature])) {
184       MCSubtargetInfo &STI = copySTI();
185       setAvailableFeatures(
186           ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
187     }
188   }
189 
190   bool getFeatureBits(uint64_t Feature) {
191     return getSTI().getFeatureBits()[Feature];
192   }
193 
194   void clearFeatureBits(uint64_t Feature, StringRef FeatureString) {
195     if (getSTI().getFeatureBits()[Feature]) {
196       MCSubtargetInfo &STI = copySTI();
197       setAvailableFeatures(
198           ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
199     }
200   }
201 
202   void pushFeatureBits() {
203     assert(FeatureBitStack.size() == ParserOptionsStack.size() &&
204            "These two stacks must be kept synchronized");
205     FeatureBitStack.push_back(getSTI().getFeatureBits());
206     ParserOptionsStack.push_back(ParserOptions);
207   }
208 
209   bool popFeatureBits() {
210     assert(FeatureBitStack.size() == ParserOptionsStack.size() &&
211            "These two stacks must be kept synchronized");
212     if (FeatureBitStack.empty())
213       return true;
214 
215     FeatureBitset FeatureBits = FeatureBitStack.pop_back_val();
216     copySTI().setFeatureBits(FeatureBits);
217     setAvailableFeatures(ComputeAvailableFeatures(FeatureBits));
218 
219     ParserOptions = ParserOptionsStack.pop_back_val();
220 
221     return false;
222   }
223 
224   std::unique_ptr<RISCVOperand> defaultMaskRegOp() const;
225 
226 public:
227   enum RISCVMatchResultTy {
228     Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY,
229 #define GET_OPERAND_DIAGNOSTIC_TYPES
230 #include "RISCVGenAsmMatcher.inc"
231 #undef GET_OPERAND_DIAGNOSTIC_TYPES
232   };
233 
234   static bool classifySymbolRef(const MCExpr *Expr,
235                                 RISCVMCExpr::VariantKind &Kind);
236 
237   RISCVAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
238                  const MCInstrInfo &MII, const MCTargetOptions &Options)
239       : MCTargetAsmParser(Options, STI, MII) {
240     Parser.addAliasForDirective(".half", ".2byte");
241     Parser.addAliasForDirective(".hword", ".2byte");
242     Parser.addAliasForDirective(".word", ".4byte");
243     Parser.addAliasForDirective(".dword", ".8byte");
244     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
245 
246     auto ABIName = StringRef(Options.ABIName);
247     if (ABIName.endswith("f") &&
248         !getSTI().getFeatureBits()[RISCV::FeatureStdExtF]) {
249       errs() << "Hard-float 'f' ABI can't be used for a target that "
250                 "doesn't support the F instruction set extension (ignoring "
251                 "target-abi)\n";
252     } else if (ABIName.endswith("d") &&
253                !getSTI().getFeatureBits()[RISCV::FeatureStdExtD]) {
254       errs() << "Hard-float 'd' ABI can't be used for a target that "
255                 "doesn't support the D instruction set extension (ignoring "
256                 "target-abi)\n";
257     }
258 
259     // Use computeTargetABI to check if ABIName is valid. If invalid, output
260     // error message.
261     RISCVABI::computeTargetABI(STI.getTargetTriple(), STI.getFeatureBits(),
262                                ABIName);
263 
264     const MCObjectFileInfo *MOFI = Parser.getContext().getObjectFileInfo();
265     ParserOptions.IsPicEnabled = MOFI->isPositionIndependent();
266   }
267 };
268 
269 /// RISCVOperand - Instances of this class represent a parsed machine
270 /// instruction
271 struct RISCVOperand : public MCParsedAsmOperand {
272 
273   enum class KindTy {
274     Token,
275     Register,
276     Immediate,
277     SystemRegister,
278     VType,
279   } Kind;
280 
281   bool IsRV64;
282 
283   bool IsGPRAsFPR;
284 
285   struct RegOp {
286     MCRegister RegNum;
287   };
288 
289   struct ImmOp {
290     const MCExpr *Val;
291   };
292 
293   struct SysRegOp {
294     const char *Data;
295     unsigned Length;
296     unsigned Encoding;
297     // FIXME: Add the Encoding parsed fields as needed for checks,
298     // e.g.: read/write or user/supervisor/machine privileges.
299   };
300 
301   struct VTypeOp {
302     unsigned Val;
303   };
304 
305   SMLoc StartLoc, EndLoc;
306   union {
307     StringRef Tok;
308     RegOp Reg;
309     ImmOp Imm;
310     struct SysRegOp SysReg;
311     struct VTypeOp VType;
312   };
313 
314   RISCVOperand(KindTy K) : Kind(K) {}
315 
316 public:
317   RISCVOperand(const RISCVOperand &o) : MCParsedAsmOperand() {
318     Kind = o.Kind;
319     IsRV64 = o.IsRV64;
320     StartLoc = o.StartLoc;
321     EndLoc = o.EndLoc;
322     switch (Kind) {
323     case KindTy::Register:
324       Reg = o.Reg;
325       break;
326     case KindTy::Immediate:
327       Imm = o.Imm;
328       break;
329     case KindTy::Token:
330       Tok = o.Tok;
331       break;
332     case KindTy::SystemRegister:
333       SysReg = o.SysReg;
334       break;
335     case KindTy::VType:
336       VType = o.VType;
337       break;
338     }
339   }
340 
341   bool isToken() const override { return Kind == KindTy::Token; }
342   bool isReg() const override { return Kind == KindTy::Register; }
343   bool isV0Reg() const {
344     return Kind == KindTy::Register && Reg.RegNum == RISCV::V0;
345   }
346   bool isImm() const override { return Kind == KindTy::Immediate; }
347   bool isMem() const override { return false; }
348   bool isSystemRegister() const { return Kind == KindTy::SystemRegister; }
349 
350   bool isGPR() const {
351     return Kind == KindTy::Register &&
352            RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(Reg.RegNum);
353   }
354 
355   bool isGPRAsFPR() const { return isGPR() && IsGPRAsFPR; }
356 
357   bool isGPRF64AsFPR() const { return isGPR() && IsGPRAsFPR && IsRV64; }
358 
359   bool isGPRPF64AsFPR() const {
360     return isGPR() && IsGPRAsFPR && !IsRV64 && !((Reg.RegNum - RISCV::X0) & 1);
361   }
362 
363   static bool evaluateConstantImm(const MCExpr *Expr, int64_t &Imm,
364                                   RISCVMCExpr::VariantKind &VK) {
365     if (auto *RE = dyn_cast<RISCVMCExpr>(Expr)) {
366       VK = RE->getKind();
367       return RE->evaluateAsConstant(Imm);
368     }
369 
370     if (auto CE = dyn_cast<MCConstantExpr>(Expr)) {
371       VK = RISCVMCExpr::VK_RISCV_None;
372       Imm = CE->getValue();
373       return true;
374     }
375 
376     return false;
377   }
378 
379   // True if operand is a symbol with no modifiers, or a constant with no
380   // modifiers and isShiftedInt<N-1, 1>(Op).
381   template <int N> bool isBareSimmNLsb0() const {
382     int64_t Imm;
383     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
384     if (!isImm())
385       return false;
386     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
387     bool IsValid;
388     if (!IsConstantImm)
389       IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
390     else
391       IsValid = isShiftedInt<N - 1, 1>(Imm);
392     return IsValid && VK == RISCVMCExpr::VK_RISCV_None;
393   }
394 
395   // Predicate methods for AsmOperands defined in RISCVInstrInfo.td
396 
397   bool isBareSymbol() const {
398     int64_t Imm;
399     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
400     // Must be of 'immediate' type but not a constant.
401     if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
402       return false;
403     return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
404            VK == RISCVMCExpr::VK_RISCV_None;
405   }
406 
407   bool isCallSymbol() const {
408     int64_t Imm;
409     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
410     // Must be of 'immediate' type but not a constant.
411     if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
412       return false;
413     return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
414            (VK == RISCVMCExpr::VK_RISCV_CALL ||
415             VK == RISCVMCExpr::VK_RISCV_CALL_PLT);
416   }
417 
418   bool isPseudoJumpSymbol() const {
419     int64_t Imm;
420     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
421     // Must be of 'immediate' type but not a constant.
422     if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
423       return false;
424     return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
425            VK == RISCVMCExpr::VK_RISCV_CALL;
426   }
427 
428   bool isTPRelAddSymbol() const {
429     int64_t Imm;
430     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
431     // Must be of 'immediate' type but not a constant.
432     if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
433       return false;
434     return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
435            VK == RISCVMCExpr::VK_RISCV_TPREL_ADD;
436   }
437 
438   bool isCSRSystemRegister() const { return isSystemRegister(); }
439 
440   bool isVTypeImm(unsigned N) const {
441     int64_t Imm;
442     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
443     if (!isImm())
444       return false;
445     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
446     return IsConstantImm && isUIntN(N, Imm) && VK == RISCVMCExpr::VK_RISCV_None;
447   }
448 
449   // If the last operand of the vsetvli/vsetvli instruction is a constant
450   // expression, KindTy is Immediate.
451   bool isVTypeI10() const {
452     if (Kind == KindTy::Immediate)
453       return isVTypeImm(10);
454     return Kind == KindTy::VType;
455   }
456   bool isVTypeI11() const {
457     if (Kind == KindTy::Immediate)
458       return isVTypeImm(11);
459     return Kind == KindTy::VType;
460   }
461 
462   /// Return true if the operand is a valid for the fence instruction e.g.
463   /// ('iorw').
464   bool isFenceArg() const {
465     if (!isImm())
466       return false;
467 
468     int64_t Imm;
469     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
470     if (evaluateConstantImm(getImm(), Imm, VK)) {
471       // Only accept 0 as a constant immediate.
472       return VK == RISCVMCExpr::VK_RISCV_None && Imm == 0;
473     }
474 
475     auto *SVal = dyn_cast<MCSymbolRefExpr>(getImm());
476 
477     if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
478       return false;
479 
480     StringRef Str = SVal->getSymbol().getName();
481     // Letters must be unique, taken from 'iorw', and in ascending order. This
482     // holds as long as each individual character is one of 'iorw' and is
483     // greater than the previous character.
484     char Prev = '\0';
485     for (char c : Str) {
486       if (c != 'i' && c != 'o' && c != 'r' && c != 'w')
487         return false;
488       if (c <= Prev)
489         return false;
490       Prev = c;
491     }
492     return true;
493   }
494 
495   /// Return true if the operand is a valid floating point rounding mode.
496   bool isFRMArg() const {
497     if (!isImm())
498       return false;
499     const MCExpr *Val = getImm();
500     auto *SVal = dyn_cast<MCSymbolRefExpr>(Val);
501     if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
502       return false;
503 
504     StringRef Str = SVal->getSymbol().getName();
505 
506     return RISCVFPRndMode::stringToRoundingMode(Str) != RISCVFPRndMode::Invalid;
507   }
508 
509   bool isImmXLenLI() const {
510     int64_t Imm;
511     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
512     if (!isImm())
513       return false;
514     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
515     if (VK == RISCVMCExpr::VK_RISCV_LO || VK == RISCVMCExpr::VK_RISCV_PCREL_LO)
516       return true;
517     // Given only Imm, ensuring that the actually specified constant is either
518     // a signed or unsigned 64-bit number is unfortunately impossible.
