xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/AsmParser/RISCVAsmParser.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===-- RISCVAsmParser.cpp - Parse RISCV assembly to MCInst instructions --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCTargetDesc/RISCVAsmBackend.h"
10 #include "MCTargetDesc/RISCVBaseInfo.h"
11 #include "MCTargetDesc/RISCVInstPrinter.h"
12 #include "MCTargetDesc/RISCVMCExpr.h"
13 #include "MCTargetDesc/RISCVMCTargetDesc.h"
14 #include "MCTargetDesc/RISCVMatInt.h"
15 #include "MCTargetDesc/RISCVTargetStreamer.h"
16 #include "TargetInfo/RISCVTargetInfo.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallBitVector.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/MC/MCAssembler.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCInst.h"
26 #include "llvm/MC/MCInstBuilder.h"
27 #include "llvm/MC/MCObjectFileInfo.h"
28 #include "llvm/MC/MCParser/MCAsmLexer.h"
29 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
30 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
31 #include "llvm/MC/MCRegisterInfo.h"
32 #include "llvm/MC/MCStreamer.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/MCValue.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/RISCVAttributes.h"
38 #include "llvm/Support/TargetRegistry.h"
39 
40 #include <limits>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-asm-parser"
45 
46 // Include the auto-generated portion of the compress emitter.
47 #define GEN_COMPRESS_INSTR
48 #include "RISCVGenCompressInstEmitter.inc"
49 
50 STATISTIC(RISCVNumInstrsCompressed,
51           "Number of RISC-V Compressed instructions emitted");
52 
53 namespace {
54 struct RISCVOperand;
55 
56 struct ParserOptionsSet {
57   bool IsPicEnabled;
58 };
59 
60 class RISCVAsmParser : public MCTargetAsmParser {
61   SmallVector<FeatureBitset, 4> FeatureBitStack;
62 
63   SmallVector<ParserOptionsSet, 4> ParserOptionsStack;
64   ParserOptionsSet ParserOptions;
65 
66   SMLoc getLoc() const { return getParser().getTok().getLoc(); }
67   bool isRV64() const { return getSTI().hasFeature(RISCV::Feature64Bit); }
68   bool isRV32E() const { return getSTI().hasFeature(RISCV::FeatureRV32E); }
69 
70   RISCVTargetStreamer &getTargetStreamer() {
71     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
72     return static_cast<RISCVTargetStreamer &>(TS);
73   }
74 
75   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
76                                       unsigned Kind) override;
77 
78   bool generateImmOutOfRangeError(OperandVector &Operands, uint64_t ErrorInfo,
79                                   int64_t Lower, int64_t Upper, Twine Msg);
80 
81   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
82                                OperandVector &Operands, MCStreamer &Out,
83                                uint64_t &ErrorInfo,
84                                bool MatchingInlineAsm) override;
85 
86   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
87   OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
88                                         SMLoc &EndLoc) override;
89 
90   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
91                         SMLoc NameLoc, OperandVector &Operands) override;
92 
93   bool ParseDirective(AsmToken DirectiveID) override;
94 
95   // Helper to actually emit an instruction to the MCStreamer. Also, when
96   // possible, compression of the instruction is performed.
97   void emitToStreamer(MCStreamer &S, const MCInst &Inst);
98 
99   // Helper to emit a combination of LUI, ADDI(W), and SLLI instructions that
100   // synthesize the desired immedate value into the destination register.
101   void emitLoadImm(MCRegister DestReg, int64_t Value, MCStreamer &Out);
102 
103   // Helper to emit a combination of AUIPC and SecondOpcode. Used to implement
104   // helpers such as emitLoadLocalAddress and emitLoadAddress.
105   void emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
106                          const MCExpr *Symbol, RISCVMCExpr::VariantKind VKHi,
107                          unsigned SecondOpcode, SMLoc IDLoc, MCStreamer &Out);
108 
109   // Helper to emit pseudo instruction "lla" used in PC-rel addressing.
110   void emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
111 
112   // Helper to emit pseudo instruction "la" used in GOT/PC-rel addressing.
113   void emitLoadAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
114 
115   // Helper to emit pseudo instruction "la.tls.ie" used in initial-exec TLS
116   // addressing.
117   void emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
118 
119   // Helper to emit pseudo instruction "la.tls.gd" used in global-dynamic TLS
120   // addressing.
121   void emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
122 
123   // Helper to emit pseudo load/store instruction with a symbol.
124   void emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
125                            MCStreamer &Out, bool HasTmpReg);
126 
127   // Helper to emit pseudo sign/zero extend instruction.
128   void emitPseudoExtend(MCInst &Inst, bool SignExtend, int64_t Width,
129                         SMLoc IDLoc, MCStreamer &Out);
130 
131   // Helper to emit pseudo vmsge{u}.vx instruction.
132   void emitVMSGE(MCInst &Inst, unsigned Opcode, SMLoc IDLoc, MCStreamer &Out);
133 
134   // Checks that a PseudoAddTPRel is using x4/tp in its second input operand.
135   // Enforcing this using a restricted register class for the second input
136   // operand of PseudoAddTPRel results in a poor diagnostic due to the fact
137   // 'add' is an overloaded mnemonic.
138   bool checkPseudoAddTPRel(MCInst &Inst, OperandVector &Operands);
139 
140   // Check instruction constraints.
141   bool validateInstruction(MCInst &Inst, OperandVector &Operands);
142 
143   /// Helper for processing MC instructions that have been successfully matched
144   /// by MatchAndEmitInstruction. Modifications to the emitted instructions,
145   /// like the expansion of pseudo instructions (e.g., "li"), can be performed
146   /// in this method.
147   bool processInstruction(MCInst &Inst, SMLoc IDLoc, OperandVector &Operands,
148                           MCStreamer &Out);
149 
150 // Auto-generated instruction matching functions
151 #define GET_ASSEMBLER_HEADER
152 #include "RISCVGenAsmMatcher.inc"
153 
154   OperandMatchResultTy parseCSRSystemRegister(OperandVector &Operands);
155   OperandMatchResultTy parseImmediate(OperandVector &Operands);
156   OperandMatchResultTy parseRegister(OperandVector &Operands,
157                                      bool AllowParens = false);
158   OperandMatchResultTy parseMemOpBaseReg(OperandVector &Operands);
159   OperandMatchResultTy parseAtomicMemOp(OperandVector &Operands);
160   OperandMatchResultTy parseOperandWithModifier(OperandVector &Operands);
161   OperandMatchResultTy parseBareSymbol(OperandVector &Operands);
162   OperandMatchResultTy parseCallSymbol(OperandVector &Operands);
163   OperandMatchResultTy parsePseudoJumpSymbol(OperandVector &Operands);
164   OperandMatchResultTy parseJALOffset(OperandVector &Operands);
165   OperandMatchResultTy parseVTypeI(OperandVector &Operands);
166   OperandMatchResultTy parseMaskReg(OperandVector &Operands);
167 
168   bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
169 
170   bool parseDirectiveOption();
171   bool parseDirectiveAttribute();
172 
173   void setFeatureBits(uint64_t Feature, StringRef FeatureString) {
174     if (!(getSTI().getFeatureBits()[Feature])) {
175       MCSubtargetInfo &STI = copySTI();
176       setAvailableFeatures(
177           ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
178     }
179   }
180 
181   bool getFeatureBits(uint64_t Feature) {
182     return getSTI().getFeatureBits()[Feature];
183   }
184 
185   void clearFeatureBits(uint64_t Feature, StringRef FeatureString) {
186     if (getSTI().getFeatureBits()[Feature]) {
187       MCSubtargetInfo &STI = copySTI();
188       setAvailableFeatures(
189           ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
190     }
191   }
192 
193   void pushFeatureBits() {
194     assert(FeatureBitStack.size() == ParserOptionsStack.size() &&
195            "These two stacks must be kept synchronized");
196     FeatureBitStack.push_back(getSTI().getFeatureBits());
197     ParserOptionsStack.push_back(ParserOptions);
198   }
199 
200   bool popFeatureBits() {
201     assert(FeatureBitStack.size() == ParserOptionsStack.size() &&
202            "These two stacks must be kept synchronized");
203     if (FeatureBitStack.empty())
204       return true;
205 
206     FeatureBitset FeatureBits = FeatureBitStack.pop_back_val();
207     copySTI().setFeatureBits(FeatureBits);
208     setAvailableFeatures(ComputeAvailableFeatures(FeatureBits));
209 
210     ParserOptions = ParserOptionsStack.pop_back_val();
211 
212     return false;
213   }
214 
215   std::unique_ptr<RISCVOperand> defaultMaskRegOp() const;
216 
217 public:
218   enum RISCVMatchResultTy {
219     Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY,
220 #define GET_OPERAND_DIAGNOSTIC_TYPES
221 #include "RISCVGenAsmMatcher.inc"
222 #undef GET_OPERAND_DIAGNOSTIC_TYPES
223   };
224 
225   static bool classifySymbolRef(const MCExpr *Expr,
226                                 RISCVMCExpr::VariantKind &Kind);
227 
228   RISCVAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
229                  const MCInstrInfo &MII, const MCTargetOptions &Options)
230       : MCTargetAsmParser(Options, STI, MII) {
231     Parser.addAliasForDirective(".half", ".2byte");
232     Parser.addAliasForDirective(".hword", ".2byte");
233     Parser.addAliasForDirective(".word", ".4byte");
234     Parser.addAliasForDirective(".dword", ".8byte");
235     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
236 
237     auto ABIName = StringRef(Options.ABIName);
238     if (ABIName.endswith("f") &&
239         !getSTI().getFeatureBits()[RISCV::FeatureStdExtF]) {
240       errs() << "Hard-float 'f' ABI can't be used for a target that "
241                 "doesn't support the F instruction set extension (ignoring "
242                 "target-abi)\n";
243     } else if (ABIName.endswith("d") &&
244                !getSTI().getFeatureBits()[RISCV::FeatureStdExtD]) {
245       errs() << "Hard-float 'd' ABI can't be used for a target that "
246                 "doesn't support the D instruction set extension (ignoring "
247                 "target-abi)\n";
248     }
249 
250     const MCObjectFileInfo *MOFI = Parser.getContext().getObjectFileInfo();
251     ParserOptions.IsPicEnabled = MOFI->isPositionIndependent();
252   }
253 };
254 
255 /// RISCVOperand - Instances of this class represent a parsed machine
256 /// instruction
257 struct RISCVOperand : public MCParsedAsmOperand {
258 
259   enum class KindTy {
260     Token,
261     Register,
262     Immediate,
263     SystemRegister,
264     VType,
265   } Kind;
266 
267   bool IsRV64;
268 
269   struct RegOp {
270     MCRegister RegNum;
271   };
272 
273   struct ImmOp {
274     const MCExpr *Val;
275   };
276 
277   struct SysRegOp {
278     const char *Data;
279     unsigned Length;
280     unsigned Encoding;
281     // FIXME: Add the Encoding parsed fields as needed for checks,
282     // e.g.: read/write or user/supervisor/machine privileges.
283   };
284 
285   struct VTypeOp {
286     unsigned Val;
287   };
288 
289   SMLoc StartLoc, EndLoc;
290   union {
291     StringRef Tok;
292     RegOp Reg;
293     ImmOp Imm;
294     struct SysRegOp SysReg;
295     struct VTypeOp VType;
296   };
297 
298   RISCVOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
299 
300 public:
301   RISCVOperand(const RISCVOperand &o) : MCParsedAsmOperand() {
302     Kind = o.Kind;
303     IsRV64 = o.IsRV64;
304     StartLoc = o.StartLoc;
305     EndLoc = o.EndLoc;
306     switch (Kind) {
307     case KindTy::Register:
308       Reg = o.Reg;
309       break;
310     case KindTy::Immediate:
311       Imm = o.Imm;
312       break;
313     case KindTy::Token:
314       Tok = o.Tok;
315       break;
316     case KindTy::SystemRegister:
317       SysReg = o.SysReg;
318       break;
319     case KindTy::VType:
320       VType = o.VType;
321       break;
322     }
323   }
324 
325   bool isToken() const override { return Kind == KindTy::Token; }
326   bool isReg() const override { return Kind == KindTy::Register; }
327   bool isV0Reg() const {
328     return Kind == KindTy::Register && Reg.RegNum == RISCV::V0;
329   }
330   bool isImm() const override { return Kind == KindTy::Immediate; }
331   bool isMem() const override { return false; }
332   bool isSystemRegister() const { return Kind == KindTy::SystemRegister; }
333   bool isVType() const { return Kind == KindTy::VType; }
334 
335   bool isGPR() const {
336     return Kind == KindTy::Register &&
337            RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(Reg.RegNum);
338   }
339 
340   static bool evaluateConstantImm(const MCExpr *Expr, int64_t &Imm,
341                                   RISCVMCExpr::VariantKind &VK) {
342     if (auto *RE = dyn_cast<RISCVMCExpr>(Expr)) {
343       VK = RE->getKind();
344       return RE->evaluateAsConstant(Imm);
345     }
346 
347     if (auto CE = dyn_cast<MCConstantExpr>(Expr)) {
348       VK = RISCVMCExpr::VK_RISCV_None;
349       Imm = CE->getValue();
350       return true;
351     }
352 
353     return false;
354   }
355 
356   // True if operand is a symbol with no modifiers, or a constant with no
357   // modifiers and isShiftedInt<N-1, 1>(Op).
358   template <int N> bool isBareSimmNLsb0() const {
359     int64_t Imm;
360     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
361     if (!isImm())
362       return false;
363     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
364     bool IsValid;
365     if (!IsConstantImm)
366       IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
367     else
368       IsValid = isShiftedInt<N - 1, 1>(Imm);
369     return IsValid && VK == RISCVMCExpr::VK_RISCV_None;
370   }
371 
372   // Predicate methods for AsmOperands defined in RISCVInstrInfo.td
373 
374   bool isBareSymbol() const {
375     int64_t Imm;
376     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
377     // Must be of 'immediate' type but not a constant.
378     if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
379       return false;
380     return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
381            VK == RISCVMCExpr::VK_RISCV_None;
382   }
383 
384   bool isCallSymbol() const {
385     int64_t Imm;
386     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
387     // Must be of 'immediate' type but not a constant.
