xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/AsmParser/RISCVAsmParser.cpp (revision 0d8fe2373503aeac48492f28073049a8bfa4feb5)
1 //===-- RISCVAsmParser.cpp - Parse RISCV assembly to MCInst instructions --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCTargetDesc/RISCVAsmBackend.h"
10 #include "MCTargetDesc/RISCVBaseInfo.h"
11 #include "MCTargetDesc/RISCVInstPrinter.h"
12 #include "MCTargetDesc/RISCVMCExpr.h"
13 #include "MCTargetDesc/RISCVMCTargetDesc.h"
14 #include "MCTargetDesc/RISCVMatInt.h"
15 #include "MCTargetDesc/RISCVTargetStreamer.h"
16 #include "TargetInfo/RISCVTargetInfo.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallBitVector.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/MC/MCAssembler.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCInst.h"
26 #include "llvm/MC/MCInstBuilder.h"
27 #include "llvm/MC/MCObjectFileInfo.h"
28 #include "llvm/MC/MCParser/MCAsmLexer.h"
29 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
30 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
31 #include "llvm/MC/MCRegisterInfo.h"
32 #include "llvm/MC/MCStreamer.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/MCValue.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/RISCVAttributes.h"
38 #include "llvm/Support/TargetRegistry.h"
39 
40 #include <limits>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-asm-parser"
45 
46 // Include the auto-generated portion of the compress emitter.
47 #define GEN_COMPRESS_INSTR
48 #include "RISCVGenCompressInstEmitter.inc"
49 
50 STATISTIC(RISCVNumInstrsCompressed,
51           "Number of RISC-V Compressed instructions emitted");
52 
53 namespace {
54 struct RISCVOperand;
55 
56 struct ParserOptionsSet {
57   bool IsPicEnabled;
58 };
59 
60 class RISCVAsmParser : public MCTargetAsmParser {
61   SmallVector<FeatureBitset, 4> FeatureBitStack;
62 
63   SmallVector<ParserOptionsSet, 4> ParserOptionsStack;
64   ParserOptionsSet ParserOptions;
65 
66   SMLoc getLoc() const { return getParser().getTok().getLoc(); }
67   bool isRV64() const { return getSTI().hasFeature(RISCV::Feature64Bit); }
68   bool isRV32E() const { return getSTI().hasFeature(RISCV::FeatureRV32E); }
69 
70   RISCVTargetStreamer &getTargetStreamer() {
71     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
72     return static_cast<RISCVTargetStreamer &>(TS);
73   }
74 
75   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
76                                       unsigned Kind) override;
77 
78   bool generateImmOutOfRangeError(OperandVector &Operands, uint64_t ErrorInfo,
79                                   int64_t Lower, int64_t Upper, Twine Msg);
80 
81   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
82                                OperandVector &Operands, MCStreamer &Out,
83                                uint64_t &ErrorInfo,
84                                bool MatchingInlineAsm) override;
85 
86   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
87   OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
88                                         SMLoc &EndLoc) override;
89 
90   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
91                         SMLoc NameLoc, OperandVector &Operands) override;
92 
93   bool ParseDirective(AsmToken DirectiveID) override;
94 
95   // Helper to actually emit an instruction to the MCStreamer. Also, when
96   // possible, compression of the instruction is performed.
97   void emitToStreamer(MCStreamer &S, const MCInst &Inst);
98 
99   // Helper to emit a combination of LUI, ADDI(W), and SLLI instructions that
100   // synthesize the desired immedate value into the destination register.
101   void emitLoadImm(MCRegister DestReg, int64_t Value, MCStreamer &Out);
102 
103   // Helper to emit a combination of AUIPC and SecondOpcode. Used to implement
104   // helpers such as emitLoadLocalAddress and emitLoadAddress.
105   void emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
106                          const MCExpr *Symbol, RISCVMCExpr::VariantKind VKHi,
107                          unsigned SecondOpcode, SMLoc IDLoc, MCStreamer &Out);
108 
109   // Helper to emit pseudo instruction "lla" used in PC-rel addressing.
110   void emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
111 
112   // Helper to emit pseudo instruction "la" used in GOT/PC-rel addressing.
113   void emitLoadAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
114 
115   // Helper to emit pseudo instruction "la.tls.ie" used in initial-exec TLS
116   // addressing.
117   void emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
118 
119   // Helper to emit pseudo instruction "la.tls.gd" used in global-dynamic TLS
120   // addressing.
121   void emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
122 
123   // Helper to emit pseudo load/store instruction with a symbol.
124   void emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
125                            MCStreamer &Out, bool HasTmpReg);
126 
127   // Helper to emit pseudo sign/zero extend instruction.
128   void emitPseudoExtend(MCInst &Inst, bool SignExtend, int64_t Width,
129                         SMLoc IDLoc, MCStreamer &Out);
130 
131   // Helper to emit pseudo vmsge{u}.vx instruction.
132   void emitVMSGE(MCInst &Inst, unsigned Opcode, SMLoc IDLoc, MCStreamer &Out);
133 
134   // Checks that a PseudoAddTPRel is using x4/tp in its second input operand.
135   // Enforcing this using a restricted register class for the second input
136   // operand of PseudoAddTPRel results in a poor diagnostic due to the fact
137   // 'add' is an overloaded mnemonic.
138   bool checkPseudoAddTPRel(MCInst &Inst, OperandVector &Operands);
139 
140   // Check instruction constraints.
141   bool validateInstruction(MCInst &Inst, OperandVector &Operands);
142 
143   /// Helper for processing MC instructions that have been successfully matched
144   /// by MatchAndEmitInstruction. Modifications to the emitted instructions,
145   /// like the expansion of pseudo instructions (e.g., "li"), can be performed
146   /// in this method.
147   bool processInstruction(MCInst &Inst, SMLoc IDLoc, OperandVector &Operands,
148                           MCStreamer &Out);
149 
150 // Auto-generated instruction matching functions
151 #define GET_ASSEMBLER_HEADER
152 #include "RISCVGenAsmMatcher.inc"
153 
154   OperandMatchResultTy parseCSRSystemRegister(OperandVector &Operands);
155   OperandMatchResultTy parseImmediate(OperandVector &Operands);
156   OperandMatchResultTy parseRegister(OperandVector &Operands,
157                                      bool AllowParens = false);
158   OperandMatchResultTy parseMemOpBaseReg(OperandVector &Operands);
159   OperandMatchResultTy parseAtomicMemOp(OperandVector &Operands);
160   OperandMatchResultTy parseOperandWithModifier(OperandVector &Operands);
161   OperandMatchResultTy parseBareSymbol(OperandVector &Operands);
162   OperandMatchResultTy parseCallSymbol(OperandVector &Operands);
163   OperandMatchResultTy parsePseudoJumpSymbol(OperandVector &Operands);
164   OperandMatchResultTy parseJALOffset(OperandVector &Operands);
165   OperandMatchResultTy parseVTypeI(OperandVector &Operands);
166   OperandMatchResultTy parseMaskReg(OperandVector &Operands);
167 
168   bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
169 
170   bool parseDirectiveOption();
171   bool parseDirectiveAttribute();
172 
173   void setFeatureBits(uint64_t Feature, StringRef FeatureString) {
174     if (!(getSTI().getFeatureBits()[Feature])) {
175       MCSubtargetInfo &STI = copySTI();
176       setAvailableFeatures(
177           ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
178     }
179   }
180 
181   bool getFeatureBits(uint64_t Feature) {
182     return getSTI().getFeatureBits()[Feature];
183   }
184 
185   void clearFeatureBits(uint64_t Feature, StringRef FeatureString) {
186     if (getSTI().getFeatureBits()[Feature]) {
187       MCSubtargetInfo &STI = copySTI();
188       setAvailableFeatures(
189           ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
190     }
191   }
192 
193   void pushFeatureBits() {
194     assert(FeatureBitStack.size() == ParserOptionsStack.size() &&
195            "These two stacks must be kept synchronized");
196     FeatureBitStack.push_back(getSTI().getFeatureBits());
197     ParserOptionsStack.push_back(ParserOptions);
198   }
199 
200   bool popFeatureBits() {
201     assert(FeatureBitStack.size() == ParserOptionsStack.size() &&
202            "These two stacks must be kept synchronized");
203     if (FeatureBitStack.empty())
204       return true;
205 
206     FeatureBitset FeatureBits = FeatureBitStack.pop_back_val();
207     copySTI().setFeatureBits(FeatureBits);
208     setAvailableFeatures(ComputeAvailableFeatures(FeatureBits));
209 
210     ParserOptions = ParserOptionsStack.pop_back_val();
211 
212     return false;
213   }
214 
215   std::unique_ptr<RISCVOperand> defaultMaskRegOp() const;
216 
217 public:
218   enum RISCVMatchResultTy {
219     Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY,
220 #define GET_OPERAND_DIAGNOSTIC_TYPES
221 #include "RISCVGenAsmMatcher.inc"
222 #undef GET_OPERAND_DIAGNOSTIC_TYPES
223   };
224 
225   static bool classifySymbolRef(const MCExpr *Expr,
226                                 RISCVMCExpr::VariantKind &Kind);
227 
228   RISCVAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
229                  const MCInstrInfo &MII, const MCTargetOptions &Options)
230       : MCTargetAsmParser(Options, STI, MII) {
231     Parser.addAliasForDirective(".half", ".2byte");
232     Parser.addAliasForDirective(".hword", ".2byte");
233     Parser.addAliasForDirective(".word", ".4byte");
234     Parser.addAliasForDirective(".dword", ".8byte");
235     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
236 
237     auto ABIName = StringRef(Options.ABIName);
238     if (ABIName.endswith("f") &&
239         !getSTI().getFeatureBits()[RISCV::FeatureStdExtF]) {
240       errs() << "Hard-float 'f' ABI can't be used for a target that "
241                 "doesn't support the F instruction set extension (ignoring "
242                 "target-abi)\n";
243     } else if (ABIName.endswith("d") &&
244                !getSTI().getFeatureBits()[RISCV::FeatureStdExtD]) {
245       errs() << "Hard-float 'd' ABI can't be used for a target that "
246                 "doesn't support the D instruction set extension (ignoring "
247                 "target-abi)\n";
248     }
249 
250     const MCObjectFileInfo *MOFI = Parser.getContext().getObjectFileInfo();
251     ParserOptions.IsPicEnabled = MOFI->isPositionIndependent();
252   }
253 };
254 
255 /// RISCVOperand - Instances of this class represent a parsed machine
256 /// instruction
257 struct RISCVOperand : public MCParsedAsmOperand {
258 
259   enum class KindTy {
260     Token,
261     Register,
262     Immediate,
263     SystemRegister,
264     VType,
265   } Kind;
266 
267   bool IsRV64;
268 
269   struct RegOp {
270     MCRegister RegNum;
271   };
272 
273   struct ImmOp {
274     const MCExpr *Val;
275   };
276 
277   struct SysRegOp {
278     const char *Data;
279     unsigned Length;
280     unsigned Encoding;
281     // FIXME: Add the Encoding parsed fields as needed for checks,
282     // e.g.: read/write or user/supervisor/machine privileges.
283   };
284 
285   struct VTypeOp {
286     unsigned Val;
287   };
288 
289   SMLoc StartLoc, EndLoc;
290   union {
291     StringRef Tok;
292     RegOp Reg;
293     ImmOp Imm;
294     struct SysRegOp SysReg;
295     struct VTypeOp VType;
296   };
297 
298   RISCVOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
299 
300 public:
301   RISCVOperand(const RISCVOperand &o) : MCParsedAsmOperand() {
302     Kind = o.Kind;
303     IsRV64 = o.IsRV64;
304     StartLoc = o.StartLoc;
305     EndLoc = o.EndLoc;
306     switch (Kind) {
307     case KindTy::Register:
308       Reg = o.Reg;
309       break;
310     case KindTy::Immediate:
311       Imm = o.Imm;
312       break;
313     case KindTy::Token:
314       Tok = o.Tok;
315       break;
316     case KindTy::SystemRegister:
317       SysReg = o.SysReg;
318       break;
319     case KindTy::VType:
320       VType = o.VType;
321       break;
322     }
323   }
324 
325   bool isToken() const override { return Kind == KindTy::Token; }
326   bool isReg() const override { return Kind == KindTy::Register; }
327   bool isV0Reg() const {
328     return Kind == KindTy::Register && Reg.RegNum == RISCV::V0;
329   }
330   bool isImm() const override { return Kind == KindTy::Immediate; }
331   bool isMem() const override { return false; }
332   bool isSystemRegister() const { return Kind == KindTy::SystemRegister; }
333   bool isVType() const { return Kind == KindTy::VType; }
334 
335   bool isGPR() const {
336     return Kind == KindTy::Register &&
337            RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(Reg.RegNum);
338   }
339 
340   static bool evaluateConstantImm(const MCExpr *Expr, int64_t &Imm,
341                                   RISCVMCExpr::VariantKind &VK) {
342     if (auto *RE = dyn_cast<RISCVMCExpr>(Expr)) {
343       VK = RE->getKind();
344       return RE->evaluateAsConstant(Imm);
345     }
346 
347     if (auto CE = dyn_cast<MCConstantExpr>(Expr)) {
348       VK = RISCVMCExpr::VK_RISCV_None;
349       Imm = CE->getValue();
350       return true;
351     }
352 
353     return false;
354   }
355 
356   // True if operand is a symbol with no modifiers, or a constant with no
357   // modifiers and isShiftedInt<N-1, 1>(Op).
358   template <int N> bool isBareSimmNLsb0() const {
359     int64_t Imm;
360     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
361     if (!isImm())
362       return false;
363     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
364     bool IsValid;
365     if (!IsConstantImm)
366       IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
367     else
368       IsValid = isShiftedInt<N - 1, 1>(Imm);
369     return IsValid && VK == RISCVMCExpr::VK_RISCV_None;
370   }
371 
372   // Predicate methods for AsmOperands defined in RISCVInstrInfo.td
373 
374   bool isBareSymbol() const {
375     int64_t Imm;
376     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
377     // Must be of 'immediate' type but not a constant.