519     return IsConstantImm && VK == RISCVMCExpr::VK_RISCV_None &&
520            (isRV64() || (isInt<32>(Imm) || isUInt<32>(Imm)));
521   }
522 
523   bool isUImmLog2XLen() const {
524     int64_t Imm;
525     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
526     if (!isImm())
527       return false;
528     if (!evaluateConstantImm(getImm(), Imm, VK) ||
529         VK != RISCVMCExpr::VK_RISCV_None)
530       return false;
531     return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
532   }
533 
534   bool isUImmLog2XLenNonZero() const {
535     int64_t Imm;
536     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
537     if (!isImm())
538       return false;
539     if (!evaluateConstantImm(getImm(), Imm, VK) ||
540         VK != RISCVMCExpr::VK_RISCV_None)
541       return false;
542     if (Imm == 0)
543       return false;
544     return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
545   }
546 
547   bool isUImmLog2XLenHalf() const {
548     int64_t Imm;
549     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
550     if (!isImm())
551       return false;
552     if (!evaluateConstantImm(getImm(), Imm, VK) ||
553         VK != RISCVMCExpr::VK_RISCV_None)
554       return false;
555     return (isRV64() && isUInt<5>(Imm)) || isUInt<4>(Imm);
556   }
557 
558   template <unsigned N> bool IsUImm() const {
559     int64_t Imm;
560     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
561     if (!isImm())
562       return false;
563     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
564     return IsConstantImm && isUInt<N>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
565   }
566 
567   bool isUImm2() { return IsUImm<2>(); }
568   bool isUImm3() { return IsUImm<3>(); }
569   bool isUImm5() { return IsUImm<5>(); }
570   bool isUImm7() { return IsUImm<7>(); }
571 
572   bool isRnumArg() const {
573     int64_t Imm;
574     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
575     if (!isImm())
576       return false;
577     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
578     return IsConstantImm && Imm >= INT64_C(0) && Imm <= INT64_C(10) &&
579            VK == RISCVMCExpr::VK_RISCV_None;
580   }
581 
582   bool isSImm5() const {
583     if (!isImm())
584       return false;
585     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
586     int64_t Imm;
587     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
588     return IsConstantImm && isInt<5>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
589   }
590 
591   bool isSImm6() const {
592     if (!isImm())
593       return false;
594     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
595     int64_t Imm;
596     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
597     return IsConstantImm && isInt<6>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
598   }
599 
600   bool isSImm6NonZero() const {
601     if (!isImm())
602       return false;
603     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
604     int64_t Imm;
605     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
606     return IsConstantImm && isInt<6>(Imm) && (Imm != 0) &&
607            VK == RISCVMCExpr::VK_RISCV_None;
608   }
609 
610   bool isCLUIImm() const {
611     if (!isImm())
612       return false;
613     int64_t Imm;
614     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
615     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
616     return IsConstantImm && (Imm != 0) &&
617            (isUInt<5>(Imm) || (Imm >= 0xfffe0 && Imm <= 0xfffff)) &&
618            VK == RISCVMCExpr::VK_RISCV_None;
619   }
620 
621   bool isUImm7Lsb00() const {
622     if (!isImm())
623       return false;
624     int64_t Imm;
625     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
626     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
627     return IsConstantImm && isShiftedUInt<5, 2>(Imm) &&
628            VK == RISCVMCExpr::VK_RISCV_None;
629   }
630 
631   bool isUImm8Lsb00() const {
632     if (!isImm())
633       return false;
634     int64_t Imm;
635     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
636     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
637     return IsConstantImm && isShiftedUInt<6, 2>(Imm) &&
638            VK == RISCVMCExpr::VK_RISCV_None;
639   }
640 
641   bool isUImm8Lsb000() const {
642     if (!isImm())
643       return false;
644     int64_t Imm;
645     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
646     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
647     return IsConstantImm && isShiftedUInt<5, 3>(Imm) &&
648            VK == RISCVMCExpr::VK_RISCV_None;
649   }
650 
651   bool isSImm9Lsb0() const { return isBareSimmNLsb0<9>(); }
652 
653   bool isUImm9Lsb000() const {
654     if (!isImm())
655       return false;
656     int64_t Imm;
657     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
658     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
659     return IsConstantImm && isShiftedUInt<6, 3>(Imm) &&
660            VK == RISCVMCExpr::VK_RISCV_None;
661   }
662 
663   bool isUImm10Lsb00NonZero() const {
664     if (!isImm())
665       return false;
666     int64_t Imm;
667     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
668     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
669     return IsConstantImm && isShiftedUInt<8, 2>(Imm) && (Imm != 0) &&
670            VK == RISCVMCExpr::VK_RISCV_None;
671   }
672 
673   bool isSImm12() const {
674     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
675     int64_t Imm;
676     bool IsValid;
677     if (!isImm())
678       return false;
679     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
680     if (!IsConstantImm)
681       IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
682     else
683       IsValid = isInt<12>(Imm);
684     return IsValid && ((IsConstantImm && VK == RISCVMCExpr::VK_RISCV_None) ||
685                        VK == RISCVMCExpr::VK_RISCV_LO ||
686                        VK == RISCVMCExpr::VK_RISCV_PCREL_LO ||
687                        VK == RISCVMCExpr::VK_RISCV_TPREL_LO);
688   }
689 
690   bool isSImm12Lsb0() const { return isBareSimmNLsb0<12>(); }
691 
692   bool isSImm12Lsb00000() const {
693     if (!isImm())
694       return false;
695     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
696     int64_t Imm;
697     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
698     return IsConstantImm && isShiftedInt<7, 5>(Imm) &&
699            VK == RISCVMCExpr::VK_RISCV_None;
700   }
701 
702   bool isSImm13Lsb0() const { return isBareSimmNLsb0<13>(); }
703 
704   bool isSImm10Lsb0000NonZero() const {
705     if (!isImm())
706       return false;
707     int64_t Imm;
708     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
709     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
710     return IsConstantImm && (Imm != 0) && isShiftedInt<6, 4>(Imm) &&
711            VK == RISCVMCExpr::VK_RISCV_None;
712   }
713 
714   bool isUImm20LUI() const {
715     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
716     int64_t Imm;
717     bool IsValid;
718     if (!isImm())
719       return false;
720     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
721     if (!IsConstantImm) {
722       IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
723       return IsValid && (VK == RISCVMCExpr::VK_RISCV_HI ||
724                          VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
725     } else {
726       return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
727                                  VK == RISCVMCExpr::VK_RISCV_HI ||
728                                  VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
729     }
730   }
731 
732   bool isUImm20AUIPC() const {
733     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
734     int64_t Imm;
735     bool IsValid;
736     if (!isImm())
737       return false;
738     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
739     if (!IsConstantImm) {
740       IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
741       return IsValid && (VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
742                          VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
743                          VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
744                          VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI);
745     } else {
746       return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
747                                  VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
748                                  VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
749                                  VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
750                                  VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI);
751     }
752   }
753 
754   bool isSImm21Lsb0JAL() const { return isBareSimmNLsb0<21>(); }
755 
756   bool isImmZero() const {
757     if (!isImm())
758       return false;
759     int64_t Imm;
760     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
761     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
762     return IsConstantImm && (Imm == 0) && VK == RISCVMCExpr::VK_RISCV_None;
763   }
764 
765   bool isSImm5Plus1() const {
766     if (!isImm())
767       return false;
768     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
769     int64_t Imm;
770     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
771     return IsConstantImm && isInt<5>(Imm - 1) &&
772            VK == RISCVMCExpr::VK_RISCV_None;
773   }
774 
775   /// getStartLoc - Gets location of the first token of this operand
776   SMLoc getStartLoc() const override { return StartLoc; }
777   /// getEndLoc - Gets location of the last token of this operand
778   SMLoc getEndLoc() const override { return EndLoc; }
779   /// True if this operand is for an RV64 instruction
780   bool isRV64() const { return IsRV64; }
781 
782   unsigned getReg() const override {
783     assert(Kind == KindTy::Register && "Invalid type access!");
784     return Reg.RegNum.id();
785   }
786 
787   StringRef getSysReg() const {
788     assert(Kind == KindTy::SystemRegister && "Invalid type access!");
789     return StringRef(SysReg.Data, SysReg.Length);
790   }
791 
792   const MCExpr *getImm() const {
793     assert(Kind == KindTy::Immediate && "Invalid type access!");
794     return Imm.Val;
795   }
796 
797   StringRef getToken() const {
798     assert(Kind == KindTy::Token && "Invalid type access!");
799     return Tok;
800   }
801 
802   unsigned getVType() const {
803     assert(Kind == KindTy::VType && "Invalid type access!");
804     return VType.Val;
805   }
806 
807   void print(raw_ostream &OS) const override {
808     auto RegName = [](MCRegister Reg) {
809       if (Reg)
810         return RISCVInstPrinter::getRegisterName(Reg);
811       else
812         return "noreg";
813     };
814 
815     switch (Kind) {
816     case KindTy::Immediate:
817       OS << *getImm();
818       break;
819     case KindTy::Register:
820       OS << "<register " << RegName(getReg()) << ">";
821       break;
822     case KindTy::Token:
823       OS << "'" << getToken() << "'";
824       break;
825     case KindTy::SystemRegister:
826       OS << "<sysreg: " << getSysReg() << '>';
827       break;
828     case KindTy::VType:
829       OS << "<vtype: ";
830       RISCVVType::printVType(getVType(), OS);
831       OS << '>';
832       break;
833     }
834   }
835 
836   static std::unique_ptr<RISCVOperand> createToken(StringRef Str, SMLoc S,
837                                                    bool IsRV64) {
838     auto Op = std::make_unique<RISCVOperand>(KindTy::Token);
839     Op->Tok = Str;
840     Op->StartLoc = S;
841     Op->EndLoc = S;
842     Op->IsRV64 = IsRV64;
843     return Op;
844   }
845 
846   static std::unique_ptr<RISCVOperand> createReg(unsigned RegNo, SMLoc S,
847                                                  SMLoc E, bool IsRV64,
848                                                  bool IsGPRAsFPR = false) {
849     auto Op = std::make_unique<RISCVOperand>(KindTy::Register);
850     Op->Reg.RegNum = RegNo;
851     Op->StartLoc = S;
852     Op->EndLoc = E;
853     Op->IsRV64 = IsRV64;
854     Op->IsGPRAsFPR = IsGPRAsFPR;
855     return Op;
856   }
857 
858   static std::unique_ptr<RISCVOperand> createImm(const MCExpr *Val, SMLoc S,
859                                                  SMLoc E, bool IsRV64) {
860     auto Op = std::make_unique<RISCVOperand>(KindTy::Immediate);
861     Op->Imm.Val = Val;
862     Op->StartLoc = S;
863     Op->EndLoc = E;
864     Op->IsRV64 = IsRV64;
865     return Op;
866   }
867 
868   static std::unique_ptr<RISCVOperand>
869   createSysReg(StringRef Str, SMLoc S, unsigned Encoding, bool IsRV64) {
870     auto Op = std::make_unique<RISCVOperand>(KindTy::SystemRegister);
871     Op->SysReg.Data = Str.data();
872     Op->SysReg.Length = Str.size();
873     Op->SysReg.Encoding = Encoding;
874     Op->StartLoc = S;
875     Op->EndLoc = S;
876     Op->IsRV64 = IsRV64;
877     return Op;
878   }
879 
880   static std::unique_ptr<RISCVOperand> createVType(unsigned VTypeI, SMLoc S,
881                                                    bool IsRV64) {
882     auto Op = std::make_unique<RISCVOperand>(KindTy::VType);
883     Op->VType.Val = VTypeI;
884     Op->StartLoc = S;
885     Op->EndLoc = S;
886     Op->IsRV64 = IsRV64;
887     return Op;
888   }
889 
890   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
891     assert(Expr && "Expr shouldn't be null!");
892     int64_t Imm = 0;
893     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
894     bool IsConstant = evaluateConstantImm(Expr, Imm, VK);
895 
896     if (IsConstant)
897       Inst.addOperand(MCOperand::createImm(Imm));
898     else
899       Inst.addOperand(MCOperand::createExpr(Expr));
900   }
901 
902   // Used by the TableGen Code
903   void addRegOperands(MCInst &Inst, unsigned N) const {
904     assert(N == 1 && "Invalid number of operands!");
905     Inst.addOperand(MCOperand::createReg(getReg()));
906   }
907 
908   void addImmOperands(MCInst &Inst, unsigned N) const {
909     assert(N == 1 && "Invalid number of operands!");
910     addExpr(Inst, getImm());
911   }
912 
913   void addFenceArgOperands(MCInst &Inst, unsigned N) const {
914     assert(N == 1 && "Invalid number of operands!");
915 
916     int64_t Constant = 0;
917     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
918     if (evaluateConstantImm(getImm(), Constant, VK)) {
919       if (Constant == 0) {
920         Inst.addOperand(MCOperand::createImm(Constant));
921         return;
922       }
923       llvm_unreachable("FenceArg must contain only [iorw] or be 0");
924     }
925 
926     // isFenceArg has validated the operand, meaning this cast is safe
927     auto SE = cast<MCSymbolRefExpr>(getImm());
928 
929     unsigned Imm = 0;
930     for (char c : SE->getSymbol().getName()) {
931       switch (c) {
932       default:
933         llvm_unreachable("FenceArg must contain only [iorw] or be 0");
934       case 'i':
935         Imm |= RISCVFenceField::I;
936         break;
937       case 'o':
938         Imm |= RISCVFenceField::O;
939         break;
940       case 'r':
941         Imm |= RISCVFenceField::R;
942         break;
943       case 'w':
944         Imm |= RISCVFenceField::W;
945         break;
946       }
947     }
948     Inst.addOperand(MCOperand::createImm(Imm));
949   }
950 
951   void addCSRSystemRegisterOperands(MCInst &Inst, unsigned N) const {
952     assert(N == 1 && "Invalid number of operands!");
953     Inst.addOperand(MCOperand::createImm(SysReg.Encoding));
954   }
955 
956   // Support non-canonical syntax:
957   // "vsetivli rd, uimm, 0xabc" or "vsetvli rd, rs1, 0xabc"
958   // "vsetivli rd, uimm, (0xc << N)" or "vsetvli rd, rs1, (0xc << N)"
959   void addVTypeIOperands(MCInst &Inst, unsigned N) const {
960     assert(N == 1 && "Invalid number of operands!");
961     int64_t Imm = 0;
962     if (Kind == KindTy::Immediate) {
963       RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
964       bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
965       (void)IsConstantImm;
966       assert(IsConstantImm && "Invalid VTypeI Operand!");
967     } else {
968       Imm = getVType();
969     }
970     Inst.addOperand(MCOperand::createImm(Imm));
971   }
972 
973   // Returns the rounding mode represented by this RISCVOperand. Should only
974   // be called after checking isFRMArg.
975   RISCVFPRndMode::RoundingMode getRoundingMode() const {
976     // isFRMArg has validated the operand, meaning this cast is safe.
977     auto SE = cast<MCSymbolRefExpr>(getImm());
978     RISCVFPRndMode::RoundingMode FRM =
979         RISCVFPRndMode::stringToRoundingMode(SE->getSymbol().getName());
980     assert(FRM != RISCVFPRndMode::Invalid && "Invalid rounding mode");
981     return FRM;
982   }
983 
984   void addFRMArgOperands(MCInst &Inst, unsigned N) const {
985     assert(N == 1 && "Invalid number of operands!");
986     Inst.addOperand(MCOperand::createImm(getRoundingMode()));
987   }
988 };
989 } // end anonymous namespace.