388     if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
389       return false;
390     return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
391            (VK == RISCVMCExpr::VK_RISCV_CALL ||
392             VK == RISCVMCExpr::VK_RISCV_CALL_PLT);
393   }
394 
395   bool isPseudoJumpSymbol() const {
396     int64_t Imm;
397     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
398     // Must be of 'immediate' type but not a constant.
399     if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
400       return false;
401     return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
402            VK == RISCVMCExpr::VK_RISCV_CALL;
403   }
404 
405   bool isTPRelAddSymbol() const {
406     int64_t Imm;
407     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
408     // Must be of 'immediate' type but not a constant.
409     if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
410       return false;
411     return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
412            VK == RISCVMCExpr::VK_RISCV_TPREL_ADD;
413   }
414 
415   bool isCSRSystemRegister() const { return isSystemRegister(); }
416 
417   bool isVTypeI() const { return isVType(); }
418 
419   /// Return true if the operand is a valid for the fence instruction e.g.
420   /// ('iorw').
421   bool isFenceArg() const {
422     if (!isImm())
423       return false;
424     const MCExpr *Val = getImm();
425     auto *SVal = dyn_cast<MCSymbolRefExpr>(Val);
426     if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
427       return false;
428 
429     StringRef Str = SVal->getSymbol().getName();
430     // Letters must be unique, taken from 'iorw', and in ascending order. This
431     // holds as long as each individual character is one of 'iorw' and is
432     // greater than the previous character.
433     char Prev = '\0';
434     for (char c : Str) {
435       if (c != 'i' && c != 'o' && c != 'r' && c != 'w')
436         return false;
437       if (c <= Prev)
438         return false;
439       Prev = c;
440     }
441     return true;
442   }
443 
444   /// Return true if the operand is a valid floating point rounding mode.
445   bool isFRMArg() const {
446     if (!isImm())
447       return false;
448     const MCExpr *Val = getImm();
449     auto *SVal = dyn_cast<MCSymbolRefExpr>(Val);
450     if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
451       return false;
452 
453     StringRef Str = SVal->getSymbol().getName();
454 
455     return RISCVFPRndMode::stringToRoundingMode(Str) != RISCVFPRndMode::Invalid;
456   }
457 
458   bool isImmXLenLI() const {
459     int64_t Imm;
460     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
461     if (!isImm())
462       return false;
463     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
464     if (VK == RISCVMCExpr::VK_RISCV_LO || VK == RISCVMCExpr::VK_RISCV_PCREL_LO)
465       return true;
466     // Given only Imm, ensuring that the actually specified constant is either
467     // a signed or unsigned 64-bit number is unfortunately impossible.
468     return IsConstantImm && VK == RISCVMCExpr::VK_RISCV_None &&
469            (isRV64() || (isInt<32>(Imm) || isUInt<32>(Imm)));
470   }
471 
472   bool isUImmLog2XLen() const {
473     int64_t Imm;
474     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
475     if (!isImm())
476       return false;
477     if (!evaluateConstantImm(getImm(), Imm, VK) ||
478         VK != RISCVMCExpr::VK_RISCV_None)
479       return false;
480     return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
481   }
482 
483   bool isUImmLog2XLenNonZero() const {
484     int64_t Imm;
485     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
486     if (!isImm())
487       return false;
488     if (!evaluateConstantImm(getImm(), Imm, VK) ||
489         VK != RISCVMCExpr::VK_RISCV_None)
490       return false;
491     if (Imm == 0)
492       return false;
493     return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
494   }
495 
496   bool isUImmLog2XLenHalf() const {
497     int64_t Imm;
498     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
499     if (!isImm())
500       return false;
501     if (!evaluateConstantImm(getImm(), Imm, VK) ||
502         VK != RISCVMCExpr::VK_RISCV_None)
503       return false;
504     return (isRV64() && isUInt<5>(Imm)) || isUInt<4>(Imm);
505   }
506 
507   bool isUImm5() const {
508     int64_t Imm;
509     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
510     if (!isImm())
511       return false;
512     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
513     return IsConstantImm && isUInt<5>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
514   }
515 
516   bool isSImm5() const {
517     if (!isImm())
518       return false;
519     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
520     int64_t Imm;
521     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
522     return IsConstantImm && isInt<5>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
523   }
524 
525   bool isSImm6() const {
526     if (!isImm())
527       return false;
528     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
529     int64_t Imm;
530     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
531     return IsConstantImm && isInt<6>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
532   }
533 
534   bool isSImm6NonZero() const {
535     if (!isImm())
536       return false;
537     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
538     int64_t Imm;
539     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
540     return IsConstantImm && isInt<6>(Imm) && (Imm != 0) &&
541            VK == RISCVMCExpr::VK_RISCV_None;
542   }
543 
544   bool isCLUIImm() const {
545     if (!isImm())
546       return false;
547     int64_t Imm;
548     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
549     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
550     return IsConstantImm && (Imm != 0) &&
551            (isUInt<5>(Imm) || (Imm >= 0xfffe0 && Imm <= 0xfffff)) &&
552            VK == RISCVMCExpr::VK_RISCV_None;
553   }
554 
555   bool isUImm7Lsb00() const {
556     if (!isImm())
557       return false;
558     int64_t Imm;
559     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
560     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
561     return IsConstantImm && isShiftedUInt<5, 2>(Imm) &&
562            VK == RISCVMCExpr::VK_RISCV_None;
563   }
564 
565   bool isUImm8Lsb00() const {
566     if (!isImm())
567       return false;
568     int64_t Imm;
569     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
570     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
571     return IsConstantImm && isShiftedUInt<6, 2>(Imm) &&
572            VK == RISCVMCExpr::VK_RISCV_None;
573   }
574 
575   bool isUImm8Lsb000() const {
576     if (!isImm())
577       return false;
578     int64_t Imm;
579     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
580     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
581     return IsConstantImm && isShiftedUInt<5, 3>(Imm) &&
582            VK == RISCVMCExpr::VK_RISCV_None;
583   }
584 
585   bool isSImm9Lsb0() const { return isBareSimmNLsb0<9>(); }
586 
587   bool isUImm9Lsb000() const {
588     if (!isImm())
589       return false;
590     int64_t Imm;
591     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
592     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
593     return IsConstantImm && isShiftedUInt<6, 3>(Imm) &&
594            VK == RISCVMCExpr::VK_RISCV_None;
595   }
596 
597   bool isUImm10Lsb00NonZero() const {
598     if (!isImm())
599       return false;
600     int64_t Imm;
601     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
602     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
603     return IsConstantImm && isShiftedUInt<8, 2>(Imm) && (Imm != 0) &&
604            VK == RISCVMCExpr::VK_RISCV_None;
605   }
606 
607   bool isSImm12() const {
608     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
609     int64_t Imm;
610     bool IsValid;
611     if (!isImm())
612       return false;
613     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
614     if (!IsConstantImm)
615       IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
616     else
617       IsValid = isInt<12>(Imm);
618     return IsValid && ((IsConstantImm && VK == RISCVMCExpr::VK_RISCV_None) ||
619                        VK == RISCVMCExpr::VK_RISCV_LO ||
620                        VK == RISCVMCExpr::VK_RISCV_PCREL_LO ||
621                        VK == RISCVMCExpr::VK_RISCV_TPREL_LO);
622   }
623 
624   bool isSImm12Lsb0() const { return isBareSimmNLsb0<12>(); }
625 
626   bool isSImm13Lsb0() const { return isBareSimmNLsb0<13>(); }
627 
628   bool isSImm10Lsb0000NonZero() const {
629     if (!isImm())
630       return false;
631     int64_t Imm;
632     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
633     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
634     return IsConstantImm && (Imm != 0) && isShiftedInt<6, 4>(Imm) &&
635            VK == RISCVMCExpr::VK_RISCV_None;
636   }
637 
638   bool isUImm20LUI() const {
639     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
640     int64_t Imm;
641     bool IsValid;
642     if (!isImm())
643       return false;
644     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
645     if (!IsConstantImm) {
646       IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
647       return IsValid && (VK == RISCVMCExpr::VK_RISCV_HI ||
648                          VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
649     } else {
650       return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
651                                  VK == RISCVMCExpr::VK_RISCV_HI ||
652                                  VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
653     }
654   }
655 
656   bool isUImm20AUIPC() const {
657     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
658     int64_t Imm;
659     bool IsValid;
660     if (!isImm())
661       return false;
662     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
663     if (!IsConstantImm) {
664       IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
665       return IsValid && (VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
666                          VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
667                          VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
668                          VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI);
669     } else {
670       return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
671                                  VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
672                                  VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
673                                  VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
674                                  VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI);
675     }
676   }
677 
678   bool isSImm21Lsb0JAL() const { return isBareSimmNLsb0<21>(); }
679 
680   bool isImmZero() const {
681     if (!isImm())
682       return false;
683     int64_t Imm;
684     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
685     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
686     return IsConstantImm && (Imm == 0) && VK == RISCVMCExpr::VK_RISCV_None;
687   }
688 
689   bool isSImm5Plus1() const {
690     if (!isImm())
691       return false;
692     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
693     int64_t Imm;
694     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
695     return IsConstantImm && isInt<5>(Imm - 1) &&
696            VK == RISCVMCExpr::VK_RISCV_None;
697   }
698 
699   /// getStartLoc - Gets location of the first token of this operand
700   SMLoc getStartLoc() const override { return StartLoc; }
701   /// getEndLoc - Gets location of the last token of this operand
702   SMLoc getEndLoc() const override { return EndLoc; }
703   /// True if this operand is for an RV64 instruction
704   bool isRV64() const { return IsRV64; }
705 
706   unsigned getReg() const override {
707     assert(Kind == KindTy::Register && "Invalid type access!");
708     return Reg.RegNum.id();
709   }
710 
711   StringRef getSysReg() const {
712     assert(Kind == KindTy::SystemRegister && "Invalid type access!");
713     return StringRef(SysReg.Data, SysReg.Length);
714   }
715 
716   const MCExpr *getImm() const {
717     assert(Kind == KindTy::Immediate && "Invalid type access!");
718     return Imm.Val;
719   }
720 
721   StringRef getToken() const {
722     assert(Kind == KindTy::Token && "Invalid type access!");
723     return Tok;
724   }
725 
726   unsigned getVType() const {
727     assert(Kind == KindTy::VType && "Invalid type access!");
728     return VType.Val;
729   }
730 
731   void print(raw_ostream &OS) const override {
732     auto RegName = [](unsigned Reg) {
733       if (Reg)
734         return RISCVInstPrinter::getRegisterName(Reg);
735       else
736         return "noreg";
737     };
738 
739     switch (Kind) {
740     case KindTy::Immediate:
741       OS << *getImm();
742       break;
743     case KindTy::Register:
744       OS << "<register " << RegName(getReg()) << ">";
745       break;
746     case KindTy::Token:
747       OS << "'" << getToken() << "'";
748       break;
749     case KindTy::SystemRegister:
750       OS << "<sysreg: " << getSysReg() << '>';
751       break;
752     case KindTy::VType:
753       OS << "<vtype: ";
754       RISCVVType::printVType(getVType(), OS);
755       OS << '>';
756       break;
757     }
758   }
759 
760   static std::unique_ptr<RISCVOperand> createToken(StringRef Str, SMLoc S,
761                                                    bool IsRV64) {
762     auto Op = std::make_unique<RISCVOperand>(KindTy::Token);
763     Op->Tok = Str;
764     Op->StartLoc = S;
765     Op->EndLoc = S;
766     Op->IsRV64 = IsRV64;
767     return Op;
768   }
769 
770   static std::unique_ptr<RISCVOperand> createReg(unsigned RegNo, SMLoc S,
771                                                  SMLoc E, bool IsRV64) {
772     auto Op = std::make_unique<RISCVOperand>(KindTy::Register);
773     Op->Reg.RegNum = RegNo;
774     Op->StartLoc = S;
775     Op->EndLoc = E;
776     Op->IsRV64 = IsRV64;
777     return Op;
778   }
779 
780   static std::unique_ptr<RISCVOperand> createImm(const MCExpr *Val, SMLoc S,
781                                                  SMLoc E, bool IsRV64) {
782     auto Op = std::make_unique<RISCVOperand>(KindTy::Immediate);
783     Op->Imm.Val = Val;
784     Op->StartLoc = S;
785     Op->EndLoc = E;
786     Op->IsRV64 = IsRV64;
787     return Op;
788   }
789 
790   static std::unique_ptr<RISCVOperand>
791   createSysReg(StringRef Str, SMLoc S, unsigned Encoding, bool IsRV64) {
792     auto Op = std::make_unique<RISCVOperand>(KindTy::SystemRegister);
793     Op->SysReg.Data = Str.data();
794     Op->SysReg.Length = Str.size();
795     Op->SysReg.Encoding = Encoding;
796     Op->StartLoc = S;
797     Op->IsRV64 = IsRV64;
798     return Op;
799   }
800 
801   static std::unique_ptr<RISCVOperand> createVType(unsigned VTypeI, SMLoc S,
802                                                    bool IsRV64) {
803     auto Op = std::make_unique<RISCVOperand>(KindTy::VType);
804     Op->VType.Val = VTypeI;
805     Op->StartLoc = S;
806     Op->IsRV64 = IsRV64;
807     return Op;
808   }
809 
810   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
811     assert(Expr && "Expr shouldn't be null!");
812     int64_t Imm = 0;
813     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
814     bool IsConstant = evaluateConstantImm(Expr, Imm, VK);
815 
816     if (IsConstant)
817       Inst.addOperand(MCOperand::createImm(Imm));
818     else
819       Inst.addOperand(MCOperand::createExpr(Expr));
820   }
821 
822   // Used by the TableGen Code
823   void addRegOperands(MCInst &Inst, unsigned N) const {
824     assert(N == 1 && "Invalid number of operands!");
825     Inst.addOperand(MCOperand::createReg(getReg()));
826   }
827 
828   void addImmOperands(MCInst &Inst, unsigned N) const {
829     assert(N == 1 && "Invalid number of operands!");
830     addExpr(Inst, getImm());
831   }
832 
833   void addFenceArgOperands(MCInst &Inst, unsigned N) const {
834     assert(N == 1 && "Invalid number of operands!");
835     // isFenceArg has validated the operand, meaning this cast is safe
836     auto SE = cast<MCSymbolRefExpr>(getImm());
837 
838     unsigned Imm = 0;
839     for (char c : SE->getSymbol().getName()) {
840       switch (c) {
841       default:
842         llvm_unreachable("FenceArg must contain only [iorw]");
843       case 'i':
844         Imm |= RISCVFenceField::I;
845         break;
846       case 'o':
847         Imm |= RISCVFenceField::O;
848         break;
849       case 'r':
850         Imm |= RISCVFenceField::R;
851         break;
852       case 'w':
853         Imm |= RISCVFenceField::W;
854         break;
855       }
856     }
857     Inst.addOperand(MCOperand::createImm(Imm));
858   }
859 
860   void addCSRSystemRegisterOperands(MCInst &Inst, unsigned N) const {
861     assert(N == 1 && "Invalid number of operands!");
862     Inst.addOperand(MCOperand::createImm(SysReg.Encoding));
863   }
864 
865   void addVTypeIOperands(MCInst &Inst, unsigned N) const {
866     assert(N == 1 && "Invalid number of operands!");
867     Inst.addOperand(MCOperand::createImm(getVType()));
868   }
869 
870   // Returns the rounding mode represented by this RISCVOperand. Should only
871   // be called after checking isFRMArg.