378     if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
379       return false;
380     return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
381            VK == RISCVMCExpr::VK_RISCV_None;
382   }
383 
384   bool isCallSymbol() const {
385     int64_t Imm;
386     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
387     // Must be of 'immediate' type but not a constant.
388     if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
389       return false;
390     return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
391            (VK == RISCVMCExpr::VK_RISCV_CALL ||
392             VK == RISCVMCExpr::VK_RISCV_CALL_PLT);
393   }
394 
395   bool isPseudoJumpSymbol() const {
396     int64_t Imm;
397     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
398     // Must be of 'immediate' type but not a constant.
399     if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
400       return false;
401     return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
402            VK == RISCVMCExpr::VK_RISCV_CALL;
403   }
404 
405   bool isTPRelAddSymbol() const {
406     int64_t Imm;
407     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
408     // Must be of 'immediate' type but not a constant.
409     if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
410       return false;
411     return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
412            VK == RISCVMCExpr::VK_RISCV_TPREL_ADD;
413   }
414 
415   bool isCSRSystemRegister() const { return isSystemRegister(); }
416 
417   bool isVTypeI() const { return isVType(); }
418 
419   /// Return true if the operand is a valid for the fence instruction e.g.
420   /// ('iorw').
421   bool isFenceArg() const {
422     if (!isImm())
423       return false;
424     const MCExpr *Val = getImm();
425     auto *SVal = dyn_cast<MCSymbolRefExpr>(Val);
426     if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
427       return false;
428 
429     StringRef Str = SVal->getSymbol().getName();
430     // Letters must be unique, taken from 'iorw', and in ascending order. This
431     // holds as long as each individual character is one of 'iorw' and is
432     // greater than the previous character.
433     char Prev = '\0';
434     for (char c : Str) {
435       if (c != 'i' && c != 'o' && c != 'r' && c != 'w')
436         return false;
437       if (c <= Prev)
438         return false;
439       Prev = c;
440     }
441     return true;
442   }
443 
444   /// Return true if the operand is a valid floating point rounding mode.
445   bool isFRMArg() const {
446     if (!isImm())
447       return false;
448     const MCExpr *Val = getImm();
449     auto *SVal = dyn_cast<MCSymbolRefExpr>(Val);
450     if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
451       return false;
452 
453     StringRef Str = SVal->getSymbol().getName();
454 
455     return RISCVFPRndMode::stringToRoundingMode(Str) != RISCVFPRndMode::Invalid;
456   }
457 
458   bool isImmXLenLI() const {
459     int64_t Imm;
460     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
461     if (!isImm())
462       return false;
463     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
464     if (VK == RISCVMCExpr::VK_RISCV_LO || VK == RISCVMCExpr::VK_RISCV_PCREL_LO)
465       return true;
466     // Given only Imm, ensuring that the actually specified constant is either
467     // a signed or unsigned 64-bit number is unfortunately impossible.
468     return IsConstantImm && VK == RISCVMCExpr::VK_RISCV_None &&
469            (isRV64() || (isInt<32>(Imm) || isUInt<32>(Imm)));
470   }
471 
472   bool isUImmLog2XLen() const {
473     int64_t Imm;
474     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
475     if (!isImm())
476       return false;
477     if (!evaluateConstantImm(getImm(), Imm, VK) ||
478         VK != RISCVMCExpr::VK_RISCV_None)
479       return false;
480     return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
481   }
482 
483   bool isUImmLog2XLenNonZero() const {
484     int64_t Imm;
485     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
486     if (!isImm())
487       return false;
488     if (!evaluateConstantImm(getImm(), Imm, VK) ||
489         VK != RISCVMCExpr::VK_RISCV_None)
490       return false;
491     if (Imm == 0)
492       return false;
493     return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
494   }
495 
496   bool isUImmLog2XLenHalf() const {
497     int64_t Imm;
498     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
499     if (!isImm())
500       return false;
501     if (!evaluateConstantImm(getImm(), Imm, VK) ||
502         VK != RISCVMCExpr::VK_RISCV_None)
503       return false;
504     return (isRV64() && isUInt<5>(Imm)) || isUInt<4>(Imm);
505   }
506 
507   bool isUImm5() const {
508     int64_t Imm;
509     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
510     if (!isImm())
511       return false;
512     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
513     return IsConstantImm && isUInt<5>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
514   }
515 
516   bool isSImm5() const {
517     if (!isImm())
518       return false;
519     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
520     int64_t Imm;
521     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
522     return IsConstantImm && isInt<5>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
523   }
524 
525   bool isSImm6() const {
526     if (!isImm())
527       return false;
528     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
529     int64_t Imm;
530     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
531     return IsConstantImm && isInt<6>(Imm) &&
532            VK == RISCVMCExpr::VK_RISCV_None;
533   }
534 
535   bool isSImm6NonZero() const {
536     if (!isImm())
537       return false;
538     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
539     int64_t Imm;
540     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
541     return IsConstantImm && isInt<6>(Imm) && (Imm != 0) &&
542            VK == RISCVMCExpr::VK_RISCV_None;
543   }
544 
545   bool isCLUIImm() const {
546     if (!isImm())
547       return false;
548     int64_t Imm;
549     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
550     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
551     return IsConstantImm && (Imm != 0) &&
552            (isUInt<5>(Imm) || (Imm >= 0xfffe0 && Imm <= 0xfffff)) &&
553            VK == RISCVMCExpr::VK_RISCV_None;
554   }
555 
556   bool isUImm7Lsb00() const {
557     if (!isImm())
558       return false;
559     int64_t Imm;
560     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
561     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
562     return IsConstantImm && isShiftedUInt<5, 2>(Imm) &&
563            VK == RISCVMCExpr::VK_RISCV_None;
564   }
565 
566   bool isUImm8Lsb00() const {
567     if (!isImm())
568       return false;
569     int64_t Imm;
570     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
571     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
572     return IsConstantImm && isShiftedUInt<6, 2>(Imm) &&
573            VK == RISCVMCExpr::VK_RISCV_None;
574   }
575 
576   bool isUImm8Lsb000() const {
577     if (!isImm())
578       return false;
579     int64_t Imm;
580     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
581     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
582     return IsConstantImm && isShiftedUInt<5, 3>(Imm) &&
583            VK == RISCVMCExpr::VK_RISCV_None;
584   }
585 
586   bool isSImm9Lsb0() const { return isBareSimmNLsb0<9>(); }
587 
588   bool isUImm9Lsb000() const {
589     if (!isImm())
590       return false;
591     int64_t Imm;
592     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
593     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
594     return IsConstantImm && isShiftedUInt<6, 3>(Imm) &&
595            VK == RISCVMCExpr::VK_RISCV_None;
596   }
597 
598   bool isUImm10Lsb00NonZero() const {
599     if (!isImm())
600       return false;
601     int64_t Imm;
602     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
603     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
604     return IsConstantImm && isShiftedUInt<8, 2>(Imm) && (Imm != 0) &&
605            VK == RISCVMCExpr::VK_RISCV_None;
606   }
607 
608   bool isSImm12() const {
609     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
610     int64_t Imm;
611     bool IsValid;
612     if (!isImm())
613       return false;
614     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
615     if (!IsConstantImm)
616       IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
617     else
618       IsValid = isInt<12>(Imm);
619     return IsValid && ((IsConstantImm && VK == RISCVMCExpr::VK_RISCV_None) ||
620                        VK == RISCVMCExpr::VK_RISCV_LO ||
621                        VK == RISCVMCExpr::VK_RISCV_PCREL_LO ||
622                        VK == RISCVMCExpr::VK_RISCV_TPREL_LO);
623   }
624 
625   bool isSImm12Lsb0() const { return isBareSimmNLsb0<12>(); }
626 
627   bool isSImm13Lsb0() const { return isBareSimmNLsb0<13>(); }
628 
629   bool isSImm10Lsb0000NonZero() const {
630     if (!isImm())
631       return false;
632     int64_t Imm;
633     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
634     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
635     return IsConstantImm && (Imm != 0) && isShiftedInt<6, 4>(Imm) &&
636            VK == RISCVMCExpr::VK_RISCV_None;
637   }
638 
639   bool isUImm20LUI() const {
640     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
641     int64_t Imm;
642     bool IsValid;
643     if (!isImm())
644       return false;
645     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
646     if (!IsConstantImm) {
647       IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
648       return IsValid && (VK == RISCVMCExpr::VK_RISCV_HI ||
649                          VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
650     } else {
651       return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
652                                  VK == RISCVMCExpr::VK_RISCV_HI ||
653                                  VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
654     }
655   }
656 
657   bool isUImm20AUIPC() const {
658     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
659     int64_t Imm;
660     bool IsValid;
661     if (!isImm())
662       return false;
663     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
664     if (!IsConstantImm) {
665       IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
666       return IsValid && (VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
667                          VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
668                          VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
669                          VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI);
670     } else {
671       return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
672                                  VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
673                                  VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
674                                  VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
675                                  VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI);
676     }
677   }
678 
679   bool isSImm21Lsb0JAL() const { return isBareSimmNLsb0<21>(); }
680 
681   bool isImmZero() const {
682     if (!isImm())
683       return false;
684     int64_t Imm;
685     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
686     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
687     return IsConstantImm && (Imm == 0) && VK == RISCVMCExpr::VK_RISCV_None;
688   }
689 
690   bool isSImm5Plus1() const {
691     if (!isImm())
692       return false;
693     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
694     int64_t Imm;
695     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
696     return IsConstantImm && isInt<5>(Imm - 1) &&
697            VK == RISCVMCExpr::VK_RISCV_None;
698   }
699 
700   /// getStartLoc - Gets location of the first token of this operand
701   SMLoc getStartLoc() const override { return StartLoc; }
702   /// getEndLoc - Gets location of the last token of this operand
703   SMLoc getEndLoc() const override { return EndLoc; }
704   /// True if this operand is for an RV64 instruction
705   bool isRV64() const { return IsRV64; }
706 
707   unsigned getReg() const override {
708     assert(Kind == KindTy::Register && "Invalid type access!");
709     return Reg.RegNum.id();
710   }
711 
712   StringRef getSysReg() const {
713     assert(Kind == KindTy::SystemRegister && "Invalid type access!");
714     return StringRef(SysReg.Data, SysReg.Length);
715   }
716 
717   const MCExpr *getImm() const {
718     assert(Kind == KindTy::Immediate && "Invalid type access!");
719     return Imm.Val;
720   }
721 
722   StringRef getToken() const {
723     assert(Kind == KindTy::Token && "Invalid type access!");
724     return Tok;
725   }
726 
727   unsigned getVType() const {
728     assert(Kind == KindTy::VType && "Invalid type access!");
729     return VType.Val;
730   }
731 
732   void print(raw_ostream &OS) const override {
733     auto RegName = [](unsigned Reg) {
734       if (Reg)
735         return RISCVInstPrinter::getRegisterName(Reg);
736       else
737         return "noreg";
738     };
739 
740     switch (Kind) {
741     case KindTy::Immediate:
742       OS << *getImm();
743       break;
744     case KindTy::Register:
745       OS << "<register " << RegName(getReg()) << ">";
746       break;
747     case KindTy::Token:
748       OS << "'" << getToken() << "'";
749       break;
750     case KindTy::SystemRegister:
751       OS << "<sysreg: " << getSysReg() << '>';
752       break;
753     case KindTy::VType:
754       OS << "<vtype: ";
755       RISCVVType::printVType(getVType(), OS);
756       OS << '>';
757       break;
758     }
759   }
760 
761   static std::unique_ptr<RISCVOperand> createToken(StringRef Str, SMLoc S,
762                                                    bool IsRV64) {
763     auto Op = std::make_unique<RISCVOperand>(KindTy::Token);
764     Op->Tok = Str;
765     Op->StartLoc = S;
766     Op->EndLoc = S;
767     Op->IsRV64 = IsRV64;
768     return Op;
769   }
770 
771   static std::unique_ptr<RISCVOperand> createReg(unsigned RegNo, SMLoc S,
772                                                  SMLoc E, bool IsRV64) {
773     auto Op = std::make_unique<RISCVOperand>(KindTy::Register);
774     Op->Reg.RegNum = RegNo;
775     Op->StartLoc = S;
776     Op->EndLoc = E;
777     Op->IsRV64 = IsRV64;
778     return Op;
779   }
780 
781   static std::unique_ptr<RISCVOperand> createImm(const MCExpr *Val, SMLoc S,
782                                                  SMLoc E, bool IsRV64) {
783     auto Op = std::make_unique<RISCVOperand>(KindTy::Immediate);
784     Op->Imm.Val = Val;
785     Op->StartLoc = S;
786     Op->EndLoc = E;
787     Op->IsRV64 = IsRV64;
788     return Op;
789   }
790 
791   static std::unique_ptr<RISCVOperand>
792   createSysReg(StringRef Str, SMLoc S, unsigned Encoding, bool IsRV64) {
793     auto Op = std::make_unique<RISCVOperand>(KindTy::SystemRegister);
794     Op->SysReg.Data = Str.data();
795     Op->SysReg.Length = Str.size();
796     Op->SysReg.Encoding = Encoding;
797     Op->StartLoc = S;
798     Op->IsRV64 = IsRV64;
799     return Op;
800   }
801 
802   static std::unique_ptr<RISCVOperand> createVType(unsigned VTypeI, SMLoc S,
803                                                    bool IsRV64) {
804     auto Op = std::make_unique<RISCVOperand>(KindTy::VType);
805     Op->VType.Val = VTypeI;
806     Op->StartLoc = S;
807     Op->IsRV64 = IsRV64;
808     return Op;
809   }
810 
811   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
812     assert(Expr && "Expr shouldn't be null!");
813     int64_t Imm = 0;
814     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
815     bool IsConstant = evaluateConstantImm(Expr, Imm, VK);
816 
817     if (IsConstant)
818       Inst.addOperand(MCOperand::createImm(Imm));
819     else
820       Inst.addOperand(MCOperand::createExpr(Expr));
821   }
822 
823   // Used by the TableGen Code
824   void addRegOperands(MCInst &Inst, unsigned N) const {
825     assert(N == 1 && "Invalid number of operands!");
826     Inst.addOperand(MCOperand::createReg(getReg()));
827   }
828 
829   void addImmOperands(MCInst &Inst, unsigned N) const {
830     assert(N == 1 && "Invalid number of operands!");
831     addExpr(Inst, getImm());
832   }
833 
834   void addFenceArgOperands(MCInst &Inst, unsigned N) const {
835     assert(N == 1 && "Invalid number of operands!");
836     // isFenceArg has validated the operand, meaning this cast is safe
837     auto SE = cast<MCSymbolRefExpr>(getImm());
838 
839     unsigned Imm = 0;
840     for (char c : SE->getSymbol().getName()) {
841       switch (c) {
842       default:
843         llvm_unreachable("FenceArg must contain only [iorw]");
844       case 'i': Imm |= RISCVFenceField::I; break;
845       case 'o': Imm |= RISCVFenceField::O; break;
846       case 'r': Imm |= RISCVFenceField::R; break;
847       case 'w': Imm |= RISCVFenceField::W; break;
848       }
849     }
850     Inst.addOperand(MCOperand::createImm(Imm));
851   }
852 
853   void addCSRSystemRegisterOperands(MCInst &Inst, unsigned N) const {
854     assert(N == 1 && "Invalid number of operands!");
855     Inst.addOperand(MCOperand::createImm(SysReg.Encoding));
856   }
857 
858   void addVTypeIOperands(MCInst &Inst, unsigned N) const {
859     assert(N == 1 && "Invalid number of operands!");
860     Inst.addOperand(MCOperand::createImm(getVType()));
861   }
862 
863   // Returns the rounding mode represented by this RISCVOperand. Should only
864   // be called after checking isFRMArg.