990 
991 #define GET_REGISTER_MATCHER
992 #define GET_SUBTARGET_FEATURE_NAME
993 #define GET_MATCHER_IMPLEMENTATION
994 #define GET_MNEMONIC_SPELL_CHECKER
995 #include "RISCVGenAsmMatcher.inc"
996 
997 static MCRegister convertFPR64ToFPR16(MCRegister Reg) {
998   assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
999   return Reg - RISCV::F0_D + RISCV::F0_H;
1000 }
1001 
1002 static MCRegister convertFPR64ToFPR32(MCRegister Reg) {
1003   assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
1004   return Reg - RISCV::F0_D + RISCV::F0_F;
1005 }
1006 
1007 static MCRegister convertVRToVRMx(const MCRegisterInfo &RI, MCRegister Reg,
1008                                   unsigned Kind) {
1009   unsigned RegClassID;
1010   if (Kind == MCK_VRM2)
1011     RegClassID = RISCV::VRM2RegClassID;
1012   else if (Kind == MCK_VRM4)
1013     RegClassID = RISCV::VRM4RegClassID;
1014   else if (Kind == MCK_VRM8)
1015     RegClassID = RISCV::VRM8RegClassID;
1016   else
1017     return 0;
1018   return RI.getMatchingSuperReg(Reg, RISCV::sub_vrm1_0,
1019                                 &RISCVMCRegisterClasses[RegClassID]);
1020 }
1021 
1022 unsigned RISCVAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
1023                                                     unsigned Kind) {
1024   RISCVOperand &Op = static_cast<RISCVOperand &>(AsmOp);
1025   if (!Op.isReg())
1026     return Match_InvalidOperand;
1027 
1028   MCRegister Reg = Op.getReg();
1029   bool IsRegFPR64 =
1030       RISCVMCRegisterClasses[RISCV::FPR64RegClassID].contains(Reg);
1031   bool IsRegFPR64C =
1032       RISCVMCRegisterClasses[RISCV::FPR64CRegClassID].contains(Reg);
1033   bool IsRegVR = RISCVMCRegisterClasses[RISCV::VRRegClassID].contains(Reg);
1034 
1035   // As the parser couldn't differentiate an FPR32 from an FPR64, coerce the
1036   // register from FPR64 to FPR32 or FPR64C to FPR32C if necessary.
1037   if ((IsRegFPR64 && Kind == MCK_FPR32) ||
1038       (IsRegFPR64C && Kind == MCK_FPR32C)) {
1039     Op.Reg.RegNum = convertFPR64ToFPR32(Reg);
1040     return Match_Success;
1041   }
1042   // As the parser couldn't differentiate an FPR16 from an FPR64, coerce the
1043   // register from FPR64 to FPR16 if necessary.
1044   if (IsRegFPR64 && Kind == MCK_FPR16) {
1045     Op.Reg.RegNum = convertFPR64ToFPR16(Reg);
1046     return Match_Success;
1047   }
1048   // As the parser couldn't differentiate an VRM2/VRM4/VRM8 from an VR, coerce
1049   // the register from VR to VRM2/VRM4/VRM8 if necessary.
1050   if (IsRegVR && (Kind == MCK_VRM2 || Kind == MCK_VRM4 || Kind == MCK_VRM8)) {
1051     Op.Reg.RegNum = convertVRToVRMx(*getContext().getRegisterInfo(), Reg, Kind);
1052     if (Op.Reg.RegNum == 0)
1053       return Match_InvalidOperand;
1054     return Match_Success;
1055   }
1056   return Match_InvalidOperand;
1057 }
1058 
1059 bool RISCVAsmParser::generateImmOutOfRangeError(
1060     OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper,
1061     Twine Msg = "immediate must be an integer in the range") {
1062   SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1063   return Error(ErrorLoc, Msg + " [" + Twine(Lower) + ", " + Twine(Upper) + "]");
1064 }
1065 
1066 bool RISCVAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
1067                                              OperandVector &Operands,
1068                                              MCStreamer &Out,
1069                                              uint64_t &ErrorInfo,
1070                                              bool MatchingInlineAsm) {
1071   MCInst Inst;
1072   FeatureBitset MissingFeatures;
1073 
1074   auto Result = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
1075                                      MatchingInlineAsm);
1076   switch (Result) {
1077   default:
1078     break;
1079   case Match_Success:
1080     if (validateInstruction(Inst, Operands))
1081       return true;
1082     return processInstruction(Inst, IDLoc, Operands, Out);
1083   case Match_MissingFeature: {
1084     assert(MissingFeatures.any() && "Unknown missing features!");
1085     bool FirstFeature = true;
1086     std::string Msg = "instruction requires the following:";
1087     for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
1088       if (MissingFeatures[i]) {
1089         Msg += FirstFeature ? " " : ", ";
1090         Msg += getSubtargetFeatureName(i);
1091         FirstFeature = false;
1092       }
1093     }
1094     return Error(IDLoc, Msg);
1095   }
1096   case Match_MnemonicFail: {
1097     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
1098     std::string Suggestion = RISCVMnemonicSpellCheck(
1099         ((RISCVOperand &)*Operands[0]).getToken(), FBS, 0);
1100     return Error(IDLoc, "unrecognized instruction mnemonic" + Suggestion);
1101   }
1102   case Match_InvalidOperand: {
1103     SMLoc ErrorLoc = IDLoc;
1104     if (ErrorInfo != ~0ULL) {
1105       if (ErrorInfo >= Operands.size())
1106         return Error(ErrorLoc, "too few operands for instruction");
1107 
1108       ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1109       if (ErrorLoc == SMLoc())
1110         ErrorLoc = IDLoc;
1111     }
1112     return Error(ErrorLoc, "invalid operand for instruction");
1113   }
1114   }
1115 
1116   // Handle the case when the error message is of specific type
1117   // other than the generic Match_InvalidOperand, and the
1118   // corresponding operand is missing.
1119   if (Result > FIRST_TARGET_MATCH_RESULT_TY) {
1120     SMLoc ErrorLoc = IDLoc;
1121     if (ErrorInfo != ~0ULL && ErrorInfo >= Operands.size())
1122       return Error(ErrorLoc, "too few operands for instruction");
1123   }
1124 
1125   switch (Result) {
1126   default:
1127     break;
1128   case Match_InvalidImmXLenLI:
1129     if (isRV64()) {
1130       SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1131       return Error(ErrorLoc, "operand must be a constant 64-bit integer");
1132     }
1133     return generateImmOutOfRangeError(Operands, ErrorInfo,
1134                                       std::numeric_limits<int32_t>::min(),
1135                                       std::numeric_limits<uint32_t>::max());
1136   case Match_InvalidImmZero: {
1137     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1138     return Error(ErrorLoc, "immediate must be zero");
1139   }
1140   case Match_InvalidUImmLog2XLen:
1141     if (isRV64())
1142       return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
1143     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
1144   case Match_InvalidUImmLog2XLenNonZero:
1145     if (isRV64())
1146       return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 6) - 1);
1147     return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 5) - 1);
1148   case Match_InvalidUImmLog2XLenHalf:
1149     if (isRV64())
1150       return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
1151     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 4) - 1);
1152   case Match_InvalidUImm2:
1153     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 2) - 1);
1154   case Match_InvalidUImm3:
1155     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 3) - 1);
1156   case Match_InvalidUImm5:
1157     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
1158   case Match_InvalidUImm7:
1159     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 7) - 1);
1160   case Match_InvalidSImm5:
1161     return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 4),
1162                                       (1 << 4) - 1);
1163   case Match_InvalidSImm6:
1164     return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 5),
1165                                       (1 << 5) - 1);
1166   case Match_InvalidSImm6NonZero:
1167     return generateImmOutOfRangeError(
1168         Operands, ErrorInfo, -(1 << 5), (1 << 5) - 1,
1169         "immediate must be non-zero in the range");
1170   case Match_InvalidCLUIImm:
1171     return generateImmOutOfRangeError(
1172         Operands, ErrorInfo, 1, (1 << 5) - 1,
1173         "immediate must be in [0xfffe0, 0xfffff] or");
1174   case Match_InvalidUImm7Lsb00:
1175     return generateImmOutOfRangeError(
1176         Operands, ErrorInfo, 0, (1 << 7) - 4,
1177         "immediate must be a multiple of 4 bytes in the range");
1178   case Match_InvalidUImm8Lsb00:
1179     return generateImmOutOfRangeError(
1180         Operands, ErrorInfo, 0, (1 << 8) - 4,
1181         "immediate must be a multiple of 4 bytes in the range");
1182   case Match_InvalidUImm8Lsb000:
1183     return generateImmOutOfRangeError(
1184         Operands, ErrorInfo, 0, (1 << 8) - 8,
1185         "immediate must be a multiple of 8 bytes in the range");
1186   case Match_InvalidSImm9Lsb0:
1187     return generateImmOutOfRangeError(
1188         Operands, ErrorInfo, -(1 << 8), (1 << 8) - 2,
1189         "immediate must be a multiple of 2 bytes in the range");
1190   case Match_InvalidUImm9Lsb000:
1191     return generateImmOutOfRangeError(
1192         Operands, ErrorInfo, 0, (1 << 9) - 8,
1193         "immediate must be a multiple of 8 bytes in the range");
1194   case Match_InvalidUImm10Lsb00NonZero:
1195     return generateImmOutOfRangeError(
1196         Operands, ErrorInfo, 4, (1 << 10) - 4,
1197         "immediate must be a multiple of 4 bytes in the range");
1198   case Match_InvalidSImm10Lsb0000NonZero:
1199     return generateImmOutOfRangeError(
1200         Operands, ErrorInfo, -(1 << 9), (1 << 9) - 16,
1201         "immediate must be a multiple of 16 bytes and non-zero in the range");
1202   case Match_InvalidSImm12:
1203     return generateImmOutOfRangeError(
1204         Operands, ErrorInfo, -(1 << 11), (1 << 11) - 1,
1205         "operand must be a symbol with %lo/%pcrel_lo/%tprel_lo modifier or an "
1206         "integer in the range");
1207   case Match_InvalidSImm12Lsb0:
1208     return generateImmOutOfRangeError(
1209         Operands, ErrorInfo, -(1 << 11), (1 << 11) - 2,
1210         "immediate must be a multiple of 2 bytes in the range");
1211   case Match_InvalidSImm12Lsb00000:
1212     return generateImmOutOfRangeError(
1213         Operands, ErrorInfo, -(1 << 11), (1 << 11) - 32,
1214         "immediate must be a multiple of 32 bytes in the range");
1215   case Match_InvalidSImm13Lsb0:
1216     return generateImmOutOfRangeError(
1217         Operands, ErrorInfo, -(1 << 12), (1 << 12) - 2,
1218         "immediate must be a multiple of 2 bytes in the range");
1219   case Match_InvalidUImm20LUI:
1220     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 20) - 1,
1221                                       "operand must be a symbol with "
1222                                       "%hi/%tprel_hi modifier or an integer in "
1223                                       "the range");
1224   case Match_InvalidUImm20AUIPC:
1225     return generateImmOutOfRangeError(
1226         Operands, ErrorInfo, 0, (1 << 20) - 1,
1227         "operand must be a symbol with a "
1228         "%pcrel_hi/%got_pcrel_hi/%tls_ie_pcrel_hi/%tls_gd_pcrel_hi modifier or "
1229         "an integer in the range");
1230   case Match_InvalidSImm21Lsb0JAL:
1231     return generateImmOutOfRangeError(
1232         Operands, ErrorInfo, -(1 << 20), (1 << 20) - 2,
1233         "immediate must be a multiple of 2 bytes in the range");
1234   case Match_InvalidCSRSystemRegister: {
1235     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 12) - 1,
1236                                       "operand must be a valid system register "
1237                                       "name or an integer in the range");
1238   }
1239   case Match_InvalidFenceArg: {
1240     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1241     return Error(ErrorLoc, "operand must be formed of letters selected "
1242                            "in-order from 'iorw' or be 0");
1243   }
1244   case Match_InvalidFRMArg: {
1245     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1246     return Error(
1247         ErrorLoc,
1248         "operand must be a valid floating point rounding mode mnemonic");
1249   }
1250   case Match_InvalidBareSymbol: {
1251     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1252     return Error(ErrorLoc, "operand must be a bare symbol name");
1253   }
1254   case Match_InvalidPseudoJumpSymbol: {
1255     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1256     return Error(ErrorLoc, "operand must be a valid jump target");
1257   }
1258   case Match_InvalidCallSymbol: {
1259     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1260     return Error(ErrorLoc, "operand must be a bare symbol name");
1261   }
1262   case Match_InvalidTPRelAddSymbol: {
1263     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1264     return Error(ErrorLoc, "operand must be a symbol with %tprel_add modifier");
1265   }
1266   case Match_InvalidVTypeI: {
1267     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1268     return Error(
1269         ErrorLoc,
1270         "operand must be "
1271         "e[8|16|32|64|128|256|512|1024],m[1|2|4|8|f2|f4|f8],[ta|tu],[ma|mu]");
1272   }
1273   case Match_InvalidVMaskRegister: {
1274     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1275     return Error(ErrorLoc, "operand must be v0.t");
1276   }
1277   case Match_InvalidSImm5Plus1: {
1278     return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 4) + 1,
1279                                       (1 << 4),
1280                                       "immediate must be in the range");
1281   }
1282   case Match_InvalidRnumArg: {
1283     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, 10);
1284   }
1285   }
1286 
1287   llvm_unreachable("Unknown match type detected!");
1288 }
1289 
1290 // Attempts to match Name as a register (either using the default name or
1291 // alternative ABI names), setting RegNo to the matching register. Upon
1292 // failure, returns true and sets RegNo to 0. If IsRV32E then registers
1293 // x16-x31 will be rejected.