872   RISCVFPRndMode::RoundingMode getRoundingMode() const {
873     // isFRMArg has validated the operand, meaning this cast is safe.
874     auto SE = cast<MCSymbolRefExpr>(getImm());
875     RISCVFPRndMode::RoundingMode FRM =
876         RISCVFPRndMode::stringToRoundingMode(SE->getSymbol().getName());
877     assert(FRM != RISCVFPRndMode::Invalid && "Invalid rounding mode");
878     return FRM;
879   }
880 
881   void addFRMArgOperands(MCInst &Inst, unsigned N) const {
882     assert(N == 1 && "Invalid number of operands!");
883     Inst.addOperand(MCOperand::createImm(getRoundingMode()));
884   }
885 };
886 } // end anonymous namespace.
887 
888 #define GET_REGISTER_MATCHER
889 #define GET_SUBTARGET_FEATURE_NAME
890 #define GET_MATCHER_IMPLEMENTATION
891 #define GET_MNEMONIC_SPELL_CHECKER
892 #include "RISCVGenAsmMatcher.inc"
893 
894 static MCRegister convertFPR64ToFPR16(MCRegister Reg) {
895   assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
896   return Reg - RISCV::F0_D + RISCV::F0_H;
897 }
898 
899 static MCRegister convertFPR64ToFPR32(MCRegister Reg) {
900   assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
901   return Reg - RISCV::F0_D + RISCV::F0_F;
902 }
903 
904 static MCRegister convertVRToVRMx(const MCRegisterInfo &RI, MCRegister Reg,
905                                   unsigned Kind) {
906   unsigned RegClassID;
907   if (Kind == MCK_VRM2)
908     RegClassID = RISCV::VRM2RegClassID;
909   else if (Kind == MCK_VRM4)
910     RegClassID = RISCV::VRM4RegClassID;
911   else if (Kind == MCK_VRM8)
912     RegClassID = RISCV::VRM8RegClassID;
913   else
914     return 0;
915   return RI.getMatchingSuperReg(Reg, RISCV::sub_vrm1_0,
916                                 &RISCVMCRegisterClasses[RegClassID]);
917 }
918 
919 unsigned RISCVAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
920                                                     unsigned Kind) {
921   RISCVOperand &Op = static_cast<RISCVOperand &>(AsmOp);
922   if (!Op.isReg())
923     return Match_InvalidOperand;
924 
925   MCRegister Reg = Op.getReg();
926   bool IsRegFPR64 =
927       RISCVMCRegisterClasses[RISCV::FPR64RegClassID].contains(Reg);
928   bool IsRegFPR64C =
929       RISCVMCRegisterClasses[RISCV::FPR64CRegClassID].contains(Reg);
930   bool IsRegVR = RISCVMCRegisterClasses[RISCV::VRRegClassID].contains(Reg);
931 
932   // As the parser couldn't differentiate an FPR32 from an FPR64, coerce the
933   // register from FPR64 to FPR32 or FPR64C to FPR32C if necessary.
934   if ((IsRegFPR64 && Kind == MCK_FPR32) ||
935       (IsRegFPR64C && Kind == MCK_FPR32C)) {
936     Op.Reg.RegNum = convertFPR64ToFPR32(Reg);
937     return Match_Success;
938   }
939   // As the parser couldn't differentiate an FPR16 from an FPR64, coerce the
940   // register from FPR64 to FPR16 if necessary.
941   if (IsRegFPR64 && Kind == MCK_FPR16) {
942     Op.Reg.RegNum = convertFPR64ToFPR16(Reg);
943     return Match_Success;
944   }
945   // As the parser couldn't differentiate an VRM2/VRM4/VRM8 from an VR, coerce
946   // the register from VR to VRM2/VRM4/VRM8 if necessary.
947   if (IsRegVR && (Kind == MCK_VRM2 || Kind == MCK_VRM4 || Kind == MCK_VRM8)) {
948     Op.Reg.RegNum = convertVRToVRMx(*getContext().getRegisterInfo(), Reg, Kind);
949     if (Op.Reg.RegNum == 0)
950       return Match_InvalidOperand;
951     return Match_Success;
952   }
953   return Match_InvalidOperand;
954 }
955 
956 bool RISCVAsmParser::generateImmOutOfRangeError(
957     OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper,
958     Twine Msg = "immediate must be an integer in the range") {
959   SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
960   return Error(ErrorLoc, Msg + " [" + Twine(Lower) + ", " + Twine(Upper) + "]");
961 }
962 
963 static std::string RISCVMnemonicSpellCheck(StringRef S,
964                                            const FeatureBitset &FBS,
965                                            unsigned VariantID = 0);
966 
967 bool RISCVAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
968                                              OperandVector &Operands,
969                                              MCStreamer &Out,
970                                              uint64_t &ErrorInfo,
971                                              bool MatchingInlineAsm) {
972   MCInst Inst;
973   FeatureBitset MissingFeatures;
974 
975   auto Result = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
976                                      MatchingInlineAsm);
977   switch (Result) {
978   default:
979     break;
980   case Match_Success:
981     if (validateInstruction(Inst, Operands))
982       return true;
983     return processInstruction(Inst, IDLoc, Operands, Out);
984   case Match_MissingFeature: {
985     assert(MissingFeatures.any() && "Unknown missing features!");
986     bool FirstFeature = true;
987     std::string Msg = "instruction requires the following:";
988     for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
989       if (MissingFeatures[i]) {
990         Msg += FirstFeature ? " " : ", ";
991         Msg += getSubtargetFeatureName(i);
992         FirstFeature = false;
993       }
994     }
995     return Error(IDLoc, Msg);
996   }
997   case Match_MnemonicFail: {
998     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
999     std::string Suggestion =
1000         RISCVMnemonicSpellCheck(((RISCVOperand &)*Operands[0]).getToken(), FBS);
1001     return Error(IDLoc, "unrecognized instruction mnemonic" + Suggestion);
1002   }
1003   case Match_InvalidOperand: {
1004     SMLoc ErrorLoc = IDLoc;
1005     if (ErrorInfo != ~0U) {
1006       if (ErrorInfo >= Operands.size())
1007         return Error(ErrorLoc, "too few operands for instruction");
1008 
1009       ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1010       if (ErrorLoc == SMLoc())
1011         ErrorLoc = IDLoc;
1012     }
1013     return Error(ErrorLoc, "invalid operand for instruction");
1014   }
1015   }
1016 
1017   // Handle the case when the error message is of specific type
1018   // other than the generic Match_InvalidOperand, and the
1019   // corresponding operand is missing.
1020   if (Result > FIRST_TARGET_MATCH_RESULT_TY) {
1021     SMLoc ErrorLoc = IDLoc;
1022     if (ErrorInfo != ~0U && ErrorInfo >= Operands.size())
1023       return Error(ErrorLoc, "too few operands for instruction");
1024   }
1025 
1026   switch (Result) {
1027   default:
1028     break;
1029   case Match_InvalidImmXLenLI:
1030     if (isRV64()) {
1031       SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1032       return Error(ErrorLoc, "operand must be a constant 64-bit integer");
1033     }
1034     return generateImmOutOfRangeError(Operands, ErrorInfo,
1035                                       std::numeric_limits<int32_t>::min(),
1036                                       std::numeric_limits<uint32_t>::max());
1037   case Match_InvalidImmZero: {
1038     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1039     return Error(ErrorLoc, "immediate must be zero");
1040   }
1041   case Match_InvalidUImmLog2XLen:
1042     if (isRV64())
1043       return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
1044     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
1045   case Match_InvalidUImmLog2XLenNonZero:
1046     if (isRV64())
1047       return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 6) - 1);
1048     return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 5) - 1);
1049   case Match_InvalidUImmLog2XLenHalf:
1050     if (isRV64())
1051       return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
1052     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 4) - 1);
1053   case Match_InvalidUImm5:
1054     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
1055   case Match_InvalidSImm5:
1056     return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 4),
1057                                       (1 << 4) - 1);
1058   case Match_InvalidSImm6:
1059     return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 5),
1060                                       (1 << 5) - 1);
1061   case Match_InvalidSImm6NonZero:
1062     return generateImmOutOfRangeError(
1063         Operands, ErrorInfo, -(1 << 5), (1 << 5) - 1,
1064         "immediate must be non-zero in the range");
1065   case Match_InvalidCLUIImm:
1066     return generateImmOutOfRangeError(
1067         Operands, ErrorInfo, 1, (1 << 5) - 1,
1068         "immediate must be in [0xfffe0, 0xfffff] or");
1069   case Match_InvalidUImm7Lsb00:
1070     return generateImmOutOfRangeError(
1071         Operands, ErrorInfo, 0, (1 << 7) - 4,
1072         "immediate must be a multiple of 4 bytes in the range");
1073   case Match_InvalidUImm8Lsb00:
1074     return generateImmOutOfRangeError(
1075         Operands, ErrorInfo, 0, (1 << 8) - 4,
1076         "immediate must be a multiple of 4 bytes in the range");
1077   case Match_InvalidUImm8Lsb000:
1078     return generateImmOutOfRangeError(
1079         Operands, ErrorInfo, 0, (1 << 8) - 8,
1080         "immediate must be a multiple of 8 bytes in the range");
1081   case Match_InvalidSImm9Lsb0:
1082     return generateImmOutOfRangeError(
1083         Operands, ErrorInfo, -(1 << 8), (1 << 8) - 2,
1084         "immediate must be a multiple of 2 bytes in the range");
1085   case Match_InvalidUImm9Lsb000:
1086     return generateImmOutOfRangeError(
1087         Operands, ErrorInfo, 0, (1 << 9) - 8,
1088         "immediate must be a multiple of 8 bytes in the range");
1089   case Match_InvalidUImm10Lsb00NonZero:
1090     return generateImmOutOfRangeError(
1091         Operands, ErrorInfo, 4, (1 << 10) - 4,
1092         "immediate must be a multiple of 4 bytes in the range");
1093   case Match_InvalidSImm10Lsb0000NonZero:
1094     return generateImmOutOfRangeError(
1095         Operands, ErrorInfo, -(1 << 9), (1 << 9) - 16,
1096         "immediate must be a multiple of 16 bytes and non-zero in the range");
1097   case Match_InvalidSImm12:
1098     return generateImmOutOfRangeError(
1099         Operands, ErrorInfo, -(1 << 11), (1 << 11) - 1,
1100         "operand must be a symbol with %lo/%pcrel_lo/%tprel_lo modifier or an "
1101         "integer in the range");
1102   case Match_InvalidSImm12Lsb0:
1103     return generateImmOutOfRangeError(
1104         Operands, ErrorInfo, -(1 << 11), (1 << 11) - 2,
1105         "immediate must be a multiple of 2 bytes in the range");
1106   case Match_InvalidSImm13Lsb0:
1107     return generateImmOutOfRangeError(
1108         Operands, ErrorInfo, -(1 << 12), (1 << 12) - 2,
1109         "immediate must be a multiple of 2 bytes in the range");
1110   case Match_InvalidUImm20LUI:
1111     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 20) - 1,
1112                                       "operand must be a symbol with "
1113                                       "%hi/%tprel_hi modifier or an integer in "
1114                                       "the range");
1115   case Match_InvalidUImm20AUIPC:
1116     return generateImmOutOfRangeError(
1117         Operands, ErrorInfo, 0, (1 << 20) - 1,
1118         "operand must be a symbol with a "
1119         "%pcrel_hi/%got_pcrel_hi/%tls_ie_pcrel_hi/%tls_gd_pcrel_hi modifier or "
1120         "an integer in the range");
1121   case Match_InvalidSImm21Lsb0JAL:
1122     return generateImmOutOfRangeError(
1123         Operands, ErrorInfo, -(1 << 20), (1 << 20) - 2,
1124         "immediate must be a multiple of 2 bytes in the range");
1125   case Match_InvalidCSRSystemRegister: {
1126     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 12) - 1,
1127                                       "operand must be a valid system register "
1128                                       "name or an integer in the range");
1129   }
1130   case Match_InvalidFenceArg: {
1131     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1132     return Error(
1133         ErrorLoc,
1134         "operand must be formed of letters selected in-order from 'iorw'");
1135   }
1136   case Match_InvalidFRMArg: {
1137     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1138     return Error(
1139         ErrorLoc,
1140         "operand must be a valid floating point rounding mode mnemonic");
1141   }
1142   case Match_InvalidBareSymbol: {
1143     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1144     return Error(ErrorLoc, "operand must be a bare symbol name");
1145   }
1146   case Match_InvalidPseudoJumpSymbol: {
1147     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1148     return Error(ErrorLoc, "operand must be a valid jump target");
1149   }
1150   case Match_InvalidCallSymbol: {
1151     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1152     return Error(ErrorLoc, "operand must be a bare symbol name");
1153   }
1154   case Match_InvalidTPRelAddSymbol: {
1155     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1156     return Error(ErrorLoc, "operand must be a symbol with %tprel_add modifier");
1157   }
1158   case Match_InvalidVTypeI: {
1159     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1160     return Error(
1161         ErrorLoc,
1162         "operand must be "
1163         "e[8|16|32|64|128|256|512|1024],m[1|2|4|8|f2|f4|f8],[ta|tu],[ma|mu]");
1164   }
1165   case Match_InvalidVMaskRegister: {
1166     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1167     return Error(ErrorLoc, "operand must be v0.t");
1168   }
1169   case Match_InvalidSImm5Plus1: {
1170     return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 4) + 1,
1171                                       (1 << 4),
1172                                       "immediate must be in the range");
1173   }
1174   }
1175 
1176   llvm_unreachable("Unknown match type detected!");
1177 }
1178 
1179 // Attempts to match Name as a register (either using the default name or
1180 // alternative ABI names), setting RegNo to the matching register. Upon
1181 // failure, returns true and sets RegNo to 0. If IsRV32E then registers
1182 // x16-x31 will be rejected.