865   RISCVFPRndMode::RoundingMode getRoundingMode() const {
866     // isFRMArg has validated the operand, meaning this cast is safe.
867     auto SE = cast<MCSymbolRefExpr>(getImm());
868     RISCVFPRndMode::RoundingMode FRM =
869         RISCVFPRndMode::stringToRoundingMode(SE->getSymbol().getName());
870     assert(FRM != RISCVFPRndMode::Invalid && "Invalid rounding mode");
871     return FRM;
872   }
873 
874   void addFRMArgOperands(MCInst &Inst, unsigned N) const {
875     assert(N == 1 && "Invalid number of operands!");
876     Inst.addOperand(MCOperand::createImm(getRoundingMode()));
877   }
878 };
879 } // end anonymous namespace.
880 
881 #define GET_REGISTER_MATCHER
882 #define GET_SUBTARGET_FEATURE_NAME
883 #define GET_MATCHER_IMPLEMENTATION
884 #define GET_MNEMONIC_SPELL_CHECKER
885 #include "RISCVGenAsmMatcher.inc"
886 
887 static MCRegister convertFPR64ToFPR16(MCRegister Reg) {
888   assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
889   return Reg - RISCV::F0_D + RISCV::F0_H;
890 }
891 
892 static MCRegister convertFPR64ToFPR32(MCRegister Reg) {
893   assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
894   return Reg - RISCV::F0_D + RISCV::F0_F;
895 }
896 
897 unsigned RISCVAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
898                                                     unsigned Kind) {
899   RISCVOperand &Op = static_cast<RISCVOperand &>(AsmOp);
900   if (!Op.isReg())
901     return Match_InvalidOperand;
902 
903   MCRegister Reg = Op.getReg();
904   bool IsRegFPR64 =
905       RISCVMCRegisterClasses[RISCV::FPR64RegClassID].contains(Reg);
906   bool IsRegFPR64C =
907       RISCVMCRegisterClasses[RISCV::FPR64CRegClassID].contains(Reg);
908 
909   // As the parser couldn't differentiate an FPR32 from an FPR64, coerce the
910   // register from FPR64 to FPR32 or FPR64C to FPR32C if necessary.
911   if ((IsRegFPR64 && Kind == MCK_FPR32) ||
912       (IsRegFPR64C && Kind == MCK_FPR32C)) {
913     Op.Reg.RegNum = convertFPR64ToFPR32(Reg);
914     return Match_Success;
915   }
916   // As the parser couldn't differentiate an FPR16 from an FPR64, coerce the
917   // register from FPR64 to FPR16 if necessary.
918   if (IsRegFPR64 && Kind == MCK_FPR16) {
919     Op.Reg.RegNum = convertFPR64ToFPR16(Reg);
920     return Match_Success;
921   }
922   return Match_InvalidOperand;
923 }
924 
925 bool RISCVAsmParser::generateImmOutOfRangeError(
926     OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper,
927     Twine Msg = "immediate must be an integer in the range") {
928   SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
929   return Error(ErrorLoc, Msg + " [" + Twine(Lower) + ", " + Twine(Upper) + "]");
930 }
931 
932 static std::string RISCVMnemonicSpellCheck(StringRef S,
933                                           const FeatureBitset &FBS,
934                                           unsigned VariantID = 0);
935 
936 bool RISCVAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
937                                              OperandVector &Operands,
938                                              MCStreamer &Out,
939                                              uint64_t &ErrorInfo,
940                                              bool MatchingInlineAsm) {
941   MCInst Inst;
942   FeatureBitset MissingFeatures;
943 
944   auto Result =
945     MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
946                          MatchingInlineAsm);
947   switch (Result) {
948   default:
949     break;
950   case Match_Success:
951     if (validateInstruction(Inst, Operands))
952       return true;
953     return processInstruction(Inst, IDLoc, Operands, Out);
954   case Match_MissingFeature: {
955     assert(MissingFeatures.any() && "Unknown missing features!");
956     bool FirstFeature = true;
957     std::string Msg = "instruction requires the following:";
958     for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
959       if (MissingFeatures[i]) {
960         Msg += FirstFeature ? " " : ", ";
961         Msg += getSubtargetFeatureName(i);
962         FirstFeature = false;
963       }
964     }
965     return Error(IDLoc, Msg);
966   }
967   case Match_MnemonicFail: {
968     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
969     std::string Suggestion = RISCVMnemonicSpellCheck(
970       ((RISCVOperand &)*Operands[0]).getToken(), FBS);
971     return Error(IDLoc, "unrecognized instruction mnemonic" + Suggestion);
972   }
973   case Match_InvalidOperand: {
974     SMLoc ErrorLoc = IDLoc;
975     if (ErrorInfo != ~0U) {
976       if (ErrorInfo >= Operands.size())
977         return Error(ErrorLoc, "too few operands for instruction");
978 
979       ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
980       if (ErrorLoc == SMLoc())
981         ErrorLoc = IDLoc;
982     }
983     return Error(ErrorLoc, "invalid operand for instruction");
984   }
985   }
986 
987   // Handle the case when the error message is of specific type
988   // other than the generic Match_InvalidOperand, and the
989   // corresponding operand is missing.
990   if (Result > FIRST_TARGET_MATCH_RESULT_TY) {
991     SMLoc ErrorLoc = IDLoc;
992     if (ErrorInfo != ~0U && ErrorInfo >= Operands.size())
993         return Error(ErrorLoc, "too few operands for instruction");
994   }
995 
996   switch(Result) {
997   default:
998     break;
999   case Match_InvalidImmXLenLI:
1000     if (isRV64()) {
1001       SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1002       return Error(ErrorLoc, "operand must be a constant 64-bit integer");
1003     }
1004     return generateImmOutOfRangeError(Operands, ErrorInfo,
1005                                       std::numeric_limits<int32_t>::min(),
1006                                       std::numeric_limits<uint32_t>::max());
1007   case Match_InvalidImmZero: {
1008     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1009     return Error(ErrorLoc, "immediate must be zero");
1010   }
1011   case Match_InvalidUImmLog2XLen:
1012     if (isRV64())
1013       return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
1014     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
1015   case Match_InvalidUImmLog2XLenNonZero:
1016     if (isRV64())
1017       return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 6) - 1);
1018     return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 5) - 1);
1019   case Match_InvalidUImmLog2XLenHalf:
1020     if (isRV64())
1021       return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
1022     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 4) - 1);
1023   case Match_InvalidUImm5:
1024     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
1025   case Match_InvalidSImm5:
1026     return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 4),
1027                                       (1 << 4) - 1);
1028   case Match_InvalidSImm6:
1029     return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 5),
1030                                       (1 << 5) - 1);
1031   case Match_InvalidSImm6NonZero:
1032     return generateImmOutOfRangeError(
1033         Operands, ErrorInfo, -(1 << 5), (1 << 5) - 1,
1034         "immediate must be non-zero in the range");
1035   case Match_InvalidCLUIImm:
1036     return generateImmOutOfRangeError(
1037         Operands, ErrorInfo, 1, (1 << 5) - 1,
1038         "immediate must be in [0xfffe0, 0xfffff] or");
1039   case Match_InvalidUImm7Lsb00:
1040     return generateImmOutOfRangeError(
1041         Operands, ErrorInfo, 0, (1 << 7) - 4,
1042         "immediate must be a multiple of 4 bytes in the range");
1043   case Match_InvalidUImm8Lsb00:
1044     return generateImmOutOfRangeError(
1045         Operands, ErrorInfo, 0, (1 << 8) - 4,
1046         "immediate must be a multiple of 4 bytes in the range");
1047   case Match_InvalidUImm8Lsb000:
1048     return generateImmOutOfRangeError(
1049         Operands, ErrorInfo, 0, (1 << 8) - 8,
1050         "immediate must be a multiple of 8 bytes in the range");
1051   case Match_InvalidSImm9Lsb0:
1052     return generateImmOutOfRangeError(
1053         Operands, ErrorInfo, -(1 << 8), (1 << 8) - 2,
1054         "immediate must be a multiple of 2 bytes in the range");
1055   case Match_InvalidUImm9Lsb000:
1056     return generateImmOutOfRangeError(
1057         Operands, ErrorInfo, 0, (1 << 9) - 8,
1058         "immediate must be a multiple of 8 bytes in the range");
1059   case Match_InvalidUImm10Lsb00NonZero:
1060     return generateImmOutOfRangeError(
1061         Operands, ErrorInfo, 4, (1 << 10) - 4,
1062         "immediate must be a multiple of 4 bytes in the range");
1063   case Match_InvalidSImm10Lsb0000NonZero:
1064     return generateImmOutOfRangeError(
1065         Operands, ErrorInfo, -(1 << 9), (1 << 9) - 16,
1066         "immediate must be a multiple of 16 bytes and non-zero in the range");
1067   case Match_InvalidSImm12:
1068     return generateImmOutOfRangeError(
1069         Operands, ErrorInfo, -(1 << 11), (1 << 11) - 1,
1070         "operand must be a symbol with %lo/%pcrel_lo/%tprel_lo modifier or an "
1071         "integer in the range");
1072   case Match_InvalidSImm12Lsb0:
1073     return generateImmOutOfRangeError(
1074         Operands, ErrorInfo, -(1 << 11), (1 << 11) - 2,
1075         "immediate must be a multiple of 2 bytes in the range");
1076   case Match_InvalidSImm13Lsb0:
1077     return generateImmOutOfRangeError(
1078         Operands, ErrorInfo, -(1 << 12), (1 << 12) - 2,
1079         "immediate must be a multiple of 2 bytes in the range");
1080   case Match_InvalidUImm20LUI:
1081     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 20) - 1,
1082                                       "operand must be a symbol with "
1083                                       "%hi/%tprel_hi modifier or an integer in "
1084                                       "the range");
1085   case Match_InvalidUImm20AUIPC:
1086     return generateImmOutOfRangeError(
1087         Operands, ErrorInfo, 0, (1 << 20) - 1,
1088         "operand must be a symbol with a "
1089         "%pcrel_hi/%got_pcrel_hi/%tls_ie_pcrel_hi/%tls_gd_pcrel_hi modifier or "
1090         "an integer in the range");
1091   case Match_InvalidSImm21Lsb0JAL:
1092     return generateImmOutOfRangeError(
1093         Operands, ErrorInfo, -(1 << 20), (1 << 20) - 2,
1094         "immediate must be a multiple of 2 bytes in the range");
1095   case Match_InvalidCSRSystemRegister: {
1096     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 12) - 1,
1097                                       "operand must be a valid system register "
1098                                       "name or an integer in the range");
1099   }
1100   case Match_InvalidFenceArg: {
1101     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1102     return Error(
1103         ErrorLoc,
1104         "operand must be formed of letters selected in-order from 'iorw'");
1105   }
1106   case Match_InvalidFRMArg: {
1107     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1108     return Error(
1109         ErrorLoc,
1110         "operand must be a valid floating point rounding mode mnemonic");
1111   }
1112   case Match_InvalidBareSymbol: {
1113     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1114     return Error(ErrorLoc, "operand must be a bare symbol name");
1115   }
1116   case Match_InvalidPseudoJumpSymbol: {
1117     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1118     return Error(ErrorLoc, "operand must be a valid jump target");
1119   }
1120   case Match_InvalidCallSymbol: {
1121     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1122     return Error(ErrorLoc, "operand must be a bare symbol name");
1123   }
1124   case Match_InvalidTPRelAddSymbol: {
1125     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1126     return Error(ErrorLoc, "operand must be a symbol with %tprel_add modifier");
1127   }
1128   case Match_InvalidVTypeI: {
1129     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1130     return Error(
1131         ErrorLoc,
1132         "operand must be "
1133         "e[8|16|32|64|128|256|512|1024],m[1|2|4|8|f2|f4|f8],[ta|tu],[ma|mu]");
1134   }
1135   case Match_InvalidVMaskRegister: {
1136     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1137     return Error(ErrorLoc, "operand must be v0.t");
1138   }
1139   case Match_InvalidSImm5Plus1: {
1140     return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 4) + 1,
1141                                       (1 << 4),
1142                                       "immediate must be in the range");
1143   }
1144   }
1145 
1146   llvm_unreachable("Unknown match type detected!");
1147 }
1148 
1149 // Attempts to match Name as a register (either using the default name or
1150 // alternative ABI names), setting RegNo to the matching register. Upon
1151 // failure, returns true and sets RegNo to 0. If IsRV32E then registers
1152 // x16-x31 will be rejected.