1294 static bool matchRegisterNameHelper(bool IsRV32E, MCRegister &RegNo,
1295                                     StringRef Name) {
1296   RegNo = MatchRegisterName(Name);
1297   // The 16-/32- and 64-bit FPRs have the same asm name. Check that the initial
1298   // match always matches the 64-bit variant, and not the 16/32-bit one.
1299   assert(!(RegNo >= RISCV::F0_H && RegNo <= RISCV::F31_H));
1300   assert(!(RegNo >= RISCV::F0_F && RegNo <= RISCV::F31_F));
1301   // The default FPR register class is based on the tablegen enum ordering.
1302   static_assert(RISCV::F0_D < RISCV::F0_H, "FPR matching must be updated");
1303   static_assert(RISCV::F0_D < RISCV::F0_F, "FPR matching must be updated");
1304   if (RegNo == RISCV::NoRegister)
1305     RegNo = MatchRegisterAltName(Name);
1306   if (IsRV32E && RegNo >= RISCV::X16 && RegNo <= RISCV::X31)
1307     RegNo = RISCV::NoRegister;
1308   return RegNo == RISCV::NoRegister;
1309 }
1310 
1311 bool RISCVAsmParser::parseRegister(MCRegister &RegNo, SMLoc &StartLoc,
1312                                    SMLoc &EndLoc) {
1313   if (tryParseRegister(RegNo, StartLoc, EndLoc) != MatchOperand_Success)
1314     return Error(StartLoc, "invalid register name");
1315   return false;
1316 }
1317 
1318 OperandMatchResultTy RISCVAsmParser::tryParseRegister(MCRegister &RegNo,
1319                                                       SMLoc &StartLoc,
1320                                                       SMLoc &EndLoc) {
1321   const AsmToken &Tok = getParser().getTok();
1322   StartLoc = Tok.getLoc();
1323   EndLoc = Tok.getEndLoc();
1324   RegNo = 0;
1325   StringRef Name = getLexer().getTok().getIdentifier();
1326 
1327   if (matchRegisterNameHelper(isRV32E(), (MCRegister &)RegNo, Name))
1328     return MatchOperand_NoMatch;
1329 
1330   getParser().Lex(); // Eat identifier token.
1331   return MatchOperand_Success;
1332 }
1333 
1334 OperandMatchResultTy RISCVAsmParser::parseRegister(OperandVector &Operands,
1335                                                    bool AllowParens) {
1336   SMLoc FirstS = getLoc();
1337   bool HadParens = false;
1338   AsmToken LParen;
1339 
1340   // If this is an LParen and a parenthesised register name is allowed, parse it
1341   // atomically.
1342   if (AllowParens && getLexer().is(AsmToken::LParen)) {
1343     AsmToken Buf[2];
1344     size_t ReadCount = getLexer().peekTokens(Buf);
1345     if (ReadCount == 2 && Buf[1].getKind() == AsmToken::RParen) {
1346       HadParens = true;
1347       LParen = getParser().getTok();
1348       getParser().Lex(); // Eat '('
1349     }
1350   }
1351 
1352   switch (getLexer().getKind()) {
1353   default:
1354     if (HadParens)
1355       getLexer().UnLex(LParen);
1356     return MatchOperand_NoMatch;
1357   case AsmToken::Identifier:
1358     StringRef Name = getLexer().getTok().getIdentifier();
1359     MCRegister RegNo;
1360     matchRegisterNameHelper(isRV32E(), RegNo, Name);
1361 
1362     if (RegNo == RISCV::NoRegister) {
1363       if (HadParens)
1364         getLexer().UnLex(LParen);
1365       return MatchOperand_NoMatch;
1366     }
1367     if (HadParens)
1368       Operands.push_back(RISCVOperand::createToken("(", FirstS, isRV64()));
1369     SMLoc S = getLoc();
1370     SMLoc E = SMLoc::getFromPointer(S.getPointer() + Name.size());
1371     getLexer().Lex();
1372     Operands.push_back(RISCVOperand::createReg(RegNo, S, E, isRV64()));
1373   }
1374 
1375   if (HadParens) {
1376     getParser().Lex(); // Eat ')'
1377     Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));
1378   }
1379 
1380   return MatchOperand_Success;
1381 }
1382 
1383 OperandMatchResultTy
1384 RISCVAsmParser::parseInsnDirectiveOpcode(OperandVector &Operands) {
1385   SMLoc S = getLoc();
1386   SMLoc E;
1387   const MCExpr *Res;
1388 
1389   switch (getLexer().getKind()) {
1390   default:
1391     return MatchOperand_NoMatch;
1392   case AsmToken::LParen:
1393   case AsmToken::Minus:
1394   case AsmToken::Plus:
1395   case AsmToken::Exclaim:
1396   case AsmToken::Tilde:
1397   case AsmToken::Integer:
1398   case AsmToken::String: {
1399     if (getParser().parseExpression(Res, E))
1400       return MatchOperand_ParseFail;
1401 
1402     auto *CE = dyn_cast<MCConstantExpr>(Res);
1403     if (CE) {
1404       int64_t Imm = CE->getValue();
1405       if (isUInt<7>(Imm)) {
1406         Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1407         return MatchOperand_Success;
1408       }
1409     }
1410 
1411     Twine Msg = "immediate must be an integer in the range";
1412     Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 7) - 1) + "]");
1413     return MatchOperand_ParseFail;
1414   }
1415   case AsmToken::Identifier: {
1416     StringRef Identifier;
1417     if (getParser().parseIdentifier(Identifier))
1418       return MatchOperand_ParseFail;
1419 
1420     auto Opcode = RISCVInsnOpcode::lookupRISCVOpcodeByName(Identifier);
1421     if (Opcode) {
1422       Res = MCConstantExpr::create(Opcode->Value, getContext());
1423       E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
1424       Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1425       return MatchOperand_Success;
1426     }
1427 
1428     Twine Msg = "operand must be a valid opcode name or an "
1429                 "integer in the range";
1430     Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 7) - 1) + "]");
1431     return MatchOperand_ParseFail;
1432   }
1433   case AsmToken::Percent: {
1434     // Discard operand with modifier.
1435     Twine Msg = "immediate must be an integer in the range";
1436     Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 7) - 1) + "]");
1437     return MatchOperand_ParseFail;
1438   }
1439   }
1440 
1441   return MatchOperand_NoMatch;
1442 }
1443 
1444 OperandMatchResultTy
1445 RISCVAsmParser::parseCSRSystemRegister(OperandVector &Operands) {
1446   SMLoc S = getLoc();
1447   const MCExpr *Res;
1448 
1449   switch (getLexer().getKind()) {
1450   default:
1451     return MatchOperand_NoMatch;
1452   case AsmToken::LParen:
1453   case AsmToken::Minus:
1454   case AsmToken::Plus:
1455   case AsmToken::Exclaim:
1456   case AsmToken::Tilde:
1457   case AsmToken::Integer:
1458   case AsmToken::String: {
1459     if (getParser().parseExpression(Res))
1460       return MatchOperand_ParseFail;
1461 
1462     auto *CE = dyn_cast<MCConstantExpr>(Res);
1463     if (CE) {
1464       int64_t Imm = CE->getValue();
1465       if (isUInt<12>(Imm)) {
1466         auto SysReg = RISCVSysReg::lookupSysRegByEncoding(Imm);
1467         // Accept an immediate representing a named or un-named Sys Reg
1468         // if the range is valid, regardless of the required features.
1469         Operands.push_back(RISCVOperand::createSysReg(
1470             SysReg ? SysReg->Name : "", S, Imm, isRV64()));
1471         return MatchOperand_Success;
1472       }
1473     }
1474 
1475     Twine Msg = "immediate must be an integer in the range";
1476     Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
1477     return MatchOperand_ParseFail;
1478   }
1479   case AsmToken::Identifier: {
1480     StringRef Identifier;
1481     if (getParser().parseIdentifier(Identifier))
1482       return MatchOperand_ParseFail;
1483 
1484     auto SysReg = RISCVSysReg::lookupSysRegByName(Identifier);
1485     if (!SysReg)
1486       SysReg = RISCVSysReg::lookupSysRegByAltName(Identifier);
1487     if (!SysReg)
1488       if ((SysReg = RISCVSysReg::lookupSysRegByDeprecatedName(Identifier)))
1489         Warning(S, "'" + Identifier + "' is a deprecated alias for '" +
1490                        SysReg->Name + "'");
1491 
1492     // Accept a named Sys Reg if the required features are present.
1493     if (SysReg) {
1494       if (!SysReg->haveRequiredFeatures(getSTI().getFeatureBits())) {
1495         Error(S, "system register use requires an option to be enabled");
1496         return MatchOperand_ParseFail;
1497       }
1498       Operands.push_back(RISCVOperand::createSysReg(
1499           Identifier, S, SysReg->Encoding, isRV64()));
1500       return MatchOperand_Success;
1501     }
1502 
1503     Twine Msg = "operand must be a valid system register name "
1504                 "or an integer in the range";
1505     Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
1506     return MatchOperand_ParseFail;
1507   }
1508   case AsmToken::Percent: {
1509     // Discard operand with modifier.
1510     Twine Msg = "immediate must be an integer in the range";
1511     Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
1512     return MatchOperand_ParseFail;
1513   }
1514   }
1515 
1516   return MatchOperand_NoMatch;
1517 }
1518 
1519 OperandMatchResultTy RISCVAsmParser::parseImmediate(OperandVector &Operands) {
1520   SMLoc S = getLoc();
1521   SMLoc E;
1522   const MCExpr *Res;
1523 
1524   switch (getLexer().getKind()) {
1525   default:
1526     return MatchOperand_NoMatch;
1527   case AsmToken::LParen:
1528   case AsmToken::Dot:
1529   case AsmToken::Minus:
1530   case AsmToken::Plus:
1531   case AsmToken::Exclaim:
1532   case AsmToken::Tilde:
1533   case AsmToken::Integer:
1534   case AsmToken::String:
1535   case AsmToken::Identifier:
1536     if (getParser().parseExpression(Res, E))
1537       return MatchOperand_ParseFail;
1538     break;
1539   case AsmToken::Percent:
1540     return parseOperandWithModifier(Operands);
1541   }
1542 
1543   Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1544   return MatchOperand_Success;
1545 }
1546 
1547 OperandMatchResultTy
1548 RISCVAsmParser::parseOperandWithModifier(OperandVector &Operands) {
1549   SMLoc S = getLoc();
1550   SMLoc E;
1551 
1552   if (getLexer().getKind() != AsmToken::Percent) {
1553     Error(getLoc(), "expected '%' for operand modifier");
1554     return MatchOperand_ParseFail;
1555   }
1556 
1557   getParser().Lex(); // Eat '%'
1558 
1559   if (getLexer().getKind() != AsmToken::Identifier) {
1560     Error(getLoc(), "expected valid identifier for operand modifier");
1561     return MatchOperand_ParseFail;
1562   }
1563   StringRef Identifier = getParser().getTok().getIdentifier();
1564   RISCVMCExpr::VariantKind VK = RISCVMCExpr::getVariantKindForName(Identifier);
1565   if (VK == RISCVMCExpr::VK_RISCV_Invalid) {
1566     Error(getLoc(), "unrecognized operand modifier");
1567     return MatchOperand_ParseFail;
1568   }
1569 
1570   getParser().Lex(); // Eat the identifier
1571   if (getLexer().getKind() != AsmToken::LParen) {
1572     Error(getLoc(), "expected '('");
1573     return MatchOperand_ParseFail;
1574   }
1575   getParser().Lex(); // Eat '('
1576 
1577   const MCExpr *SubExpr;
1578   if (getParser().parseParenExpression(SubExpr, E)) {
1579     return MatchOperand_ParseFail;
1580   }
1581 
1582   const MCExpr *ModExpr = RISCVMCExpr::create(SubExpr, VK, getContext());
1583   Operands.push_back(RISCVOperand::createImm(ModExpr, S, E, isRV64()));
1584   return MatchOperand_Success;
1585 }
1586 
1587 OperandMatchResultTy RISCVAsmParser::parseBareSymbol(OperandVector &Operands) {
1588   SMLoc S = getLoc();
1589   const MCExpr *Res;
1590 
1591   if (getLexer().getKind() != AsmToken::Identifier)
1592     return MatchOperand_NoMatch;
1593 
1594   StringRef Identifier;
1595   AsmToken Tok = getLexer().getTok();
1596 
1597   if (getParser().parseIdentifier(Identifier))
1598     return MatchOperand_ParseFail;
1599 
1600   SMLoc E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
1601 
1602   if (Identifier.consume_back("@plt")) {
1603     Error(getLoc(), "'@plt' operand not valid for instruction");
1604     return MatchOperand_ParseFail;
1605   }
1606 
1607   MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
1608 
1609   if (Sym->isVariable()) {
1610     const MCExpr *V = Sym->getVariableValue(/*SetUsed=*/false);
1611     if (!isa<MCSymbolRefExpr>(V)) {
1612       getLexer().UnLex(Tok); // Put back if it's not a bare symbol.