1183 static bool matchRegisterNameHelper(bool IsRV32E, MCRegister &RegNo,
1184                                     StringRef Name) {
1185   RegNo = MatchRegisterName(Name);
1186   // The 16-/32- and 64-bit FPRs have the same asm name. Check that the initial
1187   // match always matches the 64-bit variant, and not the 16/32-bit one.
1188   assert(!(RegNo >= RISCV::F0_H && RegNo <= RISCV::F31_H));
1189   assert(!(RegNo >= RISCV::F0_F && RegNo <= RISCV::F31_F));
1190   // The default FPR register class is based on the tablegen enum ordering.
1191   static_assert(RISCV::F0_D < RISCV::F0_H, "FPR matching must be updated");
1192   static_assert(RISCV::F0_D < RISCV::F0_F, "FPR matching must be updated");
1193   if (RegNo == RISCV::NoRegister)
1194     RegNo = MatchRegisterAltName(Name);
1195   if (IsRV32E && RegNo >= RISCV::X16 && RegNo <= RISCV::X31)
1196     RegNo = RISCV::NoRegister;
1197   return RegNo == RISCV::NoRegister;
1198 }
1199 
1200 bool RISCVAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
1201                                    SMLoc &EndLoc) {
1202   if (tryParseRegister(RegNo, StartLoc, EndLoc) != MatchOperand_Success)
1203     return Error(StartLoc, "invalid register name");
1204   return false;
1205 }
1206 
1207 OperandMatchResultTy RISCVAsmParser::tryParseRegister(unsigned &RegNo,
1208                                                       SMLoc &StartLoc,
1209                                                       SMLoc &EndLoc) {
1210   const AsmToken &Tok = getParser().getTok();
1211   StartLoc = Tok.getLoc();
1212   EndLoc = Tok.getEndLoc();
1213   RegNo = 0;
1214   StringRef Name = getLexer().getTok().getIdentifier();
1215 
1216   if (matchRegisterNameHelper(isRV32E(), (MCRegister &)RegNo, Name))
1217     return MatchOperand_NoMatch;
1218 
1219   getParser().Lex(); // Eat identifier token.
1220   return MatchOperand_Success;
1221 }
1222 
1223 OperandMatchResultTy RISCVAsmParser::parseRegister(OperandVector &Operands,
1224                                                    bool AllowParens) {
1225   SMLoc FirstS = getLoc();
1226   bool HadParens = false;
1227   AsmToken LParen;
1228 
1229   // If this is an LParen and a parenthesised register name is allowed, parse it
1230   // atomically.
1231   if (AllowParens && getLexer().is(AsmToken::LParen)) {
1232     AsmToken Buf[2];
1233     size_t ReadCount = getLexer().peekTokens(Buf);
1234     if (ReadCount == 2 && Buf[1].getKind() == AsmToken::RParen) {
1235       HadParens = true;
1236       LParen = getParser().getTok();
1237       getParser().Lex(); // Eat '('
1238     }
1239   }
1240 
1241   switch (getLexer().getKind()) {
1242   default:
1243     if (HadParens)
1244       getLexer().UnLex(LParen);
1245     return MatchOperand_NoMatch;
1246   case AsmToken::Identifier:
1247     StringRef Name = getLexer().getTok().getIdentifier();
1248     MCRegister RegNo;
1249     matchRegisterNameHelper(isRV32E(), RegNo, Name);
1250 
1251     if (RegNo == RISCV::NoRegister) {
1252       if (HadParens)
1253         getLexer().UnLex(LParen);
1254       return MatchOperand_NoMatch;
1255     }
1256     if (HadParens)
1257       Operands.push_back(RISCVOperand::createToken("(", FirstS, isRV64()));
1258     SMLoc S = getLoc();
1259     SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1260     getLexer().Lex();
1261     Operands.push_back(RISCVOperand::createReg(RegNo, S, E, isRV64()));
1262   }
1263 
1264   if (HadParens) {
1265     getParser().Lex(); // Eat ')'
1266     Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));
1267   }
1268 
1269   return MatchOperand_Success;
1270 }
1271 
1272 OperandMatchResultTy
1273 RISCVAsmParser::parseCSRSystemRegister(OperandVector &Operands) {
1274   SMLoc S = getLoc();
1275   const MCExpr *Res;
1276 
1277   switch (getLexer().getKind()) {
1278   default:
1279     return MatchOperand_NoMatch;
1280   case AsmToken::LParen:
1281   case AsmToken::Minus:
1282   case AsmToken::Plus:
1283   case AsmToken::Exclaim:
1284   case AsmToken::Tilde:
1285   case AsmToken::Integer:
1286   case AsmToken::String: {
1287     if (getParser().parseExpression(Res))
1288       return MatchOperand_ParseFail;
1289 
1290     auto *CE = dyn_cast<MCConstantExpr>(Res);
1291     if (CE) {
1292       int64_t Imm = CE->getValue();
1293       if (isUInt<12>(Imm)) {
1294         auto SysReg = RISCVSysReg::lookupSysRegByEncoding(Imm);
1295         // Accept an immediate representing a named or un-named Sys Reg
1296         // if the range is valid, regardless of the required features.
1297         Operands.push_back(RISCVOperand::createSysReg(
1298             SysReg ? SysReg->Name : "", S, Imm, isRV64()));
1299         return MatchOperand_Success;
1300       }
1301     }
1302 
1303     Twine Msg = "immediate must be an integer in the range";
1304     Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
1305     return MatchOperand_ParseFail;
1306   }
1307   case AsmToken::Identifier: {
1308     StringRef Identifier;
1309     if (getParser().parseIdentifier(Identifier))
1310       return MatchOperand_ParseFail;
1311 
1312     auto SysReg = RISCVSysReg::lookupSysRegByName(Identifier);
1313     if (!SysReg)
1314       SysReg = RISCVSysReg::lookupSysRegByAltName(Identifier);
1315     if (!SysReg)
1316       if ((SysReg = RISCVSysReg::lookupSysRegByDeprecatedName(Identifier)))
1317         Warning(S, "'" + Identifier + "' is a deprecated alias for '" +
1318                        SysReg->Name + "'");
1319 
1320     // Accept a named Sys Reg if the required features are present.
1321     if (SysReg) {
1322       if (!SysReg->haveRequiredFeatures(getSTI().getFeatureBits())) {
1323         Error(S, "system register use requires an option to be enabled");
1324         return MatchOperand_ParseFail;
1325       }
1326       Operands.push_back(RISCVOperand::createSysReg(
1327           Identifier, S, SysReg->Encoding, isRV64()));
1328       return MatchOperand_Success;
1329     }
1330 
1331     Twine Msg = "operand must be a valid system register name "
1332                 "or an integer in the range";
1333     Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
1334     return MatchOperand_ParseFail;
1335   }
1336   case AsmToken::Percent: {
1337     // Discard operand with modifier.
1338     Twine Msg = "immediate must be an integer in the range";
1339     Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
1340     return MatchOperand_ParseFail;
1341   }
1342   }
1343 
1344   return MatchOperand_NoMatch;
1345 }
1346 
1347 OperandMatchResultTy RISCVAsmParser::parseImmediate(OperandVector &Operands) {
1348   SMLoc S = getLoc();
1349   SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1350   const MCExpr *Res;
1351 
1352   switch (getLexer().getKind()) {
1353   default:
1354     return MatchOperand_NoMatch;
1355   case AsmToken::LParen:
1356   case AsmToken::Dot:
1357   case AsmToken::Minus:
1358   case AsmToken::Plus:
1359   case AsmToken::Exclaim:
1360   case AsmToken::Tilde:
1361   case AsmToken::Integer:
1362   case AsmToken::String:
1363   case AsmToken::Identifier:
1364     if (getParser().parseExpression(Res))
1365       return MatchOperand_ParseFail;
1366     break;
1367   case AsmToken::Percent:
1368     return parseOperandWithModifier(Operands);
1369   }
1370 
1371   Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1372   return MatchOperand_Success;
1373 }
1374 
1375 OperandMatchResultTy
1376 RISCVAsmParser::parseOperandWithModifier(OperandVector &Operands) {
1377   SMLoc S = getLoc();
1378   SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1379 
1380   if (getLexer().getKind() != AsmToken::Percent) {
1381     Error(getLoc(), "expected '%' for operand modifier");
1382     return MatchOperand_ParseFail;
1383   }
1384 
1385   getParser().Lex(); // Eat '%'
1386 
1387   if (getLexer().getKind() != AsmToken::Identifier) {
1388     Error(getLoc(), "expected valid identifier for operand modifier");
1389     return MatchOperand_ParseFail;
1390   }
1391   StringRef Identifier = getParser().getTok().getIdentifier();
1392   RISCVMCExpr::VariantKind VK = RISCVMCExpr::getVariantKindForName(Identifier);
1393   if (VK == RISCVMCExpr::VK_RISCV_Invalid) {
1394     Error(getLoc(), "unrecognized operand modifier");
1395     return MatchOperand_ParseFail;
1396   }
1397 
1398   getParser().Lex(); // Eat the identifier
1399   if (getLexer().getKind() != AsmToken::LParen) {
1400     Error(getLoc(), "expected '('");
1401     return MatchOperand_ParseFail;
1402   }
1403   getParser().Lex(); // Eat '('
1404 
1405   const MCExpr *SubExpr;
1406   if (getParser().parseParenExpression(SubExpr, E)) {
1407     return MatchOperand_ParseFail;
1408   }
1409 
1410   const MCExpr *ModExpr = RISCVMCExpr::create(SubExpr, VK, getContext());
1411   Operands.push_back(RISCVOperand::createImm(ModExpr, S, E, isRV64()));
1412   return MatchOperand_Success;
1413 }
1414 
1415 OperandMatchResultTy RISCVAsmParser::parseBareSymbol(OperandVector &Operands) {
1416   SMLoc S = getLoc();
1417   SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1418   const MCExpr *Res;
1419 
1420   if (getLexer().getKind() != AsmToken::Identifier)
1421     return MatchOperand_NoMatch;
1422 
1423   StringRef Identifier;
1424   AsmToken Tok = getLexer().getTok();
1425 
1426   if (getParser().parseIdentifier(Identifier))
1427     return MatchOperand_ParseFail;
1428 
1429   if (Identifier.consume_back("@plt")) {
1430     Error(getLoc(), "'@plt' operand not valid for instruction");
1431     return MatchOperand_ParseFail;
1432   }
1433 
1434   MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
1435 
1436   if (Sym->isVariable()) {
1437     const MCExpr *V = Sym->getVariableValue(/*SetUsed=*/false);
1438     if (!isa<MCSymbolRefExpr>(V)) {
1439       getLexer().UnLex(Tok); // Put back if it's not a bare symbol.
1440       return MatchOperand_NoMatch;
1441     }
1442     Res = V;
1443   } else
1444     Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
1445 
1446   MCBinaryExpr::Opcode Opcode;
1447   switch (getLexer().getKind()) {
1448   default:
1449     Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1450     return MatchOperand_Success;
1451   case AsmToken::Plus:
1452     Opcode = MCBinaryExpr::Add;
1453     break;
1454   case AsmToken::Minus:
1455     Opcode = MCBinaryExpr::Sub;
1456     break;
1457   }
1458 
1459   const MCExpr *Expr;
1460   if (getParser().parseExpression(Expr))
1461     return MatchOperand_ParseFail;
1462   Res = MCBinaryExpr::create(Opcode, Res, Expr, getContext());
1463   Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1464   return MatchOperand_Success;
1465 }
1466 
1467 OperandMatchResultTy RISCVAsmParser::parseCallSymbol(OperandVector &Operands) {
1468   SMLoc S = getLoc();
1469   SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1470   const MCExpr *Res;
1471 
1472   if (getLexer().getKind() != AsmToken::Identifier)
1473     return MatchOperand_NoMatch;
1474 
1475   // Avoid parsing the register in `call rd, foo` as a call symbol.
1476   if (getLexer().peekTok().getKind() != AsmToken::EndOfStatement)
1477     return MatchOperand_NoMatch;
1478 
1479   StringRef Identifier;
1480   if (getParser().parseIdentifier(Identifier))
1481     return MatchOperand_ParseFail;
1482 
1483   RISCVMCExpr::VariantKind Kind = RISCVMCExpr::VK_RISCV_CALL;
1484   if (Identifier.consume_back("@plt"))
1485     Kind = RISCVMCExpr::VK_RISCV_CALL_PLT;
1486 
1487   MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
1488   Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
1489   Res = RISCVMCExpr::create(Res, Kind, getContext());
1490   Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1491   return MatchOperand_Success;
1492 }
1493 
1494 OperandMatchResultTy
1495 RISCVAsmParser::parsePseudoJumpSymbol(OperandVector &Operands) {
1496   SMLoc S = getLoc();
1497   SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1498   const MCExpr *Res;
1499 
1500   if (getParser().parseExpression(Res))
1501     return MatchOperand_ParseFail;
1502 
1503   if (Res->getKind() != MCExpr::ExprKind::SymbolRef ||
1504       cast<MCSymbolRefExpr>(Res)->getKind() ==
1505           MCSymbolRefExpr::VariantKind::VK_PLT) {
1506     Error(S, "operand must be a valid jump target");
1507     return MatchOperand_ParseFail;
1508   }
1509 
1510   Res = RISCVMCExpr::create(Res, RISCVMCExpr::VK_RISCV_CALL, getContext());
1511   Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1512   return MatchOperand_Success;
1513 }
1514 
1515 OperandMatchResultTy RISCVAsmParser::parseJALOffset(OperandVector &Operands) {
1516   // Parsing jal operands is fiddly due to the `jal foo` and `jal ra, foo`
1517   // both being acceptable forms. When parsing `jal ra, foo` this function
1518   // will be called for the `ra` register operand in an attempt to match the
1519   // single-operand alias. parseJALOffset must fail for this case. It would
1520   // seem logical to try parse the operand using parseImmediate and return
1521   // NoMatch if the next token is a comma (meaning we must be parsing a jal in
1522   // the second form rather than the first). We can't do this as there's no
1523   // way of rewinding the lexer state. Instead, return NoMatch if this operand
1524   // is an identifier and is followed by a comma.