1153 static bool matchRegisterNameHelper(bool IsRV32E, MCRegister &RegNo,
1154                                     StringRef Name) {
1155   RegNo = MatchRegisterName(Name);
1156   // The 16-/32- and 64-bit FPRs have the same asm name. Check that the initial
1157   // match always matches the 64-bit variant, and not the 16/32-bit one.
1158   assert(!(RegNo >= RISCV::F0_H && RegNo <= RISCV::F31_H));
1159   assert(!(RegNo >= RISCV::F0_F && RegNo <= RISCV::F31_F));
1160   // The default FPR register class is based on the tablegen enum ordering.
1161   static_assert(RISCV::F0_D < RISCV::F0_H, "FPR matching must be updated");
1162   static_assert(RISCV::F0_D < RISCV::F0_F, "FPR matching must be updated");
1163   if (RegNo == RISCV::NoRegister)
1164     RegNo = MatchRegisterAltName(Name);
1165   if (IsRV32E && RegNo >= RISCV::X16 && RegNo <= RISCV::X31)
1166     RegNo = RISCV::NoRegister;
1167   return RegNo == RISCV::NoRegister;
1168 }
1169 
1170 bool RISCVAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
1171                                    SMLoc &EndLoc) {
1172   if (tryParseRegister(RegNo, StartLoc, EndLoc) != MatchOperand_Success)
1173     return Error(StartLoc, "invalid register name");
1174   return false;
1175 }
1176 
1177 OperandMatchResultTy RISCVAsmParser::tryParseRegister(unsigned &RegNo,
1178                                                       SMLoc &StartLoc,
1179                                                       SMLoc &EndLoc) {
1180   const AsmToken &Tok = getParser().getTok();
1181   StartLoc = Tok.getLoc();
1182   EndLoc = Tok.getEndLoc();
1183   RegNo = 0;
1184   StringRef Name = getLexer().getTok().getIdentifier();
1185 
1186   if (matchRegisterNameHelper(isRV32E(), (MCRegister &)RegNo, Name))
1187     return MatchOperand_NoMatch;
1188 
1189   getParser().Lex(); // Eat identifier token.
1190   return MatchOperand_Success;
1191 }
1192 
1193 OperandMatchResultTy RISCVAsmParser::parseRegister(OperandVector &Operands,
1194                                                    bool AllowParens) {
1195   SMLoc FirstS = getLoc();
1196   bool HadParens = false;
1197   AsmToken LParen;
1198 
1199   // If this is an LParen and a parenthesised register name is allowed, parse it
1200   // atomically.
1201   if (AllowParens && getLexer().is(AsmToken::LParen)) {
1202     AsmToken Buf[2];
1203     size_t ReadCount = getLexer().peekTokens(Buf);
1204     if (ReadCount == 2 && Buf[1].getKind() == AsmToken::RParen) {
1205       HadParens = true;
1206       LParen = getParser().getTok();
1207       getParser().Lex(); // Eat '('
1208     }
1209   }
1210 
1211   switch (getLexer().getKind()) {
1212   default:
1213     if (HadParens)
1214       getLexer().UnLex(LParen);
1215     return MatchOperand_NoMatch;
1216   case AsmToken::Identifier:
1217     StringRef Name = getLexer().getTok().getIdentifier();
1218     MCRegister RegNo;
1219     matchRegisterNameHelper(isRV32E(), RegNo, Name);
1220 
1221     if (RegNo == RISCV::NoRegister) {
1222       if (HadParens)
1223         getLexer().UnLex(LParen);
1224       return MatchOperand_NoMatch;
1225     }
1226     if (HadParens)
1227       Operands.push_back(RISCVOperand::createToken("(", FirstS, isRV64()));
1228     SMLoc S = getLoc();
1229     SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1230     getLexer().Lex();
1231     Operands.push_back(RISCVOperand::createReg(RegNo, S, E, isRV64()));
1232   }
1233 
1234   if (HadParens) {
1235     getParser().Lex(); // Eat ')'
1236     Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));
1237   }
1238 
1239   return MatchOperand_Success;
1240 }
1241 
1242 OperandMatchResultTy
1243 RISCVAsmParser::parseCSRSystemRegister(OperandVector &Operands) {
1244   SMLoc S = getLoc();
1245   const MCExpr *Res;
1246 
1247   switch (getLexer().getKind()) {
1248   default:
1249     return MatchOperand_NoMatch;
1250   case AsmToken::LParen:
1251   case AsmToken::Minus:
1252   case AsmToken::Plus:
1253   case AsmToken::Exclaim:
1254   case AsmToken::Tilde:
1255   case AsmToken::Integer:
1256   case AsmToken::String: {
1257     if (getParser().parseExpression(Res))
1258       return MatchOperand_ParseFail;
1259 
1260     auto *CE = dyn_cast<MCConstantExpr>(Res);
1261     if (CE) {
1262       int64_t Imm = CE->getValue();
1263       if (isUInt<12>(Imm)) {
1264         auto SysReg = RISCVSysReg::lookupSysRegByEncoding(Imm);
1265         // Accept an immediate representing a named or un-named Sys Reg
1266         // if the range is valid, regardless of the required features.
1267         Operands.push_back(RISCVOperand::createSysReg(
1268             SysReg ? SysReg->Name : "", S, Imm, isRV64()));
1269         return MatchOperand_Success;
1270       }
1271     }
1272 
1273     Twine Msg = "immediate must be an integer in the range";
1274     Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
1275     return MatchOperand_ParseFail;
1276   }
1277   case AsmToken::Identifier: {
1278     StringRef Identifier;
1279     if (getParser().parseIdentifier(Identifier))
1280       return MatchOperand_ParseFail;
1281 
1282     auto SysReg = RISCVSysReg::lookupSysRegByName(Identifier);
1283     if (!SysReg)
1284       SysReg = RISCVSysReg::lookupSysRegByAltName(Identifier);
1285     // Accept a named Sys Reg if the required features are present.
1286     if (SysReg) {
1287       if (!SysReg->haveRequiredFeatures(getSTI().getFeatureBits())) {
1288         Error(S, "system register use requires an option to be enabled");
1289         return MatchOperand_ParseFail;
1290       }
1291       Operands.push_back(RISCVOperand::createSysReg(
1292           Identifier, S, SysReg->Encoding, isRV64()));
1293       return MatchOperand_Success;
1294     }
1295 
1296     Twine Msg = "operand must be a valid system register name "
1297                 "or an integer in the range";
1298     Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
1299     return MatchOperand_ParseFail;
1300   }
1301   case AsmToken::Percent: {
1302     // Discard operand with modifier.
1303     Twine Msg = "immediate must be an integer in the range";
1304     Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
1305     return MatchOperand_ParseFail;
1306   }
1307   }
1308 
1309   return MatchOperand_NoMatch;
1310 }
1311 
1312 OperandMatchResultTy RISCVAsmParser::parseImmediate(OperandVector &Operands) {
1313   SMLoc S = getLoc();
1314   SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1315   const MCExpr *Res;
1316 
1317   switch (getLexer().getKind()) {
1318   default:
1319     return MatchOperand_NoMatch;
1320   case AsmToken::LParen:
1321   case AsmToken::Dot:
1322   case AsmToken::Minus:
1323   case AsmToken::Plus:
1324   case AsmToken::Exclaim:
1325   case AsmToken::Tilde:
1326   case AsmToken::Integer:
1327   case AsmToken::String:
1328   case AsmToken::Identifier:
1329     if (getParser().parseExpression(Res))
1330       return MatchOperand_ParseFail;
1331     break;
1332   case AsmToken::Percent:
1333     return parseOperandWithModifier(Operands);
1334   }
1335 
1336   Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1337   return MatchOperand_Success;
1338 }
1339 
1340 OperandMatchResultTy
1341 RISCVAsmParser::parseOperandWithModifier(OperandVector &Operands) {
1342   SMLoc S = getLoc();
1343   SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1344 
1345   if (getLexer().getKind() != AsmToken::Percent) {
1346     Error(getLoc(), "expected '%' for operand modifier");
1347     return MatchOperand_ParseFail;
1348   }
1349 
1350   getParser().Lex(); // Eat '%'
1351 
1352   if (getLexer().getKind() != AsmToken::Identifier) {
1353     Error(getLoc(), "expected valid identifier for operand modifier");
1354     return MatchOperand_ParseFail;
1355   }
1356   StringRef Identifier = getParser().getTok().getIdentifier();
1357   RISCVMCExpr::VariantKind VK = RISCVMCExpr::getVariantKindForName(Identifier);
1358   if (VK == RISCVMCExpr::VK_RISCV_Invalid) {
1359     Error(getLoc(), "unrecognized operand modifier");
1360     return MatchOperand_ParseFail;
1361   }
1362 
1363   getParser().Lex(); // Eat the identifier
1364   if (getLexer().getKind() != AsmToken::LParen) {
1365     Error(getLoc(), "expected '('");
1366     return MatchOperand_ParseFail;
1367   }
1368   getParser().Lex(); // Eat '('
1369 
1370   const MCExpr *SubExpr;
1371   if (getParser().parseParenExpression(SubExpr, E)) {
1372     return MatchOperand_ParseFail;
1373   }
1374 
1375   const MCExpr *ModExpr = RISCVMCExpr::create(SubExpr, VK, getContext());
1376   Operands.push_back(RISCVOperand::createImm(ModExpr, S, E, isRV64()));
1377   return MatchOperand_Success;
1378 }
1379 
1380 OperandMatchResultTy RISCVAsmParser::parseBareSymbol(OperandVector &Operands) {
1381   SMLoc S = getLoc();
1382   SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1383   const MCExpr *Res;
1384 
1385   if (getLexer().getKind() != AsmToken::Identifier)
1386     return MatchOperand_NoMatch;
1387 
1388   StringRef Identifier;
1389   AsmToken Tok = getLexer().getTok();
1390 
1391   if (getParser().parseIdentifier(Identifier))
1392     return MatchOperand_ParseFail;
1393 
1394   if (Identifier.consume_back("@plt")) {
1395     Error(getLoc(), "'@plt' operand not valid for instruction");
1396     return MatchOperand_ParseFail;
1397   }
1398 
1399   MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
1400 
1401   if (Sym->isVariable()) {
1402     const MCExpr *V = Sym->getVariableValue(/*SetUsed=*/false);
1403     if (!isa<MCSymbolRefExpr>(V)) {
1404       getLexer().UnLex(Tok); // Put back if it's not a bare symbol.
1405       return MatchOperand_NoMatch;
1406     }
1407     Res = V;
1408   } else
1409     Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
1410 
1411   MCBinaryExpr::Opcode Opcode;
1412   switch (getLexer().getKind()) {
1413   default:
1414     Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1415     return MatchOperand_Success;
1416   case AsmToken::Plus:
1417     Opcode = MCBinaryExpr::Add;
1418     break;
1419   case AsmToken::Minus:
1420     Opcode = MCBinaryExpr::Sub;
1421     break;
1422   }
1423 
1424   const MCExpr *Expr;
1425   if (getParser().parseExpression(Expr))
1426     return MatchOperand_ParseFail;
1427   Res = MCBinaryExpr::create(Opcode, Res, Expr, getContext());
1428   Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1429   return MatchOperand_Success;
1430 }
1431 
1432 OperandMatchResultTy RISCVAsmParser::parseCallSymbol(OperandVector &Operands) {
1433   SMLoc S = getLoc();
1434   SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1435   const MCExpr *Res;
1436 
1437   if (getLexer().getKind() != AsmToken::Identifier)
1438     return MatchOperand_NoMatch;
1439 
1440   // Avoid parsing the register in `call rd, foo` as a call symbol.
1441   if (getLexer().peekTok().getKind() != AsmToken::EndOfStatement)
1442     return MatchOperand_NoMatch;
1443 
1444   StringRef Identifier;
1445   if (getParser().parseIdentifier(Identifier))
1446     return MatchOperand_ParseFail;
1447 
1448   RISCVMCExpr::VariantKind Kind = RISCVMCExpr::VK_RISCV_CALL;
1449   if (Identifier.consume_back("@plt"))
1450     Kind = RISCVMCExpr::VK_RISCV_CALL_PLT;
1451 
1452   MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
1453   Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
1454   Res = RISCVMCExpr::create(Res, Kind, getContext());
1455   Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1456   return MatchOperand_Success;
1457 }
1458 
1459 OperandMatchResultTy
1460 RISCVAsmParser::parsePseudoJumpSymbol(OperandVector &Operands) {
1461   SMLoc S = getLoc();
1462   SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1463   const MCExpr *Res;
1464 
1465   if (getParser().parseExpression(Res))
1466     return MatchOperand_ParseFail;
1467 
1468   if (Res->getKind() != MCExpr::ExprKind::SymbolRef ||
1469       cast<MCSymbolRefExpr>(Res)->getKind() ==
1470           MCSymbolRefExpr::VariantKind::VK_PLT) {
1471     Error(S, "operand must be a valid jump target");
1472     return MatchOperand_ParseFail;
1473   }
1474 
1475   Res = RISCVMCExpr::create(Res, RISCVMCExpr::VK_RISCV_CALL, getContext());
1476   Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1477   return MatchOperand_Success;
1478 }
1479 
1480 OperandMatchResultTy RISCVAsmParser::parseJALOffset(OperandVector &Operands) {
1481   // Parsing jal operands is fiddly due to the `jal foo` and `jal ra, foo`
1482   // both being acceptable forms. When parsing `jal ra, foo` this function
1483   // will be called for the `ra` register operand in an attempt to match the
1484   // single-operand alias. parseJALOffset must fail for this case. It would
1485   // seem logical to try parse the operand using parseImmediate and return
1486   // NoMatch if the next token is a comma (meaning we must be parsing a jal in
1487   // the second form rather than the first). We can't do this as there's no
1488   // way of rewinding the lexer state. Instead, return NoMatch if this operand
1489   // is an identifier and is followed by a comma.