1613       return MatchOperand_NoMatch;
1614     }
1615     Res = V;
1616   } else
1617     Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
1618 
1619   MCBinaryExpr::Opcode Opcode;
1620   switch (getLexer().getKind()) {
1621   default:
1622     Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1623     return MatchOperand_Success;
1624   case AsmToken::Plus:
1625     Opcode = MCBinaryExpr::Add;
1626     getLexer().Lex();
1627     break;
1628   case AsmToken::Minus:
1629     Opcode = MCBinaryExpr::Sub;
1630     getLexer().Lex();
1631     break;
1632   }
1633 
1634   const MCExpr *Expr;
1635   if (getParser().parseExpression(Expr, E))
1636     return MatchOperand_ParseFail;
1637   Res = MCBinaryExpr::create(Opcode, Res, Expr, getContext());
1638   Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1639   return MatchOperand_Success;
1640 }
1641 
1642 OperandMatchResultTy RISCVAsmParser::parseCallSymbol(OperandVector &Operands) {
1643   SMLoc S = getLoc();
1644   const MCExpr *Res;
1645 
1646   if (getLexer().getKind() != AsmToken::Identifier)
1647     return MatchOperand_NoMatch;
1648 
1649   // Avoid parsing the register in `call rd, foo` as a call symbol.
1650   if (getLexer().peekTok().getKind() != AsmToken::EndOfStatement)
1651     return MatchOperand_NoMatch;
1652 
1653   StringRef Identifier;
1654   if (getParser().parseIdentifier(Identifier))
1655     return MatchOperand_ParseFail;
1656 
1657   SMLoc E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
1658 
1659   RISCVMCExpr::VariantKind Kind = RISCVMCExpr::VK_RISCV_CALL;
1660   if (Identifier.consume_back("@plt"))
1661     Kind = RISCVMCExpr::VK_RISCV_CALL_PLT;
1662 
1663   MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
1664   Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
1665   Res = RISCVMCExpr::create(Res, Kind, getContext());
1666   Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1667   return MatchOperand_Success;
1668 }
1669 
1670 OperandMatchResultTy
1671 RISCVAsmParser::parsePseudoJumpSymbol(OperandVector &Operands) {
1672   SMLoc S = getLoc();
1673   SMLoc E;
1674   const MCExpr *Res;
1675 
1676   if (getParser().parseExpression(Res, E))
1677     return MatchOperand_ParseFail;
1678 
1679   if (Res->getKind() != MCExpr::ExprKind::SymbolRef ||
1680       cast<MCSymbolRefExpr>(Res)->getKind() ==
1681           MCSymbolRefExpr::VariantKind::VK_PLT) {
1682     Error(S, "operand must be a valid jump target");
1683     return MatchOperand_ParseFail;
1684   }
1685 
1686   Res = RISCVMCExpr::create(Res, RISCVMCExpr::VK_RISCV_CALL, getContext());
1687   Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1688   return MatchOperand_Success;
1689 }
1690 
1691 OperandMatchResultTy RISCVAsmParser::parseJALOffset(OperandVector &Operands) {
1692   // Parsing jal operands is fiddly due to the `jal foo` and `jal ra, foo`
1693   // both being acceptable forms. When parsing `jal ra, foo` this function
1694   // will be called for the `ra` register operand in an attempt to match the
1695   // single-operand alias. parseJALOffset must fail for this case. It would
1696   // seem logical to try parse the operand using parseImmediate and return
1697   // NoMatch if the next token is a comma (meaning we must be parsing a jal in
1698   // the second form rather than the first). We can't do this as there's no
1699   // way of rewinding the lexer state. Instead, return NoMatch if this operand
1700   // is an identifier and is followed by a comma.
1701   if (getLexer().is(AsmToken::Identifier) &&
1702       getLexer().peekTok().is(AsmToken::Comma))
1703     return MatchOperand_NoMatch;
1704 
1705   return parseImmediate(Operands);
1706 }
1707 
1708 OperandMatchResultTy RISCVAsmParser::parseVTypeI(OperandVector &Operands) {
1709   SMLoc S = getLoc();
1710   if (getLexer().isNot(AsmToken::Identifier))
1711     return MatchOperand_NoMatch;
1712 
1713   SmallVector<AsmToken, 7> VTypeIElements;
1714   // Put all the tokens for vtypei operand into VTypeIElements vector.
1715   while (getLexer().isNot(AsmToken::EndOfStatement)) {
1716     VTypeIElements.push_back(getLexer().getTok());
1717     getLexer().Lex();
1718     if (getLexer().is(AsmToken::EndOfStatement))
1719       break;
1720     if (getLexer().isNot(AsmToken::Comma))
1721       goto MatchFail;
1722     AsmToken Comma = getLexer().getTok();
1723     VTypeIElements.push_back(Comma);
1724     getLexer().Lex();
1725   }
1726 
1727   if (VTypeIElements.size() == 7) {
1728     // The VTypeIElements layout is:
1729     // SEW comma LMUL comma TA comma MA
1730     //  0    1    2     3    4   5    6
1731     StringRef Name = VTypeIElements[0].getIdentifier();
1732     if (!Name.consume_front("e"))
1733       goto MatchFail;
1734     unsigned Sew;
1735     if (Name.getAsInteger(10, Sew))
1736       goto MatchFail;
1737     if (!RISCVVType::isValidSEW(Sew))
1738       goto MatchFail;
1739 
1740     Name = VTypeIElements[2].getIdentifier();
1741     if (!Name.consume_front("m"))
1742       goto MatchFail;
1743     // "m" or "mf"
1744     bool Fractional = Name.consume_front("f");
1745     unsigned Lmul;
1746     if (Name.getAsInteger(10, Lmul))
1747       goto MatchFail;
1748     if (!RISCVVType::isValidLMUL(Lmul, Fractional))
1749       goto MatchFail;
1750 
1751     // ta or tu
1752     Name = VTypeIElements[4].getIdentifier();
1753     bool TailAgnostic;
1754     if (Name == "ta")
1755       TailAgnostic = true;
1756     else if (Name == "tu")
1757       TailAgnostic = false;
1758     else
1759       goto MatchFail;
1760 
1761     // ma or mu
1762     Name = VTypeIElements[6].getIdentifier();
1763     bool MaskAgnostic;
1764     if (Name == "ma")
1765       MaskAgnostic = true;
1766     else if (Name == "mu")
1767       MaskAgnostic = false;
1768     else
1769       goto MatchFail;
1770 
1771     RISCVII::VLMUL VLMUL = RISCVVType::encodeLMUL(Lmul, Fractional);
1772 
1773     unsigned VTypeI =
1774         RISCVVType::encodeVTYPE(VLMUL, Sew, TailAgnostic, MaskAgnostic);
1775     Operands.push_back(RISCVOperand::createVType(VTypeI, S, isRV64()));
1776     return MatchOperand_Success;
1777   }
1778 
1779 // If NoMatch, unlex all the tokens that comprise a vtypei operand
1780 MatchFail:
1781   while (!VTypeIElements.empty())
1782     getLexer().UnLex(VTypeIElements.pop_back_val());
1783   return MatchOperand_NoMatch;
1784 }
1785 
1786 OperandMatchResultTy RISCVAsmParser::parseMaskReg(OperandVector &Operands) {
1787   switch (getLexer().getKind()) {
1788   default:
1789     return MatchOperand_NoMatch;
1790   case AsmToken::Identifier:
1791     StringRef Name = getLexer().getTok().getIdentifier();
1792     if (!Name.consume_back(".t")) {
1793       Error(getLoc(), "expected '.t' suffix");
1794       return MatchOperand_ParseFail;
1795     }
1796     MCRegister RegNo;
1797     matchRegisterNameHelper(isRV32E(), RegNo, Name);
1798 
1799     if (RegNo == RISCV::NoRegister)
1800       return MatchOperand_NoMatch;
1801     if (RegNo != RISCV::V0)
1802       return MatchOperand_NoMatch;
1803     SMLoc S = getLoc();
1804     SMLoc E = SMLoc::getFromPointer(S.getPointer() + Name.size());
1805     getLexer().Lex();
1806     Operands.push_back(RISCVOperand::createReg(RegNo, S, E, isRV64()));
1807   }
1808 
1809   return MatchOperand_Success;
1810 }
1811 
1812 OperandMatchResultTy RISCVAsmParser::parseGPRAsFPR(OperandVector &Operands) {
1813   switch (getLexer().getKind()) {
1814   default:
1815     return MatchOperand_NoMatch;
1816   case AsmToken::Identifier:
1817     StringRef Name = getLexer().getTok().getIdentifier();
1818     MCRegister RegNo;
1819     matchRegisterNameHelper(isRV32E(), RegNo, Name);
1820 
1821     if (RegNo == RISCV::NoRegister)
1822       return MatchOperand_NoMatch;
1823     SMLoc S = getLoc();
1824     SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1825     getLexer().Lex();
1826     Operands.push_back(RISCVOperand::createReg(
1827         RegNo, S, E, isRV64(), !getSTI().hasFeature(RISCV::FeatureStdExtF)));
1828   }
1829   return MatchOperand_Success;
1830 }
1831 
1832 OperandMatchResultTy
1833 RISCVAsmParser::parseMemOpBaseReg(OperandVector &Operands) {
1834   if (getLexer().isNot(AsmToken::LParen)) {
1835     Error(getLoc(), "expected '('");
1836     return MatchOperand_ParseFail;
1837   }
1838 
1839   getParser().Lex(); // Eat '('
1840   Operands.push_back(RISCVOperand::createToken("(", getLoc(), isRV64()));
1841 
1842   if (parseRegister(Operands) != MatchOperand_Success) {
1843     Error(getLoc(), "expected register");
1844     return MatchOperand_ParseFail;
1845   }
1846 
1847   if (getLexer().isNot(AsmToken::RParen)) {
1848     Error(getLoc(), "expected ')'");
1849     return MatchOperand_ParseFail;
1850   }
1851 
1852   getParser().Lex(); // Eat ')'
1853   Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));
1854 
1855   return MatchOperand_Success;
1856 }
1857 
1858 OperandMatchResultTy
1859 RISCVAsmParser::parseZeroOffsetMemOp(OperandVector &Operands) {
1860   // Atomic operations such as lr.w, sc.w, and amo*.w accept a "memory operand"
1861   // as one of their register operands, such as `(a0)`. This just denotes that
1862   // the register (in this case `a0`) contains a memory address.
1863   //
1864   // Normally, we would be able to parse these by putting the parens into the
1865   // instruction string. However, GNU as also accepts a zero-offset memory
1866   // operand (such as `0(a0)`), and ignores the 0. Normally this would be parsed
1867   // with parseImmediate followed by parseMemOpBaseReg, but these instructions
1868   // do not accept an immediate operand, and we do not want to add a "dummy"
1869   // operand that is silently dropped.
1870   //
1871   // Instead, we use this custom parser. This will: allow (and discard) an
1872   // offset if it is zero; require (and discard) parentheses; and add only the
1873   // parsed register operand to `Operands`.
1874   //
1875   // These operands are printed with RISCVInstPrinter::printZeroOffsetMemOp,
1876   // which will only print the register surrounded by parentheses (which GNU as
1877   // also uses as its canonical representation for these operands).
1878   std::unique_ptr<RISCVOperand> OptionalImmOp;
1879 
1880   if (getLexer().isNot(AsmToken::LParen)) {
1881     // Parse an Integer token. We do not accept arbritrary constant expressions
1882     // in the offset field (because they may include parens, which complicates
1883     // parsing a lot).
1884     int64_t ImmVal;
1885     SMLoc ImmStart = getLoc();
1886     if (getParser().parseIntToken(ImmVal,
1887                                   "expected '(' or optional integer offset"))
1888       return MatchOperand_ParseFail;
1889 
1890     // Create a RISCVOperand for checking later (so the error messages are
1891     // nicer), but we don't add it to Operands.
1892     SMLoc ImmEnd = getLoc();
1893     OptionalImmOp =
1894         RISCVOperand::createImm(MCConstantExpr::create(ImmVal, getContext()),
1895                                 ImmStart, ImmEnd, isRV64());
1896   }
1897 
1898   if (getLexer().isNot(AsmToken::LParen)) {
1899     Error(getLoc(), OptionalImmOp ? "expected '(' after optional integer offset"
1900                                   : "expected '(' or optional integer offset");
1901     return MatchOperand_ParseFail;
1902   }
1903   getParser().Lex(); // Eat '('
1904 
1905   if (parseRegister(Operands) != MatchOperand_Success) {
1906     Error(getLoc(), "expected register");
1907     return MatchOperand_ParseFail;
1908   }
1909 
1910   if (getLexer().isNot(AsmToken::RParen)) {
1911     Error(getLoc(), "expected ')'");
1912     return MatchOperand_ParseFail;
1913   }
1914   getParser().Lex(); // Eat ')'
1915 
1916   // Deferred Handling of non-zero offsets. This makes the error messages nicer.
1917   if (OptionalImmOp && !OptionalImmOp->isImmZero()) {
1918     Error(OptionalImmOp->getStartLoc(), "optional integer offset must be 0",
1919           SMRange(OptionalImmOp->getStartLoc(), OptionalImmOp->getEndLoc()));
1920     return MatchOperand_ParseFail;
1921   }
1922 
1923   return MatchOperand_Success;
1924 }
1925 
1926 /// Looks at a token type and creates the relevant operand from this
1927 /// information, adding to Operands. If operand was parsed, returns false, else
1928 /// true.
1929 bool RISCVAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
1930   // Check if the current operand has a custom associated parser, if so, try to
1931   // custom parse the operand, or fallback to the general approach.
1932   OperandMatchResultTy Result =
1933       MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/true);
1934   if (Result == MatchOperand_Success)
1935     return false;
1936   if (Result == MatchOperand_ParseFail)
1937     return true;
1938 
1939   // Attempt to parse token as a register.
1940   if (parseRegister(Operands, true) == MatchOperand_Success)
1941     return false;
1942 
1943   // Attempt to parse token as an immediate
1944   if (parseImmediate(Operands) == MatchOperand_Success) {
1945     // Parse memory base register if present
1946     if (getLexer().is(AsmToken::LParen))
1947       return parseMemOpBaseReg(Operands) != MatchOperand_Success;
1948     return false;
1949   }
1950 
1951   // Finally we have exhausted all options and must declare defeat.