1525   if (getLexer().is(AsmToken::Identifier) &&
1526       getLexer().peekTok().is(AsmToken::Comma))
1527     return MatchOperand_NoMatch;
1528 
1529   return parseImmediate(Operands);
1530 }
1531 
1532 OperandMatchResultTy RISCVAsmParser::parseVTypeI(OperandVector &Operands) {
1533   SMLoc S = getLoc();
1534   if (getLexer().isNot(AsmToken::Identifier))
1535     return MatchOperand_NoMatch;
1536 
1537   SmallVector<AsmToken, 7> VTypeIElements;
1538   // Put all the tokens for vtypei operand into VTypeIElements vector.
1539   while (getLexer().isNot(AsmToken::EndOfStatement)) {
1540     VTypeIElements.push_back(getLexer().getTok());
1541     getLexer().Lex();
1542     if (getLexer().is(AsmToken::EndOfStatement))
1543       break;
1544     if (getLexer().isNot(AsmToken::Comma))
1545       goto MatchFail;
1546     AsmToken Comma = getLexer().getTok();
1547     VTypeIElements.push_back(Comma);
1548     getLexer().Lex();
1549   }
1550 
1551   if (VTypeIElements.size() == 7) {
1552     // The VTypeIElements layout is:
1553     // SEW comma LMUL comma TA comma MA
1554     //  0    1    2     3    4   5    6
1555     StringRef Name = VTypeIElements[0].getIdentifier();
1556     if (!Name.consume_front("e"))
1557       goto MatchFail;
1558     unsigned Sew;
1559     if (Name.getAsInteger(10, Sew))
1560       goto MatchFail;
1561     if (!RISCVVType::isValidSEW(Sew))
1562       goto MatchFail;
1563 
1564     Name = VTypeIElements[2].getIdentifier();
1565     if (!Name.consume_front("m"))
1566       goto MatchFail;
1567     // "m" or "mf"
1568     bool Fractional = Name.consume_front("f");
1569     unsigned Lmul;
1570     if (Name.getAsInteger(10, Lmul))
1571       goto MatchFail;
1572     if (!RISCVVType::isValidLMUL(Lmul, Fractional))
1573       goto MatchFail;
1574 
1575     // ta or tu
1576     Name = VTypeIElements[4].getIdentifier();
1577     bool TailAgnostic;
1578     if (Name == "ta")
1579       TailAgnostic = true;
1580     else if (Name == "tu")
1581       TailAgnostic = false;
1582     else
1583       goto MatchFail;
1584 
1585     // ma or mu
1586     Name = VTypeIElements[6].getIdentifier();
1587     bool MaskAgnostic;
1588     if (Name == "ma")
1589       MaskAgnostic = true;
1590     else if (Name == "mu")
1591       MaskAgnostic = false;
1592     else
1593       goto MatchFail;
1594 
1595     unsigned LmulLog2 = Log2_32(Lmul);
1596     RISCVII::VLMUL VLMUL =
1597         static_cast<RISCVII::VLMUL>(Fractional ? 8 - LmulLog2 : LmulLog2);
1598 
1599     unsigned VTypeI =
1600         RISCVVType::encodeVTYPE(VLMUL, Sew, TailAgnostic, MaskAgnostic);
1601     Operands.push_back(RISCVOperand::createVType(VTypeI, S, isRV64()));
1602     return MatchOperand_Success;
1603   }
1604 
1605 // If NoMatch, unlex all the tokens that comprise a vtypei operand
1606 MatchFail:
1607   while (!VTypeIElements.empty())
1608     getLexer().UnLex(VTypeIElements.pop_back_val());
1609   return MatchOperand_NoMatch;
1610 }
1611 
1612 OperandMatchResultTy RISCVAsmParser::parseMaskReg(OperandVector &Operands) {
1613   switch (getLexer().getKind()) {
1614   default:
1615     return MatchOperand_NoMatch;
1616   case AsmToken::Identifier:
1617     StringRef Name = getLexer().getTok().getIdentifier();
1618     if (!Name.consume_back(".t")) {
1619       Error(getLoc(), "expected '.t' suffix");
1620       return MatchOperand_ParseFail;
1621     }
1622     MCRegister RegNo;
1623     matchRegisterNameHelper(isRV32E(), RegNo, Name);
1624 
1625     if (RegNo == RISCV::NoRegister)
1626       return MatchOperand_NoMatch;
1627     if (RegNo != RISCV::V0)
1628       return MatchOperand_NoMatch;
1629     SMLoc S = getLoc();
1630     SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1631     getLexer().Lex();
1632     Operands.push_back(RISCVOperand::createReg(RegNo, S, E, isRV64()));
1633   }
1634 
1635   return MatchOperand_Success;
1636 }
1637 
1638 OperandMatchResultTy
1639 RISCVAsmParser::parseMemOpBaseReg(OperandVector &Operands) {
1640   if (getLexer().isNot(AsmToken::LParen)) {
1641     Error(getLoc(), "expected '('");
1642     return MatchOperand_ParseFail;
1643   }
1644 
1645   getParser().Lex(); // Eat '('
1646   Operands.push_back(RISCVOperand::createToken("(", getLoc(), isRV64()));
1647 
1648   if (parseRegister(Operands) != MatchOperand_Success) {
1649     Error(getLoc(), "expected register");
1650     return MatchOperand_ParseFail;
1651   }
1652 
1653   if (getLexer().isNot(AsmToken::RParen)) {
1654     Error(getLoc(), "expected ')'");
1655     return MatchOperand_ParseFail;
1656   }
1657 
1658   getParser().Lex(); // Eat ')'
1659   Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));
1660 
1661   return MatchOperand_Success;
1662 }
1663 
1664 OperandMatchResultTy RISCVAsmParser::parseAtomicMemOp(OperandVector &Operands) {
1665   // Atomic operations such as lr.w, sc.w, and amo*.w accept a "memory operand"
1666   // as one of their register operands, such as `(a0)`. This just denotes that
1667   // the register (in this case `a0`) contains a memory address.
1668   //
1669   // Normally, we would be able to parse these by putting the parens into the
1670   // instruction string. However, GNU as also accepts a zero-offset memory
1671   // operand (such as `0(a0)`), and ignores the 0. Normally this would be parsed
1672   // with parseImmediate followed by parseMemOpBaseReg, but these instructions
1673   // do not accept an immediate operand, and we do not want to add a "dummy"
1674   // operand that is silently dropped.
1675   //
1676   // Instead, we use this custom parser. This will: allow (and discard) an
1677   // offset if it is zero; require (and discard) parentheses; and add only the
1678   // parsed register operand to `Operands`.
1679   //
1680   // These operands are printed with RISCVInstPrinter::printAtomicMemOp, which
1681   // will only print the register surrounded by parentheses (which GNU as also
1682   // uses as its canonical representation for these operands).
1683   std::unique_ptr<RISCVOperand> OptionalImmOp;
1684 
1685   if (getLexer().isNot(AsmToken::LParen)) {
1686     // Parse an Integer token. We do not accept arbritrary constant expressions
1687     // in the offset field (because they may include parens, which complicates
1688     // parsing a lot).
1689     int64_t ImmVal;
1690     SMLoc ImmStart = getLoc();
1691     if (getParser().parseIntToken(ImmVal,
1692                                   "expected '(' or optional integer offset"))
1693       return MatchOperand_ParseFail;
1694 
1695     // Create a RISCVOperand for checking later (so the error messages are
1696     // nicer), but we don't add it to Operands.
1697     SMLoc ImmEnd = getLoc();
1698     OptionalImmOp =
1699         RISCVOperand::createImm(MCConstantExpr::create(ImmVal, getContext()),
1700                                 ImmStart, ImmEnd, isRV64());
1701   }
1702 
1703   if (getLexer().isNot(AsmToken::LParen)) {
1704     Error(getLoc(), OptionalImmOp ? "expected '(' after optional integer offset"
1705                                   : "expected '(' or optional integer offset");
1706     return MatchOperand_ParseFail;
1707   }
1708   getParser().Lex(); // Eat '('
1709 
1710   if (parseRegister(Operands) != MatchOperand_Success) {
1711     Error(getLoc(), "expected register");
1712     return MatchOperand_ParseFail;
1713   }
1714 
1715   if (getLexer().isNot(AsmToken::RParen)) {
1716     Error(getLoc(), "expected ')'");
1717     return MatchOperand_ParseFail;
1718   }
1719   getParser().Lex(); // Eat ')'
1720 
1721   // Deferred Handling of non-zero offsets. This makes the error messages nicer.
1722   if (OptionalImmOp && !OptionalImmOp->isImmZero()) {
1723     Error(OptionalImmOp->getStartLoc(), "optional integer offset must be 0",
1724           SMRange(OptionalImmOp->getStartLoc(), OptionalImmOp->getEndLoc()));
1725     return MatchOperand_ParseFail;
1726   }
1727 
1728   return MatchOperand_Success;
1729 }
1730 
1731 /// Looks at a token type and creates the relevant operand from this
1732 /// information, adding to Operands. If operand was parsed, returns false, else
1733 /// true.
1734 bool RISCVAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
1735   // Check if the current operand has a custom associated parser, if so, try to
1736   // custom parse the operand, or fallback to the general approach.
1737   OperandMatchResultTy Result =
1738       MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/true);
1739   if (Result == MatchOperand_Success)
1740     return false;
1741   if (Result == MatchOperand_ParseFail)
1742     return true;
1743 
1744   // Attempt to parse token as a register.
1745   if (parseRegister(Operands, true) == MatchOperand_Success)
1746     return false;
1747 
1748   // Attempt to parse token as an immediate
1749   if (parseImmediate(Operands) == MatchOperand_Success) {
1750     // Parse memory base register if present
1751     if (getLexer().is(AsmToken::LParen))
1752       return parseMemOpBaseReg(Operands) != MatchOperand_Success;
1753     return false;
1754   }
1755 
1756   // Finally we have exhausted all options and must declare defeat.
1757   Error(getLoc(), "unknown operand");
1758   return true;
1759 }
1760 
1761 bool RISCVAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1762                                       StringRef Name, SMLoc NameLoc,
1763                                       OperandVector &Operands) {
1764   // Ensure that if the instruction occurs when relaxation is enabled,
1765   // relocations are forced for the file. Ideally this would be done when there
1766   // is enough information to reliably determine if the instruction itself may
1767   // cause relaxations. Unfortunately instruction processing stage occurs in the
1768   // same pass as relocation emission, so it's too late to set a 'sticky bit'
1769   // for the entire file.
1770   if (getSTI().getFeatureBits()[RISCV::FeatureRelax]) {
1771     auto *Assembler = getTargetStreamer().getStreamer().getAssemblerPtr();
1772     if (Assembler != nullptr) {
1773       RISCVAsmBackend &MAB =
1774           static_cast<RISCVAsmBackend &>(Assembler->getBackend());
1775       MAB.setForceRelocs();
1776     }
1777   }
1778 
1779   // First operand is token for instruction
1780   Operands.push_back(RISCVOperand::createToken(Name, NameLoc, isRV64()));
1781 
1782   // If there are no more operands, then finish
1783   if (getLexer().is(AsmToken::EndOfStatement))
1784     return false;
1785 
1786   // Parse first operand
1787   if (parseOperand(Operands, Name))
1788     return true;
1789 
1790   // Parse until end of statement, consuming commas between operands
1791   unsigned OperandIdx = 1;
1792   while (getLexer().is(AsmToken::Comma)) {
1793     // Consume comma token
1794     getLexer().Lex();
1795 
1796     // Parse next operand
1797     if (parseOperand(Operands, Name))
1798       return true;
1799 
1800     ++OperandIdx;
1801   }
1802 
1803   if (getLexer().isNot(AsmToken::EndOfStatement)) {
1804     SMLoc Loc = getLexer().getLoc();
1805     getParser().eatToEndOfStatement();
1806     return Error(Loc, "unexpected token");
1807   }
1808 
1809   getParser().Lex(); // Consume the EndOfStatement.
1810   return false;
1811 }
1812 
1813 bool RISCVAsmParser::classifySymbolRef(const MCExpr *Expr,
1814                                        RISCVMCExpr::VariantKind &Kind) {
1815   Kind = RISCVMCExpr::VK_RISCV_None;
1816 
1817   if (const RISCVMCExpr *RE = dyn_cast<RISCVMCExpr>(Expr)) {
1818     Kind = RE->getKind();
1819     Expr = RE->getSubExpr();
1820   }
1821 
1822   MCValue Res;
1823   MCFixup Fixup;
1824   if (Expr->evaluateAsRelocatable(Res, nullptr, &Fixup))
1825     return Res.getRefKind() == RISCVMCExpr::VK_RISCV_None;
1826   return false;
1827 }
1828 
1829 bool RISCVAsmParser::ParseDirective(AsmToken DirectiveID) {
1830   // This returns false if this function recognizes the directive
1831   // regardless of whether it is successfully handles or reports an
1832   // error. Otherwise it returns true to give the generic parser a
1833   // chance at recognizing it.
1834   StringRef IDVal = DirectiveID.getString();
1835 
1836   if (IDVal == ".option")
1837     return parseDirectiveOption();
1838   else if (IDVal == ".attribute")
1839     return parseDirectiveAttribute();
1840 
1841   return true;
1842 }
1843 
1844 bool RISCVAsmParser::parseDirectiveOption() {
1845   MCAsmParser &Parser = getParser();
1846   // Get the option token.
1847   AsmToken Tok = Parser.getTok();
1848   // At the moment only identifiers are supported.