1490   if (getLexer().is(AsmToken::Identifier) &&
1491       getLexer().peekTok().is(AsmToken::Comma))
1492     return MatchOperand_NoMatch;
1493 
1494   return parseImmediate(Operands);
1495 }
1496 
1497 OperandMatchResultTy RISCVAsmParser::parseVTypeI(OperandVector &Operands) {
1498   SMLoc S = getLoc();
1499   if (getLexer().getKind() != AsmToken::Identifier)
1500     return MatchOperand_NoMatch;
1501 
1502   // Parse "e8,m1,t[a|u],m[a|u]"
1503   StringRef Name = getLexer().getTok().getIdentifier();
1504   if (!Name.consume_front("e"))
1505     return MatchOperand_NoMatch;
1506   unsigned Sew;
1507   if (Name.getAsInteger(10, Sew))
1508     return MatchOperand_NoMatch;
1509   if (!RISCVVType::isValidSEW(Sew))
1510     return MatchOperand_NoMatch;
1511   getLexer().Lex();
1512 
1513   if (!getLexer().is(AsmToken::Comma))
1514     return MatchOperand_NoMatch;
1515   getLexer().Lex();
1516 
1517   Name = getLexer().getTok().getIdentifier();
1518   if (!Name.consume_front("m"))
1519     return MatchOperand_NoMatch;
1520   // "m" or "mf"
1521   bool Fractional = Name.consume_front("f");
1522   unsigned Lmul;
1523   if (Name.getAsInteger(10, Lmul))
1524     return MatchOperand_NoMatch;
1525   if (!RISCVVType::isValidLMUL(Lmul, Fractional))
1526     return MatchOperand_NoMatch;
1527   getLexer().Lex();
1528 
1529   if (!getLexer().is(AsmToken::Comma))
1530     return MatchOperand_NoMatch;
1531   getLexer().Lex();
1532 
1533   Name = getLexer().getTok().getIdentifier();
1534   // ta or tu
1535   bool TailAgnostic;
1536   if (Name == "ta")
1537     TailAgnostic = true;
1538   else if (Name == "tu")
1539     TailAgnostic = false;
1540   else
1541     return MatchOperand_NoMatch;
1542   getLexer().Lex();
1543 
1544   if (!getLexer().is(AsmToken::Comma))
1545     return MatchOperand_NoMatch;
1546   getLexer().Lex();
1547 
1548   Name = getLexer().getTok().getIdentifier();
1549   // ma or mu
1550   bool MaskAgnostic;
1551   if (Name == "ma")
1552     MaskAgnostic = true;
1553   else if (Name == "mu")
1554     MaskAgnostic = false;
1555   else
1556     return MatchOperand_NoMatch;
1557   getLexer().Lex();
1558 
1559   if (getLexer().getKind() != AsmToken::EndOfStatement)
1560     return MatchOperand_NoMatch;
1561 
1562   unsigned SewLog2 = Log2_32(Sew / 8);
1563   unsigned LmulLog2 = Log2_32(Lmul);
1564   RISCVVSEW VSEW = static_cast<RISCVVSEW>(SewLog2);
1565   RISCVVLMUL VLMUL =
1566       static_cast<RISCVVLMUL>(Fractional ? 8 - LmulLog2 : LmulLog2);
1567 
1568   unsigned VTypeI =
1569       RISCVVType::encodeVTYPE(VLMUL, VSEW, TailAgnostic, MaskAgnostic);
1570   Operands.push_back(RISCVOperand::createVType(VTypeI, S, isRV64()));
1571 
1572   return MatchOperand_Success;
1573 }
1574 
1575 OperandMatchResultTy RISCVAsmParser::parseMaskReg(OperandVector &Operands) {
1576   switch (getLexer().getKind()) {
1577   default:
1578     return MatchOperand_NoMatch;
1579   case AsmToken::Identifier:
1580     StringRef Name = getLexer().getTok().getIdentifier();
1581     if (!Name.consume_back(".t")) {
1582       Error(getLoc(), "expected '.t' suffix");
1583       return MatchOperand_ParseFail;
1584     }
1585     MCRegister RegNo;
1586     matchRegisterNameHelper(isRV32E(), RegNo, Name);
1587 
1588     if (RegNo == RISCV::NoRegister)
1589       return MatchOperand_NoMatch;
1590     if (RegNo != RISCV::V0)
1591       return MatchOperand_NoMatch;
1592     SMLoc S = getLoc();
1593     SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1594     getLexer().Lex();
1595     Operands.push_back(RISCVOperand::createReg(RegNo, S, E, isRV64()));
1596   }
1597 
1598   return MatchOperand_Success;
1599 }
1600 
1601 OperandMatchResultTy
1602 RISCVAsmParser::parseMemOpBaseReg(OperandVector &Operands) {
1603   if (getLexer().isNot(AsmToken::LParen)) {
1604     Error(getLoc(), "expected '('");
1605     return MatchOperand_ParseFail;
1606   }
1607 
1608   getParser().Lex(); // Eat '('
1609   Operands.push_back(RISCVOperand::createToken("(", getLoc(), isRV64()));
1610 
1611   if (parseRegister(Operands) != MatchOperand_Success) {
1612     Error(getLoc(), "expected register");
1613     return MatchOperand_ParseFail;
1614   }
1615 
1616   if (getLexer().isNot(AsmToken::RParen)) {
1617     Error(getLoc(), "expected ')'");
1618     return MatchOperand_ParseFail;
1619   }
1620 
1621   getParser().Lex(); // Eat ')'
1622   Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));
1623 
1624   return MatchOperand_Success;
1625 }
1626 
1627 OperandMatchResultTy RISCVAsmParser::parseAtomicMemOp(OperandVector &Operands) {
1628   // Atomic operations such as lr.w, sc.w, and amo*.w accept a "memory operand"
1629   // as one of their register operands, such as `(a0)`. This just denotes that
1630   // the register (in this case `a0`) contains a memory address.
1631   //
1632   // Normally, we would be able to parse these by putting the parens into the
1633   // instruction string. However, GNU as also accepts a zero-offset memory
1634   // operand (such as `0(a0)`), and ignores the 0. Normally this would be parsed
1635   // with parseImmediate followed by parseMemOpBaseReg, but these instructions
1636   // do not accept an immediate operand, and we do not want to add a "dummy"
1637   // operand that is silently dropped.
1638   //
1639   // Instead, we use this custom parser. This will: allow (and discard) an
1640   // offset if it is zero; require (and discard) parentheses; and add only the
1641   // parsed register operand to `Operands`.
1642   //
1643   // These operands are printed with RISCVInstPrinter::printAtomicMemOp, which
1644   // will only print the register surrounded by parentheses (which GNU as also
1645   // uses as its canonical representation for these operands).
1646   std::unique_ptr<RISCVOperand> OptionalImmOp;
1647 
1648   if (getLexer().isNot(AsmToken::LParen)) {
1649     // Parse an Integer token. We do not accept arbritrary constant expressions
1650     // in the offset field (because they may include parens, which complicates
1651     // parsing a lot).
1652     int64_t ImmVal;
1653     SMLoc ImmStart = getLoc();
1654     if (getParser().parseIntToken(ImmVal,
1655                                   "expected '(' or optional integer offset"))
1656       return MatchOperand_ParseFail;
1657 
1658     // Create a RISCVOperand for checking later (so the error messages are
1659     // nicer), but we don't add it to Operands.
1660     SMLoc ImmEnd = getLoc();
1661     OptionalImmOp =
1662         RISCVOperand::createImm(MCConstantExpr::create(ImmVal, getContext()),
1663                                 ImmStart, ImmEnd, isRV64());
1664   }
1665 
1666   if (getLexer().isNot(AsmToken::LParen)) {
1667     Error(getLoc(), OptionalImmOp ? "expected '(' after optional integer offset"
1668                                   : "expected '(' or optional integer offset");
1669     return MatchOperand_ParseFail;
1670   }
1671   getParser().Lex(); // Eat '('
1672 
1673   if (parseRegister(Operands) != MatchOperand_Success) {
1674     Error(getLoc(), "expected register");
1675     return MatchOperand_ParseFail;
1676   }
1677 
1678   if (getLexer().isNot(AsmToken::RParen)) {
1679     Error(getLoc(), "expected ')'");
1680     return MatchOperand_ParseFail;
1681   }
1682   getParser().Lex(); // Eat ')'
1683 
1684   // Deferred Handling of non-zero offsets. This makes the error messages nicer.
1685   if (OptionalImmOp && !OptionalImmOp->isImmZero()) {
1686     Error(OptionalImmOp->getStartLoc(), "optional integer offset must be 0",
1687           SMRange(OptionalImmOp->getStartLoc(), OptionalImmOp->getEndLoc()));
1688     return MatchOperand_ParseFail;
1689   }
1690 
1691   return MatchOperand_Success;
1692 }
1693 
1694 /// Looks at a token type and creates the relevant operand from this
1695 /// information, adding to Operands. If operand was parsed, returns false, else
1696 /// true.
1697 bool RISCVAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
1698   // Check if the current operand has a custom associated parser, if so, try to
1699   // custom parse the operand, or fallback to the general approach.
1700   OperandMatchResultTy Result =
1701       MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/true);
1702   if (Result == MatchOperand_Success)
1703     return false;
1704   if (Result == MatchOperand_ParseFail)
1705     return true;
1706 
1707   // Attempt to parse token as a register.
1708   if (parseRegister(Operands, true) == MatchOperand_Success)
1709     return false;
1710 
1711   // Attempt to parse token as an immediate
1712   if (parseImmediate(Operands) == MatchOperand_Success) {
1713     // Parse memory base register if present
1714     if (getLexer().is(AsmToken::LParen))
1715       return parseMemOpBaseReg(Operands) != MatchOperand_Success;
1716     return false;
1717   }
1718 
1719   // Finally we have exhausted all options and must declare defeat.
1720   Error(getLoc(), "unknown operand");
1721   return true;
1722 }
1723 
1724 bool RISCVAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1725                                       StringRef Name, SMLoc NameLoc,
1726                                       OperandVector &Operands) {
1727   // Ensure that if the instruction occurs when relaxation is enabled,
1728   // relocations are forced for the file. Ideally this would be done when there
1729   // is enough information to reliably determine if the instruction itself may
1730   // cause relaxations. Unfortunately instruction processing stage occurs in the
1731   // same pass as relocation emission, so it's too late to set a 'sticky bit'
1732   // for the entire file.
1733   if (getSTI().getFeatureBits()[RISCV::FeatureRelax]) {
1734     auto *Assembler = getTargetStreamer().getStreamer().getAssemblerPtr();
1735     if (Assembler != nullptr) {
1736       RISCVAsmBackend &MAB =
1737           static_cast<RISCVAsmBackend &>(Assembler->getBackend());
1738       MAB.setForceRelocs();
1739     }
1740   }
1741 
1742   // First operand is token for instruction
1743   Operands.push_back(RISCVOperand::createToken(Name, NameLoc, isRV64()));
1744 
1745   // If there are no more operands, then finish
1746   if (getLexer().is(AsmToken::EndOfStatement))
1747     return false;
1748 
1749   // Parse first operand
1750   if (parseOperand(Operands, Name))
1751     return true;
1752 
1753   // Parse until end of statement, consuming commas between operands
1754   unsigned OperandIdx = 1;
1755   while (getLexer().is(AsmToken::Comma)) {
1756     // Consume comma token
1757     getLexer().Lex();
1758 
1759     // Parse next operand
1760     if (parseOperand(Operands, Name))
1761       return true;
1762 
1763     ++OperandIdx;
1764   }
1765 
1766   if (getLexer().isNot(AsmToken::EndOfStatement)) {
1767     SMLoc Loc = getLexer().getLoc();
1768     getParser().eatToEndOfStatement();
1769     return Error(Loc, "unexpected token");
1770   }
1771 
1772   getParser().Lex(); // Consume the EndOfStatement.
1773   return false;
1774 }
1775 
1776 bool RISCVAsmParser::classifySymbolRef(const MCExpr *Expr,
1777                                        RISCVMCExpr::VariantKind &Kind) {
1778   Kind = RISCVMCExpr::VK_RISCV_None;
1779 
1780   if (const RISCVMCExpr *RE = dyn_cast<RISCVMCExpr>(Expr)) {
1781     Kind = RE->getKind();
1782     Expr = RE->getSubExpr();
1783   }
1784 
1785   MCValue Res;
1786   MCFixup Fixup;
1787   if (Expr->evaluateAsRelocatable(Res, nullptr, &Fixup))
1788     return Res.getRefKind() == RISCVMCExpr::VK_RISCV_None;
1789   return false;
1790 }
1791 
1792 bool RISCVAsmParser::ParseDirective(AsmToken DirectiveID) {
1793   // This returns false if this function recognizes the directive
1794   // regardless of whether it is successfully handles or reports an
1795   // error. Otherwise it returns true to give the generic parser a
1796   // chance at recognizing it.
1797   StringRef IDVal = DirectiveID.getString();
1798 
1799   if (IDVal == ".option")
1800     return parseDirectiveOption();
1801   else if (IDVal == ".attribute")
1802     return parseDirectiveAttribute();
1803 
1804   return true;
1805 }
1806 
1807 bool RISCVAsmParser::parseDirectiveOption() {
1808   MCAsmParser &Parser = getParser();
1809   // Get the option token.