1952   Error(getLoc(), "unknown operand");
1953   return true;
1954 }
1955 
1956 bool RISCVAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1957                                       StringRef Name, SMLoc NameLoc,
1958                                       OperandVector &Operands) {
1959   // Ensure that if the instruction occurs when relaxation is enabled,
1960   // relocations are forced for the file. Ideally this would be done when there
1961   // is enough information to reliably determine if the instruction itself may
1962   // cause relaxations. Unfortunately instruction processing stage occurs in the
1963   // same pass as relocation emission, so it's too late to set a 'sticky bit'
1964   // for the entire file.
1965   if (getSTI().getFeatureBits()[RISCV::FeatureRelax]) {
1966     auto *Assembler = getTargetStreamer().getStreamer().getAssemblerPtr();
1967     if (Assembler != nullptr) {
1968       RISCVAsmBackend &MAB =
1969           static_cast<RISCVAsmBackend &>(Assembler->getBackend());
1970       MAB.setForceRelocs();
1971     }
1972   }
1973 
1974   // First operand is token for instruction
1975   Operands.push_back(RISCVOperand::createToken(Name, NameLoc, isRV64()));
1976 
1977   // If there are no more operands, then finish
1978   if (getLexer().is(AsmToken::EndOfStatement)) {
1979     getParser().Lex(); // Consume the EndOfStatement.
1980     return false;
1981   }
1982 
1983   // Parse first operand
1984   if (parseOperand(Operands, Name))
1985     return true;
1986 
1987   // Parse until end of statement, consuming commas between operands
1988   while (getLexer().is(AsmToken::Comma)) {
1989     // Consume comma token
1990     getLexer().Lex();
1991 
1992     // Parse next operand
1993     if (parseOperand(Operands, Name))
1994       return true;
1995   }
1996 
1997   if (getLexer().isNot(AsmToken::EndOfStatement)) {
1998     SMLoc Loc = getLexer().getLoc();
1999     getParser().eatToEndOfStatement();
2000     return Error(Loc, "unexpected token");
2001   }
2002 
2003   getParser().Lex(); // Consume the EndOfStatement.
2004   return false;
2005 }
2006 
2007 bool RISCVAsmParser::classifySymbolRef(const MCExpr *Expr,
2008                                        RISCVMCExpr::VariantKind &Kind) {
2009   Kind = RISCVMCExpr::VK_RISCV_None;
2010 
2011   if (const RISCVMCExpr *RE = dyn_cast<RISCVMCExpr>(Expr)) {
2012     Kind = RE->getKind();
2013     Expr = RE->getSubExpr();
2014   }
2015 
2016   MCValue Res;
2017   MCFixup Fixup;
2018   if (Expr->evaluateAsRelocatable(Res, nullptr, &Fixup))
2019     return Res.getRefKind() == RISCVMCExpr::VK_RISCV_None;
2020   return false;
2021 }
2022 
2023 bool RISCVAsmParser::ParseDirective(AsmToken DirectiveID) {
2024   // This returns false if this function recognizes the directive
2025   // regardless of whether it is successfully handles or reports an
2026   // error. Otherwise it returns true to give the generic parser a
2027   // chance at recognizing it.
2028   StringRef IDVal = DirectiveID.getString();
2029 
2030   if (IDVal == ".option")
2031     return parseDirectiveOption();
2032   if (IDVal == ".attribute")
2033     return parseDirectiveAttribute();
2034   if (IDVal == ".insn")
2035     return parseDirectiveInsn(DirectiveID.getLoc());
2036   if (IDVal == ".variant_cc")
2037     return parseDirectiveVariantCC();
2038 
2039   return true;
2040 }
2041 
2042 bool RISCVAsmParser::parseDirectiveOption() {
2043   MCAsmParser &Parser = getParser();
2044   // Get the option token.
2045   AsmToken Tok = Parser.getTok();
2046   // At the moment only identifiers are supported.
2047   if (Tok.isNot(AsmToken::Identifier))
2048     return Error(Parser.getTok().getLoc(),
2049                  "unexpected token, expected identifier");
2050 
2051   StringRef Option = Tok.getIdentifier();
2052 
2053   if (Option == "push") {
2054     getTargetStreamer().emitDirectiveOptionPush();
2055 
2056     Parser.Lex();
2057     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
2058       return Error(Parser.getTok().getLoc(),
2059                    "unexpected token, expected end of statement");
2060 
2061     pushFeatureBits();
2062     return false;
2063   }
2064 
2065   if (Option == "pop") {
2066     SMLoc StartLoc = Parser.getTok().getLoc();
2067     getTargetStreamer().emitDirectiveOptionPop();
2068 
2069     Parser.Lex();
2070     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
2071       return Error(Parser.getTok().getLoc(),
2072                    "unexpected token, expected end of statement");
2073 
2074     if (popFeatureBits())
2075       return Error(StartLoc, ".option pop with no .option push");
2076 
2077     return false;
2078   }
2079 
2080   if (Option == "rvc") {
2081     getTargetStreamer().emitDirectiveOptionRVC();
2082 
2083     Parser.Lex();
2084     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
2085       return Error(Parser.getTok().getLoc(),
2086                    "unexpected token, expected end of statement");
2087 
2088     setFeatureBits(RISCV::FeatureStdExtC, "c");
2089     return false;
2090   }
2091 
2092   if (Option == "norvc") {
2093     getTargetStreamer().emitDirectiveOptionNoRVC();
2094 
2095     Parser.Lex();
2096     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
2097       return Error(Parser.getTok().getLoc(),
2098                    "unexpected token, expected end of statement");
2099 
2100     clearFeatureBits(RISCV::FeatureStdExtC, "c");
2101     clearFeatureBits(RISCV::FeatureExtZca, "+experimental-zca");
2102     return false;
2103   }
2104 
2105   if (Option == "pic") {
2106     getTargetStreamer().emitDirectiveOptionPIC();
2107 
2108     Parser.Lex();
2109     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
2110       return Error(Parser.getTok().getLoc(),
2111                    "unexpected token, expected end of statement");
2112 
2113     ParserOptions.IsPicEnabled = true;
2114     return false;
2115   }
2116 
2117   if (Option == "nopic") {
2118     getTargetStreamer().emitDirectiveOptionNoPIC();
2119 
2120     Parser.Lex();
2121     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
2122       return Error(Parser.getTok().getLoc(),
2123                    "unexpected token, expected end of statement");
2124 
2125     ParserOptions.IsPicEnabled = false;
2126     return false;
2127   }
2128 
2129   if (Option == "relax") {
2130     getTargetStreamer().emitDirectiveOptionRelax();
2131 
2132     Parser.Lex();
2133     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
2134       return Error(Parser.getTok().getLoc(),
2135                    "unexpected token, expected end of statement");
2136 
2137     setFeatureBits(RISCV::FeatureRelax, "relax");
2138     return false;
2139   }
2140 
2141   if (Option == "norelax") {
2142     getTargetStreamer().emitDirectiveOptionNoRelax();
2143 
2144     Parser.Lex();
2145     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
2146       return Error(Parser.getTok().getLoc(),
2147                    "unexpected token, expected end of statement");
2148 
2149     clearFeatureBits(RISCV::FeatureRelax, "relax");
2150     return false;
2151   }
2152 
2153   // Unknown option.
2154   Warning(Parser.getTok().getLoc(),
2155           "unknown option, expected 'push', 'pop', 'rvc', 'norvc', 'relax' or "
2156           "'norelax'");
2157   Parser.eatToEndOfStatement();
2158   return false;
2159 }
2160 
2161 /// parseDirectiveAttribute
2162 ///  ::= .attribute expression ',' ( expression | "string" )
2163 ///  ::= .attribute identifier ',' ( expression | "string" )
2164 bool RISCVAsmParser::parseDirectiveAttribute() {
2165   MCAsmParser &Parser = getParser();
2166   int64_t Tag;
2167   SMLoc TagLoc;
2168   TagLoc = Parser.getTok().getLoc();
2169   if (Parser.getTok().is(AsmToken::Identifier)) {
2170     StringRef Name = Parser.getTok().getIdentifier();
2171     std::optional<unsigned> Ret =
2172         ELFAttrs::attrTypeFromString(Name, RISCVAttrs::getRISCVAttributeTags());
2173     if (!Ret) {
2174       Error(TagLoc, "attribute name not recognised: " + Name);
2175       return false;
2176     }
2177     Tag = *Ret;
2178     Parser.Lex();
2179   } else {
2180     const MCExpr *AttrExpr;
2181 
2182     TagLoc = Parser.getTok().getLoc();
2183     if (Parser.parseExpression(AttrExpr))
2184       return true;
2185 
2186     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
2187     if (check(!CE, TagLoc, "expected numeric constant"))
2188       return true;
2189 
2190     Tag = CE->getValue();
2191   }
2192 
2193   if (Parser.parseToken(AsmToken::Comma, "comma expected"))
2194     return true;
2195 
2196   StringRef StringValue;
2197   int64_t IntegerValue = 0;
2198   bool IsIntegerValue = true;
2199 
2200   // RISC-V attributes have a string value if the tag number is odd
2201   // and an integer value if the tag number is even.
2202   if (Tag % 2)
2203     IsIntegerValue = false;
2204 
2205   SMLoc ValueExprLoc = Parser.getTok().getLoc();
2206   if (IsIntegerValue) {
2207     const MCExpr *ValueExpr;
2208     if (Parser.parseExpression(ValueExpr))
2209       return true;
2210 
2211     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
2212     if (!CE)
2213       return Error(ValueExprLoc, "expected numeric constant");
2214     IntegerValue = CE->getValue();
2215   } else {
2216     if (Parser.getTok().isNot(AsmToken::String))
2217       return Error(Parser.getTok().getLoc(), "expected string constant");
2218 
2219     StringValue = Parser.getTok().getStringContents();
2220     Parser.Lex();
2221   }
2222 
2223   if (Parser.parseEOL())
2224     return true;
2225 
2226   if (IsIntegerValue)
2227     getTargetStreamer().emitAttribute(Tag, IntegerValue);
2228   else if (Tag != RISCVAttrs::ARCH)
2229     getTargetStreamer().emitTextAttribute(Tag, StringValue);
2230   else {
2231     StringRef Arch = StringValue;
2232     for (auto Feature : RISCVFeatureKV)
2233       if (llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
2234         clearFeatureBits(Feature.Value, Feature.Key);
2235 
2236     auto ParseResult = llvm::RISCVISAInfo::parseArchString(
2237         StringValue, /*EnableExperimentalExtension=*/true,
2238         /*ExperimentalExtensionVersionCheck=*/true);
2239     if (!ParseResult) {
2240       std::string Buffer;
2241       raw_string_ostream OutputErrMsg(Buffer);
2242       handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) {
2243         OutputErrMsg << "invalid arch name '" << Arch << "', "
2244                      << ErrMsg.getMessage();
2245       });
2246 
2247       return Error(ValueExprLoc, OutputErrMsg.str());
2248     }
2249     auto &ISAInfo = *ParseResult;
2250 
2251     for (auto Feature : RISCVFeatureKV)
2252       if (ISAInfo->hasExtension(Feature.Key))
2253         setFeatureBits(Feature.Value, Feature.Key);
2254 
2255     if (ISAInfo->getXLen() == 32)
2256       clearFeatureBits(RISCV::Feature64Bit, "64bit");
2257     else if (ISAInfo->getXLen() == 64)
2258       setFeatureBits(RISCV::Feature64Bit, "64bit");
2259     else
2260       return Error(ValueExprLoc, "bad arch string " + Arch);
2261 
2262     // Then emit the arch string.
2263     getTargetStreamer().emitTextAttribute(Tag, ISAInfo->toString());
2264   }
2265 
2266   return false;
2267 }
2268 
2269 /// parseDirectiveInsn
2270 /// ::= .insn [ format encoding, (operands (, operands)*) ]
2271 bool RISCVAsmParser::parseDirectiveInsn(SMLoc L) {
2272   MCAsmParser &Parser = getParser();
2273 
2274   // Expect instruction format as identifier.