1849   if (Tok.isNot(AsmToken::Identifier))
1850     return Error(Parser.getTok().getLoc(),
1851                  "unexpected token, expected identifier");
1852 
1853   StringRef Option = Tok.getIdentifier();
1854 
1855   if (Option == "push") {
1856     getTargetStreamer().emitDirectiveOptionPush();
1857 
1858     Parser.Lex();
1859     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1860       return Error(Parser.getTok().getLoc(),
1861                    "unexpected token, expected end of statement");
1862 
1863     pushFeatureBits();
1864     return false;
1865   }
1866 
1867   if (Option == "pop") {
1868     SMLoc StartLoc = Parser.getTok().getLoc();
1869     getTargetStreamer().emitDirectiveOptionPop();
1870 
1871     Parser.Lex();
1872     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1873       return Error(Parser.getTok().getLoc(),
1874                    "unexpected token, expected end of statement");
1875 
1876     if (popFeatureBits())
1877       return Error(StartLoc, ".option pop with no .option push");
1878 
1879     return false;
1880   }
1881 
1882   if (Option == "rvc") {
1883     getTargetStreamer().emitDirectiveOptionRVC();
1884 
1885     Parser.Lex();
1886     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1887       return Error(Parser.getTok().getLoc(),
1888                    "unexpected token, expected end of statement");
1889 
1890     setFeatureBits(RISCV::FeatureStdExtC, "c");
1891     return false;
1892   }
1893 
1894   if (Option == "norvc") {
1895     getTargetStreamer().emitDirectiveOptionNoRVC();
1896 
1897     Parser.Lex();
1898     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1899       return Error(Parser.getTok().getLoc(),
1900                    "unexpected token, expected end of statement");
1901 
1902     clearFeatureBits(RISCV::FeatureStdExtC, "c");
1903     return false;
1904   }
1905 
1906   if (Option == "pic") {
1907     getTargetStreamer().emitDirectiveOptionPIC();
1908 
1909     Parser.Lex();
1910     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1911       return Error(Parser.getTok().getLoc(),
1912                    "unexpected token, expected end of statement");
1913 
1914     ParserOptions.IsPicEnabled = true;
1915     return false;
1916   }
1917 
1918   if (Option == "nopic") {
1919     getTargetStreamer().emitDirectiveOptionNoPIC();
1920 
1921     Parser.Lex();
1922     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1923       return Error(Parser.getTok().getLoc(),
1924                    "unexpected token, expected end of statement");
1925 
1926     ParserOptions.IsPicEnabled = false;
1927     return false;
1928   }
1929 
1930   if (Option == "relax") {
1931     getTargetStreamer().emitDirectiveOptionRelax();
1932 
1933     Parser.Lex();
1934     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1935       return Error(Parser.getTok().getLoc(),
1936                    "unexpected token, expected end of statement");
1937 
1938     setFeatureBits(RISCV::FeatureRelax, "relax");
1939     return false;
1940   }
1941 
1942   if (Option == "norelax") {
1943     getTargetStreamer().emitDirectiveOptionNoRelax();
1944 
1945     Parser.Lex();
1946     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1947       return Error(Parser.getTok().getLoc(),
1948                    "unexpected token, expected end of statement");
1949 
1950     clearFeatureBits(RISCV::FeatureRelax, "relax");
1951     return false;
1952   }
1953 
1954   // Unknown option.
1955   Warning(Parser.getTok().getLoc(),
1956           "unknown option, expected 'push', 'pop', 'rvc', 'norvc', 'relax' or "
1957           "'norelax'");
1958   Parser.eatToEndOfStatement();
1959   return false;
1960 }
1961 
1962 /// parseDirectiveAttribute
1963 ///  ::= .attribute expression ',' ( expression | "string" )
1964 ///  ::= .attribute identifier ',' ( expression | "string" )
1965 bool RISCVAsmParser::parseDirectiveAttribute() {
1966   MCAsmParser &Parser = getParser();
1967   int64_t Tag;
1968   SMLoc TagLoc;
1969   TagLoc = Parser.getTok().getLoc();
1970   if (Parser.getTok().is(AsmToken::Identifier)) {
1971     StringRef Name = Parser.getTok().getIdentifier();
1972     Optional<unsigned> Ret =
1973         ELFAttrs::attrTypeFromString(Name, RISCVAttrs::getRISCVAttributeTags());
1974     if (!Ret.hasValue()) {
1975       Error(TagLoc, "attribute name not recognised: " + Name);
1976       return false;
1977     }
1978     Tag = Ret.getValue();
1979     Parser.Lex();
1980   } else {
1981     const MCExpr *AttrExpr;
1982 
1983     TagLoc = Parser.getTok().getLoc();
1984     if (Parser.parseExpression(AttrExpr))
1985       return true;
1986 
1987     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
1988     if (check(!CE, TagLoc, "expected numeric constant"))
1989       return true;
1990 
1991     Tag = CE->getValue();
1992   }
1993 
1994   if (Parser.parseToken(AsmToken::Comma, "comma expected"))
1995     return true;
1996 
1997   StringRef StringValue;
1998   int64_t IntegerValue = 0;
1999   bool IsIntegerValue = true;
2000 
2001   // RISC-V attributes have a string value if the tag number is odd
2002   // and an integer value if the tag number is even.
2003   if (Tag % 2)
2004     IsIntegerValue = false;
2005 
2006   SMLoc ValueExprLoc = Parser.getTok().getLoc();
2007   if (IsIntegerValue) {
2008     const MCExpr *ValueExpr;
2009     if (Parser.parseExpression(ValueExpr))
2010       return true;
2011 
2012     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
2013     if (!CE)
2014       return Error(ValueExprLoc, "expected numeric constant");
2015     IntegerValue = CE->getValue();
2016   } else {
2017     if (Parser.getTok().isNot(AsmToken::String))
2018       return Error(Parser.getTok().getLoc(), "expected string constant");
2019 
2020     StringValue = Parser.getTok().getStringContents();
2021     Parser.Lex();
2022   }
2023 
2024   if (Parser.parseToken(AsmToken::EndOfStatement,
2025                         "unexpected token in '.attribute' directive"))
2026     return true;
2027 
2028   if (Tag == RISCVAttrs::ARCH) {
2029     StringRef Arch = StringValue;
2030     if (Arch.consume_front("rv32"))
2031       clearFeatureBits(RISCV::Feature64Bit, "64bit");
2032     else if (Arch.consume_front("rv64"))
2033       setFeatureBits(RISCV::Feature64Bit, "64bit");
2034     else
2035       return Error(ValueExprLoc, "bad arch string " + Arch);
2036 
2037     // .attribute arch overrides the current architecture, so unset all
2038     // currently enabled extensions
2039     clearFeatureBits(RISCV::FeatureRV32E, "e");
2040     clearFeatureBits(RISCV::FeatureStdExtM, "m");
2041     clearFeatureBits(RISCV::FeatureStdExtA, "a");
2042     clearFeatureBits(RISCV::FeatureStdExtF, "f");
2043     clearFeatureBits(RISCV::FeatureStdExtD, "d");
2044     clearFeatureBits(RISCV::FeatureStdExtC, "c");
2045     clearFeatureBits(RISCV::FeatureStdExtB, "experimental-b");
2046     clearFeatureBits(RISCV::FeatureStdExtV, "experimental-v");
2047     clearFeatureBits(RISCV::FeatureExtZfh, "experimental-zfh");
2048     clearFeatureBits(RISCV::FeatureExtZba, "experimental-zba");
2049     clearFeatureBits(RISCV::FeatureExtZbb, "experimental-zbb");
2050     clearFeatureBits(RISCV::FeatureExtZbc, "experimental-zbc");
2051     clearFeatureBits(RISCV::FeatureExtZbe, "experimental-zbe");
2052     clearFeatureBits(RISCV::FeatureExtZbf, "experimental-zbf");
2053     clearFeatureBits(RISCV::FeatureExtZbm, "experimental-zbm");
2054     clearFeatureBits(RISCV::FeatureExtZbp, "experimental-zbp");
2055     clearFeatureBits(RISCV::FeatureExtZbproposedc, "experimental-zbproposedc");
2056     clearFeatureBits(RISCV::FeatureExtZbr, "experimental-zbr");
2057     clearFeatureBits(RISCV::FeatureExtZbs, "experimental-zbs");
2058     clearFeatureBits(RISCV::FeatureExtZbt, "experimental-zbt");
2059     clearFeatureBits(RISCV::FeatureExtZvamo, "experimental-zvamo");
2060     clearFeatureBits(RISCV::FeatureStdExtZvlsseg, "experimental-zvlsseg");
2061 
2062     while (!Arch.empty()) {
2063       bool DropFirst = true;
2064       if (Arch[0] == 'i')
2065         clearFeatureBits(RISCV::FeatureRV32E, "e");
2066       else if (Arch[0] == 'e')
2067         setFeatureBits(RISCV::FeatureRV32E, "e");
2068       else if (Arch[0] == 'g') {
2069         clearFeatureBits(RISCV::FeatureRV32E, "e");
2070         setFeatureBits(RISCV::FeatureStdExtM, "m");
2071         setFeatureBits(RISCV::FeatureStdExtA, "a");
2072         setFeatureBits(RISCV::FeatureStdExtF, "f");
2073         setFeatureBits(RISCV::FeatureStdExtD, "d");
2074       } else if (Arch[0] == 'm')
2075         setFeatureBits(RISCV::FeatureStdExtM, "m");
2076       else if (Arch[0] == 'a')
2077         setFeatureBits(RISCV::FeatureStdExtA, "a");
2078       else if (Arch[0] == 'f')
2079         setFeatureBits(RISCV::FeatureStdExtF, "f");
2080       else if (Arch[0] == 'd') {
2081         setFeatureBits(RISCV::FeatureStdExtF, "f");
2082         setFeatureBits(RISCV::FeatureStdExtD, "d");
2083       } else if (Arch[0] == 'c') {
2084         setFeatureBits(RISCV::FeatureStdExtC, "c");
2085       } else if (Arch[0] == 'b') {
2086         setFeatureBits(RISCV::FeatureStdExtB, "experimental-b");
2087       } else if (Arch[0] == 'v') {
2088         setFeatureBits(RISCV::FeatureStdExtV, "experimental-v");
2089       } else if (Arch[0] == 's' || Arch[0] == 'x' || Arch[0] == 'z') {
2090         StringRef Ext =
2091             Arch.take_until([](char c) { return ::isdigit(c) || c == '_'; });
2092         if (Ext == "zba")
2093           setFeatureBits(RISCV::FeatureExtZba, "experimental-zba");
2094         else if (Ext == "zbb")
2095           setFeatureBits(RISCV::FeatureExtZbb, "experimental-zbb");
2096         else if (Ext == "zbc")
2097           setFeatureBits(RISCV::FeatureExtZbc, "experimental-zbc");
2098         else if (Ext == "zbe")
2099           setFeatureBits(RISCV::FeatureExtZbe, "experimental-zbe");
2100         else if (Ext == "zbf")
2101           setFeatureBits(RISCV::FeatureExtZbf, "experimental-zbf");
2102         else if (Ext == "zbm")
2103           setFeatureBits(RISCV::FeatureExtZbm, "experimental-zbm");
2104         else if (Ext == "zbp")
2105           setFeatureBits(RISCV::FeatureExtZbp, "experimental-zbp");
2106         else if (Ext == "zbproposedc")
2107           setFeatureBits(RISCV::FeatureExtZbproposedc,
2108                          "experimental-zbproposedc");
2109         else if (Ext == "zbr")
2110           setFeatureBits(RISCV::FeatureExtZbr, "experimental-zbr");
2111         else if (Ext == "zbs")
2112           setFeatureBits(RISCV::FeatureExtZbs, "experimental-zbs");
2113         else if (Ext == "zbt")
2114           setFeatureBits(RISCV::FeatureExtZbt, "experimental-zbt");
2115         else if (Ext == "zfh")
2116           setFeatureBits(RISCV::FeatureExtZfh, "experimental-zfh");
2117         else if (Ext == "zvamo")
2118           setFeatureBits(RISCV::FeatureExtZvamo, "experimental-zvamo");
2119         else if (Ext == "zvlsseg")
2120           setFeatureBits(RISCV::FeatureStdExtZvlsseg, "experimental-zvlsseg");
2121         else
2122           return Error(ValueExprLoc, "bad arch string " + Ext);
2123         Arch = Arch.drop_until([](char c) { return ::isdigit(c) || c == '_'; });
2124         DropFirst = false;
2125       } else
2126         return Error(ValueExprLoc, "bad arch string " + Arch);
2127 
2128       if (DropFirst)
2129         Arch = Arch.drop_front(1);
2130       int major = 0;
2131       int minor = 0;
2132       Arch.consumeInteger(10, major);
2133       Arch.consume_front("p");
2134       Arch.consumeInteger(10, minor);
2135       Arch = Arch.drop_while([](char c) { return c == '_'; });
2136     }
2137   }
2138 
2139   if (IsIntegerValue)
2140     getTargetStreamer().emitAttribute(Tag, IntegerValue);
2141   else {
2142     if (Tag != RISCVAttrs::ARCH) {
2143       getTargetStreamer().emitTextAttribute(Tag, StringValue);
2144     } else {
2145       std::string formalArchStr = "rv32";
2146       if (getFeatureBits(RISCV::Feature64Bit))
2147         formalArchStr = "rv64";
2148       if (getFeatureBits(RISCV::FeatureRV32E))
2149         formalArchStr = (Twine(formalArchStr) + "e1p9").str();
2150       else
2151         formalArchStr = (Twine(formalArchStr) + "i2p0").str();
2152 
2153       if (getFeatureBits(RISCV::FeatureStdExtM))
2154         formalArchStr = (Twine(formalArchStr) + "_m2p0").str();
2155       if (getFeatureBits(RISCV::FeatureStdExtA))
2156         formalArchStr = (Twine(formalArchStr) + "_a2p0").str();
2157       if (getFeatureBits(RISCV::FeatureStdExtF))
2158         formalArchStr = (Twine(formalArchStr) + "_f2p0").str();
2159       if (getFeatureBits(RISCV::FeatureStdExtD))
2160         formalArchStr = (Twine(formalArchStr) + "_d2p0").str();
2161       if (getFeatureBits(RISCV::FeatureStdExtC))
2162         formalArchStr = (Twine(formalArchStr) + "_c2p0").str();
2163       if (getFeatureBits(RISCV::FeatureStdExtB))
2164         formalArchStr = (Twine(formalArchStr) + "_b0p93").str();
2165       if (getFeatureBits(RISCV::FeatureStdExtV))
2166         formalArchStr = (Twine(formalArchStr) + "_v0p10").str();
2167       if (getFeatureBits(RISCV::FeatureExtZfh))
2168         formalArchStr = (Twine(formalArchStr) + "_zfh0p1").str();
2169       if (getFeatureBits(RISCV::FeatureExtZba))
2170         formalArchStr = (Twine(formalArchStr) + "_zba0p93").str();
2171       if (getFeatureBits(RISCV::FeatureExtZbb))
2172         formalArchStr = (Twine(formalArchStr) + "_zbb0p93").str();
2173       if (getFeatureBits(RISCV::FeatureExtZbc))
2174         formalArchStr = (Twine(formalArchStr) + "_zbc0p93").str();
2175       if (getFeatureBits(RISCV::FeatureExtZbe))
2176         formalArchStr = (Twine(formalArchStr) + "_zbe0p93").str();
2177       if (getFeatureBits(RISCV::FeatureExtZbf))
2178         formalArchStr = (Twine(formalArchStr) + "_zbf0p93").str();
2179       if (getFeatureBits(RISCV::FeatureExtZbm))
2180         formalArchStr = (Twine(formalArchStr) + "_zbm0p93").str();
2181       if (getFeatureBits(RISCV::FeatureExtZbp))
2182         formalArchStr = (Twine(formalArchStr) + "_zbp0p93").str();
2183       if (getFeatureBits(RISCV::FeatureExtZbproposedc))
2184         formalArchStr = (Twine(formalArchStr) + "_zbproposedc0p93").str();
2185       if (getFeatureBits(RISCV::FeatureExtZbr))
2186         formalArchStr = (Twine(formalArchStr) + "_zbr0p93").str();
2187       if (getFeatureBits(RISCV::FeatureExtZbs))
2188         formalArchStr = (Twine(formalArchStr) + "_zbs0p93").str();
2189       if (getFeatureBits(RISCV::FeatureExtZbt))
2190         formalArchStr = (Twine(formalArchStr) + "_zbt0p93").str();
2191       if (getFeatureBits(RISCV::FeatureExtZvamo))
2192         formalArchStr = (Twine(formalArchStr) + "_zvamo0p10").str();
2193       if (getFeatureBits(RISCV::FeatureStdExtZvlsseg))
2194         formalArchStr = (Twine(formalArchStr) + "_zvlsseg0p10").str();
2195 
2196       getTargetStreamer().emitTextAttribute(Tag, formalArchStr);
2197     }
2198   }
2199 
2200   return false;
2201 }
2202 
2203 void RISCVAsmParser::emitToStreamer(MCStreamer &S, const MCInst &Inst) {
2204   MCInst CInst;
2205   bool Res = compressInst(CInst, Inst, getSTI(), S.getContext());
2206   if (Res)
2207     ++RISCVNumInstrsCompressed;
2208   S.emitInstruction((Res ? CInst : Inst), getSTI());
2209 }
2210 
2211 void RISCVAsmParser::emitLoadImm(MCRegister DestReg, int64_t Value,
2212                                  MCStreamer &Out) {
2213   RISCVMatInt::InstSeq Seq =
2214       RISCVMatInt::generateInstSeq(Value, getSTI().getFeatureBits());
2215 
2216   MCRegister SrcReg = RISCV::X0;
2217   for (RISCVMatInt::Inst &Inst : Seq) {
2218     if (Inst.Opc == RISCV::LUI) {
2219       emitToStreamer(
2220           Out, MCInstBuilder(RISCV::LUI).addReg(DestReg).addImm(Inst.Imm));
2221     } else if (Inst.Opc == RISCV::ADDUW) {
2222       emitToStreamer(Out, MCInstBuilder(RISCV::ADDUW)
2223                               .addReg(DestReg)
2224                               .addReg(SrcReg)
2225                               .addReg(RISCV::X0));
2226     } else {
2227       emitToStreamer(
2228           Out, MCInstBuilder(Inst.Opc).addReg(DestReg).addReg(SrcReg).addImm(
2229                    Inst.Imm));
2230     }
2231 
2232     // Only the first instruction has X0 as its source.