1810   AsmToken Tok = Parser.getTok();
1811   // At the moment only identifiers are supported.
1812   if (Tok.isNot(AsmToken::Identifier))
1813     return Error(Parser.getTok().getLoc(),
1814                  "unexpected token, expected identifier");
1815 
1816   StringRef Option = Tok.getIdentifier();
1817 
1818   if (Option == "push") {
1819     getTargetStreamer().emitDirectiveOptionPush();
1820 
1821     Parser.Lex();
1822     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1823       return Error(Parser.getTok().getLoc(),
1824                    "unexpected token, expected end of statement");
1825 
1826     pushFeatureBits();
1827     return false;
1828   }
1829 
1830   if (Option == "pop") {
1831     SMLoc StartLoc = Parser.getTok().getLoc();
1832     getTargetStreamer().emitDirectiveOptionPop();
1833 
1834     Parser.Lex();
1835     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1836       return Error(Parser.getTok().getLoc(),
1837                    "unexpected token, expected end of statement");
1838 
1839     if (popFeatureBits())
1840       return Error(StartLoc, ".option pop with no .option push");
1841 
1842     return false;
1843   }
1844 
1845   if (Option == "rvc") {
1846     getTargetStreamer().emitDirectiveOptionRVC();
1847 
1848     Parser.Lex();
1849     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1850       return Error(Parser.getTok().getLoc(),
1851                    "unexpected token, expected end of statement");
1852 
1853     setFeatureBits(RISCV::FeatureStdExtC, "c");
1854     return false;
1855   }
1856 
1857   if (Option == "norvc") {
1858     getTargetStreamer().emitDirectiveOptionNoRVC();
1859 
1860     Parser.Lex();
1861     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1862       return Error(Parser.getTok().getLoc(),
1863                    "unexpected token, expected end of statement");
1864 
1865     clearFeatureBits(RISCV::FeatureStdExtC, "c");
1866     return false;
1867   }
1868 
1869   if (Option == "pic") {
1870     getTargetStreamer().emitDirectiveOptionPIC();
1871 
1872     Parser.Lex();
1873     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1874       return Error(Parser.getTok().getLoc(),
1875                    "unexpected token, expected end of statement");
1876 
1877     ParserOptions.IsPicEnabled = true;
1878     return false;
1879   }
1880 
1881   if (Option == "nopic") {
1882     getTargetStreamer().emitDirectiveOptionNoPIC();
1883 
1884     Parser.Lex();
1885     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1886       return Error(Parser.getTok().getLoc(),
1887                    "unexpected token, expected end of statement");
1888 
1889     ParserOptions.IsPicEnabled = false;
1890     return false;
1891   }
1892 
1893   if (Option == "relax") {
1894     getTargetStreamer().emitDirectiveOptionRelax();
1895 
1896     Parser.Lex();
1897     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1898       return Error(Parser.getTok().getLoc(),
1899                    "unexpected token, expected end of statement");
1900 
1901     setFeatureBits(RISCV::FeatureRelax, "relax");
1902     return false;
1903   }
1904 
1905   if (Option == "norelax") {
1906     getTargetStreamer().emitDirectiveOptionNoRelax();
1907 
1908     Parser.Lex();
1909     if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1910       return Error(Parser.getTok().getLoc(),
1911                    "unexpected token, expected end of statement");
1912 
1913     clearFeatureBits(RISCV::FeatureRelax, "relax");
1914     return false;
1915   }
1916 
1917   // Unknown option.
1918   Warning(Parser.getTok().getLoc(),
1919           "unknown option, expected 'push', 'pop', 'rvc', 'norvc', 'relax' or "
1920           "'norelax'");
1921   Parser.eatToEndOfStatement();
1922   return false;
1923 }
1924 
1925 /// parseDirectiveAttribute
1926 ///  ::= .attribute expression ',' ( expression | "string" )
1927 ///  ::= .attribute identifier ',' ( expression | "string" )
1928 bool RISCVAsmParser::parseDirectiveAttribute() {
1929   MCAsmParser &Parser = getParser();
1930   int64_t Tag;
1931   SMLoc TagLoc;
1932   TagLoc = Parser.getTok().getLoc();
1933   if (Parser.getTok().is(AsmToken::Identifier)) {
1934     StringRef Name = Parser.getTok().getIdentifier();
1935     Optional<unsigned> Ret =
1936         ELFAttrs::attrTypeFromString(Name, RISCVAttrs::RISCVAttributeTags);
1937     if (!Ret.hasValue()) {
1938       Error(TagLoc, "attribute name not recognised: " + Name);
1939       return false;
1940     }
1941     Tag = Ret.getValue();
1942     Parser.Lex();
1943   } else {
1944     const MCExpr *AttrExpr;
1945 
1946     TagLoc = Parser.getTok().getLoc();
1947     if (Parser.parseExpression(AttrExpr))
1948       return true;
1949 
1950     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
1951     if (check(!CE, TagLoc, "expected numeric constant"))
1952       return true;
1953 
1954     Tag = CE->getValue();
1955   }
1956 
1957   if (Parser.parseToken(AsmToken::Comma, "comma expected"))
1958     return true;
1959 
1960   StringRef StringValue;
1961   int64_t IntegerValue = 0;
1962   bool IsIntegerValue = true;
1963 
1964   // RISC-V attributes have a string value if the tag number is odd
1965   // and an integer value if the tag number is even.
1966   if (Tag % 2)
1967     IsIntegerValue = false;
1968 
1969   SMLoc ValueExprLoc = Parser.getTok().getLoc();
1970   if (IsIntegerValue) {
1971     const MCExpr *ValueExpr;
1972     if (Parser.parseExpression(ValueExpr))
1973       return true;
1974 
1975     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
1976     if (!CE)
1977       return Error(ValueExprLoc, "expected numeric constant");
1978     IntegerValue = CE->getValue();
1979   } else {
1980     if (Parser.getTok().isNot(AsmToken::String))
1981       return Error(Parser.getTok().getLoc(), "expected string constant");
1982 
1983     StringValue = Parser.getTok().getStringContents();
1984     Parser.Lex();
1985   }
1986 
1987   if (Parser.parseToken(AsmToken::EndOfStatement,
1988                         "unexpected token in '.attribute' directive"))
1989     return true;
1990 
1991   if (Tag == RISCVAttrs::ARCH) {
1992     StringRef Arch = StringValue;
1993     if (Arch.consume_front("rv32"))
1994       clearFeatureBits(RISCV::Feature64Bit, "64bit");
1995     else if (Arch.consume_front("rv64"))
1996       setFeatureBits(RISCV::Feature64Bit, "64bit");
1997     else
1998       return Error(ValueExprLoc, "bad arch string " + Arch);
1999 
2000     // .attribute arch overrides the current architecture, so unset all
2001     // currently enabled extensions
2002     clearFeatureBits(RISCV::FeatureRV32E, "e");
2003     clearFeatureBits(RISCV::FeatureStdExtM, "m");
2004     clearFeatureBits(RISCV::FeatureStdExtA, "a");
2005     clearFeatureBits(RISCV::FeatureStdExtF, "f");
2006     clearFeatureBits(RISCV::FeatureStdExtD, "d");
2007     clearFeatureBits(RISCV::FeatureStdExtC, "c");
2008     clearFeatureBits(RISCV::FeatureStdExtB, "experimental-b");
2009     clearFeatureBits(RISCV::FeatureStdExtV, "experimental-v");
2010     clearFeatureBits(RISCV::FeatureExtZfh, "experimental-zfh");
2011     clearFeatureBits(RISCV::FeatureExtZba, "experimental-zba");
2012     clearFeatureBits(RISCV::FeatureExtZbb, "experimental-zbb");
2013     clearFeatureBits(RISCV::FeatureExtZbc, "experimental-zbc");
2014     clearFeatureBits(RISCV::FeatureExtZbe, "experimental-zbe");
2015     clearFeatureBits(RISCV::FeatureExtZbf, "experimental-zbf");
2016     clearFeatureBits(RISCV::FeatureExtZbm, "experimental-zbm");
2017     clearFeatureBits(RISCV::FeatureExtZbp, "experimental-zbp");
2018     clearFeatureBits(RISCV::FeatureExtZbproposedc, "experimental-zbproposedc");
2019     clearFeatureBits(RISCV::FeatureExtZbr, "experimental-zbr");
2020     clearFeatureBits(RISCV::FeatureExtZbs, "experimental-zbs");
2021     clearFeatureBits(RISCV::FeatureExtZbt, "experimental-zbt");
2022     clearFeatureBits(RISCV::FeatureExtZvamo, "experimental-zvamo");
2023     clearFeatureBits(RISCV::FeatureStdExtZvlsseg, "experimental-zvlsseg");
2024 
2025     while (!Arch.empty()) {
2026       bool DropFirst = true;
2027       if (Arch[0] == 'i')
2028         clearFeatureBits(RISCV::FeatureRV32E, "e");
2029       else if (Arch[0] == 'e')
2030         setFeatureBits(RISCV::FeatureRV32E, "e");
2031       else if (Arch[0] == 'g') {
2032         clearFeatureBits(RISCV::FeatureRV32E, "e");
2033         setFeatureBits(RISCV::FeatureStdExtM, "m");
2034         setFeatureBits(RISCV::FeatureStdExtA, "a");
2035         setFeatureBits(RISCV::FeatureStdExtF, "f");
2036         setFeatureBits(RISCV::FeatureStdExtD, "d");
2037       } else if (Arch[0] == 'm')
2038         setFeatureBits(RISCV::FeatureStdExtM, "m");
2039       else if (Arch[0] == 'a')
2040         setFeatureBits(RISCV::FeatureStdExtA, "a");
2041       else if (Arch[0] == 'f')
2042         setFeatureBits(RISCV::FeatureStdExtF, "f");
2043       else if (Arch[0] == 'd') {
2044         setFeatureBits(RISCV::FeatureStdExtF, "f");
2045         setFeatureBits(RISCV::FeatureStdExtD, "d");
2046       } else if (Arch[0] == 'c') {
2047         setFeatureBits(RISCV::FeatureStdExtC, "c");
2048       } else if (Arch[0] == 'b') {
2049         setFeatureBits(RISCV::FeatureStdExtB, "experimental-b");
2050       } else if (Arch[0] == 'v') {
2051         setFeatureBits(RISCV::FeatureStdExtV, "experimental-v");
2052       } else if (Arch[0] == 's' || Arch[0] == 'x' || Arch[0] == 'z') {
2053         StringRef Ext =
2054             Arch.take_until([](char c) { return ::isdigit(c) || c == '_'; });
2055         if (Ext == "zba")
2056           setFeatureBits(RISCV::FeatureExtZba, "experimental-zba");
2057         else if (Ext == "zbb")
2058           setFeatureBits(RISCV::FeatureExtZbb, "experimental-zbb");
2059         else if (Ext == "zbc")
2060           setFeatureBits(RISCV::FeatureExtZbc, "experimental-zbc");
2061         else if (Ext == "zbe")
2062           setFeatureBits(RISCV::FeatureExtZbe, "experimental-zbe");
2063         else if (Ext == "zbf")
2064           setFeatureBits(RISCV::FeatureExtZbf, "experimental-zbf");
2065         else if (Ext == "zbm")
2066           setFeatureBits(RISCV::FeatureExtZbm, "experimental-zbm");
2067         else if (Ext == "zbp")
2068           setFeatureBits(RISCV::FeatureExtZbp, "experimental-zbp");
2069         else if (Ext == "zbproposedc")
2070           setFeatureBits(RISCV::FeatureExtZbproposedc,
2071                          "experimental-zbproposedc");
2072         else if (Ext == "zbr")
2073           setFeatureBits(RISCV::FeatureExtZbr, "experimental-zbr");
2074         else if (Ext == "zbs")
2075           setFeatureBits(RISCV::FeatureExtZbs, "experimental-zbs");
2076         else if (Ext == "zbt")
2077           setFeatureBits(RISCV::FeatureExtZbt, "experimental-zbt");
2078         else if (Ext == "zfh")
2079           setFeatureBits(RISCV::FeatureExtZfh, "experimental-zfh");
2080         else if (Ext == "zvamo")
2081           setFeatureBits(RISCV::FeatureExtZvamo, "experimental-zvamo");
2082         else if (Ext == "zvlsseg")
2083           setFeatureBits(RISCV::FeatureStdExtZvlsseg, "experimental-zvlsseg");
2084         else
2085           return Error(ValueExprLoc, "bad arch string " + Ext);
2086         Arch = Arch.drop_until([](char c) { return ::isdigit(c) || c == '_'; });
2087         DropFirst = false;
2088       } else
2089         return Error(ValueExprLoc, "bad arch string " + Arch);
2090 
2091       if (DropFirst)
2092         Arch = Arch.drop_front(1);
2093       int major = 0;
2094       int minor = 0;
2095       Arch.consumeInteger(10, major);
2096       Arch.consume_front("p");
2097       Arch.consumeInteger(10, minor);
2098       Arch = Arch.drop_while([](char c) { return c == '_'; });
2099     }
2100   }
2101 
2102   if (IsIntegerValue)
2103     getTargetStreamer().emitAttribute(Tag, IntegerValue);
2104   else {
2105     if (Tag != RISCVAttrs::ARCH) {
2106       getTargetStreamer().emitTextAttribute(Tag, StringValue);
2107     } else {
2108       std::string formalArchStr = "rv32";
2109       if (getFeatureBits(RISCV::Feature64Bit))
2110         formalArchStr = "rv64";
2111       if (getFeatureBits(RISCV::FeatureRV32E))
2112         formalArchStr = (Twine(formalArchStr) + "e1p9").str();
2113       else
2114         formalArchStr = (Twine(formalArchStr) + "i2p0").str();
2115 
2116       if (getFeatureBits(RISCV::FeatureStdExtM))
2117         formalArchStr = (Twine(formalArchStr) + "_m2p0").str();
2118       if (getFeatureBits(RISCV::FeatureStdExtA))
2119         formalArchStr = (Twine(formalArchStr) + "_a2p0").str();
2120       if (getFeatureBits(RISCV::FeatureStdExtF))
2121         formalArchStr = (Twine(formalArchStr) + "_f2p0").str();
2122       if (getFeatureBits(RISCV::FeatureStdExtD))
2123         formalArchStr = (Twine(formalArchStr) + "_d2p0").str();
2124       if (getFeatureBits(RISCV::FeatureStdExtC))
2125         formalArchStr = (Twine(formalArchStr) + "_c2p0").str();
2126       if (getFeatureBits(RISCV::FeatureStdExtB))
2127         formalArchStr = (Twine(formalArchStr) + "_b0p93").str();
2128       if (getFeatureBits(RISCV::FeatureStdExtV))
2129         formalArchStr = (Twine(formalArchStr) + "_v0p10").str();
2130       if (getFeatureBits(RISCV::FeatureExtZfh))
2131         formalArchStr = (Twine(formalArchStr) + "_zfh0p1").str();
2132       if (getFeatureBits(RISCV::FeatureExtZba))
2133         formalArchStr = (Twine(formalArchStr) + "_zba0p93").str();
2134       if (getFeatureBits(RISCV::FeatureExtZbb))