2275   StringRef Format;
2276   SMLoc ErrorLoc = Parser.getTok().getLoc();
2277   if (Parser.parseIdentifier(Format))
2278     return Error(ErrorLoc, "expected instruction format");
2279 
2280   if (Format != "r" && Format != "r4" && Format != "i" && Format != "b" &&
2281       Format != "sb" && Format != "u" && Format != "j" && Format != "uj" &&
2282       Format != "s")
2283     return Error(ErrorLoc, "invalid instruction format");
2284 
2285   std::string FormatName = (".insn_" + Format).str();
2286 
2287   ParseInstructionInfo Info;
2288   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
2289 
2290   if (ParseInstruction(Info, FormatName, L, Operands))
2291     return true;
2292 
2293   unsigned Opcode;
2294   uint64_t ErrorInfo;
2295   return MatchAndEmitInstruction(L, Opcode, Operands, Parser.getStreamer(),
2296                                  ErrorInfo,
2297                                  /*MatchingInlineAsm=*/false);
2298 }
2299 
2300 /// parseDirectiveVariantCC
2301 ///  ::= .variant_cc symbol
2302 bool RISCVAsmParser::parseDirectiveVariantCC() {
2303   StringRef Name;
2304   if (getParser().parseIdentifier(Name))
2305     return TokError("expected symbol name");
2306   if (parseEOL())
2307     return false;
2308   getTargetStreamer().emitDirectiveVariantCC(
2309       *getContext().getOrCreateSymbol(Name));
2310   return false;
2311 }
2312 
2313 void RISCVAsmParser::emitToStreamer(MCStreamer &S, const MCInst &Inst) {
2314   MCInst CInst;
2315   bool Res = RISCVRVC::compress(CInst, Inst, getSTI());
2316   if (Res)
2317     ++RISCVNumInstrsCompressed;
2318   S.emitInstruction((Res ? CInst : Inst), getSTI());
2319 }
2320 
2321 void RISCVAsmParser::emitLoadImm(MCRegister DestReg, int64_t Value,
2322                                  MCStreamer &Out) {
2323   RISCVMatInt::InstSeq Seq =
2324       RISCVMatInt::generateInstSeq(Value, getSTI().getFeatureBits());
2325 
2326   MCRegister SrcReg = RISCV::X0;
2327   for (RISCVMatInt::Inst &Inst : Seq) {
2328     switch (Inst.getOpndKind()) {
2329     case RISCVMatInt::Imm:
2330       emitToStreamer(Out,
2331                      MCInstBuilder(Inst.getOpcode()).addReg(DestReg).addImm(Inst.getImm()));
2332       break;
2333     case RISCVMatInt::RegX0:
2334       emitToStreamer(
2335           Out, MCInstBuilder(Inst.getOpcode()).addReg(DestReg).addReg(SrcReg).addReg(
2336                    RISCV::X0));
2337       break;
2338     case RISCVMatInt::RegReg:
2339       emitToStreamer(
2340           Out, MCInstBuilder(Inst.getOpcode()).addReg(DestReg).addReg(SrcReg).addReg(
2341                    SrcReg));
2342       break;
2343     case RISCVMatInt::RegImm:
2344       emitToStreamer(
2345           Out, MCInstBuilder(Inst.getOpcode()).addReg(DestReg).addReg(SrcReg).addImm(
2346                    Inst.getImm()));
2347       break;
2348     }
2349 
2350     // Only the first instruction has X0 as its source.
2351     SrcReg = DestReg;
2352   }
2353 }
2354 
2355 void RISCVAsmParser::emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
2356                                        const MCExpr *Symbol,
2357                                        RISCVMCExpr::VariantKind VKHi,
2358                                        unsigned SecondOpcode, SMLoc IDLoc,
2359                                        MCStreamer &Out) {
2360   // A pair of instructions for PC-relative addressing; expands to
2361   //   TmpLabel: AUIPC TmpReg, VKHi(symbol)
2362   //             OP DestReg, TmpReg, %pcrel_lo(TmpLabel)
2363   MCContext &Ctx = getContext();
2364 
2365   MCSymbol *TmpLabel = Ctx.createNamedTempSymbol("pcrel_hi");
2366   Out.emitLabel(TmpLabel);
2367 
2368   const RISCVMCExpr *SymbolHi = RISCVMCExpr::create(Symbol, VKHi, Ctx);
2369   emitToStreamer(
2370       Out, MCInstBuilder(RISCV::AUIPC).addOperand(TmpReg).addExpr(SymbolHi));
2371 
2372   const MCExpr *RefToLinkTmpLabel =
2373       RISCVMCExpr::create(MCSymbolRefExpr::create(TmpLabel, Ctx),
2374                           RISCVMCExpr::VK_RISCV_PCREL_LO, Ctx);
2375 
2376   emitToStreamer(Out, MCInstBuilder(SecondOpcode)
2377                           .addOperand(DestReg)
2378                           .addOperand(TmpReg)
2379                           .addExpr(RefToLinkTmpLabel));
2380 }
2381 
2382 void RISCVAsmParser::emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc,
2383                                           MCStreamer &Out) {
2384   // The load local address pseudo-instruction "lla" is used in PC-relative
2385   // addressing of local symbols:
2386   //   lla rdest, symbol
2387   // expands to
2388   //   TmpLabel: AUIPC rdest, %pcrel_hi(symbol)
2389   //             ADDI rdest, rdest, %pcrel_lo(TmpLabel)
2390   MCOperand DestReg = Inst.getOperand(0);
2391   const MCExpr *Symbol = Inst.getOperand(1).getExpr();
2392   emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
2393                     RISCV::ADDI, IDLoc, Out);
2394 }
2395 
2396 void RISCVAsmParser::emitLoadAddress(MCInst &Inst, SMLoc IDLoc,
2397                                      MCStreamer &Out) {
2398   // The load address pseudo-instruction "la" is used in PC-relative and
2399   // GOT-indirect addressing of global symbols:
2400   //   la rdest, symbol
2401   // expands to either (for non-PIC)
2402   //   TmpLabel: AUIPC rdest, %pcrel_hi(symbol)
2403   //             ADDI rdest, rdest, %pcrel_lo(TmpLabel)
2404   // or (for PIC)
2405   //   TmpLabel: AUIPC rdest, %got_pcrel_hi(symbol)
2406   //             Lx rdest, %pcrel_lo(TmpLabel)(rdest)
2407   MCOperand DestReg = Inst.getOperand(0);
2408   const MCExpr *Symbol = Inst.getOperand(1).getExpr();
2409   unsigned SecondOpcode;
2410   RISCVMCExpr::VariantKind VKHi;
2411   if (ParserOptions.IsPicEnabled) {
2412     SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
2413     VKHi = RISCVMCExpr::VK_RISCV_GOT_HI;
2414   } else {
2415     SecondOpcode = RISCV::ADDI;
2416     VKHi = RISCVMCExpr::VK_RISCV_PCREL_HI;
2417   }
2418   emitAuipcInstPair(DestReg, DestReg, Symbol, VKHi, SecondOpcode, IDLoc, Out);
2419 }
2420 
2421 void RISCVAsmParser::emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc,
2422                                           MCStreamer &Out) {
2423   // The load TLS IE address pseudo-instruction "la.tls.ie" is used in
2424   // initial-exec TLS model addressing of global symbols:
2425   //   la.tls.ie rdest, symbol
2426   // expands to
2427   //   TmpLabel: AUIPC rdest, %tls_ie_pcrel_hi(symbol)
2428   //             Lx rdest, %pcrel_lo(TmpLabel)(rdest)
2429   MCOperand DestReg = Inst.getOperand(0);
2430   const MCExpr *Symbol = Inst.getOperand(1).getExpr();
2431   unsigned SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
2432   emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GOT_HI,
2433                     SecondOpcode, IDLoc, Out);
2434 }
2435 
2436 void RISCVAsmParser::emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc,
2437                                           MCStreamer &Out) {
2438   // The load TLS GD address pseudo-instruction "la.tls.gd" is used in
2439   // global-dynamic TLS model addressing of global symbols:
2440   //   la.tls.gd rdest, symbol
2441   // expands to
2442   //   TmpLabel: AUIPC rdest, %tls_gd_pcrel_hi(symbol)
2443   //             ADDI rdest, rdest, %pcrel_lo(TmpLabel)
2444   MCOperand DestReg = Inst.getOperand(0);
2445   const MCExpr *Symbol = Inst.getOperand(1).getExpr();
2446   emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GD_HI,
2447                     RISCV::ADDI, IDLoc, Out);
2448 }
2449 
2450 void RISCVAsmParser::emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode,
2451                                          SMLoc IDLoc, MCStreamer &Out,
2452                                          bool HasTmpReg) {
2453   // The load/store pseudo-instruction does a pc-relative load with
2454   // a symbol.
2455   //
2456   // The expansion looks like this
2457   //
2458   //   TmpLabel: AUIPC tmp, %pcrel_hi(symbol)
2459   //             [S|L]X    rd, %pcrel_lo(TmpLabel)(tmp)
2460   unsigned DestRegOpIdx = HasTmpReg ? 1 : 0;
2461   MCOperand DestReg = Inst.getOperand(DestRegOpIdx);
2462   unsigned SymbolOpIdx = HasTmpReg ? 2 : 1;
2463   MCOperand TmpReg = Inst.getOperand(0);
2464   const MCExpr *Symbol = Inst.getOperand(SymbolOpIdx).getExpr();
2465   emitAuipcInstPair(DestReg, TmpReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
2466                     Opcode, IDLoc, Out);
2467 }
2468 
2469 void RISCVAsmParser::emitPseudoExtend(MCInst &Inst, bool SignExtend,
2470                                       int64_t Width, SMLoc IDLoc,
2471                                       MCStreamer &Out) {
2472   // The sign/zero extend pseudo-instruction does two shifts, with the shift
2473   // amounts dependent on the XLEN.
2474   //
2475   // The expansion looks like this
2476   //
2477   //    SLLI rd, rs, XLEN - Width
2478   //    SR[A|R]I rd, rd, XLEN - Width
2479   MCOperand DestReg = Inst.getOperand(0);
2480   MCOperand SourceReg = Inst.getOperand(1);
2481 
2482   unsigned SecondOpcode = SignExtend ? RISCV::SRAI : RISCV::SRLI;
2483   int64_t ShAmt = (isRV64() ? 64 : 32) - Width;
2484 
2485   assert(ShAmt > 0 && "Shift amount must be non-zero.");
2486 
2487   emitToStreamer(Out, MCInstBuilder(RISCV::SLLI)
2488                           .addOperand(DestReg)
2489                           .addOperand(SourceReg)
2490                           .addImm(ShAmt));
2491 
2492   emitToStreamer(Out, MCInstBuilder(SecondOpcode)
2493                           .addOperand(DestReg)
2494                           .addOperand(DestReg)
2495                           .addImm(ShAmt));
2496 }
2497 
2498 void RISCVAsmParser::emitVMSGE(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
2499                                MCStreamer &Out) {
2500   if (Inst.getNumOperands() == 3) {
2501     // unmasked va >= x
2502     //
2503     //  pseudoinstruction: vmsge{u}.vx vd, va, x
2504     //  expansion: vmslt{u}.vx vd, va, x; vmnand.mm vd, vd, vd
2505     emitToStreamer(Out, MCInstBuilder(Opcode)
2506                             .addOperand(Inst.getOperand(0))
2507                             .addOperand(Inst.getOperand(1))
2508                             .addOperand(Inst.getOperand(2))
2509                             .addReg(RISCV::NoRegister));
2510     emitToStreamer(Out, MCInstBuilder(RISCV::VMNAND_MM)
2511                             .addOperand(Inst.getOperand(0))
2512                             .addOperand(Inst.getOperand(0))
2513                             .addOperand(Inst.getOperand(0)));
2514   } else if (Inst.getNumOperands() == 4) {
2515     // masked va >= x, vd != v0
2516     //
2517     //  pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t
2518     //  expansion: vmslt{u}.vx vd, va, x, v0.t; vmxor.mm vd, vd, v0
2519     assert(Inst.getOperand(0).getReg() != RISCV::V0 &&
2520            "The destination register should not be V0.");
2521     emitToStreamer(Out, MCInstBuilder(Opcode)
2522                             .addOperand(Inst.getOperand(0))
2523                             .addOperand(Inst.getOperand(1))
2524                             .addOperand(Inst.getOperand(2))
2525                             .addOperand(Inst.getOperand(3)));
2526     emitToStreamer(Out, MCInstBuilder(RISCV::VMXOR_MM)
2527                             .addOperand(Inst.getOperand(0))
2528                             .addOperand(Inst.getOperand(0))
2529                             .addReg(RISCV::V0));
2530   } else if (Inst.getNumOperands() == 5 &&
2531              Inst.getOperand(0).getReg() == RISCV::V0) {
2532     // masked va >= x, vd == v0
2533     //
2534     //  pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt
2535     //  expansion: vmslt{u}.vx vt, va, x;  vmandn.mm vd, vd, vt
2536     assert(Inst.getOperand(0).getReg() == RISCV::V0 &&
2537            "The destination register should be V0.");
2538     assert(Inst.getOperand(1).getReg() != RISCV::V0 &&
2539            "The temporary vector register should not be V0.");
2540     emitToStreamer(Out, MCInstBuilder(Opcode)
2541                             .addOperand(Inst.getOperand(1))
2542                             .addOperand(Inst.getOperand(2))
2543                             .addOperand(Inst.getOperand(3))
2544                             .addOperand(Inst.getOperand(4)));
2545     emitToStreamer(Out, MCInstBuilder(RISCV::VMANDN_MM)
2546                             .addOperand(Inst.getOperand(0))
2547                             .addOperand(Inst.getOperand(0))
2548                             .addOperand(Inst.getOperand(1)));
2549   } else if (Inst.getNumOperands() == 5) {
2550     // masked va >= x, any vd
2551     //
2552     // pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt
2553     // expansion: vmslt{u}.vx vt, va, x; vmandn.mm vt, v0, vt; vmandn.mm vd,
2554     // vd, v0; vmor.mm vd, vt, vd
2555     assert(Inst.getOperand(1).getReg() != RISCV::V0 &&
2556            "The temporary vector register should not be V0.");
2557     emitToStreamer(Out, MCInstBuilder(Opcode)
2558                             .addOperand(Inst.getOperand(1))
2559                             .addOperand(Inst.getOperand(2))
2560                             .addOperand(Inst.getOperand(3))
2561                             .addReg(RISCV::NoRegister));
2562     emitToStreamer(Out, MCInstBuilder(RISCV::VMANDN_MM)
2563                             .addOperand(Inst.getOperand(1))
2564                             .addReg(RISCV::V0)
2565                             .addOperand(Inst.getOperand(1)));
2566     emitToStreamer(Out, MCInstBuilder(RISCV::VMANDN_MM)
2567                             .addOperand(Inst.getOperand(0))
2568                             .addOperand(Inst.getOperand(0))
2569                             .addReg(RISCV::V0));
2570     emitToStreamer(Out, MCInstBuilder(RISCV::VMOR_MM)
2571                             .addOperand(Inst.getOperand(0))
2572                             .addOperand(Inst.getOperand(1))
2573                             .addOperand(Inst.getOperand(0)));
2574   }
2575 }
2576 
2577 bool RISCVAsmParser::checkPseudoAddTPRel(MCInst &Inst,
2578                                          OperandVector &Operands) {
2579   assert(Inst.getOpcode() == RISCV::PseudoAddTPRel && "Invalid instruction");
2580   assert(Inst.getOperand(2).isReg() && "Unexpected second operand kind");
2581   if (Inst.getOperand(2).getReg() != RISCV::X4) {
2582     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[3]).getStartLoc();
2583     return Error(ErrorLoc, "the second input operand must be tp/x4 when using "
2584                            "%tprel_add modifier");
2585   }
2586 
2587   return false;
2588 }
2589 
2590 std::unique_ptr<RISCVOperand> RISCVAsmParser::defaultMaskRegOp() const {
2591   return RISCVOperand::createReg(RISCV::NoRegister, llvm::SMLoc(),
2592                                  llvm::SMLoc(), isRV64());
2593 }
2594 
2595 bool RISCVAsmParser::validateInstruction(MCInst &Inst,
2596                                          OperandVector &Operands) {
2597   if (Inst.getOpcode() == RISCV::PseudoVMSGEU_VX_M_T ||
2598       Inst.getOpcode() == RISCV::PseudoVMSGE_VX_M_T) {
2599     unsigned DestReg = Inst.getOperand(0).getReg();
2600     unsigned TempReg = Inst.getOperand(1).getReg();
2601     if (DestReg == TempReg) {
2602       SMLoc Loc = Operands.back()->getStartLoc();
2603       return Error(Loc, "The temporary vector register cannot be the same as "
2604                         "the destination register.");
2605     }
2606   }
2607 
2608   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
2609   RISCVII::VConstraintType Constraints = RISCVII::getConstraint(MCID.TSFlags);
2610   if (Constraints == RISCVII::NoConstraint)
2611     return false;
2612 
2613   unsigned DestReg = Inst.getOperand(0).getReg();
2614   // Operands[1] will be the first operand, DestReg.