2233     SrcReg = DestReg;
2234   }
2235 }
2236 
2237 void RISCVAsmParser::emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
2238                                        const MCExpr *Symbol,
2239                                        RISCVMCExpr::VariantKind VKHi,
2240                                        unsigned SecondOpcode, SMLoc IDLoc,
2241                                        MCStreamer &Out) {
2242   // A pair of instructions for PC-relative addressing; expands to
2243   //   TmpLabel: AUIPC TmpReg, VKHi(symbol)
2244   //             OP DestReg, TmpReg, %pcrel_lo(TmpLabel)
2245   MCContext &Ctx = getContext();
2246 
2247   MCSymbol *TmpLabel = Ctx.createNamedTempSymbol("pcrel_hi");
2248   Out.emitLabel(TmpLabel);
2249 
2250   const RISCVMCExpr *SymbolHi = RISCVMCExpr::create(Symbol, VKHi, Ctx);
2251   emitToStreamer(
2252       Out, MCInstBuilder(RISCV::AUIPC).addOperand(TmpReg).addExpr(SymbolHi));
2253 
2254   const MCExpr *RefToLinkTmpLabel =
2255       RISCVMCExpr::create(MCSymbolRefExpr::create(TmpLabel, Ctx),
2256                           RISCVMCExpr::VK_RISCV_PCREL_LO, Ctx);
2257 
2258   emitToStreamer(Out, MCInstBuilder(SecondOpcode)
2259                           .addOperand(DestReg)
2260                           .addOperand(TmpReg)
2261                           .addExpr(RefToLinkTmpLabel));
2262 }
2263 
2264 void RISCVAsmParser::emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc,
2265                                           MCStreamer &Out) {
2266   // The load local address pseudo-instruction "lla" is used in PC-relative
2267   // addressing of local symbols:
2268   //   lla rdest, symbol
2269   // expands to
2270   //   TmpLabel: AUIPC rdest, %pcrel_hi(symbol)
2271   //             ADDI rdest, rdest, %pcrel_lo(TmpLabel)
2272   MCOperand DestReg = Inst.getOperand(0);
2273   const MCExpr *Symbol = Inst.getOperand(1).getExpr();
2274   emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
2275                     RISCV::ADDI, IDLoc, Out);
2276 }
2277 
2278 void RISCVAsmParser::emitLoadAddress(MCInst &Inst, SMLoc IDLoc,
2279                                      MCStreamer &Out) {
2280   // The load address pseudo-instruction "la" is used in PC-relative and
2281   // GOT-indirect addressing of global symbols:
2282   //   la rdest, symbol
2283   // expands to either (for non-PIC)
2284   //   TmpLabel: AUIPC rdest, %pcrel_hi(symbol)
2285   //             ADDI rdest, rdest, %pcrel_lo(TmpLabel)
2286   // or (for PIC)
2287   //   TmpLabel: AUIPC rdest, %got_pcrel_hi(symbol)
2288   //             Lx rdest, %pcrel_lo(TmpLabel)(rdest)
2289   MCOperand DestReg = Inst.getOperand(0);
2290   const MCExpr *Symbol = Inst.getOperand(1).getExpr();
2291   unsigned SecondOpcode;
2292   RISCVMCExpr::VariantKind VKHi;
2293   if (ParserOptions.IsPicEnabled) {
2294     SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
2295     VKHi = RISCVMCExpr::VK_RISCV_GOT_HI;
2296   } else {
2297     SecondOpcode = RISCV::ADDI;
2298     VKHi = RISCVMCExpr::VK_RISCV_PCREL_HI;
2299   }
2300   emitAuipcInstPair(DestReg, DestReg, Symbol, VKHi, SecondOpcode, IDLoc, Out);
2301 }
2302 
2303 void RISCVAsmParser::emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc,
2304                                           MCStreamer &Out) {
2305   // The load TLS IE address pseudo-instruction "la.tls.ie" is used in
2306   // initial-exec TLS model addressing of global symbols:
2307   //   la.tls.ie rdest, symbol
2308   // expands to
2309   //   TmpLabel: AUIPC rdest, %tls_ie_pcrel_hi(symbol)
2310   //             Lx rdest, %pcrel_lo(TmpLabel)(rdest)
2311   MCOperand DestReg = Inst.getOperand(0);
2312   const MCExpr *Symbol = Inst.getOperand(1).getExpr();
2313   unsigned SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
2314   emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GOT_HI,
2315                     SecondOpcode, IDLoc, Out);
2316 }
2317 
2318 void RISCVAsmParser::emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc,
2319                                           MCStreamer &Out) {
2320   // The load TLS GD address pseudo-instruction "la.tls.gd" is used in
2321   // global-dynamic TLS model addressing of global symbols:
2322   //   la.tls.gd rdest, symbol
2323   // expands to
2324   //   TmpLabel: AUIPC rdest, %tls_gd_pcrel_hi(symbol)
2325   //             ADDI rdest, rdest, %pcrel_lo(TmpLabel)
2326   MCOperand DestReg = Inst.getOperand(0);
2327   const MCExpr *Symbol = Inst.getOperand(1).getExpr();
2328   emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GD_HI,
2329                     RISCV::ADDI, IDLoc, Out);
2330 }
2331 
2332 void RISCVAsmParser::emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode,
2333                                          SMLoc IDLoc, MCStreamer &Out,
2334                                          bool HasTmpReg) {
2335   // The load/store pseudo-instruction does a pc-relative load with
2336   // a symbol.
2337   //
2338   // The expansion looks like this
2339   //
2340   //   TmpLabel: AUIPC tmp, %pcrel_hi(symbol)
2341   //             [S|L]X    rd, %pcrel_lo(TmpLabel)(tmp)
2342   MCOperand DestReg = Inst.getOperand(0);
2343   unsigned SymbolOpIdx = HasTmpReg ? 2 : 1;
2344   unsigned TmpRegOpIdx = HasTmpReg ? 1 : 0;
2345   MCOperand TmpReg = Inst.getOperand(TmpRegOpIdx);
2346   const MCExpr *Symbol = Inst.getOperand(SymbolOpIdx).getExpr();
2347   emitAuipcInstPair(DestReg, TmpReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
2348                     Opcode, IDLoc, Out);
2349 }
2350 
2351 void RISCVAsmParser::emitPseudoExtend(MCInst &Inst, bool SignExtend,
2352                                       int64_t Width, SMLoc IDLoc,
2353                                       MCStreamer &Out) {
2354   // The sign/zero extend pseudo-instruction does two shifts, with the shift
2355   // amounts dependent on the XLEN.
2356   //
2357   // The expansion looks like this
2358   //
2359   //    SLLI rd, rs, XLEN - Width
2360   //    SR[A|R]I rd, rd, XLEN - Width
2361   MCOperand DestReg = Inst.getOperand(0);
2362   MCOperand SourceReg = Inst.getOperand(1);
2363 
2364   unsigned SecondOpcode = SignExtend ? RISCV::SRAI : RISCV::SRLI;
2365   int64_t ShAmt = (isRV64() ? 64 : 32) - Width;
2366 
2367   assert(ShAmt > 0 && "Shift amount must be non-zero.");
2368 
2369   emitToStreamer(Out, MCInstBuilder(RISCV::SLLI)
2370                           .addOperand(DestReg)
2371                           .addOperand(SourceReg)
2372                           .addImm(ShAmt));
2373 
2374   emitToStreamer(Out, MCInstBuilder(SecondOpcode)
2375                           .addOperand(DestReg)
2376                           .addOperand(DestReg)
2377                           .addImm(ShAmt));
2378 }
2379 
2380 void RISCVAsmParser::emitVMSGE(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
2381                                MCStreamer &Out) {
2382   if (Inst.getNumOperands() == 3) {
2383     // unmasked va >= x
2384     //
2385     //  pseudoinstruction: vmsge{u}.vx vd, va, x
2386     //  expansion: vmslt{u}.vx vd, va, x; vmnand.mm vd, vd, vd
2387     emitToStreamer(Out, MCInstBuilder(Opcode)
2388                             .addOperand(Inst.getOperand(0))
2389                             .addOperand(Inst.getOperand(1))
2390                             .addOperand(Inst.getOperand(2))
2391                             .addReg(RISCV::NoRegister));
2392     emitToStreamer(Out, MCInstBuilder(RISCV::VMNAND_MM)
2393                             .addOperand(Inst.getOperand(0))
2394                             .addOperand(Inst.getOperand(0))
2395                             .addOperand(Inst.getOperand(0)));
2396   } else if (Inst.getNumOperands() == 4) {
2397     // masked va >= x, vd != v0
2398     //
2399     //  pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t
2400     //  expansion: vmslt{u}.vx vd, va, x, v0.t; vmxor.mm vd, vd, v0
2401     assert(Inst.getOperand(0).getReg() != RISCV::V0 &&
2402            "The destination register should not be V0.");
2403     emitToStreamer(Out, MCInstBuilder(Opcode)
2404                             .addOperand(Inst.getOperand(0))
2405                             .addOperand(Inst.getOperand(1))
2406                             .addOperand(Inst.getOperand(2))
2407                             .addOperand(Inst.getOperand(3)));
2408     emitToStreamer(Out, MCInstBuilder(RISCV::VMXOR_MM)
2409                             .addOperand(Inst.getOperand(0))
2410                             .addOperand(Inst.getOperand(0))
2411                             .addReg(RISCV::V0));
2412   } else if (Inst.getNumOperands() == 5 &&
2413              Inst.getOperand(0).getReg() == RISCV::V0) {
2414     // masked va >= x, vd == v0
2415     //
2416     //  pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt
2417     //  expansion: vmslt{u}.vx vt, va, x;  vmandnot.mm vd, vd, vt
2418     assert(Inst.getOperand(0).getReg() == RISCV::V0 &&
2419            "The destination register should be V0.");
2420     assert(Inst.getOperand(1).getReg() != RISCV::V0 &&
2421            "The temporary vector register should not be V0.");
2422     emitToStreamer(Out, MCInstBuilder(Opcode)
2423                             .addOperand(Inst.getOperand(1))
2424                             .addOperand(Inst.getOperand(2))
2425                             .addOperand(Inst.getOperand(3))
2426                             .addOperand(Inst.getOperand(4)));
2427     emitToStreamer(Out, MCInstBuilder(RISCV::VMANDNOT_MM)
2428                             .addOperand(Inst.getOperand(0))
2429                             .addOperand(Inst.getOperand(0))
2430                             .addOperand(Inst.getOperand(1)));
2431   } else if (Inst.getNumOperands() == 5) {
2432     // masked va >= x, any vd
2433     //
2434     // pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt
2435     // expansion: vmslt{u}.vx vt, va, x; vmandnot.mm vt, v0, vt; vmandnot.mm vd,
2436     // vd, v0; vmor.mm vd, vt, vd
2437     assert(Inst.getOperand(1).getReg() != RISCV::V0 &&
2438            "The temporary vector register should not be V0.");
2439     emitToStreamer(Out, MCInstBuilder(Opcode)
2440                             .addOperand(Inst.getOperand(1))
2441                             .addOperand(Inst.getOperand(2))
2442                             .addOperand(Inst.getOperand(3))
2443                             .addReg(RISCV::NoRegister));
2444     emitToStreamer(Out, MCInstBuilder(RISCV::VMANDNOT_MM)
2445                             .addOperand(Inst.getOperand(1))
2446                             .addReg(RISCV::V0)
2447                             .addOperand(Inst.getOperand(1)));
2448     emitToStreamer(Out, MCInstBuilder(RISCV::VMANDNOT_MM)
2449                             .addOperand(Inst.getOperand(0))
2450                             .addOperand(Inst.getOperand(0))
2451                             .addReg(RISCV::V0));
2452     emitToStreamer(Out, MCInstBuilder(RISCV::VMOR_MM)
2453                             .addOperand(Inst.getOperand(0))
2454                             .addOperand(Inst.getOperand(1))
2455                             .addOperand(Inst.getOperand(0)));
2456   }
2457 }
2458 
2459 bool RISCVAsmParser::checkPseudoAddTPRel(MCInst &Inst,
2460                                          OperandVector &Operands) {
2461   assert(Inst.getOpcode() == RISCV::PseudoAddTPRel && "Invalid instruction");
2462   assert(Inst.getOperand(2).isReg() && "Unexpected second operand kind");
2463   if (Inst.getOperand(2).getReg() != RISCV::X4) {
2464     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[3]).getStartLoc();
2465     return Error(ErrorLoc, "the second input operand must be tp/x4 when using "
2466                            "%tprel_add modifier");
2467   }
2468 
2469   return false;
2470 }
2471 
2472 std::unique_ptr<RISCVOperand> RISCVAsmParser::defaultMaskRegOp() const {
2473   return RISCVOperand::createReg(RISCV::NoRegister, llvm::SMLoc(),
2474                                  llvm::SMLoc(), isRV64());
2475 }
2476 
2477 bool RISCVAsmParser::validateInstruction(MCInst &Inst,
2478                                          OperandVector &Operands) {
2479   if (Inst.getOpcode() == RISCV::PseudoVMSGEU_VX_M_T ||
2480       Inst.getOpcode() == RISCV::PseudoVMSGE_VX_M_T) {
2481     unsigned DestReg = Inst.getOperand(0).getReg();
2482     unsigned TempReg = Inst.getOperand(1).getReg();
2483     if (DestReg == TempReg) {
2484       SMLoc Loc = Operands.back()->getStartLoc();
2485       return Error(Loc, "The temporary vector register cannot be the same as "
2486                         "the destination register.");
2487     }
2488   }
2489 
2490   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
2491   RISCVII::VConstraintType Constraints =
2492       RISCVII::getConstraint(MCID.TSFlags);
2493   if (Constraints == RISCVII::NoConstraint)
2494     return false;
2495 
2496   unsigned DestReg = Inst.getOperand(0).getReg();
2497   // Operands[1] will be the first operand, DestReg.