2135         formalArchStr = (Twine(formalArchStr) + "_zbb0p93").str();
2136       if (getFeatureBits(RISCV::FeatureExtZbc))
2137         formalArchStr = (Twine(formalArchStr) + "_zbc0p93").str();
2138       if (getFeatureBits(RISCV::FeatureExtZbe))
2139         formalArchStr = (Twine(formalArchStr) + "_zbe0p93").str();
2140       if (getFeatureBits(RISCV::FeatureExtZbf))
2141         formalArchStr = (Twine(formalArchStr) + "_zbf0p93").str();
2142       if (getFeatureBits(RISCV::FeatureExtZbm))
2143         formalArchStr = (Twine(formalArchStr) + "_zbm0p93").str();
2144       if (getFeatureBits(RISCV::FeatureExtZbp))
2145         formalArchStr = (Twine(formalArchStr) + "_zbp0p93").str();
2146       if (getFeatureBits(RISCV::FeatureExtZbproposedc))
2147         formalArchStr = (Twine(formalArchStr) + "_zbproposedc0p93").str();
2148       if (getFeatureBits(RISCV::FeatureExtZbr))
2149         formalArchStr = (Twine(formalArchStr) + "_zbr0p93").str();
2150       if (getFeatureBits(RISCV::FeatureExtZbs))
2151         formalArchStr = (Twine(formalArchStr) + "_zbs0p93").str();
2152       if (getFeatureBits(RISCV::FeatureExtZbt))
2153         formalArchStr = (Twine(formalArchStr) + "_zbt0p93").str();
2154       if (getFeatureBits(RISCV::FeatureExtZvamo))
2155         formalArchStr = (Twine(formalArchStr) + "_zvamo0p10").str();
2156       if (getFeatureBits(RISCV::FeatureStdExtZvlsseg))
2157         formalArchStr = (Twine(formalArchStr) + "_zvlsseg0p10").str();
2158 
2159       getTargetStreamer().emitTextAttribute(Tag, formalArchStr);
2160     }
2161   }
2162 
2163   return false;
2164 }
2165 
2166 void RISCVAsmParser::emitToStreamer(MCStreamer &S, const MCInst &Inst) {
2167   MCInst CInst;
2168   bool Res = compressInst(CInst, Inst, getSTI(), S.getContext());
2169   if (Res)
2170     ++RISCVNumInstrsCompressed;
2171   S.emitInstruction((Res ? CInst : Inst), getSTI());
2172 }
2173 
2174 void RISCVAsmParser::emitLoadImm(MCRegister DestReg, int64_t Value,
2175                                  MCStreamer &Out) {
2176   RISCVMatInt::InstSeq Seq;
2177   RISCVMatInt::generateInstSeq(Value, isRV64(), Seq);
2178 
2179   MCRegister SrcReg = RISCV::X0;
2180   for (RISCVMatInt::Inst &Inst : Seq) {
2181     if (Inst.Opc == RISCV::LUI) {
2182       emitToStreamer(
2183           Out, MCInstBuilder(RISCV::LUI).addReg(DestReg).addImm(Inst.Imm));
2184     } else {
2185       emitToStreamer(
2186           Out, MCInstBuilder(Inst.Opc).addReg(DestReg).addReg(SrcReg).addImm(
2187                    Inst.Imm));
2188     }
2189 
2190     // Only the first instruction has X0 as its source.
2191     SrcReg = DestReg;
2192   }
2193 }
2194 
2195 void RISCVAsmParser::emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
2196                                        const MCExpr *Symbol,
2197                                        RISCVMCExpr::VariantKind VKHi,
2198                                        unsigned SecondOpcode, SMLoc IDLoc,
2199                                        MCStreamer &Out) {
2200   // A pair of instructions for PC-relative addressing; expands to
2201   //   TmpLabel: AUIPC TmpReg, VKHi(symbol)
2202   //             OP DestReg, TmpReg, %pcrel_lo(TmpLabel)
2203   MCContext &Ctx = getContext();
2204 
2205   MCSymbol *TmpLabel = Ctx.createNamedTempSymbol("pcrel_hi");
2206   Out.emitLabel(TmpLabel);
2207 
2208   const RISCVMCExpr *SymbolHi = RISCVMCExpr::create(Symbol, VKHi, Ctx);
2209   emitToStreamer(
2210       Out, MCInstBuilder(RISCV::AUIPC).addOperand(TmpReg).addExpr(SymbolHi));
2211 
2212   const MCExpr *RefToLinkTmpLabel =
2213       RISCVMCExpr::create(MCSymbolRefExpr::create(TmpLabel, Ctx),
2214                           RISCVMCExpr::VK_RISCV_PCREL_LO, Ctx);
2215 
2216   emitToStreamer(Out, MCInstBuilder(SecondOpcode)
2217                           .addOperand(DestReg)
2218                           .addOperand(TmpReg)
2219                           .addExpr(RefToLinkTmpLabel));
2220 }
2221 
2222 void RISCVAsmParser::emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc,
2223                                           MCStreamer &Out) {
2224   // The load local address pseudo-instruction "lla" is used in PC-relative
2225   // addressing of local symbols:
2226   //   lla rdest, symbol
2227   // expands to
2228   //   TmpLabel: AUIPC rdest, %pcrel_hi(symbol)
2229   //             ADDI rdest, rdest, %pcrel_lo(TmpLabel)
2230   MCOperand DestReg = Inst.getOperand(0);
2231   const MCExpr *Symbol = Inst.getOperand(1).getExpr();
2232   emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
2233                     RISCV::ADDI, IDLoc, Out);
2234 }
2235 
2236 void RISCVAsmParser::emitLoadAddress(MCInst &Inst, SMLoc IDLoc,
2237                                      MCStreamer &Out) {
2238   // The load address pseudo-instruction "la" is used in PC-relative and
2239   // GOT-indirect addressing of global symbols:
2240   //   la rdest, symbol
2241   // expands to either (for non-PIC)
2242   //   TmpLabel: AUIPC rdest, %pcrel_hi(symbol)
2243   //             ADDI rdest, rdest, %pcrel_lo(TmpLabel)
2244   // or (for PIC)
2245   //   TmpLabel: AUIPC rdest, %got_pcrel_hi(symbol)
2246   //             Lx rdest, %pcrel_lo(TmpLabel)(rdest)
2247   MCOperand DestReg = Inst.getOperand(0);
2248   const MCExpr *Symbol = Inst.getOperand(1).getExpr();
2249   unsigned SecondOpcode;
2250   RISCVMCExpr::VariantKind VKHi;
2251   if (ParserOptions.IsPicEnabled) {
2252     SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
2253     VKHi = RISCVMCExpr::VK_RISCV_GOT_HI;
2254   } else {
2255     SecondOpcode = RISCV::ADDI;
2256     VKHi = RISCVMCExpr::VK_RISCV_PCREL_HI;
2257   }
2258   emitAuipcInstPair(DestReg, DestReg, Symbol, VKHi, SecondOpcode, IDLoc, Out);
2259 }
2260 
2261 void RISCVAsmParser::emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc,
2262                                           MCStreamer &Out) {
2263   // The load TLS IE address pseudo-instruction "la.tls.ie" is used in
2264   // initial-exec TLS model addressing of global symbols:
2265   //   la.tls.ie rdest, symbol
2266   // expands to
2267   //   TmpLabel: AUIPC rdest, %tls_ie_pcrel_hi(symbol)
2268   //             Lx rdest, %pcrel_lo(TmpLabel)(rdest)
2269   MCOperand DestReg = Inst.getOperand(0);
2270   const MCExpr *Symbol = Inst.getOperand(1).getExpr();
2271   unsigned SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
2272   emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GOT_HI,
2273                     SecondOpcode, IDLoc, Out);
2274 }
2275 
2276 void RISCVAsmParser::emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc,
2277                                           MCStreamer &Out) {
2278   // The load TLS GD address pseudo-instruction "la.tls.gd" is used in
2279   // global-dynamic TLS model addressing of global symbols:
2280   //   la.tls.gd rdest, symbol
2281   // expands to
2282   //   TmpLabel: AUIPC rdest, %tls_gd_pcrel_hi(symbol)
2283   //             ADDI rdest, rdest, %pcrel_lo(TmpLabel)
2284   MCOperand DestReg = Inst.getOperand(0);
2285   const MCExpr *Symbol = Inst.getOperand(1).getExpr();
2286   emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GD_HI,
2287                     RISCV::ADDI, IDLoc, Out);
2288 }
2289 
2290 void RISCVAsmParser::emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode,
2291                                          SMLoc IDLoc, MCStreamer &Out,
2292                                          bool HasTmpReg) {
2293   // The load/store pseudo-instruction does a pc-relative load with
2294   // a symbol.
2295   //
2296   // The expansion looks like this
2297   //
2298   //   TmpLabel: AUIPC tmp, %pcrel_hi(symbol)
2299   //             [S|L]X    rd, %pcrel_lo(TmpLabel)(tmp)
2300   MCOperand DestReg = Inst.getOperand(0);
2301   unsigned SymbolOpIdx = HasTmpReg ? 2 : 1;
2302   unsigned TmpRegOpIdx = HasTmpReg ? 1 : 0;
2303   MCOperand TmpReg = Inst.getOperand(TmpRegOpIdx);
2304   const MCExpr *Symbol = Inst.getOperand(SymbolOpIdx).getExpr();
2305   emitAuipcInstPair(DestReg, TmpReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
2306                     Opcode, IDLoc, Out);
2307 }
2308 
2309 void RISCVAsmParser::emitPseudoExtend(MCInst &Inst, bool SignExtend,
2310                                       int64_t Width, SMLoc IDLoc,
2311                                       MCStreamer &Out) {
2312   // The sign/zero extend pseudo-instruction does two shifts, with the shift
2313   // amounts dependent on the XLEN.
2314   //
2315   // The expansion looks like this
2316   //
2317   //    SLLI rd, rs, XLEN - Width
2318   //    SR[A|R]I rd, rd, XLEN - Width
2319   MCOperand DestReg = Inst.getOperand(0);
2320   MCOperand SourceReg = Inst.getOperand(1);
2321 
2322   unsigned SecondOpcode = SignExtend ? RISCV::SRAI : RISCV::SRLI;
2323   int64_t ShAmt = (isRV64() ? 64 : 32) - Width;
2324 
2325   assert(ShAmt > 0 && "Shift amount must be non-zero.");
2326 
2327   emitToStreamer(Out, MCInstBuilder(RISCV::SLLI)
2328                           .addOperand(DestReg)
2329                           .addOperand(SourceReg)
2330                           .addImm(ShAmt));
2331 
2332   emitToStreamer(Out, MCInstBuilder(SecondOpcode)
2333                           .addOperand(DestReg)
2334                           .addOperand(DestReg)
2335                           .addImm(ShAmt));
2336 }
2337 
2338 void RISCVAsmParser::emitVMSGE(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
2339                                MCStreamer &Out) {
2340   if (Inst.getNumOperands() == 3) {
2341     // unmasked va >= x
2342     //
2343     //  pseudoinstruction: vmsge{u}.vx vd, va, x
2344     //  expansion: vmslt{u}.vx vd, va, x; vmnand.mm vd, vd, vd
2345     emitToStreamer(Out, MCInstBuilder(Opcode)
2346                             .addOperand(Inst.getOperand(0))
2347                             .addOperand(Inst.getOperand(1))
2348                             .addOperand(Inst.getOperand(2))
2349                             .addReg(RISCV::NoRegister));
2350     emitToStreamer(Out, MCInstBuilder(RISCV::VMNAND_MM)
2351                             .addOperand(Inst.getOperand(0))
2352                             .addOperand(Inst.getOperand(0))
2353                             .addOperand(Inst.getOperand(0)));
2354   } else if (Inst.getNumOperands() == 4) {
2355     // masked va >= x, vd != v0
2356     //
2357     //  pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t
2358     //  expansion: vmslt{u}.vx vd, va, x, v0.t; vmxor.mm vd, vd, v0
2359     assert(Inst.getOperand(0).getReg() != RISCV::V0 &&
2360            "The destination register should not be V0.");
2361     emitToStreamer(Out, MCInstBuilder(Opcode)
2362                             .addOperand(Inst.getOperand(0))
2363                             .addOperand(Inst.getOperand(1))
2364                             .addOperand(Inst.getOperand(2))
2365                             .addOperand(Inst.getOperand(3)));
2366     emitToStreamer(Out, MCInstBuilder(RISCV::VMXOR_MM)
2367                             .addOperand(Inst.getOperand(0))
2368                             .addOperand(Inst.getOperand(0))
2369                             .addReg(RISCV::V0));
2370   } else if (Inst.getNumOperands() == 5) {
2371     // masked va >= x, vd == v0
2372     //
2373     //  pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt
2374     //  expansion: vmslt{u}.vx vt, va, x;  vmandnot.mm vd, vd, vt
2375     assert(Inst.getOperand(0).getReg() == RISCV::V0 &&
2376            "The destination register should be V0.");
2377     assert(Inst.getOperand(1).getReg() != RISCV::V0 &&
2378            "The temporary vector register should not be V0.");
2379     emitToStreamer(Out, MCInstBuilder(Opcode)
2380                             .addOperand(Inst.getOperand(1))
2381                             .addOperand(Inst.getOperand(2))
2382                             .addOperand(Inst.getOperand(3))
2383                             .addOperand(Inst.getOperand(4)));
2384     emitToStreamer(Out, MCInstBuilder(RISCV::VMANDNOT_MM)
2385                             .addOperand(Inst.getOperand(0))
2386                             .addOperand(Inst.getOperand(0))
2387                             .addOperand(Inst.getOperand(1)));
2388   }
2389 }
2390 
2391 bool RISCVAsmParser::checkPseudoAddTPRel(MCInst &Inst,
2392                                          OperandVector &Operands) {
2393   assert(Inst.getOpcode() == RISCV::PseudoAddTPRel && "Invalid instruction");
2394   assert(Inst.getOperand(2).isReg() && "Unexpected second operand kind");
2395   if (Inst.getOperand(2).getReg() != RISCV::X4) {
2396     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[3]).getStartLoc();
2397     return Error(ErrorLoc, "the second input operand must be tp/x4 when using "
2398                            "%tprel_add modifier");
2399   }
2400 
2401   return false;
2402 }
2403 
2404 std::unique_ptr<RISCVOperand> RISCVAsmParser::defaultMaskRegOp() const {
2405   return RISCVOperand::createReg(RISCV::NoRegister, llvm::SMLoc(),
2406                                  llvm::SMLoc(), isRV64());
2407 }
2408 
2409 bool RISCVAsmParser::validateInstruction(MCInst &Inst,
2410                                          OperandVector &Operands) {
2411   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
2412   unsigned Constraints =
2413       (MCID.TSFlags & RISCVII::ConstraintMask) >> RISCVII::ConstraintShift;
2414   if (Constraints == RISCVII::NoConstraint)
2415     return false;
2416 
2417   unsigned DestReg = Inst.getOperand(0).getReg();
2418   // Operands[1] will be the first operand, DestReg.