2615   SMLoc Loc = Operands[1]->getStartLoc();
2616   if (Constraints & RISCVII::VS2Constraint) {
2617     unsigned CheckReg = Inst.getOperand(1).getReg();
2618     if (DestReg == CheckReg)
2619       return Error(Loc, "The destination vector register group cannot overlap"
2620                         " the source vector register group.");
2621   }
2622   if ((Constraints & RISCVII::VS1Constraint) && (Inst.getOperand(2).isReg())) {
2623     unsigned CheckReg = Inst.getOperand(2).getReg();
2624     if (DestReg == CheckReg)
2625       return Error(Loc, "The destination vector register group cannot overlap"
2626                         " the source vector register group.");
2627   }
2628   if ((Constraints & RISCVII::VMConstraint) && (DestReg == RISCV::V0)) {
2629     // vadc, vsbc are special cases. These instructions have no mask register.
2630     // The destination register could not be V0.
2631     unsigned Opcode = Inst.getOpcode();
2632     if (Opcode == RISCV::VADC_VVM || Opcode == RISCV::VADC_VXM ||
2633         Opcode == RISCV::VADC_VIM || Opcode == RISCV::VSBC_VVM ||
2634         Opcode == RISCV::VSBC_VXM || Opcode == RISCV::VFMERGE_VFM ||
2635         Opcode == RISCV::VMERGE_VIM || Opcode == RISCV::VMERGE_VVM ||
2636         Opcode == RISCV::VMERGE_VXM)
2637       return Error(Loc, "The destination vector register group cannot be V0.");
2638 
2639     // Regardless masked or unmasked version, the number of operands is the
2640     // same. For example, "viota.m v0, v2" is "viota.m v0, v2, NoRegister"
2641     // actually. We need to check the last operand to ensure whether it is
2642     // masked or not.
2643     unsigned CheckReg = Inst.getOperand(Inst.getNumOperands() - 1).getReg();
2644     assert((CheckReg == RISCV::V0 || CheckReg == RISCV::NoRegister) &&
2645            "Unexpected register for mask operand");
2646 
2647     if (DestReg == CheckReg)
2648       return Error(Loc, "The destination vector register group cannot overlap"
2649                         " the mask register.");
2650   }
2651   return false;
2652 }
2653 
2654 bool RISCVAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
2655                                         OperandVector &Operands,
2656                                         MCStreamer &Out) {
2657   Inst.setLoc(IDLoc);
2658 
2659   switch (Inst.getOpcode()) {
2660   default:
2661     break;
2662   case RISCV::PseudoLI: {
2663     MCRegister Reg = Inst.getOperand(0).getReg();
2664     const MCOperand &Op1 = Inst.getOperand(1);
2665     if (Op1.isExpr()) {
2666       // We must have li reg, %lo(sym) or li reg, %pcrel_lo(sym) or similar.
2667       // Just convert to an addi. This allows compatibility with gas.
2668       emitToStreamer(Out, MCInstBuilder(RISCV::ADDI)
2669                               .addReg(Reg)
2670                               .addReg(RISCV::X0)
2671                               .addExpr(Op1.getExpr()));
2672       return false;
2673     }
2674     int64_t Imm = Inst.getOperand(1).getImm();
2675     // On RV32 the immediate here can either be a signed or an unsigned
2676     // 32-bit number. Sign extension has to be performed to ensure that Imm
2677     // represents the expected signed 64-bit number.
2678     if (!isRV64())
2679       Imm = SignExtend64<32>(Imm);
2680     emitLoadImm(Reg, Imm, Out);
2681     return false;
2682   }
2683   case RISCV::PseudoLLA:
2684     emitLoadLocalAddress(Inst, IDLoc, Out);
2685     return false;
2686   case RISCV::PseudoLA:
2687     emitLoadAddress(Inst, IDLoc, Out);
2688     return false;
2689   case RISCV::PseudoLA_TLS_IE:
2690     emitLoadTLSIEAddress(Inst, IDLoc, Out);
2691     return false;
2692   case RISCV::PseudoLA_TLS_GD:
2693     emitLoadTLSGDAddress(Inst, IDLoc, Out);
2694     return false;
2695   case RISCV::PseudoLB:
2696     emitLoadStoreSymbol(Inst, RISCV::LB, IDLoc, Out, /*HasTmpReg=*/false);
2697     return false;
2698   case RISCV::PseudoLBU:
2699     emitLoadStoreSymbol(Inst, RISCV::LBU, IDLoc, Out, /*HasTmpReg=*/false);
2700     return false;
2701   case RISCV::PseudoLH:
2702     emitLoadStoreSymbol(Inst, RISCV::LH, IDLoc, Out, /*HasTmpReg=*/false);
2703     return false;
2704   case RISCV::PseudoLHU:
2705     emitLoadStoreSymbol(Inst, RISCV::LHU, IDLoc, Out, /*HasTmpReg=*/false);
2706     return false;
2707   case RISCV::PseudoLW:
2708     emitLoadStoreSymbol(Inst, RISCV::LW, IDLoc, Out, /*HasTmpReg=*/false);
2709     return false;
2710   case RISCV::PseudoLWU:
2711     emitLoadStoreSymbol(Inst, RISCV::LWU, IDLoc, Out, /*HasTmpReg=*/false);
2712     return false;
2713   case RISCV::PseudoLD:
2714     emitLoadStoreSymbol(Inst, RISCV::LD, IDLoc, Out, /*HasTmpReg=*/false);
2715     return false;
2716   case RISCV::PseudoFLH:
2717     emitLoadStoreSymbol(Inst, RISCV::FLH, IDLoc, Out, /*HasTmpReg=*/true);
2718     return false;
2719   case RISCV::PseudoFLW:
2720     emitLoadStoreSymbol(Inst, RISCV::FLW, IDLoc, Out, /*HasTmpReg=*/true);
2721     return false;
2722   case RISCV::PseudoFLD:
2723     emitLoadStoreSymbol(Inst, RISCV::FLD, IDLoc, Out, /*HasTmpReg=*/true);
2724     return false;
2725   case RISCV::PseudoSB:
2726     emitLoadStoreSymbol(Inst, RISCV::SB, IDLoc, Out, /*HasTmpReg=*/true);
2727     return false;
2728   case RISCV::PseudoSH:
2729     emitLoadStoreSymbol(Inst, RISCV::SH, IDLoc, Out, /*HasTmpReg=*/true);
2730     return false;
2731   case RISCV::PseudoSW:
2732     emitLoadStoreSymbol(Inst, RISCV::SW, IDLoc, Out, /*HasTmpReg=*/true);
2733     return false;
2734   case RISCV::PseudoSD:
2735     emitLoadStoreSymbol(Inst, RISCV::SD, IDLoc, Out, /*HasTmpReg=*/true);
2736     return false;
2737   case RISCV::PseudoFSH:
2738     emitLoadStoreSymbol(Inst, RISCV::FSH, IDLoc, Out, /*HasTmpReg=*/true);
2739     return false;
2740   case RISCV::PseudoFSW:
2741     emitLoadStoreSymbol(Inst, RISCV::FSW, IDLoc, Out, /*HasTmpReg=*/true);
2742     return false;
2743   case RISCV::PseudoFSD:
2744     emitLoadStoreSymbol(Inst, RISCV::FSD, IDLoc, Out, /*HasTmpReg=*/true);
2745     return false;
2746   case RISCV::PseudoAddTPRel:
2747     if (checkPseudoAddTPRel(Inst, Operands))
2748       return true;
2749     break;
2750   case RISCV::PseudoSEXT_B:
2751     emitPseudoExtend(Inst, /*SignExtend=*/true, /*Width=*/8, IDLoc, Out);
2752     return false;
2753   case RISCV::PseudoSEXT_H:
2754     emitPseudoExtend(Inst, /*SignExtend=*/true, /*Width=*/16, IDLoc, Out);
2755     return false;
2756   case RISCV::PseudoZEXT_H:
2757     emitPseudoExtend(Inst, /*SignExtend=*/false, /*Width=*/16, IDLoc, Out);
2758     return false;
2759   case RISCV::PseudoZEXT_W:
2760     emitPseudoExtend(Inst, /*SignExtend=*/false, /*Width=*/32, IDLoc, Out);
2761     return false;
2762   case RISCV::PseudoVMSGEU_VX:
2763   case RISCV::PseudoVMSGEU_VX_M:
2764   case RISCV::PseudoVMSGEU_VX_M_T:
2765     emitVMSGE(Inst, RISCV::VMSLTU_VX, IDLoc, Out);
2766     return false;
2767   case RISCV::PseudoVMSGE_VX:
2768   case RISCV::PseudoVMSGE_VX_M:
2769   case RISCV::PseudoVMSGE_VX_M_T:
2770     emitVMSGE(Inst, RISCV::VMSLT_VX, IDLoc, Out);
2771     return false;
2772   case RISCV::PseudoVMSGE_VI:
2773   case RISCV::PseudoVMSLT_VI: {
2774     // These instructions are signed and so is immediate so we can subtract one
2775     // and change the opcode.
2776     int64_t Imm = Inst.getOperand(2).getImm();
2777     unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGE_VI ? RISCV::VMSGT_VI
2778                                                              : RISCV::VMSLE_VI;
2779     emitToStreamer(Out, MCInstBuilder(Opc)
2780                             .addOperand(Inst.getOperand(0))
2781                             .addOperand(Inst.getOperand(1))
2782                             .addImm(Imm - 1)
2783                             .addOperand(Inst.getOperand(3)));
2784     return false;
2785   }
2786   case RISCV::PseudoVMSGEU_VI:
2787   case RISCV::PseudoVMSLTU_VI: {
2788     int64_t Imm = Inst.getOperand(2).getImm();
2789     // Unsigned comparisons are tricky because the immediate is signed. If the
2790     // immediate is 0 we can't just subtract one. vmsltu.vi v0, v1, 0 is always
2791     // false, but vmsle.vi v0, v1, -1 is always true. Instead we use
2792     // vmsne v0, v1, v1 which is always false.
2793     if (Imm == 0) {
2794       unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGEU_VI
2795                          ? RISCV::VMSEQ_VV
2796                          : RISCV::VMSNE_VV;
2797       emitToStreamer(Out, MCInstBuilder(Opc)
2798                               .addOperand(Inst.getOperand(0))
2799                               .addOperand(Inst.getOperand(1))
2800                               .addOperand(Inst.getOperand(1))
2801                               .addOperand(Inst.getOperand(3)));
2802     } else {
2803       // Other immediate values can subtract one like signed.
2804       unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGEU_VI
2805                          ? RISCV::VMSGTU_VI
2806                          : RISCV::VMSLEU_VI;
2807       emitToStreamer(Out, MCInstBuilder(Opc)
2808                               .addOperand(Inst.getOperand(0))
2809                               .addOperand(Inst.getOperand(1))
2810                               .addImm(Imm - 1)
2811                               .addOperand(Inst.getOperand(3)));
2812     }
2813 
2814     return false;
2815   }
2816   }
2817 
2818   emitToStreamer(Out, Inst);
2819   return false;
2820 }
2821 
2822 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeRISCVAsmParser() {
2823   RegisterMCAsmParser<RISCVAsmParser> X(getTheRISCV32Target());
2824   RegisterMCAsmParser<RISCVAsmParser> Y(getTheRISCV64Target());
2825 }
2826