2498   SMLoc Loc = Operands[1]->getStartLoc();
2499   if (Constraints & RISCVII::VS2Constraint) {
2500     unsigned CheckReg = Inst.getOperand(1).getReg();
2501     if (DestReg == CheckReg)
2502       return Error(Loc, "The destination vector register group cannot overlap"
2503                         " the source vector register group.");
2504   }
2505   if ((Constraints & RISCVII::VS1Constraint) && (Inst.getOperand(2).isReg())) {
2506     unsigned CheckReg = Inst.getOperand(2).getReg();
2507     if (DestReg == CheckReg)
2508       return Error(Loc, "The destination vector register group cannot overlap"
2509                         " the source vector register group.");
2510   }
2511   if ((Constraints & RISCVII::VMConstraint) && (DestReg == RISCV::V0)) {
2512     // vadc, vsbc are special cases. These instructions have no mask register.
2513     // The destination register could not be V0.
2514     unsigned Opcode = Inst.getOpcode();
2515     if (Opcode == RISCV::VADC_VVM || Opcode == RISCV::VADC_VXM ||
2516         Opcode == RISCV::VADC_VIM || Opcode == RISCV::VSBC_VVM ||
2517         Opcode == RISCV::VSBC_VXM || Opcode == RISCV::VFMERGE_VFM ||
2518         Opcode == RISCV::VMERGE_VIM || Opcode == RISCV::VMERGE_VVM ||
2519         Opcode == RISCV::VMERGE_VXM)
2520       return Error(Loc, "The destination vector register group cannot be V0.");
2521 
2522     // Regardless masked or unmasked version, the number of operands is the
2523     // same. For example, "viota.m v0, v2" is "viota.m v0, v2, NoRegister"
2524     // actually. We need to check the last operand to ensure whether it is
2525     // masked or not.
2526     unsigned CheckReg = Inst.getOperand(Inst.getNumOperands() - 1).getReg();
2527     assert((CheckReg == RISCV::V0 || CheckReg == RISCV::NoRegister) &&
2528            "Unexpected register for mask operand");
2529 
2530     if (DestReg == CheckReg)
2531       return Error(Loc, "The destination vector register group cannot overlap"
2532                         " the mask register.");
2533   }
2534   return false;
2535 }
2536 
2537 bool RISCVAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
2538                                         OperandVector &Operands,
2539                                         MCStreamer &Out) {
2540   Inst.setLoc(IDLoc);
2541 
2542   switch (Inst.getOpcode()) {
2543   default:
2544     break;
2545   case RISCV::PseudoLI: {
2546     MCRegister Reg = Inst.getOperand(0).getReg();
2547     const MCOperand &Op1 = Inst.getOperand(1);
2548     if (Op1.isExpr()) {
2549       // We must have li reg, %lo(sym) or li reg, %pcrel_lo(sym) or similar.
2550       // Just convert to an addi. This allows compatibility with gas.
2551       emitToStreamer(Out, MCInstBuilder(RISCV::ADDI)
2552                               .addReg(Reg)
2553                               .addReg(RISCV::X0)
2554                               .addExpr(Op1.getExpr()));
2555       return false;
2556     }
2557     int64_t Imm = Inst.getOperand(1).getImm();
2558     // On RV32 the immediate here can either be a signed or an unsigned
2559     // 32-bit number. Sign extension has to be performed to ensure that Imm
2560     // represents the expected signed 64-bit number.
2561     if (!isRV64())
2562       Imm = SignExtend64<32>(Imm);
2563     emitLoadImm(Reg, Imm, Out);
2564     return false;
2565   }
2566   case RISCV::PseudoLLA:
2567     emitLoadLocalAddress(Inst, IDLoc, Out);
2568     return false;
2569   case RISCV::PseudoLA:
2570     emitLoadAddress(Inst, IDLoc, Out);
2571     return false;
2572   case RISCV::PseudoLA_TLS_IE:
2573     emitLoadTLSIEAddress(Inst, IDLoc, Out);
2574     return false;
2575   case RISCV::PseudoLA_TLS_GD:
2576     emitLoadTLSGDAddress(Inst, IDLoc, Out);
2577     return false;
2578   case RISCV::PseudoLB:
2579     emitLoadStoreSymbol(Inst, RISCV::LB, IDLoc, Out, /*HasTmpReg=*/false);
2580     return false;
2581   case RISCV::PseudoLBU:
2582     emitLoadStoreSymbol(Inst, RISCV::LBU, IDLoc, Out, /*HasTmpReg=*/false);
2583     return false;
2584   case RISCV::PseudoLH:
2585     emitLoadStoreSymbol(Inst, RISCV::LH, IDLoc, Out, /*HasTmpReg=*/false);
2586     return false;
2587   case RISCV::PseudoLHU:
2588     emitLoadStoreSymbol(Inst, RISCV::LHU, IDLoc, Out, /*HasTmpReg=*/false);
2589     return false;
2590   case RISCV::PseudoLW:
2591     emitLoadStoreSymbol(Inst, RISCV::LW, IDLoc, Out, /*HasTmpReg=*/false);
2592     return false;
2593   case RISCV::PseudoLWU:
2594     emitLoadStoreSymbol(Inst, RISCV::LWU, IDLoc, Out, /*HasTmpReg=*/false);
2595     return false;
2596   case RISCV::PseudoLD:
2597     emitLoadStoreSymbol(Inst, RISCV::LD, IDLoc, Out, /*HasTmpReg=*/false);
2598     return false;
2599   case RISCV::PseudoFLH:
2600     emitLoadStoreSymbol(Inst, RISCV::FLH, IDLoc, Out, /*HasTmpReg=*/true);
2601     return false;
2602   case RISCV::PseudoFLW:
2603     emitLoadStoreSymbol(Inst, RISCV::FLW, IDLoc, Out, /*HasTmpReg=*/true);
2604     return false;
2605   case RISCV::PseudoFLD:
2606     emitLoadStoreSymbol(Inst, RISCV::FLD, IDLoc, Out, /*HasTmpReg=*/true);
2607     return false;
2608   case RISCV::PseudoSB:
2609     emitLoadStoreSymbol(Inst, RISCV::SB, IDLoc, Out, /*HasTmpReg=*/true);
2610     return false;
2611   case RISCV::PseudoSH:
2612     emitLoadStoreSymbol(Inst, RISCV::SH, IDLoc, Out, /*HasTmpReg=*/true);
2613     return false;
2614   case RISCV::PseudoSW:
2615     emitLoadStoreSymbol(Inst, RISCV::SW, IDLoc, Out, /*HasTmpReg=*/true);
2616     return false;
2617   case RISCV::PseudoSD:
2618     emitLoadStoreSymbol(Inst, RISCV::SD, IDLoc, Out, /*HasTmpReg=*/true);
2619     return false;
2620   case RISCV::PseudoFSH:
2621     emitLoadStoreSymbol(Inst, RISCV::FSH, IDLoc, Out, /*HasTmpReg=*/true);
2622     return false;
2623   case RISCV::PseudoFSW:
2624     emitLoadStoreSymbol(Inst, RISCV::FSW, IDLoc, Out, /*HasTmpReg=*/true);
2625     return false;
2626   case RISCV::PseudoFSD:
2627     emitLoadStoreSymbol(Inst, RISCV::FSD, IDLoc, Out, /*HasTmpReg=*/true);
2628     return false;
2629   case RISCV::PseudoAddTPRel:
2630     if (checkPseudoAddTPRel(Inst, Operands))
2631       return true;
2632     break;
2633   case RISCV::PseudoSEXT_B:
2634     emitPseudoExtend(Inst, /*SignExtend=*/true, /*Width=*/8, IDLoc, Out);
2635     return false;
2636   case RISCV::PseudoSEXT_H:
2637     emitPseudoExtend(Inst, /*SignExtend=*/true, /*Width=*/16, IDLoc, Out);
2638     return false;
2639   case RISCV::PseudoZEXT_H:
2640     emitPseudoExtend(Inst, /*SignExtend=*/false, /*Width=*/16, IDLoc, Out);
2641     return false;
2642   case RISCV::PseudoZEXT_W:
2643     emitPseudoExtend(Inst, /*SignExtend=*/false, /*Width=*/32, IDLoc, Out);
2644     return false;
2645   case RISCV::PseudoVMSGEU_VX:
2646   case RISCV::PseudoVMSGEU_VX_M:
2647   case RISCV::PseudoVMSGEU_VX_M_T:
2648     emitVMSGE(Inst, RISCV::VMSLTU_VX, IDLoc, Out);
2649     return false;
2650   case RISCV::PseudoVMSGE_VX:
2651   case RISCV::PseudoVMSGE_VX_M:
2652   case RISCV::PseudoVMSGE_VX_M_T:
2653     emitVMSGE(Inst, RISCV::VMSLT_VX, IDLoc, Out);
2654     return false;
2655   case RISCV::PseudoVMSGE_VI:
2656   case RISCV::PseudoVMSLT_VI: {
2657     // These instructions are signed and so is immediate so we can subtract one
2658     // and change the opcode.
2659     int64_t Imm = Inst.getOperand(2).getImm();
2660     unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGE_VI ? RISCV::VMSGT_VI
2661                                                              : RISCV::VMSLE_VI;
2662     emitToStreamer(Out, MCInstBuilder(Opc)
2663                             .addOperand(Inst.getOperand(0))
2664                             .addOperand(Inst.getOperand(1))
2665                             .addImm(Imm - 1)
2666                             .addOperand(Inst.getOperand(3)));
2667     return false;
2668   }
2669   case RISCV::PseudoVMSGEU_VI:
2670   case RISCV::PseudoVMSLTU_VI: {
2671     int64_t Imm = Inst.getOperand(2).getImm();
2672     // Unsigned comparisons are tricky because the immediate is signed. If the
2673     // immediate is 0 we can't just subtract one. vmsltu.vi v0, v1, 0 is always
2674     // false, but vmsle.vi v0, v1, -1 is always true. Instead we use
2675     // vmsne v0, v1, v1 which is always false.
2676     if (Imm == 0) {
2677       unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGEU_VI
2678                          ? RISCV::VMSEQ_VV
2679                          : RISCV::VMSNE_VV;
2680       emitToStreamer(Out, MCInstBuilder(Opc)
2681                               .addOperand(Inst.getOperand(0))
2682                               .addOperand(Inst.getOperand(1))
2683                               .addOperand(Inst.getOperand(1))
2684                               .addOperand(Inst.getOperand(3)));
2685     } else {
2686       // Other immediate values can subtract one like signed.
2687       unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGEU_VI
2688                          ? RISCV::VMSGTU_VI
2689                          : RISCV::VMSLEU_VI;
2690       emitToStreamer(Out, MCInstBuilder(Opc)
2691                               .addOperand(Inst.getOperand(0))
2692                               .addOperand(Inst.getOperand(1))
2693                               .addImm(Imm - 1)
2694                               .addOperand(Inst.getOperand(3)));
2695     }
2696 
2697     return false;
2698   }
2699   }
2700 
2701   emitToStreamer(Out, Inst);
2702   return false;
2703 }
2704 
2705 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeRISCVAsmParser() {
2706   RegisterMCAsmParser<RISCVAsmParser> X(getTheRISCV32Target());
2707   RegisterMCAsmParser<RISCVAsmParser> Y(getTheRISCV64Target());
2708 }
2709