2419   SMLoc Loc = Operands[1]->getStartLoc();
2420   if (Constraints & RISCVII::VS2Constraint) {
2421     unsigned CheckReg = Inst.getOperand(1).getReg();
2422     if (DestReg == CheckReg)
2423       return Error(Loc, "The destination vector register group cannot overlap"
2424                         " the source vector register group.");
2425   }
2426   if ((Constraints & RISCVII::VS1Constraint) && (Inst.getOperand(2).isReg())) {
2427     unsigned CheckReg = Inst.getOperand(2).getReg();
2428     if (DestReg == CheckReg)
2429       return Error(Loc, "The destination vector register group cannot overlap"
2430                         " the source vector register group.");
2431   }
2432   if ((Constraints & RISCVII::VMConstraint) && (DestReg == RISCV::V0)) {
2433     // vadc, vsbc are special cases. These instructions have no mask register.
2434     // The destination register could not be V0.
2435     unsigned Opcode = Inst.getOpcode();
2436     if (Opcode == RISCV::VADC_VVM || Opcode == RISCV::VADC_VXM ||
2437         Opcode == RISCV::VADC_VIM || Opcode == RISCV::VSBC_VVM ||
2438         Opcode == RISCV::VSBC_VXM || Opcode == RISCV::VFMERGE_VFM ||
2439         Opcode == RISCV::VMERGE_VIM || Opcode == RISCV::VMERGE_VVM ||
2440         Opcode == RISCV::VMERGE_VXM)
2441       return Error(Loc, "The destination vector register group cannot be V0.");
2442 
2443     // Regardless masked or unmasked version, the number of operands is the
2444     // same. For example, "viota.m v0, v2" is "viota.m v0, v2, NoRegister"
2445     // actually. We need to check the last operand to ensure whether it is
2446     // masked or not.
2447     unsigned CheckReg = Inst.getOperand(Inst.getNumOperands() - 1).getReg();
2448     assert((CheckReg == RISCV::V0 || CheckReg == RISCV::NoRegister) &&
2449            "Unexpected register for mask operand");
2450 
2451     if (DestReg == CheckReg)
2452       return Error(Loc, "The destination vector register group cannot overlap"
2453                         " the mask register.");
2454   }
2455   return false;
2456 }
2457 
2458 bool RISCVAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
2459                                         OperandVector &Operands,
2460                                         MCStreamer &Out) {
2461   Inst.setLoc(IDLoc);
2462 
2463   switch (Inst.getOpcode()) {
2464   default:
2465     break;
2466   case RISCV::PseudoLI: {
2467     MCRegister Reg = Inst.getOperand(0).getReg();
2468     const MCOperand &Op1 = Inst.getOperand(1);
2469     if (Op1.isExpr()) {
2470       // We must have li reg, %lo(sym) or li reg, %pcrel_lo(sym) or similar.
2471       // Just convert to an addi. This allows compatibility with gas.
2472       emitToStreamer(Out, MCInstBuilder(RISCV::ADDI)
2473                               .addReg(Reg)
2474                               .addReg(RISCV::X0)
2475                               .addExpr(Op1.getExpr()));
2476       return false;
2477     }
2478     int64_t Imm = Inst.getOperand(1).getImm();
2479     // On RV32 the immediate here can either be a signed or an unsigned
2480     // 32-bit number. Sign extension has to be performed to ensure that Imm
2481     // represents the expected signed 64-bit number.
2482     if (!isRV64())
2483       Imm = SignExtend64<32>(Imm);
2484     emitLoadImm(Reg, Imm, Out);
2485     return false;
2486   }
2487   case RISCV::PseudoLLA:
2488     emitLoadLocalAddress(Inst, IDLoc, Out);
2489     return false;
2490   case RISCV::PseudoLA:
2491     emitLoadAddress(Inst, IDLoc, Out);
2492     return false;
2493   case RISCV::PseudoLA_TLS_IE:
2494     emitLoadTLSIEAddress(Inst, IDLoc, Out);
2495     return false;
2496   case RISCV::PseudoLA_TLS_GD:
2497     emitLoadTLSGDAddress(Inst, IDLoc, Out);
2498     return false;
2499   case RISCV::PseudoLB:
2500     emitLoadStoreSymbol(Inst, RISCV::LB, IDLoc, Out, /*HasTmpReg=*/false);
2501     return false;
2502   case RISCV::PseudoLBU:
2503     emitLoadStoreSymbol(Inst, RISCV::LBU, IDLoc, Out, /*HasTmpReg=*/false);
2504     return false;
2505   case RISCV::PseudoLH:
2506     emitLoadStoreSymbol(Inst, RISCV::LH, IDLoc, Out, /*HasTmpReg=*/false);
2507     return false;
2508   case RISCV::PseudoLHU:
2509     emitLoadStoreSymbol(Inst, RISCV::LHU, IDLoc, Out, /*HasTmpReg=*/false);
2510     return false;
2511   case RISCV::PseudoLW:
2512     emitLoadStoreSymbol(Inst, RISCV::LW, IDLoc, Out, /*HasTmpReg=*/false);
2513     return false;
2514   case RISCV::PseudoLWU:
2515     emitLoadStoreSymbol(Inst, RISCV::LWU, IDLoc, Out, /*HasTmpReg=*/false);
2516     return false;
2517   case RISCV::PseudoLD:
2518     emitLoadStoreSymbol(Inst, RISCV::LD, IDLoc, Out, /*HasTmpReg=*/false);
2519     return false;
2520   case RISCV::PseudoFLH:
2521     emitLoadStoreSymbol(Inst, RISCV::FLH, IDLoc, Out, /*HasTmpReg=*/true);
2522     return false;
2523   case RISCV::PseudoFLW:
2524     emitLoadStoreSymbol(Inst, RISCV::FLW, IDLoc, Out, /*HasTmpReg=*/true);
2525     return false;
2526   case RISCV::PseudoFLD:
2527     emitLoadStoreSymbol(Inst, RISCV::FLD, IDLoc, Out, /*HasTmpReg=*/true);
2528     return false;
2529   case RISCV::PseudoSB:
2530     emitLoadStoreSymbol(Inst, RISCV::SB, IDLoc, Out, /*HasTmpReg=*/true);
2531     return false;
2532   case RISCV::PseudoSH:
2533     emitLoadStoreSymbol(Inst, RISCV::SH, IDLoc, Out, /*HasTmpReg=*/true);
2534     return false;
2535   case RISCV::PseudoSW:
2536     emitLoadStoreSymbol(Inst, RISCV::SW, IDLoc, Out, /*HasTmpReg=*/true);
2537     return false;
2538   case RISCV::PseudoSD:
2539     emitLoadStoreSymbol(Inst, RISCV::SD, IDLoc, Out, /*HasTmpReg=*/true);
2540     return false;
2541   case RISCV::PseudoFSH:
2542     emitLoadStoreSymbol(Inst, RISCV::FSH, IDLoc, Out, /*HasTmpReg=*/true);
2543     return false;
2544   case RISCV::PseudoFSW:
2545     emitLoadStoreSymbol(Inst, RISCV::FSW, IDLoc, Out, /*HasTmpReg=*/true);
2546     return false;
2547   case RISCV::PseudoFSD:
2548     emitLoadStoreSymbol(Inst, RISCV::FSD, IDLoc, Out, /*HasTmpReg=*/true);
2549     return false;
2550   case RISCV::PseudoAddTPRel:
2551     if (checkPseudoAddTPRel(Inst, Operands))
2552       return true;
2553     break;
2554   case RISCV::PseudoSEXT_B:
2555     emitPseudoExtend(Inst, /*SignExtend=*/true, /*Width=*/8, IDLoc, Out);
2556     return false;
2557   case RISCV::PseudoSEXT_H:
2558     emitPseudoExtend(Inst, /*SignExtend=*/true, /*Width=*/16, IDLoc, Out);
2559     return false;
2560   case RISCV::PseudoZEXT_H:
2561     emitPseudoExtend(Inst, /*SignExtend=*/false, /*Width=*/16, IDLoc, Out);
2562     return false;
2563   case RISCV::PseudoZEXT_W:
2564     emitPseudoExtend(Inst, /*SignExtend=*/false, /*Width=*/32, IDLoc, Out);
2565     return false;
2566   case RISCV::PseudoVMSGEU_VX:
2567   case RISCV::PseudoVMSGEU_VX_M:
2568   case RISCV::PseudoVMSGEU_VX_M_T:
2569     emitVMSGE(Inst, RISCV::VMSLTU_VX, IDLoc, Out);
2570     return false;
2571   case RISCV::PseudoVMSGE_VX:
2572   case RISCV::PseudoVMSGE_VX_M:
2573   case RISCV::PseudoVMSGE_VX_M_T:
2574     emitVMSGE(Inst, RISCV::VMSLT_VX, IDLoc, Out);
2575     return false;
2576   case RISCV::PseudoVMSGE_VI:
2577   case RISCV::PseudoVMSLT_VI: {
2578     // These instructions are signed and so is immediate so we can subtract one
2579     // and change the opcode.
2580     int64_t Imm = Inst.getOperand(2).getImm();
2581     unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGE_VI ? RISCV::VMSGT_VI
2582                                                              : RISCV::VMSLE_VI;
2583     emitToStreamer(Out, MCInstBuilder(Opc)
2584                             .addOperand(Inst.getOperand(0))
2585                             .addOperand(Inst.getOperand(1))
2586                             .addImm(Imm - 1)
2587                             .addOperand(Inst.getOperand(3)));
2588     return false;
2589   }
2590   case RISCV::PseudoVMSGEU_VI:
2591   case RISCV::PseudoVMSLTU_VI: {
2592     int64_t Imm = Inst.getOperand(2).getImm();
2593     // Unsigned comparisons are tricky because the immediate is signed. If the
2594     // immediate is 0 we can't just subtract one. vmsltu.vi v0, v1, 0 is always
2595     // false, but vmsle.vi v0, v1, -1 is always true. Instead we use
2596     // vmsne v0, v1, v1 which is always false.
2597     if (Imm == 0) {
2598       unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGEU_VI
2599                          ? RISCV::VMSEQ_VV
2600                          : RISCV::VMSNE_VV;
2601       emitToStreamer(Out, MCInstBuilder(Opc)
2602                               .addOperand(Inst.getOperand(0))
2603                               .addOperand(Inst.getOperand(1))
2604                               .addOperand(Inst.getOperand(1))
2605                               .addOperand(Inst.getOperand(3)));
2606     } else {
2607       // Other immediate values can subtract one like signed.
2608       unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGEU_VI
2609                          ? RISCV::VMSGTU_VI
2610                          : RISCV::VMSLEU_VI;
2611       emitToStreamer(Out, MCInstBuilder(Opc)
2612                               .addOperand(Inst.getOperand(0))
2613                               .addOperand(Inst.getOperand(1))
2614                               .addImm(Imm - 1)
2615                               .addOperand(Inst.getOperand(3)));
2616     }
2617 
2618     return false;
2619   }
2620   }
2621 
2622   emitToStreamer(Out, Inst);
2623   return false;
2624 }
2625 
2626 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeRISCVAsmParser() {
2627   RegisterMCAsmParser<RISCVAsmParser> X(getTheRISCV32Target());
2628   RegisterMCAsmParser<RISCVAsmParser> Y(getTheRISCV64Target());
2629 }
2630